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Introduction

Who is this book for?
This book is primarily targeted to programmers or learners who want 

to learn R programming for statistics. This book will cover using R 

programming for descriptive statistics, inferential statistics, regression 

analysis, and data visualizations.

 How is this book structured?
The structure of the book is determined by following two requirements:

• This book is useful for beginners to learn R 

programming for statistics.

• This book is useful for experts who want to use this 

book as a reference.

Topic Chapters

Introduction to R and R programming fundamentals 1  to 3

Descriptive statistics, data visualizations, inferential statistics, 

and regression analysis

4  to 6
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CHAPTER 1

Introduction
In this book, you will use R for applied statistics, which can be used in the 

data understanding and modeling stages of the CRISP DM (data mining) 

model. Data mining is the process of mining the insights and knowledge 

from data. R programming was created for statistics and is used in 

academic and research fields. R programming has evolved over time and 

many packages have been created to do data mining, text mining, and data 

visualizations tasks. R is very mature in the statistics field, so it is ideal to 

use R for the data exploration, data understanding, or modeling stages of 

the CRISP DM model.

 What Is R?
According to Wikipedia, R programming is for statistical computing 

and is supported by the R Foundation for Statistical Computing. The R 

programming language is used by academics and researchers for data 

analysis and statistical analysis, and R programming’s popularity has risen 

over time. As of June 2018, R is ranked 10th in the TIOBE index. The TIOBE 

Company created and maintains the TIOBE programming community 

index, which is the measure of the popularity of programming languages. 

TIOBE is the acronym for “The Importance of Being Earnest.”

R is a GNU package and is available freely under the GNU General 

Public License. This means that R is available with source code, and you 

are free to use R, but you must adhere to the license. R is available in the 
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command line, but there are many integrated development environments 

(IDEs) available for R. An IDE is software that has comprehensive facilities 

like a code editor, compiler, and debugger tools to help developers write R 

scripts. One famous IDE is RStudio, which assists developers in writing R 

scripts by providing all the required tools in one software package.

R is an implementation of the S programming language, which 

was created by Ross Ihahka and Robert Gentlemen at the University of 

Auckland. R and its libraries are made up of statistical and graphical 

techniques, including descriptive statistics, inferential statistics, and 

regression analysis. Another strength of R is that it is able to produce 

publishable quality graphs and charts, and can use packages like ggplot for 

advanced graphs.

According to the CRISP DM model, to do a data mining project, you 

must understand the business, and then understand and prepare the 

data. Then comes modeling and evaluation, and then deployment. R is 

strong in statistics and data visualization, so it is ideal to use R for data 

understanding and modeling.

Along with Python, R is used widely in the field of data science, 

which consists of statistics, machine learning, and domain expertise or 

knowledge.

 High-Level and Low-Level Languages
A high-level programming language (HLL) is designed to be used by a 

human and is closer to the human language. Its programming style is 

easier to comprehend and implement than a lower-level programming 

language (LLL). A high-level programming language needs to be converted 

to machine language before being executed, so a high-level programming 

language can be slower.

A low-level programming language, on the other hand, is a lot closer to 

the machine and computer language. A low-level programming language 

can be executed directly on computer without the need to convert 
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between languages before execution. Thus, a low-level programming 

language can be faster than a high-level programming language. Low-level 

programming languages like the assembly language are more inclined 

towards machine language that deals with bits 0 and 1.

R is a HLL because it shares many similarities to human languages. For 

example, in R programming code,

> var1 <- 1;

> var2 <- 2;

>

> result <- var1 + var2;

> print(result)

 [1] 3

>

The R programming code is more like human language. A low-level 

programming language like the assembly language is more towards the 

machine language, like 0011 0110:

0x52ac87:      movl7303445 (%ebx), %eax

0x52ac78:      calll         0x6bfb03

 What Is Statistics?
Statistics is a collection of mathematics to deal with the organization, 

analysis, and interpretation of data. Three main statistical methods are 

used in the data analysis: descriptive statistics, inferential statistics, and 

regressions analysis.

Descriptive statistics summarizes the data and usually focuses on 

the distribution, the central tendency, and the dispersion of data. The 

distribution can be normal distribution or binomial distribution, and the 

central tendency is to describe the data with respect to the central of the 

data. The central tendency can be the mean, median, and mode of the 
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data. The dispersion describes the spread of the data, and dispersion can 

be the variance, standard deviation, and interquartile range.

Inferential statistics tests the relationship between two data sets or 

two samples, and a hypothesis is usually set for the statistical relationships 

between them. The hypothesis can be a null hypothesis or alterative 

hypothesis, and rejecting the null hypothesis is done using tests like the 

T Test, Chi Square Test, and ANOVA. The Chi Square Test is more for 

categorical variables, and the T Test is more for continuous variables. The 

ANOVA test is for more complex applications.

Regression analysis is used to identify the relationships between two 

variables. Regressions can be linear regressions or non-linear regressions. 

The regression can also be a simple linear regression or multiple linear 

regressions for identifying relationships for more variables.

Data visualization is the technique used to communicate or present 

data using graphs, charts, and dashboards. Data visualizations can help us 

understand the data more easily.

 What Is Data Science?
Data science is a multidisciplinary field that includes statistics, computer 

science, machine learning, and domain expertise to get knowledge 

and insights from data. Data science usually ends up developing a data 

product. A data product is the changing of the data of a company into a 

product to solve a problem.

For example, a data product can be the product recommendation 

system used in Amazon and Lazada. These companies have a lot of data 

based on shoppers’ purchases. Using this data, Amazon and Lazada can 

identify the shopping patterns of shoppers and create a recommendation 

system or data product to recommend other products whenever a shopper 

buys a product.
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The term “data science” has become a buzzword and is now used to 

represent many areas like data analytics, data mining, text mining, data 

visualizations, prediction modeling, and so on.

The history of data science started in November 1997, when C. F. 

Jeff Wu characterized statistical work as data collection, analysis, and 

decision making, and presented his lecture called “Statistics = Data 

Science?” In 2001, William S. Cleveland introduced data science as a field 

that comprised statistics and some computing in his article called “Data 

Science: An Action Plan for Expanding the Technical Area of the Field of 

Statistics.”

DJ Patil, who claims to have coined the term “data science” with Jeff 

Hammerbacher and who wrote the “Data Scientist: The Sexiest Job of the 

21st Century” article published in the Harvard Business Review, says that 

there is a data scientist shortage in many industries, and data science is 

important in many companies because data analysis can help companies 

make many decisions. Every company needs to make decisions in strategic 

directions.

Statistics is important in data science because it can help analysts or 

data scientists analyze and understand data. Descriptive statistics assists in 

summarizing the data, inferential statistics tests the relationship between 

two data sets or samples, and regression analysis explores the relationships 

between multiple variables. Data visualizations can explore the data 

with charts, graphs, and dashboards. Regressions and machine learning 

algorithms can be used in predictive analytics to train a model and predict 

a variable.

Linear regression has the formula y = mx + c. You use historical data 

to train the formula to get the m and c. Y is the output variable and x is the 

input variable. Machine learning algorithms and regression or statistical 

learning algorithms are used to predict a variable like this approach.

Domain expertise is the knowledge of the data set. If the data set 

is business data, then the domain expertise should be business; if it 

is university data, education is the domain expertise; if the data set is 
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healthcare data, healthcare is the domain knowledge. I believe that 

business is the most important knowledge because almost all companies 

use data analysis to make important strategic business decisions.

Adding in product design and engineering knowledge takes us into the 

fields of Internet of Things (IoT) and smart cities because data science and 

predictive analytics can be used on sensor data. Because data science is 

a multidisciplinary field, if you can master statistics, machine e-learning, 

and business knowledge, it is extremely hard to be replaced. You can also 

work with statisticians, machine learning engineers, or business experts to 

complete a data science project.

Figure 1-1 shows a data science diagram.

 What Is Data Mining?
Data mining is closely related to data science. Data mining is the process 

of identifying the patterns from data using statistics, machine learning, and 

data warehouses or databases.

DATA
PROCESSING

DOMAIN
EXPERTISE

MATHEMATICS
COMPUTER
SCIENCE

DATA
SCIENCE

MACHINE
LEARNING

Source: Palmer, Shelly. Data Science for the C-Suite.
New York: Digital Living Press, 2015. Print.

STATISTICAL
RESEARCH

Figure 1-1. Data science is an intersection
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Extraction of patterns from data is not very new, and early methods 

include the use of the Nayes theorem and regressions. The growth of 

technologies increases the ability in data collection. The growth of 

technologies also allows the use of statistical learning and machine 

learning algorithms like neural networks, fuzzy logic, decision trees, 

generic algorithms, and support vector machines to uncover the hidden 

patterns of data. Data mining combines statistics and machine learning, 

and usually results in the creation of models for making predictions based 

on historical data.

The cross-industry standard process of data mining, also known as 

CRISP-DM, is a process used by data mining experts and it is one of the 

most popular data mining models. See Figure 1-2.

Business
Understanding

Data
Understanding

Data
Preparation

ModelingData

Evaluation

Deployment

Figure 1-2. Cross-industry standard process for data mining
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The CRISP-DM model was created in 1996 and involves SPSS, 

teradata, Daimler AG, NCR Corporation, and OHRA. The first version 

was depicted at the fourth CRISP-DM SIG Workshop in Brussels in 1999. 

Many practitioners use the CRISP-DM model, but IBM is the company that 

focuses on the CRISP-DM model and includes it in SPSS Modeler.

However, the CRISP-DM model is actually application neutral. The 

following sections explain its constituent parts.

 Business Understanding
Business understanding is when you understand what your company 

wants and expects from the project. It is great to include key people in the 

discussions and documentation to produce a project plan.

 Data Understanding
Data understanding involves the exploration of data that includes the use 

of statistics and data visualizations. Descriptive statistics can be used to 

summarize the data, inferential statistics can be used to test two data sets 

and samples, and regressions can be used to explore the relationships 

between multiple variables. Data visualizations use charts, graphs, and 

dashboards to understand the data. This phase allows you to understand 

the quality of data.

 Data Preparation
Data preparation is one of the most important and time-consuming 

phases and can include selecting a sample subset or variables selection, 

imputing missing values, transforming attributes or variables including 

log transform and feature scaling transformation, and duplicates removal. 

Variables selection can be done with a correlation matrix in a data 

visualization.
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 Modeling
Modeling usually means the development of a prediction model to predict 

a variable in data. The prediction model can be developed using regression 

algorithms, statistical learning algorithms, and machine learning 

algorithms like neural networks, support vector machines, naïve Bayes, 

multiple linear regressions, decision trees, and more. You can also build 

prescriptive and descriptive models.

 Evaluation
Evaluation is one of the phases where you may use ten-fold crossover 

validation techniques to evaluate the precision and recall of your model. 

You may improve your model accuracy by moving back to the previous 

phase to improve or prepare your data more. You may also select the most 

accurate model for your requirements. You may also evaluate the model 

using the business success criteria established in the beginning stage, 

which is the business understanding stage.

 Deployment
Deployment is the process of using new insights and knowledge to 

improve your organization or make changes to improve your organization. 

You may use your prediction model to create a data product or to produce 

a final report based on your models.

 What Is Text Mining?
While data mining is usually used to mine out patterns from numerical 

data, text mining is used to mine out patterns from textual data like Twitter 

tweets, blog postings, and feedback. Text mining, also known as text data 

mining, is the process of deriving high quality semantics and knowledge 

from textual data.
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Text mining tasks may consist of text classification, text clustering, and 

entity extraction; text analytics may include sentiments analysis, TF-IDF, 

part-of-speech tagging, name entity recognizing, and text link analysis.

Text mining uses the same process as the data mining CRISP-DM 

model, with slight differences as shown in Figure 1-3.

 Data Acquisition
Data acquisition is the process of gathering the textual data, combining the 

textual data, and doing some text cleaning. The business understanding 

stage may also be included here.

 Text Preprocessing
Text preprocessing includes the process of porter stemming; stopwords 

removal; conversion of uppercase, lowercase, and propercase; extraction 

of words or tokens based on name entity or regular expressions; and 

transforming of text to vector or numerical forms. Text preprocessing is like 

the data preparation phase in CRISP-DM.

• Performance and
   Utility Assessment

• Presentation
• Discover

Evaluation/
Validation

Applications

Modeling
Text

Preprocessing
Data

Acquisition

• Transformation• Acquisition
• Cleaning • Extract

• Organize Knowledge • Interaction

• Feedback LoopFeedback Loop

Figure 1-3. Text mining
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 Modeling
Text analytics or text discovery is the use of part-of-speech tagging or 

name entity recognition to understand each document. It implements 

sentiment analysis to understand the sentiments of the documents and 

text link analysis to summarize all documents in text links. Some books 

may call text analytics as text mining; I think text analytics is similar to data 

understanding.

Modeling can also be the process of creating prediction models such 

as text classification. Some books may put the data mining process in this 

stage to create prediction models, descriptive models, and prescriptive 

models, after converting the text to vectors in the text preprocessing stage.

 Evaluation/Validation
Evaluation or validation is the process of evaluating the accuracy of the 

model created. You can view this as the evaluation stage of the CRISP-DM 

model.

 Applications
The applications stage is the deployment stage in the CRISP-DM model, 

where presentations or a full report are developed. You may also develop 

the model into a recommendation and classification system as a data 

product.

 Natural Language Processing
Natural language processing (NLP) is an area of machine learning 

and computer science used to assist the computer in processing and 

understanding natural language. NLP can include part-of-speech tagging, 
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parsing, porter stemming, name entity recognition, optical character 

recognition, sentiment analysis, speech recognition, and more. NLP works 

hand in hand with text analytics and text mining.

The history of NLP started in the 1950s when Alan Turing published 

an article called “Computing Machinery and Intelligence.” Some notable 

natural language processing software was developed in the 1960s, such as 

ELIZA, which provided human-like interactions. In the 1970s, software was 

developed to write ontologies. In the 1980s, developers introduced Markov 

models and initiated research on statistical models to do POS tagging. 

Recent research has concentrated on supervised and semi-supervised 

algorithms and deep learning algorithms.

 Three Types of Analytics
Selecting the type of analytics can be difficult and challenging; luckily, 

analytics can be categorized into descriptive analytics, predictive analytics, 

and prescriptive analytics. No analytic type is better than the others, but 

they can be combined with each other.

• Descriptive Analytics: Uses data analytics to know 

what happened.

• Predictive Analytics: Uses statistical learning and 

machine learning to predict the future.

• Prescriptive Analytics: Uses simulation algorithms to 

know what should be done.

 Descriptive Analytics
Descriptive analytics uses statistics to summarize the data using 

descriptive statistics, inferential statistics to test the two data sets and 

samples, and regression analysis to study the relationships between 

multiple variables.

Chapter 1  IntroduCtIon



13

 Predictive Analytics
Predictive analytics predicts a variable by implementing machine learning 

and statistical learning algorithms. In statistics, regressions can be used to 

predict a variable. For example, y = mx + c. You can determine m and c by 

training a linear regression model using historical data. Y is the variable to 

predict, x is the input variable. If you put in x value, you can predict the y.

 Prescriptive Analytics
This is a field that allows a user to find the number of inputs to get a 

certain outcome. In simple form, this kind of analytics is used to provide 

advice. For example, y = mx + c. You have the m and c values. You want a 

y outcome, so what value should you put into x? To get the x value, what 

kind of things does your company need to do or what kind of advice do you 

need to give to the company? If you have multiple linear regressions, there 

are many x variables, so you need some simulation or evolutionary search 

algorithm to get the x values.

 Big Data
Big data is data sets that are very big and complex for a computer to 

process. Big data has challenges that may include capturing data, data 

storage, data analysis, and data visualizations. There are three properties 

or characteristics of big data.

 Volume
People are now more connected, so there are many more data sources, 

and as a consequence, the amount of data increased exponentially. The 

increase of data requires more computing power to process and analyze it. 

Traditional computing power is not able to process and analyze this data.
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 Velocity
The speed of data is increasing and the speed of data coming in is so fast 

that it is very difficult to process and analyze the data. Tradition computing 

methods can’t process and analyze at the speed of data coming in.

 Variety
More sources means more data in different formats and types, such as 

images, videos, voice, speech, textual data, and numerical data, both 

unstructured and structured. Various data formats require different 

methods to extract the data from them. This means that the data is difficult 

to process and analyze, and traditional computing methods can’t process 

such data.

Data grows very quickly, due to IoT devices like mobile devices, 

wireless sensor networks, and RFID readers. Based on an IDC report, 

global data will increase from 4.4 zettabytes to 44 zettabytes from 2013 to 

2020.

Relational databases and desktop statistics and data science software 

have challenges to process and analyze big data. Hence, big data requires 

parallel and distributed systems like Hadoop and Apache Spark to process 

and analyze the data.

Two popular systems or frameworks for big data are Apache Spark 

and Hadoop. Hadoop is a distributed data systems to store big data across 

different cluster and computers. One cluster can have many computers. The 

Hadoop storage system is known as the Hadoop Distributed System (HDFS). 

Hadoop has many ecosystems, such as mahout to do machine learning 

processing. Hadoop also has processing systems, such as MapReduce.

Apache Spark is a data processing system to process data on 

distributed data. Apache Spark does not have a file storage system, so it 

needs to integrate into a system like Hadoop. Apache Spark is a lot faster 

and completes full data analytics, data processing, and data prediction.
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R, Python, and Java can interface with these Hadoop and Apache Spark 

systems.

 Why R?
When learning data science, many people struggle with choosing which 

programming languages and data sciences to learn. There are many 

programming languages available for data science, like R, Python, SAS, 

Java, and more. There are many data science software packages to learn, 

such as SPSS Statistics, SPSS Modeler, SAS Enterprise Miner, Tableau, 

RapidMiner, Weka, GATE, and more.

I recommend learning R for statistics because it was developed for 

statistics in the first place. Python is a real programming language, so 

you can develop real applications and software via Python programming. 

Hence, if you want to develop a data product or data application, Python 

can be a better choice. R programming is very strong in statistics, so it 

is ideal for data exploration or data understanding using descriptive 

statistics, inferential statistics, regression analysis, and data visualizations. 

R is also ideal for modeling because you can use statistical learning like 

regressions for predictive analytics. R also has some packages for data 

mining, text mining, and machine learning like Rattle, CARET, and TM. R 

programming can also interface with big data systems like Apache Spark 

using Sparklyr. SAS programming is commercial, and Java has direct 

interfaces with GATE, Stanford NLP, and Weka. SPSS Statistics, SPSS 

Modeler, SAS Enterprise Miner, and Tableau are data science software 

packages with GUIs and are commercial. RapidMiner, Weka, and GATE are 

open source software packages for data science.

R is also heavily used in many of the companies that hire data 

scientists. Google and Facebook have data scientists who use R. R is also 

used in companies like Bank of America, Ford, Uber, Trulia, and more.
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R is also heavily used in academia, and R is very popular among 

academic researchers, who can use R graphics for publications.

Scripts written in R can be used on different operating systems, 

including Linux, Apple, and Windows, as long as the R interpreter is 

installed. This is not possible with languages like C#.

 Conclusion
In this chapter, you looked into R programming. You now know that R 

programming is a programming language for statistical computing and is 

supported by the R Foundation for Statistical Computing. The R language 

is used by researchers for statistical analysis, and R popularity has 

increased every year.

I also discussed high-level programming languages and low-level 

programming languages. HLLs are designed to be used by humans and are 

closer to the human language. LLLs, on the other hand, are a lot closer to 

the machine and computer languages. LLLs can be executed directly on a 

computer without the need to convert between languages, so they can be 

faster.

I also discussed statistics. Statistics is a collection of mathematics to 

deal with the organization, analysis, and interpretation of data. There are 

three main statistical methods used in data analysis: descriptive statistics, 

inferential statistics, and regressions analysis.

I also discussed data science. Data science is a multidisciplinary field 

that includes statistics, computer science, machine learning, and domain 

expertise to get knowledge and insights from data. Data science usually 

ends up with the development of a data product. A data product is the 

changing of the data of a company into a product to solve a problem.

Data mining is closely related to data science. Data mining is the 

process of identifying patterns from data using statistics, machine learning, 

and data warehouses or databases. Data mining consists of many models; 
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CRISP-DM is the most popular model for data mining. In CRISP-DM, data 

mining comprises business understanding, data understanding, data 

preparation, modeling, evaluation, and deployment.

While data mining is usually used to mine out patterns from numerical 

data, text mining is used to mine out patterns from textual data like Twitter 

tweets, blog postings, and feedback. Text mining, also known as text data 

mining, is the process of deriving high quality semantics and knowledge 

from textual data. Text mining consists of text classification, text clustering, 

and entity extraction; text analytics may include sentiments analysis, 

TF-IDF, part-of-speech tagging, name entity recognizing, and text link 

analysis. Text mining uses the same process as the data mining CRISP-DM 

model, with slight differences.

Natural language processing is an area of machine learning and 

computer science used to assist the computer in processing and 

understanding natural language. NLP can include part-of-speech tagging, 

parsing, porter stemming, name entity recognition, optical character 

recognition, sentiment analysis, speech recognition, and more. NLP works 

hand in hand with text analytics and text mining.

Selecting the types of analytics can be difficult and challenging. 

Luckily, analytics can be categorized into descriptive analytics, predictive 

analytics, and prescriptive analytics. No one type of analytics is better than 

the others, but they can be combined with each other.

Big data is data sets that are very big and complex for a computer to 

process. Big data has challenges that may include capturing data, data 

storage, data analysis, and data visualizations. There are three properties 

of big data: volume, velocity, and variety. There are two popular systems or 

frameworks for big data: Hadoop and Apache Spark.

When learning data science, there are many programming languages, 

like R, Python, SAS, and Java. There are many data science software 

packages, such as SPSS Statistics, SPSS Modeler, SAS Enterprise Miner, 

RapidMiner, and Weka. R was developed with statistics in mind, so it is 

best for the statistics portion of data mining, such as data understanding, 
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modeling with statistical learning algorithms, and data visualizations. 

R has packages for machine learning, natural language processing, and 

text mining, and Apache Spark for big data. Python is a full programming 

language, and it is best for developing data product or software. The 

SAS programming language is commercial and not free. R has become 

very popular, according to the TIOBE ranking, and many companies like 

Facebook and Google have data scientists who use R. R is also very popular 

with academic researchers. R scripts or code can be run on different 

operating systems long as the R interpreter is installed.
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CHAPTER 2

Getting Started
R programming is a programming language with object-oriented features 

ideal for statistical computing and data visualizations. R programming 

can do descriptive statistics, inferential statistics, and regression analysis. 

