
Learn R
for Applied
Statistics

With Data Visualizations,
Regressions, and Statistics
—
Eric Goh Ming Hui

Learn R for Applied
Statistics

With Data Visualizations,
Regressions, and Statistics

Eric Goh Ming Hui

Learn R for Applied Statistics

ISBN-13 (pbk): 978-1-4842-4199-8 ISBN-13 (electronic): 978-1-4842-4200-1
https://doi.org/10.1007/978-1-4842-4200-1

Library of Congress Control Number: 2018965216

Copyright © 2019 by Eric Goh Ming Hui

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Celestin Suresh John
Development Editor: Matthew Moodie
Coordinating Editor: Divya Modi

Cover designed by eStudioCalamar

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233
Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,
e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a
California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc
(SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is
available to readers on GitHub via the book’s product page, located at www.apress.com/978-1-
4842-4199-8. For more detailed information, please visit www.apress.com/source-code.

Printed on acid-free paper

Eric Goh Ming Hui
Singapore, Singapore

https://doi.org/10.1007/978-1-4842-4200-1

iii

Table of Contents

Chapter 1: Introduction���1

What Is R? ���1

High-Level and Low-Level Languages ��2

What Is Statistics? ��3

What Is Data Science? ��4

What Is Data Mining? ��6

Business Understanding ��8

Data Understanding ���8

Data Preparation ��8

Modeling ��9

Evaluation ��9

Deployment ���9

What Is Text Mining? ���9

Data Acquisition ���10

Text Preprocessing ��10

Modeling ��11

Evaluation/Validation ���11

Applications ���11

About the Author ���ix

About the Technical Reviewer ���xi

Acknowledgments ���xiii

Introduction ��xv

iv

Natural Language Processing ���11

Three Types of Analytics ���12

Descriptive Analytics ���12

Predictive Analytics ���13

Prescriptive Analytics ��13

Big Data ��13

Volume ���13

Velocity ��14

Variety ���14

Why R? ��15

Conclusion ��16

References ��18

Chapter 2: Getting Started ��19

What Is R? ���19

The Integrated Development Environment ��20

RStudio: The IDE for R ���22

Installation of R and RStudio ���22

Writing Scripts in R and RStudio ���30

Conclusion ��36

References ��37

Chapter 3: Basic Syntax ���39

Writing in R Console ��39

Using the Code Editor ��42

Adding Comments to the Code��46

Variables ���47

Data Types ���48

Vectors ��50

Lists ��53

Table of ConTenTsTable of ConTenTs

v

Matrix ��58

Data Frame ���63

Logical Statements ���67

Loops ��69

For Loop ���69

While Loop ���71

Break and Next Keywords ���72

Repeat Loop ���74

Functions ��75

Create Your Own Calculator ��80

Conclusion ��83

References ��84

Chapter 4: Descriptive Statistics ��87

What Is Descriptive Statistics? ���87

Reading Data Files ��88

Reading a CSV File ��89

Writing a CSV File ��91

Reading an Excel File ��92

Writing an Excel File ��93

Reading an SPSS File ��94

Writing an SPSS File ��96

Reading a JSON File ��96

Basic Data Processing ��97

Selecting Data ���97

Sorting ���99

Filtering ���101

Removing Missing Values ��102

Removing Duplicates ���103

Table of ConTenTsTable of ConTenTs

vi

Some Basic Statistics Terms ���104

Types of Data ���104

Mode, Median, Mean ���105

Interquartile Range, Variance, Standard Deviation ��������������������������������������110

Normal Distribution ���115

Binomial Distribution ���121

Conclusion ��124

References ��125

Chapter 5: Data Visualizations ���129

What Are Data Visualizations?���129

Bar Chart and Histogram���130

Line Chart and Pie Chart ���137

Scatterplot and Boxplot���142

Scatterplot Matrix ���146

Social Network Analysis Graph Basics ��147

Using ggplot2 ��150

What Is the Grammar of Graphics? ��151

The Setup for ggplot2 ��151

Aesthetic Mapping in ggplot2 ��152

Geometry in ggplot2 ��152

Labels in ggplot2 ���155

Themes in ggplot2 ���156

ggplot2 Common Charts ���158

Bar Chart ���158

Histogram ��160

Density Plot ���161

Scatterplot ���161

Table of ConTenTsTable of ConTenTs

vii

Line chart���162

Boxplot ��163

Interactive Charts with Plotly and ggplot2 ��166

Conclusion ��169

References ��170

Chapter 6: Inferential Statistics and Regressions ����������������������������173

What Are Inferential Statistics and Regressions? ���173

apply(), lapply(), sapply() ���175

Sampling ���178

Simple Random Sampling ���178

Stratified Sampling ��179

Cluster Sampling ���179

Correlations ���183

Covariance ��185

Hypothesis Testing and P-Value ��186

T-Test ��187

Types of T-Tests ���187

Assumptions of T-Tests ��188

Type I and Type II Errors ���188

One-Sample T-Test ��188

Two-Sample Independent T-Test ���190

Two-Sample Dependent T-Test ��193

Chi-Square Test ���194

Goodness of Fit Test ��194

Contingency Test ���196

ANOVA ���198

Table of ConTenTsTable of ConTenTs

viii

Grand Mean ���198

Hypothesis ���198

Assumptions ��199

Between Group Variability ���199

Within Group Variability ���201

One-Way ANOVA ��202

Two-Way ANOVA ��204

MANOVA ���206

Nonparametric Test ���209

Wilcoxon Signed Rank Test ��209

Wilcoxon-Mann-Whitney Test ��213

Kruskal-Wallis Test ��216

Linear Regressions ���218

Multiple Linear Regressions��223

Conclusion ��229

References ��231

 Index ���237

Table of ConTenTsTable of ConTenTs

ix

About the Author

Eric Goh Ming Hui is a data scientist, software

engineer, adjunct faculty, and entrepreneur

with years of experience in multiple industries.

His varied career includes data science, data

and text mining, natural language processing,

machine learning, intelligent system

development, and engineering product design.

Eric Goh has led teams in various industrial

projects, including the advanced product code

classification system project which automates

Singapore Custom’s trade facilitation process

and Nanyang Technological University’s data science projects where he

develop his own DSTK data science software. He has years of experience

in C#, Java, C/C++, SPSS Statistics and Modeler, SAS Enterprise Miner,

R, Python, Excel, Excel VBA, and more. He won the Tan Kah Kee Young

Inventors’ Merit Award and was a Shortlisted Entry for TelR Data Mining

Challenge. Eric Goh founded the SVBook website to offer affordable books,

courses, and software in data science and programming.

He holds a Masters of Technology degree from the National University of

Singapore, an Executive MBA degree from U21Global (currently GlobalNxt)

and IGNOU, a Graduate Diploma in Mechatronics from A*STAR SIMTech

(a national research institute located in Nanyang Technological University),

and a Coursera Specialization Certificate in Business Statistics and

Analysis from Rice University. He possesses a Bachelor of Science degree

in Computing from the University of Portsmouth after National Service. He

is also an AIIM Certified Business Process Management Master (BPMM),

GSTF certified Big Data Science Analyst (CBDSA), and IES Certified Lecturer.

xi

About the Technical Reviewer

Preeti Pandhu has a Master of Science degree

in Applied (Industrial) Statistics from the

University of Pune. She is SAS certified as

a base and advanced programmer for SAS

9 as well as a predictive modeler using SAS

Enterprise Miner 7. Preeti has more than 18

years of experience in analytics and training.

She started her career as a lecturer in statistics

and began her journey into the corporate

world with IDeaS (now a SAS company), where

she managed a team of business analysts in

the optimization and forecasting domain.

She joined SAS as a corporate trainer before

stepping back into the analytics domain to contribute to a solution-testing

team and research/consulting team. She was with SAS for 9 years. Preeti is

currently passionately building her analytics training firm, DataScienceLab

(www.datasciencelab.in).

http://www.datasciencelab.in

xiii

Acknowledgments

Let me begin by thanking Celestin Suresh John, the Acquisition Editor and

Manager, for the LinkedIn message that triggered this project. Thanks to

Amrita Stanley, project manager of this book, for her professionalism.

It took a team to make this book, and it is my great pleasure to

acknowledge the hard work and smart work of Apress team. The following

are a few names to mention: Matthew Moodie, the Development Editor;

Divya Modi, the Coordinating Editor; Mary Behr for copy editing; Kannan

Chakravarthy for proofreading; Irfanullah for indexing; eStudioCalamar

and Freepik for image editing; Krishnan Sathyamurthy for managing the

production process; and Parameswari Sitrambalam for composing. I am

also thankful to Preeti Pandhu, the technical reviewer, for thoroughly

reviewing this book and offering valuable feedback.

xv

Introduction

Who is this book for?
This book is primarily targeted to programmers or learners who want

to learn R programming for statistics. This book will cover using R

programming for descriptive statistics, inferential statistics, regression

analysis, and data visualizations.

 How is this book structured?
The structure of the book is determined by following two requirements:

• This book is useful for beginners to learn R

programming for statistics.

• This book is useful for experts who want to use this

book as a reference.

Topic Chapters

Introduction to R and R programming fundamentals 1 to 3

Descriptive statistics, data visualizations, inferential statistics,

and regression analysis

4 to 6

 Contacting the Author
More information about Eric Goh can be found at www.svbook.com. He can

be reached at gohminghui88@svbook.com.

http://www.svbook.com/

1© Eric Goh Ming Hui 2019
E. G. M. Hui, Learn R for Applied Statistics, https://doi.org/10.1007/978-1-4842-4200-1_1

CHAPTER 1

Introduction
In this book, you will use R for applied statistics, which can be used in the

data understanding and modeling stages of the CRISP DM (data mining)

model. Data mining is the process of mining the insights and knowledge

from data. R programming was created for statistics and is used in

academic and research fields. R programming has evolved over time and

many packages have been created to do data mining, text mining, and data

visualizations tasks. R is very mature in the statistics field, so it is ideal to

use R for the data exploration, data understanding, or modeling stages of

the CRISP DM model.

 What Is R?
According to Wikipedia, R programming is for statistical computing

and is supported by the R Foundation for Statistical Computing. The R

programming language is used by academics and researchers for data

analysis and statistical analysis, and R programming’s popularity has risen

over time. As of June 2018, R is ranked 10th in the TIOBE index. The TIOBE

Company created and maintains the TIOBE programming community

index, which is the measure of the popularity of programming languages.

TIOBE is the acronym for “The Importance of Being Earnest.”

R is a GNU package and is available freely under the GNU General

Public License. This means that R is available with source code, and you

are free to use R, but you must adhere to the license. R is available in the

2

command line, but there are many integrated development environments

(IDEs) available for R. An IDE is software that has comprehensive facilities

like a code editor, compiler, and debugger tools to help developers write R

scripts. One famous IDE is RStudio, which assists developers in writing R

scripts by providing all the required tools in one software package.

R is an implementation of the S programming language, which

was created by Ross Ihahka and Robert Gentlemen at the University of

Auckland. R and its libraries are made up of statistical and graphical

techniques, including descriptive statistics, inferential statistics, and

regression analysis. Another strength of R is that it is able to produce

publishable quality graphs and charts, and can use packages like ggplot for

advanced graphs.

According to the CRISP DM model, to do a data mining project, you

must understand the business, and then understand and prepare the

data. Then comes modeling and evaluation, and then deployment. R is

strong in statistics and data visualization, so it is ideal to use R for data

understanding and modeling.

Along with Python, R is used widely in the field of data science,

which consists of statistics, machine learning, and domain expertise or

knowledge.

 High-Level and Low-Level Languages
A high-level programming language (HLL) is designed to be used by a

human and is closer to the human language. Its programming style is

easier to comprehend and implement than a lower-level programming

language (LLL). A high-level programming language needs to be converted

to machine language before being executed, so a high-level programming

language can be slower.

A low-level programming language, on the other hand, is a lot closer to

the machine and computer language. A low-level programming language

can be executed directly on computer without the need to convert

Chapter 1 IntroduCtIon

3

between languages before execution. Thus, a low-level programming

language can be faster than a high-level programming language. Low-level

programming languages like the assembly language are more inclined

towards machine language that deals with bits 0 and 1.

R is a HLL because it shares many similarities to human languages. For

example, in R programming code,

> var1 <- 1;

> var2 <- 2;

>

> result <- var1 + var2;

> print(result)

 [1] 3

>

The R programming code is more like human language. A low-level

programming language like the assembly language is more towards the

machine language, like 0011 0110:

0x52ac87: movl7303445 (%ebx), %eax

0x52ac78: calll 0x6bfb03

 What Is Statistics?
Statistics is a collection of mathematics to deal with the organization,

analysis, and interpretation of data. Three main statistical methods are

used in the data analysis: descriptive statistics, inferential statistics, and

regressions analysis.

Descriptive statistics summarizes the data and usually focuses on

the distribution, the central tendency, and the dispersion of data. The

distribution can be normal distribution or binomial distribution, and the

central tendency is to describe the data with respect to the central of the

data. The central tendency can be the mean, median, and mode of the

Chapter 1 IntroduCtIon

4

data. The dispersion describes the spread of the data, and dispersion can

be the variance, standard deviation, and interquartile range.

Inferential statistics tests the relationship between two data sets or

two samples, and a hypothesis is usually set for the statistical relationships

between them. The hypothesis can be a null hypothesis or alterative

hypothesis, and rejecting the null hypothesis is done using tests like the

T Test, Chi Square Test, and ANOVA. The Chi Square Test is more for

categorical variables, and the T Test is more for continuous variables. The

ANOVA test is for more complex applications.

Regression analysis is used to identify the relationships between two

variables. Regressions can be linear regressions or non-linear regressions.

The regression can also be a simple linear regression or multiple linear

regressions for identifying relationships for more variables.

Data visualization is the technique used to communicate or present

data using graphs, charts, and dashboards. Data visualizations can help us

understand the data more easily.

 What Is Data Science?
Data science is a multidisciplinary field that includes statistics, computer

science, machine learning, and domain expertise to get knowledge

and insights from data. Data science usually ends up developing a data

product. A data product is the changing of the data of a company into a

product to solve a problem.

For example, a data product can be the product recommendation

system used in Amazon and Lazada. These companies have a lot of data

based on shoppers’ purchases. Using this data, Amazon and Lazada can

identify the shopping patterns of shoppers and create a recommendation

system or data product to recommend other products whenever a shopper

buys a product.

Chapter 1 IntroduCtIon

5

The term “data science” has become a buzzword and is now used to

represent many areas like data analytics, data mining, text mining, data

visualizations, prediction modeling, and so on.

The history of data science started in November 1997, when C. F.

Jeff Wu characterized statistical work as data collection, analysis, and

decision making, and presented his lecture called “Statistics = Data

Science?” In 2001, William S. Cleveland introduced data science as a field

that comprised statistics and some computing in his article called “Data

Science: An Action Plan for Expanding the Technical Area of the Field of

Statistics.”

DJ Patil, who claims to have coined the term “data science” with Jeff

Hammerbacher and who wrote the “Data Scientist: The Sexiest Job of the

21st Century” article published in the Harvard Business Review, says that

there is a data scientist shortage in many industries, and data science is

important in many companies because data analysis can help companies

make many decisions. Every company needs to make decisions in strategic

directions.

Statistics is important in data science because it can help analysts or

data scientists analyze and understand data. Descriptive statistics assists in

summarizing the data, inferential statistics tests the relationship between

two data sets or samples, and regression analysis explores the relationships

between multiple variables. Data visualizations can explore the data

with charts, graphs, and dashboards. Regressions and machine learning

algorithms can be used in predictive analytics to train a model and predict

a variable.

Linear regression has the formula y = mx + c. You use historical data

to train the formula to get the m and c. Y is the output variable and x is the

input variable. Machine learning algorithms and regression or statistical

learning algorithms are used to predict a variable like this approach.

Domain expertise is the knowledge of the data set. If the data set

is business data, then the domain expertise should be business; if it

is university data, education is the domain expertise; if the data set is

Chapter 1 IntroduCtIon

6

healthcare data, healthcare is the domain knowledge. I believe that

business is the most important knowledge because almost all companies

use data analysis to make important strategic business decisions.

Adding in product design and engineering knowledge takes us into the

fields of Internet of Things (IoT) and smart cities because data science and

predictive analytics can be used on sensor data. Because data science is

a multidisciplinary field, if you can master statistics, machine e-learning,

and business knowledge, it is extremely hard to be replaced. You can also

work with statisticians, machine learning engineers, or business experts to

complete a data science project.

Figure 1-1 shows a data science diagram.

 What Is Data Mining?
Data mining is closely related to data science. Data mining is the process

of identifying the patterns from data using statistics, machine learning, and

data warehouses or databases.

DATA
PROCESSING

DOMAIN
EXPERTISE

MATHEMATICS
COMPUTER
SCIENCE

DATA
SCIENCE

MACHINE
LEARNING

Source: Palmer, Shelly. Data Science for the C-Suite.
New York: Digital Living Press, 2015. Print.

STATISTICAL
RESEARCH

Figure 1-1. Data science is an intersection

Chapter 1 IntroduCtIon

7

Extraction of patterns from data is not very new, and early methods

include the use of the Nayes theorem and regressions. The growth of

technologies increases the ability in data collection. The growth of

technologies also allows the use of statistical learning and machine

learning algorithms like neural networks, fuzzy logic, decision trees,

generic algorithms, and support vector machines to uncover the hidden

patterns of data. Data mining combines statistics and machine learning,

and usually results in the creation of models for making predictions based

on historical data.

The cross-industry standard process of data mining, also known as

CRISP-DM, is a process used by data mining experts and it is one of the

most popular data mining models. See Figure 1-2.

Business
Understanding

Data
Understanding

Data
Preparation

ModelingData

Evaluation

Deployment

Figure 1-2. Cross-industry standard process for data mining

Chapter 1 IntroduCtIon

8

The CRISP-DM model was created in 1996 and involves SPSS,

teradata, Daimler AG, NCR Corporation, and OHRA. The first version

was depicted at the fourth CRISP-DM SIG Workshop in Brussels in 1999.

Many practitioners use the CRISP-DM model, but IBM is the company that

focuses on the CRISP-DM model and includes it in SPSS Modeler.

However, the CRISP-DM model is actually application neutral. The

following sections explain its constituent parts.

 Business Understanding
Business understanding is when you understand what your company

wants and expects from the project. It is great to include key people in the

discussions and documentation to produce a project plan.

 Data Understanding
Data understanding involves the exploration of data that includes the use

of statistics and data visualizations. Descriptive statistics can be used to

summarize the data, inferential statistics can be used to test two data sets

and samples, and regressions can be used to explore the relationships

between multiple variables. Data visualizations use charts, graphs, and

dashboards to understand the data. This phase allows you to understand

the quality of data.

 Data Preparation
Data preparation is one of the most important and time-consuming

phases and can include selecting a sample subset or variables selection,

imputing missing values, transforming attributes or variables including

log transform and feature scaling transformation, and duplicates removal.

Variables selection can be done with a correlation matrix in a data

visualization.

Chapter 1 IntroduCtIon

9

 Modeling
Modeling usually means the development of a prediction model to predict

a variable in data. The prediction model can be developed using regression

algorithms, statistical learning algorithms, and machine learning

algorithms like neural networks, support vector machines, naïve Bayes,

multiple linear regressions, decision trees, and more. You can also build

prescriptive and descriptive models.

 Evaluation
Evaluation is one of the phases where you may use ten-fold crossover

validation techniques to evaluate the precision and recall of your model.

You may improve your model accuracy by moving back to the previous

phase to improve or prepare your data more. You may also select the most

accurate model for your requirements. You may also evaluate the model

using the business success criteria established in the beginning stage,

which is the business understanding stage.

 Deployment
Deployment is the process of using new insights and knowledge to

improve your organization or make changes to improve your organization.

You may use your prediction model to create a data product or to produce

a final report based on your models.

 What Is Text Mining?
While data mining is usually used to mine out patterns from numerical

data, text mining is used to mine out patterns from textual data like Twitter

tweets, blog postings, and feedback. Text mining, also known as text data

mining, is the process of deriving high quality semantics and knowledge

from textual data.

Chapter 1 IntroduCtIon

10

Text mining tasks may consist of text classification, text clustering, and

entity extraction; text analytics may include sentiments analysis, TF-IDF,

part-of-speech tagging, name entity recognizing, and text link analysis.

Text mining uses the same process as the data mining CRISP-DM

model, with slight differences as shown in Figure 1-3.

 Data Acquisition
Data acquisition is the process of gathering the textual data, combining the

textual data, and doing some text cleaning. The business understanding

stage may also be included here.

 Text Preprocessing
Text preprocessing includes the process of porter stemming; stopwords

removal; conversion of uppercase, lowercase, and propercase; extraction

of words or tokens based on name entity or regular expressions; and

transforming of text to vector or numerical forms. Text preprocessing is like

the data preparation phase in CRISP-DM.

• Performance and
 Utility Assessment

• Presentation
• Discover

Evaluation/
Validation

Applications

Modeling
Text

Preprocessing
Data

Acquisition

• Transformation• Acquisition
• Cleaning • Extract

• Organize Knowledge • Interaction

• Feedback LoopFeedback Loop

Figure 1-3. Text mining

Chapter 1 IntroduCtIon

11

 Modeling
Text analytics or text discovery is the use of part-of-speech tagging or

name entity recognition to understand each document. It implements

sentiment analysis to understand the sentiments of the documents and

text link analysis to summarize all documents in text links. Some books

may call text analytics as text mining; I think text analytics is similar to data

understanding.

Modeling can also be the process of creating prediction models such

as text classification. Some books may put the data mining process in this

stage to create prediction models, descriptive models, and prescriptive

models, after converting the text to vectors in the text preprocessing stage.

 Evaluation/Validation
Evaluation or validation is the process of evaluating the accuracy of the

model created. You can view this as the evaluation stage of the CRISP-DM

model.

 Applications
The applications stage is the deployment stage in the CRISP-DM model,

where presentations or a full report are developed. You may also develop

the model into a recommendation and classification system as a data

product.

 Natural Language Processing
Natural language processing (NLP) is an area of machine learning

and computer science used to assist the computer in processing and

understanding natural language. NLP can include part-of-speech tagging,

Chapter 1 IntroduCtIon

12

parsing, porter stemming, name entity recognition, optical character

recognition, sentiment analysis, speech recognition, and more. NLP works

hand in hand with text analytics and text mining.

The history of NLP started in the 1950s when Alan Turing published

an article called “Computing Machinery and Intelligence.” Some notable

natural language processing software was developed in the 1960s, such as

ELIZA, which provided human-like interactions. In the 1970s, software was

developed to write ontologies. In the 1980s, developers introduced Markov

models and initiated research on statistical models to do POS tagging.

Recent research has concentrated on supervised and semi-supervised

algorithms and deep learning algorithms.

 Three Types of Analytics
Selecting the type of analytics can be difficult and challenging; luckily,

analytics can be categorized into descriptive analytics, predictive analytics,

and prescriptive analytics. No analytic type is better than the others, but

they can be combined with each other.

• Descriptive Analytics: Uses data analytics to know

what happened.

• Predictive Analytics: Uses statistical learning and

machine learning to predict the future.

• Prescriptive Analytics: Uses simulation algorithms to

know what should be done.

 Descriptive Analytics
Descriptive analytics uses statistics to summarize the data using

descriptive statistics, inferential statistics to test the two data sets and

samples, and regression analysis to study the relationships between

multiple variables.

Chapter 1 IntroduCtIon

13

 Predictive Analytics
Predictive analytics predicts a variable by implementing machine learning

and statistical learning algorithms. In statistics, regressions can be used to

predict a variable. For example, y = mx + c. You can determine m and c by

training a linear regression model using historical data. Y is the variable to

predict, x is the input variable. If you put in x value, you can predict the y.

 Prescriptive Analytics
This is a field that allows a user to find the number of inputs to get a

certain outcome. In simple form, this kind of analytics is used to provide

advice. For example, y = mx + c. You have the m and c values. You want a

y outcome, so what value should you put into x? To get the x value, what

kind of things does your company need to do or what kind of advice do you

need to give to the company? If you have multiple linear regressions, there

are many x variables, so you need some simulation or evolutionary search

algorithm to get the x values.

 Big Data
Big data is data sets that are very big and complex for a computer to

process. Big data has challenges that may include capturing data, data

storage, data analysis, and data visualizations. There are three properties

or characteristics of big data.

 Volume
People are now more connected, so there are many more data sources,

and as a consequence, the amount of data increased exponentially. The

increase of data requires more computing power to process and analyze it.

Traditional computing power is not able to process and analyze this data.

Chapter 1 IntroduCtIon

14

 Velocity
The speed of data is increasing and the speed of data coming in is so fast

that it is very difficult to process and analyze the data. Tradition computing

methods can’t process and analyze at the speed of data coming in.

 Variety
More sources means more data in different formats and types, such as

images, videos, voice, speech, textual data, and numerical data, both

unstructured and structured. Various data formats require different

methods to extract the data from them. This means that the data is difficult

to process and analyze, and traditional computing methods can’t process

such data.

Data grows very quickly, due to IoT devices like mobile devices,

wireless sensor networks, and RFID readers. Based on an IDC report,

global data will increase from 4.4 zettabytes to 44 zettabytes from 2013 to

2020.

Relational databases and desktop statistics and data science software

have challenges to process and analyze big data. Hence, big data requires

parallel and distributed systems like Hadoop and Apache Spark to process

and analyze the data.

Two popular systems or frameworks for big data are Apache Spark

and Hadoop. Hadoop is a distributed data systems to store big data across

different cluster and computers. One cluster can have many computers. The

Hadoop storage system is known as the Hadoop Distributed System (HDFS).

Hadoop has many ecosystems, such as mahout to do machine learning

processing. Hadoop also has processing systems, such as MapReduce.

Apache Spark is a data processing system to process data on

distributed data. Apache Spark does not have a file storage system, so it

needs to integrate into a system like Hadoop. Apache Spark is a lot faster

and completes full data analytics, data processing, and data prediction.

Chapter 1 IntroduCtIon

15

R, Python, and Java can interface with these Hadoop and Apache Spark

systems.

 Why R?
When learning data science, many people struggle with choosing which

programming languages and data sciences to learn. There are many

programming languages available for data science, like R, Python, SAS,

Java, and more. There are many data science software packages to learn,

such as SPSS Statistics, SPSS Modeler, SAS Enterprise Miner, Tableau,

RapidMiner, Weka, GATE, and more.

I recommend learning R for statistics because it was developed for

statistics in the first place. Python is a real programming language, so

you can develop real applications and software via Python programming.

Hence, if you want to develop a data product or data application, Python

can be a better choice. R programming is very strong in statistics, so it

is ideal for data exploration or data understanding using descriptive

statistics, inferential statistics, regression analysis, and data visualizations.

R is also ideal for modeling because you can use statistical learning like

regressions for predictive analytics. R also has some packages for data

mining, text mining, and machine learning like Rattle, CARET, and TM. R

programming can also interface with big data systems like Apache Spark

using Sparklyr. SAS programming is commercial, and Java has direct

interfaces with GATE, Stanford NLP, and Weka. SPSS Statistics, SPSS

Modeler, SAS Enterprise Miner, and Tableau are data science software

packages with GUIs and are commercial. RapidMiner, Weka, and GATE are

open source software packages for data science.

R is also heavily used in many of the companies that hire data

scientists. Google and Facebook have data scientists who use R. R is also

used in companies like Bank of America, Ford, Uber, Trulia, and more.

Chapter 1 IntroduCtIon

16

R is also heavily used in academia, and R is very popular among

academic researchers, who can use R graphics for publications.

Scripts written in R can be used on different operating systems,

including Linux, Apple, and Windows, as long as the R interpreter is

installed. This is not possible with languages like C#.

 Conclusion
In this chapter, you looked into R programming. You now know that R

programming is a programming language for statistical computing and is

supported by the R Foundation for Statistical Computing. The R language

is used by researchers for statistical analysis, and R popularity has

increased every year.

I also discussed high-level programming languages and low-level

programming languages. HLLs are designed to be used by humans and are

closer to the human language. LLLs, on the other hand, are a lot closer to

the machine and computer languages. LLLs can be executed directly on a

computer without the need to convert between languages, so they can be

faster.

I also discussed statistics. Statistics is a collection of mathematics to

deal with the organization, analysis, and interpretation of data. There are

three main statistical methods used in data analysis: descriptive statistics,

inferential statistics, and regressions analysis.

I also discussed data science. Data science is a multidisciplinary field

that includes statistics, computer science, machine learning, and domain

expertise to get knowledge and insights from data. Data science usually

ends up with the development of a data product. A data product is the

changing of the data of a company into a product to solve a problem.

Data mining is closely related to data science. Data mining is the

process of identifying patterns from data using statistics, machine learning,

and data warehouses or databases. Data mining consists of many models;

Chapter 1 IntroduCtIon

17

CRISP-DM is the most popular model for data mining. In CRISP-DM, data

mining comprises business understanding, data understanding, data

preparation, modeling, evaluation, and deployment.

While data mining is usually used to mine out patterns from numerical

data, text mining is used to mine out patterns from textual data like Twitter

tweets, blog postings, and feedback. Text mining, also known as text data

mining, is the process of deriving high quality semantics and knowledge

from textual data. Text mining consists of text classification, text clustering,

and entity extraction; text analytics may include sentiments analysis,

TF-IDF, part-of-speech tagging, name entity recognizing, and text link

analysis. Text mining uses the same process as the data mining CRISP-DM

model, with slight differences.

Natural language processing is an area of machine learning and

computer science used to assist the computer in processing and

understanding natural language. NLP can include part-of-speech tagging,

parsing, porter stemming, name entity recognition, optical character

recognition, sentiment analysis, speech recognition, and more. NLP works

hand in hand with text analytics and text mining.

Selecting the types of analytics can be difficult and challenging.

Luckily, analytics can be categorized into descriptive analytics, predictive

analytics, and prescriptive analytics. No one type of analytics is better than

the others, but they can be combined with each other.

Big data is data sets that are very big and complex for a computer to

process. Big data has challenges that may include capturing data, data

storage, data analysis, and data visualizations. There are three properties

of big data: volume, velocity, and variety. There are two popular systems or

frameworks for big data: Hadoop and Apache Spark.

When learning data science, there are many programming languages,

like R, Python, SAS, and Java. There are many data science software

packages, such as SPSS Statistics, SPSS Modeler, SAS Enterprise Miner,

RapidMiner, and Weka. R was developed with statistics in mind, so it is

best for the statistics portion of data mining, such as data understanding,

Chapter 1 IntroduCtIon

18

modeling with statistical learning algorithms, and data visualizations.

R has packages for machine learning, natural language processing, and

text mining, and Apache Spark for big data. Python is a full programming

language, and it is best for developing data product or software. The

SAS programming language is commercial and not free. R has become

very popular, according to the TIOBE ranking, and many companies like

Facebook and Google have data scientists who use R. R is also very popular

with academic researchers. R scripts or code can be run on different

operating systems long as the R interpreter is installed.

