


Major Formulas
 Formula Number

 The mean is the sum of the scores divided by the number of scores. M =
gX

N
 (2-1)

  The variance is the sum of the squared deviations of the scores  
from the mean, divided by the number of scores. SD2 =

g1X - M22
N

 (2-2)

 A Z score is the raw score minus the mean, divided by the standard deviation. Z =
X - M

SD
 (3-1)

  The variance of a distribution of means is the variance of the population  
of individuals divided by the number of individuals in each sample. 

�2
M =

�2

N
 (5-2)

  The effect size for the difference between two means is the difference between  
the population means divided by the population’s standard deviation. d =

�1 - �2

�
 (6-1)

  The estimated population variance is the sum of the squared deviation  
scores divided by the number of scores minus 1. S2 =

g1X - M22
N - 1

=
SS

N - 1
 (7-1)

  The variance of the distribution of means based on an estimated  
population variance is the estimated population variance divided by  
the number of scores in the sample. 

S2
M =

S2

N
 (7-5)

  The t score in a single sample t test, and a t test for dependent means (where you are using 
difference scores) is your sample’s mean minus the null hypothesis population mean, divided  
by the standard deviation of the distribution of means.

 t =
M - �

SM

 (7-7)

  The pooled estimate of the population variance is the degrees of freedom  
in the first sample divided by the total degrees of freedom (from both  
samples) multiplied by the population variance estimate based on the  
first sample, plus the degrees of freedom in the second sample divided  
by the total degrees of freedom multiplied by the population variance  
estimate based on the second sample. 

S2
Pooled =

df1
dfTotal

1S2
12 +

df2
dfTotal

1S2
22  (8-1)

  The variance of the distribution of means for the first population (based on an  
estimated population variance) is the pooled estimate of the population variance  
divided by the number of participants in the sample from the first population.

 S2
M1

=
S2

Pooled

N1
 (8-2)

  The variance of the distribution of differences between means is the variance  
of the distribution of means for the first population (based on an estimated  
population variance) plus the variance of the distribution of means for the  
second population (based on an estimated population variance). 

S2
Difference = S2

M1
+ S2

M2
 (8-4)

  The t score in a t test for independent means is the difference between the two sample 
means divided by the standard deviation of the distribution of differences between means. t =

M1 - M2

SDifference
 (8-7)

  The within-groups population variance estimate (or mean  
squares within) is the sum of the population variance estimates  
based on each sample, divided by the number of groups. 

S2
Within or MSWithin =

S2
1 + S2

2 +
g

+ S2
Last

NGroups

 (9-1)



(9-2)

 

S2
M =

g1M - GM22
dfBetween

  The estimated variance of the distribution of means is the 
sum of each sample mean’s squared deviation from the  
grand mean, divided by the degrees of freedom for  
the between-groups population variance estimate. 

(9-4)
 

S2
Between or MSBetween = 1S2

M21n2  The between-groups population variance estimate (or mean 
squares between) is the estimated variance of the distribution 
of means multiplied by the number of scores in each group. 

(9-5)

 

F =
S2

Between

S2
Within

or
MSBetween

MSWithin

  The F ratio is the between-groups population variance 
estimate (or mean squares between) divided by the within-
groups population variance estimate (or mean squares 
within). 

(9-10)

  S2
Between =

g1M - GM22
dfBetween

or

  MSBetween =
SSBetween

dfBetween
 

 The between-groups population variance estimate is the 
sum of squared deviations of each score’s group’s mean 
from the grand mean divided by the degrees of freedom 
for the between-groups population variance estimate. 

(9-11) S2
Within =

g1X - M22
dfWithin

or MSWithin =
SSWithin

dfWithin
 

 The within-groups population variance estimate is 
the sum of squared deviations of each score from its 
group’s mean divided by the degrees of freedom for  
the within-groups population variance estimate. 

(10-1)
 

SSRows = g1MRow - GM22
  

The sum of squared deviations for rows is the sum of each score’s 
row’s mean’s squared deviation from the grand mean. 

(10-3)
  SSInteraction = g31X - GM2 - 1X - M2

  - 1MRow - GM2
  - 1MColumn - GM242 

 The sum of squared deviations for the interaction 
is the sum of the squares of each score’s deviation 
from the grand mean minus its deviation from its 
cell’s mean, minus its row’s mean’s deviation from 
the grand mean, minus its column’s mean’s deviation 
from the grand mean. 

(10-4) SSWithin = g1X - M22  The sum of squared deviations within groups (within cells) is the 
sum of each score’s squared deviation from its cell’s mean. 

(11-1)
 

r =
gZXZY

N

  The correlation coefficient is the sum, over all the people in the study, 
of the product of each person’s two Z scores, then divided by the 
number of people. 

(12-1) Yn = a + 1b21X2  A person’s predicted score on the criterion variable equals the regression constant plus the result 
of multiplying the regression coefficient by that person’s score on the predictor variable. 

(13-1)
 

�2 = g
1O - E22

E

  Chi-square is the sum, over all the categories or cells, of the squared 
difference between observed and expected frequencies, divided by the 
expected frequency. 

(13-3) E = aR

N
b1C2  A cell’s expected frequency is the number in its row divided by the 

total, multiplied by the number in its column. 



1.  Updates in content, examples, boxes, and 
controversies provide fresh learning material and 
reflect recent research, and the Using SPSS sections 
are updated to reflect SPSS Version 19.

2.  The correlation chapter has been reworked to help 
students better understand the logic of  correlation 
coefficients by using the more intuitive formula for 
calculating correlation coefficients based on Z scores.

3.  To strengthen the instructor’s resource materials, 
full lecture outlines and multiple teaching examples 
(in addition to what is in the text) for classes based 
on each chapter have been placed into PowerPoint 
slides to allow quick and convenient downloadable 
lectures.

4.  A full MyStatLab™ has now been developed 
specifically for this text and can be bundled at no extra 
charge to students. MyStatLab provides a rich and 

flexible set of course materials, featuring problems and 
essay questions (versions of  those in the text as well as 
additional ones) that students can use to perfect their 
understanding and instructors can assign for online 
homework, quizzes, and tests. In addition, we are very 
excited about the following innovations:

For instructors, MyStatLab features:

Powerful homework and test manager
Comprehensive gradebook tracking
Complete online course content
Custom exercise and exam builder

For students, MyStatLab features:

Interactive tutorial exercises
Mini-lectures on key concepts by the text authors
eBook
Study Plan for self-paced learning
StatCrunch® Statistical Software

Why Do You Need 
This New Edition?
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x

The heart of this book was written over a summer in a small apartment near the Place Saint 
Ferdinand, having been outlined in nearby cafés and on walks in the Bois de Boulogne. It is 
based on our collective experience of many decades of teaching, researching, and writing. 
We believe that the result is a book as different from the conventional lot of statistics texts as 
Paris is from Patagonia, yet still comfortable and stimulating to the long-suffering community 
of statistics instructors.

Our approach was developed over decades of successful teaching—successful not only 
in that students have consistently rated the course (a statistics course, remember) as a high-
light of their major, but also that students come back to us long after graduating saying, “I was 
light years ahead of my fellow graduate students because of your course,” or “Even though  
I don’t do research, your course has really helped me read the journals in my field.”

The response to the first five editions has been overwhelming. We have received hun-
dreds of thank-you emails and letters from instructors (and from students themselves!) from 
all over the world.

With each revision we have tried to maintain those things about the book that have been 
especially appreciated, while reworking the text to take into account the feedback we have 
received, our own experiences teaching, and advances and changes in the field. This is the 
first edition that is offered with MyStatLab,  Pearson’s award-winning online homework and 
tutorial software. However, before turning to what’s new in this latest revision, we want to 
reiterate what we said with the first edition about how this book, from the beginning, has been 
so different from other statistics texts.

How This Book Was Dramatically Different from the Start
Our fervent desire from the outset has been to provide a text that makes learning statistics truly 
more enjoyable and less distressing for students. Throughout the book, we emphasize the intui-
tive, de-emphasize the mathematical, and work to explain everything in direct, simple language. 
Further, to accomplish our goal, we have in every edition stood by seven key innovations:

1. The definitional formulas are brought to center stage because they provide a 
concise symbolic summary of the logic of each particular procedure. All our explanations, 
examples, practice problems, and test bank items are based on these definitional formulas. 
(The amount of data to be processed in practice problems and test bank items is reduced 
appropriately to keep computations manageable.)

Why this approach? Even in 2012, many statistics texts have still not faced the tech-
nological realities. What is important today is not that students learn to calculate a t test by 
hand with a large data set—software programs like SPSS can do this in an instant. What is 
important today is that students work problems in a way that keeps them constantly aware of 
the underlying logic of what they are doing. Consider the population variance—the average 
of the squared deviations from the mean. This  concept is directly displayed in the definitional 
formula (once the student is used to the symbols): Variance = 3�1X - M224>N. Repeatedly 
working problems using this formula ingrains the meaning in the student’s mind: Variance 
begins with how much a score deviates from the mean; that deviation is squared, which elimi-
nates signs (as well as other advantages); and then you add up the squared deviations and take 
the average. In contrast, the usual computational version of this formula only obscures this 
meaning: Variance = 3�X 2 - 1�X22>N4>N.

Teaching these tired computational formulas today is an anachronism—at least 40 years 
out-of-date. Researchers do statistics on computers now, of course, and the use of statistical 
software makes the understanding of the basic principles, as they are symbolically expressed 
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in the definitional formulas, more important than ever. Students still need to work problems 
by hand to learn the material. But they need to work them using the definitional formulas 
that reinforce the concepts, not using the antiquated computational formulas that obscure 
them. Not since the era when Lyndon B. Johnson was U.S. president, and researchers had 
to work with large data sets by hand, have those computational formulas been of any use. 
Even then they were poor teaching tools. (Because some instructors may feel naked with-
out them, we still provide the computational formulas, usually in a brief note at the end of  
the chapter.)

2. Each procedure is taught both verbally and numerically—and usually visually as 
well. In fact, when we introduce every formula, it has attached to it a concise statement of the 
formula in words. (The major formulas with their verbal descriptions are also repeated on the 
inside front cover.) Typically, each example lays out the procedures in worked-out formulas, 
then in words (often with a list of numbered steps), and then also illustrated with easy-to-
grasp figures. Practice problems and test bank items, in turn, require the student to calculate 
results, write a short explanation in layperson’s language of what they have done, and make a 
sketch (for example, of the distributions involved in a t test). The chapter  material completely 
prepares the student for these kinds of practice problems and test questions.

It is our repeated experience that these different ways of expressing an idea are crucial 
for establishing a concept in a student’s mind. Many psychology students are more at ease 
with words than with numbers. In fact, some have a positive fear of all mathematics. Writing 
the formula in words and providing the lay-language explanation gives them an opportunity 
to do what they do best.

3. A main goal of any introductory statistics course in psychology is to  prepare 
students to read research articles. The way a procedure such as a t test or an analysis of 
variance is described in a research article is often quite different from what the student 
expects from the standard textbook discussions. Therefore, as this book teaches a statistical 
method, it also gives examples of how that method is reported in current journal articles. 
And we don’t just leave it there. The practice problems and test bank items also include 
excerpts from journal articles for the student to explain.

4. The book is unusually up-to-date. Most introductory statistics textbooks read as if 
they were written in the 1950s. The basics are still the basics, but statisticians and research-
ers think far more subtly about those basics now. Today, the basics are undergirded by a new 
appreciation of issues such as effect size, power, limitations of significance testing, the ac-
cumulation of results through meta-analysis, the critical role of models, the underlying unity 
of difference and association statistics, the growing prominence of regression and associated 
methods, and a host of new developments arising from the central role of the computer in 
statistical analyses. We are much engaged in the latest thinking in statistical theory and ap-
plication, and this book reflects that engagement. For example, we devote an entire early 
chapter (Chapter 6) to effect size and power and then return to these topics as we teach each 
technique.

5. We capitalize on the students’ motivations. We do this in two ways. First, our ex-
amples emphasize topics or populations that students seem to find most interesting. The very 
first is from a real study in which students in their first week of an introductory statistics class 
rated how much stress they felt they were under. Other examples emphasize clinical, orga-
nizational, social, educational, and health psychology, while being sure to include sufficient 
interesting examples from cognitive, developmental, and behavioral psychology, as well as 
social and cognitive neuroscience, to inspire students with the value of those approaches. 
(Also, our examples continually emphasize the usefulness of statistical methods and ideas as 
tools in the research process, never allowing students to feel that they are being taught statisti-
cal theory just for the sake of it.)

Second, we have worked to make the book extremely straightforward and systematic in 
its explanation of basic concepts so that students can have frequent “aha” experiences. Such 
experiences bolster self-confidence and motivate further learning. It is quite inspiring to us to 
see students who had expected the course to be nothing but struggle then suddenly glow from 
having mastered a concept like negative correlation or the distinction between failing to reject 
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the null hypothesis and supporting the null hypothesis. At the same time, we do not constantly 
remind them how greatly oversimplified we have made things, as some books do. Instead, we 
show students, in the controversy sections in particular, how much there is for them to con-
sider deeply, even in an introductory course.

6. We emphasize statistical methods as a living, growing field of  research. We take 
the time to describe ongoing issues in the field, such as the relative merits of both signifi-
cance testing and confidence intervals, or the latest  controversies, such as the possibili-
ties for Bayesian methods. In addition, each chapter includes one or more “boxes” about 
famous statisticians or interesting sidelights. The goal is for students to see statistical 
methods as human efforts to make sense out of the jumble of numbers generated by a 
research study—to see that statistics are not “given” by nature, not infallible, not perfect 
descriptions of the events they try to describe, but rather a language that is constantly 
improving through the careful thought of those who use it. We hope that this orientation 
will help them maintain a questioning, alert attitude as students and later as professionals.

7. The final chapter looks at advanced procedures without actually teaching them in 
detail. It explains in simple terms how to make sense out of these statistics when they are 
encountered in research articles. A great many psychology research articles today use meth-
ods such as analysis of covariance, multivariate analysis of variance, multilevel modeling, 
mediation, factor analysis, or structural equation modeling. Students completing the ordi-
nary introductory statistics course are ill equipped to comprehend most of the articles they 
must read to prepare a paper or study a course topic in further depth. This chapter makes 
use of the basics that students have just learned (along with extensive excerpts from current 
research articles) to give a rudimentary understanding of these advanced procedures. This 
chapter also serves as a reference guide that students can keep and use in the future when 
reading such articles.

What’s New in This Sixth Edition
With each new edition we have worked to improve this text, based on our experience teach-
ing from it and the wonderful input we have received from other instructors using it all over 
the world. These are some of our latest endeavors.

In this sixth edition, we have continued to focus on simplifying exposition and have 
done our usual extensive updating of content, examples, boxes, controversies, and other ele-
ments. For example, the book includes more than 60 references to research articles and books 
that were published since 2009. In addition, we made a host of minor adjustments to make 
the book more effective. For example, in the chapter on chi-square tests (Chapter 13), our pri-
mary examples are now more engaging and easy to follow, which will help students to learn 
the key concepts at hand. We also updated all of the Using SPSS sections using SPSS 19, the 
latest version available at the time of preparing this new edition.

Our latest response to an important issue: In the fourth edition, we reconceptualized 
the teaching of the material on correlation and regression based on requests from many 
instructors to move these topics to after the t test and analysis of variance. The logic of 
the original version (where correlation came right after the mean and standard deviation 
chapter) was that correlation and regression work best if treated as descriptive statistics 
and that correlation is easiest to explain right after students have learned about Z scores. 
However, we also realize that, in practice, correlation and regression are typically used 
in an inferential context, so that it also makes very good sense to cover them after other 
inferential procedures had been introduced. In preparing this sixth edition, we were able 
to recruit a large number of reviewers to look over the entire text and we explicitly asked 
them to consider this particular issue carefully. Based on their feedback (and other feed-
back, plus our own experience teaching from the fourth and fifth editions), we (a) retained 
the location of the correlation chapter after the t test, (b) but reworked it so that it uses the 
more intuitive formula for calculating the correlation coefficient that is based on Z scores 
and that had been so successful in the earlier editions. Using this formula helps students to 
better understand the logic of correlation coefficients. This also meant some reworking of 
the regression chapter (Chapter 12), which of course builds on correlation.
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Teaching and Learning Package
MyStatLab
In response to requests from instructors for this type of material, a major new feature available 
with this edition is a version of the top-of-the-line, state-of-the-art MyStatLab developed specifi-
cally and very carefully for our text. MyStatLab (www.mystatlab.com) provides a rich and flex-
ible set of online homework and quiz materials, featuring free-response exercises that are directly 
related to the textbook. Students also receive interactive tutorials and video mini-lectures by the 
textbook authors for many of the concepts covered in the textbook, and an eBook they can access 
from any computer or tablet device so they can study on the go. MyStatLab’s online grade book 
automatically tracks all student results and gives the instructor control over how to calculate final 
grades.  

The MyStatLab problem sets are built directly on the textbook’s end-of-chapter practice 
problem sets. Select problems have been adapted for MyStatLab and have been designated 
with a “MyStatLab” callout in the margin next to the problem. (However, in no case does 
MyStatLab provide answers to the exact same set of numbers as in the Set II practice prob-
lems.) The MyStatLab problems are  enhanced in several ways, including algorithmic content 
that allows students to work the same problem multiple times with different number val-
ues, and “Help Me Solve This” interactive tutorials (available on homework mode only) that 
guide students through one version of the problem.

With MyStatLab, instructors have access to the following:

 • Powerful homework and test manager
 • Comprehensive gradebook tracking
 • Complete online course content
 • Custom exercise and exam builder

Students benefit from:

 • Interactive tutorial exercises
 • eBook
 • Video walkthroughs by the text authors of many key concepts
 • Study Plan for self-paced learning
 • StatCrunch statistical software
 • Chapter learning objectives
 • The chapter’s formulas (with all symbols defined)
 • Summaries of steps of conducting each procedure covered in the chapter
 • Multiple-choice, fill-in, and problem/essay questions
 • An online appendix for getting started with SPSS
 •  Step-by-step instructions for how to carry out each chapter’s procedures with SPSS, 

with examples, and illustrations of how each menu and each output appears on the screen
 • Special activities for using SPSS to strengthen understanding

Tutorials for using MyStatLab can be found at http://www.mystatlab.com/how-videos-0.
MyStatLab can be bundled at no extra charge to students (or instructors) when the fol-

lowing ISBN is ordered: 0-205-92417-4.

Web Chapters
Four downloadable Web chapters (listed in the text’s Table of Contents) are available for the 
book (at www.pearsonhighered.com/aron and also at www.mystatlab.com for MyStatLab 
users): (1) the basics of research methods, (2) applying statistics in one’s own research projects, 
(3) repeated measures analysis of variance, and (4) integration of statistical tests and the general 
linear model (which also serves as an excellent review and overview of the entire book). Over the 
years, many instructors have asked for these topics, so we chose to make these chapters available 
in this way without adding more content to the text itself.

www.mystatlab.com
http://www.mystatlab.com/how-videos-0
www.pearsonhighered.com/aron
www.mystatlab.com
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Instructor’s Manual
Prepared by the authors with contributions from Suzanne Riela, the Instructor’s Manual 
begins with a chapter summarizing what we have gleaned from our own teaching experience 
and the research literature on effectiveness in college teaching. The next chapter discusses 
alternative organizations of the course, tables of possible schedules and a sample syllabus, 
advice on structuring exams, an example test, and more. Then each chapter, corresponding 
to the text chapters, provides full lecture outlines and additional worked-out examples not 
found in the text. These lecture outlines and worked-out examples are especially useful to 
new instructors or those using our book for the first time, since structuring lectures and cre-
ating good examples is one of the most demanding parts of teaching the course.

Test Bank
Prepared by Suzanne Riela, the test bank offers approximately 40 multiple-choice, 25 fill-in, and 
10 to 12 problem/essay questions for each chapter. The test bank is also available in Pearson’s 
MyTest computerized testing software program. http://pearsonmytest.com.

PowerPoint Lecture Notes
Prepared by Theodore W. Whitley, East Carolina University, these slides contain the lecture out-
lines and worked problems, to decrease lecture preparation time and enrich in-class instruction.

Keep in Touch
Our goal is to do whatever we can to help you make your course a success. If you have any questions 
or suggestions, please send us an email (Arthur.Aron@sunysb.edu will do for all of us). Also, if you 
should find an error somewhere, for everyone’s benefit, please let us know right away. When errors 
have come up in the past, we have usually been able to fix them in the very next printing.
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The goal of this book is to help you understand statistics. We emphasize meaning and con-
cepts, not just symbols and numbers.

This emphasis plays to your strength. Most psychology majors are not lovers of math-
ematics but are keenly attuned to ideas. And we want to underscore the following, based on 
our collective many decades of teaching experience: We have never had a student who could 
do well in other college courses who could not also do well in this course. (However, we ad-
mit that doing well in this course may require more work than doing well in others.)

In this introduction, we discuss why you are taking this course and how you can gain the 
most from it.

Why Learn Statistics, Other Than to Fulfill a Requirement?
1. Understanding statistics is crucial to being able to read psychology research 

articles. Nearly every course you will take as a psychology major will emphasize the results of 
research studies, and these almost always are expressed using statistics. If you do not understand 
the basic logic of statistics—if you cannot make sense of the jargon, the tables, and the graphs that 
are at the heart of any research report—your reading of research will be very superficial. (We also 
recommend that you take a course on how to design and evaluate good research. In this book, we 
focus on the statistical methods for making sense of the data collected through research. How-
ever, we have included a downloadable Web chapter on research methods—available at www.
pearsonhighered.com/aron (and also at www.mystatlab.com for MyStatLab users)—that provides 
an overview of the logic and language of psychology research.)

2. Understanding statistics is crucial to doing research yourself. Many psychology ma-
jors eventually decide to go on to graduate school. Graduate study in psychology—even in 
clinical and counseling psychology and other applied areas—almost always involves doing 
research. In fact, learning to do research on your own is often the main focus of graduate 
school, and doing research almost always involves statistics. This course gives you a solid 
foundation in the statistics you need for doing research. Further, by mastering the basic logic 
and ways of thinking about statistics, you will be unusually well prepared for the advanced 
courses, which focus on the nitty gritty of analyzing research results.

Many psychology programs also offer opportunities for undergraduates to do research. 
The main focus of this book is understanding statistics, not using statistics. Still, you will learn 
the basics you need to analyze the results of the kinds of research you are likely to do. Also, 
we have included a downloadable Web chapter—available at www.pearsonhighered.com/aron 
(and also at www.mystatlab.com for MyStatLab users)—that helps you with practical issues in 
using what you learn in this book for analyzing results of your own research.

3. Understanding statistics develops your analytic and critical thinking.  Psychology 
majors are often most interested in people and in improving things in the practical world. This 
does not mean that you avoid abstractions. In fact, the students we know are exhilarated most 
by the almost philosophical levels of abstraction where the secrets of human experience so of-
ten seem to hide. Yet even this kind of abstraction often is grasped only superficially at first, 
as slogans instead of useful knowledge. Of all the courses you are likely to take in psychol-
ogy, this one will probably do the most to help you learn to think more precisely, to evaluate 
information, and to apply logical analysis when reading psychology research articles. More-
over, you will find that these skills will also help you to evaluate media reports of psychology 
research, which are becoming increasingly common across all types of digital and print me-
dia. We hope you will also discover that this course provides the ideal foundation for success-
fully tackling more advanced statistics (as well as research methods) courses in psychology 
and a host of other fields, spanning the behavioral, social, political, and biomedical sciences.

Introduction to the Student

www.pearsonhighered.com/aron
www.pearsonhighered.com/aron
www.mystatlab.com
www.pearsonhighered.com/aron
www.mystatlab.com
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How to Gain the Most from This Course
There are five things we can advise:

1. Keep your attention on the concepts. Treat this course less like a math course and 
more like a course in logic. When you read a section of a chapter, your attention should be on 
grasping the principles. When working the exercises, think about why you are doing each step. 
If you simply try to memorize how to come up with the right numbers, you will have learned 
very little of use in your future studies—nor will you do very well on the tests in this course.

2. Be sure you know each concept before you go on to the next. Statistics is cumulative. Each 
new concept is built on the last one. There are short “How are you doing?” self-tests at the end of 
each main chapter section. Be sure you do them. You may also find it helpful to review the “How 
are you doing?” sections before working on the practice problems and when studying for exams. 
If you are having trouble answering a question at any time—or even if you can answer it but aren’t 
sure you really understand it—stop. Reread the section, rethink it, ask for help. Do whatever you 
need to do to grasp it. Don’t go on to the next section until you are completely confident you have 
gotten this one. If you are not sure, and you’ve already done the “How are you doing?” questions, 
take a look at the Example Worked-Out Problems toward the end of the chapter, or try working 
a practice problem on this material from the end of the chapter. The answers to the Set I Practice 
Problems are given toward the end of the book so that you will be able to check your work. Also, if 
your instructor has made it available for your course, be sure to take full advantage of the extensive 
resources available as part of the MyStatLab Web site for the book (www.mystatlab.com). We think 
you will especially like the interactive tutorial exercises and video walkthroughs of key concepts  
by ourselves (for more information, see page xiii).

Having to read the material in this book over and over does not mean that you are stupid. 
Most students have to read each chapter several times. And each reading in statistics is usually 
much slower than that in other textbooks. Statistics reading has to be pored over with clear, 
calm attention for it to sink in. Allow plenty of time for this kind of reading and rereading.

3. Keep up. Again, statistics is cumulative. If you fall behind in your reading or miss lectures, 
the lectures you do attend will be almost meaningless. It will get harder and harder to catch up.

4. Study especially intensely in the first half of the course. It is particularly important to mas-
ter the material thoroughly at the start of the course. Everything else you learn in statistics is built 
on what you learn at the start. Yet the beginning of the semester is often when students study least.

If you have mastered the first half of the course—not just learned the general idea, but 
really know it—the second half will be easier. If you have not mastered the first half, the sec-
ond half will be close to impossible.

5. Help each other. There is no better way to solidify and deepen your understanding of 
statistics than to try to explain it to someone who is having a harder time. (Of course, this ex-
plaining has to be done with patience and respect.) For those of you who are having a harder 
time, there is no better way to work through the difficult parts than by learning from another 
student who has just mastered the material.

Thus, we strongly urge you to form study groups with one to three other students. It is best if 
your group includes some who expect this material to come easily and some who don’t. Those who 
learn statistics easily will get the most from helping others who struggle with it—the latter will tax 
the former’s supposed understanding enormously. Those who fear trouble ahead need to work with 
those who do not (the blind leading the blind is no way to learn). Pick group members who live 
near you so that it is easy for you to get together. Also, meet often—between each class, if possible.

A Final Note
Believe it or not, we love teaching statistics. Time and again, we have had the wonderful ex-
perience of having beaming students come to us to say, “Professor, I got a 90% on this exam.  
I can’t believe it! Me, a 90 on a statistics exam!” Or the student who tells us, “This is actually 
fun. Don’t tell anyone, but I’m actually enjoying . . . statistics, of all things!” We hope you will 
have these kinds of experiences in this course.

Arthur Aron

Elliot J. Coups

Elaine N. Aron

www.mystatlab.com
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Chapter 1

Displaying the Order in a Group  
of Numbers Using Tables and Graphs

Chapter Outline  

Welcome to Statistics for Psychology. We imagine you to be like other 
students we have known who have taken this course. You have chosen to 
major in psychology or a related field because you are fascinated by people: 

fascinated by their visible behaviors and inner lives, as well as perhaps by your own psy-
chology. Some of you are highly scientific sorts; others are more intuitive. Some of you 
are fond of math; others are less so. Whatever your style, we welcome you. We want to 
assure you that if you give this book some special attention, you will learn statistics. The 
approach used in this book has successfully taught all sorts of students before you, includ-
ing those who had taken statistics previously and done poorly. With this book and your  
instructor’s help, you will learn statistics and learn it well.

More importantly, we want to assure you that whatever your reason for study-
ing psychology or a related field, this course is not a waste of time. Learning about 
statistics helps you to read the work of other psychologists, to do your own research 
if you so choose, and to hone both your reasoning and intuition. It also helps you 
to evaluate reports of scientific research in the media. Statistics really can make an 
important contribution to the next phase of your life.
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descriptive statistics procedures for 
summarizing a group of scores or other-
wise making them more understandable.

inferential statistics procedures for 
drawing conclusions based on the scores 
collected in a research study but going 
beyond them.

Formally, statistics is a branch of mathematics that focuses on the organiza-
tion, analysis, and interpretation of a group of numbers. But really what is statistics? 
Think of statistics as a tool that has evolved from a basic thinking process employed 
by every human: you observe a thing; you wonder what it means or what caused it; 
you have an insight or make an intuitive guess; you observe again, but now in detail, 
or you try making little changes in the process to test your intuition. Then you face 
the eternal problem: was your hunch confirmed or not? What are the chances that 
what you observed this second time will happen again and again, so that you can 
 announce your insight to the world as something probably true?

In other words, statistics is a method of pursuing truth. At a minimum, 
 statistics can tell you the likelihood that your hunch is true in this time and 
place and with these sorts of people. This type of pursuit of truth, especially in 
the form of an event’s future likelihood, is the essence of psychology, of sci-
ence, and of human evolution. Think of the first research questions: What will 
the mammoths do next spring? What will happen if I eat this root? It is easy to 
see how the early accurate “researchers” survived. You are here today because 
your ancestors exercised brains as well as brawn. Do those who come after you 
the same favor: think carefully about outcomes. Statistics is one good way to 
do that.

Psychologists use statistical methods to help them make sense of the num-
bers they collect when conducting research. Psychologists usually use sta-
tistical software to carry out statistical procedures such as the ones you will 
learn in this book. However, the best way to develop a solid understanding of 
statistics is  actually to do the procedures by hand for a while (with the help 
of a  calculator—it’s not the multiplying and adding that you learn from, but 
the  going through all the steps). To minimize the amount of mindless figur-
ing you have to do, we use relatively small groups of simple numbers in each  
chapter’s examples and practice problems. All of this allows you to focus 
on the underlying principles and logic of the statistical procedures as you 
manipulate the numbers. (See the Introduction to the Student on pp. xv–xvi for 
more information on the goals of this book.) Having said that, we also recog-
nize the importance for many of you of learning how to do statistical proce-
dures on a computer so that, for example, you can some day conduct your own 
research, maybe starting with a senior project. Therefore, at the end of relevant 
chapters there is a section called Using SPSS. SPSS statistical software is com-
monly used by psychologists and other behavioral and social scientists to carry 
out statistical analyses. Check with your instructor to see if you have access to 
SPSS at your institution. (There are also a number of other statistical programs 
used by researchers, and many basic statistical procedures can be carried out 
using standard spreadsheet programs such as Excel; for those of you not using 
SPSS, the SPSS sections will still be helpful in giving you the general idea of 
how one does such problems on a computer.)

The Two Branches of Statistical Methods
There are two main branches of statistical methods.

 1. Descriptive statistics: Psychologists use descriptive statistics to summarize 
and describe a group of numbers from a research study.

 2. Inferential statistics: Psychologists use inferential statistics to draw conclu-
sions and to make inferences that are based on the numbers from a research 
study but that go beyond the numbers. For example, inferential statistics  

statistics branch of mathematics that 
focuses on the organization, analysis, 
and interpretation of a group of numbers.

T I P  F O R  S U C C E S S
The issue of how to design good 
research is a topic in itself, summa-
rized in our Web Chapter W1 (Over-
view of the Logic and Language of 
Psychology Research) available at 
www.pearsonhighered.com/aron 
(and also at www.mystatlab.com for 
MyStatLab users). But in this text 
we mainly focus on the statistical 
methods for making sense of the 
data collected through research.

www.pearsonhighered.com/aron
www.mystatlab.com
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allow researchers to make inferences about a large group of individuals based 
on a research study in which a much smaller number of individuals took part.

In this chapter and the next, we focus on descriptive statistics. This topic is 
 important in its own right, but it also prepares you to understand inferential statis-
tics. Inferential statistics are the focus of the remainder of the book.

In this chapter we introduce you to some basic concepts, and then you will learn 
to use tables and graphs to describe a group of numbers. The purpose of descriptive 
statistics is to make a group of numbers easy to understand. As you will see, tables 
and graphs help a great deal.

Some Basic Concepts
Variables, Values, and Scores
As part of a larger study (Aron, Paris, & Aron, 1995), researchers gave a ques-
tionnaire to students in an introductory statistics class during the first week of the 
course. One question asked was, “How stressed have you been in the last 2½ weeks, 
on a scale of 0 to 10, with 0 being not at all stressed and 10 being as stressed as 
possible?” (How would you answer?) In this study, the researchers used a survey to 
examine students’ level of stress. Other methods that researchers use to study stress 
include creating stress with laboratory tasks (such as having to be videotaped giv-
ing a talk for humans or swimming in water for rats) and measuring stress-related 
hormones or brain changes.

In this example, level of stress is a variable, which can have values from 
0 to 10, and the value of any particular person’s answer is the person’s score. If you 
answered 6, your score is 6; your score has a value of 6 on the variable called “level 
of stress.”

More formally, a variable is a condition or characteristic that can have different 
values. In short, it can vary. In our example, the variable was level of stress, which 
can have the values of 0 through 10. Height is a variable, social class is a variable, 
score on a creativity test is a variable, type of psychotherapy received by patients is 
a variable, speed on a reaction time test is a variable, number of people absent from 
work on a given day is a variable, and so forth.

A value is just a number, such as 4, –81, or 367.12. A value can also be a cat-
egory, such as male or female, or a psychiatric diagnosis—major depression, post-
traumatic stress disorder—and so forth.

Finally, on any variable, each person studied has a particular number or 
score that is his or her value on the variable. As we’ve said, your score on the 
stress variable might have a value of 6. Another student’s score might have a 
value of 8.

Psychology research is about variables, values, and scores (see Table 1-1). The 
formal definitions are a bit abstract, but in practice, the meaning is usually clear.

variable characteristic that can have 
different values.

values possible number or category 
that a score can have.

score particular person’s value on a 
variable.

Table 1-1 Some Basic Terminology

Term Definition Examples

Variable Condition or characteristic that can have different values Stress level; age; gender; religion

Value Number or category 0, 1, 2, 3, 4; 25, 85; female; Catholic

Score A particular person’s value on a variable 0, 1, 2, 3, 4; 25, 85; female; Catholic
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levels of measurement types 
of  underlying numerical informa-
tion  provided by a measure, such as 
equal-interval, rank-order, and nominal 
(categorical).

Levels of Measurement (Kinds of Variables)
Most of the variables psychologists use are like those in the stress ratings example: the 
scores are numbers that tell you how much there is of what is being measured. In the 
stress ratings example, the higher the number is, the more stress there is. This is an ex-
ample of a numeric variable. Numeric variables are also called quantitative variables.

There are several kinds of numeric variables. In psychology research the most 
important distinction is between two types: equal-interval variables and rank-order 
variables. An equal-interval variable is a variable in which the numbers stand for 
approximately equal amounts of what is being measured. For example, grade point 
 average (GPA) is a roughly equal-interval variable, since the difference between a 
GPA of 2.5 and 2.8 means about as much as the difference between a GPA of 3.0 and 
3.3 (each is a difference of 0.3 of a GPA). Most psychologists also consider scales like 
the 0-to-10 stress ratings as roughly equal interval. So, for example, a difference be-
tween stress ratings of 4 and 6 means about as much as the difference between 7 and 9.

Some equal-interval variables are measured on what is called a ratio scale. An 
equal-interval variable is measured on a ratio scale if it has an absolute zero point. An 
absolute zero point means that the value of zero on the variable indicates a complete 
absence of the variable. Most counts or accumulations of things use a ratio scale. For 
example, the number of siblings a person has is measured on a ratio scale, because a 
zero value means having no siblings. With variables that are measured on a ratio scale, 
you can make statements about the difference in magnitude between values. So, we 
can say that a person with four siblings has twice as many siblings as a person with two 
 siblings. Other examples of variables that are measured on a ratio scale include distance, 
time, and weight. However, most of the variables in psychology are not on a ratio scale.

The other main type of numeric variable, a rank-order variable, is a variable in 
which the numbers stand only for relative ranking. (Rank-order variables are also called 
ordinal variables.) A student’s standing in his or her graduating class is an example. 
The amount of difference in underlying GPA between being second and third in class 
standing could be very unlike the amount of difference between being eighth and ninth.

A rank-order variable provides less information than an equal-interval variable. 
That is, the difference from one rank to the next doesn’t tell you the exact difference 
in amount of what is being measured. However, psychologists often use rank-order 
variables because they are the only information available. Also, when people are be-
ing asked to rate something, it is sometimes easier and less arbitrary for them to make 
rank-order ratings. For example, when rating how much you like each of your friends, 
it may be easier to rank them by how much you like them than to rate your liking for 
each of them on a scale. Yet another reason researchers often use rank-order variables 
is that asking people to do rankings forces them to make distinctions. For example, if 
asked to rate how much you like each of your friends on a 1-to-10 scale, you might 
rate several of them at exactly the same level, but ranking would avoid such ties.

Another major type of variable used in psychology research, which is not a 
numeric variable at all, is a nominal variable in which the values are names or 
categories. The term nominal comes from the idea that its values are names. (Nomi-
nal variables are also called categorical variables because their values are catego-
ries.) For example, for the nominal variable gender, the values are female and male.  
A person’s “score” on the variable gender is one of these two values. Another example 
is psychiatric diagnosis, which has values such as major depression, post-traumatic 
stress disorder, schizophrenia, and obsessive-compulsive disorder.

These different kinds of variables represent different levels of measurement (see 
Table 1-2). Researchers sometimes have to decide how they will measure a particular 

numeric variable variable whose 
values are numbers (as opposed to a 
nominal variable). Also called quantita-
tive variable.

equal-interval variable variable in 
which the numbers stand for approxi-
mately equal amounts of what is being 
measured.

ratio scale an equal-interval variable 
is measured on a ratio scale if it has an 
absolute zero point, meaning that the 
value of zero on the variable indicates a 
complete absence of the variable.

rank-order variable numeric variable 
in which the values are ranks, such as 
class standing or place finished in a race. 
Also called ordinal variable.

nominal variable variable with 
values that are categories (that is, they 
are names rather than numbers). Also 
called categorical variable.
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variable. For example, they might use an equal-interval scale, a rank-order scale, or a 
nominal scale. The level of measurement selected affects the type of statistics that can 
be used with a variable. Suppose a researcher is studying the effects of a particular type 
of brain injury on being able to recognize objects. One approach the researcher might 
take would be to measure the number of different objects an injured person can observe 
at once. This is an example of an equal-interval level of measurement. Alternately, the 
researcher might rate people as able to observe no objects (rated 0), only one object at 
a time (rated 1), one object with a vague sense of other objects (rated 2), or ordinary 
vision (rated 3). This would be a rank-order approach. Finally, the researcher might 
 divide people into those who can identify the location of an object but not what the 
object is (rated L), those who can identify what the object is but not locate it in space 
(rated I), those who can both locate and identify an object but have other abnormalities 
of object perception (rated O), those who are completely blind (rated B), and those with 
normal visual perception (rated N). This is a nominal level of measurement.

In this book, as in most psychology research, we focus mainly on numeric, 
equal-interval variables (or variables that roughly approximate equal-interval 
variables). We discuss statistical methods for working with nominal variables in 
Chapter 13 and methods for working with rank-order variables in Chapter 14.

Another distinction that researchers sometimes make is between discrete vari-
ables and continuous variables. A discrete variable is one that has specific values 
and cannot have values between the specific values. For example, the number of 
times you went to the dentist in the last 12 months is a discrete variable. You may 
have gone 0, 1, 2, 3, or more times, but you can’t have gone 1.72 times or 2.34 
times. Nominal variables, such as gender, religious affiliation, and college ma-
jor can also be considered to be discrete variables. With a continuous variable, 
there are in theory an infinite number of values between any two values. So, even 
though we usually answer the question “How old are you?” with a specific age, 
such as 19 or 20, you could also answer it by saying that you are 19.26 years old. 
Height, weight, and time are examples of other continuous variables.

discrete variable variable that has 
specific values and that cannot have 
 values between these specific values.

continuous variable variable for 
which, in theory, there are an infinite 
number of values between any two 
values.

Table 1-2 Levels of Measurement

Level Definition Example

Equal-interval Numeric variable in which differences between values correspond 
to differences in the underlying thing being measured

Stress level; age

Rank-order Numeric variable in which values correspond to the relative  
position of things measured

Class standing; position 
finished in a race

Nominal Variable in which the values are categories Gender; religion

How are you doing?

 1. A father rates his daughter as a 2 on a 7-point scale (from 1 to 7) of cranki-
ness. In this example, (a) what is the variable, (b) what is the score, and  
(c) what is the range of values?

 2. What is the difference between a numeric and a nominal variable?
 3. Give the level of measurement of each of the following variables: (a) a  person’s 

nationality (Mexican, Chinese, Ethiopian, Australian, etc.), (b) a person’s score 
on a standard IQ test, (c) a person’s place on a waiting list (first in line, second 
in line, etc.).

 4. What is the difference between a discrete and a continuous variable?
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The word statistics comes from the Italian word statista, 
a person dealing with affairs of state (from stato, 
“state”). It was originally called “state arithmetic,” in-
volving the tabulation of information about nations, 
especially for the purpose of taxation and planning the 
feasibility of wars.

Statistics were needed in ancient times to figure 
the odds of shipwrecks and piracy for marine insur-
ance that would encourage voyages of commerce and 
exploration to far-flung places. The modern study of 
mortality rates and life insurance descended from the 
17th- century plague pits—counting the bodies of per-
sons cut down in the bloom of youth. The theory of  errors 
(covered in Chapter 12) began in astronomy, that is, 
with stargazing; the theory of correlation (Chapter 11)
has its roots in biology, from the observation of parent 
and child differences. Probability theory (Chapter 3)
arose in the tense environs of the gambling table. The 
theory of analysis of experiments (Chapters 7 to 10) 
began in breweries and out among waving fields of 
wheat, where correct guesses determined not only the 
survival of a tasty beer but of thousands of marginal 
farmers. Theories of measurement and factor analy-
sis (Chapter 15) derived from personality psychology, 
where the depths of human character were first explored 
with numbers. And chi-square (Chapter 13) came 
to us from sociology, where it was often a question  
of class.

In the early days of statistics, it was popular to use 
the new methods to prove the existence of God. For ex-
ample, John Arbuthnot discovered that more male than 
female babies were born in London between 1629 and 

1710. In what is considered the first use of a statistical 
test, he proved that the male birthrate was higher than 
could be expected by chance (assuming that 50:50 was 
chance) and concluded that there was a plan operating, 
since males face more danger to obtain food for their 
families, and only God, he said, could do such planning.

In 1767, John Michell also used probability theory 
to prove the existence of God when he argued that the 
odds were 500,000 to 1 against six stars being placed as 
close together as those in the constellation Pleiades; so 
their placement had to have been a deliberate act of the 
Creator.

Statistics in the “state arithmetic” sense are legally 
endorsed by most governments today. For example, 
the first article of the U.S. Constitution requires a 
 census. And statistics helped the United States win the 
Revolutionary War. John Adams obtained critical aid 
from Holland by pointing out certain vital statistics, 
carefully gathered by the clergy in local parishes, dem-
onstrating that the colonies had doubled their popula-
tion every 18 years, adding 20,000 fighting men per 
annum. “Is this the case of our enemy, Great Britain?” 
Adams wrote. “Which then can maintain the war the 
longest?”

Similar statistics were observed by U.S. President 
Thomas Jefferson in 1786. He wrote that his people 
“become uneasy” when there are more of them than 10 
per square mile and that given the population growth 
of the new country, within 40 years these restless souls 
would fill up all of their country’s “vacant land.” Some 
17 years later, Jefferson doubled the size of the United 
States’ “vacant” land through the Louisiana Purchase.

BOX 1-1 Important Trivia for Poetic Statistics Students

Answers

 1. (a) crankiness, (b) 2, (c) 1 to 7.
 2. A numeric variable has values that are numbers that tell you the degree or 

extent of what the variable measures; a nominal variable has values that are 
different categories and have no particular numerical order.

 3. (a) nominal, (b) equal-interval, (c) rank-order.
 4. A discrete variable has specific values and has no values between the 

 specific values. A continuous variable has, in theory, an infinite number of 
values between any two values.
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Frequency Tables
An Example
Let’s return to the stress ratings example. Recall that in this study, students in an 
introductory statistics class during the first week of the course answered the ques-
tion, “How stressed have you been in the last 2½ weeks, on a scale of 0 to 10, with 
0 being not at all stressed and 10 being as stressed as possible?” The actual study 
included scores from 151 students. To ease the learning for this example, we are 
going to use a representative subset of scores from 30 of the 151 students (this also 
saves you time if you want to try it for yourself). The 30 students’ scores (their ratings 
on the scale) are:

8, 7, 4, 10, 8, 6, 8, 9, 9, 7, 3, 7, 6, 5, 0, 9, 10, 7, 7, 3, 6, 7, 5, 2, 1, 6, 7, 10, 8, 8.