R programming is a GNU package and is a command line application. 

RStudio is an integrated development environment (IDE) for R 

programming. An IDE offers features to help you write code more easily 

and more productively by providing a code editor, compiler, and debugger. 

The code editor usually has syntax highlighting and intelligent code 

completion.

In this chapter, you will explore the R programming command line 

application and the RStudio IDE, and you will install R and RStudio on 

your computer. You will look into what an IDE is and you will explore the 

RStudio interface. RStudio and R can read a .csv file easily, perform some 

descriptive statistics, and plot simple graphs.

 What Is R?
R programming is for statistical computing and is supported by the R 

Foundation for Statistical Computing. R programming is used by many 

academics and researchers for data and statistical analysis, and the 

popularity of R has risen over time.
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R is a GNU package and is available under the GNU General Public 

License, which can be assumed to be free to a certain extent and is open 

source. R is available in a command line application, as shown in Figure 2- 1.

R programming is an implementation of the S programming language, 

its libraries consist of statistical and data visualization techniques, and it 

can conduct descriptive statistics, inferential statistics, and regressions 

analysis. You will explore the differences between the R programming 

command line application and the RStudio IDE, as well as the basics of the 

descriptive statistics features and the data visualization features.

 The Integrated Development Environment
An IDE is a software application that helps programmers develop 

software more easily and more productively. An IDE is made up of a code 

editor, compiler, and debugger tools. Code editors usually offer syntax 

highlighting and intelligent code completion.

Figure 2-1. The RGui interface
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Some IDEs, like NetBeans, also have an interpreter and others, like 

SharDevelop, don’t. Some IDEs have a version control system and tools 

like a graphical user interface (GUI) builder, and many IDEs have class and 

object browsers.

IDEs are developed to increase the productivity of the developer 

by combining features like a code editor, compiler, debugger, and 

interpreter. This is different from a programming code text editor like 

VI and NotePad++, which offer syntax highlighting but usually don’t 

communicate with the debugger and compiler.

The beginning of IDEs can be traced back to when punched cards were 

submitted to the compiler in early systems. Dartmouth BASIC was the 

first programming language to be created with an IDE. Maestro I was later 

created by Softlab Munich and can be considered the first full IDE between 

1970s and 1980s. Maestro I can be found in the Museum of Information 

Technology at Arlington, Virginia. The Softbench IDE was later created 

to have plugins. Today, Visual Studio, NetBeans, and Eclipse are the most 

famous IDEs. The R programming IDE is RStudio, and Figure 2-2 shows its 

intelligent code completion.

Figure 2-2. RStudio IDE intelligent code completion
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 RStudio: The IDE for R
In R programming, RStudio is the most popular IDE. RStudio has a code 

editor that consists of syntax highlighting and intelligent code completion 

functions. RStudio also has a workspace showing all the variables and 

history. You may double-click the variables to view them using tables and 

other options.

The R console is in RStudio so you can view the results of the R scripts 

after running the scripts; you can also type into the R console with R code 

to do some simple computing. The Plots and Others portion is available in 

RStudio to let you view the charts and graphs plotted from R scripts. The 

Plots and Others portion allows you to easily save the graphs and charts. 

Figure 2-3 shows the RStudio IDE interface.

 Installation of R and RStudio
In order to code R scripts, you must install the R programming command 

line application. You can download the R programming command line 

application from www.r-project.org/, as seen in Figure 2-4.

Figure 2-3. RStudio IDE interface
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In this book, you will download R for Windows. You can also download 

for Linux and Mac OS, as seen in Figure 2-5.

To install the software, double-click the download setup file and follow 

the instructions of the installer to install the R programming command 

line application, as seen in Figure 2-6.

Figure 2-4. The R project website

Figure 2-5. Downloading the R base for different OS options
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After the R programming command line application is installed, you 

can start it, as seen in Figure 2-7.

Figure 2-6. Installation of R

Figure 2-7. The RGui interface
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You can create your own Hello World application by using the print() 

function. The Hello World application is the standard first application to 

be developed when learning a programming language. Type the following 

code into the RGui:

print("Hello World");

The print() function is used to print some text on the console screen. 

You may print any text other than the “Hello World” shown in Figure 2-8.

Figure 2-8. The R “Hello World” application

RStudio is the most popular IDE for the R programming language. 

RStudio helps you write R programming code more easily and more 

productively. To download and install RStudio, visit www.rstudio.com/, as 

seen in Figure 2-9.
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Download the latest version. For this book, you will download the 64- bit  

Windows version. After downloading the RStudio installer or setup file, 

double-click the file to install the RStudio IDE, as seen in Figure 2-10.

Figure 2-9. The RStudio IDE website

Figure 2-10. Installation of the RStudio IDE
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After installing the RStudio IDE, you can run the RStudio IDE software, 

as seen in Figure 2-11.

Figure 2-11. The RStudio IDE interface

Before running the script, you need to select the R programming 

command line application version to use. Click Tools ➤ Global Options,  

as seen in Figure 2-12.

Figure 2-12. The RStudio IDE’s Tools menu
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Click the Change button to select the R version, as seen in Figure 2-13.

Figure 2-13. RStudio IDE options

For the beginner, choose the R version shown in Figure 2-14. If you 

want to change the R version in the future, you can use this method to 

do so.
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After clicking OK and choosing the R version, you must restart the 

RStudio IDE, as depicted in Figure 2-15.

Figure 2-14. The Choose R Installation dialog

Figure 2-15. RStudio IDE R version changing
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After restarting RStudio, the Console tab should show the selected R 

version, as seen in Figure 2-16.

Figure 2-16. Changed R version

 Writing Scripts in R and RStudio
You can read a comma-separated values (CSV) file using the read.csv() 

function in the R programming language, as seen in Figure 2-17.

myData <- read.csv(file="D:/data.csv", header=TRUE, sep=",");

myData;
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In the R programming language, you can use the summary() function 

to get the basic descriptive statistics for all the variables. I will discuss 

descriptive statistics, shown in Figure 2-18, in a future chapter of this book.

summary(myData);

Figure 2-17. RGui: Reading a CSV

Figure 2-18. RGui: The summary() function
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In the R programming language, you can plot a scatterplot using the 

plot() function, as seen in Figure 2-19.

plot(myData$x, myData$x2);

Figure 2-19. RGui: Plotting a chart

RStudio is an IDE that provides a GUI for the R programming 

command line application. RStudio provide word suggestions and syntax 

highlighting for the R programming language. The RStudio IDE for the R 

programming language is seen in Figure 2-20.
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With RStudio, you can write all the code into the code editor and run 

the script, as seen in Figures 2-22, 2-23, and 2-24.

myData <- read.csv(file="D:/data.csv", header=TRUE, sep=",");

myData;

summary(myData);

plot(myData$x, myData$x2);

As you type the code, RStudio shows the intelligent code completion, 

as shown in Figure 2-21.

Figure 2-20. The RStudio IDE interface

Figure 2-21. RStudio IDE intelligent code completion
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You must select all the R code in the code editor and click Run or Ctrl + 

Enter to run the script (Figure 2-22).

Figure 2-22. RStudio IDE: Running a script

Or you can click Code ➤ Run Region ➤ Run All (Figure 2-23).

Figure 2-23. RStudio IDE: Running a script
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The results are shown in Figure 2-24.

Figure 2-24. RStudio IDE: Results after running the R script

The RStudio IDE offers syntax highlighting features in the code editor. 

When you run the R script, you can view the results in the Console tab and 

see the scatterplot in the Plots tab. By double-clicking myData in the Global 

Environment tab, you can view the data loaded from the .csv file, as shown 

in Figure 2-25.
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 Conclusion
In this chapter, you looked at R programming. You now understand what 

R programming is: it’s a programming language for statistical computing 

and is supported by the R Foundation for Statistical Computing. R 

programming is used by researchers for statistical analysis, and R 

popularity has increased every year.

You also explored RStudio. RStudio is the IDE for the R programming 

language and it has syntax highlighting and intelligent code completion to 

assist you in writing R scripts more easily and more productively. You also 

looked at how R can read a .csv file and perform descriptive statistics and 

data visualizations, and you explored the differences between them.

You also installed R and the RStudio IDE, and you saw how to 

allow RStudio IDE to integrate with the R programming command line 

application.

Figure 2-25. RStudio IDE: Viewing the loaded data
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You also learned than an IDE is software to help you write code more 

easily and more productively. IDEs usually offer syntax highlighting and 

intelligent code completion and have a code editor, a compiler, and a 

debugger.

For R programming, RStudio is the most popular IDE. RStudio has 

a code editor that consists of syntax highlighting and intelligent code 

completion. RStudio also has a workspace showing all the variables and 

history. You may double-click the variables to view them using tables and 

more. The R console is in RStudio so you can view the results of R scripts. 

The Plots and Others portion is available in RStudio to let you view the 

charts and graphs plotted from the R code.
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CHAPTER 3

Basic Syntax
You will use R for applied statistics, which can be used in the data 

understanding and modeling stages of the CRISP-DM data mining 

model. R programming is a programming language with object-oriented 

programming features. R programming was created for statistics and is 

used in the academic and research fields. However, before you go into 

statistics, you need to learn to program R scripts.

In this chapter, you will explore the syntax of R programming. I will 

discuss the R console and code editor in RStudio, as well as R objects 

and the data structure of R programming, from variables and data types 

to lists, vectors, matrices, and data frames. I will also discuss conditional 

statements, loops, and functions. Then you will create a simple calculator 

after learning the basics.

 Writing in R Console
As you saw in Chapter 2, the R console offers a fast and easy way to do 

statistical calculations and some data visualizations. The R console is also 

like a calculator, so you can always use the R console to calculate some 

math equations.

To do math calculations, you can just type in some math equations like

1 + 1

> 1 + 1

[1] 2
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1 – 3

> 1 - 3

[1] -2

1 * 5

> 1 * 5

[1] 5

1 / 6

> 1 / 6

[1] 0.1666667

tan(2)

> tan(2)

[1] -2.18504

To do some simple statistical calculations, you can so the following:

Standard deviation

sd(c(1, 2, 3, 4, 5, 6))

>sd(c(1, 2, 3, 4, 5, 6))

[1] 1.870829

Mean

mean(c(1, 2, 3, 4, 5, 6))

> mean(c(1, 2, 3, 4, 5, 6))

[1] 3.5

Min

min(c(1, 2, 3, 4, 5,6 ))

> min(c(1, 2, 3, 4, 5, 6))

[1] 1
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To plot charts or graphs, type

plot(c(1, 2, 3, 4, 5, 6), c(2, 3, 4, 5, 6, 7))

> plot(c(1, 2, 3, 4, 5, 6), c(2, 3, 4, 5, 6, 7))

which is shown in Figure 3-1.

To sum up, the R console, despite being basic, offers the following 

advantages:

• High performance

• Fast prototyping and testing of your ideas and logic 

before proceeding further, such as when developing 

Windows Form applications

Figure 3-1. Scatter plot
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• Personally, I use the R console application to test 

algorithms and other code fragments when in the 

process of developing complex R scripts.

 Using the Code Editor
The RStudio IDE offers features like a code editor, debugger, and compiler 

that communicate with the R command line application or R console. The 

R code editor offers features like intelligent code completion and syntax 

highlighting, shown in Figures 3-2 and 3-3, respectively.

Figure 3-2. Example of intelligent code completion

Figure 3-3. Example of syntax highlighting

To create a new script in RStudio, click
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File ➤ New ➤ R Script, as shown in Figure 3-4.

You can then code your R Script. For now, type in the following code, 

shown in Figure 3-5:

A <- 1;

B <- 2;

A/B;

A * B;

A + B;

A – B;

A^2;

B^2;

Figure 3-4. Creating a new script
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To run the R script, highlight the code in the code editor and click Run, 

as shown in Figure 3-6.

Figure 3-5. Code in a script

Figure 3-6. Running the script
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To view the results of the R script, look in the R console of RStudio, as 

shown in Figure 3-7.

You can also see that in the Environment tab, there are two variables, 

as shown in Figure 3-8.

Figure 3-7. RStudio IDE console results

Figure 3-8. RStudio IDE Environment tab
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 Adding Comments to the Code
You can add comments to the code. Comments are text that will not be 

run by the R console. You can add in a comment by putting # in front of 

the text. The comment is for you to describe your code to let anyone read it 

more easily.

#Create variable A with value 1

A <- 1;

#Create variable B with value 2

B <- 2;

#Calculate A divide B

A/B;

#Calculate A times B

A * B;

#Calculate A plus B

A + B;

#Calculate A subtract B

A - B;

#Calculate A to power of 2

A^2;

#Calculate B to power of 2

B^2;

You can rerun the code and you should get the result shown in 

Figure 3-9.
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 Variables
Let’s look into the code and scripts you used previously. You actually 

created two variables, A and B, and assigned some values to the two 

variables.

A <- 1

B <- 2

In this code, A is a variable, and B is a variable also. <- means assign. A 

<- 1 means variable A is assigned a value of 1. 1 is a numeric type. B <- 2 

means variable B is assigned a value of 2. 2 is a numeric type.

If you want to assign text or character values, you add quotations, like

A <- "Hello World"

Figure 3-9. RStudio IDE reruns the code with comments
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Variable A is assigned a text value of "Hello World". Character and 

numeric are data types.

 Data Types
Data types are the types or kind of information or data a variable is 

holding. A data type can be numeric and character.

For example,

A <- "abc"

B <- 1.2

In R, data types are automatically determined. Because of the 

quotations surrounding the values, variable A is of the character data type, 

while variable B is of the numeric data type.

R is also capable of storing other data types, as shown in Table 3-1.

Table 3-1. Data Types

Data Types Values

Logical trUe

FaLse

numeric 12.3

2.55

1.0

Character “a”

“abc”

“this is a bat”

For more information, please see www.tutorialspoint.com/r/r_

data_types.htm.
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You can also determine the data type of a variable by using the class() 

method. For example:

A <- "ABC";

print(class(A));

> A <- "ABC";

> print(class(A));

[1] "character"

A <- 123;

print(class(A));

> A <- 123;

> print(class(A));

[1] "numeric"

A <- TRUE;

print(class(A));

> A <- TRUE;

> print(class(A));

[1] "logical"

Why is the data type important? If you do a math calculation in R and 

one variable’s data type is numeric and one variable’s data type is non- 

numeric, you will get the following error:

> A <- 123;

> B <- "aaa";

> A + B;

Error in A + B : non-numeric argument to binary operator
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You can also use is.datatype() to determine whether a variable is of a 

certain data type:

> A <- 123;

> print(is.numeric(A));

[1] TRUE

> print(is.character(A));

[1] FALSE

You can also use as.datatype() to convert between data types:

> A <- 12;

> B <- "56";

> A + B;

Error in A + B : non-numeric argument to binary operator

> B <- as.numeric(B);

> A + B;

[1] 68

A <- 12 means that A is a numeric data type. B <- "56" means that B 

is a character data type. When A and B add together, you will get an error 

because you are adding a numeric data type to a character data type.

If you try to convert B to the numeric data type using B <- 

as.numeric(B), you can add A and B together because A is a numeric data 

type and B is a numeric data type also.

 Vectors
A vector is a basic data structure or R object for storing a set of values of the 

same data type. A vector is the most basic and common data structure in 

R. A vector is used when you want to store and modify a set of values. The 

data types can be logical, integer, double, and character. The integer data 

type is used to store number values without a decimal, and the double data 
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type is used to store number values with a decimal. Vectors can be created 

using the c() function as follows:

variable = c(..., ..., ...)

> A <- c(1, 2, 3, 4, 5, 6);

> print(A);

[1] 1 2 3 4 5 6

You can check the data type of the vector using typeof() and class():

>typeof(A);

[1] "double"

> class(A);

[1] "numeric"

You can check the number of elements or values in a vector using the 

length() function:

> A <- c(1, 2, 3, 4, 5, 6);

> print(A);

[1] 1 2 3 4 5 6

> length(A);

[1] 6

You can also use the operator : to create a vector:

> A <- 1:8;

> print(A);

[1] 1 2 3 4 5 6 7 8

To retrieve the second element or value of a vector, use the [] brackets 

and put in the element number to retrieve:

> A <- 1:8;

> print(A);

[1] 1 2 3 4 5 6 7 8
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> A[2];

[1] 2

You can also retrieve the elements in the vector using another vector, 

for example, to retrieve the second and fifth element:

> A <- 1:8;

> print(A);

[1] 1 2 3 4 5 6 7 8

> A[c(2, 5)];

[1] 2 5

To retrieve all elements except the second element, do this:

> A <- 1:8;

> print(A);

[1] 1 2 3 4 5 6 7 8

> A[-2];

[1] 1 3 4 5 6 7 8

You can also retrieve elements of a vector using a logical vector:

> A <- 1:8;

> print(A);

[1] 1 2 3 4 5 6 7 8

> A[c(FALSE, TRUE, FALSE, TRUE, FALSE, TRUE, FALSE, TRUE)];

[1] 2 4 6 8

You can also use more than or less than signs to retrieve elements:

> A <- 1:8;

> print(A);

[1] 1 2 3 4 5 6 7 8

> A[A > 5];

[1] 6 7 8
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You can modify a vector as follows using assign, <-:

> A <- 1:8;

> print(A);

[1] 1 2 3 4 5 6 7 8

> A[3] <- 9;

> print(A);

[1] 1 2 9 4 5 6 7 8

 Lists
A list is like a vector. It is an R object that can store a set of values or 

elements, but a list can store values of different data types. A list is also 

another common data structure in R. You use a list when you want to 

modify and store a set of values of different data types. A vector can only 

store values of the same data type. The syntax to create a list is as follows:

variable = list(..., ..., ...)

To create a list, do this:

> A <- list("a", "b", 1, 2);

> print(A);

[[1]]

[1] "a"

[[2]]

[1] "b"

[[3]]

[1] 1

[[4]]

[1] 2
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To see the element data type or the data structure type of the list, you 

can use the str() and typeof() functions:

> str(A);

List of 4

 $ : chr "a"

 $ : chr "b"

 $ : num 1

 $ : num 2

>typeof(A);

[1] "list"

You can get the length or number of elements in the list by using the 

length() function:

> A <- list("a", "b", 1, 2);

> length(A);

[1] 4

You can retrieve the values in the list using an integer:

> A[1];

[[1]]

[1] "a"

You can retrieve the values in a list using an integer vector:

> A[c(1:2)];

[[1]]

[1] "a"

[[2]]

[1] "b"
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You can retrieve the values using a negative integer:

> print(A);

[[1]]

[1] "a"

[[2]]

[1] "b"

[[3]]

[1] 1

[[4]]

[1] 2

> A[-1];

[[1]]

[1] "b"

[[2]]

[1] 1

[[3]]

[1] 2

You can also retrieve the values using a logical vector:

> print(A);

[[1]]

[1] "a"

[[2]]

[1] "b"

[[3]]

[1] 1

Chapter 3  BasiC syntax



56

[[4]]

[1] 2

> A[c(TRUE, FALSE, FALSE, FALSE)];

[[1]]

[1] "a"

When you use only [] to retrieve a value, it will give you the sublist. If 

you want to get the content in the sublist, you need to use [[]].

> A[1];

[[1]]

[1] "a"

> A[[1]];

[1] "a"

You can modify a value or element in the list using

> print(A);

[[1]]

[1] "a"

[[2]]

[1] "b"

[[3]]

[1] 1

[[4]]

[1] 2

> A[[2]] <- "n";

> print(A);

[[1]]

[1] "a"
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[[2]]

[1] "n"

[[3]]

[1] 1

[[4]]

[1] 2

To delete an element or value in a list:

> print(A);

[[1]]

[1] "a"

[[2]]

[1] "n"

[[3]]

[1] 1

[[4]]

[1] 2

> A[[2]] <- NULL;

> print(A);

[[1]]

[1] "a"

[[2]]

[1] 1

[[3]]

[1] 2
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 Matrix
A matrix is like a vector, but it has two dimensions. You usually use a 

matrix to modify and store values from a data set because a matrix has two 

dimensions. A matrix is good when you plan to do linear algebra types or 

mathematical operations. For a data set with different types, you need to 

use a data frame.