 References
Home. (2018, June 07). Retrieved from https://www.rstudio.com/.

Integrated development environment. (2018, August 22). Retrieved

from https://en.wikipedia.org/wiki/Integrated_development_

environment.

R (programming language). (2018, August 31). Retrieved from

https://en.wikipedia.org/wiki/R_(programming_language).

RStudio. (2018, August 26). Retrieved from https://en.wikipedia.

org/wiki/RStudio.

The R Project for Statistical Computing. (n.d.). Retrieved from

https://www.r-project.org/.

What is R? (n.d.). Retrieved from https://www.r-project.org/

about.html.

Chapter 1 IntroduCtIon

https://www.rstudio.com/
https://en.wikipedia.org/wiki/Integrated_development_environment
https://en.wikipedia.org/wiki/Integrated_development_environment
https://en.wikipedia.org/wiki/R_(programming_language)
https://en.wikipedia.org/wiki/RStudio
https://en.wikipedia.org/wiki/RStudio
https://www.r-project.org/
https://www.r-project.org/about.html
https://www.r-project.org/about.html

19© Eric Goh Ming Hui 2019
E. G. M. Hui, Learn R for Applied Statistics, https://doi.org/10.1007/978-1-4842-4200-1_2

CHAPTER 2

Getting Started
R programming is a programming language with object-oriented features

ideal for statistical computing and data visualizations. R programming

can do descriptive statistics, inferential statistics, and regression analysis.

R programming is a GNU package and is a command line application.

RStudio is an integrated development environment (IDE) for R

programming. An IDE offers features to help you write code more easily

and more productively by providing a code editor, compiler, and debugger.

The code editor usually has syntax highlighting and intelligent code

completion.

In this chapter, you will explore the R programming command line

application and the RStudio IDE, and you will install R and RStudio on

your computer. You will look into what an IDE is and you will explore the

RStudio interface. RStudio and R can read a .csv file easily, perform some

descriptive statistics, and plot simple graphs.

 What Is R?
R programming is for statistical computing and is supported by the R

Foundation for Statistical Computing. R programming is used by many

academics and researchers for data and statistical analysis, and the

popularity of R has risen over time.

20

R is a GNU package and is available under the GNU General Public

License, which can be assumed to be free to a certain extent and is open

source. R is available in a command line application, as shown in Figure 2- 1.

R programming is an implementation of the S programming language,

its libraries consist of statistical and data visualization techniques, and it

can conduct descriptive statistics, inferential statistics, and regressions

analysis. You will explore the differences between the R programming

command line application and the RStudio IDE, as well as the basics of the

descriptive statistics features and the data visualization features.

 The Integrated Development Environment
An IDE is a software application that helps programmers develop

software more easily and more productively. An IDE is made up of a code

editor, compiler, and debugger tools. Code editors usually offer syntax

highlighting and intelligent code completion.

Figure 2-1. The RGui interface

Chapter 2 GettinG Started

21

Some IDEs, like NetBeans, also have an interpreter and others, like

SharDevelop, don’t. Some IDEs have a version control system and tools

like a graphical user interface (GUI) builder, and many IDEs have class and

object browsers.

IDEs are developed to increase the productivity of the developer

by combining features like a code editor, compiler, debugger, and

interpreter. This is different from a programming code text editor like

VI and NotePad++, which offer syntax highlighting but usually don’t

communicate with the debugger and compiler.

The beginning of IDEs can be traced back to when punched cards were

submitted to the compiler in early systems. Dartmouth BASIC was the

first programming language to be created with an IDE. Maestro I was later

created by Softlab Munich and can be considered the first full IDE between

1970s and 1980s. Maestro I can be found in the Museum of Information

Technology at Arlington, Virginia. The Softbench IDE was later created

to have plugins. Today, Visual Studio, NetBeans, and Eclipse are the most

famous IDEs. The R programming IDE is RStudio, and Figure 2-2 shows its

intelligent code completion.

Figure 2-2. RStudio IDE intelligent code completion

Chapter 2 GettinG Started

22

 RStudio: The IDE for R
In R programming, RStudio is the most popular IDE. RStudio has a code

editor that consists of syntax highlighting and intelligent code completion

functions. RStudio also has a workspace showing all the variables and

history. You may double-click the variables to view them using tables and

other options.

The R console is in RStudio so you can view the results of the R scripts

after running the scripts; you can also type into the R console with R code

to do some simple computing. The Plots and Others portion is available in

RStudio to let you view the charts and graphs plotted from R scripts. The

Plots and Others portion allows you to easily save the graphs and charts.

Figure 2-3 shows the RStudio IDE interface.

 Installation of R and RStudio
In order to code R scripts, you must install the R programming command

line application. You can download the R programming command line

application from www.r-project.org/, as seen in Figure 2-4.

Figure 2-3. RStudio IDE interface

Chapter 2 GettinG Started

http://www.r-project.org/

23

In this book, you will download R for Windows. You can also download

for Linux and Mac OS, as seen in Figure 2-5.

To install the software, double-click the download setup file and follow

the instructions of the installer to install the R programming command

line application, as seen in Figure 2-6.

Figure 2-4. The R project website

Figure 2-5. Downloading the R base for different OS options

Chapter 2 GettinG Started

24

After the R programming command line application is installed, you

can start it, as seen in Figure 2-7.

Figure 2-6. Installation of R

Figure 2-7. The RGui interface

Chapter 2 GettinG Started

25

You can create your own Hello World application by using the print()

function. The Hello World application is the standard first application to

be developed when learning a programming language. Type the following

code into the RGui:

print("Hello World");

The print() function is used to print some text on the console screen.

You may print any text other than the “Hello World” shown in Figure 2-8.

Figure 2-8. The R “Hello World” application

RStudio is the most popular IDE for the R programming language.

RStudio helps you write R programming code more easily and more

productively. To download and install RStudio, visit www.rstudio.com/, as

seen in Figure 2-9.

Chapter 2 GettinG Started

http://www.rstudio.com/

26

Download the latest version. For this book, you will download the 64- bit

Windows version. After downloading the RStudio installer or setup file,

double-click the file to install the RStudio IDE, as seen in Figure 2-10.

Figure 2-9. The RStudio IDE website

Figure 2-10. Installation of the RStudio IDE

Chapter 2 GettinG Started

27

After installing the RStudio IDE, you can run the RStudio IDE software,

as seen in Figure 2-11.

Figure 2-11. The RStudio IDE interface

Before running the script, you need to select the R programming

command line application version to use. Click Tools ➤ Global Options,

as seen in Figure 2-12.

Figure 2-12. The RStudio IDE’s Tools menu

Chapter 2 GettinG Started

28

Click the Change button to select the R version, as seen in Figure 2-13.

Figure 2-13. RStudio IDE options

For the beginner, choose the R version shown in Figure 2-14. If you

want to change the R version in the future, you can use this method to

do so.

Chapter 2 GettinG Started

29

After clicking OK and choosing the R version, you must restart the

RStudio IDE, as depicted in Figure 2-15.

Figure 2-14. The Choose R Installation dialog

Figure 2-15. RStudio IDE R version changing

Chapter 2 GettinG Started

30

After restarting RStudio, the Console tab should show the selected R

version, as seen in Figure 2-16.

Figure 2-16. Changed R version

 Writing Scripts in R and RStudio
You can read a comma-separated values (CSV) file using the read.csv()

function in the R programming language, as seen in Figure 2-17.

myData <- read.csv(file="D:/data.csv", header=TRUE, sep=",");

myData;

Chapter 2 GettinG Started

31

In the R programming language, you can use the summary() function

to get the basic descriptive statistics for all the variables. I will discuss

descriptive statistics, shown in Figure 2-18, in a future chapter of this book.

summary(myData);

Figure 2-17. RGui: Reading a CSV

Figure 2-18. RGui: The summary() function

Chapter 2 GettinG Started

32

In the R programming language, you can plot a scatterplot using the

plot() function, as seen in Figure 2-19.

plot(myData$x, myData$x2);

Figure 2-19. RGui: Plotting a chart

RStudio is an IDE that provides a GUI for the R programming

command line application. RStudio provide word suggestions and syntax

highlighting for the R programming language. The RStudio IDE for the R

programming language is seen in Figure 2-20.

Chapter 2 GettinG Started

33

With RStudio, you can write all the code into the code editor and run

the script, as seen in Figures 2-22, 2-23, and 2-24.

myData <- read.csv(file="D:/data.csv", header=TRUE, sep=",");

myData;

summary(myData);

plot(myData$x, myData$x2);

As you type the code, RStudio shows the intelligent code completion,

as shown in Figure 2-21.

Figure 2-20. The RStudio IDE interface

Figure 2-21. RStudio IDE intelligent code completion

Chapter 2 GettinG Started

34

You must select all the R code in the code editor and click Run or Ctrl +

Enter to run the script (Figure 2-22).

Figure 2-22. RStudio IDE: Running a script

Or you can click Code ➤ Run Region ➤ Run All (Figure 2-23).

Figure 2-23. RStudio IDE: Running a script

Chapter 2 GettinG Started

35

The results are shown in Figure 2-24.

Figure 2-24. RStudio IDE: Results after running the R script

The RStudio IDE offers syntax highlighting features in the code editor.

When you run the R script, you can view the results in the Console tab and

see the scatterplot in the Plots tab. By double-clicking myData in the Global

Environment tab, you can view the data loaded from the .csv file, as shown

in Figure 2-25.

Chapter 2 GettinG Started

36

 Conclusion
In this chapter, you looked at R programming. You now understand what

R programming is: it’s a programming language for statistical computing

and is supported by the R Foundation for Statistical Computing. R

programming is used by researchers for statistical analysis, and R

popularity has increased every year.

You also explored RStudio. RStudio is the IDE for the R programming

language and it has syntax highlighting and intelligent code completion to

assist you in writing R scripts more easily and more productively. You also

looked at how R can read a .csv file and perform descriptive statistics and

data visualizations, and you explored the differences between them.

You also installed R and the RStudio IDE, and you saw how to

allow RStudio IDE to integrate with the R programming command line

application.

Figure 2-25. RStudio IDE: Viewing the loaded data

Chapter 2 GettinG Started

37

You also learned than an IDE is software to help you write code more

easily and more productively. IDEs usually offer syntax highlighting and

intelligent code completion and have a code editor, a compiler, and a

debugger.

For R programming, RStudio is the most popular IDE. RStudio has

a code editor that consists of syntax highlighting and intelligent code

completion. RStudio also has a workspace showing all the variables and

history. You may double-click the variables to view them using tables and

more. The R console is in RStudio so you can view the results of R scripts.

The Plots and Others portion is available in RStudio to let you view the

charts and graphs plotted from the R code.

 References
Home. (2018, June 07). Retrieved from www.rstudio.com/.

Integrated development environment. (2018, August 22). Retrieved

from https://en.wikipedia.org/wiki/Integrated_development_

environment.

RStudio. (2018, August 26). Retrieved from https://en.wikipedia.org/

wiki/RStudio.

The R Project for Statistical Computing. (n.d.). Retrieved from

www.r- project.org/.

What is R? (n.d.). Retrieved from www.r-project.org/about.html.

Chapter 2 GettinG Started

http://www.rstudio.com/
https://en.wikipedia.org/wiki/Integrated_development_environment
https://en.wikipedia.org/wiki/Integrated_development_environment
https://en.wikipedia.org/wiki/RStudio
https://en.wikipedia.org/wiki/RStudio
http://www.r-project.org/
http://www.r-project.org/about.html

39© Eric Goh Ming Hui 2019
E. G. M. Hui, Learn R for Applied Statistics, https://doi.org/10.1007/978-1-4842-4200-1_3

CHAPTER 3

Basic Syntax
You will use R for applied statistics, which can be used in the data

understanding and modeling stages of the CRISP-DM data mining

model. R programming is a programming language with object-oriented

programming features. R programming was created for statistics and is

used in the academic and research fields. However, before you go into

statistics, you need to learn to program R scripts.

In this chapter, you will explore the syntax of R programming. I will

discuss the R console and code editor in RStudio, as well as R objects

and the data structure of R programming, from variables and data types

to lists, vectors, matrices, and data frames. I will also discuss conditional

statements, loops, and functions. Then you will create a simple calculator

after learning the basics.

 Writing in R Console
As you saw in Chapter 2, the R console offers a fast and easy way to do

statistical calculations and some data visualizations. The R console is also

like a calculator, so you can always use the R console to calculate some

math equations.

To do math calculations, you can just type in some math equations like

1 + 1

> 1 + 1

[1] 2

40

1 – 3

> 1 - 3

[1] -2

1 * 5

> 1 * 5

[1] 5

1 / 6

> 1 / 6

[1] 0.1666667

tan(2)

> tan(2)

[1] -2.18504

To do some simple statistical calculations, you can so the following:

Standard deviation

sd(c(1, 2, 3, 4, 5, 6))

>sd(c(1, 2, 3, 4, 5, 6))

[1] 1.870829

Mean

mean(c(1, 2, 3, 4, 5, 6))

> mean(c(1, 2, 3, 4, 5, 6))

[1] 3.5

Min

min(c(1, 2, 3, 4, 5,6))

> min(c(1, 2, 3, 4, 5, 6))

[1] 1

Chapter 3 BasiC syntax

41

To plot charts or graphs, type

plot(c(1, 2, 3, 4, 5, 6), c(2, 3, 4, 5, 6, 7))

> plot(c(1, 2, 3, 4, 5, 6), c(2, 3, 4, 5, 6, 7))

which is shown in Figure 3-1.

To sum up, the R console, despite being basic, offers the following

advantages:

• High performance

• Fast prototyping and testing of your ideas and logic

before proceeding further, such as when developing

Windows Form applications

Figure 3-1. Scatter plot

Chapter 3 BasiC syntax

42

• Personally, I use the R console application to test

algorithms and other code fragments when in the

process of developing complex R scripts.

 Using the Code Editor
The RStudio IDE offers features like a code editor, debugger, and compiler

that communicate with the R command line application or R console. The

R code editor offers features like intelligent code completion and syntax

highlighting, shown in Figures 3-2 and 3-3, respectively.

Figure 3-2. Example of intelligent code completion

Figure 3-3. Example of syntax highlighting

To create a new script in RStudio, click

Chapter 3 BasiC syntax

43

File ➤ New ➤ R Script, as shown in Figure 3-4.

You can then code your R Script. For now, type in the following code,

shown in Figure 3-5:

A <- 1;

B <- 2;

A/B;

A * B;

A + B;

A – B;

A^2;

B^2;

Figure 3-4. Creating a new script

Chapter 3 BasiC syntax

44

To run the R script, highlight the code in the code editor and click Run,

as shown in Figure 3-6.

Figure 3-5. Code in a script

Figure 3-6. Running the script

Chapter 3 BasiC syntax

45

To view the results of the R script, look in the R console of RStudio, as

shown in Figure 3-7.

You can also see that in the Environment tab, there are two variables,

as shown in Figure 3-8.

Figure 3-7. RStudio IDE console results

Figure 3-8. RStudio IDE Environment tab

Chapter 3 BasiC syntax

46

 Adding Comments to the Code
You can add comments to the code. Comments are text that will not be

run by the R console. You can add in a comment by putting # in front of

the text. The comment is for you to describe your code to let anyone read it

more easily.

#Create variable A with value 1

A <- 1;

#Create variable B with value 2

B <- 2;

#Calculate A divide B

A/B;

#Calculate A times B

A * B;

#Calculate A plus B

A + B;

#Calculate A subtract B

A - B;

#Calculate A to power of 2

A^2;

#Calculate B to power of 2

B^2;

You can rerun the code and you should get the result shown in

Figure 3-9.

Chapter 3 BasiC syntax

47

 Variables
Let’s look into the code and scripts you used previously. You actually

created two variables, A and B, and assigned some values to the two

variables.

A <- 1

B <- 2

In this code, A is a variable, and B is a variable also. <- means assign. A

<- 1 means variable A is assigned a value of 1. 1 is a numeric type. B <- 2

means variable B is assigned a value of 2. 2 is a numeric type.

If you want to assign text or character values, you add quotations, like

A <- "Hello World"

Figure 3-9. RStudio IDE reruns the code with comments

Chapter 3 BasiC syntax

48

Variable A is assigned a text value of "Hello World". Character and

numeric are data types.

 Data Types
Data types are the types or kind of information or data a variable is

holding. A data type can be numeric and character.

For example,

A <- "abc"

B <- 1.2

In R, data types are automatically determined. Because of the

quotations surrounding the values, variable A is of the character data type,

while variable B is of the numeric data type.

R is also capable of storing other data types, as shown in Table 3-1.

Table 3-1. Data Types

Data Types Values

Logical trUe

FaLse

numeric 12.3

2.55

1.0

Character “a”

“abc”

“this is a bat”

For more information, please see www.tutorialspoint.com/r/r_

data_types.htm.

Chapter 3 BasiC syntax

http://www.tutorialspoint.com/r/r_data_types.htm
http://www.tutorialspoint.com/r/r_data_types.htm

49

You can also determine the data type of a variable by using the class()

method. For example:

A <- "ABC";

print(class(A));

> A <- "ABC";

> print(class(A));

[1] "character"

A <- 123;

print(class(A));

> A <- 123;

> print(class(A));

[1] "numeric"

A <- TRUE;

print(class(A));

> A <- TRUE;

> print(class(A));

[1] "logical"

Why is the data type important? If you do a math calculation in R and

one variable’s data type is numeric and one variable’s data type is non-

numeric, you will get the following error:

> A <- 123;

> B <- "aaa";

> A + B;

Error in A + B : non-numeric argument to binary operator

Chapter 3 BasiC syntax

50

You can also use is.datatype() to determine whether a variable is of a

certain data type:

> A <- 123;

> print(is.numeric(A));

[1] TRUE

> print(is.character(A));

[1] FALSE

You can also use as.datatype() to convert between data types:

> A <- 12;

> B <- "56";

> A + B;

Error in A + B : non-numeric argument to binary operator

> B <- as.numeric(B);

> A + B;

[1] 68

A <- 12 means that A is a numeric data type. B <- "56" means that B

is a character data type. When A and B add together, you will get an error

because you are adding a numeric data type to a character data type.

If you try to convert B to the numeric data type using B <-

as.numeric(B), you can add A and B together because A is a numeric data

type and B is a numeric data type also.

 Vectors
A vector is a basic data structure or R object for storing a set of values of the

same data type. A vector is the most basic and common data structure in

R. A vector is used when you want to store and modify a set of values. The

data types can be logical, integer, double, and character. The integer data

type is used to store number values without a decimal, and the double data

Chapter 3 BasiC syntax

51

type is used to store number values with a decimal. Vectors can be created

using the c() function as follows:

variable = c(..., ..., ...)

> A <- c(1, 2, 3, 4, 5, 6);

> print(A);

[1] 1 2 3 4 5 6

You can check the data type of the vector using typeof() and class():

>typeof(A);

[1] "double"

> class(A);

[1] "numeric"

You can check the number of elements or values in a vector using the

length() function:

> A <- c(1, 2, 3, 4, 5, 6);

> print(A);

[1] 1 2 3 4 5 6

> length(A);

[1] 6

You can also use the operator : to create a vector:

> A <- 1:8;

> print(A);

[1] 1 2 3 4 5 6 7 8

To retrieve the second element or value of a vector, use the [] brackets

and put in the element number to retrieve:

> A <- 1:8;

> print(A);

[1] 1 2 3 4 5 6 7 8

Chapter 3 BasiC syntax

52

> A[2];

[1] 2

You can also retrieve the elements in the vector using another vector,

for example, to retrieve the second and fifth element:

> A <- 1:8;

> print(A);

[1] 1 2 3 4 5 6 7 8

> A[c(2, 5)];

[1] 2 5

To retrieve all elements except the second element, do this:

> A <- 1:8;

> print(A);

[1] 1 2 3 4 5 6 7 8

> A[-2];

[1] 1 3 4 5 6 7 8

You can also retrieve elements of a vector using a logical vector:

> A <- 1:8;

> print(A);

[1] 1 2 3 4 5 6 7 8

> A[c(FALSE, TRUE, FALSE, TRUE, FALSE, TRUE, FALSE, TRUE)];

[1] 2 4 6 8

You can also use more than or less than signs to retrieve elements:

> A <- 1:8;

> print(A);

[1] 1 2 3 4 5 6 7 8

> A[A > 5];

[1] 6 7 8

Chapter 3 BasiC syntax

53

You can modify a vector as follows using assign, <-:

> A <- 1:8;

> print(A);

[1] 1 2 3 4 5 6 7 8

> A[3] <- 9;

> print(A);

[1] 1 2 9 4 5 6 7 8

 Lists
A list is like a vector. It is an R object that can store a set of values or

elements, but a list can store values of different data types. A list is also

another common data structure in R. You use a list when you want to

modify and store a set of values of different data types. A vector can only

store values of the same data type. The syntax to create a list is as follows:

variable = list(..., ..., ...)

To create a list, do this:

> A <- list("a", "b", 1, 2);

> print(A);

[[1]]

[1] "a"

[[2]]

[1] "b"

[[3]]

[1] 1

[[4]]

[1] 2

Chapter 3 BasiC syntax

54

To see the element data type or the data structure type of the list, you

can use the str() and typeof() functions:

> str(A);

List of 4

 $: chr "a"

 $: chr "b"

 $: num 1

 $: num 2

>typeof(A);

[1] "list"

You can get the length or number of elements in the list by using the

length() function:

> A <- list("a", "b", 1, 2);

> length(A);

[1] 4

You can retrieve the values in the list using an integer:

> A[1];

[[1]]

[1] "a"

You can retrieve the values in a list using an integer vector:

> A[c(1:2)];

[[1]]

[1] "a"

[[2]]

[1] "b"

Chapter 3 BasiC syntax

55

You can retrieve the values using a negative integer:

> print(A);

[[1]]

[1] "a"

[[2]]

[1] "b"

[[3]]

[1] 1

[[4]]

[1] 2

> A[-1];

[[1]]

[1] "b"

[[2]]

[1] 1

[[3]]

[1] 2

You can also retrieve the values using a logical vector:

> print(A);

[[1]]

[1] "a"

[[2]]

[1] "b"

[[3]]

[1] 1

Chapter 3 BasiC syntax

56

[[4]]

[1] 2

> A[c(TRUE, FALSE, FALSE, FALSE)];

[[1]]

[1] "a"

When you use only [] to retrieve a value, it will give you the sublist. If

you want to get the content in the sublist, you need to use [[]].

> A[1];

[[1]]

[1] "a"

> A[[1]];

[1] "a"

You can modify a value or element in the list using

> print(A);

[[1]]

[1] "a"

[[2]]

[1] "b"

[[3]]

[1] 1

[[4]]

[1] 2

> A[[2]] <- "n";

> print(A);

[[1]]

[1] "a"

Chapter 3 BasiC syntax

57

[[2]]

[1] "n"

[[3]]

[1] 1

[[4]]

[1] 2

To delete an element or value in a list:

> print(A);

[[1]]

[1] "a"

[[2]]

[1] "n"

[[3]]

[1] 1

[[4]]

[1] 2

> A[[2]] <- NULL;

> print(A);

[[1]]

[1] "a"

[[2]]

[1] 1

[[3]]

[1] 2

Chapter 3 BasiC syntax

58

 Matrix
A matrix is like a vector, but it has two dimensions. You usually use a

matrix to modify and store values from a data set because a matrix has two

dimensions. A matrix is good when you plan to do linear algebra types or

mathematical operations. For a data set with different types, you need to

use a data frame.

To create a matrix, you can use the following syntax:

variable <- matrix(vector, nrow=n, ncol=i)

> A <- matrix(c(1, 2, 3, 4, 6, 7, 8, 9, 0), nrow=3, ncol=3);

> print(A);

 [,1] [,2] [,3]

[1,] 1 4 8

[2,] 2 6 9

[3,] 3 7 0

You can use dimnames to rename the rows and columns:

> A <- matrix(c(1, 2, 3, 4, 6, 7, 8, 9, 0), nrow=3, ncol=3);

> print(A);

 [,1] [,2] [,3]

[1,] 1 4 8

[2,] 2 6 9

[3,] 3 7 0

> A <- matrix(c(1, 2, 3, 4, 6, 7, 8, 9, 0), nrow=3, ncol=3,

dimnames=list(c("X", "Y", "Z"), c("A", "S", "D")));

> print(A);

 A S D

X 1 4 8

Y 2 6 9

Z 3 7 0

Chapter 3 BasiC syntax

59

You can check the dimension of the matrix using the attributes()

function and whether a variable is a matrix using the class() function:

> class(A);

[1] "matrix"

> attributes(A);

$`dim`

[1] 3 3

$dimnames

$dimnames[[1]]

[1] "X" "Y" "Z"

$dimnames[[2]]

[1] "A" "S" "D"

You can get column names and row names using the colnames() and

rownames() functions:

>colnames(A);

[1] "A" "S" "D"

>rownames(A);

[1] "X" "Y" "Z"

You can also create a matrix by using column binding and row binding

functions:

> B <- cbind(c(1, 2, 3), c(4, 5, 6));

> print(B);

 [,1] [,2]

[1,] 1 4

[2,] 2 5

[3,] 3 6

> C <- rbind(c(1, 2, 3), c(4, 5, 6));

> print(C);

Chapter 3 BasiC syntax

60

 [,1] [,2] [,3]

[1,] 1 2 3

[2,] 4 5 6

To select the first row:

> print(A);

 A S D

X 1 4 8

Y 2 6 9

Z 3 7 0

> A[1,];

A S D

1 4 8

To select the first column:

> print(A);

 A S D

X 1 4 8

Y 2 6 9

Z 3 7 0

> A[,1];

X Y Z

1 2 3

To select all rows except the last row:

> print(A);

 A S D

X 1 4 8

Y 2 6 9

Z 3 7 0

> A[-3,];

Chapter 3 BasiC syntax

61

 A S D

X 1 4 8

Y 2 6 9

To select the second row and second column:

> print(A);

 A S D

X 1 4 8

Y 2 6 9

Z 3 7 0

> A[2, 2];

[1] 6

Using a logical vector to select the first and last row:

> print(A);

 A S D

X 1 4 8

Y 2 6 9

Z 3 7 0

> A[c(TRUE, FALSE, FALSE),];

A S D

1 4 8

To select the elements and values based on more than and less than:

> print(A);

 A S D

X 1 4 8

Y 2 6 9

Z 3 7 0

> A[A>4];

[1] 6 7 8 9

Chapter 3 BasiC syntax

62

To modify the second row and second column:

> print(A);

 A S D

X 1 4 8

Y 2 6 9

Z 3 7 0

> A[2, 2] <- 100;

> print(A);

 A S D

X 1 4 8

Y 2 100 9

Z 3 7 0

To add a row, use the rbind() function:

> print(A);

 A S D

X 1 4 8

Y 2 100 9

Z 3 7 0

> B <- rbind(A, c(1, 2, 3));

> print(B);

 A S D

X 1 4 8

Y 2 100 9

Z 3 7 0

 1 2 3

To add a column, use the cbind() function:

> print(A);

 A S D

X 1 4 8

Chapter 3 BasiC syntax

63

Y 2 100 9

Z 3 7 0

> C <- cbind(A, c(1, 2, 3));

> print(C);

 A S D

X 1 4 8 1

Y 2 100 9 2

Z 3 7 0 3

To transpose a matrix, use the t() function:

> print(A);

 A S D

X 1 4 8

Y 2 100 9

Z 3 7 0

> A <- t(A);

> print(A);

 X Y Z

A 1 2 3

S 4 100 7

D 8 9 0

 Data Frame
A data frame is a special list or R object that is multidimensional and is

usually used to store data read from an Excel or .csv file. A matrix can only

store values of the same type, but a data frame can store values of different

types. To declare a data frame, use the following syntax:

variable = data.frame(colName1 = c(..., ..., ...),

colName2 = c(..., ..., ...), ...)

Chapter 3 BasiC syntax

64

> A <- data.frame(emp_id=c(1, 2, 3), names=c("John", "James",

"Mary"), salary=c(111.1, 222.2, 333.3));

> print(A);

emp_id names salary

1 1 John 111.1

2 2 James 222.2

3 3 Mary 333.3

You can use the typeof() and class() functions to check whether a

variable is of the data frame type:

>typeof(A);

[1] "list"

> class(A);

[1] "data.frame"

To get the number of columns and rows, you can use the ncol() and

nrow() functions:

>ncol(A);

[1] 3

>nrow(A);

[1] 3

To get the structure of the data frame, you can use the str() function:

> str(A);

'data.frame': 3 obs. of 3 variables:

 $ emp_id: num 1 2 3

 $ names : Factor w/ 3 levels "James","John",..: 2 1 3

 $ salary: num 111 222 333

Chapter 3 BasiC syntax

65

You can also use the read.csv() function to read a .csv file as a data

frame:

>myData<- read.csv(file="D:/data.csv", header=TRUE, sep=",");

>ncol(myData);

[1] 4

>nrow(myData);

[1] 100

> str(myData);

'data.frame': 100 obs. of 4 variables:

 $ x : num 2.216 -0.181 1.697 1.655 1.068 ...

 $ x2: num 4.77 4.1 2.33 2.46 1.05 ...

 $ x3: num -4.87 6.98 3.92 0.75 3.35 ...

 $ y : int 0 1 0 0 1 1 1 1 1 1 ...

To select a column, use [], [[]], or $ to select:

> print(A);

emp_id names salary

1 1 John 111.1

2 2 James 222.2

3 3 Mary 333.3

> A["names"];

 names

1 John

2 James

3 Mary

>A$names;

[1] John James Mary

Levels: James John Mary

> A[[2]];

[1] John James Mary

Levels: James John Mary

Chapter 3 BasiC syntax

66

To modify the first row and second column:

> print(A);

emp_id names salary

1 1 John 111.1

2 2 James 222.2

3 3 Mary 333.3

> A[1, 2] <- "James";

> print(A);

emp_id names salary

1 1 James 111.1

2 2 James 222.2

3 3 Mary 333.3

To add a row, use the rbind() function:

> print(A);

emp_id names salary

1 1 James 111.1

2 2 James 222.2

3 3 Mary 333.3

> B <- rbind(A, list(4, "John", 444.4));

> print(B);

emp_id names salary

1 1 James 111.1

2 2 James 222.2

3 3 Mary 333.3

4 4 John 444.4

To add a column, use the cbind() function:

> print(A);

emp_id names salary

1 1 James 111.1

Chapter 3 BasiC syntax

67

2 2 James 222.2

3 3 Mary 333.3

> B <- cbind(A, state=c("NY", "NY", "NY"));

> print(B);

emp_id names salary state

1 1 James 111.1 NY

2 2 James 222.2 NY

3 3 Mary 333.3 NY

To delete a column:

> print(A);

emp_id names salary

1 1 James 111.1

2 2 James 222.2

3 3 Mary 333.3

>A$salary<- NULL;

> print(A);

emp_id names

1 1 James

2 2 James

3 3 Mary

 Logical Statements
if...else statements are usually the logical fragments of your code in

R. They give your program some intelligence and decision making by

specifying the if rules:

if (Boolean expression) {

 #Codes to execute if Boolean expression is true

}else {

 #code to execute if Boolean expression is false }

Chapter 3 BasiC syntax

68

Table 3-2 shows the Boolean operators that can be used in writing the

Boolean expressions of the if... else statements.