Looking through all these scores gives some sense of the overall tendencies, but this 
is hardly an accurate method. One solution is to make a table showing how many 
students used each of the 11 values that the ratings can have (0, 1, 2, and so on, 
through 10). That is, the number of students who used each particular rating is the 
frequency of that value. We have done this in Table 1-3. We also figured the per-
centage that each value’s frequency is of the total number of scores. Tables like this 
sometimes give only the raw-number frequencies, not the percentages, or only the 
percentages and not the raw-number frequencies.

In addition, some frequency tables include, for each value, the total number 
of scores with that value and all values preceding it. These are called cumulative 
frequencies because they tell how many scores are accumulated up to this point on 
the table. If percentages are used, cumulative percentages also may be included (for 
an example, see Figure 1-19 in the Using SPSS section on page 32). Cumulative 
percentages give, for each value, the percentage of scores up to and including that 
value. The cumulative percentage for any given value (or for a score having that 
value) is also called a percentile. Cumulative frequencies and cumulative percent-
ages allow you to see where a particular score falls in the overall group of scores.

Table 1-3 is called a frequency table because it shows how frequently (how 
many times) each score was used. A frequency table makes the pattern of numbers 
easy to see. In this example, you can see that most of the students rated their stress 
level around 7 or 8, with few rating it very low.

How to Make a Frequency Table
There are four steps in making a frequency table.

 ❶ Make a list down the page of each possible value, from lowest to highest. 
In the stress ratings results, the list goes from 0, the lowest possible rating, up 
to 10, the highest possible rating.1 Note that even if one of the ratings between 
0 and 10 is not used, you still include that value in the listing, showing it as hav-
ing a frequency of 0. For example, if no one gave a stress rating of 2, you still 
include 2 as one of the values on the frequency table.

 ❷ Go one by one through the scores, making a mark for each next to its value 
on your list. This is shown in Figure 1-1.

 ❸ Make a table showing how many times each value on your list is used. That 
is, add up the number of marks beside each value.

 ❹ Figure the percentage of scores for each value. To do this, take the fre-
quency for that value, divide it by the total number of scores, and multiply 
by 100. You may need to round off the percentage. We recommend that you  

frequency table ordered listing of 
number of individuals having each of the 
different values for a particular variable.

Table 1-3 Frequency Table 

of Number of Students Rating Each 

Value of the Stress Scale

Stress Rating Frequency Percent

0 1 3.3

1 1 3.3

2 1 3.3

3 2 6.7

4 1 3.3

5 2 6.7

6 4 13.3

7 7 23.3

8 5 16.7

9 3 10.0

10 3 10.0

Source: Data based on Aron et al. (1995).
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round percentages to one decimal place. Note that because of the rounding, 
your  percentages do not usually add up to exactly 100% (but the total should be 
very close to 100%).

Frequency Tables for Nominal Variables
The preceding steps assume you are using numeric variables, the most common 
 situation. However, you can also use a frequency table to show the number of 
scores for each value (that is, for each category) of a nominal variable. For example, 
 researchers (Aron, Aron, & Smollan, 1992) asked 208 students to name the closest 
person in their life. As shown in Table 1-4, 33 students selected a family member, 
76 a nonromantic friend, 92 a romantic partner, and 7 selected some other person. 
Also in Table 1-4, the values listed on the left hand side of the frequency table are 
the values (the categories) of the variable.

Another Example
Tracy McLaughlin-Volpe and her colleagues (2001) had 94 introductory psychol-
ogy students keep a diary of their social interactions for a week during the regu-
lar semester. Each time a participant had a social interaction lasting 10 minutes or 
 longer, he or she would fill out a card. The card had questions about various aspects 
of the conversation and the conversation partner. Excluding family and work situa-
tions, the number of social interactions 10 minutes or longer over a week for these 
students were as follows:

48, 15, 33, 3, 21, 19, 17, 16, 44, 25, 30, 3, 5, 9, 35, 32, 26, 13, 14, 14, 47, 
47, 18, 11, 5, 19, 24, 17, 6, 25, 8, 18, 29, 1, 18, 22, 3, 22, 29, 2, 6, 10, 29, 
10, 29, 21, 38, 41, 16, 17, 8, 40, 8, 10, 18, 7, 4, 4, 8, 11, 3, 23, 10, 19, 21, 
13, 12, 10, 4, 17, 11, 21, 9, 8, 7, 5, 3, 22, 14, 25, 4, 11, 10, 18, 1, 28, 27, 19, 
24, 35, 9, 30, 8, 26.

Now, let’s follow our four steps for making a frequency table.

 ❶ Make a list down the page of each possible value, from lowest to high-
est. The lowest possible number of interactions is 0. In this study, the highest 
 number of interactions could be any number. However, the highest actual num-
ber in this group is 48; so we can use 48 as the highest value. Thus, the first step 

T I P  F O R  S U C C E S S
When doing Step ❷, cross off 
each score as you mark it on the 
list. This should help you avoid 
mistakes, which are common in 
this step.

8, 7, 4, 10, 8, 6, 8, 9, 9, 7, 
3, 7, 6, 5, 0, 9, 10, 7, 7, 3,
6, 7, 5, 2, 1, 6, 7, 10, 8, 8

STRESS
RATING FREQUENCY

0
1
2
3
4
5
6
7
8
9

10

Figure 1-1 Making a frequency table for the stress ratings scores. (Data based on 
Aron, Paris, and Aron, 1995.)

Table 1-4 Frequency Table 

for a Nominal Variable: Closest Person  

in Life for 208 Students

Closest Person Frequency Percent

Family member 33 15.9

Nonromantic friend 76 36.5

Romantic partner 92 44.2

Other 7 3.4

Source: Data from Aron et al. (1992).
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is to list these values down a page. (It might be good to use several columns so 
that you can have all the scores on a single page.)

 ❷ Go one by one through the scores, making a mark for each next to its value 
on your list. Figure 1-2 shows the results of this step.

 ❸ Make a table showing how many times each value on your list is used. 
Table 1-5 is the result.

 ❹ Figure the percentage of scores for each value. We have not done so in this 
example because it would not help much for seeing the pattern of scores. How-
ever, if you want to check your understanding of this step, the first five percent-
ages would be 0.0%, 2.1%, 1.1%, 5.3%, and 4.3%. (These are the percentages 
for frequencies of 0, 2, 1, 5, and 4, rounded to one decimal place.)

Grouped Frequency Tables
Sometimes there are so many possible values that an ordinary frequency table is 
too awkward to give a simple picture of the scores. The last example was a bit like 
that, wasn’t it? The solution is to make groupings of values that include all values 
in a certain range. Consider the stress ratings example. Instead of having a separate 
frequency figure for the group of students who rated their stress as 8 and another 
for those who rated it as 9, you could have a combined category of 8 and 9. This 
combined category is a range of values that includes these two values. A combined 
category like this is called an interval. This particular interval of 8 and 9 has a fre-
quency of 8 (the 5 scores with a value of 8 plus the 3 scores with a value of 9).

A frequency table that uses intervals is called a grouped frequency table.
Table 1-6 is a grouped frequency table for the stress ratings example. (Note that in 
this example the full frequency table has only 11 different values. Thus, a grouped 

interval range of values in a grouped 
frequency table that are grouped to-
gether. (For example, if the interval size 
is 10, one of the intervals might be from 
10 to 19.)

grouped frequency table frequency 
table in which the number of individuals 
(frequency) is given for each interval of 
values.

0 -
1 -
2 -
3 -
4 -
 5 -
6 -
7 -
8 -
9 -

10 -
11 -
12 -
13 -
14 -
15 -
16 -

17 -
18 -
19 -
20 -
21 -
22 -
23 -
24 -
25 -
26 -
27 -
28 -
29 -
30 -
31 -
32 -
33 -

34 -
35 -
36 -
37 -
38 -
39 -
40 -
41 -
42 -
43 -
44 -
45 -
46 -
47 -
48 -

Figure 1-2 Making a frequency 
table of students’ social interactions 
over a week. (Data from McLaughlin- 
Volpe et al., 2001.)

T I P  F O R  S U C C E S S
Be sure to check your work by 
adding the frequencies for all of 
the scores. This sum should equal 
the total number of scores you 
started with.

Table 1-6 Grouped 

Frequency Table for Stress Ratings

Stress Rating  
Interval Frequency Percent

0–1 2 6.7

2–3 3 10.0

4–5 3 10.0

6–7 11 36.7

8–9 8 26.7

10–11 3 10.0

Source: Data based on Aron et al. (1995).

Table 1-5  Frequency Table for Number of Social Interactions 

During a Week for 94 College Students

Score Frequency Score Frequency Score Frequency

 0 0 17 4 34 0

 1 2 18 5 35 2

 2 1 19 4 36 0

 3 5 20 0 37 0

 4 4 21 4 38 1

 5 3 22 3 39 0

 6 2 23 1 40 1

 7 2 24 2 41 1

 8 6 25 3 42 0

 9 3 26 2 43 0

10 6 27 1 44 1

11 4 28 1 45 0

12 1 29 4 46 0

13 2 30 2 47 2

14 3 31 0 48 1

15 1 32 1

16 2 33 1

Source: Data from McLaughlin-Volpe et al. (2001).
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histogram barlike graph of a fre-
quency distribution in which the values 
are plotted along the horizontal axis and 
the height of each bar is the frequency 
of that value; the bars are usually placed 
next to each other without spaces, giving 
the appearance of a city skyline.

frequency table is not really necessary.) Table 1-7 is a grouped frequency table for 
the 94 students’ number of social interactions over a week.

A grouped frequency table can make information even more directly under-
standable than an ordinary frequency table can. Of course, the greater understand-
ability of a grouped frequency table is at a cost. You lose some information: the 
details of the breakdown of frequencies in each interval.

When you are setting up a grouped frequency table, it makes a big difference how 
many intervals you use. There are guidelines to help researchers with this, but in prac-
tice it is done automatically by the researcher’s computer (see this chapter’s Using SPSS 
 section for instructions on how to create frequency tables using statistical software). Thus, 
we will not focus on it in this book. However, should you have to make a grouped fre-
quency table on your own, the key is to experiment with the interval size until you come 
up with one that is a round number (such as 2, 3, 5, or 10) and that creates about 5 to 
15 intervals. Then, when actually setting up the table, be sure you set the start of each 
interval to a multiple of the interval size and the top end of each interval to the number 
just below the start of the next interval. For example, Table 1-6  uses six intervals with 
an interval size of 2. The intervals are 0–1, 2–3, 4–5, 6–7, 8–9, and 10–11. Note that 
each interval starts with a multiple of 2 (0, 2, 4, 6, 8, 10) and the top end of each interval  
(1, 3, 5, 7, 9) is the number just below the start of the next interval (2, 4, 6, 8, 10).  
Table 1-7 uses 10 intervals with an interval size of 5. The intervals are 0–4, 5–9, 10–14,  
15–19, and so on, with a final interval of 45–49. Note that each interval starts with a mul-
tiple of 5 (0, 5, 10, 15, and so on) and that the top end of each interval (4, 9, 14, 19, and so 
on) is the number just below the start of the next interval (5, 10, 15, 20, and so on).

Table 1-7 Grouped 

Frequency Table for Numbers of Social  

Interactions During a Week for 94  

College Students

Interval Frequency Percent

0–4 12 12.8

5–9 16 17.0

10–14 16 17.0

15–19 16 17.0

20–24 10 10.6

25–29 11 11.7

30–34 4 4.3

35–39 3 3.2

40–44 3 3.2

45–49 3 3.2

Source: Data from McLaughlin-Volpe et al. 
(2001).

How are you doing?

 1. What is a frequency table?
 2. Why would a researcher want to make a frequency table?
 3. Make a frequency table for the following scores: 5, 7, 4, 5, 6, 5, 4.
 4. What does a grouped frequency table group?

Answers

 1. A frequency table is a systematic listing of the number of scores (the 
 frequency) of each value in the group studied.

 2. A frequency table makes it easy to see the pattern in a large group of scores. 

3. Value Frequency Percent

4 2 28.6

5 3 42.9

6 1 14.3

7 1 14.3

 4. A grouped frequency table groups the frequencies of adjacent values into 
intervals.

Histograms
A graph is another good way to make a large group of scores easy to understand. A 
picture may be worth a thousand words, but it is also sometimes worth a thousand 
numbers. A straightforward approach is to make a graph of the frequency table. 
One kind of graph of the information in a frequency table is a kind of bar chart 
called a histogram. In a histogram, the height of each bar is the frequency of each 
value in the frequency table. Ordinarily, in a histogram, all the bars are put next to 
each other with no space in between. The result is that a histogram looks a bit like a 
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city skyline. Figure 1-3 shows two histograms based on the stress ratings example 
(one based on the ordinary frequency table and one based on the grouped frequency 
table). Figure 1-4 shows a histogram based on the grouped frequency table for the 
example of the numbers of students’ social interactions in a week.
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Figure 1-3 Histograms based on (a) frequency table and (b) a grouped frequency for 
the stress ratings example. (Data based on Aron et al., 1995.)
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Figure 1-4 Histogram for number of social interactions during a week for 94 college 
students, based on grouped frequencies. (Data from McLaughlin-Volpe et al., 2001.)

Many of you are probably not looking forward to this 
course, and some of you may even have a certain degree 
of “statistics anxiety” (Onwuegbuzie, 2000; Zeidner, 
1991). You are not alone. The study of statistics anxi-
ety is a growing field. There are even questionnaire 
measures of statistics anxiety (e.g., Statistical Anxiety 
Rating Scale; Cruise, Cash, & Bolton, 1985) and the 
Statistical Education Research Journal, begun in 2002, 
 devotes many articles to the problem and how instruc-
tors can reduce it. What can you do?

First, take hope. In fact, several studies of statistics 
anxiety actually bring home the importance of hope 
(e.g., Kauer, 2010; Onwuegbuzie & Snyder, 2000). 
There’s reason for hope because this course is a chance 
for a fresh start with digits. Your past performance in (or 
avoidance of) geometry, trigonometry, calculus, or simi-
lar courses need not influence in any way how well you 
comprehend statistics. This is largely a different subject.

Second, a little anxiety is not a bad thing. A study of 
statistics anxiety at Auburn University (Keeley, Zayac, &  
Correia, 2008) confirmed one of the most solid findings 
in psychology, the Yerkes-Dodson (1908) law. That law 
says that performance and comfort are highest when 
you are at your optimal level of arousal, neither under 
aroused and bored or over aroused and anxious, but just 

right. (Maybe it should be the Goldilocks’ Law.) In the 
Auburn study, students with some anxiety out performed 
those with too much anxiety and also those with too lit-
tle. So go ahead, worry a little.

If, however, your anxiety is interfering with study-
ing or taking tests, then you need to determine where 
it is coming from. Is it statistics anxiety, anxiety about 
math in general, test anxiety, general anxiety, low self-
confidence? Each can play its role (Cooper & Robinson, 
1989; Dwinell & Higbee, 1991; Onwuegbuzie, 2000).

Is your problem statistics anxiety or general math anxi-
ety? If you only fear statistics, we promise it will be no 
harder than any other math course (actually, much less 
purely mathematical than most). For general math anxiety, 
go to the Internet. A search will yield hundreds of wonder-
ful books and Web sites to help you. We highly recom-
mend Sheila Tobias’s classics, Overcoming Math Anxiety 
(1995) and Succeed with Math: Every Student’s Guide to 
Conquering Math Anxiety (1987). Tobias, a former math 
avoider herself, suggests that your goal should be “math 
mental health,” which she defines as “the willingness to 
learn the math you need when you need it” (1995, p. 12). 
Another fine book on the subject is Conquering Math 
 Anxiety by Carol Arem (2009). Both authors emphasize the 
importance of looking back over your history with math to 

BOX 1-2  Math Anxiety, Statistics Anxiety, and You: A Message 

for Those of You Who Are Truly Worried About This Course
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when it became a problem. They also teach ways to deal 
with the emotions as they rise up while you are studying.

Is your problem test anxiety? Test taking can easily 
push you out of your optimal level of arousal, especially 
when the test is timed. Your mind starts to race, creat-
ing more anxiety, more arousal, and so on. Maybe the 
thought comes that you are “no good and never will be.” 
So think through that thought right now so that you can 
forget it. You are in college. You are definitely “good.” 
If you have had some low grades, that may reflect your 
problems with tests more than your abilities.

What more can you do about test anxiety? There are 
many ways to reduce anxiety and arousal in general, 
such as learning to breathe properly and to take a brief 
break to relax deeply. Your counseling center should be 
able to help you or direct you to some good books on 
the subject. Again, many Web sites deal with reducing 
anxiety.

We think that test anxiety is best solved by over 
 preparing for a few tests, so that you go in with the 
certainty that you cannot possibly fail, no matter how 
aroused you become. The ideal time to begin applying 
this tactic is the first test of this course. There will be no 
old material to review, success will not depend on hav-
ing understood previous material, and initial success will 
help you do well throughout the course.

You also might enlist the sympathy of your instruc-
tor or teaching assistant about your test anxiety. Bring 
in a list of what you have studied, explain why you 
are being so exacting, and ask if you have missed any-
thing. Your preparation must be ridiculously thorough, 
but only for a few exams. After these successes, your 
test anxiety should decline. Also, reduce your arousal 
by making the testing situation more familiar. Create 
a practice test situation as similar to a real test as pos-
sible, making a special effort to duplicate the aspects 
that bother you most. If feeling rushed is the troubling 
part, once you think you are well prepared, set yourself a 
time limit for solving some homework problems. Make 
yourself write out answers fully and legibly—this may 
be part of what makes you feel slow during a test. If the 
presence of others bothers you—the sound of their scur-
rying pencils while yours is frozen in midair—do your 
practice test with others in your course. If the sense of 
competition is behind your fear, add the twist of making  
it an explicit contest—then laugh about it afterwards.

Is your problem a general lack of confidence? Maybe 
something else in your life is causing you to worry or 
feel bad about yourself. In that case, it is time you tried 
your friendly college counseling center.

Lastly, could you be highly sensitive? A final word 
about anxiety and arousal. About 20% of us seem to be 
born “highly sensitive” (Aron, Aron, & Jagiellowicz, 
2012). Traditionally seen as shyness, hesitancy, or intro-
version (Eysenck, 1981; Kagan, 1994), this temperament 
trait actually seems due to a preference to observe, notice 
subtle stimulation, and process this information deeply, 
along with having a heightened emotionality that serves to 
motivate that processing (Aron, 1996; Aron & Aron, 1997; 
Jagiellowicz et al., 2011). This trait is normal and found 
in over one hundred other species (Wolf, van Doorn, & 
Weissing, 2008). Highly sensitive persons (HSPs) tend to 
be very intuitive or even gifted. But they are more easily 
over aroused by high levels of stimulation, like tests.

You might want to find out if you are an HSP (at 
www.hsperson.com). If you are, appreciate the trait’s as-
sets and make some allowances for its one disadvantage, 
this tendency to become easily over aroused, which can 
affect test performance. What matters is what you ac-
tually know, which is probably quite a bit. This simple 
act of self-acceptance—that you are not less smart but 
are more sensitive—may in itself help ease your arousal 
when trying to express your statistical knowledge.

More generally. Is there still a lingering feeling that 
you are “no good” at math? That some people are just 
 naturally good at math and you are not one of them? A 
study cited by Tobias (1995) compared students in Asia 
and the United States on an international mathematics 
test and found the U.S. students were thoroughly outper-
formed. Why? Interviews revealed that Asian students saw 
math as an ability fairly equally distributed among people 
and thought that differences in performance were due to 
hard work. In contrast, U.S. students thought some people 
are just born better at math; so hard work matters little.

Learn from those good at math. Do not feel nervous 
when you are stuck. Stay calm and go back to the last 
place where you understood things, or ask for help from 
someone who will not make you nervous. One of the 
worst feelings is having someone explain something, 
and you still don’t get it. But if that happens, remem-
ber that it is just that you are getting anxious and over 
aroused, not that you are “bad at math.” Keep looking 
for the right kind of help. Some people love to teach and 
know the importance of praising you when you get it 
right. Find them. Then, once you understand something, 
try to explain it to someone else right away. Teaching is 
a great way to really grasp an idea.

And breathe deeply. Stay calm. Maybe you can actu-
ally enjoy the process of becoming someone who truly 
understands this subject.

www.hsperson.com
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How to Make a Histogram
There are four steps in making a histogram.

 ❶ Make a frequency table (or grouped frequency table).
 ❷ Put the values along the bottom of the page, from left to right, from lowest 

to highest. If you are making a histogram from a grouped frequency table, 
the values you put along the bottom of the page are the interval midpoints. 
The midpoint of an interval is halfway between the start of that interval and  
the start of the next highest interval. So, in Figure 1-4, the midpoint for the 
0–4 interval is 2.5, because 2.5 is halfway between 0 (the start of the interval) 
and 5 (the start of the next highest interval). For the 5–9 interval, the midpoint 
is 7.5 because 7.5 is halfway between 5 (the start of the interval) and 10 (the 
start of the next highest interval). Do this for each interval.When you get to the 
last interval, find the midpoint between the start of the interval and the start of 
what would be the next highest interval. So, in Figure 1-4, the midpoint for the  
45–49 interval is halfway between 45 (the start of the interval) and 50 (the start 
of what would be the next interval), which is 47.5.

 ❸ Make a scale of frequencies along the left edge of the page that goes from 0 
at the bottom to the highest frequency for any value.

 ❹ Make a bar above each value with a height for the frequency of that value. 
For each bar, make sure that the middle of the bar is above its value.

When you have a nominal variable, the histogram is called a bar graph. Since 
the values of a nominal variable are not in any particular order, you leave a space 
between the bars. Figure 1-5 shows a bar graph based on the frequency table in 
Table 1-4. 
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Figure 1-5 Bar graph for the closest person in life for 208 students (see Table 1-4). 
(Data from Aron et al., 1995.)

T I P  F O R  S U C C E S S
Now try this yourself! Work out 
the interval midpoints for the 
grouped frequency table for the 
stress ratings example shown in 
Table 1-6. Remember, you are 
not finding the middle point of 
the  interval, but rather the middle 
point between where one interval 
starts and the next one begins. 
Your answers should be the same 
as the values shown along the 
bottom of Figure 1-3b.
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How are you doing?

 1. Why do researchers make histograms?
 2. When making a histogram from a frequency table, (a) what goes along the 

bottom, (b) what goes along the left edge, and (c) what goes above each 
value?

 3. Make a histogram based on the following frequency table:

Value Frequency

1 3

2 4

3 8

4 5

5 2

 4. How is a histogram based on a nominal variable different from one based on 
a numeric equal-interval variable?

Answers

 1. Researchers make histograms to show the pattern visually in a frequency 
table.

 2. (a) The values, from lowest to highest go along the bottom; (b) the frequen-
cies from 0 at the bottom to the highest frequency of any value at the top 
go along the left edge; (c) above each value is a bar with a height of the 
 frequency for that value.

 3. See Figure 1-6.
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Histogram for “How are 
you doing?” question 3.

 4. A histogram based on a nominal variable has gaps between the bars and is 
called a bar graph.
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Shapes of Frequency Distributions
A frequency distribution shows the pattern of frequencies over the various  values. 
A frequency table or histogram describes a frequency distribution because each 
shows the pattern or shape of how the frequencies are spread out, or “distributed.” 
Psychologists also describe this shape in words. Describing the shape of a distribu-
tion is important, both in the descriptive statistics we focus on in this chapter and the 
next and also in the inferential statistics you will learn in later chapters.

Unimodal and Bimodal Frequency Distributions
One question is whether a distribution’s shape has only one main high point: one 
high “tower” in the histogram. For example, in the stress ratings study, the most 
frequent value is 7, giving a graph only one very high area. This is a unimodal 
distribution. If a distribution has two fairly equal high points, it is a bimodal dis-
tribution. Any distribution with two or more high points is called a multimodal 
distribution. (Strictly speaking, a distribution is bimodal or multimodal only if the 
peaks are exactly equal. However, psychologists use these terms more informally 
to describe the general shape.) Finally, a distribution with values of all about the 
same frequency is a rectangular distribution. Figure 1-7 shows examples of these 
 frequency distribution shapes. As you will see, the graphs in Figure 1-7 are not his-
tograms, but special line graphs called frequency polygons, which are another way 
to graph a frequency table. In a frequency polygon, the line moves from point to 
point. The height of each point shows the number of scores with that value. This cre-
ates a mountain-peak skyline.

The scores from most psychology studies are usually an approximately uni-
modal distribution. Bimodal and other multimodal distributions occasionally turn up. 
A bimodal example is the distribution of the ages of people in a toddlers’ play area 
in a park, who are mostly either toddlers of ages around 2 to 4 years or caretakers 
with ages of 20 to 40 years or so (with few infants, a few siblings aged 5 to 19 years, 
and a few grandparents above 40 years). Thus, if you make a frequency distribution 
of these ages, the large frequencies are at the values for toddler ages (2 to 4) and for 
higher ages (20 to 40 or so). An example of a rectangular distribution is the number 
of children at each grade level at an elementary school; there is about the same num-
ber in first grade, second grade, and so on. Figure 1-8 shows these examples.

Symmetrical and Skewed Distributions
Look again at the histograms of the stress ratings example (Figure 1-3 on page 11). 
The distribution is lopsided, with more scores near the high end. This is somewhat 
unusual. Most things we measure in psychology have about equal numbers on both 
sides of the middle. That is, most of the time in psychology, the scores follow an 
approximately symmetrical distribution (if you fold the graph of a symmetrical 
distribution in half, the two halves look the same).

A distribution that clearly is not symmetrical is called a skewed distribution. 
The stress ratings distribution is an example. A skewed distribution has one side 
that is long and spread out, somewhat like a tail. The side with the fewer scores (the 
side that looks like a tail) is considered the direction of the skew. Thus, the stress 
study example, which has too few scores at the low end, is skewed to the left. How-
ever, the social interactions example, which has too few scores at the high end, is 
skewed to the right (see Figure 1-4). Figure 1-9 shows examples of approximately 
 symmetrical and skewed distributions.

frequency distribution pattern of fre-
quencies over the various values; what a 
frequency table, histogram, or frequency 
polygon describes.

unimodal distribution frequency dis-
tribution with one value clearly having a 
larger frequency than any other.

bimodal distribution frequency dis-
tribution with two approximately equal 
frequencies, each clearly larger than any 
of the others.

multimodal distribution frequency 
distribution with two or more high fre-
quencies separated by a lower frequency; 
a bimodal distribution is the special case 
of two high frequencies.

rectangular distribution frequency 
distribution in which all values have 
 approximately the same frequency.

symmetrical distribution distribution 
in which the pattern of frequencies on 
the left and right side are mirror images 
of each other.

skewed distribution distribution in 
which the scores pile up on one side 
of the middle and are spread out on 
the other side; distribution that is not 
symmetrical.

(a) Unimodal

(b) Approximately Bimodal

(c) Approximately Rectangular

Figure 1-7 Examples of 
(a) unimodal, (b) approximately 
bimodal, and (c) approximately 
 rectangular frequency polygons.
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A distribution that is skewed to the right is also called positively skewed. A dis-
tribution skewed to the left is also called negatively skewed.

Strongly skewed distributions come up in psychology research mainly when 
what is being measured has some upper or lower limit. For example, a family cannot 
have fewer than zero children. When many scores pile up at the low end because it 
is impossible to have a lower score, the result is called a floor effect. A skewed dis-
tribution caused by a lower limit is shown in Figure 1-10a.

floor effect situation in which many 
scores pile up at the low end of a distri-
bution (creating skewness to the right) 
because it is not possible to have any 
lower score.

Age

(a)
Number of
People in a
Toddler's
Play Area

1 2 3 4 5 6

Grade Level

(b)
Number

of
Students

Figure 1-8 Fictional examples of distributions that are not unimodal: (a) A bimodal 
distribution showing the possible frequencies for people of different ages in a toddler’s play 
area. (b) A regular distribution showing the possible frequencies of students at different grade 
levels in an elementary school.

(c)(b)(a)

Figure 1-9 Examples of frequency polygons of distributions that are (a) approxi-
mately symmetrical, (b) skewed to the right (positively skewed), and (c) skewed to the left 
(negatively skewed).

T I P  F O R  S U C C E S S
It helps you remember the direction 
of the skew to know that the word 
skew comes from the French queue, 
which means line or tail. Thus, the 
direction of the skew is the side that 
has the long line, or tail.
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A skewed distribution caused by an upper limit is shown in Figure 1-10b. This 
is a distribution of adults’ scores on a multiplication table test. This distribution 
is strongly skewed to the left. Most of the scores pile up at the right, the high end 
(a perfect score). This shows a ceiling effect. The stress ratings example also shows 
a mild ceiling effect because many students had high levels of stress, the maximum 
rating was 10, and people often do not like to use ratings right at the maximum.

Normal and Kurtotic Distributions
Psychologists also describe a distribution in terms of whether the middle of the dis-
tribution is particularly peaked or flat. The standard of comparison is a bell-shaped 
curve. In psychology research and in nature generally, distributions often are similar 
to this bell-shaped standard, called the normal curve. We discuss this curve in some 
detail in later chapters. For now, however, the important thing is that the normal 
curve is a unimodal, symmetrical curve with an average peak—the sort of bell shape 
shown in Figure 1-11a. Both the stress ratings and the social interactions examples 
are somewhat skewed. In our experience, most distributions that result from psy-
chology research are closer to the normal curve than are these two examples.

Kurtosis is how much the shape of a distribution differs from a normal curve in 
terms of whether its curve in the middle is more peaked or flat than the normal curve 
(DeCarlo, 1997). Kurtosis comes from the Greek word kyrtos, “curve.” Figure 1-11b 
shows a kurtotic distribution with a more extreme peak than the normal curve.  
Figure 1-11c shows an extreme example of a kurtotic distribution, one with a very 
flat distribution. (A rectangular distribution would be even more extreme.)

Distributions that are more peaked or flat than a normal curve also tend to have 
a different shape in the tails. Those with a very peaked curve usually have more 
scores in the tails of the distribution than the normal curve (see Figure 1-11b). It is 
as if the normal curve got pinched in the middle and some of it went up into a sharp 
peak and the rest spread out into thick tails. Distributions with a flatter curve usually 
have fewer scores in the tails of the distribution than the normal curve (see Figure 1-11c). 
It is as if the tails and the top of the curve both got sucked in toward the middle on both 
sides. Although it is often easiest to identify kurtosis in terms of how peaked or flat 
the distribution is, the number of scores in the tails is what matters.

ceiling effect situation in which 
many scores pile up at the high end of 
a distribution (creating skewness to the 
left) because it is not possible to have a 
higher score.

normal curve specific, mathematically 
defined, bell-shaped frequency distribu-
tion that is symmetrical and unimodal; 
distributions observed in nature and in 
research commonly approximate it.

kurtosis extent to which a frequency 
distribution deviates from a normal 
curve in terms of whether its curve in the 
middle is more peaked or flat than the 
normal curve.
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Figure 1-10 (a) A distribution skewed to the right due to a floor effect: fictional dis-
tribution of the number of children in families. (b) A distribution skewed to the left due to a 
ceiling effect: fictional distribution of adults’ scores on a multiplication table test.
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(b) (c)(a)

Figure 1-11 Examples of (a) normal, (b) heavy-tailed, and (c) light-tailed distribu-
tions. The normal distribution is shown as a dashed line in (b) and (c). 

Source: Adapted from DeCarlo, T. (1997). On the meaning and use of kurtosis. Psychological Methods, 
3, 292–307. Copyright © 1997 by the American Psychological Association. Adapted with permission. 
The use of APA information does not imply endorsement by APA.

How are you doing?

 1. Describe the difference between a unimodal and multimodal distribution in 
terms of (a) a frequency graph and (b) a frequency table.

 2. What does it mean to say that a distribution is skewed to the left?
 3. What kind of skew is created by (a) a floor effect and (b) a ceiling effect?
 4. When a distribution is described as being peaked or flat, what is it being 

compared to?

Answers

 1. (a) A unimodal distribution has one main high point; a multimodal distribution 
has more than one main high point. (b) A unimodal distribution has one value 
with a higher frequency than all the other frequencies; a multimodal distribu-
tion has more than one value with large frequencies compared to the values 
around it.

 2. When a distribution is skewed to the left, fewer scores have low values than 
have high values.

 3. (a) A floor effect creates a distribution that is skewed to the right; (b) a ceiling 
effect creates a distribution that is skewed to the left.

 4. The distribution is being compared to a normal curve.

Controversy: Misleading Graphs
The most serious controversy about frequency tables and histograms is not among 
psychologists, but among the general public. The misuse of these procedures by 
some public figures, advertisers, and the media seems to have created skepticism 
about the trustworthiness of statistics in general and of statistical tables and charts in 
particular. Everyone has heard that “statistics lie.”

Of course, people can and do lie with statistics. It is just as easy to lie with 
words, but you may be less sure of your ability to recognize lies with numbers. In 
this section, we note two ways in which frequency tables and graphs can be mis-
used and tell how to recognize such misuses. Much of this material is based on the 
 classic discussion of these issues in Tufte (1983). There is also a substantial research 
 literature on the misuse of graphs in corporate and government technical reports on 
an array of important scientific and social topics (e.g., Jones, 2011).
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Failure to Use Equal Interval Sizes
A key requirement of a grouped frequency table or graph is that the size of the inter-
vals be equal. If they are not equal, the table or graph can be very misleading. Tufte 
(1983) gives an example, shown in Figure 1-12, from the respectable (and usually 
very accurate) New York Times. This chart gives the impression that commissions paid 
to travel agents dropped dramatically in 1978. However, a close reading of the graph 
shows that the third bar for each airline is for only the first half of 1978. Thus, only 
half a year is being compared to each of the preceding full years. Assuming that the 
second half of 1978 was like the first half, the information in this graph actually tells 
us that 1978 shows an increase rather than a decrease. For example, Delta Airlines 
estimated a full-year 1978 figure of $72 million, much higher than 1977’s $57 million.

Exaggeration of Proportions
The height of a histogram or bar graph (or frequency polygon) usually begins at 
0 or the lowest value of the scale and continues to the highest value of the scale. 
Figure 1-13a shows a bar graph that does not follow this standard. The bar graph 
shows the mean housing price in a particular region over a 4-year period (from 
2008 to 2011). By starting the vertical axis at $150,000 (instead of 0, as is cus-
tomary), the graph appears to exaggerate the changes in housing price over time.  
Figure 1-13b shows the same results with the vertical axis starting at $0. You can 
still see the changes in housing price from year to year in Figure 1-13b but the 
 figure does a better job of showing the size of those changes.

The overall proportion of a histogram or bar graph should be about 1 to 1.5 times 
as wide as it is tall, as in Figure 1-14a for the stress ratings example. But look what 
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Figure 1-12 Misleading illustration of a frequency distribution due to unequal  interval sizes.

Source: “Commission Payments to Travel Agents,” From The New York Times, August 8, 1978. © 1978 
The New York Times. Used by permission and protected by the Copyright Laws of the United States. 
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happens if we make the graph much shorter or taller, as shown in Figures 1-14b and 
1-14c. The effect is like using computer software to alter a photograph of a person: 
the true picture is distorted. Any particular shape of the histogram is in a sense ac-
curate. But the 1-to-1.5 proportion has been adopted to give people a standard for 
comparison. Changing this proportion misleads the eye.

150,000

M
ea

n 
H

ou
se

 P
ri

ce
 (

$)

152,000

154,000

156,000

158,000

160,000

162,000

164,000

2008 2009 2010

Year Year

2011
0

M
ea

n 
H

ou
se

 P
ri

ce
 (

$)

25,000

50,000

75,000

100,000

125,000

150,000

175,000

(a) (b)

2008 2009 2010 2011

Figure 1-13 Misleading bar graph due to not starting at zero. The vertical axis starts at 
$150,000 for figure (a) compared to $0 for figure (b).
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Figure 1-14 Histogram of students’ stress ratings distorted from the standard of width 
1 to 1.5 times height. (Data based on Aron et al., 1995.)
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Frequency Tables and Histograms  
in Research Articles
Psychology researchers mainly use frequency tables and histograms as an impor-
tant first step before conducting more elaborate statistical analyses. As you will 
learn in Chapter 14, knowing the distribution of the variables in your research 
study can influence the type of statistical analysis that you conduct. The best way 
to identify the distribution of a variable is to look at it visually, using a frequency 
table or histogram. However, frequency tables and histograms are usually not 
included in research articles, and when they are, just because they are so rare, 
they are often not standard in some way. Hether and Murphy (2010) conducted 
an interesting study, in which they examined the health-related plots from three 
seasons of 10 prime-time U.S. television programs. They were particularly inter-
ested in whether male and female characters on the programs experienced differ-
ent types of health issues. The researchers devised a detailed coding scheme that 
graduate students then used to code the health issues experienced by male and fe-
male characters in the television programs. Table 1-8 is a frequency table showing 

Table 1-8 Ten Most Common Health Issues for Male

                                  and Female Characters

Rank Health Issue Freq % Within Sex

Males

 1 Homicide 245 33

 2 Unusual illness/disease 107 15

 3 Unintentional injury 43 6

 4 Motor vehicle related 37 5

 5 Illegal substance abuse 30 4

 6 Heart disease 28 4

 7 Mental health 23 3

 8 Toxic substance exposure 22 3

 9 Unintentional falls 20 3

10 Prescription medication abuse 19 3

N 

Females

732

 1 Homicide 151 27

 2 Unusual illness/disease 89 16

 3 Pregnancy related 47 9

 4 Rape/sexual assault 29 5

 5 Unintentional injury 23 4

 6 Mental health 22 4

 7 Cancer 21 4

 8 Motor vehicle related 21 4

 9 Heart disease 16 3

10 Alcohol abuse 14 3

554

Source: Hether, H. J., & Murphy, S. T. (2010). Sex roles in health storylines on prime 
time television: A content analysis. Sex Roles, 62, 810–821. Reprinted by permission of 
Springer publishers.
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the 10 most common health issues faced by the male and female characters. The 
table shows, for example, that the most common health issue was homicide, which 
represented 33% and 27% of the health issues experienced by male and female 
characters, respectively.

Histograms are even more rare in research articles (except in articles about 
statistics), but they do appear occasionally. Maggi and colleagues (2007) con-
ducted a study of age-related changes in cigarette smoking behaviors in Canadian 
adolescents. As shown in Figure 1-15, they created a histogram—from a grouped 
frequency table—to display their results. Their histogram shows the results from 
the two samples they studied (one shown in the light colored bars and the other in 
the dark colored bars). As you can see in the figure, less than 10% of the 10- and 
11-year-olds reported that they had tried smoking, but more than half of the 16- and 
17-year-olds said they had tried smoking. As already mentioned, such figures are 
often not standard in some way. In this example, the researchers drew the histogram 
with gaps between the bars, whereas it is standard not to use gaps (unless you are 
drawing a bar graph for a nominal variable). However, the histogram still does a 
good job of showing the distribution. Also, the researchers, to allow for a fair com-
parison of how the rate of smoking differed among adolescents of varying ages, 
plotted the percentage of adolescents on the vertical axis instead of the actual num-
ber of adolescents. (This was a very appropriate change from the standard in this 
case. Plotting the actual number of adolescents who reported smoking would have 
been misleading, because there were not the same number of individuals in each of 
the age groups.)
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Figure 1-15 Change in the percentage of adolescents surveyed in the Canadian 
National Longitudinal Survey of Children and Youth longitudinal sample (N = 9,667; light 
blue) and cross-sectional sample (N = 7,965; dark blue), who had tried smoking between the 
ages of 10 and 17 years.

Source: Maggi, S., Hertzman, C., & Vaillancourt, T. (2007). Changes in smoking behaviors from late 
childhood to adolescence: Insights from the Canadian National Longitudinal Survey of Children and 
Youth. Health Psychology, 26, 232–240. Published by the American Psychological Association. 
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 1. Psychologists use descriptive statistics to describe and summarize a group of 
numbers from a research study.

 2. A value is a number or category; a variable is a characteristic that can have dif-
ferent values; a score is a particular person’s value on the variable.

 3. Most variables in psychology research are numeric with approximately equal 
intervals. However, some numeric variables are rank-ordered (the values are 
ranks), and some variables are not numeric at all (the values are categories).

 4. A frequency table organizes the scores into a table of each of the possible val-
ues with the frequency and percentage of scores with that value.

 5. When there are many different values, a grouped frequency table is useful. It is 
like an ordinary frequency table except that the frequencies are given for inter-
vals that include a range of values.

 6. The pattern of frequencies in a distribution can be shown visually with a histo-
gram (or bar graph for a nominal variable), in which the height of each bar is 
the frequency for a particular value.

 7. The general shape of a histogram can be unimodal (having a single peak), bimodal 
(having two peaks), multimodal (including bimodal), or rectangular (having no 
peak); it can be symmetrical or skewed (having a long tail) to the right or the left; 
and, compared to the bell-shaped normal curve, it can be kurtotic (having a peaked 
or flat distribution).

 8. Statistical graphs for the general public are sometimes distorted in ways 
that mislead the eye, such as failing to use equal intervals or exaggerating 
proportions.

 9. Frequency tables and histograms are very important for researchers in the pro-
cess of interpreting their results, but are rarely shown in published research 
articles. When they are, they often follow nonstandard formats or involve fre-
quencies (or percentages) for a nominal variable. The shapes of distributions 
(normal, skewed, and so on) are more often described.

Summary

statistics (p. 2)
descriptive statistics (p. 2)
inferential statistics (p. 2)
variable (p. 3)
values (p. 3)
score (p. 3)
numeric variable (p. 4)
equal-interval variable (p. 4)
ratio scale (p. 4)
rank-order variable (p. 4)

nominal variable (p. 4)
levels of measurement (p. 4)
discrete variable (p. 5)
continuous variable (p. 5)
frequency table (p. 7)
interval (p. 9)
grouped frequency table (p. 9)
histogram (p. 10)
frequency distribution (p. 16)
unimodal distribution (p. 16)

bimodal distribution (p. 16)
multimodal distribution (p. 16)
rectangular distribution (p. 16)
symmetrical distribution (p. 16)
skewed distribution (p. 16)
floor effect (p. 17)
ceiling effect (p. 18)
normal curve (p. 18)
kurtosis (p. 18)

Key Terms

Learning Aids
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Example Worked-Out Problems

Ten first-year university students rated their interest in graduate school on a scale 
from 1 = no interest at all to 6 = high interest. Their scores were as follows: 2, 4, 5, 
5, 1, 3, 6, 3, 6, 6.

Making a Frequency Table
See Figure 1-16.
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Interest in
Graduate School Frequency Percent

2, 4, 5, 5, 1, 3, 6, 3, 6, 6
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Figure 1-16 Answer to Example Worked-Out Problem for making a frequency table.  
❶ Make a list down the page of each possible value, from lowest to highest. ❷ Go one by one 
through the scores, making a mark for each next to its value on your list. ❸ Make a table showing 
how many times each value on your list is used. ❹ Figure the percentage of scores for each value.

Making a Histogram
See Figure 1-17.

Figure 1-17 Answer to Example Worked-Out Problem for making a histogram. ❶ Make 
a frequency table. ❷ Put the values along the bottom of the page (from left to right, from lowest 
to highest). ❸ Make a scale of frequencies along the left edge of the page (going from 0 at the 
bottom to the highest frequency for any value). ❹ Make a bar for each value (with a height for 
the frequency of that value).
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Practice Problems

These problems involve tabulation and making graphs. Most real-life statistics prob-
lems are done with special statistical software. Even if you have such software, do 
these problems by hand to ingrain the method in your mind. To learn how to use a 
computer to solve statistics problems like those in this chapter, refer to the Using 
SPSS section at the end of this chapter.

All data are fictional unless an actual citation is given.

Set I (for Answers to Set I Problems, see pp. 680–681)
 1. A client rates her satisfaction with her vocational counselor as a 3 on a 4-point 

scale from 1 = not at all satisfied to 4 = very satisfied. What is the (a) variable, 
(b) possible values, and (c) this client’s score?

 2. Give the level of measurement for each of the following variables: (a) eth-
nic group to which a person belongs, (b) number of times a mouse makes 
a wrong turn in a laboratory maze, and (c) position a runner finishes in a 
race.

 3. A particular block in a suburban neighborhood has 20 households. The number 
of children in these households is as follows:

2, 4, 2, 1, 0, 3, 6, 0, 1, 1, 2, 3, 2, 0, 1, 2, 1, 0, 2, 2

  Make (a) a frequency table and (b) a histogram. Then (c) describe the general 
shape of the distribution.

 4. Fifty students were asked how many hours they studied this weekend. Here are 
their answers:

11, 2, 0, 13, 5, 7, 1, 8, 12, 11, 7, 8, 9, 10, 7, 4, 6, 10, 4, 7, 8, 6, 7, 10, 7, 3,  
11, 18, 2, 9, 7, 3, 8, 7, 3, 13, 9, 8, 7, 7, 10, 4, 15, 3, 5, 6, 9, 7, 10, 6 

  Make (a) a frequency table and (b) a histogram. Then (c) describe the general 
shape of the distribution.

 5. These are the scores on a test of sensitivity to smell taken by 25 chefs attending 
a national conference:

96, 83, 59, 64, 73, 74, 80, 68, 87, 67, 64, 92, 76, 71, 68, 50, 85,  
75, 81, 70, 76, 91, 69, 83, 75

  Make (a) a frequency table and (b) histogram. (c) Make a grouped frequency 
table using intervals of 50–59, 60–69, 70–79, 80–89, and 90–99. Based on the 
grouped frequency table, (d) make a histogram and (e) describe the general 
shape of the distribution.