To create a matrix, you can use the following syntax:

variable <- matrix(vector, nrow=n, ncol=i)

> A <- matrix(c(1, 2, 3, 4, 6, 7, 8, 9, 0), nrow=3, ncol=3);

> print(A);

     [,1] [,2] [,3]

[1,]    1    4    8

[2,]    2    6    9

[3,]    3    7    0

You can use dimnames to rename the rows and columns:

> A <- matrix(c(1, 2, 3, 4, 6, 7, 8, 9, 0), nrow=3, ncol=3);

> print(A);

     [,1] [,2] [,3]

[1,]    1    4    8

[2,]    2    6    9

[3,]    3    7    0

> A <- matrix(c(1, 2, 3, 4, 6, 7, 8, 9, 0), nrow=3, ncol=3, 

dimnames=list(c("X", "Y", "Z"), c("A", "S", "D")));

> print(A);

  A S D

X 1 4 8

Y 2 6 9

Z 3 7 0
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You can check the dimension of the matrix using the attributes() 

function and whether a variable is a matrix using the class() function:

> class(A);

[1] "matrix"

> attributes(A);

$`dim`

[1] 3 3

$dimnames

$dimnames[[1]]

[1] "X" "Y" "Z"

$dimnames[[2]]

[1] "A" "S" "D"

You can get column names and row names using the colnames() and 

rownames() functions:

>colnames(A);

[1] "A" "S" "D"

>rownames(A);

[1] "X" "Y" "Z"

You can also create a matrix by using column binding and row binding 

functions:

> B <- cbind(c(1, 2, 3), c(4, 5, 6));

> print(B);

     [,1] [,2]

[1,]    1    4

[2,]    2    5

[3,]    3    6

> C <- rbind(c(1, 2, 3), c(4, 5, 6));

> print(C);
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     [,1] [,2] [,3]

[1,]    1    2    3

[2,]    4    5    6

To select the first row:

> print(A);

  A S D

X 1 4 8

Y 2 6 9

Z 3 7 0

> A[1,];

A S D

1 4 8

To select the first column:

> print(A);

  A S D

X 1 4 8

Y 2 6 9

Z 3 7 0

> A[,1];

X Y Z

1 2 3

To select all rows except the last row:

> print(A);

  A S D

X 1 4 8

Y 2 6 9

Z 3 7 0

> A[-3,];
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  A S D

X 1 4 8

Y 2 6 9

To select the second row and second column:

> print(A);

  A S D

X 1 4 8

Y 2 6 9

Z 3 7 0

> A[2, 2];

[1] 6

Using a logical vector to select the first and last row:

> print(A);

  A S D

X 1 4 8

Y 2 6 9

Z 3 7 0

> A[c(TRUE, FALSE, FALSE),];

A S D

1 4 8

To select the elements and values based on more than and less than:

> print(A);

  A S D

X 1 4 8

Y 2 6 9

Z 3 7 0

> A[A>4];

[1] 6 7 8 9
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To modify the second row and second column:

> print(A);

  A S D

X 1 4 8

Y 2 6 9

Z 3 7 0

> A[2, 2] <- 100;

> print(A);

  A   S D

X 1   4 8

Y 2 100 9

Z 3   7 0

To add a row, use the rbind() function:

> print(A);

  A   S D

X 1   4 8

Y 2 100 9

Z 3   7 0

> B <- rbind(A, c(1, 2, 3));

> print(B);

  A   S D

X 1   4 8

Y 2 100 9

Z 3   7 0

  1   2 3

To add a column, use the cbind() function:

> print(A);

  A   S D

X 1   4 8
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Y 2 100 9

Z 3   7 0

> C <- cbind(A, c(1, 2, 3));

> print(C);

  A   S D

X 1   4 8 1

Y 2 100 9 2

Z 3   7 0 3

To transpose a matrix, use the t() function:

> print(A);

  A   S D

X 1   4 8

Y 2 100 9

Z 3   7 0

> A <- t(A);

> print(A);

  X   Y Z

A 1   2 3

S 4 100 7

D 8   9 0

 Data Frame
A data frame is a special list or R object that is multidimensional and is 

usually used to store data read from an Excel or .csv file. A matrix can only 

store values of the same type, but a data frame can store values of different 

types. To declare a data frame, use the following syntax:

variable = data.frame(colName1 = c(..., ..., ...),  

colName2 = c(..., ..., ...), ...)
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> A <- data.frame(emp_id=c(1, 2, 3), names=c("John", "James", 

"Mary"), salary=c(111.1, 222.2, 333.3));

> print(A);

emp_id names salary

1      1  John  111.1

2      2 James  222.2

3      3  Mary  333.3

You can use the typeof() and class() functions to check whether a 

variable is of the data frame type:

>typeof(A);

[1] "list"

> class(A);

[1] "data.frame"

To get the number of columns and rows, you can use the ncol() and 

nrow() functions:

>ncol(A);

[1] 3

>nrow(A);

[1] 3

To get the structure of the data frame, you can use the str() function:

> str(A);

'data.frame': 3 obs. of  3 variables:

 $ emp_id: num  1 2 3

 $ names : Factor w/ 3 levels "James","John",..: 2 1 3

 $ salary: num  111 222 333
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You can also use the read.csv() function to read a .csv file as a data 

frame:

>myData<- read.csv(file="D:/data.csv", header=TRUE, sep=",");

>ncol(myData);

[1] 4

>nrow(myData);

[1] 100

> str(myData);

'data.frame': 100 obs. of  4 variables:

 $ x : num  2.216 -0.181 1.697 1.655 1.068 ...

 $ x2: num  4.77 4.1 2.33 2.46 1.05 ...

 $ x3: num  -4.87 6.98 3.92 0.75 3.35 ...

 $ y : int  0 1 0 0 1 1 1 1 1 1 ...

To select a column, use [], [[]], or $ to select:

> print(A);

emp_id names salary

1      1  John  111.1

2      2 James  222.2

3      3  Mary  333.3

> A["names"];

  names

1  John

2 James

3  Mary

>A$names;

[1] John  James Mary

Levels: James John Mary

> A[[2]];

[1] John  James Mary

Levels: James John Mary
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To modify the first row and second column:

> print(A);

emp_id names salary

1      1  John  111.1

2      2 James  222.2

3      3  Mary  333.3

> A[1, 2] <- "James";

> print(A);

emp_id names salary

1      1 James  111.1

2      2 James  222.2

3      3  Mary  333.3

To add a row, use the rbind() function:

> print(A);

emp_id names salary

1      1 James  111.1

2      2 James  222.2

3      3  Mary  333.3

> B <- rbind(A, list(4, "John", 444.4));

> print(B);

emp_id names salary

1      1 James  111.1

2      2 James  222.2

3      3  Mary  333.3

4      4  John  444.4

To add a column, use the cbind() function:

> print(A);

emp_id names salary

1      1 James  111.1
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2      2 James  222.2

3      3  Mary  333.3

> B <- cbind(A, state=c("NY", "NY", "NY"));

> print(B);

emp_id names salary state

1      1 James  111.1    NY

2      2 James  222.2    NY

3      3  Mary  333.3    NY

To delete a column:

> print(A);

emp_id names salary

1      1 James  111.1

2      2 James  222.2

3      3  Mary  333.3

>A$salary<- NULL;

> print(A);

emp_id names

1      1 James

2      2 James

3      3  Mary

 Logical Statements
if...else statements are usually the logical fragments of your code in 

R. They give your program some intelligence and decision making by 

specifying the if rules:

if (Boolean expression) {

    #Codes to execute if Boolean expression is true

}else {

     #code to execute if Boolean expression is false }
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Table 3-2 shows the Boolean operators that can be used in writing the 

Boolean expressions of the if... else statements.

Table 3-2. Boolean Operators

Boolean Operator Definition

== equal to

>= Greater than or equal to

<= Lesser than or equal to

> Greater than

< Lesser than

!= not equal to

YouWe can put in more if...else statements using the else if to 

have more rules and intelligence in the program code:

if (Boolean expression 1) {

    #Codes to execute if Boolean expression 1 is true

} else if (Boolean expression2) {

#Codes to execute if Boolean expression 2 is true and Boolean 

expression 1 is false

} else if(Boolean expression 3) {

#Codes to execute if Boolean expression 3 is true and Boolean 

expression 1 and 2 are false

} else {

     #code to execute if all Boolean expressionsare false }

The following is an example of using else if:

> A <- c(1, 2);

> B <- sum(A); #1 + 2

>
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> if(B >= 5) {

+   print("B is greater or equal to 5");

+ } else if(B >= 3) {

+   print("B is more than or equal to 3");

+ } else {

+   print("B is less than 3");

+ }

[1] "B is more than or equal to 3"

If B is more than or equal to 5, the R console will print “B is greater or 

equal to 5”. Else if B is more than or equal to 3 but less than 5, the R console 

will print “B is more than or equal to 3”. Otherwise, the R console will print 

“B is lesser than 5”. The R console printed “B is more than or equal to 3” as 

B is 1 + 2 = 3.

 Loops
Loops are used to repeat certain fragments of code. For example, if you 

want print the “This is R.” message 100 times, it will be very tiresome to 

type print("This is R. "); 100 times. You can use loops to print the 

message 100 times more easily. Loops can usually be used to go through 

a set of vectors, lists, or data frames. In R, there are several loop options: 

both while loop, for loop, and repeat loop.

 For Loop
Let’s start with the syntax for a for loop:

for (value in vector) {

    #statements

}
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Example:

> A <- c(1:5); #create a vector with values 1, 2, 3, 4, 5

>

> for(e in A) { #for each element and value in vector A

+   print(e); #print the element and value

+ }

[1] 1

[1] 2

[1] 3

[1] 4

[1] 5

In this example, you create vector A, with values 1 to 5. For each 

element in the vector, you print the element in the console. See Figure 3-10 

for the logic.

Get each element
of the vector.

No

Process the
statements

Last
element
reached?

Yes

Figure 3-10. For loop of R
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 While Loop
You can also use while loop to loop until you meet a specific Boolean 

expression:

While (Boolean Expression) {

#Code to run or repeat until Bolean Expression is false

}

Example:

>i<- 1;

>

> while(i<= 10) {

+   print(i);

+   i<- i+1;

+ }

[1] 1

[1] 2

[1] 3

[1] 4

[1] 5

[1] 6

[1] 7

[1] 8

[1] 9

[1] 10

In this example, you use the while loop to print the text from 1 to 10. 

I is assigned a value of 1. While i is less than or equal to 10, the R console 

will print the value of i. After printing, I will be added to 1. It repeats 

printing until it is more than 10. See Figure 3-11 for the logic flow.
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 Break and Next Keywords
In loop statements, you can use the break keyword and the next keyword. 

The break keyword is to stop the iterations of the loop. The next keyword 

is to skip the current iteration of a loop.

Example for the break keyword:

> A <- c(1:10);

>

> for(e in A) {

+

+   if(e == 5) {

+     break;

+   }

+

Is condition true?

Yes

No

Code Block

Figure 3-11. While loop of R 
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+   print(e);

+ }

[1] 1

[1] 2

[1] 3

[1] 4

In this example, you create vector A with values from 1 to 10. For each 

element in A, you print the element values. If the element value is 5, you 

exit from the loop.

Example for the next keyword:

> A <- c(1:10);

>

> for(e in A) {

+

+   if(e == 5) {

+     next;

+   }

+

+   print(e);

+ }

[1] 1

[1] 2

[1] 3

[1] 4

[1] 6

[1] 7

[1] 8

[1] 9

[1] 10
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In this example, you create vector A with values from 1 to 10. For each 

element in A, you print the element values. If the element value is 5, you 

skip the current iteration and go to the next iteration. Thus, you did not 

print the value 5. An example of when you want to use the break statement 

is when you use the loop statements to iterate through a set of values; 

when you find the values you want, you can break out from the loop.

 Repeat Loop
The repeat loop repeats the code many times, and there is no Boolean 

expression to meet. To stop the loop, you must use the break keyword.

repeat {

#code to repeat

}

Example:

>i<- 1;

> repeat {

+   if(i> 10)

+     break;

+

+   print(i);

+   i<- i + 1;

+ }

[1] 1

[1] 2

[1] 3

[1] 4

[1] 5

[1] 6

[1] 7
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[1] 8

[1] 9

[1] 10

In this example, you create variable i with a value of 1. You repeat 

printing i and add 1 to i until i is more than 10, and then you break 

out from the loop. If you forget or don’t add a condition statement and 

the break keyword, you can end up in an infinite loop. An infinite loop 

is dangerous because it can consume your system resources and cause 

your program to keep on looping at the same place. The for loop is the 

preferable loop because the condition is defined in the first statement.

for(e in A) ....

The while loop is the next preferred loop. A condition statement is also 

stated in the first statement:

while(i<= ...) ...

If you forget to increment the i, I <- I + 1; , you will also have an 

infinite loop.

 Functions
Functions help you organize your code and allow you to reuse code 

fragments whenever you need. To create a function, use the following 

syntax:

function_name<- function(arg1, arg2, ...) {

    # Codes fragments

    function_name = #value to return

}
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Example:

> A <- c(1:5);

>

> productVect <- function(a) {

+

+   res <- 1;

+

+   for(e in a) {

+     res <- res * e;

+   }

+

+   productVect = res;

+ }

>

> print(productVect(A));

[1] 120

In this example, you create the productVect() function. This function 

is the same as prod() in R programming.

The productVect() function takes one argument. For every element 

in the argument (should be a vector), res will be equal to res times the 

element. After the loop is completed, the productVect() function will 

return the res value.

You can call the function using productVect(A). In the above code, 

you call the function using

A <- c(1:5);

print(productVect(A));

A is a vector with values from 1 to 5. You call the function by using 

productVect(A). The argument, a, in the function declaration is the formal 

argument. The argument, A, you passed to the function while calling the 

productVect() function is called the actual argument. When you call the 
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function using productVect(A), a, the formal argument, is assigned with A, 

the actual argument.

You can call the productVect() function a few times in your code:

>productVect<- function(a) {

+

+   res <- 1;

+

+   for(e in a) {

+     res <- res * e;

+   }

+

+   productVect = res;

+ }

>

> A <- c(1:5);

> print(productVect(A));

[1] 120

>

> B <- c(1:10);

> print(productVect(B));

[1] 3628800

You can also create default values for the argument in the function:

productVect<- function(a=c(1:5)) {

  res <- 1;

  for(e in a) {

    res <- res * e;

  }

productVect = res;

}
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print(productVect());

A <- c(1:5);

print(productVect(A));

B <- c(1:10);

print(productVect(B));

When you call the function without argument, print(productVect()), 

you can still get the result:

>productVect<- function(a=c(1:5)) {

+

+   res <- 1;

+

+   for(e in a) {

+     res <- res * e;

+   }

+

+   productVect = res;

+ }

>

> print(productVect());

[1] 120

>

> A <- c(1:5);

> print(productVect(A));

[1] 120

>

> B <- c(1:10);

> print(productVect(B));

[1] 3628800
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Instead of using productVect = res, you can also use the return() 

function to return the results:

>productVect<- function(a=c(1:5)) {

+

+   res <- 1;

+

+   for(e in a) {

+     res <- res * e;

+   }

+

+   return(res);

+ }

>

> print(productVect());

[1] 120

>

> A <- c(1:5);

> print(productVect(A));

[1] 120

>

> B <- c(1:10);

> print(productVect(B));

[1] 3628800
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 Create Your Own Calculator
In this chapter, you learned many R programming syntaxes. You looked 

into variables, data types, matrix, vectors, lists, data frames, loops, and 

functions. In this section, you are going to put many things you just 

learned into a Calculator script:

add <- function(a, b) {

  res <- a + b;

  return(res);

}

subtract <- function(a, b) {

  res <- a - b;

  return(res);

}

product <- function(a, b) {

  res <- a * b;

  return(res);

}

division <- function(a, b) {

  res <- a / b;

  return(res);

}

print("Select your option: ");

print("1. Add");

print("2. Subtract");

print("3. Product");

print("4. Division");

Chapter 3  BasiC syntax



81

opt <- as.integer(readline(prompt = "> "));

firstNum<- as.integer(readline(prompt="Enter first number: "));

secondNum<- as.integer(readline(prompt="Enter second number: 

"));

res <- 0;

if(opt == 1) {

  res <- add(firstNum, secondNum);

} else if(opt == 2) {

  res <- subtract(firstNum, secondNum);

} else if(opt == 3) {

  res <- product(firstNum, secondNum);

} else if(opt == 4) {

  res <- division(firstNum, secondNum);

} else {

  print("Error. ");

}

print(res);

In this code, you create the add(), subtract(), product(), and 

division() functions. You then print the messages “Select your option:”  

and etc. You assign the opt variable with the user input. You get the 

user input using the readline() function, and you use as.integer() to 

convert the user input to the integer type. You use if statements to call the 

functions based on the user input. You then print the results.
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To run the code, go to Code ➤ Run Region ➤ Run All, as shown in 

Figure 3-12.

Figure 3-12. Running the Calculator R script in the RStudio IDE
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The output is shown in Figure 3-13.

 Conclusion
In this chapter, you looked into R programming. You explored the R 

console and the RStudio code editor. The R console is for shorter code and 

the RStudio code editor is for longer R code or scripts.

You learned about variables. A variable is a container to store some 

values. A variable can have a name, which is called a variable name. Data 

types are the types or kind of information or data a variable is holding.

Figure 3-13. Running the results of the Calculator R script in the 
RStudio IDE
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You also looked into vectors. A vector is a basic data structure or R 

object to store a set of values of the same data type. The data types can be 

logical, integer, double, character, and more. Vectors can be created using 

the c() function.

You also learned about lists. Lists are like vectors: they are R objects 

that can store a set of values or elements, but a list can store values of 

different data types.

You also learned about matrices. A matrix is an R object or two- 

dimensional data structure that is like vector, but has two dimensions.

You also learned about data frames. A data frame is a special list or R 

object that is multidimensional and is usually used to store data read from 

Excel or .csv files.

You also learned about conditional statements. if...else statements 

are usually the logical fragments of your code in R. They give your program 

some intelligence and decision making ability by specifying the if rules.

You also learned about loops. Loops are used to repeat certain 

fragments of code. For example, if you want print the “This is R.” message 

100 times, it will be very tiresome to type print("This is R."); 100 

times. You can use loops to print the message 100 times more easily. R has 

both while loops, for loops, and repeat loops.

You also learned about functions. Functions help you organize your 

code and allow you to reuse code fragments whenever you need.

Finally, you created your own calculator based on what you learned.
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CHAPTER 4

Descriptive Statistics
Descriptive statistics is a set of math used to summarize data. Descriptive 

statistics can be distribution, central tendency, and dispersion of data. 

The distribution can be a normal distribution or binomial distribution. 

The central tendency can be mean, median, and mode. The dispersion or 

spreadness can be the range, interquartile range, variance, and standard 

deviation.

In this chapter, you will import a CSV file, Excel file, and SPSS file, 

and you will perform basic data processing. I will explain descriptive 

statistics, central tendency measurements, dispersion measurements, 

and distributions. You will look into how R programming can be used to 

calculate all these values, and how to test and see whether data is normally 

distributed.

 What Is Descriptive Statistics?
Descriptive statistics summarizes the data and usually focuses on the 

distribution, the central tendency, and dispersion of the data. The 

distributions can be normal distribution, binomial distribution, and other 

distributions like Bernoulli distribution. Binomial distribution and normal 

distribution are the more popular and important distributions, especially 

normal distribution. When exploring data and many statistical tests, you 

will usually look for the normality of the data, which is how normal the 

data is or how likely it is that the data is normally distributed. The Central 
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Limit Theorem states that the mean of a sample or subset of a distribution 

will be equal to the normal distribution mean when the sample size 

increases, regardless whether the sample is from a normal distribution. 

The central tendency, not the central limit theorem, is used to describe 

the data with respect to the center of the data. Central tendency can be the 

mean, median, and mode of the data. The dispersion describes the spread 

of the data, and dispersion can be the variance, standard deviation, and 

interquantile range.

Descriptive statistics summarizes the data set, lets us have a feel 

and understanding of the data and variables, and allows us to decide 

or determine whether we should use inferential statistics to identify the 

relationship between data sets or use regression analysis to identify the 

relationships between variables.

 Reading Data Files
R programming allow you to import a data set, which can be comma- 

separated values (CSV) file, Excel file, tab-separated file, JSON file, or 

others. Reading data into the R console or R is important, since you must 

have some data before you can do statistical computing and understand 

the data.

Before you look into importing data into the R console, you must 

determine your workplace or work directory first. You should always 

set the current workspace directory to tell R the location of your current 

project folder. This allows for easier references to data files and scripts.

To print the current work directory, you use the getwd() function:

# get the current workspace location

print(getwd());

> print(getwd());

[1] "C:/Users/gohmi/Documents"
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You can set the work directory using the setwd() function:

#set the current workspace location

setwd("D:/R");   #input your own file directory, for here

we use "D:/R"

> setwd("D:/R");

To get the new work directory location, you can use the getwd() 

function:

#get the new workspace

print(getwd());

> print(getwd());

[1] "D:/R"

You can put the data.csv data set into D:/R folder.

 Reading a CSV File
You can read the data CSV file into the R console using the read.csv() 

function:

> data <- read.csv(file="data.csv", header=TRUE, sep=",");

You can view the data by clicking the data in the Global Environment 

portion of the RStudio IDE. The data will be displayed in the table form. 

You can read the file using data.csv because you have set the work 

directory to D:/R, so file="data.csv" refers to D:/R/data.csv. See 

Figure 4-1.
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The data type of the data variable is data frame. You can determine 

whether the data type is data frame using the class() function:

> class(data);

[1] "data.frame"

The function you use to read a .csv file is

> data <- read.csv(file="data.csv", header=TRUE, sep=",");

file is the name or the data file path that you are going to read. header 

is a logical value to determine whether the names of the variables are 

in the first line. sep is the separator character, and quote is the quoting 

characters with “\”“ for ” and “\’” for ’. You can add in the quote for double 

quotation as follows:

> data <- read.csv(file="data.csv", header=TRUE, sep=",");

> View(data);

Figure 4-1. View data in table form in RStudio
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 Writing a CSV File
To write a CSV file, you can use the write.csv() function:

> write.csv(data, file="data2.csv", quote=TRUE, na="na", row.

names=FALSE);

The exported file is shown in Figure 4-2.

In the write.csv() function you used previously to export the CSV file,

> write.csv(data, file="data2.csv", quote=TRUE, na="na", row.

names=FALSE);

data is the variable of the data frame type you would like to export, 

file is the file path or location to export, quote is a logical value to state 

whether to have quotations, na is the string value to use for missing values, 

and row.names is a logical value to indicate whether the row names should 

be written.

Figure 4-2. Exported csv file opened in Microsoft Excel
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 Reading an Excel File
The data set can also be in the Excel format or .xlsx format. To read an 

Excel file, you need to use the xlsx package. The xlsx package requires 

a Java runtime, so you must install it on your computer. To install the 

xlsx package, go to the R console and type the following, also shown in 

Figure 4-3:

> install.packages("xlsx");

To use the xlsx package, use the require() function:

> require("xlsx");

Loading required package: xlsx

To read the Excel file, you can use the read.xlsx() function:

> data <- read.xlsx(file="data.xlsx", 1);

file is the location of the Excel file. 1 refers to sheet number 1.

To view the data variable, you can use the View() function or click 

the data variable in the Environment portion of RStudio, as shown in 

Figure 4- 4.

Figure 4-3. xlsx package installation in RStudio
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To look for the documentation of read.xlsx(), you can use the 

following code, as shown in Figure 4-5:

> help(read.xlsx);

The data variable is of the data frame data type:

> class(data);

[1] "data.frame"

 Writing an Excel File
To write a Excel file, you can use the write.xlsx() function:

> write.xlsx(data, file="data2.xlsx", sheetName="sheet1", col.

names=TRUE, row.names=FALSE);

Figure 4-4. View(data) in RStudio

Figure 4-5. Documentation of read.xlsx()
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data is the variable of data frame type to export to Excel file, file is the 

file location or path, sheetName is the sheet name, and col.names and row.

names are logical values to state whether to export with column names or 

row names.

To view the documentation of the write.xlsx() function or any R 

function, you can use the help() function.

 Reading an SPSS File
To read an SPSS file, you need to use the foreign package. You can install 

the foreign package using the install.packages() function:

> install.packages("foreign");

Installing package into  'C:/Users/gohmi/Documents/R/win- 

library/3.5'

(as 'lib' is unspecified)

trying URL 'https://cran.rstudio.com/bin/windows/contrib/3.5/

foreign_0.8-71.zip'

Figure 4-6. Exported xlsx f ile
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Content type 'application/zip' length 324526 bytes (316 KB)

downloaded 316 KB

package 'foreign' successfully unpacked and MD5 sums checked

The downloaded binary packages are in

     C:\Users\gohmi\AppData\Local\Temp\RtmpET26Hv\downloaded_

packages

To use the foreign package, use the require() function:

> require(foreign);

Loading required package: foreign

To read the SPSS file to a data frame type, you use the read.spss() 

function:

> data <- read.spss(file="data.spss", to.data.frame=TRUE);

file is the file path or location to read the SPSS file. to.data.frame is a 

logical value to state whether to read the SPSS file to a data frame type.