Table 3-2. Boolean Operators

Boolean Operator Definition

== equal to

>= Greater than or equal to

<= Lesser than or equal to

> Greater than

< Lesser than

!= not equal to

YouWe can put in more if...else statements using the else if to

have more rules and intelligence in the program code:

if (Boolean expression 1) {

 #Codes to execute if Boolean expression 1 is true

} else if (Boolean expression2) {

#Codes to execute if Boolean expression 2 is true and Boolean

expression 1 is false

} else if(Boolean expression 3) {

#Codes to execute if Boolean expression 3 is true and Boolean

expression 1 and 2 are false

} else {

 #code to execute if all Boolean expressionsare false }

The following is an example of using else if:

> A <- c(1, 2);

> B <- sum(A); #1 + 2

>

Chapter 3 BasiC syntax

69

> if(B >= 5) {

+ print("B is greater or equal to 5");

+ } else if(B >= 3) {

+ print("B is more than or equal to 3");

+ } else {

+ print("B is less than 3");

+ }

[1] "B is more than or equal to 3"

If B is more than or equal to 5, the R console will print “B is greater or

equal to 5”. Else if B is more than or equal to 3 but less than 5, the R console

will print “B is more than or equal to 3”. Otherwise, the R console will print

“B is lesser than 5”. The R console printed “B is more than or equal to 3” as

B is 1 + 2 = 3.

 Loops
Loops are used to repeat certain fragments of code. For example, if you

want print the “This is R.” message 100 times, it will be very tiresome to

type print("This is R. "); 100 times. You can use loops to print the

message 100 times more easily. Loops can usually be used to go through

a set of vectors, lists, or data frames. In R, there are several loop options:

both while loop, for loop, and repeat loop.

 For Loop
Let’s start with the syntax for a for loop:

for (value in vector) {

 #statements

}

Chapter 3 BasiC syntax

70

Example:

> A <- c(1:5); #create a vector with values 1, 2, 3, 4, 5

>

> for(e in A) { #for each element and value in vector A

+ print(e); #print the element and value

+ }

[1] 1

[1] 2

[1] 3

[1] 4

[1] 5

In this example, you create vector A, with values 1 to 5. For each

element in the vector, you print the element in the console. See Figure 3-10

for the logic.

Get each element
of the vector.

No

Process the
statements

Last
element
reached?

Yes

Figure 3-10. For loop of R

Chapter 3 BasiC syntax

71

 While Loop
You can also use while loop to loop until you meet a specific Boolean

expression:

While (Boolean Expression) {

#Code to run or repeat until Bolean Expression is false

}

Example:

>i<- 1;

>

> while(i<= 10) {

+ print(i);

+ i<- i+1;

+ }

[1] 1

[1] 2

[1] 3

[1] 4

[1] 5

[1] 6

[1] 7

[1] 8

[1] 9

[1] 10

In this example, you use the while loop to print the text from 1 to 10.

I is assigned a value of 1. While i is less than or equal to 10, the R console

will print the value of i. After printing, I will be added to 1. It repeats

printing until it is more than 10. See Figure 3-11 for the logic flow.

Chapter 3 BasiC syntax

72

 Break and Next Keywords
In loop statements, you can use the break keyword and the next keyword.

The break keyword is to stop the iterations of the loop. The next keyword

is to skip the current iteration of a loop.

Example for the break keyword:

> A <- c(1:10);

>

> for(e in A) {

+

+ if(e == 5) {

+ break;

+ }

+

Is condition true?

Yes

No

Code Block

Figure 3-11. While loop of R

Chapter 3 BasiC syntax

73

+ print(e);

+ }

[1] 1

[1] 2

[1] 3

[1] 4

In this example, you create vector A with values from 1 to 10. For each

element in A, you print the element values. If the element value is 5, you

exit from the loop.

Example for the next keyword:

> A <- c(1:10);

>

> for(e in A) {

+

+ if(e == 5) {

+ next;

+ }

+

+ print(e);

+ }

[1] 1

[1] 2

[1] 3

[1] 4

[1] 6

[1] 7

[1] 8

[1] 9

[1] 10

Chapter 3 BasiC syntax

74

In this example, you create vector A with values from 1 to 10. For each

element in A, you print the element values. If the element value is 5, you

skip the current iteration and go to the next iteration. Thus, you did not

print the value 5. An example of when you want to use the break statement

is when you use the loop statements to iterate through a set of values;

when you find the values you want, you can break out from the loop.

 Repeat Loop
The repeat loop repeats the code many times, and there is no Boolean

expression to meet. To stop the loop, you must use the break keyword.

repeat {

#code to repeat

}

Example:

>i<- 1;

> repeat {

+ if(i> 10)

+ break;

+

+ print(i);

+ i<- i + 1;

+ }

[1] 1

[1] 2

[1] 3

[1] 4

[1] 5

[1] 6

[1] 7

Chapter 3 BasiC syntax

75

[1] 8

[1] 9

[1] 10

In this example, you create variable i with a value of 1. You repeat

printing i and add 1 to i until i is more than 10, and then you break

out from the loop. If you forget or don’t add a condition statement and

the break keyword, you can end up in an infinite loop. An infinite loop

is dangerous because it can consume your system resources and cause

your program to keep on looping at the same place. The for loop is the

preferable loop because the condition is defined in the first statement.

for(e in A)

The while loop is the next preferred loop. A condition statement is also

stated in the first statement:

while(i<= ...) ...

If you forget to increment the i, I <- I + 1; , you will also have an

infinite loop.

 Functions
Functions help you organize your code and allow you to reuse code

fragments whenever you need. To create a function, use the following

syntax:

function_name<- function(arg1, arg2, ...) {

 # Codes fragments

 function_name = #value to return

}

Chapter 3 BasiC syntax

76

Example:

> A <- c(1:5);

>

> productVect <- function(a) {

+

+ res <- 1;

+

+ for(e in a) {

+ res <- res * e;

+ }

+

+ productVect = res;

+ }

>

> print(productVect(A));

[1] 120

In this example, you create the productVect() function. This function

is the same as prod() in R programming.

The productVect() function takes one argument. For every element

in the argument (should be a vector), res will be equal to res times the

element. After the loop is completed, the productVect() function will

return the res value.

You can call the function using productVect(A). In the above code,

you call the function using

A <- c(1:5);

print(productVect(A));

A is a vector with values from 1 to 5. You call the function by using

productVect(A). The argument, a, in the function declaration is the formal

argument. The argument, A, you passed to the function while calling the

productVect() function is called the actual argument. When you call the

Chapter 3 BasiC syntax

77

function using productVect(A), a, the formal argument, is assigned with A,

the actual argument.

You can call the productVect() function a few times in your code:

>productVect<- function(a) {

+

+ res <- 1;

+

+ for(e in a) {

+ res <- res * e;

+ }

+

+ productVect = res;

+ }

>

> A <- c(1:5);

> print(productVect(A));

[1] 120

>

> B <- c(1:10);

> print(productVect(B));

[1] 3628800

You can also create default values for the argument in the function:

productVect<- function(a=c(1:5)) {

 res <- 1;

 for(e in a) {

 res <- res * e;

 }

productVect = res;

}

Chapter 3 BasiC syntax

78

print(productVect());

A <- c(1:5);

print(productVect(A));

B <- c(1:10);

print(productVect(B));

When you call the function without argument, print(productVect()),

you can still get the result:

>productVect<- function(a=c(1:5)) {

+

+ res <- 1;

+

+ for(e in a) {

+ res <- res * e;

+ }

+

+ productVect = res;

+ }

>

> print(productVect());

[1] 120

>

> A <- c(1:5);

> print(productVect(A));

[1] 120

>

> B <- c(1:10);

> print(productVect(B));

[1] 3628800

Chapter 3 BasiC syntax

79

Instead of using productVect = res, you can also use the return()

function to return the results:

>productVect<- function(a=c(1:5)) {

+

+ res <- 1;

+

+ for(e in a) {

+ res <- res * e;

+ }

+

+ return(res);

+ }

>

> print(productVect());

[1] 120

>

> A <- c(1:5);

> print(productVect(A));

[1] 120

>

> B <- c(1:10);

> print(productVect(B));

[1] 3628800

Chapter 3 BasiC syntax

80

 Create Your Own Calculator
In this chapter, you learned many R programming syntaxes. You looked

into variables, data types, matrix, vectors, lists, data frames, loops, and

functions. In this section, you are going to put many things you just

learned into a Calculator script:

add <- function(a, b) {

 res <- a + b;

 return(res);

}

subtract <- function(a, b) {

 res <- a - b;

 return(res);

}

product <- function(a, b) {

 res <- a * b;

 return(res);

}

division <- function(a, b) {

 res <- a / b;

 return(res);

}

print("Select your option: ");

print("1. Add");

print("2. Subtract");

print("3. Product");

print("4. Division");

Chapter 3 BasiC syntax

81

opt <- as.integer(readline(prompt = "> "));

firstNum<- as.integer(readline(prompt="Enter first number: "));

secondNum<- as.integer(readline(prompt="Enter second number:

"));

res <- 0;

if(opt == 1) {

 res <- add(firstNum, secondNum);

} else if(opt == 2) {

 res <- subtract(firstNum, secondNum);

} else if(opt == 3) {

 res <- product(firstNum, secondNum);

} else if(opt == 4) {

 res <- division(firstNum, secondNum);

} else {

 print("Error. ");

}

print(res);

In this code, you create the add(), subtract(), product(), and

division() functions. You then print the messages “Select your option:”

and etc. You assign the opt variable with the user input. You get the

user input using the readline() function, and you use as.integer() to

convert the user input to the integer type. You use if statements to call the

functions based on the user input. You then print the results.

Chapter 3 BasiC syntax

82

To run the code, go to Code ➤ Run Region ➤ Run All, as shown in

Figure 3-12.

Figure 3-12. Running the Calculator R script in the RStudio IDE

Chapter 3 BasiC syntax

83

The output is shown in Figure 3-13.

 Conclusion
In this chapter, you looked into R programming. You explored the R

console and the RStudio code editor. The R console is for shorter code and

the RStudio code editor is for longer R code or scripts.

You learned about variables. A variable is a container to store some

values. A variable can have a name, which is called a variable name. Data

types are the types or kind of information or data a variable is holding.

Figure 3-13. Running the results of the Calculator R script in the
RStudio IDE

Chapter 3 BasiC syntax

84

You also looked into vectors. A vector is a basic data structure or R

object to store a set of values of the same data type. The data types can be

logical, integer, double, character, and more. Vectors can be created using

the c() function.

You also learned about lists. Lists are like vectors: they are R objects

that can store a set of values or elements, but a list can store values of

different data types.

You also learned about matrices. A matrix is an R object or two-

dimensional data structure that is like vector, but has two dimensions.

You also learned about data frames. A data frame is a special list or R

object that is multidimensional and is usually used to store data read from

Excel or .csv files.

You also learned about conditional statements. if...else statements

are usually the logical fragments of your code in R. They give your program

some intelligence and decision making ability by specifying the if rules.

You also learned about loops. Loops are used to repeat certain

fragments of code. For example, if you want print the “This is R.” message

100 times, it will be very tiresome to type print("This is R."); 100

times. You can use loops to print the message 100 times more easily. R has

both while loops, for loops, and repeat loops.

You also learned about functions. Functions help you organize your

code and allow you to reuse code fragments whenever you need.

Finally, you created your own calculator based on what you learned.

 References
Basic Data Types. (n.d.). Retrieved from www.r-tutor.com/r-

introduction/basic-data-types.

Integrated development environment. (2018, August 22). Retrieved

from https://en.wikipedia.org/wiki/Integrated_development_

environment.

Chapter 3 BasiC syntax

http://www.r-tutor.com/r-introduction/basic-data-types
http://www.r-tutor.com/r-introduction/basic-data-types
https://en.wikipedia.org/wiki/Integrated_development_environment
https://en.wikipedia.org/wiki/Integrated_development_environment

85

Kabacoff, R. (n.d.). Data Type Conversion. Retrieved from www.

statmethods.net/management/typeconversion.html.

R Break and Next (With Syntax and Examples). (2018, April 11).

Retrieved from www.datamentor.io/r-programming/break-next/.

R Data Frame (Create, Access, Modify, and Delete Data Frame

in R). (2017, November 23). Retrieved from www.datamentor.io/r-

programming/data-frame/.

T. (n.d.). R Data Types. Retrieved from www.tutorialspoint.com/r/r_

data_types.htm.

T. (n.d.). R For Loop. Retrieved from www.tutorialspoint.com/r/r_

for_loop.htm.

R For Loop (With Examples). (2018, April 11). Retrieved from www.

datamentor.io/r-programming/for-loop/.

R Functions in Detail (With Examples). (2017, November 24). Retrieved

from www.datamentor.io/r-programming/function/.

R if...else Statement (With Examples). (2018, April 11). Retrieved from

www.datamentor.io/r-programming/if-else-statement/.

R Lists: Create, Append, and Modify List Components. (2017,

November 23). Retrieved from www.datamentor.io/r-programming/

list/.

R Matrix (Create and Modify Matrix, and Access Matrix Elements).

(2017, November 24). Retrieved from www.datamentor.io/r-

programming/matrix/.

R Program to Make a Simple Calculator. (2017, November 27).

Retrieved from www.datamentor.io/r-programming/examples/simple-

calculator/.

R Repeat Loop (With Syntax and Example). (2018, April 11). Retrieved

from www.datamentor.io/r-programming/repeat-loop/.

R Return Value from Function. (2018, January 22). Retrieved from www.

datamentor.io/r-programming/return-function/.

Chapter 3 BasiC syntax

http://www.statmethods.net/management/typeconversion.html
http://www.statmethods.net/management/typeconversion.html
http://www.datamentor.io/r-programming/break-next/
http://www.datamentor.io/r-programming/data-frame/
http://www.datamentor.io/r-programming/data-frame/
http://www.tutorialspoint.com/r/r_data_types.htm
http://www.tutorialspoint.com/r/r_data_types.htm
http://www.tutorialspoint.com/r/r_for_loop.htm
http://www.tutorialspoint.com/r/r_for_loop.htm
http://www.datamentor.io/r-programming/for-loop/
http://www.datamentor.io/r-programming/for-loop/
http://www.datamentor.io/r-programming/function/
http://www.datamentor.io/r-programming/if-else-statement/
http://www.datamentor.io/r-programming/list/
http://www.datamentor.io/r-programming/list/
http://www.datamentor.io/r-programming/matrix/
http://www.datamentor.io/r-programming/matrix/
http://www.datamentor.io/r-programming/examples/simple-calculator/
http://www.datamentor.io/r-programming/examples/simple-calculator/
http://www.datamentor.io/r-programming/repeat-loop/
http://www.datamentor.io/r-programming/return-function/
http://www.datamentor.io/r-programming/return-function/

86

T. (n.d.). R Variables. Retrieved from www.tutorialspoint.com/r/r_

variables.htm.

R Vector: Create, Modify, and Access Vector Elements. (2018, April 11).

Retrieved from www.datamentor.io/r-programming/vector/.

T. (n.d.). R While Loop. Retrieved from www.tutorialspoint.com/r/r_

while_loop.htm.

R While Loop (With Examples). (2018, April 11). Retrieved from www.

datamentor.io/r-programming/while-loop/.

Chapter 3 BasiC syntax

http://www.tutorialspoint.com/r/r_variables.htm
http://www.tutorialspoint.com/r/r_variables.htm
http://www.datamentor.io/r-programming/vector/
http://www.tutorialspoint.com/r/r_while_loop.htm
http://www.tutorialspoint.com/r/r_while_loop.htm
http://www.datamentor.io/r-programming/while-loop/
http://www.datamentor.io/r-programming/while-loop/

87© Eric Goh Ming Hui 2019
E. G. M. Hui, Learn R for Applied Statistics, https://doi.org/10.1007/978-1-4842-4200-1_4

CHAPTER 4

Descriptive Statistics
Descriptive statistics is a set of math used to summarize data. Descriptive

statistics can be distribution, central tendency, and dispersion of data.

The distribution can be a normal distribution or binomial distribution.

The central tendency can be mean, median, and mode. The dispersion or

spreadness can be the range, interquartile range, variance, and standard

deviation.

In this chapter, you will import a CSV file, Excel file, and SPSS file,

and you will perform basic data processing. I will explain descriptive

statistics, central tendency measurements, dispersion measurements,

and distributions. You will look into how R programming can be used to

calculate all these values, and how to test and see whether data is normally

distributed.

 What Is Descriptive Statistics?
Descriptive statistics summarizes the data and usually focuses on the

distribution, the central tendency, and dispersion of the data. The

distributions can be normal distribution, binomial distribution, and other

distributions like Bernoulli distribution. Binomial distribution and normal

distribution are the more popular and important distributions, especially

normal distribution. When exploring data and many statistical tests, you

will usually look for the normality of the data, which is how normal the

data is or how likely it is that the data is normally distributed. The Central

88

Limit Theorem states that the mean of a sample or subset of a distribution

will be equal to the normal distribution mean when the sample size

increases, regardless whether the sample is from a normal distribution.

The central tendency, not the central limit theorem, is used to describe

the data with respect to the center of the data. Central tendency can be the

mean, median, and mode of the data. The dispersion describes the spread

of the data, and dispersion can be the variance, standard deviation, and

interquantile range.

Descriptive statistics summarizes the data set, lets us have a feel

and understanding of the data and variables, and allows us to decide

or determine whether we should use inferential statistics to identify the

relationship between data sets or use regression analysis to identify the

relationships between variables.

 Reading Data Files
R programming allow you to import a data set, which can be comma-

separated values (CSV) file, Excel file, tab-separated file, JSON file, or

others. Reading data into the R console or R is important, since you must

have some data before you can do statistical computing and understand

the data.

Before you look into importing data into the R console, you must

determine your workplace or work directory first. You should always

set the current workspace directory to tell R the location of your current

project folder. This allows for easier references to data files and scripts.

To print the current work directory, you use the getwd() function:

get the current workspace location

print(getwd());

> print(getwd());

[1] "C:/Users/gohmi/Documents"

Chapter 4 DesCriptive statistiCs

89

You can set the work directory using the setwd() function:

#set the current workspace location

setwd("D:/R"); #input your own file directory, for here

we use "D:/R"

> setwd("D:/R");

To get the new work directory location, you can use the getwd()

function:

#get the new workspace

print(getwd());

> print(getwd());

[1] "D:/R"

You can put the data.csv data set into D:/R folder.

 Reading a CSV File
You can read the data CSV file into the R console using the read.csv()

function:

> data <- read.csv(file="data.csv", header=TRUE, sep=",");

You can view the data by clicking the data in the Global Environment

portion of the RStudio IDE. The data will be displayed in the table form.

You can read the file using data.csv because you have set the work

directory to D:/R, so file="data.csv" refers to D:/R/data.csv. See

Figure 4-1.

Chapter 4 DesCriptive statistiCs

90

The data type of the data variable is data frame. You can determine

whether the data type is data frame using the class() function:

> class(data);

[1] "data.frame"

The function you use to read a .csv file is

> data <- read.csv(file="data.csv", header=TRUE, sep=",");

file is the name or the data file path that you are going to read. header

is a logical value to determine whether the names of the variables are

in the first line. sep is the separator character, and quote is the quoting

characters with “\”“ for ” and “\’” for ’. You can add in the quote for double

quotation as follows:

> data <- read.csv(file="data.csv", header=TRUE, sep=",");

> View(data);

Figure 4-1. View data in table form in RStudio

Chapter 4 DesCriptive statistiCs

91

 Writing a CSV File
To write a CSV file, you can use the write.csv() function:

> write.csv(data, file="data2.csv", quote=TRUE, na="na", row.

names=FALSE);

The exported file is shown in Figure 4-2.

In the write.csv() function you used previously to export the CSV file,

> write.csv(data, file="data2.csv", quote=TRUE, na="na", row.

names=FALSE);

data is the variable of the data frame type you would like to export,

file is the file path or location to export, quote is a logical value to state

whether to have quotations, na is the string value to use for missing values,

and row.names is a logical value to indicate whether the row names should

be written.

Figure 4-2. Exported csv file opened in Microsoft Excel

Chapter 4 DesCriptive statistiCs

92

 Reading an Excel File
The data set can also be in the Excel format or .xlsx format. To read an

Excel file, you need to use the xlsx package. The xlsx package requires

a Java runtime, so you must install it on your computer. To install the

xlsx package, go to the R console and type the following, also shown in

Figure 4-3:

> install.packages("xlsx");

To use the xlsx package, use the require() function:

> require("xlsx");

Loading required package: xlsx

To read the Excel file, you can use the read.xlsx() function:

> data <- read.xlsx(file="data.xlsx", 1);

file is the location of the Excel file. 1 refers to sheet number 1.

To view the data variable, you can use the View() function or click

the data variable in the Environment portion of RStudio, as shown in

Figure 4- 4.

Figure 4-3. xlsx package installation in RStudio

Chapter 4 DesCriptive statistiCs

93

To look for the documentation of read.xlsx(), you can use the

following code, as shown in Figure 4-5:

> help(read.xlsx);

The data variable is of the data frame data type:

> class(data);

[1] "data.frame"

 Writing an Excel File
To write a Excel file, you can use the write.xlsx() function:

> write.xlsx(data, file="data2.xlsx", sheetName="sheet1", col.

names=TRUE, row.names=FALSE);

Figure 4-4. View(data) in RStudio

Figure 4-5. Documentation of read.xlsx()

Chapter 4 DesCriptive statistiCs

94

data is the variable of data frame type to export to Excel file, file is the

file location or path, sheetName is the sheet name, and col.names and row.

names are logical values to state whether to export with column names or

row names.

To view the documentation of the write.xlsx() function or any R

function, you can use the help() function.

 Reading an SPSS File
To read an SPSS file, you need to use the foreign package. You can install

the foreign package using the install.packages() function:

> install.packages("foreign");

Installing package into 'C:/Users/gohmi/Documents/R/win-

library/3.5'

(as 'lib' is unspecified)

trying URL 'https://cran.rstudio.com/bin/windows/contrib/3.5/

foreign_0.8-71.zip'

Figure 4-6. Exported xlsx f ile

Chapter 4 DesCriptive statistiCs

95

Content type 'application/zip' length 324526 bytes (316 KB)

downloaded 316 KB

package 'foreign' successfully unpacked and MD5 sums checked

The downloaded binary packages are in

 C:\Users\gohmi\AppData\Local\Temp\RtmpET26Hv\downloaded_

packages

To use the foreign package, use the require() function:

> require(foreign);

Loading required package: foreign

To read the SPSS file to a data frame type, you use the read.spss()

function:

> data <- read.spss(file="data.spss", to.data.frame=TRUE);

file is the file path or location to read the SPSS file. to.data.frame is a

logical value to state whether to read the SPSS file to a data frame type.

You can use the help() function to get the documentation of the read.

spss() function, as shown in Figure 4-7.

Figure 4-7. Documentation of read.spss()

Chapter 4 DesCriptive statistiCs

96

 Writing an SPSS File
You can write the SPSS file using the write.foreign() function:

> write.foreign(data, "mydata.txt", "mydata.sps",

package="SPSS");

data is the variable to export to the SPSS data file, mydata.txt is the

data in comma-delimited format, mydata.sps is the basic syntax file to

read the data file into SPSS, and package determines the outputing or

exporting to the SPSS format.

 Reading a JSON File
JSON, or JavaScript Object Notation, is a very popular data interchange

format that is easy for humans to write or read. A JSON file can be read by

using the rjson package. To install the rjson package, you use the install.

packages() function:

> install.packages("rjson");

Installing package into 'C:/Users/gohmi/Documents/R/win-

library/3.5'

(as 'lib' is unspecified)

trying URL 'https://cran.rstudio.com/bin/windows/contrib/3.5/

rjson_0.2.20.zip'

Content type 'application/zip' length 577826 bytes (564 KB)

downloaded 564 KB

package 'rjson' successfully unpacked and MD5 sums checked

The downloaded binary packages are in

 C:\Users\gohmi\AppData\Local\Temp\RtmpET26Hv\downloaded_

packages

Chapter 4 DesCriptive statistiCs

97

You can use the require() function to load the rjson package:

> require(rjson);

Loading required package: rjson

You can read JSON file using the fromJSON() function:

> data <- fromJSON(file="data.json");

To convert the data to a data frame type, you can use this code:

> data2 <- as.data.frame(data);

 Basic Data Processing
After importing the data, you may need to do some simple data processing

like selecting data, sorting data, filtering data, getting unique values, and

removing missing values.

 Selecting Data
You can select a few columns from the data using a vector:

> data;

 x x2 x3 y

1 2.21624472 4.774511945 -4.87198610 0

2 -0.18104835 4.100479091 6.97727175 1

3 1.69712196 2.328894837 3.92445970 0

4 1.65499099 2.462167830 0.74972168 0

5 1.06797834 1.053091767 3.35380788 1

6 0.67543296 1.918655276 1.56826805 1

7 0.19982505 3.063870668 4.48912276 1

8 0.91662531 1.953422065 3.29408509 1

9 1.30843083 1.322800550 0.39717775 1

Chapter 4 DesCriptive statistiCs

98

> data[, c("x", "x3")];

 x x3

1 2.21624472 -4.87198610

2 -0.18104835 6.97727175

3 1.69712196 3.92445970

4 1.65499099 0.74972168

5 1.06797834 3.35380788

6 0.67543296 1.56826805

7 0.19982505 4.48912276

8 0.91662531 3.29408509

9 1.30843083 0.39717775

10 -0.12830745 3.63913066

11 1.39507566 0.26466993

12 2.21668825 3.69688978

13 2.64020481 3.74926815

14 -0.60394410 5.49485937

15 0.49529219 2.72051420

16 1.91349092 2.21675086

17 1.33149648 7.09660419

18 1.42607352 5.94312583

19 2.93044162 2.27876092

20 1.76600446 6.91145502

You can select a variable using the $ sign, as stated in a previous

chapter:

> data$x3;

 [1] -4.87198610 6.97727175 3.92445970 0.74972168

3.35380788 1.56826805 4.48912276

 [8] 3.29408509 0.39717775 3.63913066 0.26466993

3.69688978 3.74926815 5.49485937

 [15] 2.72051420 2.21675086 7.09660419 5.94312583

2.27876092 6.91145502 7.10060931

Chapter 4 DesCriptive statistiCs

99

 [22] 4.62416860 3.12633172 5.63667497 0.37028080

-0.11370995 2.27488863 0.43562110

 [29] 0.46417756 3.44465146 4.14409404 3.78561287

1.86181693 8.10920939 0.87207093

 [36] 0.55297962 4.26909037 1.01777720 12.85624593

4.79384178 -1.10646203 4.48442125

 [43] -3.56106951 1.71246170 9.74478236 3.15799853

0.97278927 2.35670484 3.08804548

 [50] 1.52772318 -5.02155267 5.64303286 -1.24622282

0.59864199 1.11359605 4.38302156

 [57] 2.54163230 1.19193935 -0.57096625 7.49237946

6.88838713 5.37947543 0.72886289

 [64] 2.20441458 -0.04416262 6.98441537 5.25116254

-0.15175665 -0.28652257 2.97419481

 [71] 1.57454520 1.74898024 3.78645063 1.02328701

1.51030662 -1.46386054 5.65843587

 [78] 1.71775236 2.77004224 -0.13805983 6.51654242

-0.80982223 6.55297343 3.65082015

 [85] 5.55579403 3.03684846 6.85138858 2.09051225

2.79632315 5.21544351 2.63005598

 [92] -0.04795488 8.79812379 0.92166450 2.97840367

1.89262722 2.23928744 2.46465216

 [99] -0.18871437 -0.14146813

 Sorting
You can sort the data in x3 in ascending order using

> data[order(data$x3),];

 x x2 x3 y

51 0.95505576 1.796297183 -5.02155267 1

1 2.21624472 4.774511945 -4.87198610 0

Chapter 4 DesCriptive statistiCs

100

43 0.77142379 6.000455870 -3.56106951 0

76 1.43188297 2.758027392 -1.46386054 0

53 1.91399240 2.334445518 -1.24622282 0

41 0.69012311 5.527698064 -1.10646203 1

82 0.85499504 3.623854599 -0.80982223 1

59 -0.14645562 -0.629264301 -0.57096625 1

69 2.02211069 1.366558932 -0.28652257 0

99 0.44030641 -0.513103067 -0.18871437 1

68 -0.96007693 1.705067556 -0.15175665 0

100 2.34219633 3.314183829 -0.14146813 0

80 1.06881756 4.485035396 -0.13805983 1

You can sort the data in x3 in descending order using

> data[order(data$x3, decreasing=TRUE),];

 x x2 x3 y

39 0.44100266 0.041863046 12.85624593 1

45 0.45732586 3.706789430 9.74478236 1

93 2.48013836 -0.078239681 8.79812379 0

34 1.72284823 1.990169758 8.10920939 0

60 2.24529387 3.486295802 7.49237946 0

21 1.35331484 2.124233637 7.10060931 0

17 1.33149648 4.189856264 7.09660419 1

66 1.56980022 0.379400632 6.98441537 1

2 -0.18104835 4.100479091 6.97727175 1

20 1.76600446 4.065779075 6.91145502 0

61 -1.07591095 2.522409241 6.88838713 0

87 0.29924083 2.892653658 6.85138858 1

83 1.20403393 3.934698897 6.55297343 1

81 -0.09110412 0.745501714 6.51654242 1

Chapter 4 DesCriptive statistiCs

101

You can sort the data by multiple variables:

> data[order(data$x3, data$x2),];

 x x2 x3 y

51 0.95505576 1.796297183 -5.02155267 1

1 2.21624472 4.774511945 -4.87198610 0

43 0.77142379 6.000455870 -3.56106951 0

76 1.43188297 2.758027392 -1.46386054 0

53 1.91399240 2.334445518 -1.24622282 0

41 0.69012311 5.527698064 -1.10646203 1

82 0.85499504 3.623854599 -0.80982223 1

59 -0.14645562 -0.629264301 -0.57096625 1

69 2.02211069 1.366558932 -0.28652257 0

99 0.44030641 -0.513103067 -0.18871437 1

68 -0.96007693 1.705067556 -0.15175665 0

 Filtering
You can filter the data using Boolean expressions and statements:

> data[data$x > 0,];

 x x2 x3 y

1 2.21624472 4.774511945 -4.87198610 0

3 1.69712196 2.328894837 3.92445970 0

4 1.65499099 2.462167830 0.74972168 0

5 1.06797834 1.053091767 3.35380788 1

6 0.67543296 1.918655276 1.56826805 1

7 0.19982505 3.063870668 4.48912276 1

8 0.91662531 1.953422065 3.29408509 1

9 1.30843083 1.322800550 0.39717775 1

11 1.39507566 0.270269185 0.26466993 0

12 2.21668825 1.611527264 3.69688978 0

13 2.64020481 4.240357413 3.74926815 0

Chapter 4 DesCriptive statistiCs

102

You can also filter the data with more complex expressions:

> data[data$x > 0 & data$x < 1,];

 x x2 x3 y

6 0.67543296 1.918655276 1.5682681 1

7 0.19982505 3.063870668 4.4891228 1

8 0.91662531 1.953422065 3.2940851 1

15 0.49529219 0.961328129 2.7205142 1

22 0.96711785 -1.656336500 4.6241686 0

24 0.22931395 4.513268166 5.6366750 1

29 0.92245691 3.066787671 0.4641776 1

32 0.26530020 2.407519006 3.7856129 1

35 0.74641160 0.007386508 0.8720709 1

 Removing Missing Values
You can remove rows with NA values in any variables:

> na.omit(data);

 x x2 x3 y

1 2.21624472 4.774511945 -4.87198610 0

2 -0.18104835 4.100479091 6.97727175 1

3 1.69712196 2.328894837 3.92445970 0

4 1.65499099 2.462167830 0.74972168 0

5 1.06797834 1.053091767 3.35380788 1

6 0.67543296 1.918655276 1.56826805 1

7 0.19982505 3.063870668 4.48912276 1

Chapter 4 DesCriptive statistiCs

103

 Removing Duplicates
You can remove duplicates based on the x variable using

> data[!duplicated(data$x),];

 x x2 x3 y

1 2.21624472 4.774511945 -4.87198610 0

2 -0.18104835 4.100479091 6.97727175 1

3 1.69712196 2.328894837 3.92445970 0

4 1.65499099 2.462167830 0.74972168 0

5 1.06797834 1.053091767 3.35380788 1

6 0.67543296 1.918655276 1.56826805 1

7 0.19982505 3.063870668 4.48912276 1

8 0.91662531 1.953422065 3.29408509 1

9 1.30843083 1.322800550 0.39717775 1

10 -0.12830745 3.929044754 3.63913066 1

11 1.39507566 0.270269185 0.26466993 0

12 2.21668825 1.611527264 3.69688978 0

13 2.64020481 4.240357413 3.74926815 0

14 -0.60394410 1.130285226 5.49485937 0

15 0.49529219 0.961328129 2.72051420 1

For more advanced duplicate removal for text data, you may use the

Levenshtein similarity algorithm and others. It is beyond the scope of this

book to cover the similarity duplicate removal. For each row of data, you

can get the Levenshtein similarity between the current row and all other

rows of the data and return the results with a similarity below a stated

value. You can then check whether they are really similar and duplicated,

and remove them as needed.