 6. The following data are the number of minutes it took each of a group of 34 
10-year-olds to do a series of abstract puzzles:

24, 83, 36, 22, 81, 39, 60, 62, 38, 66, 38, 36, 45, 20, 20, 67, 41, 87,  
41, 82, 35, 82, 28, 80, 80, 68, 40, 27, 43, 80, 31, 89, 83, 24

  Make (a) a frequency table and (b) a grouped frequency table using intervals of 
20–29, 30–39, 40–49, 50–59, 60–69, 70–79, and 80–89. Based on the grouped 
frequency table, (c) make a histogram and (d) describe the general shape of the 
distribution.
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 7. Describe the shapes of the three distributions illustrated.

 8. Make up and draw an example of each of the following distributions: (a) sym-
metrical, (b) rectangular, and (c) skewed to the right.

 9. Explain to a person who has never had a course in statistics what is meant by 
(a) a symmetrical unimodal distribution and (b) a negatively skewed unimodal 
distribution. (Be sure to include in your first answer an explanation of what  
distribution means.)

 10. McKee and Ptacek (2001) asked 90 college students about a time they had 
 delivered bad news to someone. Table 1-9 shows the results for the type of bad 
news given. (a) Using this table as an example, explain the idea of a frequency 
table to a person who has never had a course in statistics. (b) Explain the gen-
eral meaning of the pattern of results.

Set II
 11. A participant in a cognitive psychology study is given 50 words to remember 

and later asked to recall as many of the words as she can. She recalls 17 words. 
What is the (a) variable, (b) possible values, and (c) score?

Table 1-9 Descriptive Statistics for the Type of News Given

Category Frequency Percentage

1. Relationship with family 19 21.1

2. School 1 1.1

3. Job/work 6 6.7

4. Relationship with actual/potential girlfriend/boyfriend 17 18.9

5. Personal health 1 1.1

6. Finance 1 1.1

7. Relationship with friends 21 23.3

8. Health of family member/friend 23 25.6

9. Other 1 1.1

Source: McKee, T. L. E., & Placek, J. T. (2001). I’m afraid I have something bad to tell you: Breaking bad news 
from the perspective of the giver. Journal of Applied Social Psychology, 31, 246–273. Copyright © 2001. Reprinted 
by permission of Blackwell Publishers Journals.

(b)(a)

(c)
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 12. Explain and give an example for each of the following types of variables: 
(a) equal-interval, (b) rank-order, (c) nominal, (d) ratio scale, (e) continuous; 
(f) discrete.

 13. An organizational psychologist asks 20 employees in a company to rate their 
job satisfaction on a 5-point scale from 1 = very unsatisfied to 5 = very satisfied. 
The ratings are as follows:

 3, 2, 3, 4, 1, 3, 3, 4, 5, 2, 3, 5, 2, 3, 3, 4, 1, 3, 2, 4 

  Make (a) a frequency table and (b) a histogram. Then (c) describe the general 
shape of the distribution.

 14. A social psychologist asked 15 college students how many times they “fell in 
love” before they were 11 years old. The numbers of times were as follows:

 2, 0, 6, 0, 3, 1, 0, 4, 9, 0, 5, 6, 1, 0, 2

  Make (a) a frequency table and (b) a histogram. Then (c) describe the general 
shape of the distribution.

 15. Following are the speeds of 40 cars clocked by radar on a particular road in a 
35-mph zone on a particular afternoon:

 30, 36, 42, 36, 30, 52, 36, 34, 36, 33, 30, 32, 35, 32, 37, 34, 36, 31, 35, 20, 
24, 46, 23, 31, 32, 45, 34, 37, 28, 40, 34, 38, 40, 52, 31, 33, 15, 27, 36, 40 

  Make (a) a grouped frequency table and (b) a histogram based on the grouped 
frequency table. Then (c) describe the general shape of the distribution.

 16. Here are the number of holiday gifts purchased by 25 families randomly inter-
viewed at a local mall at the end of the holiday season:

 22, 18, 22, 26, 19, 14, 23, 27, 2, 18, 28, 28, 11, 16, 34, 28, 13, 21, 32, 
17, 6, 29, 23, 22, 19 

  Make (a) a frequency table and (b) a grouped frequency table using intervals 
of 0–4, 5–9, 10–14, 15–19, 20–24, 25–29, and 30–34. Based on the grouped 
frequency table, (c) make a histogram and (d) describe the general shape of the 
distribution.

 17. Pick a book and a page number of your choice. (Select a page with at least 
30 lines; do not pick a textbook or any book with tables or illustrations.) Make 
a list of the number of words on each line; use that list as your group of scores. 
Make (a) a frequency table and (b) a histogram. Then (c) describe the general 
shape of the distribution. (Be sure to give the name, author, publisher, and year 
of the book you used, along with the page number, with your answer.)

 18. Explain to a person who has never taken a course in statistics the meaning of a 
grouped frequency table.

 19. Make up and draw an example of each of the following distributions: (a) bimodal, 
(b) approximately rectangular, and (c) skewed to the right. Do not use an example 
given in this book or in class.

 20. Find an example in a newspaper, magazine, or news website of a graph that 
misleads by failing to use equal interval sizes or by exaggerating proportions.

 21. Raskauskas and Stoltz (2007) asked a group of 84 adolescents about their 
involvement in traditional and electronic bullying. The researchers defined 
electronic bullying as “... a means of bullying in which peers use electronics 
[such as text messages, emails, and defaming Web sites] to taunt, threaten, 

MyStatLab

MyStatLab

MyStatLab

MyStatLab



 Displaying the Order in a Group of Numbers Using Tables and Graphs  29

harass, and/or intimidate a peer” (p. 565). Table 1-10 is a frequency table show-
ing the adolescents’ reported incidence of being victims or perpetrators of tra-
ditional and electronic bullying. (a) Using this table as an example, explain the 
idea of a frequency table to a person who has never had a course in statistics.  
(b) Explain the general meaning of the pattern of results.

 22. Mouradian (2001) surveyed college students selected from a screening session 
to include two groups: (a) “Perpetrators”—students who reported at least one 
violent act (hitting, shoving, etc.) against their partner in their current or most 
recent relationship—and (b) “Comparisons”—students who did not report any 
such uses of violence in any of their last three relationships. At the actual testing 
session, the students first read a description of an aggressive behavior such as, 
“Throw something at his or her partner” or “Say something to upset his or her 
partner.” They then were asked to write “as many examples of circumstances 
of situations as [they could] in which a person might engage in behaviors or 
acts of this sort with or towards their significant other.” Table 1-11 shows the 
“Dominant Category of Explanation” (the category a participant used most) for 
 females and males, broken down by comparisons and perpetrators. (a) Using this 
table as an example, explain the idea of a frequency table to a person who has 
never had a course in statistics. (b) Explain the general meaning of the pattern  
of results.

Table 1-10  Incidence of Traditional and Electronic 

Bullying and Victimization (N = 84)

Form of Bullying N %

Electronic victims 41 48.8

Text-message victim 27 32.1

Internet victim (Web sites, chatrooms) 13 15.5

Picture-phone victim 8 9.5

Traditional victims 60 71.4

Physical victim 38 45.2

Teasing victim 50 59.5

Rumors victim 32 38.6

Exclusion victim 30 50.0

Electronic bullies 18 21.4

Text-message bully 18 21.4

Internet bully 11 13.1

Traditional bullies 54 64.3

Physical bully 29 34.5

Teasing bully 38 45.2

Rumor bully 22 26.2

Exclusion bully 35 41.7

Source: Raskauskas, J., & Stoltz, A. D. (2007). Involvement in traditional 
and electronic bullying among adolescents. Developmental Psychology, 
43, 564–575. Published by the American Psychological Association. 
Reprinted with permission.
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Using SPSS

The  in the following steps indicates a mouse click. (We used SPSS version 19.0 
to carry out these analyses. The steps and output may be slightly different for other 
versions of SPSS.)

Creating a Frequency Table
 ❶ Enter the scores from your distribution in one column of the data window.
 ❷  Analyze.
 ❸  Descriptive statistics.
 ❹  Frequencies.
 ❺  the variable you want to make a frequency table of and then  the arrow.
 ➏  OK.
Practice the preceding steps by creating a frequency table for the social interactions 
example in this chapter (the scores are listed on p. 8). After Step ❺, your screen 
should look like Figure 1-18. Your output window (which appears after you  OK 
in Step ➏) should look like Figure 1-19. As you will see, SPSS automatically pro-
duces a column with the cumulative percentage (or percentile) for each value. (Note 
that it is possible to create grouped frequency tables in SPSS, but since it is not a 
straightforward process, we do not cover it here.)

Table 1-11  Dominant Category of Explanation for Intimate Aggression by Gender 

and Perpetrator Status

Group

Female Male

Comparisons  
(n = 36)

Perpetrators  
(n = 33)

Comparisons  
(n = 32)

Perpetrators  
(n = 25)

Category f % f % f % f %

Self-defense 2 6 3 9 3 9 1 4

Control motives 8 22 9 27 9 28 3 12

Expressive aggression 4 11 3 9 3 9 8 32

Face/self-esteem preservation 1 3 2 ˜6 2 6 3 12

Exculpatory explanations 5 14 3 9 3 9 3 12

Rejection of perpetrator or act 12 33 6 18 10 31 7 28

Prosocial/acceptable explanations 0 0 0 0 0 0 0 0

Tied categories 4 11 7 21 2 6 0 0

Note: f = frequency. % = percentage of respondents in a given group who provided a particular category of explanation.

Source: Mouradian, V. E. (2001). Applying schema theory to intimate aggression: Individual and gender differences in repre-
sentation of contexts and goals. Journal of Applied Social Psychology, 31, 376–408. Copyright © 2001 by Blackwell Publishing. 
Reprinted by permission of Blackwell Publishers Journals.
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Creating a Histogram
 ❶ Enter the scores from your distribution in one column of the data window.
 ❷  Analyze.
 ❸  Descriptive statistics.
 ❹  Frequencies.
 ➎  the variable you want to make a histogram of and then  the arrow.
 ➏  Charts,  Histograms,  Continue.
 ➐ Optional: To instruct SPSS not to produce a frequency table,  the box 

labeled Display frequency tables (this unchecks the box).
 ➑  OK.
Practice these steps by creating a histogram for the social interactions example in 
this chapter (the scores are listed on p. 8). Your output window should look like 
Figure 1-20. Notice that SPSS automatically creates a histogram based on a grouped 
frequency table. (Should you wish, you can change the number of intervals or the  

Figure 1-18 SPSS data window and frequencies window for the social interactions 
example. (Data from McLaughlin-Volpe et al., 2001.)
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interval size for the histogram by doing the following: Place your mouse cursor on 
the histogram and double  to bring up a Chart Editor window; place your mouse 
cursor over one of the bars in the histogram and double  to bring up a Properties 
window;  Custom;  Number of intervals or  Interval Width; then enter the 
 number of intervals or the interval size you want;  Apply. If you want a nongrouped 
histogram, type in “1” for the interval width.)

Figure 1-19 SPSS frequency table for the social interactions example. (Data from 
McLaughlin-Volpe et al., 2001.)
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 1. Most research articles follow the procedure we recommend here: going from 
lowest at the top to highest at the bottom. However, some statistics authorities 
recommend going from highest at the top to lowest at the bottom.

Figure 1-20 SPSS histogram for the social interactions example. (Data from 
McLaughlin- Volpe et al., 2001.)

Chapter Note
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Chapter 2

Central Tendency and Variability

Several recent studies have asked students to record their dreams each  morning 
for a week or two (e.g., Mikulincer, Shaver, & Avihou-Kanza, 2011). In a 
typical study, the total number of dreams per week for 10 students might be 

as follows: 7, 8, 8, 7, 3, 1, 6, 9, 3, 8. How might you make this group of scores more 
understandable?

One way to gain that understanding is to use the tables and graphs you learned 
about in Chapter 1. Another way, which you will learn in this chapter, is to use num-
bers to describe and summarize a group of scores such as this.

First, you can describe a group of scores in terms of a representative (or typical) 
value, such as an average. A representative value gives the central tendency of a group 
of scores. A representative value is a simple way, with a single number, to  describe 
a group of scores (and there may be hundreds—or even thousands—of scores). 
The main representative value we consider is the mean. Next, we focus on ways of 
describing how the numbers are spread out in a group of scores. In other words, we 
consider the amount of variation, or variability, among the scores. The two measures 
of variability you will learn about are called the variance and standard deviation.

In this chapter, for the first time in this book, you will use statistical formulas. Such 
formulas are not here to confuse you. Hopefully, you will come to see that they actually 
simplify things and provide a very straightforward, concise way of describing statistical 
procedures. To help you grasp what such formulas mean in words, whenever we pres-
ent formulas in this book, we always also give the “translation” in ordinary English.

T I P  F O R  S U C C E S S
Before beginning this chapter, 
you should be sure that you are 
comfortable with the key terms 
variable, score, and value that we 
considered in Chapter 1.
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Central Tendency
The central tendency of a group of scores (a distribution) refers to the middle 
of the group of scores. You will learn about three measures of central tendency: 
mean, mode, and median. Each measure of central tendency uses its own method 
to come up with a single number describing the middle of a group of scores. We 
start with the mean, the most commonly used measure of central tendency. Under-
standing the mean is also an important foundation for much of what you learn in 
later chapters.

The Mean
Usually the best measure of central tendency is the ordinary average, the sum 
of all the scores divided by the number of scores. In statistics, this is called the 
mean. The average, or mean, of a group of scores is a representative value. Con-
sider again the example from the start of the chapter, in which 10 students recorded 
their total number of dreams during the last weeks. The mean of the 10 scores 17, 8, 8, 7, 3, 1, 6, 9, 3, 82 is 6 (the sum of 60 dreams divided by 10 students). That 
is, on the average, each student had 6 dreams in the past week. The information for 
the 10 students is thus summarized by the single number 6.

You can think of the mean as a kind of balancing point for the distribution of 
scores. Try it by visualizing a board balanced over a log, like a rudimentary teeter-
totter. Imagine piles of blocks set along the board according to their values, one for 
each score in the distribution (like a histogram made of blocks). The mean is the 
point on the board where the weight of the blocks on one side balances exactly with 
the weight on the other side. Figure 2-1 shows this for the number of dreams for the 
10 students.

Mathematically, you can think of the mean as the point at which the total   
distance to all the scores above that point equals the total distance to all the 
scores below that point. Let’s first figure the total distance from the mean to all 
the scores above the mean for the dreams example shown in Figure 2-1. There 
are two scores of 7, each of which is 1 unit above 6 (the mean). There are three 
scores of 8, each of which is 2 units above 6. And, there is one score of 9, which is  
3 units above 6. This gives a total distance of 11 units 11 + 1 + 2 + 2 + 2 + 32 
from the mean to all the scores above the mean. Now, let’s look at the scores below 
the mean. There are two scores of 3, each of which is 3 units below 6 (the mean). 
And there is one score of 1, which is 5 units below 6. This gives a total distance of  
11 units 13 + 3 + 52 from the mean to all of the scores below the mean. Thus, you 
can see that the total distance from the mean to the scores above the mean is the 
same as the total distance from the mean to the scores below the mean. The scores 
above the mean balance out the scores below the mean (and vice-versa).

central tendency typical or most 
representative value of a group of scores.

mean arithmetic average of a group of 
scores; sum of the scores divided by the 
number of scores.

Figure 2-1 Mean of the distribution of the number of dreams during a week for 
10 students, illustrated using blocks on a board balanced on a log.

5 6 7 8 91 2 3 4

M = 6
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Some other examples are shown in Figure 2-2. Notice that there doesn’t have 
to be a block right at the balance point. That is, the mean doesn’t have to be a score 
actually in the distribution. The mean is the average of the scores, the balance point. 
The mean can be a decimal number, even if all the scores in the distribution have 
to be whole numbers (a mean of 2.30 children, for example). For each distribution 
in Figure 2-2, the total distance from the mean to the scores above the mean is the 
same as the total distance from the mean to the scores below the mean. (By the way, 
this analogy to blocks on a board, in reality, works out precisely only if the board 
has no weight of its own.)

Formula for the Mean and Statistical Symbols
The rule for figuring the mean is to add up all the scores and divide by the number of 
scores. Here is how this rule is written as a formula:

 M =
gX

N
 (2-1)

M is a symbol for the mean. An alternative symbol, X (“X-bar”), is sometimes 
used. However, M is almost always used in published research articles, as recom-
mended by the style guidelines of the American Psychological Association (2009). 
You will see X used mostly in advanced statistics books and in articles about sta-
tistics. In fact, there is not a standard agreement for many of the symbols used in 
 statistics. (In this book we generally use the symbols most widely found in psychol-
ogy research articles.)

∑, the capital Greek letter sigma, is the symbol for “sum of.” It means “add 
up all the numbers for whatever follows.” It is the most common special arithmetic 
symbol used in statistics.

X stands for the scores in the distribution of the variable X. We could have 
picked any letter. However, if there is only one variable, it is usually called X. In 
later chapters we use formulas with more than one variable. In those formulas, we 
use a second letter along with X (usually Y ) or subscripts (such as X1 and X2).

gX is “the sum of X.” This tells you to add up all the scores in the distribution 
of the variable X. Suppose X is the number of dreams of our 10 students: gX is 
7 + 8 + 8 + 7 + 3 + 1 + 6 + 9 + 3 + 8, which is 60.

M mean.

∑ sum of; add up all the scores follow-
ing this symbol.

X scores in the distribution of the 
variable X.

T I P  F O R  S U C C E S S
Think of each formula as a statisti-
cal recipe, with statistical symbols 
as ingredients. Before you use 
each formula, be sure you know 
what each symbol stands for. 
Then carefully follow the formula to 
come up with the end result.

Figure 2-2 Means of various distributions illustrated with blocks on a board balanced 
on a log.

The mean is the sum of the 
scores divided by the number 
of scores.

5 6 7 8 91 2 3 4

5 6 7 8 91 2 3 4

5 6 7 8 91 2 3 4

5 6 7 8 91 2 3 4

M = 6

M = 3.60

M = 6

M = 6
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N stands for number—the number of scores in a distribution. In our example, 
there are 10 scores. Thus, N equals 10.1

Overall, the formula says to divide the sum of all the scores in the distribu-
tion of the variable X by the total number of scores, N. In the dreams example, this 
means you divide 60 by 10. Put in terms of the formula,

M =
gX

N
=

60

10
= 6

Additional Examples of Figuring the Mean
Consider the examples from Chapter 1. The stress ratings of the 30 students in the 
first week of their statistics class (based on Aron et al., 1995) were:

8, 7, 4, 10, 8, 6, 8, 9, 9, 7, 3, 7, 6, 5, 0, 9, 10, 7, 7, 3, 6, 7, 5, 2, 1, 6, 7, 10, 8, 8

In Chapter 1, we summarized all these numbers into a frequency table (Table 1-3). 
You can now summarize all this information as a single number by figuring the 
mean. Figure the mean by adding up all the stress ratings and dividing by the  number 
of stress ratings. That is, you add up the 30 stress ratings: 8 + 7 + 4 + 10 +
8 + 6 + 8 + 9 + 9 + 7 + 3 + 7 + 6 + 5 + 0 + 9 + 10 + 7 + 7 + 3 + 6 +
7 + 5 + 2 + 1 + 6 + 7 + 10 + 8 + 8, for a total of 193. Then you divide this 
total by the number of scores, 30. In terms of the formula,

M =
gX

N
=

193

30
= 6.43

This tells you that the average stress rating was 6.43 (after rounding off). This 
is clearly higher than the middle of the 0–10 scale. You can also see this on a graph. 
Think again of the histogram as a pile of blocks on a board and the mean of 6.43 as 
the point where the board balances on the fulcrum (see Figure 2-3). This single rep-
resentative value simplifies the information in the 30 stress scores. N number of scores in a distribution.

T I P  F O R  S U C C E S S
When an answer is not a whole 
number, we suggest that you use 
two more decimal places in the 
answer than for the original num-
bers. In this example, the original 
numbers did not use decimals, 
so we rounded the answer to two 
decimal places.

Figure 2-3 Analogy of blocks on a board balanced on a fulcrum showing the means 
for 30 statistics students’ ratings of their stress level. (Data based on Aron et al., 1995.)
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Similarly, consider the Chapter 1 example of students’ social interactions 
(McLaughlin-Volpe et al., 2001). The actual number of interactions over a week 
for the 94 students are listed on page 8. In Chapter 1, we organized the orig-
inal scores into a frequency table (see Table 1-5). We can now take those same 
94 scores, add them up, and divide by 94 to figure the mean:

M =
gX

N
=

1,635

94
= 17.39

This tells us that during this week these students had an average of 17.39 social  
interactions. Figure 2-4 shows the mean of 17.39 as the balance point for the  
94 social interaction scores.

Steps for Figuring the Mean
Figure the mean in two steps.

 ❶ Add up all the scores. That is, figure gX.
 ❷ Divide this sum by the number of scores. That is, divide gX by N.

The Mode
The mode is another measure of central tendency. The mode is the most common 
single value in a distribution. In our dreams example, the mode is 8. This is because 
there are three students with 8 dreams and no other particular number of dreams 
with as many students. Another way to think of the mode is that it is the particular 
value with the largest frequency in a frequency table, the high point or peak of a 
distribution’s histogram (as shown in Figure 2-5).

mode value with the greatest 
frequency in a distribution.

Figure 2-4 Analogy of blocks on a board balanced on a fulcrum illustrating the 
mean for number of social interactions during a week for 94 college students. (Data from 
McLaughlin-Volpe et al., 2001.)
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In a perfectly symmetrical unimodal distribution, the mode is the same as the 
mean. However, what happens when the mean and the mode are not the same? In 
that situation, the mode is usually not a very good way of describing the central ten-
dency of the scores in the distribution. In fact, sometimes researchers compare the 
mode to the mean to show that the distribution is not perfectly symmetrical. Also, 
the mode can be a particularly poor representative value because it does not reflect 
many aspects of the distribution. For example, you can change some of the scores in 
a distribution without affecting the mode—but this is not true of the mean, which is 
affected by any changes in the scores in the distribution (see Figure 2-6).

5 6 7 8 91 2 3 4

Mode = 8

Figure 2-5 Mode as the high point in a distribution’s histogram, using the example of 
the number of dreams during a week for 10 students.

115 6 7 8 9 102 3 4

5 6 7 8 9 102 3 4

5 6 7 8 9 102 3 4

Mean = 8.30

Mode = 8 

Mean = 5.10

Mode = 8 

Mode = 8 

Mean = 7

Figure 2-6 Effect on the mean and on the mode of changing some scores, using the 
example of the number of dreams during a week for 10 students.
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On the other hand, the mode is the usual way of describing the central tendency 
for a nominal variable. For example, if you know the religions of a particular group 
of people, the mode tells you for this group which religion has the most people in 
it. However, when it comes to figuring central tendency for numerical variables in 
psychology research, the mode is rarely used.

The Median
Another alternative to the mean is the median. If you line up all the scores from 
lowest to highest, the middle score is the median. Figure 2-7 shows the scores for 
the number of dreams lined up from lowest to highest. In this example, the fifth and 
sixth scores (the two middle ones) are both 7s. Either way, the median is 7.

When you have an even number of scores, the median can be between two differ-
ent scores. In that situation, the median is the average (the mean) of those two scores.

Steps for Finding the Median
Finding the median takes three steps.

 ❶ Line up all the scores from lowest to highest.
 ❷ Figure how many scores there are to the middle score by adding 1 to the 

number of scores and dividing by 2. For example, with 29 scores, adding 1 
and dividing by 2 gives you 15. The 15th score is the middle score. If there 
are 50 scores, adding 1 and dividing by 2 gives you 25.5. Because there are no 
half scores, the 25th and 26th scores (the scores on either side of 25.5) are the 
middle scores.

 ❸ Count up to the middle score or scores. If you have one middle score, this 
is the median. If you have two middle scores, the median is the average (the 
mean) of these two scores.

Comparing the Mean, Mode, and Median
Sometimes, the median is better than the mean (or mode) as a representative value for a 
group of scores. This happens when a few extreme scores would strongly affect the mean 
but would not affect the median. Reaction time scores are a common example in psychol-
ogy research. Suppose you are asked to press a key as quickly as possible when a picture 
of a particular political candidate is shown on the computer screen. On five showings 
of the candidate, your times (in seconds) to respond are .74, .86, 2.32, .79, and .81. The 
mean of these five scores is 1.1040: that is, 1gX2/N = 5.52/5 = 1.1040.  However, 
this mean is very much influenced by the one very long time (2.32 seconds). (Perhaps 
you were distracted just when the candidate’s picture was shown.) The median is much 
less  affected by the extreme score. The median of these five scores is .81—a value that 
is much more representative of most of the scores. Thus, using the median deemphasizes 
the one extreme time, which is probably appropriate. An extreme score like this is called 
an outlier. In this example, the outlier was much higher than the other scores, but in other 
cases an outlier may be much lower than the other scores in the distribution.

median middle score when all the 
scores in a distribution are arranged from 
lowest to highest.

outlier score with an extreme value 
(very high or very low) in relation to the 
other scores in the distribution.

T I P  F O R  S U C C E S S
When figuring the median, remem-
ber that the first step is to line up 
the scores from lowest to highest. 
Forgetting to do this is the most 
common mistake students make 
when figuring the median.

7 7633 98881

Median

Figure 2-7 The median is the middle score when scores are lined up from lowest to 
highest, using the example of the number of dreams during a week for 10 students.
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The importance of whether you use the mean, mode, or median can be seen in a 
controversy among psychologists studying the evolutionary basis of human mate choice. 
One set of theorists (e.g., Buss & Schmitt, 1993) argued that over their lives, men should 
prefer to have many partners, but women should prefer to have just one reliable partner. 
This is because a woman can have only a small number of children in a lifetime and her 
genes are most likely to survive if those few children are well taken care of. Men, how-
ever, can have a great many children in a lifetime. Therefore, according to the theory, a 
shotgun approach is best for men, because their genes are most likely to survive if they 
have a great many partners. Consistent with this assumption, evolutionary psychologists 
have found that men report wanting far more partners than do women.

Other theorists (e.g., Miller & Fishkin, 1997), however, have questioned this view. 
They argue that women and men should prefer about the same number of partners. 
This is because individuals with a basic predisposition to seek a strong intimate bond 
are most likely to survive infancy. This desire for strong bonds, they argue, remains in 
adulthood. These theorists also asked women and men how many partners they wanted. 
They found the same result as the previous researchers when using the mean: men 
wanted an average of 64.3 partners, women an average of 2.8 partners. However, the 
picture looks drastically different if you look at the median or mode (see Table 2-1). 
Figure 2-8, taken directly from their article, shows why. Most women and most men 

Table 2-1 Responses of 106 

Men and 160 Women to the Question, 

“How many partners would you ideally 

desire in the next 30 years?”

Mean Median Mode

Women 2.8 1 1

Men 64.3 1 1

Source: Data from Miller & Fishkin (1997).
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(Eds.), Evolutionary social psychology (pp. 197–235). Mahwah, NJ: Erlbaum.
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want just one partner. A few want more, some many more. The big difference is that 
there are a lot more men in the small group that want many more than one partner. 
These results have also been replicated in subsequent studies (Pedersen et al., 2002).

So, which theory is right? You could argue either way from these results. (For 
a more recent discussion of this controversy regarding the theoretical and statisti-
cal issues, see Smith & Konik, 2011.) The point is that focusing just on the mean 
can clearly misrepresent the reality of the distribution. As this example shows, the 
median is most likely to be used when a few extreme scores would make the mean 
unrepresentative of the main body of scores. Figure 2-9 illustrates this point, by 
showing the relative location of the mean, mode, and median for three types of 
distribution that you learned about in Chapter 1. The distribution in Figure 2-9a is 
skewed to the left (negatively skewed); the long tail of the distribution points to the 
left. The mode in this distribution is the highest point of the distribution, which is on 
the far right hand side of the distribution. The median is the point at which half of 
the scores are above that point and half are below. As you can see, for that to hap-
pen, the median must be a lower value than the mode. Finally, the mean is strongly 
influenced by the very low scores in the long tail of the distribution and is thus a 
lower value than the median. Figure 2-9b shows the location of the mean, mode, 
and median for a distribution that is skewed to the right (positively skewed). In this 
case, the mean is a higher value than either the mode or median because the mean is 
strongly influenced by the very high scores in the long tail of the distribution. Again, 

Mean Median Mode

MeanMedianMode

Mean
Mode

Median

(a)

(b)

(c)

Figure 2-9 Locations of the mean, mode, and median on (a) a distribution skewed to 
the left, (b) a distribution skewed to the right, and (c) a normal curve.
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the mode is the highest point of the distribution, and the median is between the 
mode and the mean. In Figures 2-9a and 2-9b, the mean is not a good representative 
value of the scores, because it is overly influenced by the extreme scores.

Figure 2-9c shows a normal curve. As for any distribution, the mode is the highest 
point in the distribution. For a normal curve, the highest point falls exactly at the mid-
point of the distribution. This midpoint is the median value, since half of the scores in 
the distribution are below that point and half are above it. The mean also falls at the 
same point because the normal curve is symmetrical about the midpoint, and every 
score in the left hand side of the curve has a matching score on the right hand side. So, 
for a perfect normal curve, the mean, mode, and median are always the same value.

In some situations, psychologists use the median as part of more complex statisti-
cal methods. Also, the median is the usual way of describing the central tendency for 
a rank-order variable. Otherwise, unless there are extreme scores, psychologists almost 
always use the mean as the representative value of a group of scores. In fact, as you will 
learn, the mean is a fundamental building block for most other statistical techniques.

A summary of the mean, mode, and median as measures of central tendency is 
shown in Table 2-2.

Table 2-2 Summary of Measures of Central Tendency

Measure Definition When Used

Mean Sum of the scores divided by the  
number of scores

• With equal-interval variables
•  Very commonly used in psychology 

research

Mode Value with the greatest frequency  
in a distribution

• With nominal variables
•  Rarely used in psychology research

Median Middle score when all the scores in  
a distribution are arranged from  
lowest to highest

• With rank-ordered variables
•  When a distribution has one or more 

outliers
•  Rarely used in psychology research

How are you doing?

 1. Name and define three measures of central tendency.
 2. Write the formula for the mean and define each of the symbols.
 3. Figure the mean of the following scores: 2, 3, 3, 6, and 6.
 4. For the following scores, find (a) the mean, (b) the mode, and (c) the median: 

5, 3, 2, 13, 2. (d) Why is the mean different from the median?

Answers

 1. The mean is the ordinary average, the sum of the scores divided by the num-
ber of scores. The mode is the most frequent score in a distribution. The 
median is the middle score; that is, if you line the scores up from lowest to 
highest, it is the halfway score.

 2. The formula for the mean is M = (gX)/N. M is the mean; g  is the symbol for 
“sum of”—add up all the scores that follow; X is the variable whose scores 
you are adding up; N is the number of scores.

 3. M = (gX )/N = 12 + 3 + 3 + 6 + 62/5 = 4.
 4. (a) The mean is 5; (b) the mode is 2; (c) the median is 3; (d) The mean is differ-

ent from the median because the extreme score (13) makes the mean higher 
than the median.
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Variability
Researchers also want to know how spread out the scores are in a distribution. This 
shows the amount of variability in the distribution. For example, suppose you were 
asked, “How old are the students in your statistics class?” At a city-based university 
with many returning and part-time students, the mean age might be 29 years. You 
could answer, “The average age of the students in my class is 29.” However, this 
would not tell the whole story. You could have a mean of 29 because every student 
in the class was exactly 29 years old. If this is the case, the scores in the distribution 
are not spread out at all. In other words, there is no variation, or variability, among 
the scores. You could also have a mean of 29 because exactly half the class mem-
bers were 19 and the other half 39. In this situation, the distribution is much more 
spread out; there is considerable variability among the scores in the distribution.

You can think of the variability of a distribution as the amount of spread of the 
scores around the mean. In other words, how close or far from the mean are the scores 
in a distribution? If the scores are mostly quite close to the mean, then the distribu-
tion has less variability than if the scores are further from the mean. Distributions 
with the same mean can have very different amounts of spread around the mean; 
Figure 2-10a shows histograms for three different frequency distributions with the 
same mean but different amounts of spread around the mean. A real-life example of 
this is shown in Figure 2-11, which shows the distributions of the housing prices in two 

(a) (b)
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Mean
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^
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Figure 2-10 Examples of distributions with (a) the same mean but different amounts 
of spread, and (b) different means but the same amount of spread.
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neighborhoods: one with diverse housing types and the other with a consistent type of 
housing. As with Figure 2-10a, the mean housing price is the same in each neighbor-
hood. However, the distribution for the neighborhood with diverse housing types is 
much more spread out around the mean than the distribution for the neighborhood that 
has a consistent type of housing. This tells you that there is much greater variability 
in the prices of housing in the neighborhood with diverse types of housing than in the 
neighborhood with a consistent housing type. Also, distributions with different means 
can have the same amount of spread around the mean. Figure 2-10b shows three dif-
ferent distributions with different means but the same amount of spread. So, although 
the mean provides a representative value of a group of scores, it doesn’t tell you about 
the variability of the scores. You will now learn about two measures of the variability 
of a group of scores: the variance and standard deviation.2

The Variance
The variance of a group of scores is one kind of number that tells you how spread 
out the scores are around the mean. To be precise, the variance is the average of 
each score’s squared difference from the mean.

Here are the four steps to figure the variance:

 ❶ Subtract the mean from each score. This gives each score’s deviation score, 
which is how far away the score is from the mean.

 ❷ Square each of these deviation scores (multiply each by itself). This gives 
each score’s squared deviation score.

 ❸ Add up the squared deviation scores. This total is called the sum of squared 
deviations.

 ❹ Divide the sum of squared deviations by the number of scores. This gives 
the average (the mean) of the squared deviations, called the variance.

Suppose one distribution is more spread out than another. The more spread-
out distribution has a larger variance because being spread out makes the deviation 
scores bigger. If the deviation scores are bigger, the squared deviation scores and the 
average of the squared deviation scores (the variance) are also bigger.

variance measure of how spread out a 
set of scores are; average of the squared 
deviations from the mean.

deviation score score minus the 
mean.

squared deviation score square of 
the difference between a score and the 
mean.

sum of squared deviations total of 
each score’s squared difference from the 
mean.

MeanHousing
Prices

Neighborhood with 
Consistent
Type of Housing

MeanHousing
Prices

Neighborhood with 
Diverse
Types of Housing

Figure 2-11 Example of two distributions with the same mean but different amounts 
of spread: housing prices for a neighborhood with diverse types of housing and for a neigh-
borhood with a consistent type of housing.
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In the example of the class in which everyone was exactly 29 years old, the 
variance would be exactly 0. That is, there would be no variance (which makes 
sense, because there is no variability among the ages). (In terms of the numbers, 
each person’s deviation score would be 29 - 29 = 0; 0 squared is 0. The average of 
a bunch of zeros is 0.) By contrast, the class of half 19-year-olds and half 39-year-
olds would have a rather large variance of 100. (The 19-year-olds would each have 
deviation scores of 19 - 29 = -10. The 39-year-olds would have deviation scores 
of 39 - 29 = 10. All the squared deviation scores, which are either -10 squared or 
10 squared, come out to 100. The average of all 100s is 100.)

The variance is extremely important in many statistical procedures you will 
learn about later. However, the variance is rarely used as a descriptive statistic. This 
is because the variance is based on squared deviation scores, which do not give a 
very easy-to-understand sense of how spread out the actual, nonsquared scores are. 
For example, a class with a variance of 100 clearly has a more spread-out distribu-
tion than one whose variance is 10. However, the number 100 does not give an obvi-
ous insight into the actual variation among the ages, none of which is anywhere near 
100 years away from the others.3

The Standard Deviation
The most widely used number to describe the spread of a group of scores is the 
standard deviation. The standard deviation is simply the square root of the vari-
ance. There are two steps in figuring the standard deviation.

 ❶ Figure the variance.
 ❷ Take the square root. The standard deviation is the positive square root of the 

variance. (Any number has both a positive and a negative square root. For ex-
ample, the square root of 9 is both +3 and -3. But for the standard deviation 
we always use the positive square root.)

If the variance of a group of scores is 100, the standard deviation is 10. If the 
variance is 9, the standard deviation is 3.

The variance is about squared deviations from the mean. Therefore, its square 
root, the standard deviation, is about direct, ordinary, not-squared deviations from 
the mean. Roughly speaking, the standard deviation is the average amount that 
scores differ from the mean. For example, consider a class where the ages have a 
standard deviation of 10 years. This tells you that the ages are spread out, on the 
average, about 10 years in each direction from the mean. Knowing the standard  
deviation gives you a general sense of the degree of spread.4

The standard deviation does not, however, perfectly describe the shape of the 
distribution. For example, suppose the distribution of the number of children in fam-
ilies in a particular country has a mean of 4 and standard deviation of 1. Figure 2-12 
shows several possibilities of the distribution of number of children, all with a mean 
of 4 and a standard deviation of 1.

Formulas for the Variance and the Standard Deviation
We have seen that the variance is the average squared deviation from the mean. 
Here is the formula for the variance.

 SD2 =
g1X - M22

N
 (2-2)

standard deviation square root of the 
average of the squared deviations from 
the mean; the most common descriptive 
statistic for variation; approximately the 
average amount that scores in a distribu-
tion vary from the mean.

The variance is the sum of 
the squared deviations of the 
scores from the mean, divided 
by the number of scores.
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SD2 is the symbol for the variance. This may seem surprising. SD is short for 
standard deviation. The symbol SD2 emphasizes that the variance is the standard 
 deviation squared. (Later, you will learn other symbols for the variance, S2 and �2—the 
lowercase Greek letter sigma squared. The different symbols are for different situations 
in which the variance is used. In some cases, it is figured slightly differently.)

The top part of the formula is the sum of squared deviations. X is for each score 
and M is the mean. Thus, X - M is the score minus the mean, the deviation score. 
The superscript number 122 tells you to square each deviation score. Finally, the sum 
sign 1g2 tells you to add up all these squared-deviation scores.

The sum of squared deviations of the scores from the mean, which is called the 
sum of squares for short, has its own symbol, SS. Thus, the variance formula can be 
written using SS instead of g1X - M22:
 SD2 =

SS

N
 (2-3)

Whether you use the simplified symbol SS or the full description of the sum of 
squared deviations, the bottom part of the formula is just N, the number of scores. 
That is, the formula says to divide the sum of the squared deviation scores by the 
number of scores in the distribution.

SD2 variance.

SD standard deviation.

sum of squares (SS) sum of squared 
deviations.

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

Family Size Family Size

Family Size Family Size

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

Figure 2-12 Some possible distributions for family size in a country where the mean 
is 4 and the standard deviation is 1.

T I P  F O R  S U C C E S S
The sum of squared deviations is 
an important part of many of the 
procedures you will learn in later 
chapters; so be sure that you fully 
understand it, as well as how it is 
figured.

The variance is the sum of 
squares divided by the num-
ber of scores.
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The standard deviation is the square root of the variance. So, if you already 
know the variance, the formula is

 SD = 2SD2 (2-4)

The formula for the standard deviation, starting from scratch, is the square root 
of what you figure for the variance:

 SD = A
g1X - M22

N
 (2-5)

or

 SD = A
SS

N
 (2-6)

Examples of Figuring the Variance and Standard Deviation
Table 2-3 shows the figuring for the variance and standard deviation for the 
 number of dreams example. (The table assumes you have already figured the 
mean to be 6 dreams.) Usually, it is easiest to do your figuring using a calculator, 
especially one with a square-root key. The standard deviation of 2.57 tells you that 
roughly speaking, on the average, the number of dreams vary by about 21⁄2 from 
the mean of 6.

Table 2-4 shows the figuring for the variance and standard deviation for the ex-
ample of students’ number of social interactions during a week (McLaughlin-Volpe 
et al., 2001). (To save space, the table shows only the first few and last few scores.) 
Roughly speaking, this result tells you that a student’s number of social interactions 
in a week varies from the mean (of 17.39) by an average of 11.49 social interactions. 
This can also be shown on a histogram (see Figure 2-13).

Measures of variability, such as the variance and standard deviation, are heavily 
influenced by the presence of one or more outliers (extreme values) in a distribution. 

Table 2-3 Figuring the Variance and Standard Deviation in the Number of Dreams Example

Score  
(Number of 

Dreams) 
–

Mean Score 
(Mean Number of 

Dreams)
= Deviation  

Score

Squared 
 Deviation  

Score

7  6  1 1

8  6  2 4

8  6  2 4

7  6  1 1

3  6  –3 9

1  6  –5 25

6  6  0 0

9  6  3 9

3  6  –3 9

8  6   2 4

    g : 0 66

Variance = SD 2 = a (X - M )2

N
=

SS
N

=
66
10

= 6.60

Standard deviation = SD = 2SD 2 = 26.60 = 2.57

T I P  F O R  S U C C E S S
Always check that your answers 
make intuitive sense. For ex-
ample, looking at the scores for 
the dreams example, a standard 
 deviation—which, roughly speak-
ing, represents the average 
amount that the scores vary from 
the mean—of 2.57 makes sense.  
If your answer had been 31.23, 
however, it would mean that, on 
average, the number of dreams 
varied by more than 30 from the 
mean of 6. Looking at the group of 
scores, that just couldn’t be true.

T I P  F O R  S U C C E S S
Notice that in Table 2-3 that the 
deviation scores (shown in the 
third column) add up to 0. The sum 
of the deviation scores is always 0 
(or very close to 0, allowing for 
rounding error). So, to check your 
figuring, always sum the deviation 
scores. If they do not add up to 0, 
do your figuring again!

The standard deviation is the 
square root of the variance.

The standard deviation is 
the square root of the result 
of taking the sum of squares 
divided by the number of 
scores.

The standard deviation is the 
square root of the result of 
taking the sum of the squared 
deviations of the scores from 
the mean divided by the num-
ber of scores.
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Table 2-4  Figuring the Variance and Standard Deviation for Number of Social Interactions 

During a Week for 94 College Students

Number of 
Interactions

– Mean Number  
of Interactions

= Deviation  
Score

Squared 
 Deviation  

Score

48 17.39  30.61 936.97

15  17.39  –2.39 5.71

33  17.39  15.61 243.67

3  17.39  –14.39 207.07

21  17.39  3.61 13.03

-  -  - -

-  -  - -

-  -  - -

35  17.39  17.61 310.11

9  17.39  –8.39 70.39

30  17.39  12.61 159.01

8  17.39  –9.39 88.17

26  17.39   8.61  74.13

    g : 0.00 12,406.44

Variance = SD 2 =
g1X - M22

N
=

12,406.44

94
= 131.98

Standard deviation = 2SD 2 = 2131.98 = 11.49

Source: Data from McLaughlin-Volpe et al. (2001).

T I P  F O R  S U C C E S S
When figuring the variance and 
standard deviation, lay your work 
out as in Tables 2-3 and 2-4. This 
helps you follow all the steps and 
end up with the correct answers.
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Figure 2-13 The standard deviation as the distance along the base of a histogram, 
 using the example of number of social interactions in a week. (Data from McLaughlin-Volpe  
et al., 2001.)
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The scores in the number of dreams example were 7, 8, 8, 7, 3, 1, 6, 9, 3, 8, and we 
figured the standard deviation of the scores to be 2.57. Now imagine that one ad-
ditional person is added to the study and that the person reports having 21 dreams in 
the past week. The standard deviation of the scores would now be 4.96; adding this 
single score almost doubled the size of the standard deviation.

Computational and Definitional Formulas
In actual research situations, psychologists must often figure the variance and the 
standard deviation for distributions with many scores, often involving decimals or 
large numbers. In the days before computers, this could make the whole process 
quite time-consuming, even with a calculator. To deal with this problem, in the old 
days researchers developed various shortcuts to simplify the figuring. A shortcut 
formula of this type is called a computational formula.

The traditional computational formula for the variance (of the kind we are dis-
cussing in this chapter) is as follows:

 SD2 =
gX2 - 31gX22>N4

N
 (2-7)

gX2 means that you square each score and then take the sum of the squared 
scores. However, 1gX22 means that you first add up all the scores and then take the 
square of this sum. Although this sounds complicated, this formula was actually eas-
ier to use than the one you learned before if a researcher was figuring the variance 
for a lot of numbers by hand or even with an old-fashioned handheld calculator, 
because the researcher did not have to first find the deviation score for each score.

However, these days computational formulas are mainly of historical interest. 
In fact, today, even many handheld calculators are set up so that you need only enter 
the scores and press a button or two to get the variance and the standard deviation. 
(Also, spreadsheet programs such as Excel commonly include procedures for most 
of the statistical procedures you will learn in this book.)

In this book, we give a few computational formulas, because you may run into 
them and be confused should you look at an older book on statistical methods. How-
ever, we very definitely recommend not using the computational formulas when 
you are learning statistics, even if they might save you a few minutes of figuring a 
 practice problem. The computational formulas usually make it much harder to under-
stand the meaning of what you are figuring. The only reason for figuring problems at 
all by hand when you are learning statistics is to reinforce the underlying principles. 
Thus, you would be undermining the whole point of the practice problems if you use 
a formula that had a complex relation to the basic logic. The formulas we give you 
for the practice problems and for all the examples in the book are designed to help 
strengthen your understanding of what the figuring means. Thus, the usual formula 
we give for each procedure is what statisticians call a definitional formula.