You can use the help() function to get the documentation of the read.

spss() function, as shown in Figure 4-7.

Figure 4-7. Documentation of read.spss()
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 Writing an SPSS File
You can write the SPSS file using the write.foreign() function:

> write.foreign(data, "mydata.txt", "mydata.sps", 

package="SPSS");

data is the variable to export to the SPSS data file, mydata.txt is the 

data in comma-delimited format, mydata.sps is the basic syntax file to 

read the data file into SPSS, and package determines the outputing or 

exporting to the SPSS format.

 Reading a JSON File
JSON, or JavaScript Object Notation, is a very popular data interchange 

format that is easy for humans to write or read. A JSON file can be read by 

using the rjson package. To install the rjson package, you use the install.

packages() function:

> install.packages("rjson");

Installing package into 'C:/Users/gohmi/Documents/R/win- 

library/3.5'

(as 'lib' is unspecified)

trying URL 'https://cran.rstudio.com/bin/windows/contrib/3.5/

rjson_0.2.20.zip'

Content type 'application/zip' length 577826 bytes (564 KB)

downloaded 564 KB

package 'rjson' successfully unpacked and MD5 sums checked

The downloaded binary packages are in

     C:\Users\gohmi\AppData\Local\Temp\RtmpET26Hv\downloaded_

packages
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You can use the require() function to load the rjson package:

> require(rjson);

Loading required package: rjson

You can read JSON file using the fromJSON() function:

> data <- fromJSON(file="data.json");

To convert the data to a data frame type, you can use this code:

> data2 <- as.data.frame(data);

 Basic Data Processing
After importing the data, you may need to do some simple data processing 

like selecting data, sorting data, filtering data, getting unique values, and 

removing missing values.

 Selecting Data
You can select a few columns from the data using a vector:

> data;

              x           x2          x3 y

1    2.21624472  4.774511945 -4.87198610 0

2   -0.18104835  4.100479091  6.97727175 1

3    1.69712196  2.328894837  3.92445970 0

4    1.65499099  2.462167830  0.74972168 0

5    1.06797834  1.053091767  3.35380788 1

6    0.67543296  1.918655276  1.56826805 1

7    0.19982505  3.063870668  4.48912276 1

8    0.91662531  1.953422065  3.29408509 1

9    1.30843083  1.322800550  0.39717775 1
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> data[, c("x", "x3")];

              x          x3

1    2.21624472 -4.87198610

2   -0.18104835  6.97727175

3    1.69712196  3.92445970

4    1.65499099  0.74972168

5    1.06797834  3.35380788

6    0.67543296  1.56826805

7    0.19982505  4.48912276

8    0.91662531  3.29408509

9    1.30843083  0.39717775

10  -0.12830745  3.63913066

11   1.39507566  0.26466993

12   2.21668825  3.69688978

13   2.64020481  3.74926815

14  -0.60394410  5.49485937

15   0.49529219  2.72051420

16   1.91349092  2.21675086

17   1.33149648  7.09660419

18   1.42607352  5.94312583

19   2.93044162  2.27876092

20   1.76600446  6.91145502

You can select a variable using the $ sign, as stated in a previous 

chapter:

> data$x3;

   [1] -4.87198610  6.97727175  3.92445970  0.74972168   

3.35380788  1.56826805  4.48912276

   [8]  3.29408509  0.39717775  3.63913066  0.26466993   

3.69688978  3.74926815  5.49485937

  [15]  2.72051420  2.21675086  7.09660419  5.94312583   

2.27876092  6.91145502  7.10060931
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  [22]  4.62416860  3.12633172  5.63667497  0.37028080  

-0.11370995  2.27488863  0.43562110

  [29]  0.46417756  3.44465146  4.14409404  3.78561287   

1.86181693  8.10920939  0.87207093

  [36]  0.55297962  4.26909037  1.01777720 12.85624593   

4.79384178 -1.10646203  4.48442125

  [43] -3.56106951  1.71246170  9.74478236  3.15799853   

0.97278927  2.35670484  3.08804548

  [50]  1.52772318 -5.02155267  5.64303286 -1.24622282   

0.59864199  1.11359605  4.38302156

  [57]  2.54163230  1.19193935 -0.57096625  7.49237946   

6.88838713  5.37947543  0.72886289

  [64]  2.20441458 -0.04416262  6.98441537  5.25116254  

-0.15175665 -0.28652257  2.97419481

  [71]  1.57454520  1.74898024  3.78645063  1.02328701   

1.51030662 -1.46386054  5.65843587

  [78]  1.71775236  2.77004224 -0.13805983  6.51654242  

-0.80982223  6.55297343  3.65082015

  [85]  5.55579403  3.03684846  6.85138858  2.09051225   

2.79632315  5.21544351  2.63005598

  [92] -0.04795488  8.79812379  0.92166450  2.97840367   

1.89262722  2.23928744  2.46465216

 [99] -0.18871437 -0.14146813

 Sorting
You can sort the data in x3 in ascending order using

> data[order(data$x3), ];

              x           x2          x3 y

51   0.95505576  1.796297183 -5.02155267 1

1    2.21624472  4.774511945 -4.87198610 0
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43   0.77142379  6.000455870 -3.56106951 0

76   1.43188297  2.758027392 -1.46386054 0

53   1.91399240  2.334445518 -1.24622282 0

41   0.69012311  5.527698064 -1.10646203 1

82   0.85499504  3.623854599 -0.80982223 1

59  -0.14645562 -0.629264301 -0.57096625 1

69   2.02211069  1.366558932 -0.28652257 0

99   0.44030641 -0.513103067 -0.18871437 1

68  -0.96007693  1.705067556 -0.15175665 0

100  2.34219633  3.314183829 -0.14146813 0

80   1.06881756  4.485035396 -0.13805983 1

You can sort the data in x3 in descending order using

> data[order(data$x3, decreasing=TRUE), ];

              x           x2          x3 y

39   0.44100266  0.041863046 12.85624593 1

45   0.45732586  3.706789430  9.74478236 1

93   2.48013836 -0.078239681  8.79812379 0

34   1.72284823  1.990169758  8.10920939 0

60   2.24529387  3.486295802  7.49237946 0

21   1.35331484  2.124233637  7.10060931 0

17   1.33149648  4.189856264  7.09660419 1

66   1.56980022  0.379400632  6.98441537 1

2   -0.18104835  4.100479091  6.97727175 1

20   1.76600446  4.065779075  6.91145502 0

61  -1.07591095  2.522409241  6.88838713 0

87   0.29924083  2.892653658  6.85138858 1

83   1.20403393  3.934698897  6.55297343 1

81  -0.09110412  0.745501714  6.51654242 1

Chapter 4  DesCriptive statistiCs



101

You can sort the data by multiple variables:

> data[order(data$x3, data$x2), ];

              x           x2          x3 y

51   0.95505576  1.796297183 -5.02155267 1

1    2.21624472  4.774511945 -4.87198610 0

43   0.77142379  6.000455870 -3.56106951 0

76   1.43188297  2.758027392 -1.46386054 0

53   1.91399240  2.334445518 -1.24622282 0

41   0.69012311  5.527698064 -1.10646203 1

82   0.85499504  3.623854599 -0.80982223 1

59  -0.14645562 -0.629264301 -0.57096625 1

69   2.02211069  1.366558932 -0.28652257 0

99   0.44030641 -0.513103067 -0.18871437 1

68  -0.96007693  1.705067556 -0.15175665 0

 Filtering
You can filter the data using Boolean expressions and statements:

> data[data$x > 0, ];

             x           x2          x3 y

1   2.21624472  4.774511945 -4.87198610 0

3   1.69712196  2.328894837  3.92445970 0

4   1.65499099  2.462167830  0.74972168 0

5   1.06797834  1.053091767  3.35380788 1

6   0.67543296  1.918655276  1.56826805 1

7   0.19982505  3.063870668  4.48912276 1

8   0.91662531  1.953422065  3.29408509 1

9   1.30843083  1.322800550  0.39717775 1

11  1.39507566  0.270269185  0.26466993 0

12  2.21668825  1.611527264  3.69688978 0

13  2.64020481  4.240357413  3.74926815 0
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You can also filter the data with more complex expressions:

> data[data$x > 0 & data$x < 1, ];

            x           x2         x3 y

6  0.67543296  1.918655276  1.5682681 1

7  0.19982505  3.063870668  4.4891228 1

8  0.91662531  1.953422065  3.2940851 1

15 0.49529219  0.961328129  2.7205142 1

22 0.96711785 -1.656336500  4.6241686 0

24 0.22931395  4.513268166  5.6366750 1

29 0.92245691  3.066787671  0.4641776 1

32 0.26530020  2.407519006  3.7856129 1

35 0.74641160  0.007386508  0.8720709 1

 Removing Missing Values
You can remove rows with NA values in any variables:

> na.omit(data);

              x           x2          x3 y

1    2.21624472  4.774511945 -4.87198610 0

2   -0.18104835  4.100479091  6.97727175 1

3    1.69712196  2.328894837  3.92445970 0

4    1.65499099  2.462167830  0.74972168 0

5    1.06797834  1.053091767  3.35380788 1

6    0.67543296  1.918655276  1.56826805 1

7    0.19982505  3.063870668  4.48912276 1
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 Removing Duplicates
You can remove duplicates based on the x variable using

> data[!duplicated(data$x), ];

              x           x2          x3 y

1    2.21624472  4.774511945 -4.87198610 0

2   -0.18104835  4.100479091  6.97727175 1

3    1.69712196  2.328894837  3.92445970 0

4    1.65499099  2.462167830  0.74972168 0

5    1.06797834  1.053091767  3.35380788 1

6    0.67543296  1.918655276  1.56826805 1

7    0.19982505  3.063870668  4.48912276 1

8    0.91662531  1.953422065  3.29408509 1

9    1.30843083  1.322800550  0.39717775 1

10  -0.12830745  3.929044754  3.63913066 1

11   1.39507566  0.270269185  0.26466993 0

12   2.21668825  1.611527264  3.69688978 0

13   2.64020481  4.240357413  3.74926815 0

14  -0.60394410  1.130285226  5.49485937 0

15   0.49529219  0.961328129  2.72051420 1

For more advanced duplicate removal for text data, you may use the 

Levenshtein similarity algorithm and others. It is beyond the scope of this 

book to cover the similarity duplicate removal. For each row of data, you 

can get the Levenshtein similarity between the current row and all other 

rows of the data and return the results with a similarity below a stated 

value. You can then check whether they are really similar and duplicated, 

and remove them as needed.
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 Some Basic Statistics Terms
The following are some of the most popular terms used in statistics.

• Population: Population is the total set of observations. 

A population is the whole, and it comprises every 

member or observation.

• Sample: A sample is a portion of a population. A 

sample can be extracted from the population using 

random sampling techniques and others.

• Observations: An observation is something you 

measure or count during a study or experiment. An 

observation usually means the row in data.

• Variables: A variable is a characteristics or quantity 

that can be counted and can be called a data item. 

Variables usually refer to the column.

 Types of Data
Data can be numeric data or categorical data.

• Numeric data can have discrete data or continuous 

data. Discrete variables usually take integer values. 

Discrete variables have steps. Continuous variables can 

be any real number values.

• Categorical data are categories or non-numeric data. 

Categorical data can have nominal variables that have 

unordered categories. Ordinal variables can have 

ordered categories.
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 Mode, Median, Mean
Mean, median, and mode are the most common measures for central 

tendency. Central tendency is a measure that best summarizes the data 

and is a measure that is related to the center of the data set.

 Mode

Mode is a value in data that has the highest frequency and is useful when 

the differences are non-numeric and seldom occur.

To get the mode in R, you start with data:

> A <- c(1, 2, 3, 4, 5, 5, 5, 6, 7, 8);

To get mode in a vector, you create a frequency table:

> y <- table(A);

> y;

A

1 2 3 4 5 6 7 8

1 1 1 1 3 1 1 1

You want to get the highest frequency, so you use the following to get 

the mode:

> names(y)[which(y==max(y))];

[1] "5"

Let’s get the mode for a data set. First, you have the data:

> y <- table(data$x);

> print(y);
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To get the mode in the data set, you must get the values of the highest 

frequency. Since all values are of frequency 1, your mode is

> names(y) [which(y==max(y))];

   [1] "-1.10380693563466"   "-1.07591095084206"    

"-1.03307520058884"   "-0.960076927640974"

   [5] "-0.681376413558189"  "-0.60394409792254"    

"-0.576961817793324"  "-0.531319073429502"

   [9] "-0.393748947329461"  "-0.363177568600528"   

"-0.181048347962983"  "-0.146455623720039"

  [13] "-0.128307452033018"  "-0.123388723621058"   

"-0.101546995549492"  "-0.0911041245433437"

  [17] "-0.04988355797068"   "0.072199258362634"    

"0.194009711645882"   "0.199825048055373"

  [21] "0.229313954917265"   "0.265300204243802"    

"0.278608090170949"   "0.299240831235205"

  [25] "0.375685875108926"   "0.375886351624522"    

"0.431165605395961"   "0.440306411318609"

  [29] "0.441002661190442"   "0.457325864971707"    

"0.495292193747488"   "0.536273330307632"

  [33] "0.675432957349429"   "0.690123106678726"    

"0.736279647441046"   "0.746411596302334"

  [37] "0.760336369473898"   "0.771423785187196"    

"0.817889767078534"   "0.854995040060911"

  [41] "0.913440165921528"   "0.916625307876996"    

"0.922456906688953"   "0.955055760366265"

  [45] "0.967117849282085"   "0.971724620868089"    

"0.981039549396608"   "1.00606498603125"
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  [49] "1.06718039898877"    "1.06797833714856"     

"1.06881756289549"    "1.08718603297871"

  [53] "1.10356948706272"    "1.11925179073556"     

"1.2040339292453"     "1.25502822371368"

  [57] "1.28679297901113"    "1.30790288496801"     

"1.30843083022333"    "1.33149647893459"

  [61] "1.35331484423307"    "1.39507565734447"     

"1.40212267908162"    "1.42607352487406"

  [65] "1.43188296915663"    "1.52346751351768"     

"1.55472504319324"    "1.56980021618683"

  [69] "1.65307570138401"    "1.65499098668696"     

"1.69712196084468"    "1.72284823029622"

  [73] "1.72661763645561"    "1.75109907720939"     

"1.76600446229059"    "1.88048596823981"

  [77] "1.91349091681916"    "1.91399240309242"     

"1.92524009507999"    "2.02211068696315"

  [81] "2.03853797041063"    "2.04518626417935"     

"2.12978282462908"    "2.21624471542922"

  [85] "2.21668824966669"    "2.24529386752873"     

"2.33237405387913"    "2.34219633417921"

  [89] "2.48013835527471"    "2.50480340549357"     

"2.62246164503412"    "2.62566065094827"

  [93] "2.64020480708033"    "2.68169620257743"     

"2.72668117335907"    "2.77811502414916"

  [97] "2.93044161969506"    "3.0710000206091"     

"3.12515738750874"    "3.16181857813796"
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 Median

The median is the middle or midpoint of the data and is also the 50 

percentile of the data. The median is affected by the outliers and skewness 

of the data. The median can be a better measurement for centrality than 

the mean if the data is skewed. The mean is the average, which is liable to 

be influenced by outliers, so median is a better measure when the data is 

skewed.

In R, to get the median, you use the median() function:

> A <- c(1, 2, 3, 4, 5, 5, 5, 6, 7, 8);

> median(A);

[1] 5

To get the median for dataset:

> median(data$x2);

[1] 2.380852

 Mean

The mean is the average of the data. It is the sum of all data divided by 

the number of data points. The mean works best if the data is distributed 

in a normal distribution or distributed evenly. The mean represents the 

expected value if the distribution is random.
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1 2

In R, to get the mean, you can use the mean() function:

> A <- c(1, 2, 3, 4, 5, 5, 5, 6, 7, 8);

> mean(A);

[1] 4.6
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To get the mean of a data set:

> mean(data$x2);

[1] 2.46451

 Interquartile Range, Variance, Standard 
Deviation
Measures of variability are the measures of the spread of the data. 

Measures of variability can be range, interquartile range, variance, 

standard deviation, and more.

 Range

The range is the difference between the largest and smallest points in the 

data.

To find the range in R, you use the range() function:

> A <- c(1, 2, 3, 4, 5, 5, 5, 6, 7, 8);

> range(A);

[1] 1 8

To get the difference between the max and the min, you can use

> A <- c(1, 2, 3, 4, 5, 5, 5, 6, 7, 8);

> res <- range(A);

> diff(res);

[1] 7

You can use the min() and max() functions to find the range also:

> A <- c(1, 2, 3, 4, 5, 5, 5, 6, 7, 8);

> min(A);

[1] 1

> max(A);
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[1] 8

> max(A) - min(A);

[1] 7

To get the range for a data set:

> res <- range(data$x2);

> diff(res);

[1] 10.65222

> res <- range(data$x2, na.rm=TRUE);

> diff(res);

[1] 10.65222

na.rm is a logical value to state whether to remove NA values.

 Interquartile Range

The interquartile range is the measure of the difference between the 75 

percentile or third quartile and the 25 percentile or first quartile.

To get the interquartile range, you can use the IQR() function:

> A <- c(1, 2, 3, 4, 5, 5, 5, 6, 7, 8);

> IQR(A);

[1] 2.5

You can get the quartiles by using the quantile() function:

> quantile(A);

  0%  25%  50%  75% 100%

1.00 3.25 5.00 5.75 8.00

You can get the 25 and 75 percentiles:

> quantile(A, 0.25);

 25%

3.25
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> quantile(A, 0.75);

 75%

5.75

You can get the interquartile range and quartiles for data set using

> quantile(data$x2);

       0%       25%       50%       75%

-2.298551  1.274672  2.380852  3.750422

     100%

 8.353669

> IQR(data$x2);

[1] 2.47575

> IQR(data$x2, na.rm=TRUE);

[1] 2.47575

> help(IQR);

The IQR() and quantile() functions can have NA values removed 

using na.rm = TRUE.

Range measures the maximum and minimum data values, and the 

interquartile range measures where the majority value is.

 Variance

The variance is the average of squared differences from the mean, and it is 

used to measure the spreadness of the data.

The variance of a population is

s 2

2

=
å -( )X u

N

where μ is the mean of the population and N is the number of data 

points.
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The variance of a sample is

S
X X

n
2

2

1
=
å -( )

-

where n is the number of data points. You use n-1 for sample variance 

and sample standard deviation because of Bessel’s correction to partially 

correct the bias on the estimation of the population variance and standard 

deviation.

To find the population variance, you use the var() function and  

(N - 1)/N:

> A <- c(1, 2, 3, 4, 5, 5, 5, 6, 7, 8);

> N <- length(A);

> N;

[1] 10

> var(A) * (N - 1) / N;

[1] 4.24

To get the sample variance, you can use the var() function:

> A <- c(1, 2, 3, 4, 5, 5, 5, 6, 7, 8);

> var(A);

[1] 4.711111

To get the population variance of a data set:

> N <- nrow(data);

> N;

[1] 100

> var(data$x) * (N - 1) / N;

[1] 1.062619
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To get the sample variance of a data set:

> var(data$x);

[1] 1.073352

 Standard Deviation

The standard deviation is the square root of a variance and it measures the 

spread of the data. Variances get bigger when there are more variations 

and get smaller when there are lesser variations, because the variance is a 

squared result. With standard deviation, the variance is the square root, so 

it is easier to picture and apply. The variance is the squared result, so the 

unit is different from the data. The standard deviation has the same unit as 

the data.

The population standard deviation is

s = -( )
=
å1

1

2

N
x x

i

N

i

For the sample standard deviation, you use n - 1 for sample variance 

and sample standard deviation because of Bessel’s correction to partially 

correct the bias on the estimation of population variance and standard 

deviation.
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To find the population standard deviation:

> A <- c(1, 2, 3, 4, 5, 5, 5, 6, 7, 8);

> N <- length(A);

> variance <- var(A) * (N - 1) / N;

> sqrt(variance);

[1] 2.059126
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To find the population standard deviation for a data set:

> N <- nrow(data);

> variance <- var(data$x2) * (N - 1) / N;

> sqrt(variance);

[1] 1.908994

To find the sample standard deviation, you use the sd() function:

> A <- c(1, 2, 3, 4, 5, 5, 5, 6, 7, 8);

> sd(A);

[1] 2.170509

To find the sample standard deviation of a data set, you use the sd() 

function:

> sd(data$x2);

[1] 1.918611

 Normal Distribution
Normal distribution is one of the more important theories because nearly 

all statistical tests require the data to be distributed normally. It describes 

how data looks when plotted. Normal distribution is also called the bell 

curve, shown in Figure 4-8.

Figure 4-8. Normal Distribution or Bell Curve
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You can plot a distribution in R using the hist() function:

> hist(data$x, breaks=15);

In R, breaks shows the number of bars in a histogram. bins is the class 

interval to sort the data. For example, in grade data, the bins can be 83-88, 

89-94, 95-100, and each bin size should be the same. See Figure 4-9.

To see whether data is normally distributed, you can use the qqnorm() 

and qqline() functions:

> qqnorm(data$x);

> qqline(data$x);

In the Q-Q plot shown in Figure 4-10, if the points do not deviate away 

from the line, the data is normally distributed.

Figure 4-9. Histogram of x
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You can also use a Shapiro Test to test whether the data is normally 

distributed:

> shapiro.test(data$x);

    Shapiro-Wilk normality test

data:  data$x

W = 0.98698, p-value = 0.4363

If the p-value is more than 0.05, you can conclude that the data does 

not deviate from normal distribution.

In R, to generate random numbers from the normal distribution, you 

use rnorm() function:

> set.seed(123);

> A <- rnorm(50, 3, 0.5);

> hist(A, breaks=15);

Figure 4-10. QQPlot of x
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3 is the mean and 0.5 is the standard deviation. In the above functions, 

you generated 50 random values from normal distribution. See Figure 4- 11.

In R, to calculate the cumulative distribution function (CDF), F(x) = 

P(X <= x) where X is normal, you use the pnorm() function:

> pnorm(1.9, 3, 0.5);

[1] 0.01390345

The above is a direct lookup for the probability P(X < 1.9) where X is a 

normal distribution with mean of 3 and standard deviation of 0.5. If you 

want P(X > 1.9), you use 1 - pnorm(1.9, 3, 0.5).