Chapter 4 DesCriptive statistiCs

104

 Some Basic Statistics Terms
The following are some of the most popular terms used in statistics.

• Population: Population is the total set of observations.

A population is the whole, and it comprises every

member or observation.

• Sample: A sample is a portion of a population. A

sample can be extracted from the population using

random sampling techniques and others.

• Observations: An observation is something you

measure or count during a study or experiment. An

observation usually means the row in data.

• Variables: A variable is a characteristics or quantity

that can be counted and can be called a data item.

Variables usually refer to the column.

 Types of Data
Data can be numeric data or categorical data.

• Numeric data can have discrete data or continuous

data. Discrete variables usually take integer values.

Discrete variables have steps. Continuous variables can

be any real number values.

• Categorical data are categories or non-numeric data.

Categorical data can have nominal variables that have

unordered categories. Ordinal variables can have

ordered categories.

Chapter 4 DesCriptive statistiCs

105

 Mode, Median, Mean
Mean, median, and mode are the most common measures for central

tendency. Central tendency is a measure that best summarizes the data

and is a measure that is related to the center of the data set.

 Mode

Mode is a value in data that has the highest frequency and is useful when

the differences are non-numeric and seldom occur.

To get the mode in R, you start with data:

> A <- c(1, 2, 3, 4, 5, 5, 5, 6, 7, 8);

To get mode in a vector, you create a frequency table:

> y <- table(A);

> y;

A

1 2 3 4 5 6 7 8

1 1 1 1 3 1 1 1

You want to get the highest frequency, so you use the following to get

the mode:

> names(y)[which(y==max(y))];

[1] "5"

Let’s get the mode for a data set. First, you have the data:

> y <- table(data$x);

> print(y);

Chapter 4 DesCriptive statistiCs

106

-1
.1
03
80
69
35
63
46
6

-1
.0
75
91
09
50
84
20
6

-1
.0
33
07
52
00
58
88
4

0.
96
00
76
92
76
40
97
4

1

1

1

1

 -
0.
68
13
76
41
35
58
18
9

-0
.6
03
94
40
97
92
25
4
 -
0.
57
69
61
81
77
93
32
4
 -
0.
53
13
19
07
34
29
50
2

1

1

1

1

 -
0.
39
37
48
94
73
29
46
1

-0
.3
63
17
75
68
60
05
2
 -
0.
18
10
48
34
79
62
98
3
 -
0.
14
64
55
62
37
20
03
9

1

1

1

1

 -
0.
12
83
07
45
20
33
01
8
 -
0.
12
33
88
72
36
21
05
8
 -
0.
10
15
46
99
55
49
49
2
-0
.0
91
10
41
24
54
33
43
7

1

1

1

1

- 0
.0
49
88
35
57
97
06
8

0.
07
21
99
25
83
62
63
4

0.
19
40
09
71
16
45
88
2

0.
19
98
25
04
80
55
37
3

1

1

1

1

0.
22
93
13
95
49
17
26
5

0.
26
53
00
20
42
43
80
2

0.
27
86
08
09
01
70
94
9

0.
29
92
40
83
12
35
20
5

1

1

1

1

 0.
37
56
85
87
51
08
92
6

0.
37
58
86
35
16
24
52
2

0.
43
11
65
60
53
95
96
1

0.
44
03
06
41
13
18
60
9

1

1

1

1

 0.
44
10
02
66
11
90
44
2

0.
45
73
25
86
49
71
70
7

0.
49
52
92
19
37
47
48
8

0.
53
62
73
33
03
07
63
2

1

1

1

1

 0.
67
54
32
95
73
49
42
9

0.
69
01
23
10
66
78
72
6

0.
73
62
79
64
74
41
04
6

0.
74
64
11
59
63
02
33
4

1

1

1

1

0.
76
03
36
36
94
73
89
8

0.
77
14
23
78
51
87
19
6

0.
81
78
89
76
70
78
53
4

0.
85
49
95
04
00
60
91
1

Chapter 4 DesCriptive statistiCs

107

To get the mode in the data set, you must get the values of the highest

frequency. Since all values are of frequency 1, your mode is

> names(y) [which(y==max(y))];

 [1] "-1.10380693563466" "-1.07591095084206"

"-1.03307520058884" "-0.960076927640974"

 [5] "-0.681376413558189" "-0.60394409792254"

"-0.576961817793324" "-0.531319073429502"

 [9] "-0.393748947329461" "-0.363177568600528"

"-0.181048347962983" "-0.146455623720039"

 [13] "-0.128307452033018" "-0.123388723621058"

"-0.101546995549492" "-0.0911041245433437"

 [17] "-0.04988355797068" "0.072199258362634"

"0.194009711645882" "0.199825048055373"

 [21] "0.229313954917265" "0.265300204243802"

"0.278608090170949" "0.299240831235205"

 [25] "0.375685875108926" "0.375886351624522"

"0.431165605395961" "0.440306411318609"

 [29] "0.441002661190442" "0.457325864971707"

"0.495292193747488" "0.536273330307632"

 [33] "0.675432957349429" "0.690123106678726"

"0.736279647441046" "0.746411596302334"

 [37] "0.760336369473898" "0.771423785187196"

"0.817889767078534" "0.854995040060911"

 [41] "0.913440165921528" "0.916625307876996"

"0.922456906688953" "0.955055760366265"

 [45] "0.967117849282085" "0.971724620868089"

"0.981039549396608" "1.00606498603125"

Chapter 4 DesCriptive statistiCs

108

 [49] "1.06718039898877" "1.06797833714856"

"1.06881756289549" "1.08718603297871"

 [53] "1.10356948706272" "1.11925179073556"

"1.2040339292453" "1.25502822371368"

 [57] "1.28679297901113" "1.30790288496801"

"1.30843083022333" "1.33149647893459"

 [61] "1.35331484423307" "1.39507565734447"

"1.40212267908162" "1.42607352487406"

 [65] "1.43188296915663" "1.52346751351768"

"1.55472504319324" "1.56980021618683"

 [69] "1.65307570138401" "1.65499098668696"

"1.69712196084468" "1.72284823029622"

 [73] "1.72661763645561" "1.75109907720939"

"1.76600446229059" "1.88048596823981"

 [77] "1.91349091681916" "1.91399240309242"

"1.92524009507999" "2.02211068696315"

 [81] "2.03853797041063" "2.04518626417935"

"2.12978282462908" "2.21624471542922"

 [85] "2.21668824966669" "2.24529386752873"

"2.33237405387913" "2.34219633417921"

 [89] "2.48013835527471" "2.50480340549357"

"2.62246164503412" "2.62566065094827"

 [93] "2.64020480708033" "2.68169620257743"

"2.72668117335907" "2.77811502414916"

 [97] "2.93044161969506" "3.0710000206091"

"3.12515738750874" "3.16181857813796"

Chapter 4 DesCriptive statistiCs

109

 Median

The median is the middle or midpoint of the data and is also the 50

percentile of the data. The median is affected by the outliers and skewness

of the data. The median can be a better measurement for centrality than

the mean if the data is skewed. The mean is the average, which is liable to

be influenced by outliers, so median is a better measure when the data is

skewed.

In R, to get the median, you use the median() function:

> A <- c(1, 2, 3, 4, 5, 5, 5, 6, 7, 8);

> median(A);

[1] 5

To get the median for dataset:

> median(data$x2);

[1] 2.380852

 Mean

The mean is the average of the data. It is the sum of all data divided by

the number of data points. The mean works best if the data is distributed

in a normal distribution or distributed evenly. The mean represents the

expected value if the distribution is random.

x
N

x
x x x

Ni

N

i
N= =

+ +¼+

=
å1

1

1 2

In R, to get the mean, you can use the mean() function:

> A <- c(1, 2, 3, 4, 5, 5, 5, 6, 7, 8);

> mean(A);

[1] 4.6

Chapter 4 DesCriptive statistiCs

110

To get the mean of a data set:

> mean(data$x2);

[1] 2.46451

 Interquartile Range, Variance, Standard
Deviation
Measures of variability are the measures of the spread of the data.

Measures of variability can be range, interquartile range, variance,

standard deviation, and more.

 Range

The range is the difference between the largest and smallest points in the

data.

To find the range in R, you use the range() function:

> A <- c(1, 2, 3, 4, 5, 5, 5, 6, 7, 8);

> range(A);

[1] 1 8

To get the difference between the max and the min, you can use

> A <- c(1, 2, 3, 4, 5, 5, 5, 6, 7, 8);

> res <- range(A);

> diff(res);

[1] 7

You can use the min() and max() functions to find the range also:

> A <- c(1, 2, 3, 4, 5, 5, 5, 6, 7, 8);

> min(A);

[1] 1

> max(A);

Chapter 4 DesCriptive statistiCs

111

[1] 8

> max(A) - min(A);

[1] 7

To get the range for a data set:

> res <- range(data$x2);

> diff(res);

[1] 10.65222

> res <- range(data$x2, na.rm=TRUE);

> diff(res);

[1] 10.65222

na.rm is a logical value to state whether to remove NA values.

 Interquartile Range

The interquartile range is the measure of the difference between the 75

percentile or third quartile and the 25 percentile or first quartile.

To get the interquartile range, you can use the IQR() function:

> A <- c(1, 2, 3, 4, 5, 5, 5, 6, 7, 8);

> IQR(A);

[1] 2.5

You can get the quartiles by using the quantile() function:

> quantile(A);

 0% 25% 50% 75% 100%

1.00 3.25 5.00 5.75 8.00

You can get the 25 and 75 percentiles:

> quantile(A, 0.25);

 25%

3.25

Chapter 4 DesCriptive statistiCs

112

> quantile(A, 0.75);

 75%

5.75

You can get the interquartile range and quartiles for data set using

> quantile(data$x2);

 0% 25% 50% 75%

-2.298551 1.274672 2.380852 3.750422

 100%

 8.353669

> IQR(data$x2);

[1] 2.47575

> IQR(data$x2, na.rm=TRUE);

[1] 2.47575

> help(IQR);

The IQR() and quantile() functions can have NA values removed

using na.rm = TRUE.

Range measures the maximum and minimum data values, and the

interquartile range measures where the majority value is.

 Variance

The variance is the average of squared differences from the mean, and it is

used to measure the spreadness of the data.

The variance of a population is

s 2

2

=
å -()X u

N

where μ is the mean of the population and N is the number of data

points.

Chapter 4 DesCriptive statistiCs

113

The variance of a sample is

S
X X

n
2

2

1
=
å -()

-

where n is the number of data points. You use n-1 for sample variance

and sample standard deviation because of Bessel’s correction to partially

correct the bias on the estimation of the population variance and standard

deviation.

To find the population variance, you use the var() function and

(N - 1)/N:

> A <- c(1, 2, 3, 4, 5, 5, 5, 6, 7, 8);

> N <- length(A);

> N;

[1] 10

> var(A) * (N - 1) / N;

[1] 4.24

To get the sample variance, you can use the var() function:

> A <- c(1, 2, 3, 4, 5, 5, 5, 6, 7, 8);

> var(A);

[1] 4.711111

To get the population variance of a data set:

> N <- nrow(data);

> N;

[1] 100

> var(data$x) * (N - 1) / N;

[1] 1.062619

Chapter 4 DesCriptive statistiCs

114

To get the sample variance of a data set:

> var(data$x);

[1] 1.073352

 Standard Deviation

The standard deviation is the square root of a variance and it measures the

spread of the data. Variances get bigger when there are more variations

and get smaller when there are lesser variations, because the variance is a

squared result. With standard deviation, the variance is the square root, so

it is easier to picture and apply. The variance is the squared result, so the

unit is different from the data. The standard deviation has the same unit as

the data.

The population standard deviation is

s = -()
=
å1

1

2

N
x x

i

N

i

For the sample standard deviation, you use n - 1 for sample variance

and sample standard deviation because of Bessel’s correction to partially

correct the bias on the estimation of population variance and standard

deviation.

s
N

x x
i

N

i=
-

-()
=
å1

1 1

2

To find the population standard deviation:

> A <- c(1, 2, 3, 4, 5, 5, 5, 6, 7, 8);

> N <- length(A);

> variance <- var(A) * (N - 1) / N;

> sqrt(variance);

[1] 2.059126

Chapter 4 DesCriptive statistiCs

115

To find the population standard deviation for a data set:

> N <- nrow(data);

> variance <- var(data$x2) * (N - 1) / N;

> sqrt(variance);

[1] 1.908994

To find the sample standard deviation, you use the sd() function:

> A <- c(1, 2, 3, 4, 5, 5, 5, 6, 7, 8);

> sd(A);

[1] 2.170509

To find the sample standard deviation of a data set, you use the sd()

function:

> sd(data$x2);

[1] 1.918611

 Normal Distribution
Normal distribution is one of the more important theories because nearly

all statistical tests require the data to be distributed normally. It describes

how data looks when plotted. Normal distribution is also called the bell

curve, shown in Figure 4-8.

Figure 4-8. Normal Distribution or Bell Curve

Chapter 4 DesCriptive statistiCs

116

You can plot a distribution in R using the hist() function:

> hist(data$x, breaks=15);

In R, breaks shows the number of bars in a histogram. bins is the class

interval to sort the data. For example, in grade data, the bins can be 83-88,

89-94, 95-100, and each bin size should be the same. See Figure 4-9.

To see whether data is normally distributed, you can use the qqnorm()

and qqline() functions:

> qqnorm(data$x);

> qqline(data$x);

In the Q-Q plot shown in Figure 4-10, if the points do not deviate away

from the line, the data is normally distributed.

Figure 4-9. Histogram of x

Chapter 4 DesCriptive statistiCs

117

You can also use a Shapiro Test to test whether the data is normally

distributed:

> shapiro.test(data$x);

 Shapiro-Wilk normality test

data: data$x

W = 0.98698, p-value = 0.4363

If the p-value is more than 0.05, you can conclude that the data does

not deviate from normal distribution.

In R, to generate random numbers from the normal distribution, you

use rnorm() function:

> set.seed(123);

> A <- rnorm(50, 3, 0.5);

> hist(A, breaks=15);

Figure 4-10. QQPlot of x

Chapter 4 DesCriptive statistiCs

118

3 is the mean and 0.5 is the standard deviation. In the above functions,

you generated 50 random values from normal distribution. See Figure 4- 11.

In R, to calculate the cumulative distribution function (CDF), F(x) =

P(X <= x) where X is normal, you use the pnorm() function:

> pnorm(1.9, 3, 0.5);

[1] 0.01390345

The above is a direct lookup for the probability P(X < 1.9) where X is a

normal distribution with mean of 3 and standard deviation of 0.5. If you

want P(X > 1.9), you use 1 - pnorm(1.9, 3, 0.5).

In R, if you want to calculate the inverse CDF and lookup for the p-th

quantile of the normal distribution, you use

> qnorm(0.95, 3, 0.5);

[1] 3.822427

This code looks for the 95 percentile of the normal distribution with a

standard deviation of 0.5 and a mean of 3. The value returned is an x value,

not a probability.

Figure 4-11. Histogram of A

Chapter 4 DesCriptive statistiCs

119

 Modality

The modality of a distribution can be seen by the number of peaks when

we plot the histogram (see Figure 4-12):

> hist(data$x, breaks=15);

Figure 4-13 shows the modality type. The distribution of the market

variable can be argued as a unimodal type. The figure shows the unimodal,

bimodal, and multimodal types.

Figure 4-13. Modality Type of Histogram or distribution

Figure 4-12. Histogram of x

 Skewness

Skewness is a measure of how symmetric a distribution is and how much

the distribution is different from the normal distribution. Figure 4-14

shows the types of skewness.

Chapter 4 DesCriptive statistiCs

120

Negative skew is also known as left skewed, and positive skew is also

known as right skewed. The histogram from the previous section has a

negative skew.

The Kurtosis measure is used to see whether a dataset is heavy tailed or

light tailed. High kurtosis means heavy tailed, so there are more outliers in

the data. See Figure 4-15.

To find the kurtosis and skewness in R, you must install the moments

package:

> install.packages("moments");

Installing package into 'C:/Users/gohmi/Documents/R/win-

library/3.5'

(as 'lib' is unspecified)

trying URL 'https://cran.rstudio.com/bin/windows/contrib/3.5/

moments_0.14.zip'

Figure 4-15. Kurtosis Type or heavy tailed or light tailed distribution

Figure 4-14. Types of Skewness

Chapter 4 DesCriptive statistiCs

121

Content type 'application/zip' length 55827 bytes (54 KB)

downloaded 54 KB

package 'moments' successfully unpacked and MD5 sums checked

The downloaded binary packages are in

 C:\Users\gohmi\AppData\Local\Temp\RtmpET26Hv\downloaded_

packages

You also need the moments package:

> require(moments);

Loading required package: moments

You then use the skewness() and kurtosis() functions to get the

skewness and kurtosis:

> skewness(data$x);

[1] -0.06331548

> kurtosis(data$x);

[1] 2.401046

 Binomial Distribution
Binomial distribution has two outcomes, success or failure, and can

be thought of as the probability of success or failure in a survey that is

repeated various times. The number of observations is fixed, and each

observation or probability is independent, and the probability of success is

the same for all observations.

To get the probability mass function, Pr(X=x), of binomial distribution,

you can use the dbinom() function:

 > dbinom(32, 100, 0.5);

[1] 0.000112817

Chapter 4 DesCriptive statistiCs

122

This code lookup is for P(X=30) where X is the binomial distribution

with a size of 100 and a probability of success of 0.5

To get the cumulative distribution function, P(X <= x), of a binomial

distribution, you can use the pbinom() function:

> pbinom(32, 100, 0.5);

[1] 0.0002043886

The above code lookup is for p(X <= 30) where X is the binomial

distribution with a size of 100 and a probability of success of 0.5.

To get the p-th quantile of the binomial distribution, you can use the

qbinom() function:

> qbinom(0.3, 100, 0.5);

[1] 47

The above code lookup is for the 30th quantile of the binomial

distribution where the size is 100 and the probability of success is 0.5. The

value is a cumulative value.

To generate random variables from a binomial distribution, you use

the rbinom() function:

> set.seed(123);

> A <- rbinom(1000, 100, 0.5);

> hist(A, breaks=20);

You can use rbinom() or rnorm() to generate random variables to

simulate a new dataset.

Chapter 4 DesCriptive statistiCs

123

 The summary() and str() Functions

The summary() and str() functions are the fastest ways to get descriptive

statistics of the data. The summary() function gives the basic descriptive

statistics of the data. The str() function, as mentioned in a previous

chapter, gives the structure of the variables.

You can get the basic descriptive statistics using the summary() function:

> summary(data);

 x x2 x3

 y

 Min. :-1.1038 Min. :-2.299 Min. :-5.0216

Min. :0.00

 1st Qu.: 0.3758 1st Qu.: 1.275 1st Qu.: 0.8415

1st Qu.:0.00

 Median : 1.0684 Median : 2.381 Median : 2.5858

Median :0.00

 Mean : 1.0904 Mean : 2.465 Mean : 2.8314

Mean :0.49

Figure 4-16. Histogram of A

Chapter 4 DesCriptive statistiCs

124

 3rd Qu.: 1.7946 3rd Qu.: 3.750 3rd Qu.: 4.5229

3rd Qu.:1.00

 Max. : 3.1618 Max. : 8.354 Max. :12.8562

Max. :1.00

You can get the structure of the data using the str() function:

> str(data);

'data.frame': 100 obs. of 4 variables:

 $ x : num 2.216 -0.181 1.697 1.655 1.068 ...

 $ x2: num 4.77 4.1 2.33 2.46 1.05 ...

 $ x3: num -4.87 6.98 3.92 0.75 3.35 ...

 $ y : num 0 1 0 0 1 1 1 1 1 1 ...

 Conclusion
In this chapter, you looked into R programming. You now understand

descriptive statistics. Descriptive statistics summarizes the data and

usually focuses on the distribution, the central tendency, and the

dispersion of the data.

You also looked into how R programming allows you to import a data

set that can be a CSV file, Excel file, tab-separated file, JSON file, and

others. Reading data into the R console or R is important because you must

have some data before you can do statistical computing and understand

the data.

You performed simple data processing like selecting data, sorting data,

filtering data, getting unique values, and removing missing values.

You also learned some basic statistics terms such as population,

sample, observations, and variables. You also learned about data types in

statistics, which includes numeric data and categorical variables. Numeric

data can have discrete and continuous data, and categorical data can have

nominal and ordinal variables.

Chapter 4 DesCriptive statistiCs

125

You also learned about mean, median, and mode, which are the most

common measures for central tendency. Central tendency is a measure

that best summarizes the data and is related to the center of the data set.

You also learned about measures of variability, which is the measure of

the spread of the data. Measures of variability can be range, interquartile

range, variance, standard deviation, and others.

You also learned about normal distribution, which is one of the more

important theories because nearly all statistical testing requires the data

to be distributed normally. You learned how to test normal distribution in

data and the skewness and kurtosis of distributions.

You also learned about the summary() and str() functions, which are

the fastest ways to get the descriptive statistics of the data. The summary()

function gives the basic descriptive statistics of the data. The str() function,

as mentioned in a previous chapter, gives the structure of the variables.

You learned more about two very popular distributions, where normal

distribution is also known as bell curve and is a distribution that happens

naturally in many data sets. Binomial distribution has two outcomes,

success or failure, and can be thought of as the probability of success or

failure in a survey that is repeated various times.

 References
Probability Distributions in R (Stat 5101, Geyer). (n.d.). Retrieved from

www.stat.umn.edu/geyer/old/5101/rlook.html.

Binomial Distribution: Formula, What it is and How to use it.

(n.d.). Retrieved from www.statisticshowto.com/probability-and-

statistics/binomial-theorem/binomial-distribution-formula/.

Biological data analysis, Tartu 2006/2007 (Tech.). (n.d.). Retrieved

September 1, 2018, from www-1.ms.ut.ee/BDA/BDA4.pdf.

Calculate Standard Deviation. (n.d.). Retrieved from https://

explorable.com/calculate-standard-deviation.

Chapter 4 DesCriptive statistiCs

http://www.stat.umn.edu/geyer/old/5101/rlook.html
http://www.statisticshowto.com/probability-and-statistics/binomial-theorem/binomial-distribution-formula/
http://www.statisticshowto.com/probability-and-statistics/binomial-theorem/binomial-distribution-formula/
http://www-1.ms.ut.ee/BDA/BDA4.pdf
https://explorable.com/calculate-standard-deviation
https://explorable.com/calculate-standard-deviation

126

Descriptive Statistics. (n.d.). Retrieved from http://webspace.ship.

edu/cgboer/descstats.html.

Descriptive statistics. (2018, August 22). Retrieved from https://

en.wikipedia.org/wiki/Descriptive_statistics.

Donges, N. (2018, February 14). Intro to Descriptive Statistics –

Towards Data Science. Retrieved from https://towardsdatascience.

com/intro-to-descriptive-statistics-252e9c464ac9.

How to Make a Histogram with Basic R. (2017, May 04). Retrieved from

www.r-bloggers.com/how-to-make-a-histogram-with-basic-r/.

How to open an SPSS file into R. (2016, January 15). Retrieved from

www.milanor.net/blog/how-to-open-an-spss-file-into-r/.

How to Use Quantile Plots to Check Data Normality in R. (n.d.).

Retrieved from www.dummies.com/programming/r/how-to-use-quantile-

plots- to-check-data-normality-in-r/.

Interquartile Range. (n.d.). Retrieved from www.r-tutor.com/

elementary- statistics/numerical-measures/interquartile-range.

Interquartile Range. (n.d.). Retrieved from www.r-tutor.com/

elementary- statistics/numerical-measures/interquartile-range.

Is there a built-in function for finding the mode? (n.d.). Retrieved from

https://stackoverflow.com/questions/2547402/is-there-a-built-

in- function-for-finding-the-mode.

Kabacoff, R. (n.d.). Importing Data. Retrieved from www.statmethods.

net/input/importingdata.html.

Normal Distributions: Definition, Word Problems. (n.d.). Retrieved

from www.statisticshowto.com/probability-and-statistics/normal-

distributions/.

Normal Distributions: Definition, Word Problems. (n.d.). Retrieved

from www.statisticshowto.com/probability-and-statistics/normal-

distributions/.

Normality Test in R. (n.d.). Retrieved from www.sthda.com/english/

wiki/normality-test-in-r.

Chapter 4 DesCriptive statistiCs

http://webspace.ship.edu/cgboer/descstats.html
http://webspace.ship.edu/cgboer/descstats.html
https://en.wikipedia.org/wiki/Descriptive_statistics
https://en.wikipedia.org/wiki/Descriptive_statistics
https://towardsdatascience.com/intro-to-descriptive-statistics-252e9c464ac9
https://towardsdatascience.com/intro-to-descriptive-statistics-252e9c464ac9
http://www.r-bloggers.com/how-to-make-a-histogram-with-basic-r/
http://www.milanor.net/blog/how-to-open-an-spss-file-into-r/
http://www.dummies.com/programming/r/how-to-use-quantile-plots-to-check-data-normality-in-r/
http://www.dummies.com/programming/r/how-to-use-quantile-plots-to-check-data-normality-in-r/
http://www.r-tutor.com/elementary-statistics/numerical-measures/interquartile-range
http://www.r-tutor.com/elementary-statistics/numerical-measures/interquartile-range
http://www.r-tutor.com/elementary-statistics/numerical-measures/interquartile-range
http://www.r-tutor.com/elementary-statistics/numerical-measures/interquartile-range
https://stackoverflow.com/questions/2547402/is-there-a-built-in-function-for-finding-the-mode
https://stackoverflow.com/questions/2547402/is-there-a-built-in-function-for-finding-the-mode
http://www.statmethods.net/input/importingdata.html
http://www.statmethods.net/input/importingdata.html
http://www.statisticshowto.com/probability-and-statistics/normal-distributions/
http://www.statisticshowto.com/probability-and-statistics/normal-distributions/
http://www.statisticshowto.com/probability-and-statistics/normal-distributions/
http://www.statisticshowto.com/probability-and-statistics/normal-distributions/
http://www.sthda.com/english/wiki/normality-test-in-r
http://www.sthda.com/english/wiki/normality-test-in-r

127

Q-Q plot. (n.d.). Retrieved from www.cookbook-r.com/Graphs/Q- Q_

plot/.

Quartile. (n.d.). Retrieved from www.r-tutor.com/elementary-

statistics/numerical-measures/quartile.

R - Data Processing. (n.d.). Retrieved from https://training-course-

material.com/training/R_-_Data_Processing.

T. (n.d.). R JSON Files. Retrieved from www.tutorialspoint.com/r/r_

json_files.htm.

T. (n.d.). R Mean, Median and Mode. Retrieved from www.

tutorialspoint.com/r/r_mean_median_mode.htm.

Reading Data From TXT|CSV Files: R Base Functions. (n.d.). Retrieved

from www.sthda.com/english/wiki/reading-data-from-txt-csv-files-

r-base-functions.

Standard Deviation. (n.d.). Retrieved from www.r-tutor.com/

elementary- statistics/numerical-measures/standard-deviation.

Statistical Variance. (n.d.). Retrieved from https://explorable.com/

statistical-variance.

Variance. (n.d.). Retrieved from www.r-tutor.com/elementary-

statistics/numerical-measures/variance.

Chapter 4 DesCriptive statistiCs

http://www.cookbook-r.com/Graphs/Q-Q_plot/
http://www.cookbook-r.com/Graphs/Q-Q_plot/
http://www.r-tutor.com/elementary-statistics/numerical-measures/quartile
http://www.r-tutor.com/elementary-statistics/numerical-measures/quartile
https://training-course-material.com/training/R_-_Data_Processing
https://training-course-material.com/training/R_-_Data_Processing
http://www.tutorialspoint.com/r/r_json_files.htm
http://www.tutorialspoint.com/r/r_json_files.htm
http://www.tutorialspoint.com/r/r_mean_median_mode.htm
http://www.tutorialspoint.com/r/r_mean_median_mode.htm
http://www.sthda.com/english/wiki/reading-data-from-txt-csv-files-r-base-functions
http://www.sthda.com/english/wiki/reading-data-from-txt-csv-files-r-base-functions
http://www.r-tutor.com/elementary-statistics/numerical-measures/standard-deviation
http://www.r-tutor.com/elementary-statistics/numerical-measures/standard-deviation
https://explorable.com/statistical-variance
https://explorable.com/statistical-variance
http://www.r-tutor.com/elementary-statistics/numerical-measures/variance
http://www.r-tutor.com/elementary-statistics/numerical-measures/variance

129© Eric Goh Ming Hui 2019
E. G. M. Hui, Learn R for Applied Statistics, https://doi.org/10.1007/978-1-4842-4200-1_5

CHAPTER 5

Data Visualizations
Descriptive statistics is a set of math used to summarize data. Data

visualization is the equivalent of visual communication because creating

graphics from data helps us understand the data. Humans distinguish

differences in line, shape, and color without much processing effort, and

data visualization can take advantage of this to create charts and graphs to

help us understand the data more easily.