The Importance of Variability in Psychology Research
Variability is an important topic in psychology research because much of the re-
search focuses on explaining variability. We will use a couple of examples to show 
what we mean by “explaining variability.” As you might imagine, different students 
experience different levels of stress with regard to learning statistics: Some expe-
rience little stress; for other students, learning statistics can be a source of great 
stress. So, in this example, explaining variability means identifying the factors that 
explain why students differ in the amount of stress they experience. Perhaps how 

computational formula equation 
mathematically equivalent to the defini-
tional formula. Easier to use for figuring 
by hand, it does not directly show the 
meaning of the procedure.

definitional formula equation for a 
statistical procedure directly showing the 
meaning of the procedure.

T I P  F O R  S U C C E S S
A common mistake when figuring 
the standard deviation is to jump 
straight from the sum of squared 
deviations to the standard devia-
tion (by taking the square root of 
the sum of squared deviations). 
Remember, before finding the 
standard deviation, first figure the 
variance (by dividing the sum of 
squared deviations by the number 
of scores, N). Then take the square 
root of the variance to find the 
standard deviation.

The variance is the sum of 
the squared scores minus the 
result of taking the sum of all 
the scores, squaring this sum 
and dividing by the number 
of scores, and then taking this 
whole difference and dividing 
it by the number of scores.
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much experience students have had with math explains some of the variability. That 
is, according to this explanation, the differences (the variability) among students 
in amount of stress are partially due to the differences (the variability) among stu-
dents in the amount of experience they have had with math. Thus, the variation in 
math experience partially explains, or accounts for, the variation in stress. What fac-
tors might explain the variation in students’ number of weekly social interactions? 
Perhaps a factor is variation in the extraversion of students, with more extraverted 
students tending to have more interactions. Or perhaps it is variation in gender, with 
one gender having consistently more interactions than the other. Much of the rest 
of this book focuses on procedures for evaluating and testing whether variation in 
some specific factor (or factors) explains the variability in some variable of interest.

The Variance as the Sum of Squared Deviations  
Divided by N - 1
Researchers often use a slightly different kind of variance. We have defined the 
variance as the average of the squared deviation scores. Using that definition, you 
divide the sum of the squared deviation scores by the number of scores (that is, the 
variance is SS>N). But you will learn in Chapter 7 that for many purposes it is better 
to define the variance as the sum of squared deviation scores divided by 1 less than 
the number of scores. In other words, for those purposes the variance is the sum of 
squared deviations divided by N - 1 (that is, variance is SS>[N - 1]). (As you will 
learn in Chapter 7, you use this dividing by N - 1 approach when you have scores 
from a particular group of people and you want to estimate what the variance would 
be for the larger group of people whom these individuals represent.)

The variances and standard deviations given in research articles are usually fig-
ured using SS>1N - 12. Also, when calculators or computers give the variance or the 
standard deviation automatically, they are usually figured in this way (for example, 
see the Using SPSS section at the end of this chapter). But don’t worry. The ap-
proach you are learning in this chapter of dividing by N (that is, figuring variance as 
SS>N) is entirely correct for our purpose here, which is to use descriptive statistics 
to describe the variation in a particular group of scores. It is also entirely correct 
for the material you learn in Chapters 3 through 6. We mention this other approach 
(variance as SS>[N - 1]) now only so that you will not be confused if you read about 
variance or standard deviation in other places or if your calculator or a  computer 
program gives a surprising result. To keep things simple, we wait to discuss the di-
viding by N - 1 approach until it is needed, starting in Chapter 7.

How are you doing?

 1. (a) Define the variance and (b) indicate what it tells you about a distribution 
and how this is different from what the mean tells you.

 2. (a) Define the standard deviation; (b) describe its relation to the variance; and 
(c) explain what it tells you approximately about a group of scores.

 3. Give the full formula for the variance and indicate what each of the symbols 
means.

 4. Figure the (a) variance and (b) standard deviation for the following scores: 
2, 4, 3, and 7 1M = 42.

 5. Explain the difference between a definitional formula and a computational 
formula.
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 6. What is the difference between the formula for the variance you learned in 
this chapter and the formula that is typically used to figure the variance in 
research articles?

Answers

 1. (a) The variance is the average of the squared deviation of each score from 
the mean. (b) The variance tells you about how spread out the scores are 
(that is, their variability), while the mean tells you the central tendency of the 
distribution.

 2. (a) The standard deviation is the square root of the average of the squared 
deviations from the mean. (b) The standard deviation is the square root of 
the variance. (c) The standard deviation tells you approximately the average 
amount that scores differ from the mean.

 3. SD2 = 3g1X - M224>N. SD2 is the variance. g  tells you to take the sum of 
what follows. X is for the scores for the variable being studied. M is the mean 
of the scores. N is the number of scores.

 4. (a )  Var iance:  SD2 = 3g1X - M224>N = 312 - 422 + 14 - 422 + 13 - 422 +
  17 - 4224>4 = 14>4 = 3.50.
  (b) Standard deviation: SD = 2SD2 = 23.50 = 1.87.
 5. A definitional formula is the standard formula in the straightforward form that 

shows the meaning of what the formula is figuring. A computational formula 
is a mathematically equivalent variation of the definitional formula. However, 
the computational formula tends not to show the underlying meaning. Com-
putational formulas were often used before computers were available and 
researchers had to do their figuring by hand with a lot of scores.

 6. The formula for the variance in this chapter divides the sum of squares by the 
number of scores (that is, SS>N). The variance in research articles is usually 
figured by dividing the sum of squares by one less than the number of scores 
(that is, SS>3N - 14).

You are learning statistics for the fun of it, right? No? Or 
maybe so, after all. If you become a psychologist, at some 
time or other you will form a hypothesis, gather data, and 
analyze them. (Even if you plan a career as a psychothera-
pist or other mental health practitioner, you will probably 
eventually wish to test an idea about the nature of your 
patients and their difficulties.) That hypothesis—your 
own original idea—and the data you gather to test it are  
going to be very important to you. Your heart may well be 
pounding with excitement as you analyze the data.

Consider some of the comments of social psychologists 
we interviewed some years ago for our book The Heart of 
Social Psychology (Aron & Aron, 1989). Deborah Rich-
ardson, who studies interpersonal aggression, confided 
that her favorite part of being a social psychologist is 
looking at the statistical output of the computer analyses:

It’s like putting together a puzzle. . . . It’s a highly 
arousing, positive experience for me. I often go through 
periods of euphoria. Even when the data don’t do 
what I want them to do . . . [there’s a] physiological  
response. . . . It’s exciting to see the numbers come 
off—Is it actually the way I thought it would be?—then 
thinking about the alternatives.

Harry Reis, recent President of the Society for  Personality 
and Social Psychology, sees his profession the same way:

By far the most rewarding part is when you get a new 
data set and start analyzing it and things pop out, partly 
a confirmation of what led you into the study in the first 
place, but then also other things . . . . “Why is that?” 
Trying to make sense of it. The kind of ideas that come 
from data. . . . I love analyzing data.

BOX 2-1 The Sheer Joy (Yes, Joy) of Statistical Analysis
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Controversy: The Tyranny of the Mean
Looking in the behavioral and social science research journals, you would think that 
statistical methods are their sole tool and language, but there have also been rebellions 
against the reign of statistics. We are most familiar with this issue in psychology, where 
the most unexpected opposition came from the leader of behaviorism, the school in the 
history of psychology most dedicated to keeping the field strictly scientific.

Behaviorism opposed the study of inner states because inner events are 
 impossible to observe objectively. (Today most research psychologists claim to mea-
sure inner events indirectly but objectively.) Behaviorism’s most famous advocate,  
B. F. Skinner, was quite opposed to statistics. Skinner even said, “I would much 
rather see a graduate student in psychology taking a course in physical chemistry 
than in statistics. And I would include [before statistics] other sciences, even poetry, 
music, and art” (Evans, 1976, p. 93).

Skinner was constantly pointing to the information lost by averaging the results 
of a number of cases. For instance, Skinner (1956) cited the example of three over-
eating mice—one naturally obese, one poisoned with gold, and one whose hypo-
thalamus had been altered. Each had a different curve for learning to press a bar for 
food. If these learning curves had been merged statistically, the result would have 
represented no actual eating habits of any real mouse. As Skinner said, “These three 
individual curves contain more information than could probably ever be generated 
with measures requiring statistical treatment, yet they will be viewed with suspicion 
by many psychologists because they are single cases” (p. 232).

In clinical psychology and the study of personality, voices have always been 
raised in favor of the in-depth study of one person instead of or as well as the 
 averaging of persons. The philosophical underpinnings of the in-depth study of 
 individuals can be found in phenomenology, which began in Europe after World 
War I (Husserl, 1970). This viewpoint has been important throughout the social 
 sciences, not just in psychology.

Today, the rebellion in psychology is led by qualitative research methodolo-
gists (e.g., Willig & Stainton-Rogers, 2008), an approach that is much more promi-
nent in other behavioral and social sciences, such as communication. The qualitative 
research methods, developed mainly in cultural anthropology, can involve long 
 interviews or observations of a few individuals. The highly skilled researcher de-
cides, as the event is taking place, what is important to remember, record, and pur-
sue through more questions or observations. The mind of the researcher is the main 
tool because, according to this approach, only that mind can find the important re-
lationships among the many categories of events arising in the respondent’s speech.

Bibb Latane, winner (twice!) of the Behavioral Sci-
ence Award from the American Association for the  
Advancement of Science, is known for, among other 
things, his work on why people don’t always intervene to 
help others who are in trouble. He reports eagerly awaiting

. . . the first glimmerings of what came out . . . [and] 
 using them to shape what the next question should be . . .  
You need to use everything you’ve got, . . . every bit of 
your experience and intuition. It’s where you have the 
biggest effect, it’s the least routine. You’re in the room 

with the tiger, face to face with the core of what you are 
doing, at the moment of truth.

Bill Graziano, at Purdue University, whose work inte-
grates developmental, personality, and social psychology, 
calls the analysis of his data “great fun, just great fun.” And 
in the same vein, Margaret Clark, at Yale University, who 
studies emotion and close relationships, declares that “the 
most fun of all is getting the data and looking at them.”

So, you see? Statistics in the service of your own 
 creative ideas can be a pleasure indeed.
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Many who favor qualitative methods argue for a blend: First, discover the 
 important categories through a qualitative approach. Then, determine their incidence 
in the larger population through quantitative methods. Too often, these advocates ar-
gue, quantitative researchers jump to conclusions about a phenomenon without first 
exploring the human experience of it through free-response interviews or observations.

Finally, Carl Jung, founder of Jungian psychology, sometimes spoke of the 
“statistical mood” and its effect on a person’s feeling of uniqueness. Jung had no 
problem with statistics—he used them in his own research. He was concerned about 
the cultural impact of this “statistical mood”—much like the impact of being on a 
jammed subway and observing the hundreds of blank faces and feeling diminished, 
“one of a crowd.” He held that the important contributions to culture tend to come 
from people who feel unique and not ordinary. As we increasingly describe ourselves 
statistically—“90% of men under thirty think . . .”—we tend to do just that, think 
like 90% of men under thirty. To counteract this mood, Jungian analyst Marie Louise 
von Franz (1979) wrote, “An act of loyalty is required towards one’s own feelings”  
(pp. IV-18). Feeling “makes your life and your relationships and deeds feel unique 
and gives them a definite value” (pp. IV-18–IV-19). Your beloved is like no one else. 
Your own death is a face behind a door. And the meaning of ‘civilian deaths this 
month due to the war were 20,964’ is unfathomable horror—not a number.

In short, there have been many who have questioned an exclusively statistical 
view of our subject matter, and their voices should be considered too as you proceed 
with your study of what has become the predominant, but not exclusive, means of 
doing psychology research.

From time to time someone tries to argue that because 
some groups of people score better on standardized math 
tests and make careers out of mathematics, these groups 
have a genetic advantage in math (or statistics), implying 
others are innately inferior at it. The issue comes up about 
gender, about racial and ethnic groups, and of course in ar-
guments about overall intelligence as well as math. There’s 
little evidence for such genetic differences (a must-see 
classic article is Block, 1995), but the stereotypes persist.

The impact of these stereotypes was well estab-
lished in research by Steele and his colleagues (e.g., 
1997), who have done numerous studies on what they 
call “stereotype threat,” the risk of confirming, as a self-
characteristic, a negative stereotype about a group you 
happen to belong to. Steele argues that it is not so much 
that you have internalized a negative attitude about 
yourself, but that certain situations create the threat. 
A typical experiment creating stereotype threat (Spencer  
et al., 1999) involved women taking a difficult math test. 
Half were told that men generally do better on the test, 
and the other half that women generally do equally well. 
Those who were told that women do worse did indeed 
score substantially lower than the other group. In the 

other condition, there was no difference. (In fact, in two 
separate studies, men performed a little worse when they 
were told there was no gender difference, as if they had 
lost some of their confidence.)

In another typical experiment creating stereotype 
threat, fifth- and sixth-grade students were randomly 
assigned to fill out a form asking for their race before 
taking their end-of-year mathematics test (Alter et al., 
2010). African American students who filled out this 
form only answered about half as many math questions 
correctly as African American students who did not.

Stereotype threat has also been found to occur in the 
United States for Latinos (Gonzales et al., 2002) and the 
poor (Croizet & Claire, 1998), but they can occur in any 
culture, to any subgroup that is the target of negative ste-
reotypes. Stereotype threat plays the main role in lower 
test scores among minorities (Suzuki & Aronson, 2005). 
For example, the same difference of 15 IQ points between 
a dominant and minority group has been found all over 
the world, even when there is no genetic difference be-
tween the groups. And in cases where opportunities for a 
group have changed, such as when they emigrate, differ-
ences have rapidly disappeared (Block, 1995). Hyde and 

BOX 2-2 Gender, Ethnicity, and Math Performance
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Mertz (2009) found that the more gender equality there is 
in a society, the more that women are equal to men in their 
math performance, and the greater likelihood that women 
are found to have “profound mathematical talent.”

What Can You Do for Yourself?

Thanks to a better understanding of the brain, psycholo-
gists (e.g., Forbes & Schmader, 2010) are learning more 
about how stereotype threat works to hurt your perfor-
mance by looking separately at the effects of attitudes 
(occurring in parts of the brain associated with emotions) 
and stereotypes (affecting parts of the brain that interpret 
experience, a constant activity). Sometimes it is said that 
minorities fail because they give up or have a “negative 
attitude,” but this research sorts that out. In a series of 
experiments involving “implicit association,” women 
were trained without being aware of it to have a more 
positive attitude towards math or to have a more posi-
tive stereotype of women as good at math. The goal was 
to sort out attitude and stereotype. The study found that 
positive attitude did not help with math performance. In 
fact, when under stereotype threat (a man tells them they 
are going to take a math test and asks them their gender), 
these women were even more interested in math and 
more motivated to do it than when not threatened.

Additional experiments revealed that scores improved 
only when the women were taught to believe (through 
implicit retraining) that, as a woman, they could actually 
do math equally as well as men.

Stereotypes, not attitudes, were the problem because 
countering stereotypes, unlike maintaining a positive 
attitude, requires constant mental effort. Stereotypes 
operate in the part of the brain where you are continu-
ally interpreting experience, so you have to keep telling 
yourself, “I can do this.” That takes up some of your 
working memory, and the less working memory, the 
more difficult it is to solve math problems.

Change Those Beliefs

This research says that you must work on your wrong 
belief that because of being part of some minority you 
cannot do math as well as others. This is the only pro-
tection against those conditions that remind you of the 
negative stereotypes about your group and math. To 
begin that project, let’s look at some facts. There is no 
indication that, on average, men and women differ in 
their math abilities. In a recent comprehensive review, 
Lindberg and colleagues (2010) combined the results 
of 242 studies that together included data from more 

than 1 million men and women. Overall, they found no 
evidence of gender differences in mathematics perfor-
mance. However, it is true that there are currently more 
men than women employed in math-intensive academic 
careers, such as engineering, physics, chemistry, and 
mathematics. Why might that be? According to a recent 
analysis by Ceci and Williams (2010), it does not appear 
to be due to gender differences in math ability or cur-
rent gender discrimination (although discrimination in 
the past likely helps to explain historical trends). Instead, 
men and women’s different preferences and choices 
seem to be the primary reason why fewer women pursue 
a career in math-intensive fields. As adolescents, fewer 
girls than boys are interested in math-intensive careers. 
And among individuals who pursue graduate level edu-
cation in math-intensive fields, women are more likely 
to switch fields or drop out than men.

As for African-Americans in the United States, Steele 
(1997) found that differences in performance from the 
majority all had to do with the situation. For example, 
when African American students were enrolled in a  
transition-to-college program emphasizing that they were 
the cream of the crop and much was expected of them, 
their grades rose substantially. African American stu-
dents at the same school who were enrolled in a remedial 
program for minorities received considerable attention, 
but their grades improved very little, and many more 
of them dropped out of school than in the other group. 
Steele argues that the very idea of a remedial program 
exposed those students to a subtle stereotype threat.

Treat Stereotype Threat as Another 
Form of Anxiety

While you are working on changing your stereotypes, you 
can try to be alert to stereotype threat. But research on 
stereotypes shows that they can be activated without our 
awareness (Fiske, 1998), so another approach is to try to 
counter its effects on working memory, which are the same 
as those caused by any form of test anxiety (see Box 1-2). 
Cognitive research on stereotype threat has demonstrated 
that it most affects math problems relying on long-term 
memory, and it spills over into subsequent tasks not nor-
mally affected by stereotype threat (Beilock et al., 2007). 
That means that what you have studied can be easily forgot-
ten unless you over prepare, and that in turn can make you 
doubt your ability even to add 2 + 2. So do all that you can 
to keep yourself in an optimal level of arousal, such as mak-
ing the testing situation familiar, associated with  success, 
and even comfortable. You know you can do it.
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Central Tendency and Variability  
in Research Articles
The mean and the standard deviation are very commonly reported in research articles. 
However, the mode, median, and variance are only occasionally reported. Sometimes, 
the mean and standard deviation are included in the text of an article. For our dreams 
example, the researcher might write, “The mean number of dreams in the last week 
for the 10 students was 6.00 1SD = 2.572.” Means and standard deviations are also 
often listed in tables, especially if a study includes several groups or several different 
variables. For example, Kujath (2011) conducted a study with 183 college students 
who reported using Facebook or MySpace. As shown in Table 2-5 (reproduced from 
Kujath’s article), the students reported on their use of each social networking site.  
Notice that the table is one of those relatively rare examples that includes the median as 
well as the mean and standard deviation (usually just the mean and standard deviation 
are shown). As the table shows, students reported using MySpace for a greater amount 
of time per day 1mean = 67.4 minutes2 than Facebook 1mean = 39.1 minutes2. 
Also notice that there was greater variability in the total time per day students spent 
on MySpace 1SD = 112.7 minutes2 compared to Facebook 1SD = 77.02. How does 
your usage of social networking sites compare to the usage reported in this study?

Another interesting example is shown in Table 2-6 (reproduced from Norcross 
et al., 2005). The table shows the application and enrollment statistics for  psychology 
doctoral programs in the United States, broken down by area of psychology and by 
year (1973, 1979, 1992, and 2003). The table does not give standard deviations, but 
it does give both means and medians. For example, in 2003 the mean number of 
applicants to doctoral counseling psychology programs was 71.0, but the median 
was only 59. This suggests that some programs had very high numbers of applicants 
that skewed the distribution. In fact, you can see from the table that for almost every 

Be Empowered

Finally, although increasing your motivation alone does 
not help very much, it can’t hurt. Fight for your right to 
know this subject. Consider these words from the former 
president of the Mathematics Association of America:

The paradox of our times is that as mathematics be-
comes increasingly powerful, only the powerful seem 
to benefit from it [italics added]. The ability to think 
mathematically—broadly interpreted—is absolutely 

crucial to advancement in virtually every career. Con-
fidence in dealing with data, skepticism in analyzing  
arguments, persistence in penetrating complex problems,  
and literacy in communicating about technical matters 
are the enabling arts offered by the new mathematical 
sciences. (Steen, 1987, p. xviii)

Do not let anyone take away your power to change the 
world, which most emphatically requires you to know 
how to use and interpret statistics.

Table 2-5 Facebook and MySpace Utilization

Facebook MySpace

Mn Mdn SD Mn Mdn SD

Membership months 21.9 24.0 13.4 28.2 24.0 15.5

Times used per day 1.2 1.0 1.3 1.6 1.0 1.5

Minutes spent per use 31.5 17.5 58.8 38.8 30.0 57.1

Total minutes per day 39.1 15.0 77.0 67.4 30.0 112.7

Source: Kujath, C. L. (2011). Facebook and MySpace: Complement or substitute for face-to-face interaction? Cyberpsychology, 
Behavior, and Social Networking, 14, 75–78. Reprinted by permission of Mary Ann Liebert, Inc. publishers.
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Table 2-6 Application and Enrollment Statistics by Area and Year: Doctoral Programs

Applications Enrollments

N of programs M Mdn M Mdn

Program 1973 1979 1992 2003 1973 1979 1992 2003 1973 1979 1992 2003 1992 2003 1992 2003

Clinical 105 130 225 216 314.4 252.6 191.1 142.0 290 234 168 126 12.0 15.4 8 8

Clinical neuro 20 72.3 37 10.7 6

Community 4 2 5 13 90.5 24.4 23.5 60 23 21 3.2 3.3 2 3

Counseling 29 43 62 66 133.4 90.9 120.2 71.0 120 84 110 59 7.3 6.8 6 7

Health 7 13 40.7 71.2 30 56 4.4 6.7 5 4

School 30 39 56 57 78.5 54.0 31.3 38.7 53 34 32 31 5.4 6.9 5 5

Other health service  
provider subfield

 
52

 
83.5

 
48

 
9.2

 
7

Cognitive 47 104 24.6 30.1 22 22 2.6 3.4 2 3

Developmental 56 72 97 111 54.1 38.9 27.6 25.5 41 30 24 22 2.8 3.4 2 3

Educational 23 28 30 35 67.8 39.7 20.0 19.7 34 26 12 13 6.0 4.9 4 4

Experimental 118 127 78 40 56.2 33.2 31.3 26.7 42 25 26 17 4.4 4.1 3 3

I/O 20 25 49 60 39.9 54.7 66.2 46.9 37 48 70 41 4.9 4.7 4 4

Neuroscience 53 22.0 16 2.8 2

Personality 23 15 10 18 42.5 24.7 12.3 47.8 33 17 6 31 1.0 2.8 1 2

Psychobiological/ 
physiological

 
18

 
21.1

 
17

 
2.4

 
2

Quantitative 40 43 76 17 33.2 29.3 20.0 11.2 29 24 20 11 3.9 1.9 2 1

Social 58 72 59 85 48.7 30.9 47.1 43.1 40 24 37 35 3.3 3.2 3 3

Other fields 60 47 288 101 61.6 74.1 26.6 26.0 27 25 15 17 3.3 3.8 2 3

Total 566 645 1,089 1,079 106.1 85.2 69.4 59.6 31 33 5.6 6.7 4 4

Note: The academic years correspond to the 1975–1976, 1981–1982, 1994 and 2005 editions of Graduate Study in Psychology, respectively, Clinical neuro =  clinical neuropsychology; I/O =  industrial-organizational.

Source: Norcross, J. C., Kohout, J. L., & Wicherski, M. (2005). Graduate study in psychology: 1971 to 2004. American Psychologist, 60, 959–975. Published by the American Psychological Association. Reprinted with permission.
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kind of program and for both applications and enrollments, the means are typically 
higher than the medians. You may also be struck by just how competitive it is to get 
into doctoral programs in many areas of psychology. It is our experience that one of 
the factors that makes a lot of difference is doing well in statistics courses!

Summary

 1. The mean is the most commonly used measure of central tendency of a distribu-
tion of scores. The mean is the ordinary average—the sum of the scores divided 
by the number of scores. In symbols, M = 1gX2>N.

 2. Other, less commonly used ways of describing the central tendency of a distribu-
tion of scores are the mode (the most common single value) and the median (the 
value of the middle score when all the scores are lined up from lowest to highest).

 3. The variability of a group of scores can be described by the variance and the 
standard deviation.

 4. The variance is the average of the squared deviation of each score from the 
mean. In symbols, SD2 = 3g1X - M224>N. The sum of squared deviations, 
g1X - M22, is also symbolized as SS. Thus SD2 = SS>N.

 5. The standard deviation is the square root of the variance. In symbols, SD = 2SD2. 
It is approximately the average amount that scores differ from the mean.

 6. There have always been a few psychologists who have warned against statisti-
cal methodology because in the process of creating averages, knowledge about 
the individual case is lost.

 7. Means and standard deviations are often given in research articles in the text or 
in tables.

Key Terms

central tendency  (p. 35)
mean 1M2  (p. 35)
g  (sum of)  (p. 36)
X (p. 36)
N (number of scores)  (p. 37)
mode  (p. 38)
median  (p. 40)

outlier  (p. 40)
variance  (p. 45)
deviation score  (p. 45)
squared deviation score   

(p. 45)
sum of squared deviations  (p. 45)
standard deviation 1SD2 (p. 46)

SD2 (p. 47)
SD (p. 47)
sum of squares (SS) (p. 47)
computational formula   

(p. 50)
definitional formula  (p. 50)

Example Worked-Out Problems

Figuring the Mean
Find the mean for the following scores: 8, 6, 6, 9, 6, 5, 6, 2.

Answer
You can figure the mean using the formula or the steps.

Using the formula: M = 1gX2>N = 48>8 = 6.
Using the steps:

Learning Aids
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 ❶ Add up all the scores. 8 + 6 + 6 + 9 + 6 + 5 + 6 + 2 = 48.
 ❷ Divide this sum by the number of scores. 48>8 = 6.

Finding the Median
Find the median for the following scores: 1, 7, 4, 2, 3, 6, 2, 9, 7.

Answer

 ❶ Line up all the scores from lowest to highest. 1, 2, 2, 3, 4, 6, 7, 7, 9.
 ❷ Figure how many scores there are to the middle score by adding 1 to the 

number of scores and dividing by 2. There are 9 scores; so the middle score is 
the result of adding 1 to 9 and then dividing by 2, which is 5. The middle score 
is the fifth score.

 ❸ Count up to the middle score or scores. The fifth score from the bottom is 4; 
so the median is 4.

Figuring the Sum of Squares and the Variance
Find the sum of squares and the variance for the following scores: 8, 6, 6, 9, 6, 5, 6, 2.  
(These are the same scores used in the previous example for the mean: M = 6.)

Answer
You can figure the sum of squares and the variance using the formulas or the steps.

Using the formulas:

 SS = g1X - M22 = 18 - 622 + 16 - 622 + 16 - 622
     + 19 - 622 + 16 - 622 + 15 - 622 + 16 - 622 + 12 - 622

 = 22 + 02 + 02 + 32 + 02 + -12 + 02 + -42

 = 4 + 0 + 0 + 9 + 0 + 1 + 0 + 16
 = 30

 SD2 = SS>N = 30>8 = 3.75.

Table 2-7 shows the figuring, using the following steps:

 ❶ Subtract the mean from each score.
 ❷ Square each of these deviation scores.

Table 2-7  Figuring for Example Worked-Out Problem for the 

Sum of Squares and Variance Using Steps

❶ ❷

Score Mean Deviation Squared Deviation

8 6 2 4

6 6 0 0

6 6 0 0

9 6 3 9

6 6 0 0

5 6 - 1 1

6 6 0 0

2 6 - 4 16

    g = SS = 30 ❸

❹ Variance = 30>8 = 3.75
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 ❸ Add up the squared deviation scores. This gives the sum of squares 1SS2.
 ❹ Divide the sum of squared deviations by the number of scores. This gives 

the variance 1SD22.
Figuring the Standard Deviation
Find the standard deviation for the following scores: 8, 6, 6, 9, 6, 5, 6, 2. (These are 
the same scores used above for the mean, sum of squares, and variance. SD2 = 3.75.)

Answer
You can figure the standard deviation using the formula or the steps.

Using the formula: SD = 2SD2 = 23.75 = 1.94.
Using the steps:

 ❶ Figure the variance. The variance (from above) is 3.75.
 ❷ Take the square root. The square root of 3.75 is 1.94.

Outline for Writing Essays on Finding the Mean, Variance, 
and Standard Deviation
 1. Explain that the mean is a measure of the central tendency of a group of scores. 

Mention that the mean is the ordinary average, the sum of the scores divided by 
the number of scores.

 2. Explain that the variance and standard deviation both measure the amount of 
variability (or spread) among a group of scores.

 3. The variance is the average of each score’s squared difference from the mean. 
Describe the steps for figuring the variance.

 4. Roughly speaking, the standard deviation is the average amount that scores 
 differ from the mean. Explain that the standard deviation is directly related to 
the variance and is figured by taking the square root of the variance.

Practice Problems

These problems involve figuring. Most real-life statistics problems are done with spe-
cial statistical software. Even if you have such software, do these problems by hand 
to ingrain the method in your mind. To learn how to use a computer to solve statistics 
problems like those in this chapter, refer to the Using SPSS section at the end of this 
chapter.

All data are fictional unless an actual citation is given.

Set I (for Answers to Set I Problems, see pp. 681–682)
 1. For the following scores, find the (a) mean, (b) median, (c) sum of squared  

deviations, (d) variance, and (e) standard deviation:

32, 28, 24, 28, 28, 31, 35, 29, 26

 2. For the following scores, find the (a) mean, (b) median, (c) sum of squared  
deviations, (d) variance, and (e) standard deviation:

6, 1, 4, 2, 3, 4, 6, 6

 3. For the following scores, find the (a) mean, (b) median, (c) sum of squared  
deviations, (d) variance, and (e) standard deviation:

2.13, 6.01, 3.33, 5.78

MyStatLab
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 4. Here are the noon temperatures (in degrees Celsius) in a particular  
Canadian city on Thanksgiving Day for the 10 years from 2002 through 2011: 
0, 3, 6, 8, 2, 9, 7, 6, 4, 5. Describe the typical temperature and the amount of 
variation to a person who has never had a course in statistics. Give three ways 
of describing the representative temperature and two ways of describing its 
variation, explaining the differences and how you figured each. (You will learn 
more if you try to write your own answer first, before reading our answer at the 
back of the book.)

 5. A researcher is studying the amygdala (a part of the brain involved in  
emotion). Six participants in a particular fMRI (brain scan) study are measured 
for the increase in activation of their amygdala while they are viewing pictures 
of violent scenes. The activation increases are .43, .32, .64, .21, .29, and .51. 
Figure the (a) mean and (b) standard deviation for these six activation increases. 
(c) Explain what you have done and what the results mean to a person who has 
never had a course in statistics.

 6. Describe and explain the location of the mean, mode, and median for a normal curve.
 7. A researcher studied the number of anxiety attacks recounted over a two-week 

period by 30 people in psychotherapy for an anxiety disorder. In an article de-
scribing the results of the study, the researcher reports: “The mean number of 
anxiety attacks was 6.84 1SD = 3.182.” Explain these results to a person who 
has never had a course in statistics.

 8. In a study by Gonzaga et al. (2001), romantic couples answered questions about 
how much they loved their partner and also were videotaped while revealing some-
thing about themselves to their partner. The videotapes were later rated by trained 
judges for various signs of affiliation. Table 2-8 shows some of the results. Explain 
to a person who has never had a course in statistics the results for self-reported love 
for the partner and for the number of seconds “leaning toward the partner.”

Set II
 9. (a) Describe and explain the difference between the mean, median, and mode. 

(b) Make up an example (not in the book or in your lectures) in which the 
 median would be the preferred measure of central tendency.

Table 2-8 Mean Levels of Emotions and Cue Display in Study 1

Women (n = 60) Men (n = 60)

Indicator M SD M SD

Emotion reports    

 Self-reported love 5.02 2.16 5.11 2.08

 Partner-estimated love 4.85 2.13 4.58 2.20

Affiliation-cue display    

 Affirmative head nods 1.28 2.89 1.21 1.91

 Duchenne smiles 4.45 5.24 5.78 5.59

 Leaning toward partner 32.27 20.36 31.36 21.08

 Gesticulation 0.13 0.40 0.25 0.77

Note: Emotions are rated on a scale of 0 (none) to 8 (extreme). Cue displays are shown as mean 
seconds displayed per 60 s.

Source: Gonzaga, G. C., Keltner, D., Londahl, E. A., & Smith, M. D. (2001). Love and the commitment 
problem in romantic relationships and friendship. Journal of Personality and Social Psychology, 81, 
247–262. Published by the American Psychological Association. Reprinted with permission.
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 10. (a) Describe the variance and standard deviation. (b) Explain why the standard 
deviation is more often used as a descriptive statistic than the variance.

 11. For the following scores, find the (a) mean, (b) median, (c) sum of squared  
deviations, (d) variance, and (e) standard deviation:

2, 2, 0, 5, 1, 4, 1, 3, 0, 0, 1, 4, 4, 0, 1, 4, 3, 4, 2, 1, 0

 12. For the following scores, find the (a) mean, (b) median, (c) sum of squared  
deviations, (d) variance, and (e) standard deviation:

1,112; 1,245; 1,361; 1,372; 1,472

 13. For the following scores, find the (a) mean, (b) median, (c) sum of squared  
deviations, (d) variance, and (e) standard deviation:

3.0, 3.4, 2.6, 3.3, 3.5, 3.2

 14. For the following scores, find the (a) mean, (b) median, (c) sum of squared  
deviations, (d) variance, and (e) standard deviation:

8, -5, 7, -10, 5

 15. Make up three sets of scores: (a) one with the mean greater than the median, 
(b) one with the median and the mean the same, and (c) one with the mode 
greater than the median. (Each made-up set of scores should include at least 
five scores.)

 16. A psychologist interested in political behavior measured the square footage of 
the desks in the official office of four U.S. governors and of four chief execu-
tive officers (CEOs) of major U.S. corporations. The figures for the governors 
were 44, 36, 52, and 40 square feet. The figures for the CEOs were 32, 60, 48, 
and 36 square feet. (a) Figure the means and standard deviations for the gov-
ernors and for the CEOs. (b) Explain, to a person who has never had a course 
in statistics, what you have done. (c) Note the ways in which the means and 
standard deviations differ, and speculate on the possible meaning of these dif-
ferences, presuming that they are representative of U.S. governors and large 
corporations’ CEOs in general.

 17. A developmental psychologist studies the number of words that seven infants 
have learned at a particular age. The numbers are 10, 12, 8, 0, 3, 40, and 18. 
Figure the (a) mean, (b) median, and (c) standard deviation for the number of 
words learned by these seven infants. (d) Explain what you have done and what 
the results mean to a person who has never had a course in statistics.

 18. Describe and explain the location of the mean, mode, and median of a distribu-
tion of scores that is strongly skewed to the left.

 19. You figure the variance of a distribution of scores to be –4.26. Explain why 
your answer cannot be correct.

 20. A study involves measuring the number of days absent from work for 216 em-
ployees of a large company during the preceding year. As part of the results, 
the researcher reports, “The number of days absent during the preceding year 1M = 9.21; SD = 7.342 was . . . .” Explain what is written in parentheses to a 
person who has never had a course in statistics.

 21. Selwyn (2007) conducted a study of gender-related perceptions of information 
and communication technologies (such as video game systems, DVD players, 
and cell phones). The researcher asked 406 college students in Wales to rate 8 
technologies in terms of their level of masculinity or femininity. The students 
rated each technology using a 7-point response scale, from –3 for very feminine 
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to +  3 for very masculine, with a midpoint of 0 for neither masculine or femi-
nine. Table 2-9 (reproduced from Selwyn’s article) shows the mean, standard 
deviation, and variance of the students’ ratings of each technology. Explain the 
results to a person who has never had a course in statistics. (Be sure to explain 
some specific numbers, as well as the general principle of the mean, standard 
deviation, and variance.)

Table 2-9 Mean Scores for Each Technology

N Mean S.D. Variance

Games machine (e.g., Playstation) 403 1.92 1.00 .98

DVD Player 406 .44 .85 .73

Personal Computer (PC) 400 .36 .82 .68

Digital radio (DAB) 399 .34 .99 .98

Television set 406 .26 .78 .62

Radio 404 �.01 .81 .65

Mobile phone 399 �.19 .88 .77

Landline telephone 404 �.77 1.03 1.07

Note: Mean scores range from �3 (very feminine) to �3 (very masculine). The midpoint score of .0 
denotes “neither masculine nor feminine.”

Source: Selwyn, N. (2007). Hi-tech � guy-tech? An exploration of undergraduate students’ gendered 
perceptions of information and communication technologies. Sex Roles, 56, 525–536. Copyright © 
2007. Reprinted by permission of Springer Science and Business Media.

Using SPSS

The  in the following steps indicates a mouse click. (We used SPSS version 19.0 
to carry out these analyses. The steps and output may be slightly different for other 
versions of SPSS.)

Finding the Mean, Mode, and Median

 ❶  Enter the scores from your distribution in one column of the data window.
 ❷  Analyze.
 ❸  Descriptive statistics.
 ❹  Frequencies.
 ❺  the variable for which you want to find the mean, mode, and median, and 

 then  the arrow.
 ❻   Statistics.
 ❼  Mean,  Median,  Mode,  Continue.
 ❽  Optional: To instruct SPSS not to produce a frequency table,  the box labeled  

 Display frequency tables (this unchecks the box).
 ❾  OK.

Practice the preceding steps by finding the mean, mode, and median for the num-
ber of dreams example at the start of the chapter (the scores are 7, 8, 8, 7, 3, 1, 6, 9, 3, 
8). Your output window should look like Figure 2-14. (If you instructed SPSS not to 
show the frequency table, your output will show only the mean, median, and mode.)
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Finding the Variance and Standard Deviation
As mentioned earlier in the chapter, most calculators and computer software— 
including SPSS—calculate the variance and standard deviation using a formula that 
involves dividing by N – 1 instead of N. So, if you request the variance and standard 
deviation directly from SPSS (for example, by clicking Variance and Std. devia-
tion in Step ❼), the answers provided by SPSS will be slightly different from the 
answers in this chapter.5 The following steps show you how to use SPSS to figure 
the variance and standard deviation using the dividing-by-N method you learned in 
this chapter. It is easier to learn these steps using actual numbers; so we will use the 
number of dreams example again.

 ❶ Enter the scores for which you want to compute the variance and standard 
deviation in one column of the data window (the scores are 7, 8, 8, 7, 3, 1, 6, 9, 
3, 8). We will call this variable “dreams.” (This is the same first step for finding 
the mean of a distribution of scores.)

Figure 2-14 Using SPSS to find the mean, median, and mode for the number of dreams 
example.



 Central Tendency and Variability 65

 ❷ Find the mean of the scores by following the preceding steps for Finding the 
Mean, Mode, and Median. The mean of the dreams variable is 6.

 ❸ You are now going to create a new variable that shows each score’s squared 
deviation from the mean.  Transform,  Compute Variable. You could 
call the new variable any name you want, but we will call it “squared_ 
deviation”. So, type squared_deviation in the box labeled Target Variable. You 
are now going to tell SPSS how to figure this new variable called squared_devia-
tion. In the box labeled Numeric Expression, write 1dreams -  62 * 1dreams -  62.
(The asterisk is how you show multiplication in SPSS.) As you can see, this 
formula takes each score’s deviation score and multiplies it by itself to give 
the squared deviation score. Your Compute Variable window should look like  
Figure 2-15.  OK. You will see that a new variable called squared_deviation 
has been added to the data window (see Figure 2-16). The scores are the squared 
deviations of each score from the mean.

 ❹ As you learned in this chapter, the variance is figured by dividing the sum of the 
squared deviations by the number of scores. This is the same as taking the mean 
of the squared deviation scores. So, to find the variance of the dreams scores, 
follow the steps shown earlier to find the mean of the squared_deviation vari-
able. This comes out to 6.60; so the variance of the dreams scores is 6.60.

 ❺ To find the standard deviation, use a calculator to find the square root of 6.60, 
which is 2.57.

If you were conducting an actual research study in which you were testing  
a group of people in order to make generalizations to people like those tested in  

Figure 2-15 SPSS compute variable window for Step ❸ of finding the variance and 
standard deviation for the number of dreams example.
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Chapter Notes

general, you would usually request the variance and standard deviation directly 
from SPSS (using its N - 1 approach). However, for our purpose in this chapter 
(describing the variation in a group of scores for its own sake), the steps we just 
outlined are entirely appropriate.

Figure 2-16 SPSS data window after Step ❸ for finding the variance and standard 
deviation for the number of dreams example.

 1. In more formal, mathematical statistics writing, the symbols can be more  
complex. This complexity allows formulas to handle intricate situations with-
out confusion. However, in books on statistics for psychologists, even fairly 
advanced texts, the symbols are kept simple. The simplified form rarely creates 
ambiguities in the kinds of statistical formulas psychologists use.

 2. This section focuses on the variance and standard deviation as indicators of 
spread, or variability. Another way to describe the spread of a group of scores is 
in terms of the range—the highest score minus the lowest score. Suppose that in 
a particular class the oldest student is 39 years of age and the youngest is 19; the 
range is 20 (that is, 39 - 19 = 20). Psychology researchers rarely use the range 
because it is such an imprecise way to describe the spread; it does not take into 
account how clumped together or spread out the scores are within the range.
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 3. Why don’t statisticians use the deviation scores themselves, make all deviations 
positive, and just use their average? In fact, the average of the deviation scores 
(treating all deviations as positive) has a formal name—the average deviation 
or mean deviation. This procedure was actually used in the past, and some psy-
chologists have noted subtle advantages of the average deviation (Catanzaro & 
Taylor, 1996). However, the average deviation does not work out very well as 
part of more complicated statistical procedures.

 4. It is important to remember that the standard deviation in most cases is not 
exactly the average amount that scores differ from the mean. To be precise, the 
standard deviation is the square root of the average of scores’ squared devia-
tions from the mean. This squaring, averaging, and then taking the square root 
can give a slightly different result from simply averaging the scores’ deviations 
from the mean. Still, the result of this approach has technical advantages that 
outweigh the slight disadvantage of giving only an approximate description of 
the average variation from the mean (see Chapter Note 3).

 5. Note that if you request the variance from SPSS, you can convert it to the vari-
ance as we figure it in this chapter by multiplying the variance from SPSS by 
N -1 (that is, the number of scores minus 1) and then dividing the result by 
N (the number of scores). That is, the variance as we are figuring it in this chapter 
comes out to SPSS’s variance multiplied by 1N - 12>N. Taking the square root 
of the resulting value will give you the standard deviation (using the formula 
you learned in this chapter). We use a slightly longer approach to figuring the 
variance and standard deviation to reinforce the basic logic of the variance and 
standard deviation, and also to show you how to create new variables in SPSS.
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Chapter 3

Some Key Ingredients for Inferential 
Statistics

Z Scores, the Normal Curve, Sample 
versus Population, and Probability

Chapter Outline

Ordinarily, psychologists conduct research to test a theoretical principle or 
the effectiveness of a practical procedure. For example, a psychophysiolo-
gist might measure changes in heart rate from before to after solving a dif-

ficult problem. The measurements are then used to test a theory predicting that heart 
rate should change following successful problem solving. An applied social psy-
chologist might examine the effectiveness of a program of neighborhood meetings 
intended to promote water conservation. Such studies are carried out with a particu-
lar group of research participants. But researchers use inferential statistics to make 

T I P  F O R  S U C C E S S
Before beginning this chapter, 
be sure that you have mastered 
the material in Chapter 1 on the 
shapes of distributions and the 
material in Chapter 2 on the mean 
and standard deviation.
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more general conclusions about the theoretical principle or procedure being studied. 
These conclusions go beyond the particular group of research participants studied.

This chapter and Chapters 4, 5, and 6 introduce inferential statistics. In this 
chapter, we consider four topics: Z scores, the normal curve, sample versus popula-
tion, and probability. This chapter prepares the way for the next ones, which are 
more demanding conceptually.

Z Scores
In Chapter 2, you learned how to describe a group of scores in terms of the mean 
and variation around the mean. In this section you learn how to describe a particular 
score in terms of where it fits into the overall group of scores. That is, you learn 
how to use the mean and standard deviation to create a Z score; a Z score describes a 
score in terms of how much it is above or below the average.

Suppose you are told that a student, Jerome, is asked the question, “To what 
extent are you a morning person?” Jerome responds with a 5 on a 7-point scale, 
where 1 = not at all and 7 = extremely. Now suppose that we do not know any-
thing about how other students answer this question. In this situation, it is hard to 
tell whether Jerome is more or less of a morning person in relation to other students. 
However, suppose that we know for students in general, the mean rating (M) is 3.40 
and the standard deviation (SD) is 1.47. (These values are the actual mean and stan-
dard deviation that we found for this question in a large sample of students in statis-
tics classes at eight different universities across the United States and Canada.) With 
this knowledge, we can see that Jerome is more of a morning person than is typical 
among students. We can also see that Jerome is above the average (1.60 units more 
than average; that is, 5 - 3.40 = 1.60) by a bit more than students typically vary 
from the average (that is, students typically vary by about 1.47, the standard deviation). 
This is all shown in Figure 3-1.