In R, if you want to calculate the inverse CDF and lookup for the p-th 

quantile of the normal distribution, you use

> qnorm(0.95, 3, 0.5);

[1] 3.822427

This code looks for the 95 percentile of the normal distribution with a 

standard deviation of 0.5 and a mean of 3. The value returned is an x value, 

not a probability.

Figure 4-11. Histogram of A
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 Modality

The modality of a distribution can be seen by the number of peaks when 

we plot the histogram (see Figure 4-12):

> hist(data$x, breaks=15);

Figure 4-13 shows the modality type. The distribution of the market 

variable can be argued as a unimodal type. The figure shows the unimodal, 

bimodal, and multimodal types.

Figure 4-13. Modality Type of Histogram or distribution

Figure 4-12. Histogram of x

 Skewness

Skewness is a measure of how symmetric a distribution is and how much 

the distribution is different from the normal distribution. Figure 4-14 

shows the types of skewness.
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Negative skew is also known as left skewed, and positive skew is also 

known as right skewed. The histogram from the previous section has a 

negative skew.

The Kurtosis measure is used to see whether a dataset is heavy tailed or 

light tailed. High kurtosis means heavy tailed, so there are more outliers in 

the data. See Figure 4-15.

To find the kurtosis and skewness in R, you must install the moments 

package:

> install.packages("moments");

Installing package into 'C:/Users/gohmi/Documents/R/win- 

library/3.5'

(as 'lib' is unspecified)

trying URL 'https://cran.rstudio.com/bin/windows/contrib/3.5/

moments_0.14.zip'

Figure 4-15. Kurtosis Type or heavy tailed or light tailed distribution

Figure 4-14. Types of Skewness
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Content type 'application/zip' length 55827 bytes (54 KB)

downloaded 54 KB

package 'moments' successfully unpacked and MD5 sums checked

The downloaded binary packages are in

     C:\Users\gohmi\AppData\Local\Temp\RtmpET26Hv\downloaded_

packages

You also need the moments package:

> require(moments);

Loading required package: moments

You then use the skewness() and kurtosis() functions to get the 

skewness and kurtosis:

> skewness(data$x);

[1] -0.06331548

> kurtosis(data$x);

[1] 2.401046

 Binomial Distribution
Binomial distribution has two outcomes, success or failure, and can 

be thought of as the probability of success or failure in a survey that is 

repeated various times. The number of observations is fixed, and each 

observation or probability is independent, and the probability of success is 

the same for all observations.

To get the probability mass function, Pr(X=x), of binomial distribution, 

you can use the dbinom() function:

 > dbinom(32, 100, 0.5);

[1] 0.000112817
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This code lookup is for P(X=30) where X is the binomial distribution 

with a size of 100 and a probability of success of 0.5

To get the cumulative distribution function, P(X <= x), of a binomial 

distribution, you can use the pbinom() function:

> pbinom(32, 100, 0.5);

[1] 0.0002043886

The above code lookup is for p(X <= 30) where X is the binomial 

distribution with a size of 100 and a probability of success of 0.5.

To get the p-th quantile of the binomial distribution, you can use the 

qbinom() function:

> qbinom(0.3, 100, 0.5);

[1] 47

The above code lookup is for the 30th quantile of the binomial 

distribution where the size is 100 and the probability of success is 0.5. The 

value is a cumulative value.

To generate random variables from a binomial distribution, you use 

the rbinom() function:

> set.seed(123);

> A <- rbinom(1000, 100, 0.5);

> hist(A, breaks=20);

You can use rbinom() or rnorm() to generate random variables to 

simulate a new dataset.
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 The summary() and str() Functions

The summary() and str() functions are the fastest ways to get descriptive 

statistics of the data. The summary() function gives the basic descriptive 

statistics of the data. The str() function, as mentioned in a previous 

chapter, gives the structure of the variables.

You can get the basic descriptive statistics using the summary() function:

> summary(data);

       x                 x2               x3                 

 y

  Min.   :-1.1038   Min.   :-2.299   Min.   :-5.0216    

Min.   :0.00

  1st Qu.: 0.3758   1st Qu.: 1.275   1st Qu.: 0.8415    

1st Qu.:0.00

  Median : 1.0684   Median : 2.381   Median : 2.5858    

Median :0.00

  Mean   : 1.0904   Mean   : 2.465   Mean   : 2.8314    

Mean   :0.49

Figure 4-16. Histogram of A
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  3rd Qu.: 1.7946   3rd Qu.: 3.750   3rd Qu.: 4.5229    

3rd Qu.:1.00

  Max.   : 3.1618   Max.   : 8.354   Max.   :12.8562    

Max.    :1.00

You can get the structure of the data using the str() function:

> str(data);

'data.frame':    100 obs. of  4 variables:

 $ x : num  2.216 -0.181 1.697 1.655 1.068 ...

 $ x2: num  4.77 4.1 2.33 2.46 1.05 ...

 $ x3: num  -4.87 6.98 3.92 0.75 3.35 ...

 $ y : num  0 1 0 0 1 1 1 1 1 1 ...

 Conclusion
In this chapter, you looked into R programming. You now understand 

descriptive statistics. Descriptive statistics summarizes the data and 

usually focuses on the distribution, the central tendency, and the 

dispersion of the data.

You also looked into how R programming allows you to import a data 

set that can be a CSV file, Excel file, tab-separated file, JSON file, and 

others. Reading data into the R console or R is important because you must 

have some data before you can do statistical computing and understand 

the data.

You performed simple data processing like selecting data, sorting data, 

filtering data, getting unique values, and removing missing values.

You also learned some basic statistics terms such as population, 

sample, observations, and variables. You also learned about data types in 

statistics, which includes numeric data and categorical variables. Numeric 

data can have discrete and continuous data, and categorical data can have 

nominal and ordinal variables.
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You also learned about mean, median, and mode, which are the most 

common measures for central tendency. Central tendency is a measure 

that best summarizes the data and is related to the center of the data set.

You also learned about measures of variability, which is the measure of 

the spread of the data. Measures of variability can be range, interquartile 

range, variance, standard deviation, and others.

You also learned about normal distribution, which is one of the more 

important theories because nearly all statistical testing requires the data 

to be distributed normally. You learned how to test normal distribution in 

data and the skewness and kurtosis of distributions.

You also learned about the summary() and str() functions, which are 

the fastest ways to get the descriptive statistics of the data. The summary() 

function gives the basic descriptive statistics of the data. The str() function, 

as mentioned in a previous chapter, gives the structure of the variables.

You learned more about two very popular distributions, where normal 

distribution is also known as bell curve and is a distribution that happens 

naturally in many data sets. Binomial distribution has two outcomes, 

success or failure, and can be thought of as the probability of success or 

failure in a survey that is repeated various times.
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CHAPTER 5

Data Visualizations
Descriptive statistics is a set of math used to summarize data. Data 

visualization is the equivalent of visual communication because creating 

graphics from data helps us understand the data. Humans distinguish 

differences in line, shape, and color without much processing effort, and 

data visualization can take advantage of this to create charts and graphs to 

help us understand the data more easily.

In this chapter, you will plot a bar chart, histogram, line chart, pie 

chart, scatterplot, boxplot, and scatterplot matrix using R. You will then 

look into plotting decision trees and social network analysis graphs. You 

will also use ggplot2 to create more advanced charts using the grammar 

of graphics, and then you will look into creating interactive charts using 

Plotly JS.

 What Are Data Visualizations?
Descriptive statistics summarizes the data and usually focuses on the 

distribution, the central tendency, and the dispersion of the data. Data 

visualization, on the other hand, creates graphics from the data to help 

us understand it. The graphics or charts can also help us to communicate 

visually to our clients. A picture is worth a thousand words.

Data visualization can involve the plotting of a bar, histogram, 

scatterplot, boxplot, line chart, time series, and scatterplot matrix chart to 

help us analyze and reason about the data and understand the causality 

and relationship between variables. Data visualization can also be viewed 
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as descriptive statistics to some. Humans distinguish differences in line, 

shape, and color without much processing effort, and data visualization 

can take advantage of this to create charts and graphs to help users 

understand the data more easily.

 Bar Chart and Histogram
R programming allows us to plot bar charts and histograms. A bar chart 

represents data using bars, with y values being the value of the variable. R 

programming uses the barplot() function to create bar charts, and R can 

draw both horizontal and vertical bar charts. A histogram, on the other 

hand, represents the frequencies of the values within a variable and draws 

them into bars.

To plot a bar chart in R, you can use the barplot() function:

> data <- c(4, 6, 7, 9, 10, 20, 12, 8);

> barplot(data, xlab="X-axis", ylab="Y-axis", main="Bar Chart 1", 

col="green");

data is the data to plot, xlab is the x-axis name, ylab is the y-axis name, 

main is the main title, and col is the color of the chart. See Figure 5- 1.

Figure 5-1. Bar Chart of data
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To export the bar chart into an image file (see Figure 5-2), you can  

add in

> data <- c(4, 6, 7, 9, 10, 20, 12, 8);

> png(file="D:/barchart.png");

> barplot(data, xlab="x-axis", ylab="y-axis", main="bar chart 1",  

col="green");

> dev.off();

RStudioGD

        2

Figure 5-2. Bar Chart PNG file Opened with Microsoft Photos

To plot a horizontal bar chart (see Figure 5-3), you can use horiz=TRUE:

> data <- c(4, 6, 7, 9, 10, 20, 12, 8);

> png(file="D:/barchart.png");
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> barplot(data, xlab="x-axis", ylab="y-axis", main="bar chart 

1", col="green", horiz=TRUE);

> dev.off();

RStudioGD

        2

To plot a stacked bar plot, you can create the following data set:

> data(mtcars);

> data <- table(mtcars$gear, mtcars$carb);

> data;

    1 2 3 4 6 8

  3 3 4 3 5 0 0

  4 4 4 0 4 0 0

  5 0 2 0 1 1 1

Figure 5-3. Horizontal Bar Chart of data variable

Chapter 5  Data Visualizations



133

To plot a stacked bar plot:

> png(file="D:/barchart.png");

> barplot(data3, xlab="x-axis", ylab="y-axis", main="bar chart 

1", col=c("grey", "blue", "yellow"));

> dev.off();

RStudioGD

        2

In the data, 3 is the grey color, 4 is the blue color, and 5 is the yellow 

color. When the x-axis or x is 1, the grey color is 3 steps, the blue color is 4 

steps, and the yellow color is 0 steps. See Figure 5-4.

> data;

    1 2 3 4 6 8

  3 3 4 3 5 0 0

  4 4 4 0 4 0 0

  5 0 2 0 1 1 1

Figure 5-4. Stacked bar plot of data
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To plot a grouped bar chart, you can use beside=TRUE:

> data(mtcars);

> data <- table(mtcars$gear, mtcars$carb);

> data;

    1 2 3 4 6 8

  3 3 4 3 5 0 0

  4 4 4 0 4 0 0

  5 0 2 0 1 1 1

> png(file="D:/barchart.png");

> barplot(data3, xlab="x-axis", ylab="y-axis", main="bar chart 1",  

col=c("grey", "blue", "yellow"), beside=TRUE);

> dev.off();

RStudioGD

        2

In the data, 3 is the grey color, 4 is the blue color, and 5 is the yellow 

color. When the x-axis or x is 1, the grey color is 3 steps, the blue color is 4 

steps, and the yellow color is 0 steps. See Figure 5-5.

> data;

    1 2 3 4 6 8

  3 3 4 3 5 0 0

  4 4 4 0 4 0 0

  5 0 2 0 1 1 1
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To plot a histogram, you can use the hist() function (see Figure 5-6):

> set.seed(123);

> data1 <- rnorm(100, mean=5, sd=3);

> png(file="D:/histogram.png");

>  hist(data1, main="histogram", xlab="x-axis", col="green", 

border="blue", breaks=10);

> dev.off();

RStudioGD

        2

Figure 5-5. Grouped bar chart of data
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data1 is the data, main is the main title, col is the color, border is the 

color of the borders, xlab is the name of the x-axis, and breaks is the width 

of each bar.

To plot a histogram with a density line, you can change freq=FALSE 

so that the histogram is plotted based on probability, and you can use the 

lines() function to add the density line (see Figure 5-7):

> set.seed(123);

> data1 <- rnorm(100, mean=5, sd=3);

>  hist(data1, main="histogram", xlab="x-axis", col="green", 

border="blue", breaks=10, freq=FALSE);

> lines(density(data1), col="red");

Figure 5-6. Histogram of data1
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 Line Chart and Pie Chart
A line chart is a graph that has all the points connected together by 

drawing lines between them. A line chart is very useful for trend 

analysis and time series analysis. A pie chart, on the other hand, is the 

representation of data as slices of a circle with various colors.

You can plot a line graph using the plot() function (see Figure 5-8):

> x <- c(1, 2, 3, 4, 5, 6, 8, 9);

> y <- c(3, 5, 4, 6, 9, 8, 2, 1);

> png(file="D:/line.png");

>  plot(x, y, type="l", xlab="x-axis", ylab="y-axis", main="line 

graph", col="blue");

> dev.off();

RStudioGD

        2

Figure 5-7. Histogram with density line of data1
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You use type="l" when you want to plot a line chart and type="p" when 

you want to plot a point chart or scatter chart. xlab is the x-axis name, ylab 

is the y-axis name, main is the main title, and col is the color of the chart.

To plot multiple line graph, you can add in the lines() function:

> x <- c(1, 2, 3, 4, 5, 6, 8, 9);

> y <- c(3, 5, 4, 6, 9, 8, 2, 1);

> x.1 <- c(2, 3, 4, 6, 7, 8, 9, 10);

> y.1 <- c(6, 3, 5, 1, 5, 3, 4, 8);

> png(file="D:/line.png");

>  plot(x, y, type="l", xlab="x-axis", ylab="y-axis", main="line 

graph", col="blue");

> lines(x.1, y.1, type="o", col="green");

> dev.off();

RStudioGD

        2

Figure 5-8. Line chart

Chapter 5  Data Visualizations



139

type="o" will give you a line graph with a point in it (see Figure 5-9).

To plot a pie chart, you can use the pie() function (see Figure 5-10):

> x <- c(10, 30, 60, 10, 50);

> labels <- c("one", "two", "three", "four", "five");

> png(file="D:/pie.png");

> pie(x, labels, main="Pie Chart");

> dev.off();

RStudioGD

        2

Figure 5-9. Multiple Line Chart
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To plot a 3D pie chart, you must install the plotrix library:

> install.packages("plotrix");

Installing package into 'C:/Users/gohmi/Documents/R/win- 

library/3.5'

(as 'lib' is unspecified)

trying URL 'https://cran.rstudio.com/bin/windows/contrib/3.5/

plotrix_3.7-3.zip'

Content type 'application/zip' length 1055537 bytes (1.0 MB)

downloaded 1.0 MB

package 'plotrix' successfully unpacked and MD5 sums checked

The downloaded binary packages are in

     C:\Users\gohmi\AppData\Local\Temp\RtmpET26Hv\downloaded_

packages

Figure 5-10. Pie Chart
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You can use the require() function or the library() function to call 

the plotrix library:

> library(plotrix);

You can use the pie3D() function to plot the 3D pie chart shown in 

Figure 5-11:

> x <- c(10, 30, 60, 10, 50);

> labels <- c("one", "two", "three", "four", "five");

> png(file="D:/pie.png");

> pie3D(x, labels=labels, explode=0.1, main="Pie Chart");

> dev.off();

RStudioGD

        2

Figure 5-11. 3D Pie Chart
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 Scatterplot and Boxplot
A scatterplot is a chart that represents data using points in the Cartesian 

plane. Each point is the value of two variables. A boxplot shows the 

statistics of the data.

You can plot a scatterplot using the plot() function:

> x <- c(1, 2, 3, 4, 5, 6, 8, 9);

> y <- c(3, 5, 4, 6, 9, 8, 2, 1);

> png(file="D:/scatter.png");

> plot(x, y, xlab="x-axis", ylab="y-axis", main="scatterplot");

> dev.off();

RStudioGD

        2

xlab is the x-axis name, ylab is the y-axis name, and main is the main 

title. See Figure 5-12.

Figure 5-12. Scatterplot
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A boxplot represents how well the data in a data set is distributed, 

depicting the minimum, maximum, median, first quartile, and third 

quartile. Figure 5-13 explains the boxplot.

To create the boxplot in Figure 5-14, you can use the boxplot() function:

> set.seed(12);

> var1 <- rnorm(100, mean=3, sd=3);

> var2 <- rnorm(100, mean=2, sd=2);

> var3 <- rnorm(100, mean=1, sd=3);

> data <- data.frame(var1, var2, var3);

> png(file="D:/boxplot.png");

>  boxplot(data, main="boxplot", notch=FALSE, varwidth=TRUE, 

col=c("green", "purple", "blue"));

> dev.off();

RStudioGD

        2

Maximum

Third Quartile

First Quartile

Minimum

IQR
Median

Figure 5-13. Boxplot and its explanation
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data is the data, main is the main title, notch is a logical value to state 

how medians of different groups match with each other, varwidth is a 

logical value to state whether to draw the width of box proportionate to the 

sample size, and col is the color of the boxplot.

You can draw a boxplot with a notch by setting notch=TRUE (see 

Figure 5-15):

> set.seed(12);

> var1 <- rnorm(100, mean=3, sd=3);

> var2 <- rnorm(100, mean=2, sd=2);

> var3 <- rnorm(100, mean=1, sd=3);

> data <- data.frame(var1, var2, var3);

Figure 5-14. Boxplots
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> png(file="D:/boxplot.png");

>  boxplot(data, main="boxplot", notch=TRUE, varwidth=TRUE, 

col=c("green", "purple", "blue"));

> dev.off();

RStudioGD

        2

Figure 5-15. Boxplots with notch
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 Scatterplot Matrix
A scatterplot matrix is used to find the correlation between a variable and 

other variables, and you usually use it to select the important variables, 

which is also known as variable selection.

To plot the scatterplot matrix in Figure 5-16, you can use the pairs() 

function:

> set.seed(12);

> var1 <- rnorm(100, mean=1, sd=3);

> var2 <- rnorm(100, mean=1, sd=3);

> var3 <- rnorm(100, mean=1, sd=3);

> var4 <- rnorm(100, mean=2, sd=3);

> var5 <- rnorm(100, mean=2, sd=3);

> data <- data.frame(var1, var2, var3, var4, var5);

> png(file="D:/scatterplotMatrix.png");

>  pairs(~var1+var2+var3+var4+var5, data=data, main="scatterplot 

matrix");

> dev.off();

RStudioGD

        2

Chapter 5  Data Visualizations



147

 Social Network Analysis Graph Basics
A social network analysis graph is an advanced data visualization; it is not 

related to statistics, but can be good for reference. The following is a fast 

introduction to social network analysis graphs. A social network analysis 

graph can help you understand the relationships between individuals or 

nodes. Social network analysis is usually used on social network data like 

Facebook and Weibo. Each node is an individual, and the social network 

graphs show us how each individual connects to others.

Figure 5-16. Scatterplot Matrix
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To plot a social network analysis graph, you must install the igraph 

package:

> install.packages("igraph");

Installing package into 'C:/Users/gohmi/Documents/R/win- 

library/3.5'

(as 'lib' is unspecified)

trying URL 'https://cran.rstudio.com/bin/windows/contrib/3.5/

igraph_1.2.2.zip'

Content type 'application/zip' length 9148505 bytes (8.7 MB)

downloaded 8.7 MB

package 'igraph' successfully unpacked and MD5 sums checked

The downloaded binary packages are in

     C:\Users\gohmi\AppData\Local\Temp\RtmpET26Hv\downloaded_

packages

To use the igraph package, you must use the library() function:

> library(igraph);

Attaching package: 'igraph'

The following objects are masked from 'package:stats':

    decompose, spectrum

The following object is masked from 'package:base':

    union

To plot the network graph for John ➤ James ➤ Mary ➤ John shown in 

Figure 5-17, you use

> g <- graph(edges=c("John", "James", "James", "Mary", "Mary", 

"John"), directed=FALSE);

> plot(g);
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To plot the directed network graph shown in Figure 5-18, you change 

directed=FALSE to directed=TRUE:

> g <- graph(edges=c("John", "James", "James", "Mary", "Mary", 

"John"), directed=TRUE);

> plot(g);

Figure 5-17. Social Network Analysis with Undirected Network 
Graph

Figure 5-18. Social Network Analysis with directed network graph
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 Using ggplot2
ggplot2 is a package created by Hadley Wickham that offers a powerful 

graphics language for creating advanced charts. ggplot2 is very popular 

and famous in the R community, and it allows us to create charts that 

represent univariate, multivariate, and categorical data in a straightforward 

way. R’s build-in functionality offer the plotting of charts, but ggplot allows 

us to plot more advanced charts using the grammar of graphics.

To use ggplot2, you must install the package:

> install.packages("ggplot2");

Installing package into 'C:/Users/gohmi/Documents/R/win- 

library/3.5'

(as 'lib' is unspecified)

also installing the dependencies 'stringi', 'colorspace', 

'stringr', 'labeling', 'munsell', 'RColorBrewer', 'digest', 

'gtable', 'lazyeval', 'plyr', 'reshape2', 'scales', 

'viridisLite', 'withr'

  There is a binary version available but

  the source version is later:

        binary source needs_compilation

stringi  1.1.7  1.2.4              TRUE

  Binaries will be installed

trying URL 'https://cran.rstudio.com/bin/windows/contrib/3.5/

stringi_1.1.7.zip'

Content type 'application/zip' length 14368013 bytes (13.7 MB)

downloaded 13.7 MB

trying URL 'https://cran.rstudio.com/bin/windows/contrib/3.5/

colorspace_1.3-2.zip'

Content type 'application/zip' length 527776 bytes (515 KB)

downloaded 515 KB
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The downloaded binary packages are in

     C:\Users\gohmi\AppData\Local\Temp\RtmpET26Hv\downloaded_

packages

 What Is the Grammar of Graphics?
ggplot2 focuses on the grammar of graphics, which is the building blocks 

of the chart, such as

• Data

• Aesthetic mapping

• Geometric objects

• Statistical transformation

• Scales

• Coordinate systems

• Position adjustments

• Faceting

In this book, you are going to look into some of them. It is beyond this 

book to cover everything in ggplot2.