In this chapter, you will plot a bar chart, histogram, line chart, pie

chart, scatterplot, boxplot, and scatterplot matrix using R. You will then

look into plotting decision trees and social network analysis graphs. You

will also use ggplot2 to create more advanced charts using the grammar

of graphics, and then you will look into creating interactive charts using

Plotly JS.

 What Are Data Visualizations?
Descriptive statistics summarizes the data and usually focuses on the

distribution, the central tendency, and the dispersion of the data. Data

visualization, on the other hand, creates graphics from the data to help

us understand it. The graphics or charts can also help us to communicate

visually to our clients. A picture is worth a thousand words.

Data visualization can involve the plotting of a bar, histogram,

scatterplot, boxplot, line chart, time series, and scatterplot matrix chart to

help us analyze and reason about the data and understand the causality

and relationship between variables. Data visualization can also be viewed

130

as descriptive statistics to some. Humans distinguish differences in line,

shape, and color without much processing effort, and data visualization

can take advantage of this to create charts and graphs to help users

understand the data more easily.

 Bar Chart and Histogram
R programming allows us to plot bar charts and histograms. A bar chart

represents data using bars, with y values being the value of the variable. R

programming uses the barplot() function to create bar charts, and R can

draw both horizontal and vertical bar charts. A histogram, on the other

hand, represents the frequencies of the values within a variable and draws

them into bars.

To plot a bar chart in R, you can use the barplot() function:

> data <- c(4, 6, 7, 9, 10, 20, 12, 8);

> barplot(data, xlab="X-axis", ylab="Y-axis", main="Bar Chart 1",

col="green");

data is the data to plot, xlab is the x-axis name, ylab is the y-axis name,

main is the main title, and col is the color of the chart. See Figure 5- 1.

Figure 5-1. Bar Chart of data

Chapter 5 Data Visualizations

131

To export the bar chart into an image file (see Figure 5-2), you can

add in

> data <- c(4, 6, 7, 9, 10, 20, 12, 8);

> png(file="D:/barchart.png");

> barplot(data, xlab="x-axis", ylab="y-axis", main="bar chart 1",

col="green");

> dev.off();

RStudioGD

 2

Figure 5-2. Bar Chart PNG file Opened with Microsoft Photos

To plot a horizontal bar chart (see Figure 5-3), you can use horiz=TRUE:

> data <- c(4, 6, 7, 9, 10, 20, 12, 8);

> png(file="D:/barchart.png");

Chapter 5 Data Visualizations

132

> barplot(data, xlab="x-axis", ylab="y-axis", main="bar chart

1", col="green", horiz=TRUE);

> dev.off();

RStudioGD

 2

To plot a stacked bar plot, you can create the following data set:

> data(mtcars);

> data <- table(mtcars$gear, mtcars$carb);

> data;

 1 2 3 4 6 8

 3 3 4 3 5 0 0

 4 4 4 0 4 0 0

 5 0 2 0 1 1 1

Figure 5-3. Horizontal Bar Chart of data variable

Chapter 5 Data Visualizations

133

To plot a stacked bar plot:

> png(file="D:/barchart.png");

> barplot(data3, xlab="x-axis", ylab="y-axis", main="bar chart

1", col=c("grey", "blue", "yellow"));

> dev.off();

RStudioGD

 2

In the data, 3 is the grey color, 4 is the blue color, and 5 is the yellow

color. When the x-axis or x is 1, the grey color is 3 steps, the blue color is 4

steps, and the yellow color is 0 steps. See Figure 5-4.

> data;

 1 2 3 4 6 8

 3 3 4 3 5 0 0

 4 4 4 0 4 0 0

 5 0 2 0 1 1 1

Figure 5-4. Stacked bar plot of data

Chapter 5 Data Visualizations

134

To plot a grouped bar chart, you can use beside=TRUE:

> data(mtcars);

> data <- table(mtcars$gear, mtcars$carb);

> data;

 1 2 3 4 6 8

 3 3 4 3 5 0 0

 4 4 4 0 4 0 0

 5 0 2 0 1 1 1

> png(file="D:/barchart.png");

> barplot(data3, xlab="x-axis", ylab="y-axis", main="bar chart 1",

col=c("grey", "blue", "yellow"), beside=TRUE);

> dev.off();

RStudioGD

 2

In the data, 3 is the grey color, 4 is the blue color, and 5 is the yellow

color. When the x-axis or x is 1, the grey color is 3 steps, the blue color is 4

steps, and the yellow color is 0 steps. See Figure 5-5.

> data;

 1 2 3 4 6 8

 3 3 4 3 5 0 0

 4 4 4 0 4 0 0

 5 0 2 0 1 1 1

Chapter 5 Data Visualizations

135

To plot a histogram, you can use the hist() function (see Figure 5-6):

> set.seed(123);

> data1 <- rnorm(100, mean=5, sd=3);

> png(file="D:/histogram.png");

> hist(data1, main="histogram", xlab="x-axis", col="green",

border="blue", breaks=10);

> dev.off();

RStudioGD

 2

Figure 5-5. Grouped bar chart of data

Chapter 5 Data Visualizations

136

data1 is the data, main is the main title, col is the color, border is the

color of the borders, xlab is the name of the x-axis, and breaks is the width

of each bar.

To plot a histogram with a density line, you can change freq=FALSE

so that the histogram is plotted based on probability, and you can use the

lines() function to add the density line (see Figure 5-7):

> set.seed(123);

> data1 <- rnorm(100, mean=5, sd=3);

> hist(data1, main="histogram", xlab="x-axis", col="green",

border="blue", breaks=10, freq=FALSE);

> lines(density(data1), col="red");

Figure 5-6. Histogram of data1

Chapter 5 Data Visualizations

137

 Line Chart and Pie Chart
A line chart is a graph that has all the points connected together by

drawing lines between them. A line chart is very useful for trend

analysis and time series analysis. A pie chart, on the other hand, is the

representation of data as slices of a circle with various colors.

You can plot a line graph using the plot() function (see Figure 5-8):

> x <- c(1, 2, 3, 4, 5, 6, 8, 9);

> y <- c(3, 5, 4, 6, 9, 8, 2, 1);

> png(file="D:/line.png");

> plot(x, y, type="l", xlab="x-axis", ylab="y-axis", main="line

graph", col="blue");

> dev.off();

RStudioGD

 2

Figure 5-7. Histogram with density line of data1

Chapter 5 Data Visualizations

138

You use type="l" when you want to plot a line chart and type="p" when

you want to plot a point chart or scatter chart. xlab is the x-axis name, ylab

is the y-axis name, main is the main title, and col is the color of the chart.

To plot multiple line graph, you can add in the lines() function:

> x <- c(1, 2, 3, 4, 5, 6, 8, 9);

> y <- c(3, 5, 4, 6, 9, 8, 2, 1);

> x.1 <- c(2, 3, 4, 6, 7, 8, 9, 10);

> y.1 <- c(6, 3, 5, 1, 5, 3, 4, 8);

> png(file="D:/line.png");

> plot(x, y, type="l", xlab="x-axis", ylab="y-axis", main="line

graph", col="blue");

> lines(x.1, y.1, type="o", col="green");

> dev.off();

RStudioGD

 2

Figure 5-8. Line chart

Chapter 5 Data Visualizations

139

type="o" will give you a line graph with a point in it (see Figure 5-9).

To plot a pie chart, you can use the pie() function (see Figure 5-10):

> x <- c(10, 30, 60, 10, 50);

> labels <- c("one", "two", "three", "four", "five");

> png(file="D:/pie.png");

> pie(x, labels, main="Pie Chart");

> dev.off();

RStudioGD

 2

Figure 5-9. Multiple Line Chart

Chapter 5 Data Visualizations

140

To plot a 3D pie chart, you must install the plotrix library:

> install.packages("plotrix");

Installing package into 'C:/Users/gohmi/Documents/R/win-

library/3.5'

(as 'lib' is unspecified)

trying URL 'https://cran.rstudio.com/bin/windows/contrib/3.5/

plotrix_3.7-3.zip'

Content type 'application/zip' length 1055537 bytes (1.0 MB)

downloaded 1.0 MB

package 'plotrix' successfully unpacked and MD5 sums checked

The downloaded binary packages are in

 C:\Users\gohmi\AppData\Local\Temp\RtmpET26Hv\downloaded_

packages

Figure 5-10. Pie Chart

Chapter 5 Data Visualizations

141

You can use the require() function or the library() function to call

the plotrix library:

> library(plotrix);

You can use the pie3D() function to plot the 3D pie chart shown in

Figure 5-11:

> x <- c(10, 30, 60, 10, 50);

> labels <- c("one", "two", "three", "four", "five");

> png(file="D:/pie.png");

> pie3D(x, labels=labels, explode=0.1, main="Pie Chart");

> dev.off();

RStudioGD

 2

Figure 5-11. 3D Pie Chart

Chapter 5 Data Visualizations

142

 Scatterplot and Boxplot
A scatterplot is a chart that represents data using points in the Cartesian

plane. Each point is the value of two variables. A boxplot shows the

statistics of the data.

You can plot a scatterplot using the plot() function:

> x <- c(1, 2, 3, 4, 5, 6, 8, 9);

> y <- c(3, 5, 4, 6, 9, 8, 2, 1);

> png(file="D:/scatter.png");

> plot(x, y, xlab="x-axis", ylab="y-axis", main="scatterplot");

> dev.off();

RStudioGD

 2

xlab is the x-axis name, ylab is the y-axis name, and main is the main

title. See Figure 5-12.

Figure 5-12. Scatterplot

Chapter 5 Data Visualizations

143

A boxplot represents how well the data in a data set is distributed,

depicting the minimum, maximum, median, first quartile, and third

quartile. Figure 5-13 explains the boxplot.

To create the boxplot in Figure 5-14, you can use the boxplot() function:

> set.seed(12);

> var1 <- rnorm(100, mean=3, sd=3);

> var2 <- rnorm(100, mean=2, sd=2);

> var3 <- rnorm(100, mean=1, sd=3);

> data <- data.frame(var1, var2, var3);

> png(file="D:/boxplot.png");

> boxplot(data, main="boxplot", notch=FALSE, varwidth=TRUE,

col=c("green", "purple", "blue"));

> dev.off();

RStudioGD

 2

Maximum

Third Quartile

First Quartile

Minimum

IQR
Median

Figure 5-13. Boxplot and its explanation

Chapter 5 Data Visualizations

144

data is the data, main is the main title, notch is a logical value to state

how medians of different groups match with each other, varwidth is a

logical value to state whether to draw the width of box proportionate to the

sample size, and col is the color of the boxplot.

You can draw a boxplot with a notch by setting notch=TRUE (see

Figure 5-15):

> set.seed(12);

> var1 <- rnorm(100, mean=3, sd=3);

> var2 <- rnorm(100, mean=2, sd=2);

> var3 <- rnorm(100, mean=1, sd=3);

> data <- data.frame(var1, var2, var3);

Figure 5-14. Boxplots

Chapter 5 Data Visualizations

145

> png(file="D:/boxplot.png");

> boxplot(data, main="boxplot", notch=TRUE, varwidth=TRUE,

col=c("green", "purple", "blue"));

> dev.off();

RStudioGD

 2

Figure 5-15. Boxplots with notch

Chapter 5 Data Visualizations

146

 Scatterplot Matrix
A scatterplot matrix is used to find the correlation between a variable and

other variables, and you usually use it to select the important variables,

which is also known as variable selection.

To plot the scatterplot matrix in Figure 5-16, you can use the pairs()

function:

> set.seed(12);

> var1 <- rnorm(100, mean=1, sd=3);

> var2 <- rnorm(100, mean=1, sd=3);

> var3 <- rnorm(100, mean=1, sd=3);

> var4 <- rnorm(100, mean=2, sd=3);

> var5 <- rnorm(100, mean=2, sd=3);

> data <- data.frame(var1, var2, var3, var4, var5);

> png(file="D:/scatterplotMatrix.png");

> pairs(~var1+var2+var3+var4+var5, data=data, main="scatterplot

matrix");

> dev.off();

RStudioGD

 2

Chapter 5 Data Visualizations

147

 Social Network Analysis Graph Basics
A social network analysis graph is an advanced data visualization; it is not

related to statistics, but can be good for reference. The following is a fast

introduction to social network analysis graphs. A social network analysis

graph can help you understand the relationships between individuals or

nodes. Social network analysis is usually used on social network data like

Facebook and Weibo. Each node is an individual, and the social network

graphs show us how each individual connects to others.

Figure 5-16. Scatterplot Matrix

Chapter 5 Data Visualizations

148

To plot a social network analysis graph, you must install the igraph

package:

> install.packages("igraph");

Installing package into 'C:/Users/gohmi/Documents/R/win-

library/3.5'

(as 'lib' is unspecified)

trying URL 'https://cran.rstudio.com/bin/windows/contrib/3.5/

igraph_1.2.2.zip'

Content type 'application/zip' length 9148505 bytes (8.7 MB)

downloaded 8.7 MB

package 'igraph' successfully unpacked and MD5 sums checked

The downloaded binary packages are in

 C:\Users\gohmi\AppData\Local\Temp\RtmpET26Hv\downloaded_

packages

To use the igraph package, you must use the library() function:

> library(igraph);

Attaching package: 'igraph'

The following objects are masked from 'package:stats':

 decompose, spectrum

The following object is masked from 'package:base':

 union

To plot the network graph for John ➤ James ➤ Mary ➤ John shown in

Figure 5-17, you use

> g <- graph(edges=c("John", "James", "James", "Mary", "Mary",

"John"), directed=FALSE);

> plot(g);

Chapter 5 Data Visualizations

149

To plot the directed network graph shown in Figure 5-18, you change

directed=FALSE to directed=TRUE:

> g <- graph(edges=c("John", "James", "James", "Mary", "Mary",

"John"), directed=TRUE);

> plot(g);

Figure 5-17. Social Network Analysis with Undirected Network
Graph

Figure 5-18. Social Network Analysis with directed network graph

Chapter 5 Data Visualizations

150

 Using ggplot2
ggplot2 is a package created by Hadley Wickham that offers a powerful

graphics language for creating advanced charts. ggplot2 is very popular

and famous in the R community, and it allows us to create charts that

represent univariate, multivariate, and categorical data in a straightforward

way. R’s build-in functionality offer the plotting of charts, but ggplot allows

us to plot more advanced charts using the grammar of graphics.

To use ggplot2, you must install the package:

> install.packages("ggplot2");

Installing package into 'C:/Users/gohmi/Documents/R/win-

library/3.5'

(as 'lib' is unspecified)

also installing the dependencies 'stringi', 'colorspace',

'stringr', 'labeling', 'munsell', 'RColorBrewer', 'digest',

'gtable', 'lazyeval', 'plyr', 'reshape2', 'scales',

'viridisLite', 'withr'

 There is a binary version available but

 the source version is later:

 binary source needs_compilation

stringi 1.1.7 1.2.4 TRUE

 Binaries will be installed

trying URL 'https://cran.rstudio.com/bin/windows/contrib/3.5/

stringi_1.1.7.zip'

Content type 'application/zip' length 14368013 bytes (13.7 MB)

downloaded 13.7 MB

trying URL 'https://cran.rstudio.com/bin/windows/contrib/3.5/

colorspace_1.3-2.zip'

Content type 'application/zip' length 527776 bytes (515 KB)

downloaded 515 KB

Chapter 5 Data Visualizations

151

The downloaded binary packages are in

 C:\Users\gohmi\AppData\Local\Temp\RtmpET26Hv\downloaded_

packages

 What Is the Grammar of Graphics?
ggplot2 focuses on the grammar of graphics, which is the building blocks

of the chart, such as

• Data

• Aesthetic mapping

• Geometric objects

• Statistical transformation

• Scales

• Coordinate systems

• Position adjustments

• Faceting

In this book, you are going to look into some of them. It is beyond this

book to cover everything in ggplot2.

 The Setup for ggplot2
To use ggplot2, you must call the library using the library() or require()

functions. You also need to let ggplot know which data set to use, and you

can use the ggplot() function:

> library(ggplot2);

> set.seed(12);

> var1 <- rnorm(100, mean=1, sd=1);

> var2 <- rnorm(100, mean=2, sd=1);

Chapter 5 Data Visualizations

152

> var3 <- rnorm(100, mean=1, sd=2);

> data <- data.frame(var1, var2, var3);

> ggplot(data);

ggplot() can only take a data frame variable.

 Aesthetic Mapping in ggplot2
In ggplot2, aesthetics are the things we can see, such as

• Position

• Color

• Fill

• Shape

• Line type

• Size

You can use aestheticsc in ggplot2 via the aes() function:

> ggplot(data, aes(x=var1, y=var2));

 Geometry in ggplot2
Geometric objects are the plots or graphs you want to put in the chart. You

can use geom_point() to create a scatterplot, geom_line() to create a line

plot, and geom_boxplot() to create a boxplot in the chart.

You can see the available geometric objects (also shown in Figure 5-19)

using

> help.search("geom_", package="ggplot2");

Chapter 5 Data Visualizations

153

In ggplot2, geom is also the layers of the chart. You can add in one

geom object after another, just like adding one layer after another layer.

You can add in a scatter plot (Figure 5-20) using the geom_point()

function:

> ggplot(data, aes(x=var1, y=var2)) + geom_

point(aes(color="red"));

Figure 5-19. Available Geometric Objects

Chapter 5 Data Visualizations

154

You can add in a smoother that includes a line and a ribbon to the

scatter plot (Figure 5-21) using another layer:

> ggplot(data, aes(x=var1, y=var2)) + geom_

point(aes(color="red")) + geom_smooth();

`geom_smooth()` using method = 'loess' and formula 'y ~ x'

Figure 5-20. Scatterplot

Chapter 5 Data Visualizations

155

 Labels in ggplot2
You have plotted the graphs in the charts, so now let’s add in the main title

and x- and y-axis titles. You can do this using the labs() layer to specify

the labels.

To add in the x-axis title, y-axis title, and the main title into Figure 5-22,

you can use the labs() function:

> ggplot(data, aes(x=var1, y=var2)) + geom_point

(aes(color="red")) + geom_smooth() + labs(title="Scatter",

x = "Xaxis", y = "Y-axis", color="Color");

`geom_smooth()` using method = 'loess' and formula 'y ~ x'

Figure 5-21. Scatterplot with Smoother

Chapter 5 Data Visualizations

156

 Themes in ggplot2
If you want to change the size and style of the labels and legends, the

theme() function can help. The theme() function in ggplot handles

elements such as

• Axis labels

• Plot background

• Facet background

• Legend appearance

There are some built-in themes such as theme_light() and theme_bw().

You can add the built-in themes shown in Figure 5-23 by using theme_

light():

> ggplot(data, aes(x=var1, y=var2)) + geom_point

(aes(color="red")) + geom_smooth() + labs(title="scatter",

x="x-axis", y="y-axis") + theme_light();

`geom_smooth()` using method = 'loess' and formula 'y ~ x'

Figure 5-22. Scatterplot with Smoother and labels

Chapter 5 Data Visualizations

157

You can add in your own theme, as shown in Figure 5-24, using

> ggplot(data, aes(x=var1, y=var2)) + geom_

point(aes(color="red")) + geom_smooth() +

labs(title="scatter", x="x-axis", y="y-axis") + theme(plot.

title=element_text(size=30, face="bold"), axis.text.

x=element_text(size=15, face="bold"), axis.text.y=element_

text(size=15, face="bold"));

`geom_smooth()` using method = 'loess' and formula 'y ~ x'

plot.title is the title of the chart, axis.text.x is the x-axis label,

axis.text.y is the y-axis label, axis.title.x is the title of x-axis, and

axis.title.y is the title of y-axis. To change the size of the text, use the

element_text() function. To remove the label, you can use element_

blank().

Figure 5-23. Scatterplot with smoothers and labels and themes

Chapter 5 Data Visualizations

158

 ggplot2 Common Charts
After learning the ggplot basics and the grammar of graphics, the following

sections cover some common charts that can be plotted with ggplot. The

code is available also.

 Bar Chart
A bar chart (Figure 5-25) is used when you want to compare things

between groups:

> d <- c(1, 5, 8, 9, 8, 2, 1);

> df <- data.frame(d);

> ggplot(df) + geom_bar(aes(color="grey", x=d)) +

labs(title="bar chart") + theme_light();

Figure 5-24. Scatterplot with Smoother and customized themes

Chapter 5 Data Visualizations

159

To plot a horizontal bar chart (Figure 5-26), you can use the coord_

flip() function:

> ggplot(df) + geom_bar(aes(color="grey", x=d)) + coord_flip()

+ labs(title="bar chart") + theme_light();

Figure 5-26. Horizontal Bar Chart

Figure 5-25. Bar Chart

Chapter 5 Data Visualizations

160

 Histogram
A histogram (Figure 5-27) allows you to see whether the data is normally

distributed.

> set.seed(12);

> var1 <- rnorm(100, mean=1, sd=1);

> var2 <- rnorm(100, mean=2, sd=1);

> var3 <- rnorm(100, mean=1, sd=2);

> data <- data.frame(var1, var2, var3);

> ggplot(data, aes(x=var1)) + geom_histogram(bins=10,

color="black", fill="grey") + labs(title="histogram") +

theme_light();

Figure 5-27. Histogram

Chapter 5 Data Visualizations

161

 Density Plot
A density plot (Figure 5-28) can also show you whether the data is

normally distributed.

> ggplot(data, aes(x=var1)) + geom_density(fill="grey") +

labs(title="density");

 Scatterplot
A scatterplot (Figure 5-29) shows the relationships between two variables.

> ggplot(data) + geom_point(aes(color="red", x=var1, y=var2))

+ geom_point(aes(color="green", x=var1, y=var3)) +

labs(title="scatter") + theme_light();

Figure 5-28. Density Plot

Chapter 5 Data Visualizations

162

 Line chart
A line chart (Figure 5-30) also shows the relationship between two

variables and can also be used for trend analysis.

> ggplot(data) + geom_line(aes(color="red", x=var1, y=var2))

+ geom_line(aes(color="green", x=var1, y=var3)) +

labs(title="scatter") + theme_light();

Figure 5-29. Scatterplot

Chapter 5 Data Visualizations

163

 Boxplot
A boxplot (Figure 5-31) shows the statistics of the data.

> ggplot(data, aes(y=var2)) + geom_boxplot(fill="grey") +

labs(title="boxplot");

Figure 5-30. Line Chart

Chapter 5 Data Visualizations

164

You can change the grids (Figure 5-32) using

> ggplot(data, aes(x=var1)) + geom_density(fill="grey") +

labs(title="density") + theme(panel.background=element_

rect(fill="yellow"), panel.grid.major=element_

line(color="blue", size=2));

Figure 5-31. Boxplot

Chapter 5 Data Visualizations

165

You can change the background color using the panel.background

and element_rect(), and you can change the grid using panel.grid.

major, panel.grid.minor, and element_line().

To save a chart, you can use the ggsave() function (Figure 5-33):

> ggsave("D:/density.png");

Saving 3.95 x 3.3 in image

Figure 5-32. Customised Themes

Chapter 5 Data Visualizations

166

 Interactive Charts with Plotly and ggplot2
Plotly JS allows you to create interactive, publication-quality charts. You

can create a Plotly chart using ggplot. To use Plotly or to create Plotly chart,

you must download the plotly package as follows:

> install.packages("plotly");

Installing package into 'C:/Users/gohmi/Documents/R/win-

library/3.5'

(as 'lib' is unspecified)

also installing the dependencies 'httpuv', 'xtable',

'sourcetools', 'mime', 'openssl', 'yaml', 'shiny', 'later',

'httr', 'jsonlite', 'base64enc', 'htmltools', 'htmlwidgets',

'tidyr', 'hexbin', 'crosstalk', 'data.table', 'promises'

Figure 5-33. Exported Chart to PNG file

Chapter 5 Data Visualizations

167

 There is a binary version available but

 the source version is later:

 binary source needs_compilation

htmlwidgets 1.2 1.3 FALSE

trying URL 'https://cran.rstudio.com/bin/windows/contrib/3.5/

httpuv_1.4.5.zip'

Content type 'application/zip' length 1182084 bytes (1.1 MB)

downloaded 1.1 MB

trying URL 'https://cran.rstudio.com/bin/windows/contrib/3.5/

xtable_1.8-3.zip'

Content type 'application/zip' length 755944 bytes (738 KB)

downloaded 738 KB

trying URL 'https://cran.rstudio.com/bin/windows/contrib/3.5/

sourcetools_0.1.7.zip'

Content type 'application/zip' length 530521 bytes (518 KB)

downloaded 518 KB

trying URL 'https://cran.rstudio.com/bin/windows/contrib/3.5/

mime_0.5.zip'

Content type 'application/zip' length 46959 bytes (45 KB)

downloaded 45 KB

trying URL 'https://cran.rstudio.com/bin/windows/contrib/3.5/

openssl_1.0.2.zip'

Content type 'application/zip' length 3628608 bytes (3.5 MB)

downloaded 3.5 MB

trying URL 'https://cran.rstudio.com/bin/windows/contrib/3.5/

yaml_2.2.0.zip'

Content type 'application/zip' length 203553 bytes (198 KB)

downloaded 198 KB

Chapter 5 Data Visualizations

168

To use Plotly, you must call the library using the library() or

require() functions:

> library(plotly);

Attaching package: 'plotly'

The following object is masked from 'package:ggplot2':

 last_plot

The following object is masked from 'package:igraph':

 groups

The following object is masked from 'package:stats':

 filter

The following object is masked from 'package:graphics':

 layout

To create a Plotly chart (Figure 5-34), you can use the ggplotly()

function:

> set.seed(12);

> var1 <- rnorm(100, mean=1, sd=1);

> var2 <- rnorm(100, mean=2, sd=1);

> var3 <- rnorm(100, mean=1, sd=2);

> data <- data.frame(var1, var2, var3);

> gg <- ggplot(data) + geom_line(aes(x=var1, y=var2));

> g <- ggplotly(gg);

> g;

Chapter 5 Data Visualizations

169

To save the Plotly chart, you must create a free Plotly account. Then

you can use the following code to save the R session:

Sys.setenv("plotly_username"="your plotly username");

Sys.setenv("plotly_api_key"="your api key");

To publish the graph, you use

api_create(g, filename="");

 Conclusion
In this chapter, you looked into R programming. You now understand

that descriptive statistics summarizes the data and usually focuses on the

distribution, the central tendency, and the dispersion of the data. Data

visualization, on the other hand, creates graphics from the data to help us

understand the data.

Figure 5-34. Plotly Chart using R

Chapter 5 Data Visualizations

170

You learned how R programming allows you to plot line charts, bar

charts, histograms, scatterplots, scatterplot matrices, pie charts, and box

plots.

You also learned about decision trees, which are machine learning

algorithms that perform both classification and regression tasks. They can

be a graph to represent choices and results using a tree.

You also learned about social network analysis graphs, which can

help us understand the relationships between individuals or nodes. Social

network analysis is usually used on social network data like Facebook and

Weibo. Each node is an individual, and the social network graphs show us

how each individual connects to others.

You also explored ggplot2, a package created by Hadley Wickham

that offers a powerful graphics language for creating of advanced charts.

ggplot2 is very popular and famous in the R community, and it allows us to

create charts that represents univariate, multivariate, and categorical data

in a straightforward way.

You also learned the grammar of graphics. ggplot2 focuses on the

grammar of graphics. The grammar of graphics is the building blocks of a

chart.

You also explored Plotly JS. Plotly JS allows us to create interactive,

publication-quality charts. You created a Plotly chart using ggplot.

 References
An Introduction to ggplot2. (n.d.). Retrieved from https://uc-r.github.

io/ggplot_intro.

Data visualization. (2018, August 27). Retrieved from https://

en.wikipedia.org/wiki/Data_visualization.

Getting Started with Plotly and ggplot2. (n.d.). Retrieved from

https://plot.ly/ggplot2/getting-started/.

Chapter 5 Data Visualizations

https://uc-r.github.io/ggplot_intro
https://uc-r.github.io/ggplot_intro
https://en.wikipedia.org/wiki/Data_visualization
https://en.wikipedia.org/wiki/Data_visualization
https://plot.ly/ggplot2/getting-started/

171

ggplot2 . (n.d.). Retrieved September 1, 2018, from https://

tutorials.iq.harvard.edu/R/Rgraphics/Rgraphics.html.

ggplot2 - Essentials. (n.d.). Retrieved from www.sthda.com/english/

wiki/ggplot2-essentials.

Histogram Density Plot Combo in R. (2012, September 27). Retrieved

from www.r-bloggers.com/histogram-density-plot-combo-in-r/.

Kabacoff, R. (n.d.). Bar Plots. Retrieved from www.statmethods.net/

graphs/bar.html.

Kabacoff, R. (n.d.). Histograms and Density Plots. Retrieved from www.

statmethods.net/graphs/density.html.

Kabacoff, R. (n.d.). Scatterplots. Retrieved from www.statmethods.net/

graphs/scatterplot.html.

Kabacoff, R. (n.d.). Graphics with ggplot2. Retrieved from www.

statmethods.net/advgraphs/ggplot2.html.

Network analysis with R and igraph: NetSci X Tutorial - Katya

Ognyanova. (2018, July 11). Retrieved from http://kateto.net/networks-

r- igraph.

T. (n.d.). R Bar Charts. Retrieved from www.tutorialspoint.com/r/r_

bar_charts.htm.

T. (n.d.). R Boxplots. Retrieved from www.tutorialspoint.com/r/r_

boxplots.htm.

T. (n.d.). R Line Graphs. Retrieved from www.tutorialspoint.com/

r/r_line_graphs.htm.

T. (n.d.). R Pie Charts. Retrieved from www.tutorialspoint.com/r/r_

pie_charts.htm.

T. (n.d.). R Scatterplots. Retrieved from www.tutorialspoint.com/r/r_

scatterplots.htm.

R: Histograms. (n.d.). Retrieved from https://stat.ethz.ch/R-

manual/R-devel/library/graphics/html/hist.html.