What Is a Z Score?
A Z score makes use of the mean and standard deviation to describe a particular 
score. Specifically, a Z score is the number of standard deviations the actual score 
is above or below the mean. If the actual score is above the mean, the Z score is 
positive. If the actual score is below the mean, the Z score is negative. The standard 
deviation now becomes a kind of yardstick, a unit of measure in its own right.

In our example, Jerome has a score of 5, which is 1.60 units above the mean of 
3.40. One standard deviation is 1.47 units; so Jerome’s score is a little more than 1  

Z score number of standard deviations 
that a score is above (or below, if it is 
negative) the mean of its distribution; 
it is thus an ordinary score transformed 
so that it better describes the score’s 
 location in a distribution.

SD

.46

Mean

1.93

SD

3.40

SD

4.87

SD

6.34

Jerome's
score
(5)

Figure 3-1 Score of one student, Jerome, in relation to the overall distribution on the 
measure of the extent to which students are morning people.
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standard deviation above the mean. To be precise, Jerome’s Z score is +1.09 (that 
is, his score of 5 is 1.09 standard deviations above the mean). Another student, 
Ashley, has a score of 2. Her score is 1.40 units below the mean. Therefore, her 
score is a little less than 1 standard deviation below the mean (a Z score of - .95). 
So, Ashley’s score is below the average by about as much as students typically vary 
from the average.

Z scores have many practical uses. As you will see later in this chapter, they are 
 especially useful for showing exactly where a particular score falls on the normal curve.

Z Scores as a Scale
Figure 3-2 shows a scale of Z scores lined up against a scale of raw scores for our 
example of the degree to which students are morning people. A raw score is an 
ordinary score as opposed to a Z score. The two scales are something like a ruler 
with inches lined up on one side and centimeters on the other.

Changing a number to a Z score is a bit like converting words for measurement 
in various obscure languages into one language that everyone can understand—
inches, cubits, and zingles (we made up that last one), for example, into centimeters. 
It is a very valuable tool.

Suppose that a developmental psychologist observed 3-year-old Jacob in a labo-
ratory situation playing with other children of the same age. During the observation, 
the psychologist counted the number of times Jacob spoke to the other children. The 
result, over several observations, is that Jacob spoke to other children about 8 times 
per hour of play. Without any standard of comparison, it would be hard to draw 
any conclusions from this. Let’s assume, however, that it was known from previous 
research that under similar conditions, the mean number of times children speak 
is 12, with a standard deviation of 4. With that information, we can see that Jacob 
spoke less often than other children in general, but not extremely less often. Jacob 
would have a Z score of -1 (M = 12 and SD = 4, thus a score of 8 is 1 SD below 
M), as shown in Figure 3-3.

Suppose Ryan were observed speaking to other children 20 times in an hour. 
Ryan would clearly be unusually talkative, with a Z score of +2 (see Figure 3-3). 
Ryan speaks not merely more than the average but more by twice as much as children 
tend to vary from the average!

raw score ordinary score (or any 
number in a distribution before it has 
been made into a Z score or otherwise 
transformed).

Z score:

Raw score: .46

22

1.93

21

3.40

0

4.87

11

6.34

12

Figure 3-2 Scales of Z scores and raw scores for the example of the extent to which 
students are morning people.

Z score:

Times spoken per hour: 0

23

4

21

12

0

16

11

24

1322

8 20

12

Jacob Ryan

Figure 3-3 Number of times each hour that two children spoke, shown as raw scores 
and Z scores.
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A Z score is the raw score 
minus the mean, divided by 
the standard deviation.

Formula to Change a Raw Score to a Z Score
A Z score is the number of standard deviations by which the raw score is above or 
below the mean. To figure a Z score, subtract the mean from the raw score, giving 
the deviation score. Then divide the deviation score by the standard deviation. The 
formula is

 Z =
X - M

SD
 (3-1)

For example, using the formula for Jacob, the child who spoke to other children 
8 times in an hour (where the mean number of times children speak is 12 and the 
standard deviation is 4),

Z =
8 - 12

4
=

-4

4
= -1

Steps to Change a Raw Score to a Z Score
 ❶ Figure the deviation score: subtract the mean from the raw score.
 ❷ Figure the Z score: divide the deviation score by the standard deviation.

Using these steps for Jacob, the child who spoke with other children 8 times in 
an hour,

 ❶ Figure the deviation score: subtract the mean from the raw score. 
8 - 12 = -4.

 ❷ Figure the Z score: divide the deviation score by the standard deviation. 
-4>4 = -1.

Formula to Change a Z Score to a Raw Score
To change a Z score to a raw score, the process is reversed: multiply the Z score by 
the standard deviation and then add the mean. The formula is

 X = 1Z21SD2+ M (3-2)

Suppose a child has a Z score of 1.5 on the number of times spoken with another 
child during an hour. This child is 1.5 standard deviations above the mean. Because 
the standard deviation in this example is 4 raw score units (times spoken), the child 
is 6 raw score units above the mean, which is 12. Thus, 6 units above the mean is 18. 
Using the formula,

X = 1Z21SD2+  M = 11.52142 + 12 = 6 + 12 = 18.

Steps to Change a Z Score to a Raw Score
 ❶ Figure the deviation score: multiply the Z score by the standard deviation.
 ❷ Figure the raw score: add the mean to the deviation score.

Using these steps for the child with a Z score of 1.5 on the number of times 
 spoken with another child during an hour:

 ❶ Figure the deviation score: multiply the Z score by the standard deviation. 11.52142 = 6.
 ❷ Figure the raw score: add the mean to the deviation score. 6 + 12 = 18.

The raw score is the Z score 
multiplied by the standard 
deviation, plus the mean.
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Additional Examples of Changing Z Scores 
to Raw Scores and Vice Versa
Consider again the example from the start of the chapter in which students were 
asked the extent to which they were a morning person. Using a scale from 1 (not at 
all) to 7 (extremely), the mean was 3.40 and the standard deviation was 1.47. Sup-
pose a student’s raw score is 6. That student is well above the mean. Specifically, 
using the formula,

Z =
X - M

SD
=

6 - 3.40

1.47
=

2.60

1.47
= 1.77

That is, the student’s raw score is 1.77 standard deviations above the mean (see 
Figure 3-4, Student 1). Using the 7-point scale (from 1 = not at all to 7 = extremely), to 
what extent are you a morning person? Now figure the Z score for your rating (your 
raw score).

Another student has a Z score of -1.63, a score well below the mean. (This 
student is much less of a morning person than is typically the case for students.) You 
can find the exact raw score for this student using the formula

X = 1Z21SD2 + M = 1-1.63211.472 + 3.40 = -2.40 + 3.40 = 1.00

That is, the student’s raw score is 1.00 (see Figure 3-4, Student 2).
Let’s also consider some examples from the study of students’ stress ratings. 

The mean stress rating of the 30 statistics students (using a 0–10 scale) was 6.43 
(see Figure 2-3), and the standard deviation was 2.56. Figure 3-5 shows the raw 
score and Z score scales. Suppose a student’s stress raw score is 10. That student is 
well above the mean. Specifically, using the formula

Z =
X - M

SD
=

10 - 6.43

2.56
=

3.57

2.56
= 1.39

The student’s stress level is 1.39 standard deviations above the mean (see Figure 3-5, 
Student 1). On a scale of 0–10, how stressed have you been in the last 2½ weeks? 
Figure the Z score for your raw stress score.

Z score:

(2.00)
Student 2

(10.00)
Student 1

Stress rating:

23

1.31

21

6.43

0

8.99

11

14.11

1322

3.87 11.55

12

21.25

Figure 3-5 Scales of Z scores and raw scores for 30 statistics students’ ratings of their 
stress level, showing the scores of two sample students. (Data based on Aron et al., 1995.)

Z score:

Raw score: .46

22

1.93

21

3.40

0

4.87

11

6.34

12

(1.00)
Student 2

(6.00)
Student 1

Figure 3-4 Scales of Z scores and raw scores for the example of the extent to which 
students are morning people, showing the scores of two sample students.



 Some Key Ingredients for Inferential Statistics 73

How are you doing?

 1. How is a Z score related to a raw score?
 2. Write the formula for changing a raw score to a Z score, and define each of 

the symbols.
 3. For a particular group of scores, M = 20 and SD = 5. Give the Z score for 

(a) 30, (b) 15, (c) 20, and (d) 22.5.
 4. Write the formula for changing a Z score to a raw score, and define each of 

the symbols.
 5. For a particular group of scores, M = 10 and SD = 2. Give the raw score for 

a Z score of (a) +2, (b) + .5, (c) 0, and (d) -3.
 6. Suppose a person has a Z score for overall health of +2 and a Z score for 

overall sense of humor of +1. What does it mean to say that this person is 
healthier than she is funny?

Answers

 1. A Z score is the number of standard deviations a raw score is above or below 
the mean.

 2. Z = 1X - M2>SD. Z is the Z score; X is the raw score; M is the mean; SD is 
the standard deviation.

 3. (a) Z = 1X - M2>SD = 130 - 202>5 = 10>5 = 2; (b) -1; (c) 0; (d) .5.
 4. X = 1Z21SD2 + M. X is the raw score; Z is the Z score; SD is the standard 

deviation; M is the mean.
 5. (a) X = 1Z21SD2 + M = 122122 + 10 = 4 + 10 = 14; (b) 11; (c) 10; (d ) 4.
 6. This person is more above the average in health (in terms of how much people 

typically vary from average in health) than she is above the average in humor 
(in terms of how much people typically vary from the average in humor).

Another student has a Z score of -1.73, a stress level well below the mean. You 
can find the exact raw stress score for this student using the formula:

X = 1Z21SD2 + M = 1-1.73212.562 + 6.43 = -4.43 + 6.43 = 2.00

That is, the student’s raw stress score is 2.00 (see Figure 3-5, Student 2).

The Mean and Standard Deviation of Z Scores
The mean of any distribution of Z scores is always 0. This is so because when you 
change each raw score to a Z score, you take the raw score minus the mean. So the 
mean is subtracted out of all the raw scores, making the overall mean come out to 0. In 
other words, in any distribution, the sum of the positive Z scores must always equal 
the sum of the negative Z scores. Thus, when you add them all up, you get 0.

The standard deviation of any distribution of Z scores is always 1. This is because 
when you change each raw score to a Z score, you divide the score by one standard 
deviation. As you work through the examples that follow, this will become increas-
ingly intuitive. It is important to note that the shape of a distribution is not changed 
when raw scores are converted to Z scores. So, for example, if a distribution of raw 
scores is positively skewed, the distribution of Z scores will also be positively skewed.

A Z score is sometimes called a standard score. There are two reasons: Z scores 
have standard values for the mean and the standard deviation, and, as we saw ear-
lier, Z scores provide a kind of standard scale of measurement for any variable. 
(However, sometimes the term standard score is used only when the Z scores are for 
a distribution that follows a normal curve.)
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The Normal Curve
As noted in Chapter 1, the graphs of the distributions of many of the variables that 
psychologists study follow a unimodal, roughly symmetrical, bell-shaped curve. 
These bell-shaped smooth histograms approximate a precise and important math-
ematical distribution called the normal distribution, or, more simply, the normal 
curve.1 The normal curve is a mathematical (or theoretical) distribution. Research-
ers often compare the actual distributions of the variables they are studying (that 
is, the distributions they find in research studies) to the normal curve. They don’t 
expect the distributions of their variables to match the normal curve perfectly (since 
the normal curve is a theoretical distribution), but researchers often check whether 
their variables approximately follow a normal curve. (The normal curve or normal 
distribution is also often called a Gaussian distribution after the astronomer Karl 
Friedrich Gauss. However, if its discovery can be attributed to anyone, it should 
 really be to Abraham de Moivre—see Box 3-1.) An example of the normal curve is 
shown in Figure 3-6.

Why the Normal Curve Is So Common in Nature
Take, for example, the number of different letters a particular person can remember 
accurately on various testings (with different random letters each time). On some 
testings the number of letters remembered may be high, on others low, and on most 
somewhere in between. That is, the number of different letters a person can recall 
on various testings probably approximately follows a normal curve. Suppose that 
the person has a basic ability to recall, say, seven letters in this kind of memory task. 
Nevertheless, on any particular testing, the actual number recalled will be affected 
by various influences—noisiness of the room, the person’s mood at the moment, a 
combination of random letters similar to a familiar name, and so on.

These various influences add up to make the person recall more than seven on 
some testings and less than seven on others. However, the particular combination of 
such influences that come up at any testing is essentially random; thus, on most test-
ings, positive and negative influences should cancel out. The chances are not very 
good of all the random negative influences happening to come together on a testing 
when none of the random positive influences show up. Thus, in general, the person 
remembers a middle amount, an amount in which all the opposing influences cancel 
each other out. Very high or very low scores are much less common.

This creates a unimodal distribution with most of the scores near the middle and 
fewer at the extremes. It also creates a distribution that is symmetrical, because the 
number of letters recalled is as likely to be above as below the middle. Being a uni-
modal symmetrical curve does not guarantee that it will be a normal curve; it could 
be too flat or too pointed. However, it can be shown mathematically that in the long 
run, if the influences are truly random, and the number of different influences being 

normal distribution frequency distri-
bution that follows a normal curve.

normal curve specific, mathematically 
defined, bell-shaped frequency distribu-
tion that is symmetrical and unimodal; 
distributions observed in nature and in 
research commonly approximate it.

Figure 3-6 A normal curve.
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combined is large, a precise normal curve will result. Mathematical statisticians call 
this principle the central limit theorem. We have more to say about this principle in 
Chapter 5.

The Normal Curve and the Percentage of Scores Between 
the Mean and 1 and 2 Standard Deviations from the Mean
The shape of the normal curve is standard. Thus, there is a known percentage of 
scores above or below any particular point. For example, exactly 50% of the scores 
in a normal curve are below the mean, because in any symmetrical distribution half 
the scores are below the mean. More interestingly, as shown in Figure 3-7, approxi-
mately 34% of the scores are always between the mean and 1 standard deviation 
from the mean.

The normal curve is central to statistics and is the foun-
dation of most statistical theories and procedures. If any 
one person can be said to have discovered this funda-
mental of the field, it was Abraham de Moivre. He was 
a French Protestant who came to England at the age of 21 
because of religious persecution in France, which in 1685 
denied Protestants all their civil liberties. In England, de 
Moivre became a friend of Isaac Newton, who was sup-
posed to have often answered questions by saying, “Ask 
Mr. de Moivre—he knows all that better than I do.” Yet 
because he was a foreigner, de Moivre was never able 
to rise to the same heights of fame as the British-born 
mathematicians who respected him so greatly.

Abraham de Moivre was mainly an expert on chance. 
In 1733, he wrote a “method of approximating the sum 
of the terms of the binomial expanded into a series.” 
His paper essentially described the normal curve. The 
description was only in the form of a law, however; 
de Moivre never actually drew the curve itself. In fact, 
he was not very interested in it.

Credit for discovering the normal curve is often given 
to Pierre Laplace, a Frenchman who stayed home; or 
Karl Friedrich Gauss, a German; or Thomas Simpson, an 
Englishman. All worked on the problem of the distribution 
of errors around a mean, even going so far as describing 
the curve or drawing approximations of it. But even with-
out drawing it, de Moivre was the first to compute the areas 
under the normal curve at 1, 2, and 3 standard deviations, 
and Karl Pearson (discussed in Chapter 13, Box 13-1), a 
distinguished later statistician, felt strongly that de Moivre 
was the true discoverer of this important concept.

In England, de Moivre was highly esteemed as a man 
of letters as well as of numbers, being familiar with all the 
classics and able to recite whole scenes from his beloved 
Molière’s The Misanthrope. But for all his feelings for 
his native France, the French Academy elected him a 
foreign member of the Academy of Sciences just before 
his death. In England, he was ineligible for a university 
position because he was a foreigner there, as well. He 
remained in poverty, unable even to marry. In his earlier 
years, he worked as a traveling teacher of mathematics. 
Later, he was famous for his daily sittings in Slaughter’s 
Coffee House in Long Acre, making himself available 
to gamblers and insurance underwriters (two professions 
equally uncertain and hazardous before statistics were 
refined), who paid him a small sum for figuring odds  
for them.

De Moivre’s unusual death generated several leg-
ends. He worked a great deal with infinite series, which 
always converge to a certain limit. One story has it that 
de Moivre began sleeping 15 more minutes each night 
until he was asleep all the time, then died. Another ver-
sion claims that his work at the coffeehouse drove him to 
such despair that he simply went to sleep until he died. 
At any rate, in his 80s he could stay awake only four 
hours a day, although he was said to be as keenly intel-
lectual in those hours as ever. Then his wakefulness was 
reduced to 1 hour, then none at all. At the age of 87, after 
eight days in bed, he failed to wake and was declared 
dead from “somnolence” (sleepiness).

Sources: Pearson (1978); Tankard (1984).

BOX 3-1  de Moivre, the Eccentric Stranger Who Invented 
the Normal Curve
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Consider IQ scores. On many widely used intelligence tests, the mean IQ is 100, 
the standard deviation is 15, and the distribution of IQs is roughly a normal curve (see 
Figure 3-8). Knowing about the normal curve and the percentage of scores between 
the mean and 1 standard deviation above the mean tells you that about 34% of people 
have IQs between 100, the mean IQ, and 115, the IQ score that is 1 standard devia-
tion above the mean. Similarly, because the normal curve is symmetrical, about 34% 
of people have IQs between 100 and 85 (the score that is 1 standard deviation below 
the mean), and 68% 134% + 34%2 have IQs between 85 and 115.

There are many fewer scores between 1 and 2 standard deviations from the 
mean than there are between the mean and 1 standard deviation from the mean. 
It turns out that about 14% of the scores in a normal curve are between 1 and 2 
standard deviations above the mean (see Figure 3-7). (Similarly, about 14% of the 
scores are between 1 and 2 standard deviations below the mean.) Thus, about 14% 
of people have IQs between 115 (1 standard deviation above the mean) and 130 
(2 standard deviations above the mean).

You will find it very useful to remember the 34% and 14% figures. These 
 figures tell you the percentages of people above and below any particular score 
whenever you know that score’s number of standard deviations above or below 
the mean. You can also reverse this approach and figure out a person’s number of 
standard deviations from the mean from a percentage. Suppose you are told that a 
person scored in the top 2% on a test. Assuming that scores on the test are approxi-
mately normally distributed, the person must have a score that is at least 2 standard 
deviations above the mean. This is because a total of 50% of the scores are above 
the mean, but 34% are between the mean and 1 standard deviation above the mean, 
and another 14% are between 1 and 2 standard deviations above the mean. That 
leaves 2% of scores (that is, 50% - 34% - 14% = 2%) that are 2 standard devia-
tions or more above the mean.

23 22 21 0
2%

14%
34% 34%

14%
2%

11 12 13 Z Scores

Figure 3-7 Normal curve with approximate percentages of scores between the mean 
and 1 and 2 standard deviations above and below the mean.

70 10085 115 130

IQ Scores

Figure 3-8 Distribution of IQ scores on many standard intelligence tests (with a mean 
of 100 and a standard deviation of 15).
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Similarly, suppose you were selecting animals for a study and needed to 
consider their visual acuity. Suppose also that visual acuity was normally dis-
tributed and you wanted to use animals in the middle two-thirds (a figure close 
to 68%) for visual acuity. In this situation, you would select animals that scored 
between 1 standard deviation above and 1 standard deviation below the mean. 
(That is, about 34% are between the mean and 1 standard deviation above the 
mean and another 34% are between the mean and 1 standard deviation below 
the mean.) Also, remember that a Z score is the number of standard deviations 
that a score is above or below the mean—which is just what we are talking about 
here. Thus, if you knew the mean and the standard deviation of the visual acu-
ity test, you could figure out the raw scores (the actual level of visual acuity) for 
being 1 standard deviation below and 1 standard deviation above the mean (that 
is, Z scores of -1 and +1). You would do this using the methods of changing raw 
scores to Z scores and vice versa that you learned earlier in this chapter, which are 
Z = 1X - M2>SD and X = 1Z21SD2 + M.

The Normal Curve Table and Z Scores
The 50%, 34%, and 14% figures are important practical rules for working with 
a group of scores that follow a normal distribution. However, in many research 
and applied situations, psychologists need more accurate information. Because the 
normal curve is a precise mathematical curve, you can figure the exact percent-
age of scores between any two points on the normal curve (not just those that 
happen to be right at 1 or 2 standard deviations from the mean). For example, 
exactly 68.59% of scores have a Z score between + .62 and -1.68; exactly 2.81% 
of scores have a Z score between + .79 and + .89; and so forth. Statisticians have 
worked out tables for the normal curve that give the percentage of scores between 
the mean (a Z score of 0) and any other Z score (as well as the percentage of scores 
in the tail for any Z score).

We have included a normal curve table in the Appendix (Table A-1, 
pp. 671–674).2 Table 3-1 shows the first part of the full table. The first column 
in the table lists the Z score. The second column, labeled “% Mean to Z,” gives 
the percentage of scores between the mean and that Z score. The shaded area in 
the curve at the top of the column gives a visual reminder of the meaning of the 
percentages in the column. The third column, labeled “% in Tail,” gives the per-
centage of scores in the tail for that Z score. The shaded tail area in the curve at 
the top of the column shows the meaning of the percentages in the column. Notice 
that the table lists only positive Z scores. This is because the normal curve is per-
fectly symmetrical. Thus, the percentage of scores between the mean and, say, a Z 
of + .98 (which is 33.65%) is exactly the same as the percentage of scores between 
the mean and a Z of - .98 (again 33.65%); and the percentage of scores in the tail 
for a Z score of +1.77 (3.84%) is the same as the percentage of scores in the tail 
for a Z score of -1.77 (again, 3.84%). Notice that for each Z score, the “% Mean to 
Z ” value and the “% in Tail” value sum to 50.00. This is because exactly 50% of 
the scores are above the mean for a normal curve. For example, for the Z score of 
.57, the “% Mean to Z” value is 21.57% and the “% in Tail” value is 28.43%, and 
21.57% + 28.43% = 50.00%.

Suppose you want to know the percentage of scores between the mean and a  
 Z score of .64. You just look up .64 in the “Z ” column of the table and the “% Mean 
to Z” column tells you that 23.89% of the scores in a normal curve are between the 
mean and this Z score. These values are highlighted in Table 3-1.

normal curve table table showing 
percentages of scores associated with  
the normal curve; the table usually in-
cludes percentages of scores between  
the mean and various numbers of stan-
dard deviations above the mean and 
percentages of scores more positive than 
various numbers of standard deviations 
above the mean.

T I P  F O R  S U C C E S S
Remember that negative Z scores 
are scores below the mean, and 
positive Z scores are scores above 
the mean.
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You can also reverse the process and use the table to find the Z score for a 
particular percentage of scores. For example, imagine that 30% of ninth-grade stu-
dents had a creativity score higher than Samantha’s. Assuming that creativity scores 
follow a normal curve, you can figure out her Z score as follows: if 30% of stu-
dents scored higher than she did, then 30% of the scores are in the tail above her 
score. This is shown in Figure 3-9. So, you would look at the “% in Tail” column 
of the table until you found the percentage that was closest to 30%. In this example, 
the closest is 30.15%. Finally, look at the “Z” column to the left of this percent-
age, which lists a Z score of .52 (these values of 30.15% and .52 are highlighted in 
Table 3-1). Thus, Samantha’s Z score for her level of creativity is .52. If you know 
the mean and standard deviation for ninth-grade students’ creativity scores, you can 
figure out Samantha’s actual raw score on the test by changing her Z score of .52 to 
a raw score using the usual formula, X = 1Z21SD2 + 1M2.

T I P  F O R  S U C C E S S
Notice that the table repeats the 
basic three columns twice on the 
page. Be sure to look across to  
the columns you need.

meanmean ZZ meanmean ZZ mean Z mean Z

Table 3-1  Normal Curve Areas: Percentage of the Normal Curve Between the Mean and the 

Scores Shown and Percentage of Scores in the Tail for the Z Scores Shown (First 

part of table only: full table is Table A-1 in the Appendix. Highlighted values are 

examples from the text.)

Z % Mean to Z % in Tail Z % Mean to Z % in Tail

.00  .00 50.00 .45 17.36 32.64

.01  .40 49.60 .46 17.72 32.28

.02  .80 49.20 .47 18.08 31.92

.03 1.20 48.80 .48 18.44 31.56

.04 1.60 48.40 .49 18.79 31.21

.05 1.99 48.01 .50 19.15 30.85

.06 2.39 47.61 .51 19.50 30.50

.07 2.79 47.21 .52 19.85 30.15

.08 3.19 46.81 .53 20.19 29.81

.09 3.59 46.41 .54 20.54 29.46

.10 3.98 46.02 .55 20.88 29.12

.11 4.38 45.62 .56 21.23 28.77

.12 4.78 45.22 .57 21.57 28.43

.13 5.17 44.83 .58 21.90 28.10

.14 5.57 44.43 .59 22.24 27.76

.15 5.96 44.04 .60 22.57 27.43

.16 6.36 43.64 .61 22.91 27.09

.17 6.75 43.25 .62 23.24 26.76

.18 7.14 42.86 .63 23.57 26.43

.19 7.53 42.47 .64 23.89 26.11

.20 7.93 42.07 .65 24.22 25.78

.21 8.32 41.68 .66 24.54 25.46
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Steps for Figuring the Percentage of Scores Above  
or Below a Particular Raw Score or Z Score Using 
the Normal Curve Table
Here are the five steps for figuring the percentage of scores.

 ❶ If you are beginning with a raw score, first change it to a Z score. Use the 
usual formula, Z = 1X - M2>SD.

 ❷ Draw a picture of the normal curve, decide where the Z score falls on it, and 
shade in the area for which you are finding the percentage. When marking 
where the Z score falls on the normal curve, be sure to put it in the right place 
above or below the mean according to whether it is a positive or negative Z score.

 ❸ Make a rough estimate of the shaded area’s percentage based on the 50%–
34%–14% percentages. You don’t need to be very exact; it is enough just to 
estimate a range in which the shaded area has to fall, figuring it is between two 
particular whole Z scores. This rough estimate step is designed not only to help 
you avoid errors (by providing a check for your figuring), but also to help you 
develop an intuitive sense of how the normal curve works.

 ❹ Find the exact percentage using the normal curve table, adding 50% if nec-
essary. Look up the Z score in the “Z” column of Table A-1 and find the per-
centage in the “% Mean to Z” column or “% in Tail” column next to it. If you 
want the percentage of scores between the mean and this Z score, or if you want 
the percentage of scores in the tail for this Z score, the percentage in the table is 
your final answer. However, sometimes you need to add 50% to the percentage 
in the table. You need to do this if the Z score is positive and you want the total 
percentage below this Z score, or if the Z score is negative and you want the 
total percentage above this Z score. However, you don’t need to memorize these 
rules. It is much easier to make a picture for the problem and reason out whether 
the percentage you have from the table is correct as is, or if you need to add 50%.

 ❺ Check that your exact percentage is within the range of your rough esti-
mate from Step ❸.

Examples
Here are two examples using IQ scores where M = 100 and SD = 15.

Example 1: If a person has an IQ of 125, what percentage of people have higher 
IQs?

0

50% 30%

.52 1 2

Figure 3-9 Distribution of creativity test scores showing area for top 30% of scores 
and Z score where this area begins.
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 ❶ If you are beginning with a raw score, first change it to a Z score. Using the 
usual formula, Z = 1X - M2>SD, Z = 1125 - 1002>15 = +1.67.

 ❷ Draw a picture of the normal curve, decide where the Z score falls on it, 
and shade in the area for which you are finding the percentage. This is 
shown in Figure 3-10 (along with the exact percentages figured later).

 ❸ Make a rough estimate of the shaded area’s percentage based on the 50%–
34%–14% percentages. If the shaded area started at a Z score of 1, it would 
have 16% above it. If it started at a Z score of 2, it would have only 2% above it. 
So, with a Z score of 1.67, the number of scores above it has to be somewhere 
between 16% and 2%.

 ❹ Find the exact percentage using the normal curve table, adding 50% if nec-
essary. In Table A-1, 1.67 in the “Z ” column goes with 4.75 in the “% in Tail” 
column. Thus, 4.75% of people have IQ scores higher than 125. This is the an-
swer to our problem. (There is no need to add 50% to the percentage.)

 ❺ Check that your exact percentage is within the range of your rough es-
timate from Step ❸. Our result, 4.75%, is within the 16-to-2% range we 
estimated.

Example 2: If a person has an IQ of 95, what percentage of people have higher IQs?

 ❶ If you are beginning with a raw score, first change it to a Z score. Using the 
usual formula, Z = 195 - 1002>15 = - .33.

 ❷ Draw a picture of the normal curve, decide where the Z score falls on it, 
and shade in the area for which you are finding the percentage. This is 
shown in Figure 3-11 (along with the percentages figured later).

70 10085 115 130125

Z Score:

IQ Score:

021 11 11.67 1222

4.75%

50%

Figure 3-10 Distribution of IQ scores showing percentage of scores above an IQ 
score of 125 (shaded area).
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Z Score:

IQ Score:

02.33 121122

62.17%

95

21

12
.9

3%

50%

Figure 3-11 Distribution of IQ scores showing percentage of scores above an IQ 
score of 95 (shaded area).
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 ❸ Make a rough estimate of the shaded area’s percentage based on the 50%– 
34%–14% percentages. You know that 34% of the scores are between the 
mean and a Z score of -1. Also, 50% of the curve is above the mean. Thus, the 
Z score of - .33 has to have between 50% and 84% of scores above it.

 ❹ Find the exact percentage using the normal curve table, adding 50% if nec-
essary. The table shows that 12.93% of scores are between the mean and a 
Z score of .33. Thus, the percentage of scores above a Z score of - .33 is the 
12.93% between the Z score and the mean plus the 50% above the mean, which 
is 62.93%.

 ❺ Check that your exact percentage is within the range of your rough esti-
mate from Step ❸. Our result of 62.93% is within the 50-to-84% range we 
estimated.

Figuring Z Scores and Raw Scores from Percentages 
Using the Normal Curve Table
Going from a percentage to a Z score or raw score is similar to going from a Z score 
or raw score to a percentage. However, you reverse the procedure when figuring 
the exact percentage. Also, any necessary changes from a Z score to a raw score are 
done at the end.

Here are the five steps.

 ❶ Draw a picture of the normal curve, and shade in the approximate area for 
your percentage using the 50%–34%–14% percentages.

 ❷ Make a rough estimate of the Z score where the shaded area stops.
 ❸ Find the exact Z score using the normal curve table (subtracting 50% from 

your percentage if necessary before looking up the Z score). Looking at your 
picture, figure out either the percentage in the shaded tail or the percentage be-
tween the mean and where the shading stops. For example, if your percentage 
is the bottom 35%, then the percentage in the shaded tail is 35%. Figuring the 
percentage between the mean and where the shading stops will sometimes in-
volve subtracting 50% from the percentage in the problem. For example, if your 
percentage is the top 72%, then the percentage from the mean to where that 
shading stops is 22% 172% - 50% = 22%2.

    Once you have the percentage, look up the closest percentage in the appropri-
ate column of the normal curve table (“% Mean to Z” or “% in Tail”) and find the 
Z score for that percentage. That Z will be your answer—except it may be nega-
tive. The best way to tell if it is positive or negative is by looking at your picture.

 ❹ Check that your exact Z score is within the range of your rough estimate 
from Step ❷.

 ❺ If you want to find a raw score, change it from the Z score. Use the usual 
formula, X = 1Z21SD2+  M.

Examples
Here are three examples. Once again, we use IQ for our examples, with M = 100 
and SD = 15.

Example 1: What IQ score would a person need to be in the top 5%?

 ❶ Draw a picture of the normal curve, and shade in the approximate area 
for your percentage using the 50%–34%–14% percentages. We wanted the 
top 5%. Thus, the shading has to begin above (to the right of) 1 SD (there are 
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16% of scores above 1 SD). However, it cannot start above 2 SD because only 
2% of all the scores are above 2 SD. But 5% is a lot closer to 2% than to 16%. 
Thus, you would start shading a small way to the left of the 2 SD point. This is 
shown in Figure 3-12.

 ❷ Make a rough estimate of the Z score where the shaded area stops. The Z 
score is between +1 and +2.

 ❸ Find the exact Z score using the normal curve table (subtracting 50% from 
your percentage if necessary before looking up the Z score). We want the 
top 5%, which means we can use the “% in Tail” column of the normal curve 
table. Looking in that column, the closest percentage to 5% is 5.05% (or you 
could use 4.95%). This goes with a Z score of 1.64 in the “Z” column.

 ❹ Check that your exact Z score is within the range of your rough estimate 
from Step ❷. As we estimated, +1.64 is between +1 and +2 (and closer to 2).

 ❺ If you want to find a raw score, change it from the Z score. Using the for-
mula, X = 1Z21SD2+  M = 11.6421152+  100 = 124.60. In sum, to be in the 
top 5%, a person would need an IQ of at least 124.60.

Example 2: What IQ score would a person need to be in the top 55%?

 ❶ Draw a picture of the normal curve and shade in the approximate area for 
your percentage using the 50%–34%–14% percentages. You want the top 
55%. There are 50% of scores above the mean. So, the shading has to begin 
below (to the left of) the mean. There are 34% of scores between the mean 
and 1 SD below the mean; so the score is between the mean and 1 SD below 
the mean. You would shade the area to the right of that point. This is shown in 
Figure 3-13.

70 10085 115 13098.05

Z Score:

IQ Score:

 021 122.13 1122

50%
5%

55%

Figure 3-13 Finding the IQ score for where the top 55% of scores start.

70 10085 115 130124.60

Z Score:

IQ Score:

021 1211.641122

50%
5%

Figure 3-12 Finding the Z score and IQ raw score for where the top 5% of scores 
start.
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70 10085

70.60 129.40

115 130

Z Score:

IQ Score:

021 121122

95%

21.96 11.96

2.5% 2.5%

Figure 3-14 Finding the IQ scores for where the middle 95% of scores begins and ends.

 ❷ Make a rough estimate of the Z score where the shaded area stops. The 
Z score has to be between 0 and -1.

 ❸ Find the exact Z score using the normal curve table (subtracting 50% from 
your percentage if necessary before looking up the Z score). Being in the top 
55% means that 5% of people have IQs between this IQ and the mean (that is, 
55% - 50% = 5%). In the normal curve table, the closest percentage to 5% in 
the “% Mean to Z” column is 5.17%, which goes with a Z score of .13. Because 
you are below the mean, this becomes - .13.

 ❹ Check that your exact Z score is within the range of your rough estimate 
from Step ❷. As we estimated, - .13 is between 0 and -1.

 ❺ If you want to find a raw score, change it from the Z score. Using the usual 
formula, X = 1- .1321152 + 100 = 98.05. So, to be in the top 55% on IQ, a 
person needs an IQ score of 98.05 or higher.

  Example 3: What range of IQ scores includes the 95% of people in the middle 
range of IQ scores?

This kind of problem, of finding the middle percentage, may seem odd at first. 
However, it is actually a very common situation used in procedures you will learn 
in later chapters.

Think of this kind of problem in terms of finding the scores that go with the 
upper and lower ends of this percentage. Thus, in this example, you are trying to 
find the points where the bottom 2.5% ends and the top 2.5% begins (which, out of 
100%, leaves the middle 95%).

 ❶ Draw a picture of the normal curve, and shade in the approximate area for 
your percentage using the 50%–34%–14% percentages. Let’s start where 
the top 2.5% begins. This point has to be higher than 1 SD (16% of scores are 
higher than 1 SD). However, it cannot start above 2 SD because there are only 
2% of scores above 2 SD. But 2.5% is very close to 2%. Thus, the top 2.5% 
starts just to the left of the 2 SD point. Similarly, the point where the bottom 
2.5% comes in is just to the right of -2 SD. The result of all this is that we will 
shade in two tail areas on the curve: one starting just above -2 SD and the other 
starting just below +2 SD. This is shown in Figure 3-14.

 ❷ Make a rough estimate of the Z score where the shaded area stops. You can 
see from the picture that the Z score for where the shaded area stops above the 
mean is just below +2. Similarly, the Z score for where the shaded area stops 
below the mean is just above -2.

 ❸ Find the exact Z score using the normal curve table (subtracting 50% from 
your percentage if necessary before looking up the Z score). Being in the 
top 2.5% means that 2.5% of the IQ scores are in the upper tail. In the normal 
curve table, the closest percentage to 2.5% in the “% in Tail” column is exactly 
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2.50%, which goes with a Z score of +1.96. The normal curve is symmetrical. 
Thus, the Z score for the lower tail is -1.96.

 ❹ Check that your exact Z score is within the range of your rough estimate 
from Step ❷. As we estimated, +1.96 is between +1 and +2 and is very close 
to +2, and -1.96 is between -1 and -2 and very close to -2.

 ❺ If you want to find a raw score, change it from the Z score. For the high end, 
using the usual formula, X = 11.9621152 + 100 = 129.40. For the low end, 
X = 1-1.9621152 + 100 = 70.60. In sum, the middle 95% of IQ scores run 
from 70.60 to 129.40.

population entire group of people to 
which a researcher intends the results of 
a study to apply; larger group to which 
inferences are made on the basis of the 
particular set of people (sample) studied.

sample scores of the particular group 
of people studied; usually considered to 
be representative of the scores in some 
larger population.

How are you doing?

 1. Why is the normal curve (or at least a curve that is symmetrical and unimodal) 
so common in nature?

 2. Without using a normal curve table, about what percentage of scores on a normal 
curve are (a) above the mean, (b) between the mean and 1 SD above the mean, 
(c) between 1 and 2 SDs above the mean, (d) below the mean, (e) between the 
mean and 1 SD below the mean, and (f) between 1 and 2 SDs below the mean?

 3. Without using a normal curve table, about what percentage of scores on a 
normal curve are (a) between the mean and 2 SDs above the mean, (b) below 
1 SD above the mean, (c) above 2 SDs below the mean?

 4. Without using a normal curve table, about what Z score would a person have 
who is at the start of the top (a) 50%, (b) 16%, (c) 84%, (d) 2%?

 5. Using the normal curve table, what percentage of scores are (a) between the 
mean and a Z score of 2.14, (b) above 2.14, (c) below 2.14?

 6. Using the normal curve table, what Z score would you have if (a) 20% are 
above you and (b) 80% are below you?

Answers

 1. It is common because any particular score is the result of the random com-
bination of many effects, some of which make the score larger and some of 
which make the score smaller. Thus, on average these effects balance out 
near the middle, with relatively few at each extreme, because it is unlikely 
for most of the increasing and decreasing effects to come out in the same 
direction.

 2. (a) Above the mean: 50%; (b) between the mean and 1 SD above the mean: 
34%; (c) between 1 and 2 SDs above the mean: 14%; (d) below the mean: 
50%; (e) between the mean and 1 SD below the mean: 34%; (f) between 1 
and 2 SDs below the mean: 14%.

 3. (a) Between the mean and 2 SDs above the mean: 48%; (b) below 1 SD 
above the mean: 84%; (c) above 2 SDs below the mean: 98%.

 4. (a) 50%: 0; (b) 16%: 1; (c) 84%: -1; (d) 2%: 2.
 5. (a) Between the mean and a Z score of 2.14: 48.38%; (b) above 2.14: 1.62%; 

(c) below 2.14: 98.38%.
 6. (a) 20% above you: .84; (b) 80% below you: .84.

Sample and Population
We are going to introduce you to some important ideas by thinking of beans. Sup-
pose you are cooking a pot of beans and taste a spoonful to see if they are done. In 
this example, the pot of beans is a population, the entire set of things of interest. 
The spoonful is a sample, the part of the population about which you actually have 
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information. This is shown in Figure 3-15a. Figures 3-15b and 3-15c are other ways 
of showing the relation of a sample to a population.

In psychology research, we typically study samples of individuals to make 
inferences about some larger group (a population). A sample might consist of the 
scores of 50 Canadian women who participate in a particular experiment, whereas 
the population might be intended to be the scores of all Canadian women. In an 
opinion survey, 1,000 people might be selected from the voting-age population of 
a particular country and asked for whom they plan to vote. The opinions of these 
1,000 people are the sample. The opinions of the larger voting public in that coun-
try, to which the pollsters apply their results, is the population (see Figure 3-16).

Why Psychologists Study Samples Instead of Populations
If you want to know something about a population, your results would be most 
accurate if you could study the entire population rather than a subgroup from it. 
However, in most research situations this is not practical. More important, the whole 
point of research usually is to be able to make generalizations or predictions about 
events beyond your reach. We would not call it scientific research if we tested three 
particular cars to see which gets better gas mileage—unless you hoped to say some-
thing about the gas mileage of those models of cars in general. In other words, a 
researcher might do an experiment on how people store words in short-term mem-
ory using 20 students as the participants in the experiment. But the purpose of the 
experiment is not to find out how these particular 20 students respond to the experi-
mental versus the control condition. Rather, the purpose is to learn something about 
human memory under these conditions in general.

The strategy in almost all psychology research is to study a sample of indi-
viduals who are believed to be representative of the general population (or of some 
particular population of interest). More realistically, researchers try to study people 
who do not differ from the general population in any systematic way that should 
matter for that topic of research.

The sample is what is studied, and the population is an unknown about which 
researchers draw conclusions based on the sample. Most of what you learn in the 
rest of this book is about the important work of drawing conclusions about popula-
tions based on information from samples.

(a) (b) (c)

Figure 3-15 Populations and samples: (a) The entire pot of beans is the population, 
and the spoonful is the sample. (b) The entire larger circle is the population, and the cir-
cle within it is the sample. (c) The histogram is of the population, and the particular shaded 
scores make up the sample.
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Methods of Sampling
Usually, the ideal method of picking out a sample to study is called random selec-
tion. The researcher starts with a complete list of the population and randomly 
selects some of them to study. An example of random selection is to put each name 
on a table tennis ball, put all the balls into a big hopper, shake it up, and have a 
blindfolded person select as many as are needed. (In practice, most researchers use a 
computer-generated list of random numbers. Just how computers or persons can cre-
ate a list of truly random numbers is an interesting question in its own right that we 
examine in Chapter 14, Box 14-1.)

It is important not to confuse truly random selection with what might be called 
haphazard selection; for example, just taking whoever is available or happens to 
be first on a list. When using haphazard selection, it is surprisingly easy to pick  
accidentally a group of people that is very different from the population as a whole. 
Consider a survey of attitudes about your statistics instructor. Suppose you give 
your questionnaire only to other students sitting near you in class. Such a survey 

random selection method for select-
ing a sample that uses truly random 
procedures (usually meaning that each 
person in the population has an equal 
chance of being selected); one procedure 
is for the researcher to begin with a com-
plete list of all the people in the popula-
tion and select a group of them to study 
using a table of random numbers.

All
Canadian
Women

50
Canadian
Women

All
Voters

1,000
Voters

(a)

(b)

Figure 3-16 Additional examples of populations and samples: (a) The population is 
the scores of all Canadian women, and the sample is the scores of the 50 Canadian women 
studied. (b) The population is the voting preferences of the entire voting-age population, and 
the sample is the voting preferences of the 1,000 voting-age people who were surveyed.

T I P  F O R  S U C C E S S
For more detailed information about 
methods of sampling, see Box 3-2 
on page 87 as well as Web Chapter 
W1 (Overview of the Logic and Lan-
guage of Psychology Research, avail-
able at www.pearsonhighered.com/
aron and also at www.mystatlab.
com for MyStatLab users).

www.pearsonhighered.com/aron
www.pearsonhighered.com/aron
www.mystatlab.com
www.mystatlab.com
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would be affected by all the things that influence where students choose to sit, some 
of which have to do with just what your survey is about—how much students like 
the instructor or the class. Thus, asking students who sit near you would likely result 
in opinions more like your own than a truly random sample would.

Unfortunately, it is often impractical or impossible to study a truly random 
sample. Much of the time, in fact, studies are conducted with whoever is willing or 
available to be a research participant. At best, as noted, a researcher tries to study 

It is time to make you a more informed reader of polls in 
the media. Usually the results of properly done public polls 
are accompanied, somewhere in fine print, by a statement 
such as, “From a telephone survey of 1,000 American 
adults taken on June 4 and 5. Sampling error {3%.” What 
does a statement like this mean?

The Gallup poll is as good an example as any (Gallup, 
1972; see also www.gallup.com), and there is no better 
place to begin than in 1948, when all three of the major 
polling organizations—Gallup, Crossley (for Hearst 
papers), and Roper (for Fortune)—wrongly predicted 
Thomas Dewey’s victory over Harry Truman for the 
U.S. presidency. Yet Gallup’s prediction was based on 
50,000 interviews and Roper’s on 15,000. By contrast, 
to predict Barack Obama’s 2008 U.S. presidential vic-
tory, Gallup used only 3,050. Since 1952, the pollsters 
have never used more than 8,144—but with very small 
error and no outright mistakes. What has changed?