 The Setup for ggplot2
To use ggplot2, you must call the library using the library() or require() 

functions. You also need to let ggplot know which data set to use, and you 

can use the ggplot() function:

> library(ggplot2);

> set.seed(12);

> var1 <- rnorm(100, mean=1, sd=1);

> var2 <- rnorm(100, mean=2, sd=1);
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> var3 <- rnorm(100, mean=1, sd=2);

> data <- data.frame(var1, var2, var3);

> ggplot(data);

ggplot() can only take a data frame variable.

 Aesthetic Mapping in ggplot2
In ggplot2, aesthetics are the things we can see, such as

• Position

• Color

• Fill

• Shape

• Line type

• Size

You can use aestheticsc in ggplot2 via the aes() function:

> ggplot(data, aes(x=var1, y=var2));

 Geometry in ggplot2
Geometric objects are the plots or graphs you want to put in the chart. You 

can use geom_point() to create a scatterplot, geom_line() to create a line 

plot, and geom_boxplot() to create a boxplot in the chart.

You can see the available geometric objects (also shown in Figure 5-19) 

using

> help.search("geom_", package="ggplot2");
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In ggplot2, geom is also the layers of the chart. You can add in one 

geom object after another, just like adding one layer after another layer.

You can add in a scatter plot (Figure 5-20) using the geom_point() 

function:

>  ggplot(data, aes(x=var1, y=var2)) +  geom_

point(aes(color="red"));

Figure 5-19. Available Geometric Objects
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You can add in a smoother that includes a line and a ribbon to the 

scatter plot (Figure 5-21) using another layer:

>  ggplot(data, aes(x=var1, y=var2)) + geom_

point(aes(color="red")) + geom_smooth();

`geom_smooth()` using method = 'loess' and formula 'y ~ x'

Figure 5-20. Scatterplot

Chapter 5  Data Visualizations



155

 Labels in ggplot2
You have plotted the graphs in the charts, so now let’s add in the main title 

and x- and y-axis titles. You can do this using the labs() layer to specify 

the labels.

To add in the x-axis title, y-axis title, and the main title into Figure 5-22, 

you can use the labs() function:

>  ggplot(data, aes(x=var1, y=var2)) + geom_point 

(aes(color="red")) + geom_smooth() + labs(title="Scatter",  

x = "Xaxis", y = "Y-axis", color="Color");

`geom_smooth()` using method = 'loess' and formula 'y ~ x'

Figure 5-21. Scatterplot with Smoother
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 Themes in ggplot2
If you want to change the size and style of the labels and legends, the 

theme() function can help. The theme() function in ggplot handles 

elements such as

• Axis labels

• Plot background

• Facet background

• Legend appearance

There are some built-in themes such as theme_light() and theme_bw().

You can add the built-in themes shown in Figure 5-23 by using  theme_

light():

>  ggplot(data, aes(x=var1, y=var2)) + geom_point 

(aes(color="red")) + geom_smooth() + labs(title="scatter", 

x="x-axis", y="y-axis") + theme_light();

`geom_smooth()` using method = 'loess' and formula 'y ~ x'

Figure 5-22. Scatterplot with Smoother and labels
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You can add in your own theme, as shown in Figure 5-24, using

>  ggplot(data, aes(x=var1, y=var2)) + geom_

point(aes(color="red")) + geom_smooth() + 

labs(title="scatter", x="x-axis", y="y-axis") + theme(plot.

title=element_text(size=30, face="bold"), axis.text.

x=element_text(size=15, face="bold"), axis.text.y=element_

text(size=15, face="bold"));

`geom_smooth()` using method = 'loess' and formula 'y ~ x'

plot.title is the title of the chart, axis.text.x is the x-axis label, 

axis.text.y is the y-axis label, axis.title.x is the title of x-axis, and 

axis.title.y is the title of y-axis. To change the size of the text, use the 

element_text() function. To remove the label, you can use  element_

blank().

Figure 5-23. Scatterplot with smoothers and labels and themes
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 ggplot2 Common Charts
After learning the ggplot basics and the grammar of graphics, the following 

sections cover some common charts that can be plotted with ggplot. The 

code is available also.

 Bar Chart
A bar chart (Figure 5-25) is used when you want to compare things 

between groups:

> d <- c(1, 5, 8, 9, 8, 2, 1);

> df <- data.frame(d);

>  ggplot(df) + geom_bar(aes(color="grey", x=d)) + 

labs(title="bar chart") + theme_light();

Figure 5-24. Scatterplot with Smoother and customized themes
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To plot a horizontal bar chart (Figure 5-26), you can use the coord_

flip() function:

> ggplot(df) + geom_bar(aes(color="grey", x=d)) + coord_flip() 

+ labs(title="bar chart") + theme_light();

Figure 5-26. Horizontal Bar Chart

Figure 5-25. Bar Chart
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 Histogram
A histogram (Figure 5-27) allows you to see whether the data is normally 

distributed.

> set.seed(12);

> var1 <- rnorm(100, mean=1, sd=1);

> var2 <- rnorm(100, mean=2, sd=1);

> var3 <- rnorm(100, mean=1, sd=2);

> data <- data.frame(var1, var2, var3);

>  ggplot(data, aes(x=var1)) + geom_histogram(bins=10, 

color="black", fill="grey") + labs(title="histogram") + 

theme_light();

Figure 5-27. Histogram
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 Density Plot
A density plot (Figure 5-28) can also show you whether the data is 

normally distributed.

>  ggplot(data, aes(x=var1)) + geom_density(fill="grey") + 

labs(title="density");

 Scatterplot
A scatterplot (Figure 5-29) shows the relationships between two variables.

>  ggplot(data) + geom_point(aes(color="red", x=var1, y=var2)) 

+ geom_point(aes(color="green", x=var1, y=var3)) + 

labs(title="scatter") + theme_light();

Figure 5-28. Density Plot
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 Line chart
A line chart (Figure 5-30) also shows the relationship between two 

variables and can also be used for trend analysis.

>  ggplot(data) + geom_line(aes(color="red", x=var1, y=var2)) 

+ geom_line(aes(color="green", x=var1, y=var3)) + 

labs(title="scatter") + theme_light();

Figure 5-29. Scatterplot
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 Boxplot
A boxplot (Figure 5-31) shows the statistics of the data.

>  ggplot(data, aes(y=var2)) + geom_boxplot(fill="grey") + 

labs(title="boxplot");

Figure 5-30. Line Chart
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You can change the grids (Figure 5-32) using

>  ggplot(data, aes(x=var1)) + geom_density(fill="grey") + 

labs(title="density") + theme(panel.background=element_

rect(fill="yellow"), panel.grid.major=element_

line(color="blue", size=2));

Figure 5-31. Boxplot
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You can change the background color using the panel.background 

and element_rect(), and you can change the grid using panel.grid.

major, panel.grid.minor, and element_line().

To save a chart, you can use the ggsave() function (Figure 5-33):

> ggsave("D:/density.png");

Saving 3.95 x 3.3 in image

Figure 5-32. Customised Themes
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 Interactive Charts with Plotly and ggplot2
Plotly JS allows you to create interactive, publication-quality charts. You 

can create a Plotly chart using ggplot. To use Plotly or to create Plotly chart, 

you must download the plotly package as follows:

> install.packages("plotly");

Installing package into 'C:/Users/gohmi/Documents/R/win- 

library/3.5'

(as 'lib' is unspecified)

also installing the dependencies 'httpuv', 'xtable', 

'sourcetools', 'mime', 'openssl', 'yaml', 'shiny', 'later', 

'httr', 'jsonlite', 'base64enc', 'htmltools', 'htmlwidgets', 

'tidyr', 'hexbin', 'crosstalk', 'data.table', 'promises'

Figure 5-33. Exported Chart to PNG file
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  There is a binary version available but

  the source version is later:

            binary source needs_compilation

htmlwidgets    1.2    1.3             FALSE

trying URL 'https://cran.rstudio.com/bin/windows/contrib/3.5/

httpuv_1.4.5.zip'

Content type 'application/zip' length 1182084 bytes (1.1 MB)

downloaded 1.1 MB

trying URL 'https://cran.rstudio.com/bin/windows/contrib/3.5/

xtable_1.8-3.zip'

Content type 'application/zip' length 755944 bytes (738 KB)

downloaded 738 KB

trying URL 'https://cran.rstudio.com/bin/windows/contrib/3.5/

sourcetools_0.1.7.zip'

Content type 'application/zip' length 530521 bytes (518 KB)

downloaded 518 KB

trying URL 'https://cran.rstudio.com/bin/windows/contrib/3.5/

mime_0.5.zip'

Content type 'application/zip' length 46959 bytes (45 KB)

downloaded 45 KB

trying URL 'https://cran.rstudio.com/bin/windows/contrib/3.5/

openssl_1.0.2.zip'

Content type 'application/zip' length 3628608 bytes (3.5 MB)

downloaded 3.5 MB

trying URL 'https://cran.rstudio.com/bin/windows/contrib/3.5/

yaml_2.2.0.zip'

Content type 'application/zip' length 203553 bytes (198 KB)

downloaded 198 KB
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To use Plotly, you must call the library using the library() or 

require() functions:

> library(plotly);

Attaching package: 'plotly'

The following object is masked from 'package:ggplot2':

    last_plot

The following object is masked from 'package:igraph':

    groups

The following object is masked from 'package:stats':

    filter

The following object is masked from 'package:graphics':

    layout

To create a Plotly chart (Figure 5-34), you can use the ggplotly() 

function:

> set.seed(12);

> var1 <- rnorm(100, mean=1, sd=1);

> var2 <- rnorm(100, mean=2, sd=1);

> var3 <- rnorm(100, mean=1, sd=2);

> data <- data.frame(var1, var2, var3);

> gg <- ggplot(data) + geom_line(aes(x=var1, y=var2));

> g <- ggplotly(gg);

> g;
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To save the Plotly chart, you must create a free Plotly account. Then 

you can use the following code to save the R session:

Sys.setenv("plotly_username"="your plotly username");

Sys.setenv("plotly_api_key"="your api key");

To publish the graph, you use

api_create(g, filename="");

 Conclusion
In this chapter, you looked into R programming. You now understand 

that descriptive statistics summarizes the data and usually focuses on the 

distribution, the central tendency, and the dispersion of the data. Data 

visualization, on the other hand, creates graphics from the data to help us 

understand the data.

Figure 5-34. Plotly Chart using R
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You learned how R programming allows you to plot line charts, bar 

charts, histograms, scatterplots, scatterplot matrices, pie charts, and box 

plots.

You also learned about decision trees, which are machine learning 

algorithms that perform both classification and regression tasks. They can 

be a graph to represent choices and results using a tree.

You also learned about social network analysis graphs, which can 

help us understand the relationships between individuals or nodes. Social 

network analysis is usually used on social network data like Facebook and 

Weibo. Each node is an individual, and the social network graphs show us 

how each individual connects to others.

You also explored ggplot2, a package created by Hadley Wickham 

that offers a powerful graphics language for creating of advanced charts. 

ggplot2 is very popular and famous in the R community, and it allows us to 

create charts that represents univariate, multivariate, and categorical data 

in a straightforward way.

You also learned the grammar of graphics. ggplot2 focuses on the 

grammar of graphics. The grammar of graphics is the building blocks of a 

chart.

You also explored Plotly JS. Plotly JS allows us to create interactive, 

publication-quality charts. You created a Plotly chart using ggplot.
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CHAPTER 6

Inferential Statistics 
and Regressions
Inferential statistics and descriptive statistics are the main branches of 

statistics. Descriptive statistics derives a summary from the data set and 

makes use of central tendency, dispersion, and skewness. Inferential 

statistics describes and makes inferences about the population from 

the sampled data. In inferential statistics, you use hypothesis testing 

and estimating of parameters. Regression analysis is a set of statistical 

processes to estimate the relationships between all the variables.

In this chapter, you will look into the apply(), lapply(), and 

sapply() functions and then you’ll sample data and perform correlations 

and covariances plus tests such as p-value, t-test, chi-square test, and 

ANOVA. You will then look into non-parametric tests, which include the 

Wilcoxon signed rank test, Wilcoxon-Mann-Whitney test, the Kruskal-Wallis 

test, and simple linear regression and multiple linear regression analysis.

 What Are Inferential Statistics 
and Regressions?
Inferential statistics and descriptive statistics are the two main branches of 

statistics. Descriptive statistics derives a summary from the data by using 

central tendencies like mean and median, dispersions like variance and 

standard deviation, and skewness and kurtosis.
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Inferential statistics describes and makes inferences about the 

population and the sampled data. In inferential statistics, you use 

hypothesis testing and estimating of parameters. By estimating 

parameters, you try to answer the population parameters. In hypothesis 

testing, you try to answer a research question. In hypothesis testing, a 

research question is a hypothesis asked in question format. A research 

question can be, Is there a significant difference between the grades of class 

1 and class 2 for their engineering math exams? A hypothesis can be, There 

is a significant difference between the grades of class 1 and class 2 for their 

engineering math exams. The research question begins with Is there and 

the hypothesis begins with There is. Based on the research question, the 

hypothesis can be a null hypothesis, H0, and an alternate hypothesis, Ha. 

A null hypothesis, H0, can be μ1 = u2 and an alternate hypothesis, Ha, can 

be μ1 ≠ u2. So μ1 is the mean of the grades of class 1 and μ2 is the mean of 

the grades of class 2. You can then use inference tests to get the p-value. If 

the p-value is less than or equal to alpha, which is usually 0.05, you reject 

the null hypothesis and say that the alternate hypothesis is true at the 95% 

confidence interval. If the p-value is more than 0.05, you fail to reject the 

null hypothesis.

For estimating parameters, the parameters can be the mean, variance, 

standard deviation, and others. If you want to estimate the mean of heights 

of the whole population (and by the way, it is impossible to measure 

everyone in the population), you can use a sampling method to select 

some people from the population. Subsequently, you calculate the mean of 

the height of the samples and then make an inference on the mean of the 

height of the population. You can then construct the confidence intervals, 

which is the range in which the mean of the height of the population will 

fall. You construct a range because the sample cannot derive the exact 

mean of the height of the population.
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Regression analysis is a set of statistical processes to estimate the 

relationships between all the variables. To be more specific, regression 

analysis is used to understand the relationships among independent 

variables and dependent variables and to explore the forms of the 

relationships.

 apply(), lapply(), sapply()
The apply() function can perform a loop to go through the data and apply 

a function. The function can be the mean() function from R or it can be a 

customized function. The use of the apply() function is to avoid the use of 

loops. The apply() function can take list, matrix, or array.

To use the apply() function, you create random data:

> set.seed(123);

> var1 <- rnorm(100, mean=2, sd=1);

> var2 <- rnorm(100, mean=3, sd=1);

> var3 <- rnorm(100, mean=3, sd=2);

> data <- data.frame(var1, var2, var3);

> data;

           var1      var2        var3

1    1.43952435 2.2895934  7.39762070

2    1.76982251 3.2568837  5.62482595

3    3.55870831 2.7533081  2.46970989

4    2.07050839 2.6524574  4.08638812

5    2.12928774 2.0483814  2.17132010

6    3.71506499 2.9549723  2.04750621

7    2.46091621 2.2150955  1.42279432

8    0.73493877 1.3320581  1.81076547

9    1.31314715 2.6197735  6.30181493

10   1.55433803 3.9189966  2.89194375
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You can use the apply() function with a mean() function:

> apply(data, 1, mean);

  [1]  3.708913 3.550511 2.927242 2.936451 2.116330 2.905848 

2.032935 1.292587 3.411579 2.788426

 [11]  2.962408 3.151718 3.082613 2.340998 1.992851 4.479820 

2.573733 1.315515 1.793035 1.311216

 [21]  1.967292 2.690174 2.901045 2.810064 2.830503 1.926952 

2.554660 2.265633 2.556436 2.383774

 [31]  4.593868 2.658598 3.121812 2.326194 1.873185 2.395315 

2.242476 3.172000 3.417250 1.537521

 [41]  2.143278 2.175163 2.718194 2.126560 2.416108 3.383570 

1.977803 1.833860 3.183512 2.533507

 [51]  2.763284 2.538914 2.533833 2.847073 3.617265 3.019648 

3.058612 3.157894 2.957849 1.591852

 [61]  2.796705 1.822920 2.166982 4.274287 3.699170 3.898973 

2.939493 1.352056 2.887190 3.532488

 [71]  2.994538 2.560393 3.446763 2.209567 2.756647 2.345487 

2.700874 2.412955 3.158053 2.484031

 [81]  1.202496 3.707153 2.683914 2.415853 2.593174 2.800894 

3.549599 3.933870 2.663340 2.995215

 [91]  3.848239 3.444024 3.541280 1.773932 4.018272 3.176785 

4.840582 1.859845 2.398367 2.762643

The above data is the result of the mean of every row. data is the data, 

1 is the margin, and mean is the function. The margin means that the 

function will be applied to a column when it is 2 and a row when it is 1.

You can get the mean of each column by using margin=2:

> apply(data, 2, mean);

    var1     var2     var3

2.090406 2.892453 3.240930
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apply() and lapply() are very similar, just that the output of lapply() 

is a list. You can use lapply() as follows:

> lapply(data$var1, mean);

[[1]]

[1] 1.439524

[[2]]

[1] 1.769823

[[3]]

[1] 3.558708

[[4]]

[1] 2.070508

[[5]]

[1] 2.129288

sapply() is very similar to lapply(), just that the output is a vector:

> sapply(data$var1, mean);

  [1]   1.43952435  1.76982251  3.55870831  2.07050839   

2.12928774  3.71506499  2.46091621

  [8]   0.73493877  1.31314715  1.55433803  3.22408180   

2.35981383  2.40077145  2.11068272

 [15]   1.44415887  3.78691314  2.49785048  0.03338284   

2.70135590  1.52720859  0.93217629

 [22]   1.78202509  0.97399555  1.27110877  1.37496073   

0.31330669  2.83778704  2.15337312

 [29]   0.86186306  3.25381492  2.42646422  1.70492852   

2.89512566  2.87813349  2.82158108

 [36]   2.68864025  2.55391765  1.93808829  1.69403734   

1.61952900  1.30529302  1.79208272

 [43]   0.73460365  4.16895597  3.20796200  0.87689142   

1.59711516  1.53334465  2.77996512
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 [50]   1.91663093  2.25331851  1.97145324  1.95712954   

3.36860228  1.77422901  3.51647060

 [57]   0.45124720  2.58461375  2.12385424  2.21594157   

2.37963948  1.49767655  1.66679262

 [64]   0.98142462  0.92820877  2.30352864  2.44820978   

2.05300423  2.92226747  4.05008469

 [71]   1.50896883 -0.30916888  3.00573852  1.29079924   

1.31199138  3.02557137  1.71522699

 [78]   0.77928229  2.18130348  1.86110864  2.00576419   

2.38528040  1.62933997  2.64437655

 [85]   1.77951344  2.33178196  3.09683901  2.43518149   

1.67406841  3.14880762  2.99350386

 [92]   2.54839696  2.23873174  1.37209392  3.36065245   

1.39974041  4.18733299  3.53261063

 [99]  1.76429964  0.97357910

 Sampling
Sampling is the selection of a subset of a population. The population is the 

data from every member. Sometimes a sample can be a subset from a full 

data set. The advantages of sampling are that the cost is lower and data 

collection is more efficient than collecting the data from every member in 

the population.

 Simple Random Sampling
Simple random sampling (SRS) selects elements from the full data set 

randomly. Each element has the same probability of being selected, and 

each subset has the same probability of being selected as other subsets.
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 Stratified Sampling
Stratified sampling is when you divide the population into groups based on 

a factor or characteristics or some factors. These groups are called strata, 

and an individual group is called a stratum. In stratified sampling, you do 

the following:

 1. Divide the population into groups.

 2. Use simple random sampling on each group.

 3. Collect data from each sampling unit.

Stratified sampling works well when a heterogeneous population is 

split into homogeneous groups.

 Cluster Sampling
Cluster sampling is different from stratified sampling. It should be done in 

the following way:

 1. Divide the population into clusters.

 2. Use random sampling on clusters from all possible 

clusters.

 3. Collect data from a sampling unit.

Unlike stratified sampling, cluster sampling all members of the 

selected clusters forms a sample, while in stratified sampling, a sample 

is based on the random selection of members from all the strata. For 

example, say 13 colleges are the strata and clusters. In stratified sampling, 

30 students from each college or strata are selected using random 

sampling. In cluster sampling, all students in 5 out of 13 colleges are 

selected using random sampling.
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You can do random sampling using the sample() function:

> set.seed(123);

> var1 <- rnorm(100, mean=2, sd=1);

> var2 <- rnorm(100, mean=3, sd=1);

> var3 <- rnorm(100, mean=3, sd=2);

> data <- data.frame(var1, var2, var3);

> sample(data$var1, 5, replace=TRUE);

[1] 1.27110877 2.92226747 0.97399555 1.70492852 0.03338284

data$var1 is the data, 5 is the number of items to select from, 

and replace=TRUE means that the chosen item can be repeated. If 

replace=FALSE, the chosen item cannot be repeated.

You can do stratified sampling using the dplyr library. You must install 

the dplyr library before using it:

> install.packages("dplyr");

Installing package into 'C:/Users/gohmi/Documents/R/win-

library/3.5'

(as 'lib' is unspecified)

also installing the dependencies 'fansi', 'utf8', 'bindr', 

'cli', 'crayon', 'pillar', 'purrr', 'assertthat', 'bindrcpp', 

'glue', 'magrittr', 'pkgconfig', 'R6', 'Rcpp', 'rlang', 

'tibble', 'tidyselect', 'BH', 'plogr'

...

The downloaded binary packages are in

     C:\Users\gohmi\AppData\Local\Temp\RtmpaizS1C\downloaded_

packages

You can load the iris data using

> data(iris);

> summary(iris);
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Sepal.Length    Sepal.Width     Petal.Length    Petal.Width     Species

Min. :4.300     Min. :2.000     Min. :1.000     Min. :0.100     setosa :50

1st Qu.:5.100   1st Qu.:2.800   1st Qu.:1.600   1st Qu.:0.300   versicolor:50

Median :5.800   Median :3.000   Median :4.350   Median :1.300   virginica :50

Mean :5.843     Mean :3.057     Mean :3.758     Mean   :1.199

3rd Qu.:6.400   3rd Qu.:3.300   3rd Qu.:5.100   3rd Qu.:1.800

Max. :7.900     Max. :4.400     Max. :6.900     Max. :2.500

There are 50 setosa data, 50 versicolor data, and 50 virginica data.