Chapter 5 Data Visualizations

https://tutorials.iq.harvard.edu/R/Rgraphics/Rgraphics.html
https://tutorials.iq.harvard.edu/R/Rgraphics/Rgraphics.html
http://www.sthda.com/english/wiki/ggplot2-essentials
http://www.sthda.com/english/wiki/ggplot2-essentials
http://www.r-bloggers.com/histogram-density-plot-combo-in-r/
http://www.statmethods.net/graphs/bar.html
http://www.statmethods.net/graphs/bar.html
http://www.statmethods.net/graphs/density.html
http://www.statmethods.net/graphs/density.html
http://www.statmethods.net/graphs/scatterplot.html
http://www.statmethods.net/graphs/scatterplot.html
http://www.statmethods.net/advgraphs/ggplot2.html
http://www.statmethods.net/advgraphs/ggplot2.html
http://kateto.net/networks-r-igraph
http://kateto.net/networks-r-igraph
http://www.tutorialspoint.com/r/r_bar_charts.htm
http://www.tutorialspoint.com/r/r_bar_charts.htm
http://www.tutorialspoint.com/r/r_boxplots.htm
http://www.tutorialspoint.com/r/r_boxplots.htm
http://www.tutorialspoint.com/r/r_line_graphs.htm
http://www.tutorialspoint.com/r/r_line_graphs.htm
http://www.tutorialspoint.com/r/r_pie_charts.htm
http://www.tutorialspoint.com/r/r_pie_charts.htm
http://www.tutorialspoint.com/r/r_scatterplots.htm
http://www.tutorialspoint.com/r/r_scatterplots.htm
https://stat.ethz.ch/R-manual/R-devel/library/graphics/html/hist.html
https://stat.ethz.ch/R-manual/R-devel/library/graphics/html/hist.html

172

The Fundamentals of ggplot2 Explained. (n.d.). Retrieved from www.

aridhia.com/technical-tutorials/the-fundamentals-of-ggplot-

explained/.

Titanic: Getting Started With R - Part 3: Decision Trees. (2014, January 13).

Retrieved from http://trevorstephens.com/kaggle-titanic- tutorial/

r-part-3-decision-trees/.

Chapter 5 Data Visualizations

http://www.aridhia.com/technical-tutorials/the-fundamentals-of-ggplot-explained/
http://www.aridhia.com/technical-tutorials/the-fundamentals-of-ggplot-explained/
http://www.aridhia.com/technical-tutorials/the-fundamentals-of-ggplot-explained/
http://trevorstephens.com/kaggle-titanic-tutorial/r-part-3-decision-trees/
http://trevorstephens.com/kaggle-titanic-tutorial/r-part-3-decision-trees/

173© Eric Goh Ming Hui 2019
E. G. M. Hui, Learn R for Applied Statistics, https://doi.org/10.1007/978-1-4842-4200-1_6

CHAPTER 6

Inferential Statistics
and Regressions
Inferential statistics and descriptive statistics are the main branches of

statistics. Descriptive statistics derives a summary from the data set and

makes use of central tendency, dispersion, and skewness. Inferential

statistics describes and makes inferences about the population from

the sampled data. In inferential statistics, you use hypothesis testing

and estimating of parameters. Regression analysis is a set of statistical

processes to estimate the relationships between all the variables.

In this chapter, you will look into the apply(), lapply(), and

sapply() functions and then you’ll sample data and perform correlations

and covariances plus tests such as p-value, t-test, chi-square test, and

ANOVA. You will then look into non-parametric tests, which include the

Wilcoxon signed rank test, Wilcoxon-Mann-Whitney test, the Kruskal-Wallis

test, and simple linear regression and multiple linear regression analysis.

 What Are Inferential Statistics
and Regressions?
Inferential statistics and descriptive statistics are the two main branches of

statistics. Descriptive statistics derives a summary from the data by using

central tendencies like mean and median, dispersions like variance and

standard deviation, and skewness and kurtosis.

174

Inferential statistics describes and makes inferences about the

population and the sampled data. In inferential statistics, you use

hypothesis testing and estimating of parameters. By estimating

parameters, you try to answer the population parameters. In hypothesis

testing, you try to answer a research question. In hypothesis testing, a

research question is a hypothesis asked in question format. A research

question can be, Is there a significant difference between the grades of class

1 and class 2 for their engineering math exams? A hypothesis can be, There

is a significant difference between the grades of class 1 and class 2 for their

engineering math exams. The research question begins with Is there and

the hypothesis begins with There is. Based on the research question, the

hypothesis can be a null hypothesis, H0, and an alternate hypothesis, Ha.

A null hypothesis, H0, can be μ1 = u2 and an alternate hypothesis, Ha, can

be μ1 ≠ u2. So μ1 is the mean of the grades of class 1 and μ2 is the mean of

the grades of class 2. You can then use inference tests to get the p-value. If

the p-value is less than or equal to alpha, which is usually 0.05, you reject

the null hypothesis and say that the alternate hypothesis is true at the 95%

confidence interval. If the p-value is more than 0.05, you fail to reject the

null hypothesis.

For estimating parameters, the parameters can be the mean, variance,

standard deviation, and others. If you want to estimate the mean of heights

of the whole population (and by the way, it is impossible to measure

everyone in the population), you can use a sampling method to select

some people from the population. Subsequently, you calculate the mean of

the height of the samples and then make an inference on the mean of the

height of the population. You can then construct the confidence intervals,

which is the range in which the mean of the height of the population will

fall. You construct a range because the sample cannot derive the exact

mean of the height of the population.

Chapter 6 InferentIal StatIStICS and regreSSIonS

175

Regression analysis is a set of statistical processes to estimate the

relationships between all the variables. To be more specific, regression

analysis is used to understand the relationships among independent

variables and dependent variables and to explore the forms of the

relationships.

 apply(), lapply(), sapply()
The apply() function can perform a loop to go through the data and apply

a function. The function can be the mean() function from R or it can be a

customized function. The use of the apply() function is to avoid the use of

loops. The apply() function can take list, matrix, or array.

To use the apply() function, you create random data:

> set.seed(123);

> var1 <- rnorm(100, mean=2, sd=1);

> var2 <- rnorm(100, mean=3, sd=1);

> var3 <- rnorm(100, mean=3, sd=2);

> data <- data.frame(var1, var2, var3);

> data;

 var1 var2 var3

1 1.43952435 2.2895934 7.39762070

2 1.76982251 3.2568837 5.62482595

3 3.55870831 2.7533081 2.46970989

4 2.07050839 2.6524574 4.08638812

5 2.12928774 2.0483814 2.17132010

6 3.71506499 2.9549723 2.04750621

7 2.46091621 2.2150955 1.42279432

8 0.73493877 1.3320581 1.81076547

9 1.31314715 2.6197735 6.30181493

10 1.55433803 3.9189966 2.89194375

Chapter 6 InferentIal StatIStICS and regreSSIonS

176

You can use the apply() function with a mean() function:

> apply(data, 1, mean);

 [1] 3.708913 3.550511 2.927242 2.936451 2.116330 2.905848

2.032935 1.292587 3.411579 2.788426

 [11] 2.962408 3.151718 3.082613 2.340998 1.992851 4.479820

2.573733 1.315515 1.793035 1.311216

 [21] 1.967292 2.690174 2.901045 2.810064 2.830503 1.926952

2.554660 2.265633 2.556436 2.383774

 [31] 4.593868 2.658598 3.121812 2.326194 1.873185 2.395315

2.242476 3.172000 3.417250 1.537521

 [41] 2.143278 2.175163 2.718194 2.126560 2.416108 3.383570

1.977803 1.833860 3.183512 2.533507

 [51] 2.763284 2.538914 2.533833 2.847073 3.617265 3.019648

3.058612 3.157894 2.957849 1.591852

 [61] 2.796705 1.822920 2.166982 4.274287 3.699170 3.898973

2.939493 1.352056 2.887190 3.532488

 [71] 2.994538 2.560393 3.446763 2.209567 2.756647 2.345487

2.700874 2.412955 3.158053 2.484031

 [81] 1.202496 3.707153 2.683914 2.415853 2.593174 2.800894

3.549599 3.933870 2.663340 2.995215

 [91] 3.848239 3.444024 3.541280 1.773932 4.018272 3.176785

4.840582 1.859845 2.398367 2.762643

The above data is the result of the mean of every row. data is the data,

1 is the margin, and mean is the function. The margin means that the

function will be applied to a column when it is 2 and a row when it is 1.

You can get the mean of each column by using margin=2:

> apply(data, 2, mean);

 var1 var2 var3

2.090406 2.892453 3.240930

Chapter 6 InferentIal StatIStICS and regreSSIonS

177

apply() and lapply() are very similar, just that the output of lapply()

is a list. You can use lapply() as follows:

> lapply(data$var1, mean);

[[1]]

[1] 1.439524

[[2]]

[1] 1.769823

[[3]]

[1] 3.558708

[[4]]

[1] 2.070508

[[5]]

[1] 2.129288

sapply() is very similar to lapply(), just that the output is a vector:

> sapply(data$var1, mean);

 [1] 1.43952435 1.76982251 3.55870831 2.07050839

2.12928774 3.71506499 2.46091621

 [8] 0.73493877 1.31314715 1.55433803 3.22408180

2.35981383 2.40077145 2.11068272

 [15] 1.44415887 3.78691314 2.49785048 0.03338284

2.70135590 1.52720859 0.93217629

 [22] 1.78202509 0.97399555 1.27110877 1.37496073

0.31330669 2.83778704 2.15337312

 [29] 0.86186306 3.25381492 2.42646422 1.70492852

2.89512566 2.87813349 2.82158108

 [36] 2.68864025 2.55391765 1.93808829 1.69403734

1.61952900 1.30529302 1.79208272

 [43] 0.73460365 4.16895597 3.20796200 0.87689142

1.59711516 1.53334465 2.77996512

Chapter 6 InferentIal StatIStICS and regreSSIonS

178

 [50] 1.91663093 2.25331851 1.97145324 1.95712954

3.36860228 1.77422901 3.51647060

 [57] 0.45124720 2.58461375 2.12385424 2.21594157

2.37963948 1.49767655 1.66679262

 [64] 0.98142462 0.92820877 2.30352864 2.44820978

2.05300423 2.92226747 4.05008469

 [71] 1.50896883 -0.30916888 3.00573852 1.29079924

1.31199138 3.02557137 1.71522699

 [78] 0.77928229 2.18130348 1.86110864 2.00576419

2.38528040 1.62933997 2.64437655

 [85] 1.77951344 2.33178196 3.09683901 2.43518149

1.67406841 3.14880762 2.99350386

 [92] 2.54839696 2.23873174 1.37209392 3.36065245

1.39974041 4.18733299 3.53261063

 [99] 1.76429964 0.97357910

 Sampling
Sampling is the selection of a subset of a population. The population is the

data from every member. Sometimes a sample can be a subset from a full

data set. The advantages of sampling are that the cost is lower and data

collection is more efficient than collecting the data from every member in

the population.

 Simple Random Sampling
Simple random sampling (SRS) selects elements from the full data set

randomly. Each element has the same probability of being selected, and

each subset has the same probability of being selected as other subsets.

Chapter 6 InferentIal StatIStICS and regreSSIonS

179

 Stratified Sampling
Stratified sampling is when you divide the population into groups based on

a factor or characteristics or some factors. These groups are called strata,

and an individual group is called a stratum. In stratified sampling, you do

the following:

 1. Divide the population into groups.

 2. Use simple random sampling on each group.

 3. Collect data from each sampling unit.

Stratified sampling works well when a heterogeneous population is

split into homogeneous groups.

 Cluster Sampling
Cluster sampling is different from stratified sampling. It should be done in

the following way:

 1. Divide the population into clusters.

 2. Use random sampling on clusters from all possible

clusters.

 3. Collect data from a sampling unit.

Unlike stratified sampling, cluster sampling all members of the

selected clusters forms a sample, while in stratified sampling, a sample

is based on the random selection of members from all the strata. For

example, say 13 colleges are the strata and clusters. In stratified sampling,

30 students from each college or strata are selected using random

sampling. In cluster sampling, all students in 5 out of 13 colleges are

selected using random sampling.

Chapter 6 InferentIal StatIStICS and regreSSIonS

180

You can do random sampling using the sample() function:

> set.seed(123);

> var1 <- rnorm(100, mean=2, sd=1);

> var2 <- rnorm(100, mean=3, sd=1);

> var3 <- rnorm(100, mean=3, sd=2);

> data <- data.frame(var1, var2, var3);

> sample(data$var1, 5, replace=TRUE);

[1] 1.27110877 2.92226747 0.97399555 1.70492852 0.03338284

data$var1 is the data, 5 is the number of items to select from,

and replace=TRUE means that the chosen item can be repeated. If

replace=FALSE, the chosen item cannot be repeated.

You can do stratified sampling using the dplyr library. You must install

the dplyr library before using it:

> install.packages("dplyr");

Installing package into 'C:/Users/gohmi/Documents/R/win-

library/3.5'

(as 'lib' is unspecified)

also installing the dependencies 'fansi', 'utf8', 'bindr',

'cli', 'crayon', 'pillar', 'purrr', 'assertthat', 'bindrcpp',

'glue', 'magrittr', 'pkgconfig', 'R6', 'Rcpp', 'rlang',

'tibble', 'tidyselect', 'BH', 'plogr'

...

The downloaded binary packages are in

 C:\Users\gohmi\AppData\Local\Temp\RtmpaizS1C\downloaded_

packages

You can load the iris data using

> data(iris);

> summary(iris);

Chapter 6 InferentIal StatIStICS and regreSSIonS

181

Sepal.Length Sepal.Width Petal.Length Petal.Width Species

Min. :4.300 Min. :2.000 Min. :1.000 Min. :0.100 setosa :50

1st Qu.:5.100 1st Qu.:2.800 1st Qu.:1.600 1st Qu.:0.300 versicolor:50

Median :5.800 Median :3.000 Median :4.350 Median :1.300 virginica :50

Mean :5.843 Mean :3.057 Mean :3.758 Mean :1.199

3rd Qu.:6.400 3rd Qu.:3.300 3rd Qu.:5.100 3rd Qu.:1.800

Max. :7.900 Max. :4.400 Max. :6.900 Max. :2.500

There are 50 setosa data, 50 versicolor data, and 50 virginica data.

You can load the dplyr library using

> library(dplyr);

Attaching package: 'dplyr'

The following objects are masked from 'package:stats':

 filter, lag

The following objects are masked from 'package:base':

 intersect, setdiff, setequal, union

Chapter 6 InferentIal StatIStICS and regreSSIonS

182

You can do stratified clustering using dplyr:

 > iris_sample <- iris %>%

+ group_by(Species) %>%

+ sample_n(13)

> iris_sample;

A tibble: 39 x 5

Groups: Species [3]

 Sepal.Length Sepal.Width Petal.Length Petal.Width Species

 <dbl> <dbl> <dbl> <dbl> <fct>

 1 5 3.5 1.3 0.3 setosa

 2 5 3.4 1.5 0.2 setosa

 3 5.1 3.4 1.5 0.2 setosa

 4 5.7 4.4 1.5 0.4 setosa

 5 5.1 3.5 1.4 0.3 setosa

 6 5.2 3.4 1.4 0.2 setosa

 7 5 3.6 1.4 0.2 setosa

 8 5.1 3.5 1.4 0.2 setosa

 9 4.5 2.3 1.3 0.3 setosa

10 5.1 3.3 1.7 0.5 setosa

... with 29 more rows

> View(iris_sample);

sample_n(13) selects 13 items from each group. group_by(Species)

means you group the data by species variable. See Figure 6-1.

Chapter 6 InferentIal StatIStICS and regreSSIonS

183

 Correlations
Correlations are statistical associations to find how close two variables

are and to derive the linear relationships between them. In predictive

analytics, you can use correlation to find which variables are more related

to the target variable and use this to reduce the number of variables.

Correlation does not mean a causal relationship. Correlation finds how

close two variables are, but does not tell you the how and why of the

relationship. Causation tells you that one variable change will cause

another variable to change.

Figure 6-1. Stratified Sampling - Selected 13 sample from each
groups

Chapter 6 InferentIal StatIStICS and regreSSIonS

184

The formula for correlation is

r
x x y y

x x y y
xy

i

n

i i

i

n

i i

n

i

=
-() -()

-() -()
=

= =

å
å å

1

1

2

1

2

where x xi -()2 is the x value minus the mean and then square it, and

y yi -() y yi -()2 is the y value minus the mean and then square it.

To get the correlation, you generate sample data first:

> View(iris_sample);

> set.seed(123);

> var1 <- rnorm(100, mean=2, sd=1);

> var2 <- rnorm(100, mean=3, sd=1);

> var3 <- rnorm(100, mean=3, sd=2);

> data <- data.frame(var1, var2, var3);

You can use the cor() function to get the correlation:

> cor(data$var1, data$var2);

[1] -0.04953215

The correlation has a range from -1.0 to 1.0. When the correlation is 0,

there is no correlation or relationship. When the correlation is more than

0, it is a positive relationship. Positive correlation means that when one

variable value increases, the other variable values also increase. When the

correlation is less than tk, it is a negative relationship. Negative correlation

means that when one variable increases, the other variables’ values

decrease. 1 is the perfect positive correlation and -1 is the perfect negative

correlation. Hence, the larger the value towards 1, or the smaller the values

towards -1, the better the relationship.

-0.04953215 means that the correlation is a negative relationship

between var 1 and var2. The correlation is close to zero, so the relationship

is not good.

Chapter 6 InferentIal StatIStICS and regreSSIonS

185

 Covariance
Covariance is a measure of variability between two variables. The greater

the value of one variable and the greater of other variable means it will

result in a covariance that is positive. The greater value of one variable to

the lesser value of the other variable will result in a negative covariance.

Covariance shows the linear relationship between both variables, but

the covariance magnitude is difficult to interpret. Correlation is the

normalized version of covariance so

cov X Y
x x y y

Ni

N
i i,() = -() -()

=
å

1

where x xi -() is the x value minus the mean and y yi -() is the y value

minus the mean.

To get a covariance, create sample data:

> set.seed(123);

> var1 <- rnorm(100, mean=2, sd=1);

> var2 <- rnorm(100, mean=3, sd=1);

> var3 <- rnorm(100, mean=3, sd=2);

> data <- data.frame(var1, var2, var3);

You can use the cov() function to get the covariance:

> cov(data$var1, data$var2);

[1] -0.04372107

Correlation has a range of -1 to 1. Covariance does not have a range.

Correlation is good for measuring how good the relationship between

two variables is. When two variables have a positive covariance, when one

variable increases, the other variable increases. When two variables have

a negative covariance, when one variable increases, the other variable

Chapter 6 InferentIal StatIStICS and regreSSIonS

186

decreases. When two variables are independent of each other, the covariance

is zero. -0.04372107 means the covariance is negative, and it is very close to

zero, so the relationship between the two variables is not very good.

Correlation and covariance are usually within descriptive statistics.

 Hypothesis Testing and P-Value
I mentioned hypothesis testing previously. In hypothesis testing, a research

question is a hypothesis asked in question format. A research question can

be, Is there a significant difference between something? A hypothesis can be,

There is a significant difference between something. The research question

begins with Is there and the hypothesis begins with There is. A hypothesis

can also be a null hypothesis, H0, and an alternate hypothesis, Ha. You can

write the null hypothesis and alternate hypothesis as follows:

H0: μ1 = u2

Ha: μ1 ≠ u2

where μ1 is the mean of one data, and μ2 is the mean of another data.

You can use statistical tests to get your p-value. You use a t-test for

continuous variables or data, and you use a chi-square test for categorical

variables or data. For more complex testing, you use ANOVA. If data is not

normally distributed, you use non-parametric tests. A P-value helps you

determine the significance of your statistical test results. Your claim in the

test is known as a null hypothesis and the alternate hypothesis means that

you believe the null hypothesis is untrue.

• A small p-value <= alpha, which is usually 0.05,

indicates that the observed data is sufficiently

inconsistent with the null hypothesis, so the null

hypothesis may be rejected. The alternate hypothesis is

true at the 95% confidence interval.

Chapter 6 InferentIal StatIStICS and regreSSIonS

187

• A larger p-value means that you failed to reject null

hypothesis.

 T-Test
A t-test is one of the more important tests in statistics. A t-test is used to

determine whether the mean between two data points or samples are

equal to each other. The null hypothesis means that the two means are

equal, and the alternative means that the two means are different.

 Types of T-Tests
Figure 6-2 shows the types of t-tests.

Figure 6-2. Types of T-Tests

Chapter 6 InferentIal StatIStICS and regreSSIonS

188

 Assumptions of T-Tests
Here are the assumptions:

• The samples are randomly sampled from their

population.

• The population is normally distributed.

 Type I and Type II Errors
A type I error is a rejection of the null hypothesis when it is really true.

A type II error is a failure to reject a null hypothesis that is false.

 One-Sample T-Test
A one-sample t-test is used to test whether the mean of a population is

equal to a specified mean.

The formula of a one-sample t-test is

t
m
s

n

=
- m

where s is the standard deviation of the sample, n is the size of the sample,

m is the mean of the sample, and u is the specified mean.

The degree of freedom formula is

df n= -1

You can use the t statistics and the degree of freedom to estimate the

p-value using a t-table.

Chapter 6 InferentIal StatIStICS and regreSSIonS

189

To use a one-sample t-test in R, you can use the t.test() function:

> set.seed(123);

> var1 <- rnorm(100, mean=2, sd=1);

> var2 <- rnorm(100, mean=3, sd=1);

> var3 <- rnorm(100, mean=3, sd=2);

> data <- data.frame(var1, var2, var3);

> t.test(data$var1, mu=0.6);

 one sample t-test

data: data$var1

t = 16.328, df = 99, p-value < 2.2e-16

alternative hypothesis: true mean is not equal to 0.6

95 percent confidence interval:

 1.909283 2.271528

sample estimates:

mean of x

 2.090406

In a one-sample t-test,

H0: μ = m

Ha: μ ≠ m

m is 0.6 in the above R code. The p-value is 2.2e-16, so the p-value is less

than 0.05, which is the alpha value. Therefore, the null hypothesis may be

rejected. The alternate hypothesis, μ ≠ 0.6, is true at the 95% confidence

interval.

Chapter 6 InferentIal StatIStICS and regreSSIonS

190

 Two-Sample Independent T-Test
The two-sample unpaired t-test is when you compare two means of two

independent samples. The formula of the two-sample independent t-test is

t
s
n

s
n

A B

A B

=
-

+

m m
2 2

where

μA is the mean of one sample,

μB is the mean of the second sample,

nA is the size of sample A, and

nB is the size of sample B.

tk is the estimator of the common variance of the two samples, and the

formula is

s
x x

n n
A B

A B

2

2 2

2
=
å -() + å -()

- -
m m

The degrees of freedom formula is

df n nA B= - - 2

To use a two-sample unpaired t-test with a variance as equal in R:

> set.seed(123);

> var1 <- rnorm(100, mean=2, sd=1);

> var2 <- rnorm(100, mean=3, sd=1);

> var3 <- rnorm(100, mean=3, sd=2);

> data <- data.frame(var1, var2, var3);

> t.test(data$var1, data$var2, var.equal=TRUE, paired=FALSE);

Chapter 6 InferentIal StatIStICS and regreSSIonS

191

 two-sample t-test

data: data$var1 and data$var2

t = -6.0315, df = 198, p-value = 7.843e-09

alternative hypothesis: true difference in means is not equal

to 0

95 percent confidence interval:

 -1.0642808 -0.5398138

sample estimates:

mean of x mean of y

 2.090406 2.892453

The two-sample independent t-test:

H0: μA − μB = 0

Ha: μA − μB ≠ 0

The p-value is 7.843e-09, so it is less than 0.05, which is the alpha value.

Therefore, the null hypothesis may be rejected. The alternate hypothesis,

μA − μB ≠ 0, is true at the 95% confidence interval.

In the two-sample unpaired t-test, when the variance is unequal, you

use the Welch t-test. You can assume the two data variances are different,

or you can calculate the variance of each data. The Welch t-test formula is

as follows:

t
s
n

s
n

A B

A

A

B

B

=
-

+

m m
2 2

where

μA is the mean of sample A,

μB is the mean of sample B,

nA is the sample size of A,

nB is the sample size of B,

Chapter 6 InferentIal StatIStICS and regreSSIonS

192

sA is the standard deviation of A, and

sB is the standard deviation of B.

Unlike the normal t-test formula, the Welch t-test formula involves the

variance of each sample.

The degrees of freedom formula of the Welch t-test formula is as

follows:

df

s
n

s
n

s
n n

s
n n

A

A

B

B

A

A B

B

B B

=
+

æ

è
ç

ö

ø
÷

-()
+

-()
æ

è
çç

ö

ø
÷÷

2 2

2

4

2

4

21 1

To use the two-sample unpaired t-test with a variance as unequal in R:

> set.seed(123);

> var1 <- rnorm(100, mean=2, sd=1);

> var2 <- rnorm(100, mean=3, sd=1);

> var3 <- rnorm(100, mean=3, sd=2);

> data <- data.frame(var1, var2, var3);

> t.test(data$var1, data$var2, var.equal=FALSE, paired=FALSE);

 Welch two-sample t-test

data: data$var1 and data$var2

t = -6.0315, df = 197.35, p-value = 7.88e-09

alternative hypothesis: true difference in means is not equal

to 0

95 percent confidence interval:

 -1.0642862 -0.5398084

sample estimates:

mean of x mean of y

 2.090406 2.892453

Chapter 6 InferentIal StatIStICS and regreSSIonS

193

The two-sample unpaired t-test:

H0: μA − μB = 0

Ha: μA − μB ≠ 0

The p-value is 7.88e-09, so it less than 0.05, which is the alpha value.

Therefore, the null hypothesis may be rejected. The alternate hypothesis,

μA − μB ≠ 0, is true at the 95% confidence interval.

 Two-Sample Dependent T-Test
A two-sample paired t-test is used to test the mean of two samples that

depend on each other. The t-test formula is

t
d

s n
=

2 /

where

d is the mean difference,

s is the sample variance, and

n is the sample size.

The degree of freedom formula is

df n= -1

To use the two-sample paired t-test in R:

> set.seed(123);

> var1 <- rnorm(100, mean=2, sd=1);

> var2 <- rnorm(100, mean=3, sd=1);

> var3 <- rnorm(100, mean=3, sd=2);

> data <- data.frame(var1, var2, var3);

> t.test(data$var1, data$var2, paired=TRUE);

Chapter 6 InferentIal StatIStICS and regreSSIonS

194

 Paired t-test

data: data$var1 and data$var2

t = -5.8876, df = 99, p-value = 5.379e-08

alternative hypothesis: true difference in means is not equal

to 0

95 percent confidence interval:

 -1.0723482 -0.5317464

sample estimates:

mean of the differences

 -0.8020473

The two-sample paired t-test:

H0: μA − μB = 0

Ha: μA − μB ≠ 0

The p-value is 5.379e-08, so it is less than 0.05, which is the alpha value.

Therefore, the null hypothesis may be rejected. The alternate hypothesis,

μA − μB ≠ 0, is true at the 95% confidence interval.

 Chi-Square Test
The chi-square test is used to compare the relationships between

two categorical variables. The null hypothesis means that there is no

relationship between the categorical variables.

 Goodness of Fit Test
When you have only one categorical variable from a population and you

want to compare whether the sample is consistent with a hypothesized

distribution, you can use the goodness of fit test.

Chapter 6 InferentIal StatIStICS and regreSSIonS

195

The null hypothesis means that the data followed a specified

distribution, and the alternate hypothesis means that data doesn’t follow

the specified distribution.

The goodness of fit formula is

X
O E

Ei

n
i i

i

2

1

2

=
-()

=
å

where Oi is the observed frequency of bin i and Ei is the expected

frequency of bin i.

To calculated the expected frequency, the formula is

E N pi i= ×

where N is the total sample size and pi is the hypothesized proportion of

the observations of bin i.

To use the goodness of fit chi-square test in R, you can use the chisq.

test() function:

> data <- c(B=200, c=300, D=400);

> chisq.test(data);

 Chi-squared test for given probabilities

data: data

X-squared = 66.667, df = 2, p-value = 3.338e-15

The goodness of fit chi-square test:

• H0: No significant difference between the observed and

expected values.

• Ha: There is a significant difference between the

observed and expected values.

Chapter 6 InferentIal StatIStICS and regreSSIonS

196

The p-value is 3.338e-15, so it is less than 0.05, which is the alpha value.

Therefore, the null hypothesis may be rejected. The alternate hypothesis of

a significant difference between the observed and expected values is true

at the 95% confidence interval.

 Contingency Test
If you have two categorical variables and you want to compare whether there

is a relationship between two variables, you can use the contingency test.

The null hypothesis means that the two categorical variables have

no relationship. The alternate hypothesis means that the two categorical

variables have a relationship.

To calculate the expected value, use

E
RC

Nij
i j=

where R is the row, C is the column, N is the total, ith is the row, and jth is

the column.

The formula for X2 statistics is

X
O E

Ei

r

j

c
ij ij

ij

2

1 1

2

=
-()

= =
åå

To use a contingency test in R, create your data first:

> var1 <- c("Male", "Female", "Male", "Female", "Male",

"Female", "Male", "Female", "Male", "Female");

> var2 <- c("chocolate", "strawberry", "strawberry",

"strawberry", "chocolate", "chocolate", "chocolate",

"strawberry", "strawberry", "strawberry");

Chapter 6 InferentIal StatIStICS and regreSSIonS

197

> data <- data.frame(var1, var2);

> data;

 var1 var2

1 Male chocolate

2 Female strawberry

3 Male strawberry

4 Female strawberry

5 Male chocolate

6 Female chocolate

7 Male chocolate

8 Female strawberry

9 Male strawberry

10 Female strawberry

You can then create a table or frequency table for the variables to test:

> data.table <- table(data$var1, data$var2);

> data.table;

 chocolate strawberry

 Female 1 4

 Male 3 2

You can then use the chisq.test() function for the contingency test:

> chisq.test(data.table);

 Pearson's chi-squared test with Yates' continuity correction

data: data.table

X-squared = 0.41667, df = 1, p-value = 0.5186

Warning message:

In chisq.test(data.table) : Chi-squared approximation may be

incorrect

Chapter 6 InferentIal StatIStICS and regreSSIonS

198

The chi-square test:

• H0: The two variables are independent.

• Ha: The two variables are not independent.

The p-value is 0.5186, so it is more than 0.05, which is the alpha value.

Therefore, the null hypothesis fails to be rejected. The two variables are

independent is true at the 95% confidence interval.

 ANOVA
ANOVA is the process of testing the means of two or more groups. ANOVA

also checks the impact of factors by comparing the means of different

samples. In a t-test, you test the means of two samples; in a chi-square

test, you test categorical attributes or variables; in ANOVA, you test more

samples.

 Grand Mean
In ANOVA, you use two kinds of means, sample means and a grand mean.

A grand mean is the mean of all of the samples’ means.

 Hypothesis
In ANOVA, a null hypothesis means that the sample means are equal or

do not have significant differences. The alternate hypothesis is when the

sample means are not equal.

H Null hypothesisL0 1 2:m m m= =¼=

H Alternate hypothesisa m:m m1 ¹

Chapter 6 InferentIal StatIStICS and regreSSIonS

199

 Assumptions
You assume that the variables are sampled, independent, and selected or

sampled from a population that is normally distributed with unknown but

equal variances.