The method used before 1948, and never repeated since, 
was called “quota sampling.” Interviewers were assigned a 
fixed number of persons to interview, with strict quotas to 
fill in all the categories that seemed important, such as resi-
dence, sex, age, race, and economic status. Within these 
specifics, however, they were free to interview whomever 
they liked. Republicans generally tended to be easier to 
interview. They were more likely to have telephones and 
permanent addresses and to live in better houses and better 
neighborhoods. In 1948, the election was very close, and 
the Republican bias produced the embarrassing mistake 
that changed survey methods forever.

Since 1948, all survey organizations have used what is 
called a “probability method.” Simple random sampling 
is the purest case of the probability method, but simple 
random sampling for a survey about a U.S. presidential 
election would require drawing names from a list of all 
the eligible voters in the nation—a lot of people. Each 
person selected would have to be found, in diversely scat-
tered locales. So instead, “multistage cluster sampling” 
is used. The United States is divided into seven size-of- 
community groupings, from large cities to rural open 

country; these groupings are divided into seven geographic 
regions (New England, Middle Atlantic, and so on), after 
which smaller equal-sized groups are zoned, and then city 
blocks are drawn from the zones, with the probability of 
selection being proportional to the size of the population or 
number of dwelling units. Finally, an interviewer is given a 
randomly selected starting point on the map and is required 
to follow a given direction, taking households in sequence.

Actually, telephoning is the favored method for poll-
ing today. Phone surveys cost about one-third of door-
to-door polls. Since most people now own phones, this 
method is less biased than in Truman’s time. Phoning 
also allows computers to randomly dial phone num-
bers and, unlike telephone directories, this method calls 
unlisted numbers. However, survey organizations in the 
United States typically do not call cell phone numbers. 
Thus, U.S. households that use a cell phone for all calls 
and do not have a home phone are not usually included in 
telephone opinion polls. Most survey organizations con-
sider the current cell-phone-only rate to be low enough 
not to cause large biases in poll results (especially since 
the demographic characteristics of individuals without a 
home phone suggest that they are less likely to vote than 
individuals who live in households with a home phone). 
However, there is increasing concern in the research 
community about the issue and how to adjust for it (e.g., 
Peytchev et al., 2011). Survey organizations are also 
starting to explore the use of other polling methods, such 
as email and the Internet.

Whether by telephone or face to face, there will be about 
35% nonrespondents after three attempts. This creates yet 
another bias, dealt with through questions about how much 
time a person spends at home, so that a slight extra weight 
can be given to the responses of those reached but usually 
at home less, to make up for those missed entirely.

Now you know quite a bit about opinion polls, but we 
have left two important questions unanswered: Why are 
only about 1,000 included in a poll meant to describe all 
U.S. adults, and what does the term sampling error mean? 
For these answers, you must wait for Chapter 5 (Box 5-1).

BOX 3-2 Surveys, Polls, and 1948’s Costly “Free Sample”

www.gallup.com
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a sample that is not systematically unrepresentative of the population in any known 
way. For example, suppose a study is about a process that is likely to differ for peo-
ple of different age groups. In this situation, the researcher may attempt to include 
people of all age groups in the study. Alternatively, the researcher would be careful 
to draw conclusions only about the age group studied.

Statistical Terminology for Samples and Populations
The mean, variance, and standard deviation of a population are called population 
parameters. A population parameter usually is unknown and can be estimated 
only from what you know about a sample taken from that population. You do not 
taste all the beans, just the spoonful. “The beans are done” is an inference about the 
whole pot.

Population parameters are usually shown as Greek letters (e.g., �). (This is a 
statistical convention with origins tracing back more than 2,000 years to the early 
Greek mathematicians.) The symbol for the mean of a population is �, the Greek 
letter mu. The symbol for the variance of a population is �2, and the symbol for 
its standard deviation is �, the lowercase Greek letter sigma. You won’t see these 
symbols often, except while learning statistics. This is because, again, researchers 
seldom know the population parameters.

The mean, variance, and standard deviation you figure for the scores in a sam-
ple are called sample statistics. A sample statistic is figured from known informa-
tion. Sample statistics are what we have been figuring all along and are expressed 
with the Roman letters you learned in Chapter 2: M, SD2, and SD. The population 
parameter and sample statistic symbols for the mean, variance, and standard devia-
tion are summarized in Table 3-2.

The use of different types of symbols for population parameters (Greek letters) 
and sample statistics (Roman letters) can take some getting used to; so don’t worry 
if it seems tricky at first. It’s important to know that the statistical concepts you are 
learning—such as the mean, variance, and standard deviation—are the same for both 
a population and a sample. So, for example, you have learned that the standard devi-
ation provides a measure of the variability of the scores in a distribution—whether 
we are talking about a sample or a population. (You will learn in later chapters that 
the variance and standard deviation are sometimes figured in a slightly different way 
for a population than for a sample, but the concepts do not change). We use differ-
ent symbols for population parameters and sample statistics to make it clear whether 
we are referring to a population or a sample. This is important, because some of the 
formulas you will encounter in later chapters use both sample statistics and popula-
tion parameters.

population parameter actual value of 
the mean, standard deviation, and so on, 
for the population; usually population 
parameters are not known, though often 
they are estimated based on information 
in samples.

� population mean.

�2 population variance.

� population standard deviation.

sample statistics descriptive statistics, 
such as the mean or standard deviation, 
figured from the scores in a group of 
people studied.

Table 3-2 Population Parameters and Sample Statistics

Population Parameter  
(Usually Unknown)

Sample Statistic  
(Figured from Known Data)

Basis: Scores of entire population Scores of sample only

Symbols:

 Mean � M

 Standard deviation � SD

 Variance �2 SD 2
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Probability
The purpose of most psychological research is to examine the truth of a theory or the 
effectiveness of a procedure. But scientific research of any kind can only make that 
truth or effectiveness seem more or less likely; it cannot give us the luxury of know-
ing for certain. Probability is very important in science. In particular, probability 
is very important in inferential statistics, the methods psychologists use to go from 
results of research studies to conclusions about theories or applied procedures.

Probability has been studied for centuries by mathematicians and philosophers. 
Yet even today the topic is full of controversy. Fortunately, however, you need to 
know only a few key ideas to understand and carry out the inferential statistical pro-
cedures you learn in this book. These few key points are not very difficult; indeed, 
some students find them to be quite intuitive.

Interpretations of Probability
In statistics, we usually define probability as the expected relative frequency of a 
particular outcome. An outcome is the result of an experiment (or just about any 
situation in which the result is not known in advance, such as a coin coming up 
heads or it raining tomorrow). Frequency is how many times something happens. 
The relative frequency is the number of times something happens relative to the 

probability expected relative fre-
quency of an outcome; the proportion of 
successful outcomes to all outcomes.

outcome term used in discussing 
probability for the result of an experi-
ment (or almost any event, such as a coin 
coming up heads or it raining tomorrow).

How are you doing?

 1. Explain the difference between the population and a sample for a research 
study.

 2. Why do psychologists usually study samples and not populations?
 3. Explain the difference between random sampling and haphazard sampling.
 4. Explain the difference between a population parameter and a sample statistic.
 5. Give the symbols for the population parameters for (a) the mean and (b) the 

standard deviation.
 6. Why are different symbols (Greek versus Roman letters) used for population 

parameters and sample statistics?

Answers

 1. The population is the entire group to which results of a study are intended 
to apply. The sample is the particular, smaller group of individuals actually 
studied.

 2. Psychologists usually study samples and not populations because it is not 
practical in most cases to study the entire population.

 3. In random sampling, the sample is chosen from among the population using 
a completely random method, so that each individual has an equal chance of 
being included in the sample. In haphazard sampling, the researcher selects 
individuals who are easily available or who are convenient to study.

 4. A population parameter is about the population (such as the mean of all the 
scores in the population); a sample statistic is about a particular sample (such 
as the mean of the scores of the people in the sample).

 5. (a) Mean: �; (b) standard deviation: �.
 6. Using different symbols for population parameters and sample statistics en-

sures that there is no confusion as to whether a symbol refers to a population 
or a sample.
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number of times it could have happened; that is, relative frequency is the proportion 
of times something happens. (A coin might come up heads 8 times out of 12 flips, 
for a relative frequency of 8>12, or 2>3.) Expected relative frequency is what you 
expect to get in the long run if you repeat the experiment many times. (In the case of 
a coin, in the long run you would expect to get 1/2 heads). This is called the long-
run relative-frequency interpretation of probability. You may find it helpful to 
think of probability in terms of the likelihood of a particular outcome occurring. If 
the probability is very low, then the outcome is unlikely to occur, but if the probabil-
ity is higher, then it is more likely that the outcome will happen.

We also use probability to express how certain we are that a particular 
thing will happen. This is called the subjective interpretation of probability. 
Suppose that you say there is a 95% chance that your favorite restaurant will be 
open tonight. You could be using a kind of relative frequency interpretation. This 
would imply that if you were to check whether this restaurant was open many 
times on days like today, you would find it open on 95% of those days. However, 
what you mean is probably more subjective: on a scale of 0% to 100%, you would 
rate your confidence that the restaurant is open at 95%. To put it another way, you 
would feel that a fair bet would have odds based on a 95% chance of the restau-
rant’s being open.

The interpretation, however, does not affect how probability is figured. We 
mention these interpretations because we want to give you a deeper insight into 
the meaning of the term probability, which is such a prominent concept throughout 
statistics.

Figuring Probabilities
Probabilities are usually figured as the proportion of successful possible outcomes—
the number of possible successful outcomes divided by the number of all possible 
outcomes. That is,

Probability =
Possible successful outcomes

All possible outcomes

Consider the probability of getting heads when flipping a coin. There is one 
possible successful outcome (getting heads) out of two possible outcomes (getting 
heads or getting tails). This makes a probability of 1>2, or .5. In a throw of a single 
die, the probability of a 2 (or any other particular side of the six-sided die) is 1>6, 
or .17. This is because there can be only one successful outcome out of six possible 
outcomes. The probability of throwing a die and getting a number 3 or lower is 3/6, 
or .5. There are three possible successful outcomes (a 1, a 2, or a 3) out of six pos-
sible outcomes.

Now consider a slightly more complicated example. Suppose a class has 200 
people in it, and 30 are seniors. If you were to pick someone from the class at ran-
dom, the probability of picking a senior would be 30/200, or .15. This is because 
there are 30 possible successful outcomes (getting a senior) out of 200 possible 
outcomes.

Steps for Finding Probabilities
There are three steps for finding probabilities.

 ❶ Determine the number of possible successful outcomes.
 ❷ Determine the number of all possible outcomes.

expected relative frequency number 
of successful outcomes divided by the 
number of total outcomes you would ex-
pect to get if you repeated an experiment 
a large number of times.

long-run relative-frequency interpre-
tation of probability understanding 
of probability as the proportion of a par-
ticular outcome that you would get if the 
experiment were repeated many times.

subjective interpretation of 
probability way of understanding 
probability as the degree of one’s cer-
tainty that a particular outcome will 
occur.
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 ❸ Divide the number of possible successful outcomes (Step ❶) by the number 
of all possible outcomes (Step ❷).

Let’s apply these three steps to the probability of getting a number 3 or lower 
on a throw of a die.

 ❶ Determine the number of possible successful outcomes. There are three out-
comes of 3 or lower: 1, 2, or 3.

 ❷ Determine the number of all possible outcomes. There are six possible out-
comes in the throw of a die: 1, 2, 3, 4, 5, or 6.

 ❸ Divide the number of possible successful outcomes (Step ❶) by the number 
of all possible outcomes (Step ❷). 3>6 = .5.

Range of Probabilities
A probability is a proportion, the number of possible successful outcomes to the total 
number of possible outcomes. A proportion cannot be less than 0 or greater than 1. 
In terms of percentages, proportions range from 0% to 100%. Something that has no 
chance of happening has a probability of 0, and something that is certain to happen 
has a probability of 1. Notice that when the probability of an event is 0, the event is 
completely impossible; it cannot happen. But when the probability of an event is low, 
say 5% or even 1%, the event is improbable or unlikely, but not impossible.

Probabilities Expressed as Symbols
Probability is usually symbolized by the letter p. The actual probability number is 
usually given as a decimal, though sometimes fractions or percentages are used. A 
50-50 chance is usually written as p = .5, but it could also be written as p = 1>2 

In England, statistics were used to keep track of death 
rates and to prove the existence of God (see Chapter 1, 
Box 1-1). The French and Italians, however, developed 
statistics at the gaming table. In particular, there was the 
“problem of points”—the division of the stakes in a game 
after it has been interrupted. If a certain number of plays 
were planned, how much of the stakes should each player 
walk away with, given the percentage of plays completed?

The problem was discussed at least as early as 1494 
by Luca Pacioli, a friend of Leonardo da Vinci. But it 
was unsolved until 1654, when it was presented to Blaise 
Pascal by the Chevalier de Méré. Pascal, a French child 
prodigy, attended meetings of the most famous adult 
French mathematicians and at 15 proved an important 
theorem in geometry. In correspondence with Pierre de 
Fermat, another famous French mathematician, Pascal 
solved the problem of points and in so doing began the 
field of probability theory and the work that would lead to 

the normal curve. (For more information on the problem 
of points, including its solution, see http://mathforum.
org/isaac/problems/prob1.html).

Not long after solving this problem, Pascal became 
as religiously devout as the English statisticians. He was 
in a runaway horse-drawn coach on a bridge and was 
saved from drowning by the traces (the straps between 
the horses and the carriage) breaking at the last possible 
moment. He took this as a warning to abandon his math-
ematical work in favor of religious writings and later 
formulated “Pascal’s wager”: that the value of a game is 
the value of the prize times the probability of winning it; 
therefore, even if the probability is low that God exists, 
we should gamble on the affirmative because the value 
of the prize is infinite, whereas the value of not believing 
is only finite worldly pleasure.

Source: Tankard (1984).

BOX 3-3  Pascal Begins Probability Theory at the Gambling 
Table, Then Learns to Bet on God

T I P  F O R  S U C C E S S
To change a proportion into a 
percentage, multiply by 100. So, 
a proportion of .13 is equivalent 
to .13 * 100 = 13%. To change 
a percentage into a proportion, 
divide by 100. So, 4% is a propor-
tion of 4>100 = .04.

http://mathforum.org/isaac/problems/prob1.html
http://mathforum.org/isaac/problems/prob1.html
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or p = 50%. It is also common to see probability written as being less than some 
number, using the “less than” sign. For example, p 6 .05 means “the probability is 
less than .05.”

Probability Rules
As already noted, our discussion only scratches the surface of probability. One of 
the topics we have not considered is the rules for figuring probabilities for multiple 
outcomes: for example, what is the chance of flipping a coin twice and both times 
getting heads? These are called probability rules, and they are important in the math-
ematical foundation of many aspects of statistics. However, you don’t need to know 
these probability rules to understand what we cover in this book. Also, the rules 
are rarely used directly in analyzing results of psychology research. Nevertheless, 
you occasionally see such procedures referred to in research articles. Thus, the most 
widely mentioned probability rules are described in the Advanced Topics section 
toward the end of this chapter.

Probability, Z Scores, and the Normal Distribution
So far, we mainly have discussed probabilities of specific events that might or might 
not happen. We also can talk about a range of events that might or might not happen. 
The throw of a die coming out 3 or lower is an example (it includes the range 1, 2, 
and 3). Another example is the probability of selecting someone on a city street who 
is between the ages of 30 and 40.

If you think of probability in terms of the proportion of scores, probability fits 
in well with frequency distributions (see Chapter 1). In the frequency distribution 
shown in Figure 3-17, 3 of the total of 50 people scored 9 or 10. If you were select-
ing people from this group of 50 at random, there would be 3 chances (possible suc-
cessful outcomes) out of 50 (all possible outcomes) of selecting one that was 9 or 
10. Thus, p = 3>50 = .06.

You can also think of the normal distribution as a probability distribution. With a 
normal curve, the percentage of scores between any two Z scores is known. The per-
centage of scores between any two Z scores is the same as the probability of selecting 
a score between those two Z scores. As you saw earlier in this chapter, approximately 
34% of scores in a normal curve are between the mean and one standard deviation 
from the mean. You should therefore not be surprised to learn that the probability of 
a score being between the mean and a Z score of +1 is about .34 (that is, p = .34).

9
8
7
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5
4
3
2
1

1 2 3 4 5 6 7 8 9 100

Figure 3-17 Frequency distribution (shown as a histogram) of 50 people, in which 
p = .06  13>502 of randomly selecting a person with a score of 9 or 10.
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In a previous IQ example in the normal curve section of this chapter, we fig-
ured that 95% of the scores in a normal curve are between a Z score of +1.96 and 
a Z score of -1.96 (see Figure 3-14). Thus, if you were to select a score at random 
from a distribution that follows a normal curve, the probability of selecting a score 
between Z scores of +1.96 and -1.96 is .95 (that is, a 95% chance). This is a very 
high probability. Also, the probability of selecting a score from such a distribution 
that is either greater than a Z score of +1.96 or less than a Z score of -1.96 is .05 
(that is, a 5% chance). This is a very low probability. It helps to think about this 
visually. If you look back to Figure 3-14 on page 83, the .05 probability of select-
ing a score that is either greater than a Z score of +1.96 or less than a Z score 
of -1.96 is represented by the tail areas in the figure. The probability of a score 
being in the tail of a normal curve is a topic you will learn more about in the next 
chapter.

Probability, Samples, and Populations
Probability is also relevant to samples and populations. You will learn more about 
this topic in Chapters 4 and 5, but we will use an example to give you a sense of 
the role of probability in samples and populations. Imagine you are told that a 
sample of one person has a score of 4 on a certain measure. However, you do not 
know whether this person is from a population of women or of men. You are told 
that a population of women has scores on this measure that are normally distrib-
uted with a mean of 10 and a standard deviation of 3. How likely do you think it 
is that your sample of 1 person comes from this population of women? From your 
knowledge of the normal curve (see Figure 3-7), you know there are very few 
scores as low as 4 in a normal distribution that has a mean of 10 and a standard 
deviation of 3. So there is a very low likelihood that this person comes from the 
population of women. Now, what if the sample person had a score of 9? In this 
case, there is a much greater likelihood that this person comes from the popula-
tion of women because there are many scores of 9 in that population. This kind of 
reasoning provides an introduction to the process of hypothesis testing that is the 
focus of the remainder of the book.

How are you doing?

 1. The probability of an event is defined as the expected relative frequency of 
a particular outcome. Explain what is meant by (a) relative frequency and  
(b) outcome.

 2. List and explain two interpretations of probability.
 3. Suppose you have 400 coins in a jar and 40 of them are more than 9 years 

old. You then mix up the coins and pull one out hoping to get one that is more 
than 9 years old. (a) What is the number of possible successful outcomes?  
(b) What is the number of all possible outcomes? (c) What is the probability  
of getting one that is more than 9 years old?

 4. Suppose people’s scores on a particular personality test are normally distrib-
uted with a mean of 50 and a standard deviation of 10. If you were to pick a 
person completely at random, what is the probability you would pick some-
one with a score on this test higher than 60?

 5. What is meant by p 6 .01?
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Controversies: Is the Normal Curve Really So 
Normal? And Using Nonrandom Samples
Basic though they are, there is considerable controversy about the topics we have 
introduced in this chapter. In this section we consider a major controversy about the 
normal curve and nonrandom samples.

Is the Normal Curve Really So Normal?
We’ve said that real distributions in the world often closely approximate the nor-
mal curve. Just how often real distributions closely follow a normal curve turns out 
to be very important, not just because normal curves make Z scores more useful. 
As you will learn in later chapters, the main statistical methods psychologists use 
assume that the samples studied come from populations that follow a normal curve. 
Researchers almost never know the true shape of the population distribution; so if 
they want to use the usual methods, they have to just assume it is normal, making this 
assumption because most populations are normal. Yet there is a long-standing debate 
in psychology about just how often populations really are normally distributed. The 
predominant view has been that, given how psychology measures are developed, a 
bell-shaped distribution “is almost guaranteed” (Walberg et al., 1984, p. 107). Or, 
as Hopkins and Glass (1978) put it, measurements in all disciplines are such good 
approximations to the curve that one might think, “God loves the normal curve!”

On the other hand, there has been a persistent line of criticism about whether 
nature really packages itself so neatly. In a classic study, Micceri (1989) showed 
that many measures commonly used in psychology are not normally distributed “in 
nature.” His study included achievement and ability tests (such as the SAT and the 
GRE) and personality tests (such as the Minnesota Multiphasic Personality Inventory, 
MMPI). Micceri examined the distributions of scores of 440 psychological and edu-
cational measures that had been used on very large samples. All of the measures 
he examined had been studied in samples of over 190 individuals, and the major-
ity had samples of over 1,000 (14.3% even had samples of 5,000 to 10,293). Yet 

Answers

 1. (a) Relative frequency is the number of times something happens in relation 
to the number of times it could have happened. (b) An outcome is the result 
of an experiment—what happens in a situation where what will happen is not 
known in advance.

 2. (a) The long-run relative frequency interpretation of probability is that prob-
ability is the proportion of times we expect something to happen (relative to 
how often it could happen) if the situation were repeated a very large number 
of times. (b) The subjective interpretation of probability is that probability is 
our sense of confidence that something will happen rated on a 0% to 100% 
scale.

 3. (a) The number of possible successful outcomes is 40. (b) The number of all 
possible outcomes is 400. (c) The probability of getting one that is more than 
9 years old is 40>400 = .10.

 4. The probability you would pick someone with a score on this test higher than 
60 is p = .16 (since 16% of the scores are more than one standard deviation 
above the mean).

 5. The probability is less than .01.
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large  samples were of no help. No measure he studied had a distribution that passed 
all checks for normality (mostly, Micceri looked for skewness, kurtosis, and “lumpi-
ness”). Few measures had distributions that even came reasonably close to looking 
like the normal curve. Nor were these variations predictable: “The distributions stud-
ied here exhibited almost every conceivable type of contamination” (p. 162), although 
some were more common with certain types of tests. Micceri discusses many obvious 
reasons for this nonnormality, such as ceiling or floor effects (see Chapter 1).

How much has it mattered that the distributions for these measures were so far 
from normal? According to Micceri, the answer is just not known. And until more 
is known, the general opinion among psychologists will no doubt remain support-
ive of traditional statistical methods, with the underlying mathematics based on the 
assumption of normal population distributions.

What is the reason for this nonchalance in the face of findings such as Micceri’s? 
It turns out that under most conditions in which the standard methods are used, they 
give results that are reasonably accurate even when the formal requirement of a 
normal population distribution is not met (e.g., Sawilowsky & Blair, 1992). In this 
book, we generally adopt this majority position favoring the use of the standard 
methods in all but the most extreme cases. But you should be aware that a vocal 
minority of psychologists disagrees. Some of the alternative statistical techniques 
they favor (ones that do not rely on assuming a normal distribution in the popula-
tion) are presented in Chapter 14. These techniques include the use of nonparametric 
statistics that do not have assumptions about the shape of the population distribution.

Francis Galton (1889), one of the major pioneers of statistical methods (see 
Chapter 11, Box 11-1), said of the normal curve, “I know of scarcely anything so apt to 
impress the imagination . . . . [It] would have been personified by the Greeks and deified, 
if they had known of it. It reigns with serenity and in complete self-effacement amidst 
the wild confusion” (p. 66). Ironically, it may be true that in psychology, at least, it truly 
reigns in pure and austere isolation, with no even close-to-perfect real-life imitators.

Using Nonrandom Samples
Most of the procedures you learn in the rest of this book are based on mathematics 
that assume the sample studied is a random sample of the population. As we pointed 
out, however, in most psychology research the samples are nonrandom, including 
whatever individuals are available to participate in the experiment. Most studies are 
done with college students, volunteers, convenient laboratory animals, and the like.

Some psychologists are concerned about this problem and have suggested that 
researchers need to use different statistical approaches that make generalizations 
only to the kinds of people that are actually being used in the study.3 For example, 
these psychologists would argue that, if your sample has a particular nonnormal dis-
tribution, you should assume that you can generalize only to a population with the 
same particular nonnormal distribution. We will have more to say about their sug-
gested solutions in Chapter 14.

Sociologists, as compared to psychologists, are much more concerned about the 
representativeness of the groups they study. Studies reported in sociology journals 
(or in sociologically oriented social psychology journals) are much more likely to 
use formal methods of random selection and large samples, or at least to address the 
issue in their articles.

Why are psychologists more comfortable with using nonrandom samples? 
The main reason is that psychologists are mainly interested in the relationships 
among variables. If in one population the effect of experimentally changing X leads 
to a change in Y, this relationship should probably hold in other populations. This 
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 relationship should hold even if the actual levels of Y differ from population to popu-
lation. Suppose that a researcher conducts an experiment testing the relation of num-
ber of exposures to a list of words to number of words remembered. Suppose further 
that this study is done with undergraduates taking introductory psychology and that 
the result is that the greater the number of exposures is, the greater is the number of 
words remembered. The actual number of words remembered from the list might 
well be different for people other than introductory psychology students. For exam-
ple, chess masters (who probably have highly developed memories) may recall more 
words; people who have just been upset may recall fewer words. However, even in 
these groups, we would expect that the more times someone is exposed to the list, 
the more words will be remembered. That is, the relation of number of exposures to 
number of words recalled will probably be about the same in each population.

In sociology, political science, certain areas of medicine, and some other fields, 
the representativeness of samples is much more important. This is because researchers 
in these fields are more concerned with the actual mean and variance of a variable in a 
particular society or population group. For example, a sociologist might be interested in 
the average attitude towards older people in the population of a particular country. For 
this purpose, how sampling is done is extremely important. Indeed, even in psychol-
ogy, random samples are sometimes used. For example, in a random telephone sur-
vey of U.S. households, O’Leary et al. (2012) found that 40.3% of individuals married 
more than 10 years reported that they were “very intensely in love” with their spouse.

Z Scores, Normal Curves, Samples and Populations, 
and Probabilities in Research Articles
You need to understand the topics we covered in this chapter to learn what comes 
next. However, the topics of this chapter are rarely mentioned directly in research arti-
cles (except in articles about methods or statistics). Although Z scores are extremely 
important as steps in advanced statistical procedures, they are rarely reported directly 
in research articles. Sometimes you will see the normal curve mentioned, usually 
when a researcher is describing the pattern of scores on a particular variable. (We 
say more about this and give some examples from published articles in Chapter 14, 
where we consider situations in which the scores do not follow a normal curve.)

Research articles will sometimes briefly mention the method of selecting the sam-
ple from the population. For example, Morgenstern and colleagues (2009) conducted a 
survey study among children and adolescents in Germany and the United States to test 
whether individuals from lower socioeconomic status backgrounds may be more at risk 
for obesity because they engage in more sedentary behaviors, such as watching television. 
With regard to the German sample, they described the method of their study as follows:

Forty-two public schools from the state of Schleswig-Holstein were randomly selected 
and invited to take part in an investigation of media use and child/adolescent behavior; 
27 schools (64%) agreed to participate. All students 1N = 66072 in grades 6 to 8 
were recruited for the study. Eight hundred thirty-six students (12.7%) were excluded 
because of missing parental consent forms, 145 (2.2%) were absent on the day of data 
collection, and 816 (12.4%) were excluded because of missing or inconsistent/implau-
sible data . . . , which provided a final sample of 4810 children and adolescents. (p. 732)

With regard to the U.S. sample, they described the recruitment method as follows:

Using random-digit-dial methods, 6522 children and adolescents aged 10 to 14 years 
were recruited . . . . The baseline sample was representative of the US population with 
respect to region of the country, ethnicity and family income. (p. 732)
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Whenever possible, researchers report the proportion of individuals approached for 
the study who actually participated in the study. This is called the response rate. 
For this study, Morgenstern and colleagues (2009) noted the response rate for the 
German schools (64%), as well as the percentage of students who provided usable 
survey data 14810>6607 = 73%2.

Researchers sometimes also check whether their sample is similar to the popu-
lation as a whole, based on any information they may have about the overall popu-
lation. For example, Morgenstern and colleagues (2009) noted that the U.S. sample 
was consistent with the population in terms of geographic region, ethnicity, and 
family income. However, 10.8% of the U.S. sample was found to be overweight, 
which “. . . compares with a nationwide prevalence of overweight for the US popula-
tion from the National Health and Nutrition Examination Survey of 17.6% in 12- to 
19-year-old children (2003-2006), so the sample was biased toward leaner children 
(or there were some who underreported their weight)” (p. 733).

However, even survey studies typically are not able to use such rigorous methods 
and have to rely on more haphazard methods of getting their samples. For example, in 
a study of relationship distress and partner abuse (Heyman et al., 2001), the research-
ers describe their method of gathering research participants to interview as follows: 
“Seventy-four couples of varying levels of relationship adjustment were recruited 
through community newspaper advertisements” (p. 336). In a study of this kind, one 
cannot very easily recruit a random sample of abusers since there is no list of all abusers 
to recruit from. This could be done with a very large national random sample of cou-
ples, who would then include a random sample of abusers. Indeed, the authors of this 
study are very aware of the issues. At the end of the article, when discussing “cautions 
necessary when interpreting our results,” they note that before their conclusions can be 
taken as definitive “our study must be replicated with a representative sample” (p. 341).

Finally, probability is rarely discussed directly in research articles, except in 
relation to statistical significance, a topic we discuss in the next chapter. In almost 
any article you look at, the results section will be strewn with descriptions of vari-
ous methods having to do with statistical significance, followed by something like 
“p 6 .05” or “p 6 .01.” The p refers to probability, but the probability of what? 
This is the main topic of our discussion of statistical significance in the next chapter.

Advanced Topic: Probability Rules 
and Conditional Probabilities
This advanced topic section provides additional information on probability, focus-
ing specifically on probability rules and conditional probabilities. Probability rules 
are procedures for figuring probabilities in more complex situations than we have 
considered so far. This section considers the two most widely used such rules and 
also explains the concept of conditional probabilities that is used in advanced dis-
cussions of probability.

Addition Rule
The addition rule (also called the or rule) is used when there are two or more 
mutually exclusive outcomes. “Mutually exclusive” means that, if one outcome hap-
pens, the others can’t happen. For example, heads or tails on a single coin flip are mutu-
ally exclusive because the result has to be one or the other, but can’t be both. With 
mutually exclusive outcomes, the total probability of getting either outcome is the sum 
of the individual probabilities. Thus, on a single coin flip, the total chance of getting 
either heads (which is .5) or tails (also .5) is 1.0 (.5 plus .5). Similarly, on a single throw 
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of a die, the chance of getting either a 3 11>62 or a 5 11>62 is 1>3 11>6 + 1>62. If you 
are picking a student at random from your university in which 30% are seniors and 25% 
are juniors, the chance of picking someone who is either a senior or a junior is 55%.

Even though we have not used the term addition rule, we have already used this 
rule in many of the examples we considered in this chapter. For example, we used this 
rule when we figured that the chance of getting a 3 or lower on the throw of a die is .5.

Multiplication Rule
The multiplication rule (also called the and rule), however, is completely new. You 
use the multiplication rule to figure the probability of getting both of two (or more) 
independent outcomes. Independent outcomes are those for which getting one has 
no effect on getting the other. For example, getting a head or tail on one flip of a 
coin is an independent outcome from getting a head or tail on a second flip of a 
coin. The probability of getting both of two independent outcomes is the product of 
(the result of multiplying) the individual probabilities. For example, on a single coin 
flip, the chance of getting a head is .5. On a second coin flip, the chance of getting a 
head (regardless of what you got on the first flip) is also .5. Thus, the probability of 
getting heads on both coin flips is .25 (.5 multiplied by .5). On two throws of a die, 
the chance of getting a 5 on both throws is 1>36—the probability of getting a 5 on 
the first throw 11>62multiplied by the probability of getting a 5 on the second throw 11>62. Similarly, on a multiple choice exam with four possible answers to each item, 
the chance of getting both of two questions correct just by guessing is 1>16—that is, 
the chance of getting one question correct just by guessing 11>42multiplied by the 
chance of getting the other correct just by guessing 11>42. To take one more exam-
ple, suppose you have a 20% chance of getting accepted into one graduate school 
and a 30% chance of getting accepted into another graduate school. Your chance of 
getting accepted at both graduate schools is just 6% (that is, 20% * 30% = 6%).

Conditional Probabilities
There are several other probability rules, some of which are combinations of the 
addition and multiplication rules. Most of these other rules have to do with what  
are called conditional probabilities. A conditional probability is the probability of 
one outcome, assuming some other outcome will happen. That is, the probability 
of the one outcome depends on—is conditional on—the probability of the other 
outcome. Thus, suppose that college A has 50% women and college B has 60% 
women. If you select a person at random, what is the chance of getting a woman? If 
you know the person is from college A, the probability is 50%. That is, the probability 
of getting a woman, conditional upon her coming from college A, is 50%.

Learning Aids

Summary

 1. A Z score is the number of standard deviations that a raw score is above or 
below the mean.

 2. The scores on many variables in psychology research approximately follow 
a bell-shaped, symmetrical, unimodal distribution called the normal curve. 
Because the shape of this curve follows an exact mathematical formula, there 
is a specific percentage of scores between any two points on a normal curve.
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 3. A useful working rule for normal curves is that 50% of the scores are above the 
mean, 34% are between the mean and 1 standard deviation above the mean, and 
14% are between 1 and 2 standard deviations above the mean.

 4. A normal curve table gives the percentage of scores between the mean and 
any particular Z score, as well as the percentage of scores in the tail for any 
Z score. Using this table, and knowing that the curve is symmetrical and that 
50% of the scores are above the mean, you can figure the percentage of scores 
above or below any particular Z score. You can also use the table to figure the 
Z score for the point where a particular percentage of scores begins or ends.

 5. A sample is an individual or group that is studied—usually as representative of 
some larger group or population that cannot be studied in its entirety. Ideally, 
the sample is selected from a population using a strictly random procedure. The 
mean (M), variance 1SD22, standard deviation (SD), and so forth of a sample 
are called sample statistics. When referring to a population, the sample statistics 
are called population parameters and are symbolized by Greek letters—� for 
mean, �2 for variance, and � for standard deviation.

 6. Most psychology researchers consider the probability of an event to be its ex-
pected relative frequency. However, some think of probability as the subjective 
degree of belief that the event will happen. Probability is figured as the propor-
tion of successful outcomes to total possible outcomes. It is symbolized by p 
and has a range from 0 (event is impossible) to 1 (event is certain). The normal 
curve provides a way to know the probabilities of scores being within particular 
ranges of values.

 7. There are controversies about many of the topics in this chapter. One is about 
whether normal distributions are truly typical of the populations of scores for 
the variables we study in psychology. In another controversy, some researchers 
have questioned the use of standard statistical methods in the typical psychol-
ogy research situation that does not use strict random sampling.

 8. Research articles rarely discuss Z scores, normal curves (except briefly when a 
variable being studied seems not to follow a normal curve), or probability (ex-
cept in relation to statistical significance). Procedures of sampling, particularly 
when the study is a survey, are sometimes described, and the representativeness 
of a sample may also be discussed.

 9. ADVANCED TOPIC: In situations where there are two or more mutually ex-
clusive outcomes, probabilities are figured following an addition rule, in which 
the total probability is the sum of the individual probabilities. A multiplication 
rule (in which probabilities are multiplied together) is followed to figure the 
probability of getting both of two (or more) independent outcomes. A con-
ditional probability is the probability of one outcome, assuming some other  
particular outcome will happen.
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Changing a Raw Score to a Z Score
A distribution has a mean of 80 and a standard deviation of 20. Find the Z score for 
a raw score of 65.

Answer
You can change a raw score to a Z score using the formula or the steps.

Using the formula: Z = 1X - M2>SD = 165 - 802>20 = -15>20 = - .75.
Using the steps:

 ❶ Figure the deviation score: subtract the mean from the raw score. 
65 - 80 = -15.

 ❷ Figure the Z score: divide the deviation score by the standard deviation. 
-15>20 = - .75.

Changing a Z Score to a Raw Score
A distribution has a mean of 200 and a standard deviation of 50. A person has a Z 
score of 1.26. What is the person’s raw score?

Answer
You can change a Z score to a raw score using the formula or the steps.

Using the formula: X = 1Z21SD2 + M = 11.2621502 + 200 = 63 + 200 = 263.
Using the steps:

 ❶ Figure the deviation score: multiply the Z score by the standard deviation. 
1.26 * 50 = 63.

 ❷ Figure the raw score: add the mean to the deviation score. 63 + 200 = 263.

Outline for Writing Essays Involving Z Scores
 1. If required by the question, explain the mean, variance, and standard deviation 

(using the points in the essay outlined in Chapter 2).
 2. Describe the basic idea of a Z score as a way of describing where a particular 

score fits into an overall group of scores. Specifically, a Z score shows the num-
ber of standard deviations a score is above or below the mean.

 3. Explain the steps for figuring a Z score from a raw (ordinary) score.
 4. Mention that changing raw scores to Z scores puts scores that are for differ-

ent variables onto the same scale, which makes it easier to make comparisons 
 between scores on the variables.

Figuring the Percentage Above or Below a Particular 
Raw Score or Z Score
Suppose a test of sensitivity to violence is known to have a mean of 20, a standard 
deviation of 3, and a normal curve shape. What percentage of people have scores 
above 24?

Answer
 ❶ If you are beginning with a raw score, first change it to a Z score. Using the 

usual formula, Z = 1X - M2>SD, Z = 124 - 202>3 = 1.33.

Example Worked-Out Problems
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 ❷ Draw a picture of the normal curve, decide where the Z score falls on it, 
and shade in the area for which you are finding the percentage. This is 
shown in Figure 3-18.

 ❸ Make a rough estimate of the shaded area’s percentage based on the 50%–
34%–14% percentages. If the shaded area started at a Z score of 1, it would 
include 16%. If it started at a Z score of 2, it would include only 2%. So with a 
Z score of 1.33, it has to be somewhere between 16% and 2%.

 ❹ Find the exact percentage using the normal curve table, adding 50% if 
necessary. In Table A-1 (in the Appendix), 1.33 in the “Z” column goes with 
9.18% in the “% in Tail” column. This is the answer to our problem: 9.18% 
of people have a higher score than 24 on the sensitivity to violence measure. 
(There is no need to add 50% to the percentage.)

 ❺ Check that your exact percentage is within the range of your rough  estimate 
from Step ❸. Our result, 9.18%, is within the 16% to 2% range estimated.

Note: If the problem involves Z scores that are all exactly 0, 1, or 2 (or -1 or -2), 
you can work out the problem entirely using the 50%-34%-14% figures and with-
out using the normal curve table (although you should still draw a figure and shade 
in the appropriate area).

Figuring Z Scores and Raw Scores From Percentages
Consider the same situation: A test of sensitivity to violence is known to have a 
mean of 20, a standard deviation of 3, and a normal curve shape. What is the mini-
mum score a person needs to be in the top 75%?

Answer
 ❶ Draw a picture of the normal curve, and shade in the approximate area for 

your percentage using the 50%–34%–14% percentages. The shading has to 
begin between the mean and 1 SD below the mean. (There are 50% above the 
mean and 84% above 1 SD below the mean). This is shown in Figure 3-19.

 ❷ Make a rough estimate of the Z score where the shaded area stops. The 
Z score has to be between 0 and -1.

 ❸ Find the exact Z score using the normal curve table (subtracting 50% from 
your percentage if necessary before looking up the Z score). Since 50% of 
people have sensitivity to violence scores above the mean, for the top 75% you 
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   +1.33
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Figure 3-18 Distribution of sensitivity to violence scores showing the percentage of 
scores above a score of 24 (shaded area).
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need to include the 25% below the mean (that is, 75% - 50% = 25%). Look-
ing in the “% Mean to Z” column of the normal curve table, the closest figure to 
25% is 24.86, which goes with a Z of .67. Since we are interested in below the 
mean, we want - .67.

 ❹ Check that your exact Z score is within the range of your rough estimate 
from Step ❷.  - .67 is between 0 and -1.

 ❺ If you want to find a raw score, change it from the Z score. Using the  formula 
X = 1Z21SD2 + M, X = 1- .672132 + 20 = -2.01 + 20 = 17.99. That is, to 
be in the top 75%, a person needs to have a score on this test of at least 18.

Note: If the problem instructs you not to use a normal curve table, you should be 
able to work the problem using just the 50%-34%-14% figures (although you 
should still draw a figure and shade in the appropriate area).

Outline for Writing Essays on the Logic and Computations 
for Figuring a Percentage from a Z Score and Vice Versa
 1. Note that the normal curve is a mathematical (or theoretical) distribution, 

describe its shape (be sure to include a diagram of the normal curve), and 
mention that many variables in nature and in research approximately follow a  
normal curve.

 2. If required by the question, explain the mean and standard deviation (using the 
points in the essay outline in Chapter 2).

 3. Describe the link between the normal curve and the percentage of scores be-
tween the mean and any Z score. Be sure to include a description of the normal 
curve table and show how it is used.

 4. Briefly describe the steps required to figure a percentage from a Z score or 
vice versa (as required by the question). Be sure to draw a diagram of the nor-
mal curve with appropriate numbers and shaded areas marked on it from the 
 relevant question (e.g., the mean, one and two standard deviations above/below 
the mean, shaded area for which percentage or Z score is to be determined).

Finding a Probability
A candy dish has four kinds of fruit-flavored candy: 20 apple, 20 strawberry, 5 
cherry, and 5 grape. If you close your eyes and pick one piece of candy at random, 
what is the probability it will be either cherry or grape?

14
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25% 50%

17.99
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75%

Figure 3-19 Finding the sensitivity to violence raw score for where the top 75% of 
scores start.
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Answer
 ❶ Determine the number of possible successful outcomes. There are 10 pos-

sible successful outcomes—5 cherry and 5 grape.
 ❷ Determine the number of all possible outcomes. There are 50 possible out-

comes overall: 20 + 20 + 5 + 5 = 50.
 ❸ Divide the number of possible successful outcomes (Step ❶) by the num-

ber of all possible outcomes (Step ❷). 10>50 = .2. Thus, the probability of 
 picking either a cherry or grape candy is .2.

Practice Problems

These problems involve figuring. Most real-life statistics problems are done with spe-
cial statistical software. Even if you have such software, do these problems by hand to 
ingrain the method in your mind. To learn how to use a computer to solve statistics prob-
lems like those in this chapter, refer to the Using SPSS section at the end of this chapter.

All data are fictional unless an actual citation is given.

Set I (for Answers to Set I Problems, see p. 682)
 1. On a measure of anxiety, the mean is 79 and the standard deviation is 12. What 

are the Z scores for each of the following raw scores? (a) 91, (b) 68, and (c) 103.
 2. On an intelligence test, the mean number of raw items correct is 231 and the 

standard deviation is 41. What are the raw (actual) scores on the test for peo-
ple with IQs of (a) 107, (b) 83, and (c) 100? To do this problem, first figure 
the Z score for the particular IQ score; then use that Z score to find the raw 
score. Note that IQ scores have a mean of 100 and a standard  deviation of 15.

 3. Six months after a divorce, the former wife and husband each take a test that 
measures divorce adjustment. The wife’s score is 63, and the husband’s score 
is 59. Overall, the mean score for divorced women on this test is 60 1SD = 62, 
the mean score for divorced men is 55 1SD = 42. Which of the two has adjusted 
better to the divorce in relation to other divorced people of the same gender? 
Explain your answer to a person who has never had a course in statistics.

 4. Suppose the people living in a city have a mean score of 40 and a standard deviation 
of 5 on a measure of concern about the environment. Assume that these concern 
scores are normally distributed. Using the 50%-34%-14% figures, approximately 
what percentage of people have a score (a) above 40, (b) above 45, (c) above 30, (d) 
above 35, (e) below 40, (f) below 45, (g) below 30, and (h) below 35?

 5. Using the information in problem 4 and the 50%-34%-14% figures, what 
is the minimum score a person has to have to be in the top (a) 2%, (b) 16%, 
(c) 50%, (d) 84%, and (e) 98%?

 6. A psychologist has been studying eye fatigue using a particular measure, which 
she administers to students after they have worked for 1 hour writing on a com-
puter. On this measure, she has found that the distribution follows a normal 
curve. Using a normal curve table, what percentage of students have Z scores 
(a) below 1.5, (b) above 1.5, (c) below -1.5, (d) above -1.5, (e) above 2.10, 
(f) below 2.10, (g) above .45, (h) below -1.78, and (i) above 1.68?

 7. In the previous problem, the test of eye fatigue has a mean of 15 and a standard 
deviation of 5. Using a normal curve table, what percentage of students have 
scores (a) above 16, (b) above 17, (c) above 18, (d) below 18, (e) below 14?
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 8. In the eye fatigue example of problems 6 and 7, using a normal curve table, 
what is the lowest score on the eye fatigue measure a person has to have to be in 
(a) the top 40%, (b) the top 30%, (c) the top 20%?

 9. Using a normal curve table, give the percentage of scores between the mean and 
a Z score of (a) .58, (b) .59, (c) 1.46, (d) 1.56, (e) - .58.

 10. Consider a test of coordination that has a normal distribution, a mean of 50, and a stan-
dard deviation of 10. (a) How high a score would a person need to have to be in the top 
5%? (b) Explain your answer to someone who has never had a course in statistics.