You can load the dplyr library using

> library(dplyr);

Attaching package: 'dplyr'

The following objects are masked from 'package:stats':

    filter, lag

The following objects are masked from 'package:base':

    intersect, setdiff, setequal, union

Chapter 6  InferentIal StatIStICS and regreSSIonS



182

You can do stratified clustering using dplyr:

 > iris_sample <- iris %>%

+ group_by(Species) %>%

+ sample_n(13)

> iris_sample;

# A tibble: 39 x 5

# Groups:   Species [3]

   Sepal.Length Sepal.Width Petal.Length Petal.Width Species

          <dbl>       <dbl>        <dbl>       <dbl> <fct>

 1          5           3.5          1.3         0.3 setosa

 2          5           3.4          1.5         0.2 setosa

 3          5.1         3.4          1.5         0.2 setosa

 4          5.7         4.4          1.5         0.4 setosa

 5          5.1         3.5          1.4         0.3 setosa

 6          5.2         3.4          1.4         0.2 setosa

 7          5           3.6          1.4         0.2 setosa

 8          5.1         3.5          1.4         0.2 setosa

 9          4.5         2.3          1.3         0.3 setosa

10          5.1         3.3          1.7         0.5 setosa

# ... with 29 more rows

> View(iris_sample);

sample_n(13) selects 13 items from each group. group_by(Species) 

means you group the data by species variable. See Figure 6-1.
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 Correlations
Correlations are statistical associations to find how close two variables 

are and to derive the linear relationships between them. In predictive 

analytics, you can use correlation to find which variables are more related 

to the target variable and use this to reduce the number of variables. 

Correlation does not mean a causal relationship. Correlation finds how 

close two variables are, but does not tell you the how and why of the 

relationship. Causation tells you that one variable change will cause 

another variable to change.

Figure 6-1. Stratified Sampling - Selected 13 sample from each 
groups
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The formula for correlation is

r
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where x xi -( )2  is the x value minus the mean and then square it, and 

y yi -( )  y yi -( )2  is the y value minus the mean and then square it.

To get the correlation, you generate sample data first:

> View(iris_sample);

> set.seed(123);

> var1 <- rnorm(100, mean=2, sd=1);

> var2 <- rnorm(100, mean=3, sd=1);

> var3 <- rnorm(100, mean=3, sd=2);

> data <- data.frame(var1, var2, var3);

You can use the cor() function to get the correlation:

> cor(data$var1, data$var2);

[1] -0.04953215

The correlation has a range from -1.0 to 1.0. When the correlation is 0, 

there is no correlation or relationship. When the correlation is more than 

0, it is a positive relationship. Positive correlation means that when one 

variable value increases, the other variable values also increase. When the 

correlation is less than tk, it is a negative relationship. Negative correlation 

means that when one variable increases, the other variables’ values 

decrease. 1 is the perfect positive correlation and -1 is the perfect negative 

correlation. Hence, the larger the value towards 1, or the smaller the values 

towards -1, the better the relationship.

-0.04953215 means that the correlation is a negative relationship 

between var 1 and var2. The correlation is close to zero, so the relationship 

is not good.
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 Covariance
Covariance is a measure of variability between two variables. The greater 

the value of one variable and the greater of other variable means it will 

result in a covariance that is positive. The greater value of one variable to 

the lesser value of the other variable will result in a negative covariance. 

Covariance shows the linear relationship between both variables, but 

the covariance magnitude is difficult to interpret. Correlation is the 

normalized version of covariance so

cov X Y
x x y y

Ni

N
i i,( ) = -( ) -( )

=
å

1

where x xi -( ) is the x value minus the mean and y yi -( ) is the y value 

minus the mean.

To get a covariance, create sample data:

> set.seed(123);

> var1 <- rnorm(100, mean=2, sd=1);

> var2 <- rnorm(100, mean=3, sd=1);

> var3 <- rnorm(100, mean=3, sd=2);

> data <- data.frame(var1, var2, var3);

You can use the cov() function to get the covariance:

> cov(data$var1, data$var2);

[1] -0.04372107

Correlation has a range of -1 to 1. Covariance does not have a range. 

Correlation is good for measuring how good the relationship between 

two variables is. When two variables have a positive covariance, when one 

variable increases, the other variable increases. When two variables have 

a negative covariance, when one variable increases, the other variable 
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decreases. When two variables are independent of each other, the covariance 

is zero. -0.04372107 means the covariance is negative, and it is very close to 

zero, so the relationship between the two variables is not very good.

Correlation and covariance are usually within descriptive statistics.

 Hypothesis Testing and P-Value
I mentioned hypothesis testing previously. In hypothesis testing, a research 

question is a hypothesis asked in question format. A research question can 

be, Is there a significant difference between something? A hypothesis can be, 

There is a significant difference between something. The research question 

begins with Is there and the hypothesis begins with There is. A hypothesis 

can also be a null hypothesis, H0, and an alternate hypothesis, Ha. You can 

write the null hypothesis and alternate hypothesis as follows:

H0: μ1 = u2

Ha: μ1 ≠ u2

where μ1 is the mean of one data, and μ2 is the mean of another data.

You can use statistical tests to get your p-value. You use a t-test for 

continuous variables or data, and you use a chi-square test for categorical 

variables or data. For more complex testing, you use ANOVA. If data is not 

normally distributed, you use non-parametric tests. A P-value helps you 

determine the significance of your statistical test results. Your claim in the 

test is known as a null hypothesis and the alternate hypothesis means that 

you believe the null hypothesis is untrue.

• A small p-value <= alpha, which is usually 0.05, 

indicates that the observed data is sufficiently 

inconsistent with the null hypothesis, so the null 

hypothesis may be rejected. The alternate hypothesis is 

true at the 95% confidence interval.
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• A larger p-value means that you failed to reject null 

hypothesis.

 T-Test
A t-test is one of the more important tests in statistics. A t-test is used to 

determine whether the mean between two data points or samples are 

equal to each other. The null hypothesis means that the two means are 

equal, and the alternative means that the two means are different.

 Types of T-Tests
Figure 6-2 shows the types of t-tests.

Figure 6-2. Types of T-Tests

Chapter 6  InferentIal StatIStICS and regreSSIonS



188

 Assumptions of T-Tests
Here are the assumptions:

• The samples are randomly sampled from their 

population.

• The population is normally distributed.

 Type I and Type II Errors
A type I error is a rejection of the null hypothesis when it is really true.  

A type II error is a failure to reject a null hypothesis that is false.

 One-Sample T-Test
A one-sample t-test is used to test whether the mean of a population is 

equal to a specified mean.

The formula of a one-sample t-test is

t
m
s

n

=
- m

where s is the standard deviation of the sample, n is the size of the sample, 

m is the mean of the sample, and u is the specified mean.

The degree of freedom formula is

df n= -1

You can use the t statistics and the degree of freedom to estimate the 

p-value using a t-table.
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To use a one-sample t-test in R, you can use the t.test() function:

> set.seed(123);

> var1 <- rnorm(100, mean=2, sd=1);

> var2 <- rnorm(100, mean=3, sd=1);

> var3 <- rnorm(100, mean=3, sd=2);

> data <- data.frame(var1, var2, var3);

> t.test(data$var1, mu=0.6);

    one sample t-test

data:  data$var1

t = 16.328, df = 99, p-value < 2.2e-16

alternative hypothesis: true mean is not equal to 0.6

95 percent confidence interval:

 1.909283 2.271528

sample estimates:

mean of x

 2.090406

In a one-sample t-test,

H0: μ = m

Ha: μ ≠ m

m is 0.6 in the above R code. The p-value is 2.2e-16, so the p-value is less 

than 0.05, which is the alpha value. Therefore, the null hypothesis may be 

rejected. The alternate hypothesis, μ ≠ 0.6, is true at the 95% confidence 

interval.
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 Two-Sample Independent T-Test
The two-sample unpaired t-test is when you compare two means of two 

independent samples. The formula of the two-sample independent t-test is

t
s
n

s
n

A B

A B

=
-

+

m m
2 2

where

μA is the mean of one sample,

μB is the mean of the second sample,

nA is the size of sample A, and

nB is the size of sample B.

tk is the estimator of the common variance of the two samples, and the 

formula is

s
x x

n n
A B

A B

2

2 2

2
=
å -( ) + å -( )

- -
m m

The degrees of freedom formula is

df n nA B= - - 2

To use a two-sample unpaired t-test with a variance as equal in R:

> set.seed(123);

> var1 <- rnorm(100, mean=2, sd=1);

> var2 <- rnorm(100, mean=3, sd=1);

> var3 <- rnorm(100, mean=3, sd=2);

> data <- data.frame(var1, var2, var3);

> t.test(data$var1, data$var2, var.equal=TRUE, paired=FALSE);
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    two-sample t-test

data:  data$var1 and data$var2

t = -6.0315, df = 198, p-value = 7.843e-09

alternative hypothesis: true difference in means is not equal 

to 0

95 percent confidence interval:

 -1.0642808 -0.5398138

sample estimates:

mean of x mean of y

 2.090406  2.892453

The two-sample independent t-test:

H0: μA − μB = 0

Ha: μA − μB ≠ 0

The p-value is 7.843e-09, so it is less than 0.05, which is the alpha value. 

Therefore, the null hypothesis may be rejected. The alternate hypothesis, 

μA − μB ≠ 0, is true at the 95% confidence interval.

In the two-sample unpaired t-test, when the variance is unequal, you 

use the Welch t-test. You can assume the two data variances are different, 

or you can calculate the variance of each data. The Welch t-test formula is 

as follows:

t
s
n

s
n

A B

A

A

B

B

=
-

+

m m
2 2

where

μA is the mean of sample A,

μB is the mean of sample B,

nA is the sample size of A,

nB is the sample size of B,
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sA is the standard deviation of A, and

sB is the standard deviation of B.

Unlike the normal t-test formula, the Welch t-test formula involves the 

variance of each sample.

The degrees of freedom formula of the Welch t-test formula is as 

follows:

df
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To use the two-sample unpaired t-test with a variance as unequal in R:

> set.seed(123);

> var1 <- rnorm(100, mean=2, sd=1);

> var2 <- rnorm(100, mean=3, sd=1);

> var3 <- rnorm(100, mean=3, sd=2);

> data <- data.frame(var1, var2, var3);

> t.test(data$var1, data$var2, var.equal=FALSE, paired=FALSE);

    Welch two-sample t-test

data:  data$var1 and data$var2

t = -6.0315, df = 197.35, p-value = 7.88e-09

alternative hypothesis: true difference in means is not equal 

to 0

95 percent confidence interval:

 -1.0642862 -0.5398084

sample estimates:

mean of x mean of y

 2.090406  2.892453
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The two-sample unpaired t-test:

H0: μA − μB = 0

Ha: μA − μB ≠ 0

The p-value is 7.88e-09, so it less than 0.05, which is the alpha value. 

Therefore, the null hypothesis may be rejected. The alternate hypothesis, 

μA − μB ≠ 0, is true at the 95% confidence interval.

 Two-Sample Dependent T-Test
A two-sample paired t-test is used to test the mean of two samples that 

depend on each other. The t-test formula is

t
d

s n
=

2 /

where

d  is the mean difference,

s is the sample variance, and

n is the sample size.

The degree of freedom formula is

df n= -1

To use the two-sample paired t-test in R:

> set.seed(123);

> var1 <- rnorm(100, mean=2, sd=1);

> var2 <- rnorm(100, mean=3, sd=1);

> var3 <- rnorm(100, mean=3, sd=2);

> data <- data.frame(var1, var2, var3);

> t.test(data$var1, data$var2, paired=TRUE);
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    Paired t-test

data:  data$var1 and data$var2

t = -5.8876, df = 99, p-value = 5.379e-08

alternative hypothesis: true difference in means is not equal 

to 0

95 percent confidence interval:

 -1.0723482 -0.5317464

sample estimates:

mean of the differences

             -0.8020473

The two-sample paired t-test:

H0: μA − μB = 0

Ha: μA − μB ≠ 0

The p-value is 5.379e-08, so it is less than 0.05, which is the alpha value. 

Therefore, the null hypothesis may be rejected. The alternate hypothesis, 

μA − μB ≠ 0, is true at the 95% confidence interval.

 Chi-Square Test
The chi-square test is used to compare the relationships between 

two categorical variables. The null hypothesis means that there is no 

relationship between the categorical variables.

 Goodness of Fit Test
When you have only one categorical variable from a population and you 

want to compare whether the sample is consistent with a hypothesized 

distribution, you can use the goodness of fit test.
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The null hypothesis means that the data followed a specified 

distribution, and the alternate hypothesis means that data doesn’t follow 

the specified distribution.

The goodness of fit formula is

X
O E

Ei

n
i i

i

2

1

2

=
-( )

=
å

where Oi is the observed frequency of bin i and Ei is the expected 

frequency of bin i.

To calculated the expected frequency, the formula is

E N pi i= ×

where N is the total sample size and pi is the hypothesized proportion of 

the observations of bin i.

To use the goodness of fit chi-square test in R, you can use the chisq.

test() function:

> data <- c(B=200, c=300, D=400);

> chisq.test(data);

    Chi-squared test for given probabilities

data:  data

X-squared = 66.667, df = 2, p-value = 3.338e-15

The goodness of fit chi-square test:

• H0: No significant difference between the observed and 

expected values.

• Ha: There is a significant difference between the 

observed and expected values.
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The p-value is 3.338e-15, so it is less than 0.05, which is the alpha value. 

Therefore, the null hypothesis may be rejected. The alternate hypothesis of 

a significant difference between the observed and expected values is true 

at the 95% confidence interval.

 Contingency Test
If you have two categorical variables and you want to compare whether there 

is a relationship between two variables, you can use the contingency test.

The null hypothesis means that the two categorical variables have 

no relationship. The alternate hypothesis means that the two categorical 

variables have a relationship.

To calculate the expected value, use

E
RC

Nij
i j=

where R is the row, C is the column, N is the total, ith is the row, and jth is 

the column.

The formula for X2 statistics is

X
O E

Ei

r
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c
ij ij
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2

=
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= =
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To use a contingency test in R, create your data first:

> var1 <- c("Male", "Female", "Male", "Female", "Male", 

"Female", "Male", "Female", "Male", "Female");

> var2 <- c("chocolate", "strawberry", "strawberry", 

"strawberry", "chocolate", "chocolate", "chocolate", 

"strawberry", "strawberry", "strawberry");
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> data <- data.frame(var1, var2);

> data;

     var1       var2

1    Male  chocolate

2  Female strawberry

3    Male strawberry

4  Female strawberry

5    Male  chocolate

6  Female  chocolate

7    Male  chocolate

8  Female strawberry

9    Male strawberry

10 Female strawberry

You can then create a table or frequency table for the variables to test:

> data.table <- table(data$var1, data$var2);

> data.table;

         chocolate strawberry

  Female         1          4

  Male           3          2

You can then use the chisq.test() function for the contingency test:

> chisq.test(data.table);

    Pearson's chi-squared test with Yates' continuity correction

data:  data.table

X-squared = 0.41667, df = 1, p-value = 0.5186

Warning message:

In chisq.test(data.table) : Chi-squared approximation may be 

incorrect
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The chi-square test:

• H0: The two variables are independent.

• Ha: The two variables are not independent.

The p-value is 0.5186, so it is more than 0.05, which is the alpha value. 

Therefore, the null hypothesis fails to be rejected. The two variables are 

independent is true at the 95% confidence interval.

 ANOVA
ANOVA is the process of testing the means of two or more groups. ANOVA 

also checks the impact of factors by comparing the means of different 

samples. In a t-test, you test the means of two samples; in a chi-square 

test, you test categorical attributes or variables; in ANOVA, you test more 

samples.

 Grand Mean
In ANOVA, you use two kinds of means, sample means and a grand mean. 

A grand mean is the mean of all of the samples’ means.

 Hypothesis
In ANOVA, a null hypothesis means that the sample means are equal or 

do not have significant differences. The alternate hypothesis is when the 

sample means are not equal.

H Null hypothesisL0 1 2:m m m= =¼=  

H Alternate hypothesisa m:m m1 ¹  
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 Assumptions
You assume that the variables are sampled, independent, and selected or 

sampled from a population that is normally distributed with unknown but 

equal variances.

 Between Group Variability
The distribution of two samples, when they overlap, their means are not 

significantly different. Hence, the difference between their individual 

mean and the grand mean is not significantly different. The group and 

level are different groups in the same independent variable. See Figure 6-3.

Figure 6-3. Means are not Significantly Different

Figure 6-4. Means are Significantly Different

For the two samples shown in Figure 6-4, their means are significantly 

different from each other. The difference between the individual means 

and the grand mean is significantly different.
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This variability is called the between-group variability, which refers to 

the variations between the distributions of the groups or levels. Figure 6-5 

depicts the discrimination between the different groups.

Figure 6-5. Variations between the distributions of groups of levels

To calculate the sum of the square of between the group variability, use

SS n x x n x x n x x n x xbetween G G G k k k= -( ) + -( ) + -( ) +¼+ -( )1 1

2

2 2

2

3 3

2 2

where

xG  is the grand mean,

x1 … xk  is the mean of each sample, and

n1…nk… are the sample sizes.

To calculate the sum of each squared deviation, or mean square, use

MS
n x x n x x n x x n x x

kbetween
G G G k k k=

-( ) + -( ) + -( ) +¼+ -( )
-

1 1

2

2 2

2

3 3

2 2

1

You use the SS to divide by the degree of freedom, where the degree of 

freedom is the number of sample means(k) minus one.
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 Within Group Variability
For the following distributions of samples, as their variance increases, they 

overlap each other and become part of a population, as shown in Figure 6-6.

Figure 6-7. Three samples with lesser variances

Figure 6-6. Distributions of Samples

Figure 6-7 shows another three samples with lesser variances, although 

the means are similar, they belong to different population.

Within-group variation refers to the variations caused by differences 

within individual groups or levels. To calculate the sum of squares of 

within-group variation, use

SS x x x x x x x xwithin i i ik ij j= å -( ) + å -( ) +¼+ å -( ) = å -( )1 1

2

2 2

2

3

2 2
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where

xi1 is the ith value of first sample,

xi2 is the ith value of second sample, and

xij is the jth value from the jth sample.

The degree of freedom is

df n n n n n n n k N kwithin k k= -( ) + -( ) +¼+ -( ) = + + +¼+ - ( ) = -1 2 1 2 31 1 1 1

To get the mean square of the within-group variability, you divide 

between group variability sum of the squares with degree of freedom within:

MS x x N kwithin ij j= å -( ) -( )
2
/

The F-statistics are the measures if the means of samples are 

significantly different. The lower the F-statistics, the more the means are 

equal, so you cannot reject the null hypothesis.

F statistics
Between group variability

Within group variabl
- =

-
-

 

 iility

MS

MS
between

within

=

If the f-critical value is smaller than the f-value, reject the null 

hypothesis. The f-critical value can be found using F-statistics and the 

degree of freedom on the f distribution.

 One-Way ANOVA
One-way ANOVA is used when you have only one independent variable.

In R, you can calculate the one-way ANOVA using

> set.seed(123);

> var1 <- rnorm(12, mean=2, sd=1);

>  var2 <- c("B", "B", "B", "B", "C", "C", "C", "C", "C", "D", 

"D", "B");
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> data <- data.frame(var1, var2);

> fit <- aov(data$var1 ~ data$var2, data=data);

> fit;

Call:

   aov(formula = data$var1 ~ data$var2, data = data)

Terms:

                data$var2 Residuals

Sum of Squares   0.162695  9.255706

Deg. of Freedom         2         9

Residual standard error: 1.014106

Estimated effects may be unbalanced

 

To get the p-value, you use the summary() function:

> summary(fit);

            Df Sum Sq Mean Sq F value Pr(>F)

data$var2    2  0.163  0.0813   0.079  0.925

Residuals    9  9.256  1.0284
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H Null hypothesis0 1 2:m mvar var=  

H Alternate hypothesisa :m mvar var1 2¹  

The p-value is more than 0.05, so you fail to reject the null hypothesis 

that the mean of var1 is the same as the mean of var2. The null hypothesis 

is true at the 95% confidence interval.

 Two-Way ANOVA
Two-way ANOVA is used when you have two independent variables.

In R, you can calculate two-way ANOVA using

 

> set.seed(123);

> var1 <- rnorm(12, mean=2, sd=1);

>  var2 <- c("B", "B", "B", "B", "C", "C", "C", "C", "C", "D", 

"D", "B");

>  var3 <- c("D", "D", "D", "D", "E", "E", "E", "E", "E", "F", 

"F", "F");
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> data <- data.frame(var1, var2, var3);

> fit <- aov(data$var1 ~ data$var2 + data$var3, data=data);

> fit;

Call:

   aov(formula = data$var1 ~ data$var2 + data$var3, data = data)

Terms:

                data$var2 data$var3 Residuals

Sum of Squares   0.162695  0.018042  9.237664

Deg. of Freedom         2         1         8

Residual standard error: 1.074573

1 out of 5 effects not estimable

Estimated effects may be unbalanced

> summary(fit);

            Df Sum Sq Mean Sq F value Pr(>F)

data$var2    2  0.163  0.0813   0.070  0.933

data$var3    1  0.018  0.0180   0.016  0.904

Residuals    8  9.238  1.1547
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H Null hypothesis0 1 2 3:m m mvar var var= =  

H Alternate hypothesisa m:m mvar1 ¹  

var1 does not depend on var2’s mean and var3’s mean. The var1 mean 

and var2 mean have p-values of 0.483, which is more than 0.05. Hence, 

you fail to reject the null hypothesis that the var1 mean is the same as the 

var2 mean. The null hypothesis is true at the 95% confidence interval. The 

var1 mean and the var3 mean have p-values of 0.422, which is more than 

0.05. Hence, you fail to reject the null hypothesis that the var1 mean is the 

same as the var3 mean. The null hypothesis is true at the 95% confidence 

interval.

 MANOVA
The multivariate analysis of variance is when there are multiple response 

variables that you want to test.

To use MANOVA in R, you can load the iris data:

> data(iris);

> str(iris);

'data.frame':    150 obs. of  5 variables:

 $ Sepal.Length: num  5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 ...

 $ Sepal.Width : num  3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1 ...

 $ Petal.Length: num  1.4 1.4 1.3 1.5 1.4 1.7 1.4 1.5 1.4 1.5 

...

 $ Petal.Width : num  0.2 0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.2 0.1 

...

 $ Species     :  Factor w/ 3 levels "setosa","versicolor",..: 1 

1 1 1 1 1 1 1 1 1 ...