 Between Group Variability
The distribution of two samples, when they overlap, their means are not

significantly different. Hence, the difference between their individual

mean and the grand mean is not significantly different. The group and

level are different groups in the same independent variable. See Figure 6-3.

Figure 6-3. Means are not Significantly Different

Figure 6-4. Means are Significantly Different

For the two samples shown in Figure 6-4, their means are significantly

different from each other. The difference between the individual means

and the grand mean is significantly different.

Chapter 6 InferentIal StatIStICS and regreSSIonS

200

This variability is called the between-group variability, which refers to

the variations between the distributions of the groups or levels. Figure 6-5

depicts the discrimination between the different groups.

Figure 6-5. Variations between the distributions of groups of levels

To calculate the sum of the square of between the group variability, use

SS n x x n x x n x x n x xbetween G G G k k k= -() + -() + -() +¼+ -()1 1

2

2 2

2

3 3

2 2

where

xG is the grand mean,

x1 … xk is the mean of each sample, and

n1…nk… are the sample sizes.

To calculate the sum of each squared deviation, or mean square, use

MS
n x x n x x n x x n x x

kbetween
G G G k k k=

-() + -() + -() +¼+ -()
-

1 1

2

2 2

2

3 3

2 2

1

You use the SS to divide by the degree of freedom, where the degree of

freedom is the number of sample means(k) minus one.

Chapter 6 InferentIal StatIStICS and regreSSIonS

201

 Within Group Variability
For the following distributions of samples, as their variance increases, they

overlap each other and become part of a population, as shown in Figure 6-6.

Figure 6-7. Three samples with lesser variances

Figure 6-6. Distributions of Samples

Figure 6-7 shows another three samples with lesser variances, although

the means are similar, they belong to different population.

Within-group variation refers to the variations caused by differences

within individual groups or levels. To calculate the sum of squares of

within-group variation, use

SS x x x x x x x xwithin i i ik ij j= å -() + å -() +¼+ å -() = å -()1 1

2

2 2

2

3

2 2

Chapter 6 InferentIal StatIStICS and regreSSIonS

202

where

xi1 is the ith value of first sample,

xi2 is the ith value of second sample, and

xij is the jth value from the jth sample.

The degree of freedom is

df n n n n n n n k N kwithin k k= -() + -() +¼+ -() = + + +¼+ - () = -1 2 1 2 31 1 1 1

To get the mean square of the within-group variability, you divide

between group variability sum of the squares with degree of freedom within:

MS x x N kwithin ij j= å -() -()
2
/

The F-statistics are the measures if the means of samples are

significantly different. The lower the F-statistics, the more the means are

equal, so you cannot reject the null hypothesis.

F statistics
Between group variability

Within group variabl
- =

-
-

 iility

MS

MS
between

within

=

If the f-critical value is smaller than the f-value, reject the null

hypothesis. The f-critical value can be found using F-statistics and the

degree of freedom on the f distribution.

 One-Way ANOVA
One-way ANOVA is used when you have only one independent variable.

In R, you can calculate the one-way ANOVA using

> set.seed(123);

> var1 <- rnorm(12, mean=2, sd=1);

> var2 <- c("B", "B", "B", "B", "C", "C", "C", "C", "C", "D",

"D", "B");

Chapter 6 InferentIal StatIStICS and regreSSIonS

203

> data <- data.frame(var1, var2);

> fit <- aov(data$var1 ~ data$var2, data=data);

> fit;

Call:

 aov(formula = data$var1 ~ data$var2, data = data)

Terms:

 data$var2 Residuals

Sum of Squares 0.162695 9.255706

Deg. of Freedom 2 9

Residual standard error: 1.014106

Estimated effects may be unbalanced

To get the p-value, you use the summary() function:

> summary(fit);

 Df Sum Sq Mean Sq F value Pr(>F)

data$var2 2 0.163 0.0813 0.079 0.925

Residuals 9 9.256 1.0284

Chapter 6 InferentIal StatIStICS and regreSSIonS

204

H Null hypothesis0 1 2:m mvar var=

H Alternate hypothesisa :m mvar var1 2¹

The p-value is more than 0.05, so you fail to reject the null hypothesis

that the mean of var1 is the same as the mean of var2. The null hypothesis

is true at the 95% confidence interval.

 Two-Way ANOVA
Two-way ANOVA is used when you have two independent variables.

In R, you can calculate two-way ANOVA using

> set.seed(123);

> var1 <- rnorm(12, mean=2, sd=1);

> var2 <- c("B", "B", "B", "B", "C", "C", "C", "C", "C", "D",

"D", "B");

> var3 <- c("D", "D", "D", "D", "E", "E", "E", "E", "E", "F",

"F", "F");

Chapter 6 InferentIal StatIStICS and regreSSIonS

205

> data <- data.frame(var1, var2, var3);

> fit <- aov(data$var1 ~ data$var2 + data$var3, data=data);

> fit;

Call:

 aov(formula = data$var1 ~ data$var2 + data$var3, data = data)

Terms:

 data$var2 data$var3 Residuals

Sum of Squares 0.162695 0.018042 9.237664

Deg. of Freedom 2 1 8

Residual standard error: 1.074573

1 out of 5 effects not estimable

Estimated effects may be unbalanced

> summary(fit);

 Df Sum Sq Mean Sq F value Pr(>F)

data$var2 2 0.163 0.0813 0.070 0.933

data$var3 1 0.018 0.0180 0.016 0.904

Residuals 8 9.238 1.1547

Chapter 6 InferentIal StatIStICS and regreSSIonS

206

H Null hypothesis0 1 2 3:m m mvar var var= =

H Alternate hypothesisa m:m mvar1 ¹

var1 does not depend on var2’s mean and var3’s mean. The var1 mean

and var2 mean have p-values of 0.483, which is more than 0.05. Hence,

you fail to reject the null hypothesis that the var1 mean is the same as the

var2 mean. The null hypothesis is true at the 95% confidence interval. The

var1 mean and the var3 mean have p-values of 0.422, which is more than

0.05. Hence, you fail to reject the null hypothesis that the var1 mean is the

same as the var3 mean. The null hypothesis is true at the 95% confidence

interval.

 MANOVA
The multivariate analysis of variance is when there are multiple response

variables that you want to test.

To use MANOVA in R, you can load the iris data:

> data(iris);

> str(iris);

'data.frame': 150 obs. of 5 variables:

 $ Sepal.Length: num 5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 ...

 $ Sepal.Width : num 3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1 ...

 $ Petal.Length: num 1.4 1.4 1.3 1.5 1.4 1.7 1.4 1.5 1.4 1.5

...

 $ Petal.Width : num 0.2 0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.2 0.1

...

 $ Species : Factor w/ 3 levels "setosa","versicolor",..: 1

1 1 1 1 1 1 1 1 1 ...

> summary(iris);

Chapter 6 InferentIal StatIStICS and regreSSIonS

207

Sepal.Length Sepal.Width Petal.Length Petal.Width Species

Min. :4.300 Min. :2.000 Min. :1.000 Min. :0.100 setosa :50

1st Qu.:5.100 1st Qu.:2.800 1st Qu.:1.600 1st Qu.:0.300 versicolor:50

Median :5.800 Median :3.000 Median :4.350 Median :1.300 virginica :50

Mean :5.843 Mean :3.057 Mean :3.758 Mean :1.199

3rd Qu.:6.400 3rd Qu.:3.300 3rd Qu.:5.100 3rd Qu.:1.800

Max. :7.900 Max. :4.400 Max. :6.900 Max. :2.500

> res <- manova(cbind(iris$Sepal.Length, iris$Petal.Length) ~

iris$Species, data=iris);

> summary(res);

 Df Pillai approx F num Df den Df Pr(>F)

iris$Species 2 0.9885 71.829 4 294 < 2.2e-16 ***

Residuals 147

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

> summary.aov(res);

 Response 1 :

 Df Sum Sq Mean Sq F value Pr(>F)

iris$Species 2 63.212 31.606 119.26 < 2.2e-16 ***

Residuals 147 38.956 0.265

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Chapter 6 InferentIal StatIStICS and regreSSIonS

208

 Response 2 :

 Df Sum Sq Mean Sq F value Pr(>F)

iris$Species 2 437.10 218.551 1180.2 < 2.2e-16 ***

Residuals 147 27.22 0.185

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

cbind(iris$Sepal.Length, iris$Petal.Length) ~ iris$Species

is the formula, like cbind(Sepal.Length, Petal.Length) = Species.

Hence, you have two response variables, Sepal.Length and Petal.Length.

H Null hypothesisSepal Length Petal Length Species0 : . .m m m= =

Chapter 6 InferentIal StatIStICS and regreSSIonS

209

H Alternate hypothesia Sepal Length Petal Length Species: . .m m m¹ ¹ ss

The p-value is 2.2e-16, which is less than 0.05. Hence, you reject the

null hypothesis. The alternate hypothesis is true at the 95% confidence

interval. There are significant differences in the means. The response

variable Sepal.Length mean and the Species mean have p-values of

2.2e-16, which are less than 0.05. Hence, you reject the null hypothesis

that the Sepal.Length mean is the same as the Species mean. The

alternate hypothesis is true at the 95% confidence interval. The means for

the response variables Petal.Length and Species have p-values of 2.2e-

16, which are less than 0.05. Hence, you reject the null hypothesis that

the Petal.Length mean is the same as the Species mean. The alternate

hypothesis is true at the 95% confidence interval.

 Nonparametric Test
The nonparametric test is a test that does not require the variable and

sample to be normally distributed. Most of the time you should use

parametric tests like the t-test, chi-square test, and ANOVA because they

are more accurate. You use nonparametric tests when you do not have

normally distributed data and the sample data is big.

 Wilcoxon Signed Rank Test
The Wilcoxon signed rank test is used to replace the one-sample t-test.

 a. For each xi, for i = 1, 2, …., n the signed difference is

di=xi- u0, where u0 is the given median.

 b. Ignore di= 0 and rank the rest of |di|, using ri as rank.

When there are tied values, assign the average of the

tied ranks. For example, |di| ranked as 3, 4, 5 are ties,

so the rank should be 3 4 5

3
4

+ +()
= .

Chapter 6 InferentIal StatIStICS and regreSSIonS

210

 c. The number of non-zero dis is found.

 d. To each rank of di, let si = sign (di)ri.

 e. The sum of a positive signed rank is calculated using

W s
s

i

i

=
>
å

0

The test statistics calculated is W and the number n1

of non-zero dis is calculated.

The null hypothesis is that the population median has the specified

value of μ0.

• Null hypothesis: H0 : μ = μ0

• Alternate hypothesis: Ha : μ ≠ μ0

The normal test statistics formula is

z

W
n n

sign W
n n

S
i

n

i

=
-

+()æ

è
ç

ö

ø
÷ - × -

+()æ

è
ç

ö

ø
÷

×
=å

1 1 1 1

1

2

1

4
1
2

1

4

1
4

You reject the null hypothesis when

z Z where Z N> ()µ/ , ~2 0 1,

The common alpha, ∝, value is 0.05.

To use the Wilcoxon signed rank test in R, you can first generate the

data set using random.org packages, so that the variables are not normally

distributed. To use random.org for random number generation, you must

install the random packages:

Chapter 6 InferentIal StatIStICS and regreSSIonS

http://random.org
http://random.org

211

> install.packages("random");

Installing package into 'C:/Users/gohmi/Documents/R/win-

library/3.5'

(as 'lib' is unspecified)

also installing the dependency 'curl'

trying URL 'https://cran.rstudio.com/bin/windows/contrib/3.5/

curl_3.2.zip'

Content type 'application/zip' length 2986409 bytes (2.8 MB)

downloaded 2.8 MB

trying URL 'https://cran.rstudio.com/bin/windows/contrib/3.5/

random_0.2.6.zip'

Content type 'application/zip' length 466978 bytes (456 KB)

downloaded 456 KB

package 'curl' successfully unpacked and MD5 sums checked

package 'random' successfully unpacked and MD5 sums checked

The downloaded binary packages are in

 C:\Users\gohmi\AppData\Local\Temp\RtmpaizS1C\downloaded_

packages

To use the random package, you must load the package using the

library() function:

> library(random);

To create random numbers from random.org, you can use

> library(random);

> var1 <- randomNumbers(n=100, min=1, max=1000, col=1);

> var2 <- randomNumbers(n=100, min=1, max=1000, col=1);

> var3 <- randomNumbers(n=100, min=1, max=1000, col=1);

Chapter 6 InferentIal StatIStICS and regreSSIonS

http://random.org

212

n is the number of random numbers, min is the minimum value,

max is the maximum value, and col is the number of columns for all the

numbers. This is the method to generate true random numbers in R. Your

data may be different because the data is generated randomly.

You can then create the data using

> data <- data.frame(var1[,1], var2[,1], var3[,1]);

> data;

 var1...1. var2...1. var3...1.

1 680 9 871

2 547 589 768

3 750 733 611

4 840 494 16

5 529 373 680

6 94 509 493

7 106 89 195

8 956 992 570

9 853 330 425

10 295 485 504

11 633 924 523

To use Wilcoxon signed rank test, you can use the wilcox.test()

function:

> wilcox.test(data[,1], mu=0, alternatives="two.sided");

 Wilcoxon signed rank test with continuity correction

data: data[, 1]

V = 5050, p-value < 2.2e-16

alternative hypothesis: true location is not equal to 0

H0 0:m m=

Ha :m m¹ 0

Chapter 6 InferentIal StatIStICS and regreSSIonS

213

The p-value is 2.2e-16, which is less than 0.05. Hence, you reject the

null hypothesis. There are significant differences in the median for the first

variable median and the median of 0. The alternate hypothesis is true at

the 95% confidence interval.

 Wilcoxon-Mann-Whitney Test
The Wilcoxon-Mann-Whitney test is a nonparametric test to compare two

samples. It is a powerful substitute to the two-sample t-test.

For two independent samples, F(x) and G(y), where their sample size

is n1 and n2, and sample data can be x x xn1 2 1
, , ,¼ and y y yn1 2 2

, , ,¼ , the

hypothesis is

H F x G y0 : () = ()

H F x G ya : () ¹ ()

To test the two samples,

 1. Combine xi and yi as a group.

 2. Rank the group in ascending order, where ties are

the average of their rank. Let r1i be the rank assigned

for xi for i = 1,2,…,n1 and r2j be the rank assigned for

yi for j = 1,2,…,n2

 3. Calculate the sum of ranks:

S r
I

n

i1
1
1

1

=
=
å

S r
I

n

j2
1

2

2

=
=
å

Chapter 6 InferentIal StatIStICS and regreSSIonS

214

The test statistics U is calculated as follows:

U S
n n

= -
+()

1
1 1 1

2

The approximate normal statistics z is

z
U M U

U
=

- () ±

()

1
2

var

where

M U
n n() = 1 2

2

and the variance of U is

Var U
n n n n n n

n n n n
TS() = + +()

-
+() + -()

´1 2 1 2 1 2

1 2 1 2

1

12 1

where

TS
t t t

j

j j j=
() -() +()

=
å

1

1 1

12

t

τ is the number of ties in sample and tj is the number of ties in the jth

group.

If there are no ties, the variance of U is

Var U
n n n n() = + +()1 2 1 2 1

12

Chapter 6 InferentIal StatIStICS and regreSSIonS

215

To use the Wilcoxon-Matt-Whitney test (or the Wilcoxon rank sum test

or the Mann-Whitney test) in R, you can use the wilcox.test() function:

> var1 <- randomNumbers(n=100, min=1, max=1000, col=1);

> var2 <- randomNumbers(n=100, min=1, max=1000, col=1);

> var3 <- randomNumbers(n=100, min=1, max=1000, col=1);

> data <- data.frame(var1[,1], var2[,1], var3[,1]);

> wilcox.test(data[,1], data[,2], correct=FALSE);

 Wilcoxon rank sum test

data: data[, 1] and data[, 2]

W = 5697.5, p-value = 0.08833

alternative hypothesis: true location shift is not equal to 0

H F x G y0 : () = ()

H F x G ya : () ¹ ()

The p-value is 0.3351, which is more than 0.05. Hence, you fail to reject

the null hypothesis. There are no significant differences in the median for

first variable median and second variable median. The null hypothesis is

true at the 95% confidence interval.

Chapter 6 InferentIal StatIStICS and regreSSIonS

216

 Kruskal-Wallis Test
The Kruskal-Wallis test is a nonparametric test that is an extension of the

Mann-Whitney U test for three or more samples. The test requires samples

to be identically distributed. Kruskal-Wallis is an alternative to one-way

ANOVA. The Kruskal-Wallis test tests the differences between scores of k

independent samples of unequal sizes with the ith sample containing li

rows. The hypothesis is

H k0 0 1 2:m m m m= = =¼=

Ha k:m m0 ¹

where μis the median. The alternate hypothesis is that at least one median

is different.

The algorithm is as follows:

 1. Rank all rows in ascending order. Tied scores will

have average ranks.

 2. Sum up the ranks of rows in each sample to give

rank sum Ri for i = 1,2,…,k.

 3. The Kruskal-Wallis test statistics is calculated as

H
N N

R

l
N

i

k
i

i

=
+()

- +()
=
å12

1
3 1

1

2

where

N l
i

k

i=
=
å

1

N is the total number of rows. If there are tied scores, H is divided by

1
3

3
-
å -()

-

t t

N N

Chapter 6 InferentIal StatIStICS and regreSSIonS

217

Where t is the number of tied scores in a group.

To use Kruskal-Wallis test in R:

> data("airquality");

> str(airquality);

'data.frame': 153 obs. of 6 variables:

 $ Ozone : int 41 36 12 18 NA 28 23 19 8 NA ...

 $ Solar.R: int 190 118 149 313 NA NA 299 99 19 194 ...

 $ Wind : num 7.4 8 12.6 11.5 14.3 14.9 8.6 13.8 20.1 8.6

...

 $ Temp : int 67 72 74 62 56 66 65 59 61 69 ...

 $ Month : int 5 5 5 5 5 5 5 5 5 5 ...

 $ Day : int 1 2 3 4 5 6 7 8 9 10 ...

> summary(airquality);

Ozone Solar.R Wind

 Temp Month Day

Min. : 1.00 Min. : 7.0 Min. : 1.700

 Min. :56.00 Min. :5.000 Min. : 1.0

1st Qu.: 18.00 1st Qu.:115.8 1st Qu.: 7.400

 1st Qu.:72.00 1st Qu.:6.000 1st Qu.: 8.0

Median : 31.50 Median :205.0 Median : 9.700

 Median :79.00 Median :7.000 Median :16.0

Mean : 42.13 Mean :185.9 Mean : 9.958

 Mean :77.88 Mean :6.993 Mean :15.8

3rd Qu.: 63.25 3rd Qu.:258.8 3rd Qu.:11.500

 3rd Qu.:85.00 3rd Qu.:8.000 3rd Qu.:23.0

Max. :168.00 Max. :334.0 Max. :20.700

 Max. :97.00 Max. :9.000 Max. :31.0

NA's :37 NA's :7

> kruskal.test(airquality$Ozone ~ airquality$Month);

Chapter 6 InferentIal StatIStICS and regreSSIonS

218

 Kruskal-Wallis rank sum test

data: airquality$Ozone by airquality$Month

Kruskal-Wallis chi-squared = 29.267, df = 4, p-value = 6.901e-06

H k0 0 1 2:m m m m= = =¼=

Ha k:m m0 ¹

The p-value is 6.901e-06, which is less than 0.05. Hence, you reject the

null hypothesis. There are significant differences in the median for the first

variable median and the second variable median. The alternate hypothesis

is true at the 95% confidence interval.

 Linear Regressions
Regression analysis is a form of predictive modelling techniques

that identify the relationships between dependent and independent

variables(s). The technique is used to find causal effect relationships

between variables.

The benefit of using regression analysis is that it identifies the

significant relationships between dependent and independent variables

and the strength of the impact of multiple independent variables on

independent variables.

Linear regression finds the relationship between one dependent

variable and one independent variable using a regression line.

The linear regression equation is y = b0+b1x

y is the dependent variable, x is the independent variable, b0 is the

intercept, and b1 is the slope. See Figure 6-8.

Chapter 6 InferentIal StatIStICS and regreSSIonS

219

To calculate the slope, you can use

b
x x y y

x x
i

n

i i

i

n

i

1
1

1

2
=

-() -()
-()

=

=

å
å

To calculate the intercept, you can use

b y b x0 1= -

If b1 > 0, x and y have a positive relationship.

If b1 < 0, x and y have a negative relationship.

Figure 6-8. LInear Regressions

Chapter 6 InferentIal StatIStICS and regreSSIonS

220

To use linear regression in R, you use the lm() function:

> set.seed(123);

> x <- rnorm(100, mean=1, sd=1);

> y <- rnorm(100, mean=2, sd=2);

> data <- data.frame(x, y);

> mod <- lm(data$y ~ data$x, data=data);

> mod;

Call:

lm(formula = data$y ~ data$x, data = data)

Chapter 6 InferentIal StatIStICS and regreSSIonS

221

Coefficients:

(Intercept) data$x

 1.8993 -0.1049

> summary(mod);

Call:

lm(formula = data$y ~ data$x, data = data)

Residuals:

 Min 1Q Median 3Q Max

-3.815 -1.367 -0.175 1.161 6.581

Coefficients:

 Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.8993 0.3033 6.261 1.01e-08 ***

data$x -0.1049 0.2138 -0.491 0.625

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1.941 on 98 degrees of freedom

Multiple R-squared: 0.002453, Adjusted

R-squared: -0.007726

F-statistic: 0.241 on 1 and 98 DF, p-value: 0.6246

The output depicts that the linear equation is

y x= - +0 1049 1 8993. .

The p-values of 1.01e-08, 0.625, and 0.6246 tell you the significance of

the linear model. When the p-value is less than 0.05, the model is significant.

• H0 : : Coefficient associated with the variable is equal to

zero

• Ha : : Coefficient is not equal to zero (there

is a relationship)

Chapter 6 InferentIal StatIStICS and regreSSIonS

222

The intercept has a p-value of 1.01e-08, which is smaller than 0.05, so

there is a significance with the y variable. The significance is indicated with

the number of *. The x has a p-value of 0.625, which is more than 0.05, so

there is no significance with the y variable. The null hypothesis is true at

the 95% confidence interval.

R-square depicts the proportion of the variation in the dependent

variable, and the formula is

R
SSE

SST
2 1= -

where SSE is the sum of squared errors

SSE y y
i

n

i i= -()å

2

and SST is the sum of the squared total

SST y y
i

n

i i= -()å 2

y is the mean of Y and is the fitted value for row iy .

y is the fitted value, which mean that in y = -0.1049x + 1.8993, you fit in

x to get y. The y is the y . y y-() means that you use the original y values

minus the y predicted values, which is the error. Hence,
i

i iy yå -() 2

 is

the sum of the square error (SSE). In order for
SSE

SST
 to be small, SSE must

be small. Nevertheless, 1-
SSE

SST
 is large when

SSE

SST
 is small.

Hence, the higher the R-squared and the adjusted R-squared, the

better the linear model. The lower the standard error, the better the model.

Chapter 6 InferentIal StatIStICS and regreSSIonS

223

 Multiple Linear Regressions
A simple linear regression is for a single response variable, y, and a single

independent variable, x. The equation for a simple linear regression is

y b b x= +0 1

Multiple linear regression is built from a simple linear regression.

Multiple linear regression is used when you have more than one

independent variable. The equation of a multiple linear regression is

y b b x b x b xk k= + + +¼+ +0 1 1 2 2

When you have n observations or rows in the data set, you have the

following model:

y b b x b x b xk k1 0 1 11 2 12 1 1= + + +¼+ +

y b b x b x b xk k2 0 1 21 2 22 2 2= + + +¼+ +

y b b x b x b xk k3 0 1 31 2 32 3 3= + + +¼+ +

¼

y b b x b x b xn n n k nk n= + + +¼+ +0 1 1 2 2

Using a matrix, you can represent the equations as

y Xb= +

Chapter 6 InferentIal StatIStICS and regreSSIonS

224

where

y

y

y

y

X

x x x

x x x

n

k

=

é

ë

ê
ê
ê
ê
ê
ê
ê
ê

ù

û

ú
ú
ú
ú
ú
ú
ú
ú

=

1

2

11 12 1

21 22 2

1

1

.

.

.

. . .

. . . kk

n n nkx x x

. . . .

. . . .

. . . .

. . .1 1 2

é

ë

ê
ê
ê
ê
ê
ê
ê
ê

ù

û

ú
ú
ú
ú
ú
ú
ú
ú

b

b

b

b

and

n n

=

é

ë

ê
ê
ê
ê
ê
ê
ê
ê

ù

û

ú
ú
ú
ú
ú
ú
ú
ú

=

é

ë

ê
ê
ê
ê
ê
ê
ê
ê

ù

û

ú
1

2

1

2

.

.

.

.

.

.

úú
ú
ú
ú
ú
ú
ú

To calculate the coefficients:

b X X X y = ()¢ ¢-1

Chapter 6 InferentIal StatIStICS and regreSSIonS

225

You can use the multiple linear regression in R:

Chapter 6 InferentIal StatIStICS and regreSSIonS

226

> set.seed(123);

> x <- rnorm(100, mean=1, sd=1);

> x2 <- rnorm(100, mean=2, sd=5);

> y <- rnorm(100, mean=2, sd=2);

> data <- data.frame(x, x2, y);

> mod <- lm(data$y ~ data$x + data$x2, data=data);

> mod;

Call:

lm(formula = data$y ~ data$x + data$x2, data = data)

Chapter 6 InferentIal StatIStICS and regreSSIonS

227

Coefficients:

(Intercept) data$x data$x2

 2.517425 -0.266343 0.009525

> summary(mod);

Call:

lm(formula = data$y ~ data$x + data$x2, data = data)

Residuals:

 Min 1Q Median 3Q Max

-3.7460 -1.3215 -0.2489 1.2427 4.1597

Coefficients:

 Estimate Std. Error t value Pr(>|t|)

(Intercept) 2.517425 0.305233 8.248 7.97e-13 ***

data$x -0.266343 0.209739 -1.270 0.207

data$x2 0.009525 0.039598 0.241 0.810

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1.903 on 97 degrees of freedom

Multiple R-squared: 0.01727, Adjusted R-squared: -0.00299

F-statistic: 0.8524 on 2 and 97 DF, p-value: 0.4295

To create multiple linear regression in R, you must first create data:

> set.seed(123);

> x <- rnorm(100, mean=1, sd=1);

> x2 <- rnorm(100, mean=2, sd=5);

> y <- rnorm(100, mean=2, sd=2);

> data <- data.frame(x, x2, y);

Chapter 6 InferentIal StatIStICS and regreSSIonS

228

You create a multiple linear regression model using the lm() function:

> mod <- lm(data$y ~ data$x + data$x2, data=data);

> mod;

Call:

lm(formula = data$y ~ data$x + data$x2, data = data)

Coefficients:

(Intercept) data$x data$x2

 2.517425 -0.266343 0.009525

data$y ~ data$x + data$x2 is y = x + x2

To get the summary of the model, you can use the summary() function:

 > summary(mod);

Call:

lm(formula = data$y ~ data$x + data$x2, data = data)

Residuals:

 Min 1Q Median 3Q Max

-3.7460 -1.3215 -0.2489 1.2427 4.1597

Coefficients:

 Estimate Std. Error t value Pr(>|t|)

(Intercept) 2.517425 0.305233 8.248 7.97e-13 ***

data$x -0.266343 0.209739 -1.270 0.207

data$x2 0.009525 0.039598 0.241 0.810

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1.903 on 97 degrees of freedom

Multiple R-squared: 0.01727, Adjusted R-squared: -0.00299

F-statistic: 0.8524 on 2 and 97 DF, p-value: 0.4295

Chapter 6 InferentIal StatIStICS and regreSSIonS

229

The linear model from the output is

Y = -0.266343x + 0.009525x2 + 2.517425

The p-values are 7.97e-13, 0.207, 0.810, 0.4295. The intercept is

significant because the p-value is 7.97e-13, which is smaller than 0.05.

R
SSE

SST

y y

y y

i i

i i

i

i

2

2

21 1= - = -
-()
-()

å
å

y is the mean of Y and is the fitted value for row iy .

y is the fitted value, which means that in y = -0.266343x + 0.009525x2 +

2.517425, you fit in x and x2 to get y. The y is the y . y y-() means that you

use the original y values minus the y predicted values, which is the error.

Hence,
i

i iy yå -() 2

 is the SSE. In order for SSE

SST
 to be small,

SSE must be small. Nevertheless, 1-
SSE

SST
 is large when

SSE

SST
 is small. The

R-squared is 0.01727 and the adjusted R-squared is -0.00299. The higher

the R-squared value, the better, as SSE is smaller.

 Conclusion
In this chapter, you looked into R programming. You now know that

inferential statistics and descriptive statistics are the main branches of

statistics. Descriptive statistics derives a summary from the data set and

uses central tendency, dispersion, and skewness. Inferential statistics

describes and makes inferences about the population and the sampled

data. In inferential statistics, you use hypothesis testing and estimating of

parameters.

You learned that the apply() function can perform a loop to go

through the data and apply a function. The function can be a mean()

function from R or it can be a customized function.

Chapter 6 InferentIal StatIStICS and regreSSIonS

230

You also found out that sampling is the selection of a subset of a

population. The population is the data from everyone. Sometimes a

sample can be a subset from a full data set. The advantages of sampling

are that the cost is lower and the data collection is more efficient than

collecting the data from everyone in the population.

You also learned that correlation is a statistical association to find how

close two variables are and derive a linear relationship between them.

You also learned that covariance is a measure of variability between

two variables. The greater value of one variable and the greater of another

variable means or will result in a covariance that is positive. The greater

values of one variable to the lesser values of the other variable will result in

a negative covariance.

You also learned how p-values help you determine the significance

of your statistical tests results. Your claim in the test is known as a null

hypothesis and the alternate hypothesis means that you believe the null

hypothesis is untrue.

You also learned that a t-test is one of the more important tests in

statistics. A t-test is used to determine whether the mean between two data

points or samples are equal to each other. The null hypothesis means that

the two means are equal, and the alternative means that the two means are

different.

You also learned that the chi-square test is used to compare the

relationship between two categorical variables. The null hypothesis means

that there is no relationship between the categorical variables.

You also learned that ANOVA is the process of testing the means of two

or more groups. ANOVA also checks the impact of factors by comparing

the means of different samples. In a t-test, you test the means of two

samples; in a chi-square test, you test categorical attributes or variables;

and in ANOVA, you test more samples.

You also learned that nonparametric tests are tests that do not require

the variable and sample to be normally distributed. Most of the time you

should use parametric tests like t-tests, chi-square tests, and ANOVA

Chapter 6 InferentIal StatIStICS and regreSSIonS

231

because they are more accurate. You use nonparametric tests when you do

not have normally distributed data, and the sample data is big.