 11. Berger and colleagues (2011) conducted a telephone survey of energy drink 
consumption and alcohol use among adults in Milwaukee. In the method sec-
tion of their article, they explain that “[t]he study sample was comprised of 
individuals aged 18 or older who participated in the 2008 Greater Milwaukee 
Survey, a semiannual cross-sectional random-digit-dial landline telephone sur-
vey of household residents in the Milwaukee, Wisconsin Metropolitan Statis-
tical Area. In total, 946 adults aged 18 to 92 participated in the survey for a 
response rate . . . of 20.9%” (p. 517). Explain to a person who has never had a 
course in statistics or research methods what it means to use a random-digit-dial 
method and why it is important.

 12. The following numbers of individuals in a company received special assistance 
from the personnel department last year:

Drug/alcohol 10

Family crisis counseling 20

Other 20

Total 50

  If you were to select someone at random from the records for last year, what 
is the probability that the person would be in each of the following categories: 
(a) drug/alcohol, (b) family, (c) drug/alcohol or family, (d) any category except 
“Other,” or (e) any of the three categories? (f) Explain your answers to someone 
who has never had a course in statistics.

Set II
 13. On a measure of artistic ability, the mean for college students in New Zealand is 

150 and the standard deviation is 25. Give the Z scores for New Zealand college 
students who score (a) 100, (b) 120, (c) 140, and (d) 160. Give the raw scores 
for persons whose Z scores on this test are (e) -1, (f) - .8, (g) - .2, and (h) 1.38.

 14. On a standard measure of hearing ability, the mean is 300 and the standard 
deviation is 20. Give the Z scores for persons who score (a) 340, (b) 310, and 
(c) 260. Give the raw scores for persons whose Z scores on this test are (d) 2.4, 
(e) 1.5, (f) 0, and (g) -4.5.

 15. A person scores 81 on a test of verbal ability and 6.4 on a test of quantitative ability. 
For the verbal ability test, the mean for people in general is 50 and the standard de-
viation is 20. For the quantitative ability test, the mean for people in general is 0 and 
the standard deviation is 5. Which is this person’s stronger ability: verbal or quanti-
tative? Explain your answer to a person who has never had a course in statistics.

 16. The amount of time it takes to recover physiologically from a certain kind of 
sudden noise is found to be normally distributed with a mean of 80 seconds 
and a standard deviation of 10 seconds. Using the 50%-34%-14% figures, 
approximately what percentage of scores (on time to recover) will be (a) above 
100, (b) below 100, (c) above 90, (d) below 90, (e) above 80, (f) below 80,  
(g) above 70, (h) below 70, (i) above 60, and (j) below 60?
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 17. Using the information in problem 16 and the 50%-34%-14% figures, what 
is the longest time to recover that a person can take and still be in the bottom  
(a) 2%, (b) 16%, (c) 50%, (d) 84%, and (e) 98%?

 18. Suppose that the scores of architects on a particular creativity test are normally 
distributed. Using a normal curve table, what percentage of architects have Z 
scores (a) above .10, (b) below .10, (c) above .20, (d) below .20, (e) above 1.10, 
(f) below 1.10, (g) above - .10, and (h) below - .10 ?

 19. In the example in problem 18, using a normal curve table, what is the minimum 
Z score an architect can have on the creativity test to be in the (a) top 50%, 
(b) top 40%, (c) top 60%, (d) top 30%, and (e) top 20%?

 20. In the example in problem 18, assume that the mean is 300 and the standard 
deviation is 25. Using a normal curve table, what scores would be the top and 
bottom scores to find (a) the middle 50% of architects, (b) the middle 90% of 
architects, and (c) the middle 99% of architects?

 21. Suppose that you are designing an instrument panel for a large industrial ma-
chine. The machine requires the person using it to reach 2 feet from a particu-
lar position. The reach from this position for adult women is known to have 
a mean of 2.8 feet with a standard deviation of .5. The reach for adult men is 
known to have a mean of 3.1 feet with a standard deviation of .6. Both wom-
en’s and men’s reach from this position is normally distributed. If this design 
is implemented, (a) what percentage of women will not be able to work on this 
instrument panel? (b) What percentage of men will not be able to work on this 
instrument panel? (c) Explain your answers to a person who has never had a 
course in statistics.

 22. Suppose you want to conduct a survey of the attitude of psychology graduate 
students studying clinical psychology toward psychoanalytic methods of psy-
chotherapy. One approach would be to contact every psychology graduate stu-
dent you know and ask them to fill out a questionnaire about it. (a) What kind of 
sampling method is this? (b) What is a major limitation of this kind of approach?

 23. A large study evaluating a national mass media smoking cessation campaign in 
the United States recruited participants using a “. . . random-digit-dial method, 
from February 5 through April 15, 2008, prior to the national launch of the . . . me-
dia campaign” (Vallone et al., 2011, p. S39). Explain to a person who has never 
had a course in statistics (a) why this method of sampling might be used and (b) 
why it may be a problem if not everyone called agreed to be interviewed.

 24. Suppose that you were going to conduct a survey of visitors to your campus. 
You want the survey to be as representative as possible. (a) How would you 
select the people to survey? (b) Why would that be your best method?

 25. You are conducting a survey at a college with 800 students, 50 faculty mem-
bers, and 150 administrators. Each of these 1,000 individuals has a single email 
address listed in the online campus directory. Suppose you were to select one 
email address at random. What is the probability it would be (a) a student, (b) a 
faculty member, (c) an administrator, (d) a faculty member or administrator, 
and (e) anyone except an administrator? (f) Explain your answers to someone 
who has never had a course in statistics.

 26. You apply to 20 graduate programs, 10 of which are in clinical psychology, 5 of 
which are in counseling psychology, and 5 of which are in social work. You get a 
message from home that you have a letter from one of the programs you applied 
to, but nothing is said about which one. Give the probabilities it is from (a) a 
clinical psychology program, (b) a counseling psychology program, (c) from any 
program other than social work. (d) Explain your answers to someone who has 
never had a course in statistics.
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The  in the following steps indicates a mouse click. (We used SPSS version 19.0 
to carry out these analyses. The steps and output may be slightly different for other 
versions of SPSS.)

Changing Raw Scores to Z Scores
It is easier to learn these steps using actual numbers, so we will use the number of 
dreams example from Chapter 2.

 ❶ Enter the scores from your distribution in one column of the data window (the 
scores are 7, 8, 8, 7, 3, 1, 6, 9, 3, 8). We will call this variable “dreams.”

 ❷ Find the mean and standard deviation of the scores. You learned how to do this 
in the Chapter 2 Using SPSS section (see pp. 63–66). The mean is 6, and the 
standard deviation is 2.57.

 ❸ You are now going to create a new variable that shows the Z score for each raw 
score.  Transform,  Compute Variable. You can call the new variable any name 
that you want, but we will call it “zdreams.” So, type zdreams in the box labeled 
Target Variable. In the box labeled Numeric Expression, type 1dreams - 62>2.57. 
As you can see, this formula creates a deviation score (by subtracting the mean 
from the raw score) and divides the deviation score by the standard deviation.  

  OK. You will see that a new variable called zdreams has been added to the data 
window. The scores for this zdreams variable are the Z scores for the dreams vari-
able.4 Your data window should now look like Figure 3-20.

Using SPSS

Figure 3-20 Using SPSS to change raw scores to Z scores for the number of dreams.
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Chapter Notes

 1. The formula for the normal curve (when the mean is 0 and the standard devia-
tion is 1) is

f(x) =
1

22�
 e -x2>2

  where f1x2 is the height of the curve at point x and � and e are the usual 
 mathematical constants (approximately 3.14 and 2.72, respectively). However, 
psychology researchers almost never use this formula because it is built into 
the statistics software that do calculations involving normal curves. When work 
must be done by hand, any needed information about the normal curve is pro-
vided in tables in statistics books (for example, Table A-1 in the Appendix).

 2. The exact percentage of scores between any two Z scores can also be calculated 
using statistics or spreadsheet software (for example, using the normal curve 
function in Excel).

 3. Frick (1998) argued that in most cases psychology researchers should not think 
in terms of samples and populations at all. Rather, he argues, researchers should 
think of themselves as studying processes. An experiment examines some pro-
cess in a group of individuals. Then the researcher evaluates the probability that 
the pattern of results could have been caused by chance factors. For example, 
the researcher examines whether a difference in means between an experimen-
tal and a control group could have been caused by factors other than by the ex-
perimental manipulation. Frick claims that this way of thinking is much closer 
to the way researchers actually work, and argues that it has various  advantages 
in terms of the subtle logic of inferential statistical procedures.

 4. You can also request the Z scores directly from SPSS. However, SPSS figures the 
standard deviation based on the dividing by N - 1 formula for the variance (see 
Chapters 2 and 6). Thus, the Z  scores figured directly by SPSS will be different 
from the Z  scores as you learn to figure them. Here are the steps for figuring Z  
scores (based on the dividing by N - 1 formula) directly from SPSS: ❶ Enter the 
scores from your distribution in one column of the data window. ❷   Analyze, 

 Descriptive statistics,  Descriptives. ❸  on the variable for which you want 
to find the Z scores, and then  the arrow. ❹  the box labeled Save standard-
ized values as variables (this checks the box). ❺   OK. A new variable is added 
to the data window. The values for this variable are the Z  scores for your variable 
(based on the dividing by N - 1 formula). (You can ignore the output window, 
which by default will show descriptive statistics for your variable.)
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Chapter 4

Introduction to Hypothesis Testing

Chapter Outline 

In this chapter, we introduce the crucial topic of hypothesis testing. A hypoth-
esis is a prediction intended to be tested in a research study. The prediction may 
be based on informal observation (as in clinical or applied settings regarding a 

possible practical innovation), on related results of previous studies, or on a broader 
theory about what is being studied. You can think of a theory as a set of principles 
that attempt to explain an important psychological process. A theory usually leads to 
various specific hypotheses that can be tested in research studies.

This chapter focuses on the basic logic for analyzing results of a research study 
to test a hypothesis. The central theme of hypothesis testing has to do with the 
important distinction between sample and population discussed in the last chapter. 
Hypothesis testing is a systematic procedure for deciding whether the results of a 
research study, which examines a sample, support a hypothesis which applies to a 
population. Hypothesis testing is the central theme in all the remaining chapters of 
this book, as it is in most research in psychology and related fields.

Many students find the most difficult part of the course to be mastering the 
basic logic of this chapter and the next two. This chapter in particular requires some 
mental gymnastics. Even if you follow everything the first time through, you will be 
wise to review the chapter thoroughly. Hypothesis testing involves grasping ideas 
that make little sense covered separately; so in this chapter you learn several new 

hypothesis testing procedure for 
deciding whether the outcome of a study 
(results for a sample) supports a particu-
lar theory or practical innovation (which 
is thought to apply to a population).

hypothesis prediction, often based on 
informal observation, previous research, 
or theory, that is tested in a research 
study.

theory set of principles that attempt to 
explain one or more facts, relationships, 
or events; psychologists often derive 
specific predictions from theories that 
are then tested in research studies.
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ideas all at once. However, once you understand the material in this chapter and 
the two that follow, your mind will be used to this sort of thing, and the rest of the 
course should seem easier.

At the same time, we have kept this introduction to hypothesis testing as simple 
as possible, putting off what we could for later chapters. For example, real-life psy-
chology research involves samples of many individuals. However, to minimize how 
much you have to learn at one time, this chapter’s examples are about studies in 
which the sample is a single individual. To do this, we use some odd examples. Just 
remember that you are building a foundation that will, by Chapter 7, prepare you to 
understand hypothesis testing as it is actually done in real research.

A Hypothesis-Testing Example
Here is our first necessarily odd example that we made up to keep this introduc-
tion to hypothesis testing as straightforward as possible. A large research project 
has been going on for several years. In this project, new babies are given a particu-
lar vitamin, and then the research team follows their development during the first  
2 years of life. So far, the vitamin has not speeded up the development of the  babies. 
The ages at which these and all other babies start to walk are shown in Figure 4-1.  
The mean is 14 months 1� = 142, the standard deviation is 3 months 1� = 32, and the 
ages follow a normal curve. Based on the normal curve percentages, you can fig-
ure that only about 2% of babies start walking before 8 months of age; these are 
the  babies who are more than 2 standard deviations below the mean. (This fictional 
distribution is close to the true distribution researchers have found for babies in mul-
tiple countries; WHO Multicentre Growth Reference Study Group, 2006.)

One of the researchers working on the project has an idea. If the vitamin the 
babies are taking could be more highly refined, perhaps its effect would be dra-
matically increased: babies taking the highly purified version should start walking 
much earlier than other babies. (We will assume that the purification process could 
not possibly make the vitamin harmful.) However, refining the vitamin in this way 
is extremely expensive for each dose; so the research team decides to try the pro-
cedure with just enough purified doses for one baby. A newborn in the project is 
then randomly selected to take the highly purified version of the vitamin, and the 
researchers then follow this baby’s progress for 2 years. What kind of result should 
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Figure 4-1 Distribution of when babies begin to walk (fictional data).
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lead the researchers to conclude that the highly purified vitamin allows babies to 
walk earlier?

This is a hypothesis-testing problem. The researchers want to draw a general 
conclusion about whether the purified vitamin allows babies in general to walk 
earlier. The conclusion will be about babies in general (a population of babies). 
However, the conclusion will be based on results of studying a sample. In this exam-
ple, the sample consists of a single baby.

The Core Logic of Hypothesis Testing
There is a standard way researchers approach any hypothesis-testing problem. For 
this example, it works as follows. Consider first the population of babies in gen-
eral (those who are not given the specially purified vitamin). In this population, the 
chance of a baby’s starting to walk at age 8 months or earlier would be only about 2%.  
(As shown in Figure 4-1, the mean walking age is 14 months with a standard devia-
tion of 3 months.) Thus, walking at 8 months or earlier is highly unlikely among 
such babies. But what if the randomly selected sample of one baby in our study does 
start walking by 8 months? Suppose the specially purified vitamin had no effect on 
this particular baby’s walking age, which means that the baby’s walking age should 
be similar to that of babies who were not given the vitamin. In that case, it is highly 
unlikely (only about a 2% chance) that the particular baby we selected at random 
would start walking by 8 months. So, if the baby in our study does in fact start walk-
ing by 8 months, we reject the idea that the specially purified vitamin has no effect. 
And if we reject the idea that the specially purified vitamin has no effect, then we 
must also accept the idea that the specially purified vitamin does have an effect.

Using the same reasoning, if the baby starts walking by 8 months, we reject the 
idea that this baby comes from a population of babies like that of the general popula-
tion with a mean walking age of 14 months. We then conclude that babies given the 
specially purified vitamin will on the average start to walk before 14 months. Our 
explanation for the baby’s early walking age in the study is that the specially puri-
fied vitamin speeded up the baby’s development.

In this example, the researchers first spelled out what would have to happen for 
them to conclude that the special purification procedure makes a difference. Having 
laid this out in advance, the researchers then conducted their study. Conducting the 
study in this case meant giving the specially purified vitamin to a randomly selected 
baby and watching to see how early that baby walked. We supposed that the result 
of the study is that the baby started walking before 8 months. The researchers then 
concluded that it is unlikely the specially purified vitamin makes no difference; 
therefore, they concluded that it does make a difference.

This kind of testing, with its opposite-of-what-you-predict, roundabout reason-
ing, is at the heart of inferential statistics in psychology. It is something like a dou-
ble negative. One reason for this approach is that we have the information to figure 
the probability of getting a particular experimental result if the situation of there 
being no difference is true. In the purified vitamin example, the researchers know 
what the probabilities are of babies walking at different ages if the specially puri-
fied vitamin does not have any effect. The probabilities of babies walking at various 
ages are already known from studies of babies in general—that is, babies who have 
not received the specially purified vitamin. If the specially purified vitamin has no 
effect, then the ages at which babies start walking are the same with or without the 
specially purified vitamin. Thus, the distribution is that shown in Figure 4-1, based 
on ages at which babies start walking in general.

T I P  F O R  S U C C E S S
This section, The Core Logic of 
Hypothesis Testing, is central to 
everything else we do in the book. 
Thus, you may want to read it a few 
times. You should also be certain 
that you understand the logic of 
hypothesis testing before reading 
later chapters.
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Without such a tortuous way of going at the problem, in most cases you could 
not test hypotheses scientifically at all. In almost all psychology research, we base 
our conclusions on the question, “What is the probability of getting our research 
results if the opposite of what we are predicting were true?” That is, we usually pre-
dict an effect of some kind. However, we decide on whether there is such an effect 
by seeing if it is unlikely that there is not such an effect. If it is highly unlikely that 
we would get our research results if the opposite of what we are predicting were 
true, that finding is our basis for rejecting the opposite prediction. If we reject the 
opposite prediction, we are able to accept our prediction. However, if it is likely that 
we would get our research results if the opposite of what we are predicting were 
true, we are not able to reject the opposite prediction. If we are not able to reject the 
opposite prediction, we are not able to accept our prediction.

The Hypothesis-Testing Process
Let’s look at our example again, this time going over each step in some detail. Along 
the way, we cover the special terminology of hypothesis testing. Most important, we 
introduce the five steps of hypothesis testing that you use for the rest of this book.

Step ❶: Restate the Question as a Research Hypothesis 
and a Null Hypothesis About the Populations
Our researchers are interested in the effects on babies in general (not just on this 
particular baby). That is, the purpose of studying samples is to know about popula-
tions. Thus, it is useful to restate the research question in terms of populations. In 
our example, we can think of two populations of babies:

Population 1: Babies who take the specially purified vitamin.
Population 2: Babies in general (that is, babies who do not take the specially 
purified vitamin).

Population 1 consists of babies who receive the experimental treatment (the 
specially purified vitamin). In our example, we use a sample of one baby to draw a 
conclusion about the age at which babies in Population 1 start to walk. Population 
2 is a kind of comparison baseline of what is already known about babies in general.

The prediction of our research team is that Population 1 babies (those who take 
the specially purified vitamin) will on the average walk earlier than Population 2 
babies (babies in general who do not take the specially purified vitamin). This pre-
diction is based on the researchers’ theory of how these vitamins work. A prediction 
like this about the difference between populations is called a research hypothesis. 
Put more formally, the prediction is that the mean of Population 1 is lower (babies 
receiving the special vitamin walk earlier) than the mean of Population 2. In sym-
bols, the research hypothesis for this example is �1 6 �2.

The opposite of the research hypothesis is that the populations are not differ-
ent in the way predicted. Under this scenario, Population 1 babies (those who take 
the specially purified vitamin) will on the average not walk earlier than Population 
2 babies (babies in general—those who do not take the specially purified vitamin). 
That is, the prediction is that there is no difference in the ages at which Population 1 
and Population 2 babies start walking. On the average, they start at the same time. 
A statement like this, about a lack of difference between populations, is the cru-
cial opposite of the research hypothesis. It is called a null hypothesis. It has this 
name because it states the situation in which there is no difference (the difference is 
“null”) between the populations. In symbols, the null hypothesis is �1 = �2 .

1

research hypothesis statement in 
hypothesis testing about the predicted 
relation between populations (often a 
prediction of a difference between popu-
lation means).

null hypothesis statement about a 
relation between populations that is the 
opposite of the research hypothesis; 
statement that in the population there is 
no difference (or a difference opposite 
to that predicted) between populations; 
contrived statement set up to examine 
whether it can be rejected as part of  
hypothesis testing.
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The research hypothesis and the null hypothesis are complete opposites: if one 
is true, the other cannot be. In fact, the research hypothesis is sometimes called 
the alternative hypothesis—that is, it is the alternative to the null hypothesis. This 
term is a bit ironic. As researchers, we care most about the research hypothesis. But 
when doing the steps of hypothesis testing, we use this roundabout method of see-
ing whether or not we can reject the null hypothesis so that we can decide about its 
alternative (the research hypothesis).

Step ❷: Determine the Characteristics 
of the Comparison Distribution
Recall that the overall logic of hypothesis testing involves figuring out the probabil-
ity of getting a particular result if the null hypothesis is true. Thus, you need to know 
what the situation would be if the null hypothesis were true. In our example, we start 
out knowing the key information about Population 2, babies in the general popula-
tion (see Figure 4-1): we know it follows a normal curve, � = 14, and � = 3. If the 
null hypothesis is true, Population 1 and Population 2 are the same; in our example, 
this would mean for Populations 1 and 2, � = 14 and � = 3, and both follow a 
normal curve.

In the hypothesis-testing process, you want to find out the probability that you 
could have gotten a sample score as extreme as what you got (say, a baby walking 
very early) if your sample were from a population with a distribution of the sort 
you would have if the null hypothesis were true. Thus, in this book we call this 
distribution a comparison distribution. (The comparison distribution is sometimes 
called a sampling distribution—an idea we discuss in Chapter 5.) That is, in the 
hypothesis-testing process, you compare the actual sample’s score to this compari-
son distribution.

In our vitamin example, the null hypothesis is that there is no difference in  
walking age between babies who take the specially purified vitamin (Population 1)  
and babies in general who do not take the specially purified vitamin (Population 2). 
The comparison distribution is the distribution for Population 2, since this 
population represents the walking age of babies if the null hypothesis is true.  
In later chapters, you will learn about different types of comparison distribu-
tions, but the same principle applies in all cases: The comparison distribution 
is the distribution that represents the population situation if the null hypothesis 
is true.

Step ❸: Determine the Cutoff Sample Score 
on the Comparison Distribution at Which  
the Null Hypothesis Should Be Rejected
Ideally, before conducting a study, researchers set a target against which they will 
compare their result: how extreme a sample score they would need to decide against 
the null hypothesis, that is, how extreme the sample score would have to be for it to 
be too unlikely that they could get such an extreme score if the null hypothesis were 
true. This is called the cutoff sample score. (The cutoff sample score is also known 
as the critical value.)

Consider our purified vitamin example, in which the null hypothesis is that 
walking age is not influenced by whether babies take the specially purified vita-
min. The researchers might decide that, if the null hypothesis were true, a randomly 
selected baby walking before 8 months would be very unlikely. With a normal 

comparison distribution distribution 
used in hypothesis testing. It represents 
the population situation if the null  
hypothesis is true. It is the distribution  
to which you compare the score based 
on your sample’s results.

cutoff sample score point in hypoth-
esis testing, on the comparison distribu-
tion at which, if reached or exceeded 
by the sample score, you reject the null 
hypothesis. Also called critical value.
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distribution, being 2 or more standard deviations below the mean (walking by  
8 months) could occur less than 2% of the time. Thus, based on the comparison 
distribution, the researchers set their cutoff sample score even before doing the 
study. They decide in advance that if the result of their study is a baby who walks by 
8 months, they will reject the null hypothesis.

But what if the baby does not start walking until after 8 months? If that hap-
pens, the researchers will not be able to reject the null hypothesis.

When setting in advance how extreme a sample’s score needs to be to reject 
the null hypothesis, researchers use Z scores and percentages. In our purified vita-
min example, the researchers might decide that if a result were less likely than 2%, 
they would reject the null hypothesis. Being in the bottom 2% of a normal curve 
means having a Z score of about -2 or lower. Thus, the researchers would set 
-2 as their Z-score cutoff point on the comparison distribution for deciding that 
a result is extreme enough to reject the null hypothesis. So, if the actual sample  
Z score is -2 or lower, the researchers will reject the null hypothesis. However, if 
the actual sample Z score is greater than -2, the researchers will not reject the null 
hypothesis.

Suppose that the researchers are even more cautious about too easily rejecting 
the null hypothesis. They might decide that they will reject the null hypothesis only 
if they get a result that could occur by chance 1% of the time or less. They could 
then figure out the Z-score cutoff for 1%. Using the normal curve table, to have a 
score in the lower 1% of a normal curve, you need a Z score of -2.33 or less. (In our 
example, a Z score of -2.33 means 7 months.) In Figure 4-2, we have shaded the 1% 
of the comparison distribution in which a sample would be considered so extreme 
that the possibility that it came from a distribution like this would be rejected. Now 
the researchers will reject the null hypothesis only if the actual sample Z score is 
-2.33 or lower—that is, if it falls in the shaded area in Figure 4-2. If the sample 
Z score falls outside the shaded area in Figure 4-2, the researchers will not reject the 
null hypothesis.

In general, psychology researchers use a cutoff on the comparison distribution 
with a probability of 5% that a score will be at least that extreme if the null hypoth-
esis were true. That is, researchers reject the null hypothesis if the probability of get-
ting a sample score this extreme (if the null hypothesis were true) is less than 5%. 
This probability is usually written as p 6 .05. However, in some areas of research, or 
when researchers want to be especially cautious, they use a cutoff of 1% 1p 6 .012.2
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Figure 4-2 Distribution of when babies begin to walk, with bottom 1% shaded 
(fictional data).
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These are called conventional levels of significance. They are described as the .05 
significance level and the .01 significance level. We also refer to them as the 5% 
significance level and the 1% significance level. (We discuss in more detail in 
Chapter 6 the issues in deciding on the significance level to use.) When a sample 
score is so extreme that researchers reject the null hypothesis, the result is said to be 
statistically  significant (or just significant, as it is often abbreviated).

Step ❹: Determine Your Sample’s Score 
on the Comparison Distribution
The next step is to carry out the study and get the actual results for your sample. 
Once you have the results for your sample, you figure the Z score for the sample’s 
raw score based on the population mean and standard deviation of the comparison 
distribution.

Assume that the researchers did the study and the baby who was given the spe-
cially purified vitamin started walking at 6 months. The mean of the comparison 
distribution to which we are comparing these results is 14 months and the standard 
deviation is 3 months. That is, � = 14 and � = 3. Thus, a baby who walks at 6 
months is 8 months below the population mean. This puts the baby 22>3 standard 
deviations below the population mean. The Z score for this sample baby on the com-
parison distribution is thus  -2.67 3that is, Z = 16 - 142>3 = -2.674. Figure 4-3 
shows the score of our  sample baby on the comparison distribution.

Step ❺: Decide Whether to Reject the Null Hypothesis
To decide whether to reject the null hypothesis, compare your actual sample’s  
Z score (from Step ❹) to the cutoff Z score (from Step ❸). In our example, the actual 
result was -2.67. Let’s suppose the researchers had decided in advance that they 
would reject the null hypothesis if the sample’s Z score was below -2. Since -2.67 
is below -2, the researchers would reject the null hypothesis.

Alternatively, suppose the researchers had used the more conservative 1% 
significance level. The needed Z score to reject the null hypothesis would then 
have been -2.33 or lower. But, again, the actual Z for the randomly selected baby 

conventional levels of significance
( p * .05, p * .01) levels of signifi-
cance widely used in psychology.

statistically significant conclusion 
that the results of a study would be 
unlikely if in fact the sample studied 
represents a population that is no differ-
ent from the population in general; an 
outcome of hypothesis testing in which 
the null hypothesis is rejected.

T I P  F O R  S U C C E S S
If you are unsure about these 
symbols for population parameters 
1�, �2, be sure to review Table 3-2 
on p. 88.
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Figure 4-3 Distribution of when babies begin to walk, showing both the bottom 1% 
and the single baby who is the sample studied (fictional data).
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was -2.67 (a more extreme score than -2.33). Thus, even with this more conser-
vative cutoff, they would still reject the null hypothesis. This situation is shown 
in Figure 4-3. As you can see in the figure, the bottom 1% of the distribution is 
shaded. We recommend that you always draw such a picture of the distribution. 
Be sure to shade in the part of the distribution that is more extreme (that is, farther 
out in the tail) than the cutoff sample score. If your actual sample Z score falls 
within the shaded region, you can reject the null hypothesis. Since the sample  
Z score 1-2.672 in this example falls within the shaded tail region, the researchers 
can reject the null hypothesis.

If the researchers reject the null hypothesis, what remains is the research 
hypothesis. In this example, the research team would conclude that the results of 
their study support the research hypothesis that babies who take the specially puri-
fied vitamin walk earlier than babies in general.

Implications of Rejecting or Failing to Reject  
the Null Hypothesis
It is important to emphasize two points about the conclusions you can make from 
the hypothesis-testing process. First, when you reject the null hypothesis, all you are 
saying is that your results support the research hypothesis (as in our example). You 
would not go on to say that the results prove the research hypothesis or that the re-
sults show that the research hypothesis is true. Terms such as prove and true are too 
strong because the results of research studies are based on probabilities.  Specifically, 
they are based on the probability being low of getting your result if the null hypoth-
esis were true. Proven and true are acceptable terms in logic and  mathematics, but 
to use these words in conclusions from scientific research is unprofessional. (It is 
all right to use true when speaking hypothetically—for example, “if this  hypothesis 
were true, then . . .”—but not when speaking of conclusions about an actual result.) 
What you do say when you reject the null hypothesis is that the results are statisti-
cally significant. You can also say that the results “support” or “provide evidence 
for” the research hypothesis.

Second, when a result is not extreme enough to reject the null hypothesis, 
you do not say that the result supports (or proves) the null hypothesis. You simply 
say the result is not statistically significant. A result that is not strong enough to 
reject the null hypothesis means the study was inconclusive. The results may not be 
extreme enough to reject the null hypothesis, but the null hypothesis might still be 
false (and the research hypothesis true). Suppose in our example that the specially 
purified vitamin had only a slight but still real effect. In that case, we would not 
expect to find a baby who is given the purified vitamin to be walking a lot earlier 
than babies in general. Thus, we would not be able to reject the null hypothesis, 
even though it is false. (You will learn more about such situations in the Decision 
Errors section in Chapter 6.)

Showing the null hypothesis to be true would mean showing that there is abso-
lutely no difference between the populations. It is always possible that there is a 
difference between the populations but that the difference is much smaller than the 
particular study was able to detect. Therefore, when a result is not extreme enough 
to reject the null hypothesis, the results are said to be inconclusive. Sometimes, 
however, if studies have been done using large samples and accurate measuring  
procedures, evidence may build up in support of something close to the null  
hypothesis—that there is at most very little difference between the populations.  
(We have more to say on this important issue later in this chapter and in Chapter 6.) 
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The core logic of hypothesis testing is summarized in Table 4-1, which also includes 
the logic for our example of a baby who is given a specially purified vitamin.

Summary of Steps of Hypothesis Testing
Here is a summary of the five steps of hypothesis testing.

 ❶ Restate the question as a research hypothesis and a null hypothesis about 
the populations.

 ❷ Determine the characteristics of the comparison distribution.
 ❸ Determine the cutoff sample score on the comparison distribution at which 

the null hypothesis should be rejected.
 ❹ Determine your sample’s score on the comparison distribution.
 ❺ Decide whether to reject the null hypothesis.

A Second Example
Here is another fictional example (based on results of actual studies). Two happy-
go-lucky personality psychologists are examining the theory that happiness comes 
from positive experiences. In particular, these researchers argue that if people have 
something very fortunate happen to them, they become very happy and will still be 
happy 6 months later. So the researchers plan the following experiment: a person 
will be randomly selected from the North American adult public and given $10 mil-
lion. Six months later, the person’s happiness will be measured. It is already known 
(in this fictional example) what the distribution of happiness is like in the general 
population of North American adults, and this is shown in Figure 4-4. On the test 
being used, the mean happiness score is 70, the standard deviation is 10, and the 
distribution is approximately normal.

The psychologists now carry out the hypothesis-testing procedure. That is, 
the researchers consider how happy the person would have to be before they can 

Table 4-1  The Basic Logic of Hypothesis Testing, Including the Logic for the Example of the 

Effect of a Specially Purified Vitamin on the Age That Babies Begin to Walk

Basic Logic Baby Example

Focus of 
Research

Sample is studied Baby given specially purified vitamin and age  
of walking observed

Question Is the sample typical of the general 
population?

Is this baby’s walking age typical of babies in 
general?

Answer Very unlikely Could be Very unlikely

— — —

Conclusion The sample is 
 probably not from  
the general 
 population; it is  
 probably from a 
different 
population.

Inconclusive This baby is probably  
not from the general  
population of babies,  
because its walking  
age is much lower than  
for babies in general.  
Therefore, babies who  
take the specially purified  
vitamin will probably begin  
walking at an earlier age  
than babies in the general  
population.
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confidently reject the null hypothesis that receiving so much money does not make 
people happier 6 months later. If the researchers’ result shows a very high level of 
happiness, the psychologists will reject the null hypothesis and conclude that getting 
$10 million probably does make people happier 6 months later. But if the result is 
not very extreme, the researchers would not be able to conclude anything one way 
or the other about the effects. That is, because there is not sufficient evidence to 
reject the null hypothesis, the results of the experiment would be inconclusive.

Now let us consider the hypothesis-testing procedure in more detail in this 
example, following the five steps.

 ❶ Restate the question as a research hypothesis and a null hypothesis about 
the populations. There are two populations of interest:

Population 1: People who 6 months ago received $10 million.
Population 2: The general population (consisting of people who 6 months ago 
did not receive $10 million).

The prediction of the personality psychologists, based on their theory of 
happiness, is that Population 1 people will on the average be happier than Popu-
lation 2 people: in symbols, �1 7 �2. The null hypothesis is that Population 1 
people (those who get $10 million) will not be happier than Population 2 people 
(people in general who do not get $10 million).

 ❷ Determine the characteristics of the comparison distribution. The compari-
son distribution is the distribution that represents the population situation if the 
null hypothesis is true. If the null hypothesis is true, the distributions of Popu-
lations 1 and 2 are the same. We know Population 2’s distribution (it is nor-
mally distributed with � = 70 and � = 10), so we can use it as the comparison 
distribution.

 ❸ Determine the cutoff sample score on the comparison distribution at which 
the null hypothesis should be rejected. What kind of result would be extreme 
enough to convince us to reject the null hypothesis? In this example, assume 
that the  researchers decided the following in advance: they will reject the null 
 hypothesis as too unlikely if the results would occur less than 5% of the time 
if this null hypothesis were true. We know that the comparison distribution is 
a normal curve. Thus, we can figure that the top 5% of scores from the normal 
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Figure 4-4 Distribution of happiness sources (fictional data).
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curve table begin at a Z score of about 1.64. So the researchers set as the cutoff 
point for rejecting the null hypothesis a result in which the sample’s Z score on 
the comparison distribution is at or above 1.64. (The mean of the comparison 
distribution is 70 and the standard deviation is 10. Therefore, the null hypoth-
esis will be rejected if the sample result is at or above 86.4.)

 ❹ Determine your sample’s score on the comparison distribution. Now for the 
results: six months after giving the randomly selected person $10 million, the 
now very wealthy research participant takes the happiness test. The person’s 
score is 80. As you can see from Figure 4-4, a score of 80 has a Z score of +1 
on the comparison distribution.

 ❺ Decide whether to reject the null hypothesis. The Z score of the sample 
 individual is +1. The researchers set the minimum Z score to reject the null 
hypothesis at +1.64. Thus, the sample score is not extreme enough to reject 
the null  hypothesis. The experiment is inconclusive; researchers would say the 
results are “not statistically significant.” Figure 4-5 shows the comparison dis-
tribution with the top 5% shaded and the location of the sample participant 
who received $10 million.

You may be interested to know that Brickman et al. (1978) carried out a more 
elaborate study based on the same question. They studied lottery winners as exam-
ples of people suddenly having a very positive event happen to them. Their results 
were similar to those in our fictional example: those who won the lottery were not 
much happier 6 months later than people who did not win the lottery. Also, another 
group they studied, people who had become paraplegics through a random  accident, 
were not much less happy than other people 6 months later. These researchers con-
cluded that if a major event does have a lasting effect on happiness, it is probably 
not a very big one. This conclusion is consistent with the findings of more recent 
studies (e.g., Suh et al., 1996). There is also evidence that people’s happiness may 
be determined by how they spend their money, regardless of how much money 
they have. For example, Dunn and colleagues (2008) have shown that when people 
spend money on other people, it makes them happier than if they spend the money 
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Figure 4-5 Distribution of happiness scores with upper 5% shaded and showing the 
location of the sample participant (fictional data).
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How are you doing?

 1. A sample of rats in a laboratory is given an experimental treatment intended 
to make them learn a maze faster than other rats. State (a) the null hypothesis 
and (b) the research hypothesis.

 2. (a) What is a comparison distribution? (b) What role does it play in hypothesis 
testing?

 3. What is the cutoff sample score?
 4. Why do we say that hypothesis testing involves a double negative logic?
 5. What can you conclude when (a) a result is so extreme that you reject the null 

hypothesis and (b) a result is not very extreme so that you cannot reject the 
null hypothesis?

 6. A training program to increase friendliness is tried on one individual randomly 
selected from the general public. Among the general public (who do not 
get this training program), the mean on the friendliness measure is 30 with 
a standard deviation of 4. The researchers want to test their hypothesis at 
the 5% significance level. After going through the training program, this indi-
vidual takes the friendliness measure and gets a score of 40. What should the 
researchers conclude?

on themselves. Indeed, in recent years, a great deal of research has examined what 
factors contribute to people’s level of happiness. If you are interested in knowing 
more about this topic, we highly recommend an article by Diener and colleagues 
(2006), Diener and Biswas-Diener’s book, Happiness: Unlocking the Mysteries 
of Psychological Wealth (2008), and social psychologist Daniel Gilbert’s (2006) 
engaging best seller, Stumbling on Happiness.

Answers

 1. (a) Null hypothesis: The population of rats like those that get the experimental 
treatment score the same on the time to learn the maze as the population of rats 
in general that do not get the experimental treatment. (b) Research hypothesis: 
The population of rats like those that get the experimental treatment learn the 
maze faster than the population of rats in general that do not get the experimen-
tal treatment.

 2. (a) A comparison distribution is a distribution to which you compare the results 
of your study. (b) In hypothesis testing, the comparison distribution is the dis-
tribution for the situation when the null hypothesis is true. To decide whether 
to reject the null hypothesis, check how extreme the score of your sample is 
on this comparison distribution—how likely it would be to get a sample with a 
score this extreme if your sample came from this comparison distribution.

 3. The cutoff sample score is the Z score at which, if the sample’s Z score is 
more extreme than it is on the comparison distribution, you reject the null 
hypothesis.

 4. We say that hypothesis testing involves a double negative logic because we 
are interested in the research hypothesis, but we test whether it is true by 
seeing if we can reject its opposite, the null hypothesis.

 5. (a) The research hypothesis is supported when a result is so extreme that you 
reject the null hypothesis; the result is statistically significant. (b) The result 
is not statistically significant when a result is not very extreme; the result is 
inconclusive.
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One-Tailed and Two-Tailed Hypothesis Tests
In our examples so far, the researchers were interested in only one direction of  result. 
In our first example, researchers tested whether babies given the specially  purified 
vitamin would walk earlier than babies in general. In the happiness example, the 
personality psychologists predicted the person who received $10 million would be 
happier than other people. The researchers in these studies were not interested in 
the possibility that giving the specially purified vitamin would cause babies to start 
walking later or that people getting $10 million might become less happy.

Directional Hypotheses and One-Tailed Tests
The purified vitamin and happiness studies are examples of testing a directional hy-
pothesis. Both studies focused on a specific direction of effect. When a researcher 
makes a directional hypothesis, the null hypothesis is also, in a sense, directional. Sup-
pose the research hypothesis is that getting $10 million will make a person happier 
than the general population. The null hypothesis, then, is that the money will either 
have no effect or make the person less happy. [In symbols, if the research hypothesis 
is �1 7 �2, then the null hypothesis is �1 … �2 (“…” is the symbol for less than or 
equal to).] Thus, in Figure 4-5, to reject the null hypothesis, the sample has to have 
a score in one tail of the comparison distribution: the upper extreme or tail (in this 
example, the top 5%) of the comparison distribution. (When it comes to rejecting the 
null hypothesis with a directional hypothesis, a score at the other tail is the same as a 
score in the middle; that is, such a score does not allow you to reject the null hypoth-
esis.) For this reason, the test of a directional hypothesis is called a one-tailed test. 
A one-tailed test can be one-tailed in either direction. In the happiness study example, 
the tail for the predicted effect was at the high end. In the baby study example, the tail 
for the predicted effect was at the low end (that is, the prediction tested was that babies 
given the specially purified vitamin would start walking unusually early).

Nondirectional Hypotheses and Two-Tailed Tests
Sometimes, a research hypothesis states that an experimental procedure will have an 
effect, without saying whether it will produce a very high score or a very low score. 
Suppose an organizational psychologist is interested in how a new social skills pro-
gram will affect productivity. The program could either improve productivity by 
making the working environment more pleasant or hurt productivity by encouraging 
people to socialize instead of work. The research hypothesis is that the social skills 
program changes the level of productivity; the null hypothesis is that the program does 
not change productivity one way or the other. In symbols, the research hypothesis is 
�1 � �2 (“�” is the symbol for not equal); the null hypothesis is �1 = �2.

When a research hypothesis predicts an effect but does not predict a direction for the 
effect, it is called a nondirectional hypothesis. To test the significance of a nondirec-
tional hypothesis, you have to consider the possibility that the sample could be extreme 
at either tail of the comparison distribution. Thus, this is called a two-tailed test.

directional hypothesis research hy-
pothesis predicting a particular direction 
of difference between populations—for 
example, a prediction that the popula-
tion like the sample studied has a higher 
mean than the population in general. 

one-tailed test hypothesis-testing 
procedure for a directional hypothesis; 
situation in which the region of the com-
parison distribution in which the null 
hypothesis would be rejected is all on 
one side (tail) of the distribution.

nondirectional hypothesis research 
hypothesis that does not predict a par-
ticular direction of difference between 
the population like the sample studied 
and the population in general.

two-tailed test hypothesis-testing 
procedure for a nondirectional hypoth-
esis; the situation in which the region 
of the comparison distribution in which 
the null hypothesis would be rejected is 
divided between the two sides (tails) of 
the distribution.

 6. The training program increases friendliness. The cutoff sample Z score on the 
comparison distribution is 1.64. The actual sample’s Z score of 2.50 is more 
extreme—that is, farther in the tail—than the cutoff Z score. Therefore, reject 
the null hypothesis; the research hypothesis is supported; the result is statis-
tically significant.
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Determining Cutoff Scores with Two-Tailed Tests
There is a special complication in a two-tailed test. You have to divide the signifi-
cance percentage between the two tails. For example, with a 5% significance level, 
you reject a null hypothesis only if the sample is so extreme that it is in either the  
top 2.5% or the bottom 2.5% of the comparison distribution. This keeps the overall 
level of significance at a total of 5%.

Note that a two-tailed test makes the cutoff Z scores for the 5% level +1.96 
and -1.96. For a one-tailed test at the 5% level, the cutoff is not so extreme: only 
+1.64 or -1.64. But with a one-tailed test, only one side of the distribution is con-
sidered. These situations are shown in Figure 4-6a.

Using the 1% significance level, a two-tailed test (.5% at each tail) has cutoffs of 
+2.58 and -2.58, whereas a one-tailed test’s cutoff is either +2.33 or -2.33. These 
situations are shown in Figure 4-6b. The Z score cutoffs for one-tailed and two-tailed 
tests for the .05 and .01 significance levels are also summarized in Table 4-2.

0 11 12

.05 (one-tailed)

Z Score

(a)

.025 (=.05 two-tailed)

2122

(.05 two-tailed =) .025

0 11 12

.01 (one-tailed)

Z Score

(b)

.005 (=.01 two-tailed)

2122

(.01 two-tailed =) .005

23 13

1.64
1.9621.96

22.58

2.33
2.58

.01 significance level

.05 significance level

Figure 4-6 Significance level cutoffs for one-tailed and two-tailed tests: (a) .05 sig-
nificance level; (b) .01 significance level. (The one-tailed tests in these examples assume the 
prediction was for a high score. You could instead have a one-tailed test where the prediction 
is for the lower, left tail.)
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When to Use One-Tailed or Two-Tailed Tests
If the researcher decides in advance to use a one-tailed test, then the sample’s score 
does not need to be so extreme to be significant compared to what would be needed 
with a two-tailed test. Yet there is a price. If the result is extreme in the direction 
opposite to what was predicted—no matter how extreme—the result cannot be con-
sidered statistically significant.

In principle, you plan to use a one-tailed test when you have a clearly direc-
tional hypothesis and a two-tailed test when you have a clearly nondirectional 
hypothesis. In practice, the decision is not so simple. Even when a theory clearly 
predicts a particular result, the actual result may come out opposite to what you 
expected. Sometimes, the opposite may be more interesting than what you had pre-
dicted. (For example, what if, as in all the fairy tales about wish-granting genies and 
fish, receiving $10 million and being able to fulfill almost any material desire had 
made that individual miserable?) By using one-tailed tests, we risk having to ignore 
possibly important results.

For these reasons, researchers disagree about whether one-tailed tests 
should be used, even when there is a clearly directional hypothesis. To be safe, 
most researchers use two-tailed tests for both nondirectional and directional 
 hypotheses. If the two-tailed test is significant, then the researcher looks at the 
result to see the direction and considers the study significant in that direction. In 
practice, always using two-tailed tests is a conservative procedure because the 
cutoff scores are more extreme for a two-tailed test and so it is less likely that 
a two-tailed test will give a significant result. Thus, if you do get a significant 
result with a two-tailed test, you are more confident about the conclusion. In fact, 
in most psychology research articles, unless the researcher specifically states that 
a one-tailed test was used, it is assumed that the test was two-tailed. The use of 
one- versus two-tailed tests varies across different areas of research. In many 
fields, one-tailed tests are almost never used; in others, such as neuroimaging, 
they are very common. One recent paper actually counted how many one-tailed 
tests were used in its field: “A review of 85 published evaluations of school-
based drug prevention curricula . . . revealed that 20% employed one-tailed tests” 
(Ringwalt et al., 2011, p. 135).