> summary(iris);
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Sepal.Length    Sepal.Width     Petal.Length    Petal.Width     Species

Min. :4.300     Min. :2.000     Min. :1.000     Min. :0.100     setosa :50

1st Qu.:5.100   1st Qu.:2.800   1st Qu.:1.600   1st Qu.:0.300   versicolor:50

Median :5.800   Median :3.000   Median :4.350   Median :1.300   virginica :50

Mean   :5.843   Mean   :3.057   Mean   :3.758   Mean   :1.199

3rd Qu.:6.400   3rd Qu.:3.300   3rd Qu.:5.100   3rd Qu.:1.800

Max.   :7.900   Max.   :4.400   Max.   :6.900   Max.   :2.500

> res <- manova(cbind(iris$Sepal.Length, iris$Petal.Length) ~ 

iris$Species, data=iris);

> summary(res);

              Df Pillai approx F num Df den Df    Pr(>F)

iris$Species   2 0.9885   71.829      4    294 < 2.2e-16 ***

Residuals    147

---

Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

> summary.aov(res);

 Response 1 :

              Df Sum Sq Mean Sq F value    Pr(>F)

iris$Species   2 63.212  31.606  119.26 < 2.2e-16 ***

Residuals    147 38.956   0.265                      

---

Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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 Response 2 :

              Df Sum Sq Mean Sq F value    Pr(>F)

iris$Species   2 437.10 218.551  1180.2 < 2.2e-16 ***

Residuals    147  27.22   0.185

---

Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

 

 

cbind(iris$Sepal.Length, iris$Petal.Length) ~ iris$Species 

is the formula, like cbind(Sepal.Length, Petal.Length) = Species. 

Hence, you have two response variables, Sepal.Length and Petal.Length.

H Null hypothesisSepal Length Petal Length Species0 : . .m m m= =  
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H Alternate hypothesia Sepal Length Petal Length Species: . .m m m¹ ¹  ss

The p-value is 2.2e-16, which is less than 0.05. Hence, you reject the 

null hypothesis. The alternate hypothesis is true at the 95% confidence 

interval. There are significant differences in the means. The response 

variable Sepal.Length mean and the Species mean have p-values of 

2.2e-16, which are less than 0.05. Hence, you reject the null hypothesis 

that the Sepal.Length mean is the same as the Species mean. The 

alternate hypothesis is true at the 95% confidence interval. The means for 

the response variables Petal.Length and Species have p-values of 2.2e-

16, which are less than 0.05. Hence, you reject the null hypothesis that 

the Petal.Length mean is the same as the Species mean. The alternate 

hypothesis is true at the 95% confidence interval.

 Nonparametric Test
The nonparametric test is a test that does not require the variable and 

sample to be normally distributed. Most of the time you should use 

parametric tests like the t-test, chi-square test, and ANOVA because they 

are more accurate. You use nonparametric tests when you do not have 

normally distributed data and the sample data is big.

 Wilcoxon Signed Rank Test
The Wilcoxon signed rank test is used to replace the one-sample t-test.

 a. For each xi, for i = 1, 2, …., n the signed difference is 

di=xi- u0, where u0 is the given median.

 b. Ignore di= 0 and rank the rest of |di|, using ri as rank. 

When there are tied values, assign the average of the 

tied ranks. For example, |di| ranked as 3, 4, 5 are ties, 

so the rank should be 3 4 5

3
4

+ +( )
= .

Chapter 6  InferentIal StatIStICS and regreSSIonS



210

 c. The number of non-zero dis is found.

 d. To each rank of di, let si =  sign (di)ri.

 e. The sum of a positive signed rank is calculated using

W s
s

i

i

=
>
å

0

The test statistics calculated is W and the number n1 

of non-zero dis is calculated.

The null hypothesis is that the population median has the specified 

value of μ0.

• Null hypothesis: H0 : μ = μ0

• Alternate hypothesis: Ha : μ ≠ μ0

The normal test statistics formula is

z

W
n n

sign W
n n

S
i

n

i

=
-

+( )æ

è
ç

ö

ø
÷ - × -

+( )æ

è
ç

ö

ø
÷

×
=å

1 1 1 1

1

2

1

4
1
2

1

4

1
4

You reject the null hypothesis when

z Z where Z N> ( )µ/ , ~2 0 1,

The common alpha, ∝, value is 0.05.

To use the Wilcoxon signed rank test in R, you can first generate the 

data set using random.org packages, so that the variables are not normally 

distributed. To use random.org for random number generation, you must 

install the random packages:
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> install.packages("random");

Installing package into 'C:/Users/gohmi/Documents/R/win-

library/3.5'

(as 'lib' is unspecified)

also installing the dependency 'curl'

trying URL 'https://cran.rstudio.com/bin/windows/contrib/3.5/

curl_3.2.zip'

Content type 'application/zip' length 2986409 bytes (2.8 MB)

downloaded 2.8 MB

trying URL 'https://cran.rstudio.com/bin/windows/contrib/3.5/

random_0.2.6.zip'

Content type 'application/zip' length 466978 bytes (456 KB)

downloaded 456 KB

package 'curl' successfully unpacked and MD5 sums checked

package 'random' successfully unpacked and MD5 sums checked

The downloaded binary packages are in

     C:\Users\gohmi\AppData\Local\Temp\RtmpaizS1C\downloaded_

packages

To use the random package, you must load the package using the 

library() function:

> library(random);

To create random numbers from random.org, you can use

> library(random);

> var1 <- randomNumbers(n=100, min=1, max=1000, col=1);

> var2 <- randomNumbers(n=100, min=1, max=1000, col=1);

> var3 <- randomNumbers(n=100, min=1, max=1000, col=1);
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n is the number of random numbers, min is the minimum value, 

max is the maximum value, and col is the number of columns for all the 

numbers. This is the method to generate true random numbers in R. Your 

data may be different because the data is generated randomly.

You can then create the data using

> data <- data.frame(var1[,1], var2[,1], var3[,1]);

> data;

    var1...1. var2...1. var3...1.

1         680         9       871

2         547       589       768

3         750       733       611

4         840       494        16

5         529       373       680

6          94       509       493

7         106        89       195

8         956       992       570

9         853       330       425

10        295       485       504

11        633       924       523

To use Wilcoxon signed rank test, you can use the wilcox.test() 

function:

> wilcox.test(data[,1], mu=0, alternatives="two.sided");

    Wilcoxon signed rank test with continuity correction

data:  data[, 1]

V = 5050, p-value < 2.2e-16

alternative hypothesis: true location is not equal to 0

H0 0:m m=

Ha :m m¹ 0

Chapter 6  InferentIal StatIStICS and regreSSIonS



213

The p-value is 2.2e-16, which is less than 0.05. Hence, you reject the 

null hypothesis. There are significant differences in the median for the first 

variable median and the median of 0. The alternate hypothesis is true at 

the 95% confidence interval.

 Wilcoxon-Mann-Whitney Test
The Wilcoxon-Mann-Whitney test is a nonparametric test to compare two 

samples. It is a powerful substitute to the two-sample t-test.

For two independent samples, F(x) and G(y), where their sample size 

is n1 and n2, and sample data can be x x xn1 2 1
, , ,¼ and y y yn1 2 2

, , ,¼ , the 

hypothesis is

H F x G y0 : ( ) = ( )

H F x G ya : ( ) ¹ ( )

To test the two samples,

 1. Combine xi and yi as a group.

 2. Rank the group in ascending order, where ties are 

the average of their rank. Let r1i be the rank assigned 

for xi for i = 1,2,…,n1 and r2j be the rank assigned for 

yi for j = 1,2,…,n2

 3. Calculate the sum of ranks:

S r
I

n

i1
1
1

1

=
=
å

S r
I

n

j2
1

2

2

=
=
å
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The test statistics U is calculated as follows:

U S
n n

= -
+( )

1
1 1 1

2

The approximate normal statistics z is

z
U M U

U
=

- ( ) ±

( )

1
2

var

where

M U
n n( ) = 1 2

2

and the variance of U is

Var U
n n n n n n

n n n n
TS( ) = + +( )

-
+( ) + -( )

´1 2 1 2 1 2

1 2 1 2

1

12 1

where

TS
t t t

j

j j j=
( ) -( ) +( )

=
å

1

1 1

12

t

τ is the number of ties in sample and tj is the number of ties in the jth 

group.

If there are no ties, the variance of U is

Var U
n n n n( ) = + +( )1 2 1 2 1

12
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To use the Wilcoxon-Matt-Whitney test (or the Wilcoxon rank sum test 

or the Mann-Whitney test) in R, you can use the wilcox.test() function:

> var1 <- randomNumbers(n=100, min=1, max=1000, col=1);

> var2 <- randomNumbers(n=100, min=1, max=1000, col=1);

> var3 <- randomNumbers(n=100, min=1, max=1000, col=1);

> data <- data.frame(var1[,1], var2[,1], var3[,1]);

> wilcox.test(data[,1], data[,2], correct=FALSE);

    Wilcoxon rank sum test

data:  data[, 1] and data[, 2]

W = 5697.5, p-value = 0.08833

alternative hypothesis: true location shift is not equal to 0

H F x G y0 : ( ) = ( )

H F x G ya : ( ) ¹ ( )

The p-value is 0.3351, which is more than 0.05. Hence, you fail to reject 

the null hypothesis. There are no significant differences in the median for 

first variable median and second variable median. The null hypothesis is 

true at the 95% confidence interval.
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 Kruskal-Wallis Test
The Kruskal-Wallis test is a nonparametric test that is an extension of the 

Mann-Whitney U test for three or more samples. The test requires samples 

to be identically distributed. Kruskal-Wallis is an alternative to one-way 

ANOVA. The Kruskal-Wallis test tests the differences between scores of k 

independent samples of unequal sizes with the ith sample containing li 

rows. The hypothesis is

H k0 0 1 2:m m m m= = =¼=

Ha k:m m0 ¹

where μis the median. The alternate hypothesis is that at least one median 

is different.

The algorithm is as follows:

 1. Rank all rows in ascending order. Tied scores will 

have average ranks.

 2. Sum up the ranks of rows in each sample to give 

rank sum Ri for i = 1,2,…,k.

 3. The Kruskal-Wallis test statistics is calculated as

H
N N

R

l
N

i

k
i

i

=
+( )

- +( )
=
å12

1
3 1

1

2

where

N l
i

k

i=
=
å

1

N is the total number of rows. If there are tied scores, H is divided by

1
3

3
-
å -( )

-

t t

N N
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Where t is the number of tied scores in a group.

To use Kruskal-Wallis test in R:

> data("airquality");

> str(airquality);

'data.frame':    153 obs. of  6 variables:

 $ Ozone  : int  41 36 12 18 NA 28 23 19 8 NA ...

 $ Solar.R: int  190 118 149 313 NA NA 299 99 19 194 ...

 $ Wind   : num  7.4 8 12.6 11.5 14.3 14.9 8.6 13.8 20.1 8.6 

...

 $ Temp   : int  67 72 74 62 56 66 65 59 61 69 ...

 $ Month  : int  5 5 5 5 5 5 5 5 5 5 ...

 $ Day    : int  1 2 3 4 5 6 7 8 9 10 ...

> summary(airquality);

Ozone               Solar.R              Wind             

   Temp                Month                Day

Min. :  1.00        Min. :  7.0          Min. : 1.700    

   Min. :56.00         Min. :5.000          Min. : 1.0

1st Qu.: 18.00      1st Qu.:115.8        1st Qu.: 7.400    

   1st Qu.:72.00       1st Qu.:6.000        1st Qu.: 8.0

Median : 31.50      Median :205.0        Median : 9.700   

   Median :79.00       Median :7.000        Median :16.0

Mean : 42.13        Mean :185.9          Mean : 9.958     

   Mean   :77.88       Mean :6.993          Mean   :15.8

3rd Qu.: 63.25      3rd Qu.:258.8        3rd Qu.:11.500    

   3rd Qu.:85.00       3rd Qu.:8.000        3rd Qu.:23.0

Max. :168.00        Max. :334.0          Max. :20.700    

   Max. :97.00         Max. :9.000          Max.   :31.0

NA's :37            NA's   :7

> kruskal.test(airquality$Ozone ~ airquality$Month);
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    Kruskal-Wallis rank sum test

data:  airquality$Ozone by airquality$Month

Kruskal-Wallis chi-squared = 29.267, df = 4, p-value = 6.901e-06

H k0 0 1 2:m m m m= = =¼=

Ha k:m m0 ¹

The p-value is 6.901e-06, which is less than 0.05. Hence, you reject the 

null hypothesis. There are significant differences in the median for the first 

variable median and the second variable median. The alternate hypothesis 

is true at the 95% confidence interval.

 Linear Regressions
Regression analysis is a form of predictive modelling techniques 

that identify the relationships between dependent and independent 

variables(s). The technique is used to find causal effect relationships 

between variables.

The benefit of using regression analysis is that it identifies the 

significant relationships between dependent and independent variables 

and the strength of the impact of multiple independent variables on 

independent variables.

Linear regression finds the relationship between one dependent 

variable and one independent variable using a regression line.

The linear regression equation is y = b0+b1x

y is the dependent variable, x is the independent variable, b0 is the 

intercept, and b1 is the slope. See Figure 6-8.
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To calculate the slope, you can use

b
x x y y

x x
i

n

i i

i

n

i

1
1

1

2
=

-( ) -( )
-( )

=

=

å
å

To calculate the intercept, you can use

b y b x0 1= -

If b1 > 0, x and y have a positive relationship.

If b1 < 0, x and y have a negative relationship.

Figure 6-8. LInear Regressions
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To use linear regression in R, you use the lm() function:

 

> set.seed(123);

> x <- rnorm(100, mean=1, sd=1);

> y <- rnorm(100, mean=2, sd=2);

> data <- data.frame(x, y);

> mod <- lm(data$y ~ data$x, data=data);

> mod;

Call: 

lm(formula = data$y ~ data$x, data = data)
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Coefficients:

(Intercept)       data$x

     1.8993      -0.1049

> summary(mod);

Call:

lm(formula = data$y ~ data$x, data = data)

Residuals:

   Min     1Q Median     3Q    Max

-3.815 -1.367 -0.175  1.161  6.581

Coefficients:

            Estimate Std. Error t value Pr(>|t|)

(Intercept)   1.8993     0.3033   6.261 1.01e-08 ***

data$x       -0.1049     0.2138  -0.491    0.625

---

Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1.941 on 98 degrees of freedom

Multiple R-squared:  0.002453,    Adjusted 

R-squared:  -0.007726

F-statistic: 0.241 on 1 and 98 DF,  p-value: 0.6246

The output depicts that the linear equation is

y x= - +0 1049 1 8993. .

The p-values of 1.01e-08, 0.625, and 0.6246 tell you the significance of 

the linear model. When the p-value is less than 0.05, the model is significant.

• H0 :  : Coefficient associated with the variable is equal to 

zero

• Ha :  : Coefficient is not equal to zero (there 

is a relationship)

Chapter 6  InferentIal StatIStICS and regreSSIonS



222

The intercept has a p-value of 1.01e-08, which is smaller than 0.05, so 

there is a significance with the y variable. The significance is indicated with 

the number of *. The x has a p-value of 0.625, which is more than 0.05, so 

there is no significance with the y variable. The null hypothesis is true at 

the 95% confidence interval.

R-square depicts the proportion of the variation in the dependent 

variable, and the formula is

R
SSE

SST
2 1= -

where SSE is the sum of squared errors

SSE y y
i

n

i i= -( )å 

2

and SST is the sum of the squared total

SST y y
i

n

i i= -( )å 2

y is the mean of Y and is the fitted value for row iy .

y is the fitted value, which mean that in y = -0.1049x + 1.8993, you fit in 

x to get y. The y is the y . y y-( )  means that you use the original y values 

minus the y  predicted values, which is the error. Hence, 
i

i iy yå -( ) 2

 is 

the sum of the square error (SSE). In order for 
SSE

SST
 to be small, SSE must 

be small. Nevertheless, 1-
SSE

SST
 is large when 

SSE

SST
 is small.

Hence, the higher the R-squared and the adjusted R-squared, the 

better the linear model. The lower the standard error, the better the model.
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 Multiple Linear Regressions
A simple linear regression is for a single response variable, y, and a single 

independent variable, x. The equation for a simple linear regression is

y b b x= +0 1

Multiple linear regression is built from a simple linear regression. 

Multiple linear regression is used when you have more than one 

independent variable. The equation of a multiple linear regression is

y b b x b x b xk k= + + +¼+ +0 1 1 2 2 

When you have n observations or rows in the data set, you have the 

following model:

y b b x b x b xk k1 0 1 11 2 12 1 1= + + +¼+ +

y b b x b x b xk k2 0 1 21 2 22 2 2= + + +¼+ +

y b b x b x b xk k3 0 1 31 2 32 3 3= + + +¼+ +

¼

y b b x b x b xn n n k nk n= + + +¼+ +0 1 1 2 2 

Using a matrix, you can represent the equations as

y Xb= +
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To calculate the coefficients:

b X X X y = ( )¢ ¢-1
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You can use the multiple linear regression in R:
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> set.seed(123);

> x <- rnorm(100, mean=1, sd=1);

> x2 <- rnorm(100, mean=2, sd=5);

> y <- rnorm(100, mean=2, sd=2);

> data <- data.frame(x, x2, y);

> mod <- lm(data$y ~ data$x + data$x2, data=data);

> mod;

Call:

lm(formula = data$y ~ data$x + data$x2, data = data)
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Coefficients:

(Intercept)       data$x      data$x2

   2.517425    -0.266343     0.009525

> summary(mod);

Call:

lm(formula = data$y ~ data$x + data$x2, data = data)

Residuals:

    Min      1Q  Median      3Q     Max

-3.7460 -1.3215 -0.2489  1.2427  4.1597

Coefficients:

             Estimate Std. Error t value Pr(>|t|)

(Intercept)  2.517425   0.305233   8.248 7.97e-13 ***

data$x      -0.266343   0.209739  -1.270    0.207

data$x2      0.009525   0.039598   0.241    0.810

---

Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1.903 on 97 degrees of freedom

Multiple R-squared:  0.01727,    Adjusted R-squared:  -0.00299

F-statistic: 0.8524 on 2 and 97 DF,  p-value: 0.4295

To create multiple linear regression in R, you must first create data:

> set.seed(123);

> x <- rnorm(100, mean=1, sd=1);

> x2 <- rnorm(100, mean=2, sd=5);

> y <- rnorm(100, mean=2, sd=2);

> data <- data.frame(x, x2, y);
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You create a multiple linear regression model using the lm() function:

> mod <- lm(data$y ~ data$x + data$x2, data=data);

> mod;

Call:

lm(formula = data$y ~ data$x + data$x2, data = data)

Coefficients:

(Intercept)       data$x      data$x2

   2.517425    -0.266343     0.009525

data$y ~ data$x + data$x2 is y = x + x2

To get the summary of the model, you can use the summary() function:

 > summary(mod);

Call:

lm(formula = data$y ~ data$x + data$x2, data = data)

Residuals:

    Min      1Q  Median      3Q     Max

-3.7460 -1.3215 -0.2489  1.2427  4.1597

Coefficients:

             Estimate Std. Error t value Pr(>|t|)

(Intercept)  2.517425   0.305233   8.248 7.97e-13 ***

data$x      -0.266343   0.209739  -1.270    0.207

data$x2      0.009525   0.039598   0.241    0.810

---

Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1.903 on 97 degrees of freedom

Multiple R-squared:  0.01727,    Adjusted R-squared:  -0.00299

F-statistic: 0.8524 on 2 and 97 DF,  p-value: 0.4295
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The linear model from the output is

Y = -0.266343x + 0.009525x2 + 2.517425

The p-values are 7.97e-13, 0.207, 0.810, 0.4295. The intercept is 

significant because the p-value is 7.97e-13, which is smaller than 0.05.
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y is the mean of Y and is the fitted value for row iy .

y is the fitted value, which means that in y = -0.266343x + 0.009525x2 + 

2.517425, you fit in x and x2 to get y. The y is the y . y y-( )  means that you 

use the original y values minus the y  predicted values, which is the error. 

Hence, 
i

i iy yå -( ) 2

 is the SSE. In order for SSE

SST
 to be small,  

SSE must be small. Nevertheless, 1-
SSE

SST
 is large when 

SSE

SST
 is small. The 

R-squared is 0.01727 and the adjusted R-squared is -0.00299. The higher 

the R-squared value, the better, as SSE is smaller.

 Conclusion
In this chapter, you looked into R programming. You now know that 

inferential statistics and descriptive statistics are the main branches of 

statistics. Descriptive statistics derives a summary from the data set and 

uses central tendency, dispersion, and skewness. Inferential statistics 

describes and makes inferences about the population and the sampled 

data. In inferential statistics, you use hypothesis testing and estimating of 

parameters.

You learned that the apply() function can perform a loop to go 

through the data and apply a function. The function can be a mean() 

function from R or it can be a customized function.

Chapter 6  InferentIal StatIStICS and regreSSIonS



230

You also found out that sampling is the selection of a subset of a 

population. The population is the data from everyone. Sometimes a 

sample can be a subset from a full data set. The advantages of sampling 

are that the cost is lower and the data collection is more efficient than 

collecting the data from everyone in the population.

You also learned that correlation is a statistical association to find how 

close two variables are and derive a linear relationship between them.

You also learned that covariance is a measure of variability between 

two variables. The greater value of one variable and the greater of another 

variable means or will result in a covariance that is positive. The greater 

values of one variable to the lesser values of the other variable will result in 

a negative covariance.

You also learned how p-values help you determine the significance 

of your statistical tests results. Your claim in the test is known as a null 

hypothesis and the alternate hypothesis means that you believe the null 

hypothesis is untrue.

You also learned that a t-test is one of the more important tests in 

statistics. A t-test is used to determine whether the mean between two data 

points or samples are equal to each other. The null hypothesis means that 

the two means are equal, and the alternative means that the two means are 

different.

You also learned that the chi-square test is used to compare the 

relationship between two categorical variables. The null hypothesis means 

that there is no relationship between the categorical variables.

You also learned that ANOVA is the process of testing the means of two 

or more groups. ANOVA also checks the impact of factors by comparing 

the means of different samples. In a t-test, you test the means of two 

samples; in a chi-square test, you test categorical attributes or variables; 

and in ANOVA, you test more samples.

You also learned that nonparametric tests are tests that do not require 

the variable and sample to be normally distributed. Most of the time you 

should use parametric tests like t-tests, chi-square tests, and ANOVA 
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because they are more accurate. You use nonparametric tests when you do 

not have normally distributed data, and the sample data is big.

You also learned that regression analysis is some form of a predictive 

modeling technique that identifies the relationships between dependent 

and independent variables(s). The technique is used to find causal effect 

relationships between variables.
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