You also learned that regression analysis is some form of a predictive

modeling technique that identifies the relationships between dependent

and independent variables(s). The technique is used to find causal effect

relationships between variables.

 References
(n.d.). Manuscript submitted for publication, Columbia University.

Retrieved September 6, 2018, from www.stat.columbia.edu/~martin/

W2024/R8.pdf.

17.5.1.2 Algorithms (One-sample Wilcoxon signed rank test). (n.d.).

Retrieved from www.originlab.com/doc/Origin-Help/SignRank1-

Algorithm.

17.5.4.2 Algorithms (Mann-Whitney Test). (n.d.). Retrieved from www.

originlab.com/doc/Origin-Help/MW-Test-Algorithm.

17.5.6.2 Algorithms (Kruskal-Wallis ANOVA). (n.d.). Retrieved from

www.originlab.com/doc/Origin-Help/KW-ANOVA-Algorithm.

Analysis of variance. (2018, September 03). Retrieved from https://

en.wikipedia.org/wiki/Analysis_of_variance.

ANOVA Test: Definition, Types, Examples. (n.d.). Retrieved from www.

statisticshowto.com/probability-and-statistics/hypothesis-

testing/anova/.

Apply(), sapply(), tapply() in R with Examples. (n.d.). Retrieved from

www.guru99.com/r-apply-sapply-tapply.html.

Chi-Square Statistic: How to Calculate It/Distribution. (n.d.). Retrieved

from www.statisticshowto.com/probability-and-statistics/chi-

square/.

Chi-Square Test of Independence in R. (n.d.). Retrieved from www.

sthda.com/english/wiki/chi-square-test-of-independence-in-r.

Chapter 6 InferentIal StatIStICS and regreSSIonS

http://www.stat.columbia.edu/~martin/W2024/R8.pdf
http://www.stat.columbia.edu/~martin/W2024/R8.pdf
http://www.originlab.com/doc/Origin-Help/SignRank1-Algorithm
http://www.originlab.com/doc/Origin-Help/SignRank1-Algorithm
http://www.originlab.com/doc/Origin-Help/MW-Test-Algorithm
http://www.originlab.com/doc/Origin-Help/MW-Test-Algorithm
http://www.originlab.com/doc/Origin-Help/KW-ANOVA-Algorithm
https://en.wikipedia.org/wiki/Analysis_of_variance
https://en.wikipedia.org/wiki/Analysis_of_variance
http://www.statisticshowto.com/probability-and-statistics/hypothesis-testing/anova/
http://www.statisticshowto.com/probability-and-statistics/hypothesis-testing/anova/
http://www.statisticshowto.com/probability-and-statistics/hypothesis-testing/anova/
http://www.guru99.com/r-apply-sapply-tapply.html
http://www.statisticshowto.com/probability-and-statistics/chi-square/
http://www.statisticshowto.com/probability-and-statistics/chi-square/
http://www.sthda.com/english/wiki/chi-square-test-of-independence-in-r
http://www.sthda.com/english/wiki/chi-square-test-of-independence-in-r

232

Correlation. (n.d.). Retrieved from www.mathsisfun.com/data/

correlation.html.

Covariance. (n.d.). Retrieved from http://mathworld.wolfram.com/

Covariance.html.

Das, S. (2018, June 06). Data Sampling Methods in R - DZone

AI. Retrieved from https://dzone.com/articles/data-sampling-

methods-in-r.

Department of Statistics. (n.d.). Retrieved from https://statistics.

berkeley.edu/computing/r-t-tests.

P. (n.d.). Eval(ez_write_tag([[728,90],‘r_statistics_co-box-

3’,‘ezslot_4’]));Linear Regression. Retrieved from http://r-statistics.

co/Linear-Regression.html.

Evaluation of Means for small samples - The t-test. (n.d.). Retrieved

from www.chem.utoronto.ca/coursenotes/analsci/stats/ttest.html.

F Statistic/F Value: Simple Definition and Interpretation. (n.d.).

Retrieved from www.statisticshowto.com/probability-and-

statistics/f-statistic-value-test/.

Galili, T. (n.d.). Tag: Iris data set. Retrieved from www.r-statistics.

com/tag/iris-data-set/.

Ghosh, B. (2017, August 28). One-way ANOVA in R. Retrieved from

https://datascienceplus.com/one-way-anova-in-r/.

How to Take Samples from Data in R. (n.d.). Retrieved from www.

dummies.com/programming/r/how-to-take-samples-from-data-in-r/.

Introduction. (n.d.). Retrieved from http://sphweb.bumc.bu.edu/

otlt/MPH-Modules/BS/BS704_Nonparametric/BS704_Nonparametric_

print.html.

Kabacoff, R. (n.d.). Correlations. Retrieved from www.statmethods.

net/stats/correlations.html.

Kabacoff, R. (n.d.). ANOVA. Retrieved from www.statmethods.net/

stats/anova.html.

Chapter 6 InferentIal StatIStICS and regreSSIonS

http://www.mathsisfun.com/data/correlation.html
http://www.mathsisfun.com/data/correlation.html
http://mathworld.wolfram.com/Covariance.html
http://mathworld.wolfram.com/Covariance.html
https://dzone.com/articles/data-sampling-methods-in-r
https://dzone.com/articles/data-sampling-methods-in-r
https://statistics.berkeley.edu/computing/r-t-tests
https://statistics.berkeley.edu/computing/r-t-tests
http://r-statistics.co/Linear-Regression.html
http://r-statistics.co/Linear-Regression.html
http://www.chem.utoronto.ca/coursenotes/analsci/stats/ttest.html
http://www.statisticshowto.com/probability-and-statistics/f-statistic-value-test/
http://www.statisticshowto.com/probability-and-statistics/f-statistic-value-test/
http://www.r-statistics.com/tag/iris-data-set/
http://www.r-statistics.com/tag/iris-data-set/
https://datascienceplus.com/one-way-anova-in-r/
http://www.dummies.com/programming/r/how-to-take-samples-from-data-in-r/
http://www.dummies.com/programming/r/how-to-take-samples-from-data-in-r/
http://sphweb.bumc.bu.edu/otlt/MPH-Modules/BS/BS704_Nonparametric/BS704_Nonparametric_print.html
http://sphweb.bumc.bu.edu/otlt/MPH-Modules/BS/BS704_Nonparametric/BS704_Nonparametric_print.html
http://sphweb.bumc.bu.edu/otlt/MPH-Modules/BS/BS704_Nonparametric/BS704_Nonparametric_print.html
http://www.statmethods.net/stats/correlations.html
http://www.statmethods.net/stats/correlations.html
http://www.statmethods.net/stats/anova.html
http://www.statmethods.net/stats/anova.html

233

Kabacoff, R. (n.d.). Nonparametric Tests of Group Differences.

Retrieved from www.statmethods.net/stats/nonparametric.html.

Kabacoff, R. (n.d.). Multiple (Linear) Regression. Retrieved from www.

statmethods.net/stats/regression.html.

Kruskal-Wallis Test. (n.d.). Retrieved from www.r-tutor.com/

elementary-statistics/non-parametric-methods/kruskal-wallis-

test.

Kruskal-Wallis Test in R. (n.d.). Retrieved from www.sthda.com/

english/wiki/kruskal-wallis-test-in-r.

Linear Regression Analysis using SPSS Statistics. (n.d.). Retrieved from

https://statistics.laerd.com/spss-tutorials/linear-regression-

using-spss-statistics.php.

Mann-Whitney-Wilcoxon Test. (n.d.). Retrieved from www.r-tutor.

com/elementary-statistics/non-parametric-methods/mann-whitney-

wilcoxon-test.

MANOVA Test in R: Multivariate Analysis of Variance. (n.d.). Retrieved

from www.sthda.com/english/wiki/manova-test-in-r-multivariate-

analysis-of-variance.

Multiple Linear Regression Analysis. (n.d.). Retrieved from http://

reliawiki.org/index.php/Multiple_Linear_Regression_Analysis.

Non Parametric Data and Tests (Distribution Free Tests). (n.d.).

Retrieved from www.statisticshowto.com/parametric-and-non-

parametric-data/.

One-Sample Wilcoxon Signed Rank Test in R. (n.d.). Retrieved from

www.sthda.com/english/wiki/one-sample-wilcoxon-signed-rank-

test-in-r.

One-Way ANOVA Test in R. (n.d.). Retrieved from www.sthda.com/

english/wiki/one-way-anova-test-in-r.

One-Way ANOVA Test in R. (n.d.). Retrieved from www.sthda.com/

english/wiki/one-way-anova-test-in-r.

P-value in Statistical Hypothesis Tests: What is it? (n.d.). Retrieved from

www.statisticshowto.com/p-value/.

Chapter 6 InferentIal StatIStICS and regreSSIonS

http://www.statmethods.net/stats/nonparametric.html
http://www.statmethods.net/stats/regression.html
http://www.statmethods.net/stats/regression.html
http://www.r-tutor.com/elementary-statistics/non-parametric-methods/kruskal-wallis-test
http://www.r-tutor.com/elementary-statistics/non-parametric-methods/kruskal-wallis-test
http://www.r-tutor.com/elementary-statistics/non-parametric-methods/kruskal-wallis-test
http://www.sthda.com/english/wiki/kruskal-wallis-test-in-r
http://www.sthda.com/english/wiki/kruskal-wallis-test-in-r
https://statistics.laerd.com/spss-tutorials/linear-regression-using-spss-statistics.php
https://statistics.laerd.com/spss-tutorials/linear-regression-using-spss-statistics.php
http://www.r-tutor.com/elementary-statistics/non-parametric-methods/mann-whitney-wilcoxon-test
http://www.r-tutor.com/elementary-statistics/non-parametric-methods/mann-whitney-wilcoxon-test
http://www.r-tutor.com/elementary-statistics/non-parametric-methods/mann-whitney-wilcoxon-test
http://www.sthda.com/english/wiki/manova-test-in-r-multivariate-analysis-of-variance
http://www.sthda.com/english/wiki/manova-test-in-r-multivariate-analysis-of-variance
http://reliawiki.org/index.php/Multiple_Linear_Regression_Analysis
http://reliawiki.org/index.php/Multiple_Linear_Regression_Analysis
http://www.statisticshowto.com/parametric-and-non-parametric-data/
http://www.statisticshowto.com/parametric-and-non-parametric-data/
http://www.sthda.com/english/wiki/one-sample-wilcoxon-signed-rank-test-in-r
http://www.sthda.com/english/wiki/one-sample-wilcoxon-signed-rank-test-in-r
http://www.sthda.com/english/wiki/one-way-anova-test-in-r
http://www.sthda.com/english/wiki/one-way-anova-test-in-r
http://www.sthda.com/english/wiki/one-way-anova-test-in-r
http://www.sthda.com/english/wiki/one-way-anova-test-in-r
http://www.statisticshowto.com/p-value/

234

Paired t Test. (n.d.). Retrieved from www.statsdirect.com/help/

parametric_methods/paired_t.htm.

R ANOVA Tutorial: One-way & Two-way [with Examples]. (n.d.).

Retrieved from www.guru99.com/r-anova-tutorial.html.

R Tutorial Series: Multiple Linear Regression. (2016, October 02).

Retrieved from www.r-bloggers.com/r-tutorial-series-multiple-

linear-regression/.

R: Wilcoxon Rank Sum and Signed Rank Tests. (n.d.). Retrieved from

https://stat.ethz.ch/R-manual/R-devel/library/stats/html/

wilcox.test.html.

Ray, S., & Business Analytics and Intelligence. (2018, April 06).

7 Types of Regression Techniques you should know. Retrieved from

www.analyticsvidhya.com/blog/2015/08/comprehensive-guide-

regression/.

Regression Analysis: Step by Step Articles, Videos, Simple Definitions.

(n.d.). Retrieved from www.statisticshowto.com/probability-and-

statistics/regression-analysis/.

Sample rows of subgroups from dataframe with dplyr. (n.d.). Retrieved

from https://stackoverflow.com/questions/21255366/sample-rows-

of-subgroups-from- dataframe-with-dplyr.

Sampling in Statistics: Different Sampling Methods, Types & Error.

(n.d.). Retrieved from www.statisticshowto.com/probability-and-

statistics/sampling-in- statistics/.

SIGNED RANK TEST. (n.d.). Retrieved from www.itl.nist.gov/

div898/software/dataplot/refman1/auxillar/signrank.htm.

Simple Random Sampling and Other Sampling Methods. (n.d.).

Retrieved September 6, 2018, from https://onlinecourses.science.

psu.edu/stat100/node/18/.

Singh, G., H., & Budding Data Scientist. (2018, January 15). A Simple

Introduction to ANOVA (with applications in Excel). Retrieved from www.

analyticsvidhya.com/blog/2018/01/anova-analysis-of-variance/.

Chapter 6 InferentIal StatIStICS and regreSSIonS

http://www.statsdirect.com/help/parametric_methods/paired_t.htm
http://www.statsdirect.com/help/parametric_methods/paired_t.htm
http://www.guru99.com/r-anova-tutorial.html
http://www.r-bloggers.com/r-tutorial-series-multiple-linear-regression/
http://www.r-bloggers.com/r-tutorial-series-multiple-linear-regression/
https://stat.ethz.ch/R-manual/R-devel/library/stats/html/wilcox.test.html
https://stat.ethz.ch/R-manual/R-devel/library/stats/html/wilcox.test.html
http://www.analyticsvidhya.com/blog/2015/08/comprehensive-guide-regression/
http://www.analyticsvidhya.com/blog/2015/08/comprehensive-guide-regression/
http://www.statisticshowto.com/probability-and-statistics/regression-analysis/
http://www.statisticshowto.com/probability-and-statistics/regression-analysis/
https://stackoverflow.com/questions/21255366/sample-rows-of-subgroups-from-dataframe-with-dplyr
https://stackoverflow.com/questions/21255366/sample-rows-of-subgroups-from-dataframe-with-dplyr
http://www.statisticshowto.com/probability-and-statistics/sampling-in-statistics/
http://www.statisticshowto.com/probability-and-statistics/sampling-in-statistics/
http://www.itl.nist.gov/div898/software/dataplot/refman1/auxillar/signrank.htm
http://www.itl.nist.gov/div898/software/dataplot/refman1/auxillar/signrank.htm
https://onlinecourses.science.psu.edu/stat100/node/18/
https://onlinecourses.science.psu.edu/stat100/node/18/
http://www.analyticsvidhya.com/blog/2018/01/anova-analysis-of-variance/
http://www.analyticsvidhya.com/blog/2018/01/anova-analysis-of-variance/

235

Swaminathan, S. (2018, February 26). Linear Regression -

Detailed View – Towards Data Science. Retrieved from https://

towardsdatascience.com/linear-regression- detailed-view-

ea73175f6e86.

T Test. (n.d.). Retrieved from https://researchbasics.education.

uconn.edu/t-test/#.

T test formula. (n.d.). Retrieved from www.sthda.com/english/wiki/

t-test-formula.

The chi-square test. (n.d.). Retrieved September 6, 2018, from

https://web.stanford.edu/class/psych252/cheatsheets/chisquare.

html.

Two sample Student’s t-test #1. (2010, September 06). Retrieved from

www.r-bloggers.com/two-sample-students-t-test-1/.

Two-way Anova. (n.d.). Retrieved from https://rcompanion.org/

rcompanion/d_08.html.

Two-way ANOVA. (n.d.). Retrieved September 6, 2018, from https://

onlinecourses.science.psu.edu/stat500/node/216/.

Unpaired Two-Samples T-test in R. (n.d.). Retrieved from www.sthda.

com/english/wiki/unpaired-two-samples-t-test-in-r.

Using apply, sapply, lapply in R. (2012, December 22). Retrieved from

www.r-bloggers.com/using-apply-sapply-lapply-in-r/.

Using Chi-Square Statistic in Research. (n.d.). Retrieved from www.

statisticssolutions.com/using-chi-square-statistic-in-research/.

Using R for statistical analyses - ANOVA. (n.d.). Retrieved from www.

gardenersown.co.uk/Education/Lectures/R/anova.htm.

Welch t-test. (n.d.). Retrieved from www.sthda.com/english/wiki/

welch-t-test.

Wetherill, C. (2015, August 17). How to Perform T-tests in R. Retrieved

from https://datascienceplus.com/t-tests/.

Chapter 6 InferentIal StatIStICS and regreSSIonS

https://towardsdatascience.com/linear-regression-detailed-view-ea73175f6e86
https://towardsdatascience.com/linear-regression-detailed-view-ea73175f6e86
https://towardsdatascience.com/linear-regression-detailed-view-ea73175f6e86
https://researchbasics.education.uconn.edu/t-test/#
https://researchbasics.education.uconn.edu/t-test/#
http://www.sthda.com/english/wiki/t-test-formula
http://www.sthda.com/english/wiki/t-test-formula
https://web.stanford.edu/class/psych252/cheatsheets/chisquare.html
https://web.stanford.edu/class/psych252/cheatsheets/chisquare.html
http://www.r-bloggers.com/two-sample-students-t-test-1/
https://rcompanion.org/rcompanion/d_08.html
https://rcompanion.org/rcompanion/d_08.html
https://onlinecourses.science.psu.edu/stat500/node/216/
https://onlinecourses.science.psu.edu/stat500/node/216/
http://www.sthda.com/english/wiki/unpaired-two-samples-t-test-in-r
http://www.sthda.com/english/wiki/unpaired-two-samples-t-test-in-r
http://www.r-bloggers.com/using-apply-sapply-lapply-in-r/
http://www.statisticssolutions.com/using-chi-square-statistic-in-research/
http://www.statisticssolutions.com/using-chi-square-statistic-in-research/
http://www.gardenersown.co.uk/Education/Lectures/R/anova.htm
http://www.gardenersown.co.uk/Education/Lectures/R/anova.htm
http://www.sthda.com/english/wiki/welch-t-test
http://www.sthda.com/english/wiki/welch-t-test
https://datascienceplus.com/t-tests/

236

What a p-value Tells You about Statistical Data. (n.d.). Retrieved from

www.dummies.com/education/math/statistics/what-a-p-value-tells-

you-about-statistical-data/.

Wilcoxon-Mann-Whitney rank sum test (or test U). (2009, August 05).

Retrieved from www.r-bloggers.com/wilcoxon-mann-whitney-rank-sum-

test-or-test-u/.

Chapter 6 InferentIal StatIStICS and regreSSIonS

http://www.dummies.com/education/math/statistics/what-a-p-value-tells-you-about-statistical-data/
http://www.dummies.com/education/math/statistics/what-a-p-value-tells-you-about-statistical-data/
http://www.r-bloggers.com/wilcoxon-mann-whitney-rank-sum-test-or-test-u/
http://www.r-bloggers.com/wilcoxon-mann-whitney-rank-sum-test-or-test-u/

237© Eric Goh Ming Hui 2019
E. G. M. Hui, Learn R for Applied Statistics, https://doi.org/10.1007/978-1-4842-4200-1

Index

A
aes() function, 152
ANOVA

between-group
variability, 199–200

grand mean, 198
hypothesis, 198
one-way, 202–203
two-way, 204, 206
within-group variability, 201–202

Apache Spark, 14–15, 18
apply() function, 173, 175–176

B
Bar chart, 130–134
barplot() function, 130
Big data

Apache Spark, 14
challenges, 13, 17
formats and types, 14
Hadoop, 14
IoT devices, 14
properties, 17
relational databases and

desktop statistics, 14
velocity, 14
volume, 13

Binomial distribution, 121–124
Boolean operators, 68
Boxplot, 143–144
Break keyword, 72–75
Business understanding, 8

C
Calculator R script

add(), subtract(), product(), and
division() functions, 81

readline() function, 81
running in RStudio IDE, 82–83

Categorical data, 104
Central limit theorem, 87
Central tendency, 87, 105, 124–125
Chi-square test, 197

contingency test, 196–198
goodness of fit test, 194–196

Code editor, 42–45
Comma-separated values (CSV)

file, 88
reading, 89–90
writing, 91

Common charts
bar chart, 158–159
boxplot, 163–166
density plot, 161

https://doi.org/10.1007/978-1-4842-4200-1

238

histogram, 160
line chart, 162–163
scatterplot, 161–162

Computing Machinery and
Intelligence, 12

Contingency test, 196–198
coord_flip() function, 159
Correlations, 183–184
Covariance, 185–186
Cross-industry standard

process of data mining
(CRISP-DM), 7–8

Cumulative distribution function
(CDF), 118

D
Data acquisition, 10
Data frame, 63–67
Data mining, 1–2, 15–17

business understanding, 8
CRISP-DM, 7–8
data preparation, 8
data understanding, 8
definition, 6
deployment, 9
evaluation, 9
modeling, 9
Nayes theorem, 7
statistical learning and machine

learning algorithms, 7

Data preparation, 8
Data processing

data selection, 97–99
filtering, 101–102
removing

duplicates, 103
missing values, 102

sorting, 99–101
Data science, 16

data product, 4
diagram, 6
domain expertise, 5
history of, 5
linear regression, 5
product design and engineering

knowledge, 6
statistics, 5

Data types, 48–50
Data understanding, 8, 17
Data visualization, 129
Descriptive analytics, 12, 17
Descriptive statistics, 2–3, 173

central limit theorem, 88
central tendency, 87–88
data and variables, 88

dplyr library, 181–182

E
element_text() function, 157
Excel file

reading, 92–93
writing, 93

Common charts (cont.)

Index

239

F
Facebook, 15, 18
Fit test, 194–196
For loop, 69–70
Functions, 75–77, 79

G
GATE, 15
geom_point() function, 153
getwd() function, 89
ggplot2

common charts (see Common
charts)

geometric objects, 152–155
grammar of

graphics, 150–151
labels, 155–156
setup, 151–152
themes, 156–157

ggplotly() function, 168
ggsave() function, 165
GNU package, 1
Google, 15, 18

H
Hadoop, 14
High-level programming

language (HLL), 2–3, 16
hist() function, 135
Histogram, 135–136
Hypothesis testing, 186

I
Inferential statistics, 2, 4, 174
Integrated development

environment (IDE), 2, 19
code editors, 20
Dartmouth BASIC, 21
features, 21
NetBeans, 21
RStudio and R (see RStudio IDE)
Softbench, 21

Interquartile range, 111–112
IQR() and quantile() functions, 112

J
JSON file, 96–97

K
Kruskal-Wallis test, 216, 218

L
labs() function, 155
lapply() function, 173, 177
library() function, 141, 148, 151, 211
Linear regression, 5
Line chart, 137–138
lines() function, 136, 138
Lists

data structure type, 54
length() function, 54
syntax, create, 53

Index

240

value/element
delete, 57
modification, 56

values retrieve
integer vector, 54
logical vector, 55
negative integer, 55

lm() function, 220
Logical statements, 67–69
Loops

break and next keyword, 72–74
for loop, 69–70
repeat loop, 74–75
while loop, 71–72

Lower-level programming
language (LLL), 2, 16

M
MANOVA, 206–209
Matrix

attributes() function, 59
cbind() function, 62
class() function, 59
colnames() and rownames()

functions, 59
logical vector, 61
rbind() function, 62
syntax, creation, 58
t() function, 63

mean() function, 175–176
Mean, 109
Median, 109
Mode, 105–108

N, O
Natural language processing

(NLP), 11–12, 17
Nayes theorem, 7
NetBeans, 21
Next keyword, 72–74
Nonparametric test

Kruskal-Wallis, 216–218
Wilcoxon-Mann-Whitney,

213–215
Wilcoxon Signed

Rank, 209–210, 212
Normal distribution

bell curve, 115
bins, 116
hist() function, 116
inverse CDF, 118
modality, 119
p-th quantile, 118
qqnorm() and qqline()

functions, 116
rnorm() function, 117
Shapiro Test, 117
skewness, 119–120
standard deviation, 118

Numeric data, 104

P, Q
pairs() function, 146
Pie chart, 139–141
pie3D() function, 141
plot() function, 137, 142
Plotly JS, 166–169

Lists (cont.)

Index

241

Prediction model, 9
Predictive analytics, 12–13, 17
Predictive modelling

techniques, 218
Prescriptive analytics, 12–13, 17
Programming languages, 15, 17
P-value, 186

R
RapidMiner, 15, 17
R console, 39–42
Reading data files

CSV file
class() function, 90
read.csv() function, 89
write.csv() function, 91

Excel file
data frame data type, 93
read.xlsx() function, 92
require() function, 92
View() function, 92
write.xlsx() function, 93

JSON, 96–97
SPSS file

help() function, 95
install.packages()

function, 94
read.spss() function, 95
write.foreign() function, 96

Regressions, 2, 4
definition, 175
linear, 218–222
multiple linear, 223

Repeat loop, 74–75
require() function, 141, 151, 168
R programming

definition, 19
GNU package, 20
IDE (see Integrated development

environment (IDE))
RGui interface, 20
statistical and data visualization

techniques, 20
RStudio IDE

Choose R Installation
dialog, 28–29

code editor, 33
console results, 45
downloading, Linux and

Mac OS, 23
Environment tab, 45
Hello World application, 25
installation, 23–24, 26
intelligent code completion,

21–22, 33, 37
interface, 22, 27, 32–33
latest version, downloading, 26
loaded data, 35–36
options, 28
plot() function, 32
R console, 22
read.csv() function, 30–31
results, 35
RGui interface, 24
R project website, 22–23
running script, 34–35
summary() function, 31

Index

242

Tools menu, 27
version changing, 29–30
website, 25–26

S
Sampling

cluster, 179–183
SRS, 178
stratified, 179

sapply() function, 173, 177
SAS Enterprise Miner, 15, 17
SAS programming, 15, 18
Scatterplot matrix, 146–147
Scripts, 16
setwd() function, 89
Simple random sampling (SRS), 178
Skewness, 119–120
Social network analysis graph,

147–149
Softbench IDE, 21
SPSS file

reading, 94–95
writing, 96

SPSS Modeler, 15, 17
SPSS Statistics, 15, 17
Standard deviation, 114–115
Stanford NLP, 15
Statistical computing, 1, 36
Statistics, 3–5, 15–16

binomial distribution, 121–124
categorical data, 104
interquartile range, 111–112

mean, 109
median, 109
mode, 105–108
normal distribution (see Normal

distribution)
numeric data, 104
observation, 104
population, 104
range, 110–111
sample, 104
standard deviation, 114–115
variable, 104
variance, 112–114

str() function, 123
summary() function, 123, 203, 228
Syntax of R programming

code editor, 42–45
code with comments, 46–47
data frame, 63–67
data types, 48–50
functions, 75–77, 79
list (see Lists)
logical statements, 67–69
loops (see Loops)
matrix, 58
R console, 39–42
variables, 47–48
vectors, 50–53

T, U
Tableau, 15
Text mining, 15, 17

applications, 11
data acquisition, 10

RStudio IDE (cont.)

Index

243

data mining CRISP-DM
model, 10

definition, 9
evaluation/validation, 11
modeling, 11
text Preprocessing, 10

theme() function, 156
TIOBE, 1, 18
T-test

errors, type I
and II, 188

one-sample, 188–189
two-sample

dependent, 193–194
two-sample

independent, 190–193
types, 187

V
Variables, 47–48
Variance, 112–114
Vectors, 50–53
Velocity, 14
Volume, 13

W, X, Y, Z
Weka, 15, 17
Welch t-test formula, 192
While loop, 71–72, 75
Wilcoxon-Mann-Whitney

test, 213–215
Wilcoxon Signed Rank

Test, 209–210, 212
wilcox.test() function, 212, 215

Index

	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: Introduction
	What Is R?
	High-Level and Low-Level Languages
	What Is Statistics?
	What Is Data Science?
	What Is Data Mining?
	Business Understanding
	Data Understanding
	Data Preparation
	Modeling
	Evaluation
	Deployment

	What Is Text Mining?
	Data Acquisition
	Text Preprocessing
	Modeling
	Evaluation/Validation
	Applications

	Natural Language Processing
	Three Types of Analytics
	Descriptive Analytics
	Predictive Analytics
	Prescriptive Analytics

	Big Data
	Volume
	Velocity
	Variety

	Why R?
	Conclusion
	References

	Chapter 2: Getting Started
	What Is R?
	The Integrated Development Environment
	RStudio: The IDE for R
	Installation of R and RStudio
	Writing Scripts in R and RStudio
	Conclusion
	References

	Chapter 3: Basic Syntax
	Writing in R Console
	Using the Code Editor
	Adding Comments to the Code
	Variables
	Data Types
	Vectors
	Lists
	Matrix
	Data Frame
	Logical Statements
	Loops
	For Loop
	While Loop
	Break and Next Keywords
	Repeat Loop

	Functions
	Create Your Own Calculator
	Conclusion
	References

	Chapter 4: Descriptive Statistics
	What Is Descriptive Statistics?
	Reading Data Files
	Reading a CSV File
	Writing a CSV File
	Reading an Excel File
	Writing an Excel File
	Reading an SPSS File
	Writing an SPSS File
	Reading a JSON File

	Basic Data Processing
	Selecting Data
	Sorting
	Filtering
	Removing Missing Values
	Removing Duplicates

	Some Basic Statistics Terms
	Types of Data
	Mode, Median, Mean
	Mode
	Median
	Mean

	Interquartile Range, Variance, Standard Deviation
	Range
	Interquartile Range
	Variance
	Standard Deviation

	Normal Distribution
	Modality
	Skewness

	Binomial Distribution
	The summary() and str() Functions

	Conclusion
	References

	Chapter 5: Data Visualizations
	What Are Data Visualizations?
	Bar Chart and Histogram
	Line Chart and Pie Chart
	Scatterplot and Boxplot
	Scatterplot Matrix
	Social Network Analysis Graph Basics
	Using ggplot2
	What Is the Grammar of Graphics?
	The Setup for ggplot2
	Aesthetic Mapping in ggplot2
	Geometry in ggplot2
	Labels in ggplot2
	Themes in ggplot2

	ggplot2 Common Charts
	Bar Chart
	Histogram
	Density Plot
	Scatterplot
	Line chart
	Boxplot

	Interactive Charts with Plotly and ggplot2
	Conclusion
	References

	Chapter 6: Inferential Statistics and Regressions
	What Are Inferential Statistics and Regressions?
	apply(), lapply(), sapply()
	Sampling
	Simple Random Sampling
	Stratified Sampling
	Cluster Sampling

	Correlations
	Covariance
	Hypothesis Testing and P-Value
	T-Test
	Types of T-Tests
	Assumptions of T-Tests
	Type I and Type II Errors
	One-Sample T-Test
	Two-Sample Independent T-Test
	Two-Sample Dependent T-Test

	Chi-Square Test
	Goodness of Fit Test
	Contingency Test

	ANOVA
	Grand Mean
	Hypothesis
	Assumptions
	Between Group Variability
	Within Group Variability
	One-Way ANOVA
	Two-Way ANOVA
	MANOVA

	Nonparametric Test
	Wilcoxon Signed Rank Test
	Wilcoxon-Mann-Whitney Test
	Kruskal-Wallis Test

	Linear Regressions
	Multiple Linear Regressions
	Conclusion
	References

	Index