In practice, however, our experience is that most research results are either so 
extreme that they will be significant whether you use a one-tailed or two-tailed test 
or so far from extreme that they would not be significant in either kind of test. But 
what happens when a result is less certain? The researcher’s decision about one- or 
two-tailed tests now can make a big difference. In this situation the researcher tries 
to use the type of test that will give the most accurate and noncontroversial conclu-
sion. The idea is to let nature—not a researcher’s decisions—determine the conclu-
sion as much as possible. Further, whenever a result is less than completely clear 
one way or the other, most researchers are not comfortable drawing strong conclu-
sions until more research is done.

Table 4-2 One-Tailed and Two-Tailed Cutoff Z Scores for the .05 and .01 Significance Levels

Type of Test

One-Tailed Two-Tailed

Significance .05 �1.64 or 1.64 �1.96 and 1.96

Level .01 �2.33 or 2.33 �2.58 and 2.58
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Example of Hypothesis Testing with a Two-Tailed Test
Here is one more fictional example, this time using a two-tailed test. Clinical psy-
chologists at a residential treatment center have developed a new type of therapy 
to reduce depression that they believe is more effective than the current therapy. 
However, as with any treatment, it could make patients’ depression worse. Thus, the 
clinical psychologists make a nondirectional hypothesis.

The psychologists randomly select an incoming patient to receive the new form of 
therapy instead of the usual therapy. (In a real study, of course, more than one patient 
would be selected, but let’s assume that only one person has been trained to do the 
new therapy and she has time to treat only one patient.) After 4 weeks, the patient fills 
out a standard depression scale that is given automatically to all patients after 4 weeks. 
The standard scale has been given at this treatment center for a long time. Thus, the 
psychologists know in advance the distribution of depression scores at 4 weeks for 
those who receive the usual therapy: it follows a normal curve with a mean of 69.5 
and a standard deviation of 14.1. (These figures correspond roughly to the depression 
scores found in a national survey of 75,000 psychiatric patients given a widely used 
standard test; Dahlstrom et al., 1986). This distribution is shown in Figure 4-7.

The clinical psychologists then carry out the five steps of hypothesis testing.

 ❶ Restate the question as a research hypothesis and a null hypothesis about 
the populations. There are two populations of interest:

Population 1: Patients diagnosed as depressed who receive the new therapy.
Population 2: Patients diagnosed as depressed in general (who receive the 
usual therapy).

The research hypothesis is that when measured on depression 4 weeks after admis-
sion, patients who receive the new therapy (Population 1) will on the  average 
score differently from patients who receive the current therapy  (Population 2).
In symbols, the research hypothesis is �1 � �2. The opposite of the research 
hypothesis, the null hypothesis, is that patients who receive the new therapy 
will have the same average depression level as the patients who receive the 
usual therapy. (That is, the depression level measured after 4 weeks will have 

69.5

Z Score: 0 11 122122

Depression Score: 97.783.655.441.3

Figure 4-7 Distribution of depression scores at 4 weeks after admission for diagnosed 
depressed psychiatric patients receiving the standard therapy (fictional data).
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the same mean for Populations 1 and 2.) In symbols, the null hypothesis is 
�1 = �2.

 ❷ Determine the characteristics of the comparison distribution. If the null hy-
pothesis is true, the distributions of Populations 1 and 2 are the same. We know 
the distribution of Population 2 (it is the one shown in Figure 4-7). Thus, we 
can use Population 2 as our comparison distribution. As noted, it follows a nor-
mal curve, with � = 69.5 and � = 14.1.

 ❸ Determine the cutoff sample score on the comparison distribution at which 
the null hypothesis should be rejected. The clinical psychologists select the 
5% significance level. They have made a nondirectional hypothesis and will 
therefore use a two-tailed test. Thus, they will reject the null hypothesis only 
if the patient’s depression score is in either the top or bottom 2.5% of the com-
parison distribution. In terms of Z scores, these cutoffs are +1.96 and -1.96 
(see Figure 4-6 and Table 4-2).

 ❹ Determine your sample’s score on the comparison distribution. The patient 
who received the new therapy was measured 4 weeks after admission. The pa-
tient’s score on the depression scale was 41, which is a Z score on the comparison 
distribution of -2.02. That is, Z = 1X - M2 > SD = 141 - 69.52 > 14.1 = -2.02. 
Figure 4-8 shows the distribution of Population 2 for this study, with the upper and 
lower 2.5% areas shaded; the depression score of the sample patient is also shown.

 ❺ Decide whether to reject the null hypothesis. A Z score of -2.02 is slightly 
more extreme than a Z score of -1.96, which is where the lower 2.5% of the 
comparison distribution begins. Notice in Figure 4-8 that the Z score of -2.02 
falls within the shaded area in the left tail of the comparison distribution. This 
Z score of -2.02 is a result so extreme that it is unlikely to have occurred if 
this patient were from a population no different from Population 2. Therefore, 
the clinical psychologists reject the null hypothesis. The result is statistically  
significant, and it supports the research hypothesis that depressed patients  
receiving the new therapy have different depression levels than depressed 
 patients in general who receive the usual therapy.

T I P  F O R  S U C C E S S
When carrying out the five steps 
of hypothesis testing, always draw 
a figure like Figure 4-8. Be sure 
to include the cutoff score(s) and 
shade the appropriate tail(s). If the 
sample score falls inside a shaded 
tail region, you can reject the null 
hypothesis and the result is sta-
tistically significant. If the sample 
score does not fall inside a shaded 
tail region, you cannot reject the 
null hypothesis.

69.5

Z Score: 0 11 122122

Depression Score: 97.783.655.441.3

Sample patient
depression = 41

Z = 22.02

Cutoff Z Score
= 21.96

Cutoff Z Score
= 1.96

Figure 4-8 Distribution of depression scores with upper and lower 2.5% shaded and 
showing the sample patient who received the new therapy (fictional data).
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Controversy: Should Significance Tests  
Be Banned?
In the last couple of decades, there has been a major controversy about significance 
 testing itself, with a concerted movement on the part of a small but vocal group of psychol-
ogists to ban significance tests completely! This is a radical suggestion with far-reaching 
implications: for at least half a century, nearly every research study in psychology has used 
significance tests. More has probably been written in major psychology journals in the last 
20 years about this controversy than ever before about any statistics issue.

The discussion has been so heated that one article began as follows:

It is not true that a group of radical activists held 10 statisticians and six editors  
hostage at the . . . convention of the American Psychological Society and chanted,  
“Support the total test ban!” and “Nix the null!” (Abelson, 1997, p. 12)

How are you doing?

 1. What is a nondirectional hypothesis test?
 2. What is a two-tailed test?
 3. Why do you use a two-tailed test when testing a nondirectional hypothesis?
 4. What is the advantage of using a one-tailed test when your theory predicts a 

particular direction of result?
 5. Why might you use a two-tailed test even when your theory predicts a par-

ticular direction of result?
 6. A researcher predicts that making people hungry will affect how well they do 

on a coordination test. A randomly selected person is asked not to eat for 
24 hours before taking a standard coordination test and gets a score of 400. 
For people in general of this age group and gender, tested under normal con-
ditions, coordination scores are normally distributed with a mean of 500 and 
a standard deviation of 40. Using the .01 significance level, what should the 
researcher conclude?

Answers

 1. A nondirectional hypothesis test is a hypothesis test in which you do not pre-
dict a particular direction of difference.

 2. A two-tailed test is one in which the overall percentage for the cutoff is di-
vided between the two tails of the comparison distribution. A two-tailed test 
is used to test the significance of a nondirectional hypothesis.

 3. You use a two-tailed test when testing a nondirectional hypothesis because 
an extreme result in either direction supports the research hypothesis.

 4. The cutoff for a one-tailed test is not so extreme; thus, if your result comes 
out in the predicted direction, it is more likely to be significant. The cutoff is 
not so extreme because the entire percentage (say 5%) is put in one tail in-
stead of being divided between two tails.

 5. You might use a two-tailed test even if your theory predicts a particular di-
rection of result because it lets you count as significant an extreme result in  
either direction. If you used a one-tailed test and the result came out oppo-
site to the prediction, it could not be called statistically significant.

 6. The cutoffs are �2.58 and �2.58. The sample person’s Z score is 
(400 � 500)>40 � �2.5. The result is not significant; the study is inconclusive.
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Because this is by far the most important controversy regarding statistics used 
in psychology, we discuss the issues in three different places in this textbook. In this 
chapter, we focus on some basic challenges to hypothesis testing. We discuss other 
issues related to hypothesis testing in Chapters 5 and 6.

First, be reassured that you are not learning about hypothesis testing for nothing. 
Whatever happens in the future, you absolutely have to understand hypothesis test-
ing to make sense of virtually every research article published in the past. Further, in 
spite of the controversy that has raged for more than two decades, it is very rare to see 
new articles that do not use significance testing. Thus, it is doubtful that any major 
shifts will occur in the near future. Finally, even if hypothesis testing is one day com-
pletely abandoned, the alternatives likely to replace it require that you understand 
virtually all of the logic and procedures you are learning in this course.

So, what is the big controversy? Some of the debate concerns subtle points of 
logic. For example, does it make sense to worry about rejecting the null hypothesis 
when it is extremely unlikely to be true that there was no effect at all? Another issue is 
about the foundation of hypothesis testing, populations, and samples. In most experi-
ments, the samples we use are not actually randomly selected from any definable pop-
ulation as they ought to be according to the “pure” version of how to test a hypothesis. 
We discussed some points relating to this issue in Chapter 3. Finally, there is an issue 
about the logic of using the assertion that the results of a study are not likely if the null 
hypothesis is true (what we look at in significance testing) as the basis for concluding 
that the null hypothesis is unlikely. (That is, does the probability of our result, given 
the null hypothesis, tell us the probability of the null hypothesis given our result? For 
a discussion of the issues here, see Gorard, 2010.) This controversy becomes rather 
technical, and the majority view at the moment appears to be that with some minor 
adjustments to how research results are reported (involving things you will learn about 
in Chapters 5 and 6), the way researchers in psychology use hypothesis testing is rea-
sonable (Balluerka et al., 2005; Iacobucci, 2005; Nickerson, 2000).

At the same time, however, very recently, there has been a dramatic revival of 
interest in a completely different approach to hypothesis testing, called Bayesian 
analysis (e.g., Kruschke, 2011). This approach is named after Thomas Bayes, an 
early 18th-century English clergyman who developed a probability law now known 
as Bayes theorem. The theorem can be proved mathematically and is not contro-
versial. However, its applications are hotly debated. The current flurry of interest 
has been generated in part by a controversial article (Bem, 2011) on “precognition” 
(that the future can influence how we behave in the present) published in a top psy-
chology journal. Using standard methods of significance testing, the results of the 
research are quite strong. However, using Bayesian methods, the results are much 
less strong (Rouder & Morey, 2011; Wagenmakers, Wetzels, Borsboom, & Van der 
Maas, 2011), although this conclusion about what Bayesian methods show about 
the research results has been contested by Bem and two Bayesian statistician col-
laborators (Bem, Utts, & Johnson, 2011). Even before the controversial Bem paper 
was published, Bayesian methods were already starting to gain substantial attention.

What can a Bayesian approach do? When analyzing the results of a study, one 
can actually compute the odds of the research hypothesis being more likely than 
the null hypothesis. These odds are called a “Bayes factor” (if the prior belief is 
that the two hypotheses are equally likely). In a sense, the Bayes factor odds agree 
with the conclusions from standard significance testing. Wetzels and colleagues 
(2011) calculated the Bayes factor for each of 855 recently published psychology 
studies. They found that when a result was significant using the standard method 
at p 6 .05, the Bayes factor odds almost always favored the research hypothesis; 
when the results were not significant, the Bayes factor odds almost always favored 
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the null hypothesis. However, there was one big difference. As you have learned 
in this chapter, researchers traditionally consider p 6 .05 to be “significant.” But 
Wetzels et al. found that studies with p values between .05 and .01 had odds of 
only about 2 to 1 that the research hypothesis is more likely than the null. Thus, the 
standard approach may be too liberal, permitting us to be convinced by findings that 
should not be very convincing.

Perhaps even more important, the Bayesian approach offers a way to examine the 
odds that the null hypothesis is more likely than the research hypothesis. This is some-
thing impossible to examine with the standard significance testing. This possibility is 
particularly likely to be appealing to researchers because it provides an opportunity 
to do something that we have long wanted to do—directly test the plausibility of the 
null hypothesis. (In the Advanced Procedures section of Chapter 5, we will examine 
another way that researchers approach testing something like the null hypothesis.)

The exact null hypothesis may only be possible in very special cases. However, 
in practice, we are often quite interested in testing whether groups are not different 
(such as women and men or different cultures or ethnicities); or that some procedure 
that is otherwise beneficial does not have any adverse effects; or that two approaches 
or theories about something have essentially equal effects (Gallistel, 2009). Further, 
software and even online calculators (e.g., Rouder et al., 2009) have now become 
available that make it practical to figure the Bayes factor in common research designs.

Indeed, the combination of the opportunity to test directly the plausibility of the 
null and the ready availability of software to carry it out has led to one of the first 
(and still very rare) papers to use this Bayesian method in a standard research situ-
ation. Weinberg and Hajcak (2011) conducted a study of brain activity in response 
to different kinds of emotional pictures. Most of their results were examined using 
standard significance testing. However, one particularly important prediction of their 
research was that a previously found difference between responses to positive and 
negative pictures would disappear when the pictures of each type excluded certain 
unusual images. That is, they were predicting a non-difference, the null hypothesis. 
In their results section, they report: “Because comparisons of the reconstituted pleas-
ant and unpleasant categories amount to an attempt to support the null hypothesis, 
two Bayes-factor . . . tests were also conducted . . . [T]he odds . . . were greater than 6:1 
favoring the null hypothesis, . . . Because the odds favor the null hypothesis, we cau-
tiously conclude that there may in fact be no difference between the [brain response] 
elicited by the reconstituted pleasant and unpleasant categories . . .” (p. 777).

So, perhaps the ideas originated by Reverend Bayes will be the wave of the 
future. On the other hand, in spite of the current great excitement about this Bayesian 
revival in articles about statistical methods, it seems unlikely (perhaps 10 to 1?) that 
it will become the standard method in the very near future.

Potential long-term future directions aside, the biggest complaint today against 
significance tests, and the one that has received almost universal agreement, is that their 
standard meaning is interpreted incorrectly (e.g., Balluerka et al., 2005). In fact, oppo-
nents of significance tests argue that even if there were no other problems with the tests, 
they should be banned simply because they are so often and so badly misused. One 
major misuse of significance tests (we’ll consider another in Chapter 6) is the tendency 
for researchers to decide that, if a result is not significant, the null hypothesis is shown 
to be true. We have emphasized that when you can’t reject the null hypothesis, the 
results are simply inconclusive. The error of concluding the null hypothesis is true from 
failing to reject it is extremely serious, because important theories and methods may be 
considered false just because a particular study did not get strong enough results.

What should be done? The general consensus at the moment seems to be that 
we should keep significance tests, but better train our students not to misuse them 
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(hence the emphasis on these points in this textbook). We should not throw the baby 
out with the bathwater. To address this controversy, the American Psychological 
Association (APA) established a committee of eminent psychologists renowned for 
their statistical expertise. The committee met over a two-year period, circulated a 
preliminary report, and considered reactions to it from a large number of research-
ers. In the end, they strongly condemned various misuses of significance testing 
such as the kind we just discussed, but they left its use up to the decision of each 
researcher. In their report they concluded:

Some had hoped that this task force would vote to recommend an outright ban on the use 
of significance tests in psychology journals. Although this might eliminate some abuses, 
the committee thought there were enough counterexamples (e.g., Abelson, 1997) to jus-
tify forbearance. (Wilkinson & Task Force on Statistical Inference, 1999, pp. 602–603)

Balluerka and colleagues (2005) reviewed the arguments for and against sig-
nificance testing. Their conclusion, was that “ . . . rigorous research activity requires 
the use of . . . [significance testing] in the appropriate context, the complementary 

New Yorkers can be proud of Jacob Cohen, who intro-
duced to behavioral and social scientists some of our 
most important statistical tools. Never worried about 
being popular—although he was—Cohen almost single-
handedly forced the current debate over significance 
testing, which he liked to joke was entrenched like a 
“secular religion.” About the asterisk that accompanies a 
significant result, he said the religion must be “of Judeo-
Christian derivation, as it employs as its most powerful 
icon a six-pointed cross” (1990, p. 1307).

Jacob went to City College of New York at age 15, but 
excelled only at table tennis. In fact, he failed calculus. 
However, in 1947, after World War II, he entered gradu-
ate school at New York University (NYU) in clinical psy-
chology and three years later had earned a masters and 
a doctorate. He then worked in rather lowly roles for the 
Veterans Administration, doing research on various practical 
topics, until he returned to NYU in 1959. There he became a 
very famous faculty member because of his creative, off-beat 
ideas about statistics. Amazingly, he made his contributions 
having no mathematics training beyond high school algebra.

But a lack of formal training may have been Jacob 
Cohen’s advantage because he emphasized looking at data 
and thinking about them, not just applying a standard anal-
ysis. In particular, he demonstrated that the standard meth-
ods were not working very well, especially for the “soft” 
fields of psychology such as clinical, personality, and 
social psychology. Many of his ideas were hailed as great 
breakthroughs. Starting in the 1990s, he really began to 

force the issue of the mindless use of significance testing. 
But he still used humor to tease behavioral and social sci-
entists for their failure to see the problems inherent in the 
arbitrary yes-no decision feature of null hypothesis testing. 
For example, he liked to remind everyone that significance 
testing came out of Sir Ronald Fisher’s work in agriculture 
(see Box 9-1), in which the decisions were yes-no matters 
such as whether a crop needed manure. He pointed out that 
behavioral and social scientists “do not deal in manure, at 
least not knowingly” (Cohen, 1990, p. 1307)! He really 
disliked the fact that Fisher-style decision making is used 
to determine the fate of not only doctoral dissertations, 
research funds, publications, and promotions, “but whether 
to have a baby just now” (1990, p. 1307). And getting more 
serious, he charged that significance testing’s “arbitrary 
unreasonable tyranny has led to data fudging of varying 
degrees of subtlety, from grossly altering data to dropping 
cases where there ‘must have been’ errors” (p. 1307).

Cohen was active in many social causes, especially 
desegregation in the schools and fighting discrimina-
tion in police departments. He cared passionately about 
everything he did. He was deeply loved. And he suffered 
from major depression, becoming incapacitated by it 
four times in his life.

Got troubles? Got no more math than high school 
algebra? It doesn’t have to stop you from contributing 
to science.

Sources: P. Cohen (2005); Shrout (2001).

BOX 4-1  Jacob Cohen, the Ultimate New Yorker: 
Funny, Pushy, Brilliant, and Kind
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use of other methods which provide information about aspects not addressed by . . .  
[significance testing], and adherence to a series of recommendations which promote 
its rational use in psychological research” (p. 55). If you become a research psy-
chologist, congratulations on being among those who have learned to be “rigorous.”

Hypothesis Tests in Research Articles
In general, hypothesis testing is reported in research articles using one of the 
specific methods of hypothesis testing you learn in later chapters. For each re-
sult of interest, the researcher usually first indicates whether the result was sta-
tistically significant. (Note that, as with the first of the following examples, the 
researcher will not necessarily use the word significant; so look out for other in-
dicators, such as reporting that scores on a variable decreased, increased, or were 
associated with scores on another variable.) Next, the researcher usually gives the 
symbol associated with the specific method used in figuring the probability that 
the result would have occurred if the null hypothesis was true, such as t, F, or 
�2 (see Chapters 7–10 and Chapter 13). Finally, there will be an indication of 
the significance level, such as p 6 .05 or p 6 .01. (The researcher will usually 
also provide other information, such as the mean and standard deviation of sample 
scores.) For example, in the study of health-related plots in prime time American 
television programs that you read about in Chapter 1, Hether and Murphy (2010) 
reported: “. . . of all the prevention information depicted, there was significantly 
more when the ill or injured character was male, as opposed to female: (60% ver-
sus 40%, �2112 = 4.00, p 6 .052” (p. 817). There is a lot here that you will learn 
about in later chapters, but the key thing to understand now about this result is 
the “p 6 .05.” This means that the probability of the results if the null hypothesis 
were true is less than .05 (5%).

When a result is close but does not reach the significance level chosen, it may 
be reported anyway as a “near significant trend” or as having “approached signifi-
cance.” When a result is not even close to being extreme enough to reject the null 
hypothesis, it may be reported as “not significant,” or the abbreviation ns will be 
used. Finally, whether or not a result is significant, it is increasingly common (and 
now recommended in the 6th edition of the Publication Manual of the American 
Psychological Association, 2009) for researchers to report the exact p level, such 
as p = .03 or p = .27. (These are given in computer outputs of hypothesis testing 
results.) The p reported in this case is based on the exact proportion of the com-
parison distribution that is more extreme than the sample score information that you 
could figure from the Z score for your sample and a normal curve table.

A researcher will usually note if he or she used a one-tailed test. When reading 
research articles in most fields, you can assume the researcher used a two-tailed 
test if nothing is said otherwise. Even though a researcher has chosen a signifi-
cance level in advance, such as .05, the researcher may note that results meet more 
rigorous standards. Thus, in the same article, you may see some results noted as 
“p 6 .05,” others as “p 6 .01,” and still others as “p 6 .001.”

Finally, researchers often show hypothesis testing results only as asterisks 
(stars) in a table of results. In such tables, a result with an asterisk means it is sig-
nificant, while a result without an asterisk is not. For example, Table 4-3 shows the 
results of part of a study by Colley and colleagues (2010) comparing how male and 
female university students in England use camera phones. The table gives figures 
for means and standard deviations of men and women’s ratings of the importance of 
using a camera phone for different purposes. The important things to look at in the 
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table are the asterisks (and the note at the bottom of the table that goes with them). 
The asterisks tell you the significance level for the various comparisons between 
men and women’s ratings. The table shows that women rated two purposes of using 
a camera phone as being more important than men did: “recording images of peo-
ple who are important to me for myself” and “recording images of people who are 
important to me to share with others.” The asterisks show that the differences were 
significant at the .01 (one in a hundred) level. The lack of asterisks for the other 
rows tells you that the importance ratings for those camera phone purposes did not 
show a statistically significant difference between men and women.

In reporting results of significance testing, researchers rarely talk explicitly 
about the research hypothesis or the null hypothesis, nor do they describe any of the 
other steps of the process in detail. It is assumed that readers of psychology research 
understand all of this very well.

Table 4-3  Means and Standard Deviations of Ratings of Personal Importance of Different 

Purposes of Using a Camera Phone

Men Women

Mean SD Mean SD

Record special events for myself 5.09 1.53 5.29 1.58

Record special events to share with others present 5.02 1.54 4.98 1.60

Record special events to share with others not present 5.09 1.50 5.27 1.62

Use as a visual note of something for myself 3.79 1.81 4.43 1.80

Use as a visual note to use in a task with others 3.05 1.48 3.41 1.67

Send news to family or friends 4.18 1.91 4.23 1.91

Record something that captures my interest for myself 5.23 1.51 5.02 1.54

Record something that captures my interest to share with others 5.03 1.35 5.12 1.52

Record images of people who are important to me for myself 5.18 1.67 5.81** 1.29

Record images of people who are important to me to share  
 with others

4.75 1.51 5.37** 1.30

Rating scale from 1 � not at all important to 7 � very important. Differences between adjacent cells relating to male 
and female participants significant at p 6 .01 (adjusted level) shown as **. No results were significant at the lower 
level of p 6 .05.

Source: Colley, A., Todd, Z., White, A., & Turner-Moore, T. (2010). Communication using camera phones among young men 
and women: Who sends what to whom? Sex Roles, 63, 348–360. Reproduced with permission of Springer publishers.

Summary

 1. Hypothesis testing considers the probability that the result of a study could have 
come about even if the experimental procedure had no effect. If this probability 
is low, the scenario of no effect is rejected and the hypothesis behind the experi-
mental procedure is supported.

 2. The expectation of an effect is the research hypothesis, and the hypothetical 
situation of no effect is the null hypothesis.

Learning Aids



 Introduction to Hypothesis Testing 131

Example Worked-Out Problems

A randomly selected individual, after going through an experimental treatment, has 
a score of 27 on a particular measure. The scores of people in general on this mea-
sure are normally distributed with a mean of 19 and a standard deviation of 4. The 
researcher predicts an effect, but does not predict a particular direction of effect. 
Using the 5% significance level, what should you conclude? Solve this problem ex-
plicitly using all five steps of hypothesis testing and illustrate your answer with a 

 3. When a result (that is, a sample score) is so extreme that the result would be very 
unlikely if the null hypothesis were true, the researcher rejects the null hypothesis 
and describes the research hypothesis as supported. If the result is not that extreme, 
the researcher does not reject the null hypothesis, and the study is inconclusive.

 4. Psychologists usually consider a result too extreme if it is less likely than 5% 
(that is, a significance level of p 6 .05) to have come about if the null hypoth-
esis were true. Psychologists sometimes use a more extreme 1% (p 6 .01 sig-
nificance level), or even .1% (p 6 .001 significance level), cutoff.

 5. The cutoff percentage is the probability of the result being extreme in a pre-
dicted direction in a directional or one-tailed test. The cutoff percentages are the 
probability of the result being extreme in either direction in a nondirectional or 
two-tailed test.

 6. The five steps of hypothesis testing are:
❶ Restate the question as a research hypothesis and a null hypothesis 

about the populations.
❷ Determine the characteristics of the comparison distribution.
❸ Determine the cutoff sample score on the comparison distribution at 

which the null hypothesis should be rejected.
❹ Determine your sample’s score on the comparison distribution.
❺ Decide whether to reject the null hypothesis.

 7. There has been much controversy about significance tests, including critiques 
of the basic logic and arguments in favor of an alternative Bayesian approach 
that gives odds of the relative plausibility of the research and null hypotheses. 
The major critique, however, is that significance testing is often seriously mis-
used, such as by incorrectly interpreting not rejecting the null hypothesis as 
demonstrating that the null hypothesis is true.

 8. Research articles typically report the results of hypothesis testing by saying a 
result was or was not significant and giving the probability level cutoff (usually 
5% or 1%, although sometimes giving an exact figure) that the decision was 
based on.

Key Terms

hypothesis testing  (p. 108)
hypothesis  (p. 108)
theory  (p. 108)
research hypothesis  (p. 111)
null hypothesis  (p. 111)

comparison distribution  (p. 112)
cutoff sample score  (p. 112)
conventional levels of significance 1p 6 .05, p 6 .012  (p. 114)
statistically significant  (p. 114)

directional hypothesis  (p. 120)
one-tailed test  (p. 120)
nondirectional hypothesis  (p. 120)
two-tailed test  (p. 120)
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sketch showing the comparison distribution, the cutoff (or cutoffs), and the score of 
the sample on this distribution.

Answer
 ❶ Restate the question as a research hypothesis and a null hypothesis about 

the populations. There are two populations of interest:

Population 1: People who go through the experimental procedure.
Population 2: People in general (that is, people who do not go through the experi-
mental procedure).

  The research hypothesis is that Population 1 will score differently than Popula-
tion 2 on the particular measure. The null hypothesis is that the two populations 
are not different on the measure.

 ❷ Determine the characteristics of the comparison distribution: 
� = 19, � = 4, normally distributed.

 ❸ Determine the cutoff sample score on the comparison distribution at which 
the null hypothesis should be rejected. For a two-tailed test at the 5% level 
(2.5% at each tail), the cutoff scores are +1.96 and -1.96 (see Figure 4-6 or 
 Table 4-2).

 ❹ Determine your sample’s score on the comparison distribution. 
Z = 127 - 192>4 = 2.

 ❺ Decide whether to reject the null hypothesis. A Z score of 2 is more extreme 
than the cutoff Z of {1.96. Reject the null hypothesis; the result is significant. 
The experimental procedure affects scores on this measure. The diagram is 
shown in Figure 4-9.

11

–2

Raw Score:

Z Score:

15

–1

19

0

23

+1

27

+2

Sample participant

Raw Score = 27

Z Score = 2

Cutoff Z Score
= 21.96

Cutoff Z Score
= 1.96

Figure 4-9 Diagram for Example Worked-Out Problem showing comparison distri-
bution, cutoffs (2.5% shaded area in each tail), and sample score.
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Outline for Writing Essays for Hypothesis-Testing Problems 
Involving a Single Sample of One Participant and a Known 
Population
 1. Describe the core logic of hypothesis testing. Be sure to explain terminology 

such as research hypothesis and null hypothesis, and explain the concept of pro-
viding support for the research hypothesis when the study results are strong 
enough to reject the null hypothesis.

 2. Explain the concept of the comparison distribution. Be sure to mention that it 
is the distribution that represents the population situation if the null hypothesis 
is true. Note that the key characteristics of the comparison distribution are its 
mean, standard deviation, and shape.

 3. Describe the logic and process for determining (using the normal curve) the 
cutoff sample scores on the comparison distribution at which you should reject 
the null hypothesis.

 4. Describe how to figure the sample’s score on the comparison distribution.
 5. Explain how and why the scores from Steps ❸ and ❹ of the hypothesis-

testing process are compared. Explain the meaning of the result of this 
comparison with regard to the specific research and null hypotheses being 
tested.

These problems involve figuring. Most real-life statistics problems are done with 
special statistical software. Even if you have such software, do these problems by 
hand to ingrain the method in your mind.

All data are fictional unless an actual citation is given.

Set I (for Answers to Set I Problems, see pp. 682–684)
 1. Define the following terms in your own words: (a) hypothesis-testing proce-

dure, (b) .05 significance level, and (c) two-tailed test.
 2. When a result is not extreme enough to reject the null hypothesis, explain why 

it is wrong to conclude that your result supports the null hypothesis.
 3. For each of the following, (a) say which two populations are being compared, 

(b) state the research hypothesis, (c) state the null hypothesis, and (d) say 
whether you should use a one-tailed or two-tailed test and why.

   i.  Do Canadian children whose parents are librarians score higher than Cana-
dian children in general on reading ability?

  ii.  Is the level of income for residents of a particular city different from the 
level of income for people in the region?

 iii.  Do people who have experienced an earthquake have more or less self- 
confidence than the general population?

 4. Based on the information given for each of the following studies, decide 
whether to reject the null hypothesis. For each, give (a) the Z-score cutoff 
(or cutoffs) on the comparison distribution at which the null hypothesis 
should be rejected, (b) the Z score on the comparison distribution for the 

Practice Problems
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sample score, and (c) your conclusion. Assume that all populations are nor-
mally distributed.

Population

Study � � Sample Score p Tails of Test

A 10 2 14 .05 1 (high predicted)

B 10 2 14 .05 2

C 10 2 14 .01 1 (high predicted)

D 10 2 14 .01 2

E 10 4 14 .05 1 (high predicted)

 5. Based on the information given for each of the following studies, decide 
whether to reject the null hypothesis. For each, give (a) the Z-score cutoff (or 
cutoffs) on the comparison distribution at which the null hypothesis should be 
rejected, (b) the Z score on the comparison distribution for the sample score, 
and (c) your conclusion. Assume that all populations are normally distributed.

Population

Study � � Sample Score p Tails of Test

A 70 4 74 .05 1 (high predicted)

B 70 1 74 .01 2

C 70 2 76 .01 2

D 72 2 77 .01 2

E 72 2 68 .05 1 (low predicted)

 6. A psychologist studying the senses of taste and smell has carried out many stud-
ies in which students are given each of 20 different foods (apricot, chocolate, 
cherry, coffee, garlic, and so on). She administers each food by dropping a liquid 
on the tongue. Based on her past research, she knows that for students overall at 
the university, the mean number of the 20 foods that students can identify cor-
rectly is 14, with a standard deviation of 4, and the distribution of scores follows 
a normal curve. The psychologist wants to know whether people’s accuracy on 
this task has more to do with smell than with taste. In other words, she wants 
to test whether people do worse on the task when they are only able to taste the 
liquid compared to when they can both taste and smell it (note that this is a direc-
tional hypothesis). Thus, she sets up special procedures that keep a person from 
being able to use the sense of smell during the task. The psychologist then tries 
the procedure on one randomly selected student. This student is able to identify 
only 5 correctly. (a) Using the .05 significance level, what should the psycholo-
gist conclude? Solve this problem explicitly using all five steps of hypothesis 
testing and illustrate your answer with a sketch showing the comparison distri-
bution, the cutoff (or cutoffs), and the score of the sample on this distribution.  
(b) Then explain your answer to someone who has never had a course in statis-
tics (but who is familiar with mean, standard deviation, and Z scores).

 7. A psychologist is working with people who have had a particular type of major 
surgery. This psychologist proposes that people will recover from the opera-
tion more quickly if friends and family are in the room with them for the first 
48 hours after the operation. It is known that time to recover from this kind of 
surgery is normally distributed with a mean of 12 days and a standard deviation 
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of 5 days. The procedure of having friends and family in the room for the period 
after the surgery is tried with a randomly selected patient. This patient recov-
ers in 18 days. (a) Using the .01 significance level, what should the researcher 
 conclude? Solve this problem explicitly using all five steps of hypothesis test-
ing, and illustrate your answer with a sketch showing the comparison distri-
bution, the cutoff (or cutoffs), and the score of the sample on this distribution. 
(b) Then explain your answer to someone who has never had a course in statis-
tics (but who is familiar with mean, standard deviation, and Z scores).

 8. What is the effect of going through a natural disaster on the attitude of 
police chiefs about the goodness of the people in their city? A researcher 
studying this expects a more positive attitude (because of the many acts of 
heroism and helping of neighbors), but a more negative attitude is also pos-
sible (because of looting and scams). It is known that, using a 1-to-10 scale 
(from 1 = extremely negative attitude to 10 = extremely positive attitude), in 
general police chiefs’ attitudes about the goodness of the people in their cities 
is normally distributed, with a mean of 6.5 and a standard deviation of 2.1. A 
major earthquake has just occurred in an isolated city, and shortly afterward the  
researcher is able to give the attitude questionnaire to the police chief of 
that city. The chief’s score is 8.2. (a) Using the .05 significance level, what 
should the researcher conclude? Solve this problem explicitly using all five 
steps of hypothesis testing and illustrate your answer with a sketch show-
ing the comparison distribution, the cutoff (or cutoffs), and the score of the 
sample on this distribution. (b) Then explain your answer to someone who 
has never had a course in statistics (but who is familiar with mean, standard 
deviation, and Z scores).

 9. Robins and John (1997) carried out a study on narcissism (self-love), compar-
ing people who scored high versus low on a narcissism questionnaire. (An 
example item was, “If I ruled the world it would be a better place.”) They 
also had other questionnaires, including one that had an item about how many 
times the participant looked in the mirror on a typical day. In their results 
section, the researchers noted “. . . as predicted, high-narcissism individuals 
reported looking at themselves in the mirror more frequently than did low 
narcissism individuals (Ms = 5.7 vs. 4.8), . . . p 6 .05” (p. 39). Explain this 
result to a person who has never had a course in statistics. (Focus on the 
meaning of this result in terms of the general logic of hypothesis testing and 
statistical significance.)

 10. Reber and Kotovsky (1997), in a study of problem solving, described one of 
their results comparing a specific group of participants within their overall 
control condition as follows: “This group took an average of 179 moves to 
solve the puzzle, whereas the rest of the control participants took an aver-
age of 74 moves, t1192 = 3.31, p 6 .01” (p. 183). Explain this result to a 
person who has never had a course in statistics. (Focus on the meaning of 
this result in terms of the general logic of hypothesis testing and statistical 
significance.)

Set II
 11. List the five steps of hypothesis testing, and explain the procedure and logic of 

each.
 12. When a result is significant, explain why it is wrong to say the result “proves” 

the research hypothesis.
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 13. For each of the following, (a) state which two populations are being compared, 
(b) state the research hypothesis, (c) state the null hypothesis, and (d) say 
whether you should use a one-tailed or two-tailed test and why.

   i.  In an experiment, people are told to solve a problem by focusing on the 
details. Is the speed of solving the problem different for people who get 
such instructions compared to the speed for people who are given no special 
instructions?

  ii.  Based on anthropological reports in which the status of women is scored on 
a 10-point scale, the mean and standard deviation across many cultures are 
known. A new culture is found in which there is an unusual family arrange-
ment. The status of women is also rated in this culture. Do cultures with the 
unusual family arrangement provide higher status to women than cultures 
in general?

  iii.  Do people who live in big cities develop more stress-related conditions than 
people in general?

 14. Based on the information given for each of the following studies, decide 
whether to reject the null hypothesis. For each, give (a) the Z-score cutoff (or 
cutoffs) on the comparison distribution at which the null hypothesis should be 
rejected, (b) the Z score on the comparison distribution for the sample score, 
and (c) your conclusion. Assume that all populations are normally distributed.

Population

Study � � Sample Score p Tails of Test

A 5 1 7 .05 1 (high predicted)

B 5 1 7 .05 2

C 5 1 7 .01 1 (high predicted)

D 5 1 7 .01 2

 15. Based on the information given for each of the following studies, decide 
whether to reject the null hypothesis. For each, give (a) the Z-score cutoff (or 
cutoffs) on the comparison distribution at which the null hypothesis should be 
rejected, (b) the Z score on the comparison distribution for the sample score, 
and (c) your conclusion. Assume that all populations are normally distributed.

Population

Study �  � Sample Score p Tails of Test

A 100.0 10.0 80 .05 1 (low predicted)

B 100.0 20.0 80 .01 2

C 74.3 11.8 80 .01 2

D 16.9 1.2 80 .05 1 (low predicted)

E 88.1 12.7 80 .05 2

 16. A researcher wants to test whether a certain sound will make rats do worse 
on learning tasks. It is known that an ordinary rat can learn to run a particu-
lar maze correctly in 18 trials, with a standard deviation of 6. (The number of 
trials to learn this maze is normally distributed.) The researcher now tries an 
ordinary rat in the maze, but with the sound. The rat takes 38 trials to learn the 
maze. (a) Using the .05 level, what should the researcher conclude? Solve this 
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problem explicitly using all five steps of hypothesis testing, and illustrate your  
answer with a sketch showing the comparison distribution, the cutoff (or cut-
offs), and the score of the sample on this distribution. (b) Then explain your 
answer to someone who has never had a course in statistics (but who is familiar 
with mean, standard deviation, and Z scores).

 17. A family psychologist developed an elaborate training program to reduce the 
stress of childless men who marry women with adolescent children. It is known 
from previous research that such men, one month after moving in with their 
new wife and her children, have a stress level of 85 with a standard deviation 
of 15, and the stress levels are normally distributed. The training program is 
tried on one man randomly selected from all those in a particular city who dur-
ing the preceding month have married a woman with an adolescent child. After 
the training program, this man’s stress level is 60. (a) Using the .05 level, what 
should the researcher conclude? Solve this problem explicitly using all five 
steps of hypothesis testing and illustrate your answer with a sketch showing the 
comparison distribution, the cutoff (or cutoffs), and the score of the sample on 
this distribution. (b) Then explain your answer to someone who has never had 
a course in statistics (but who is familiar with mean, standard deviation, and  
Z scores).

 18. A researcher predicts that listening to music while solving math problems will 
make a particular brain area more active. To test this, a research participant has 
her brain scanned while listening to music and solving math problems, and the 
brain area of interest has a percentage signal change of 58. From many previous 
studies with this same math problems procedure (but not listening to  music), it 
is known that the signal change in this brain area is normally distributed with a 
mean of 35 and a standard deviation of 10. (a) Using the .01 level, what should 
the researcher conclude? Solve this problem explicitly using all five steps of 
hypothesis testing, and illustrate your answer with a sketch showing the com-
parison distribution, the cutoff (or cutoffs), and the score of the sample on this 
distribution. (b) Then explain your answer to someone who has never had a 
course in statistics (but who is familiar with mean, standard deviation, and  
Z scores).

 19. Pecukonis (1990), as part of a larger study, measured ego development (a mea-
sure of overall maturity) and ability to empathize with others among a group of 
24 aggressive adolescent girls in a residential treatment center. The girls were 
divided into high- and low-ego development groups, and the empathy (“cogni-
tive empathy”) scores of these two groups were compared. In his results sec-
tion, Pecukonis reported, “The average score on cognitive empathy for subjects 
scoring high on ego development was 22.1 as compared with 16.3 for low  
scorers, . . .  p 6 .005” (p. 68). Explain this result to a person who has never had 
a course in statistics. (Focus on the meaning of this result in terms of the general 
logic of hypothesis testing and statistical significance.)

 20. Bohnert and colleagues (2007) conducted a study comparing various aspects of 
social adjustment to college of male and female students during the summer be-
fore their first year of college (Time 1) and 10 months later (Time 2). Table 4-4 
shows the results of the study. The “t(83)” column gives details of the specific 
hypothesis testing procedure used in this study called a t test (which you will 
learn about in Chapters 7 and 8). In this study, the t test was used to compare 
the different types of social adjustment (such as friendship quality and loneli-
ness) between male and female students. Considering just the first two rows of 
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Chapter Notes

 1. We are simplifying a bit to make the initial learning easier. The research 
 hypothesis is that one population will walk earlier than the other, �1 6 �2. 
Thus, to be precise, its opposite is that the other group will either walk at the 
same time or later. That is, the opposite of the research hypothesis in this ex-
ample includes both no difference and a difference in the direction opposite to 
what we predicted. In terms of symbols, if our research hypothesis is �1 6 �2, 
then its opposite is �1 Ú �2 (the symbol “Ú” means “greater than or equal 
to”). We discuss this issue in some detail later in the chapter.

 2. In practice, since hypothesis testing is usually done using a computer program, 
you have to decide in advance only on the cutoff probability. The program 
output usually includes the exact probability of getting your result if the null 
 hypothesis were true. You then just compare the program output’s probability 
to see if it is less than the cutoff probability level you set in advance. However, 
to understand what these probability levels mean, you need to learn the entire 
process, including how to figure the Z score for a particular cutoff probability.

the table (the ratings of friendship quality and loneliness at Time 1), explain 
what these results mean to a person who has never had a course in statistics. 
(Focus on the meaning of the results in terms of the general logic of hypothesis 
testing and statistical significance.)

Table 4-4 Means and Standard Deviation for Main Study Variables by Gender

Total  
(n � 85)

Males  
(n � 31)

Females  
(n � 54) 

M SD M SD M SD t (83)

Adolescence (Time 1)

 Friendship quality 2.70 0.40 2.49 0.46 2.82 0.32 13.98***

 Loneliness 36.39 8.71 39.30 9.98 34.78 7.56 5.47*

Emerging adulthood (Time 2)

 Friendship quality 3.10 0.48 2.84 0.57 3.21 0.38 11.31***

 Loneliness 35.84 9.98 37.88 11.38 34.71 9.21 1.76

 Activities: Intensity 8.09 8.27 10.00 10.19 7.18 7.18 0.98

 Activities: Breadth 1.71 1.06 1.84 1.18 1.65 1.01 0.51

*p 6 .05. **p 6 .01. ***p 6 .001.

Source: Bohnert, A. M., Aikins, J. W., & Edidin, J. (2007). The role of organized activities in facilitating social adaptation across 
the transition to college. Journal of Adolescent Research, 22, 189–208. Sage Publications, Ltd. Reprinted by permission of 
Sage Publications, Thousands Oaks, London, and New Delhi.
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Chapter 5

Hypothesis Tests with Means of Samples

In Chapter 4, we introduced the basic logic of hypothesis testing. The studies we 
used as examples had a sample of a single individual. As we noted, however, in 
actual practice, psychology research almost always involves a sample of many 

individuals. In this chapter, we build on what you have learned so far and consider 
hypothesis testing with a sample of more than one individual. For example, a social 
psychologist is interested in the potential effect of perceptions of people’s personal-
ity on perceptions of their physical attractiveness. The researcher’s theory predicts 
that, if you are told that a person has positive personality qualities (such as kind-
ness, warmth, a sense of humor, and intelligence), you will rate that person as more 
attractive than if no mention had been made of the person’s personality qualities. 
From extensive previous research (in which no mention was made of personality 
qualities), the researcher has established the population mean and standard devia-
tion of the attractiveness rating of a photo of a particular person. The researcher then 
recruits a sample of 64 individuals to rate the attractiveness of the person in the 
photograph. However, prior to rating the person, each individual is told that  
the person whose photograph they are going to rate has many positive personality 
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qualities. In this chapter, you will learn how to test hypotheses in situations such 
as those presented in this example, situations in which the population has a known 
mean and standard deviation and in which a sample has more than one individual. 
Mainly, this requires examining in some detail a new kind of distribution, called a 
“distribution of means.” (We will return to this example later in the chapter.)

The Distribution of Means
Hypothesis testing in the usual research situation, where you are studying a sample 
of many individuals, is exactly the same as you learned in Chapter 4—with an 
 important exception. When you have more than one person in your sample, there 
is a special problem with Step ❷, determining the characteristics of the comparison 
distribution. In each of our examples so far, the comparison distribution has been  
a distribution of individual scores (such as the population of ages when individ-
ual babies start walking). A distribution of individual scores has been the correct 
comparison distribution because we have used examples with a sample of one in-
dividual. That is, there has been a match between the type of sample score we have 
been dealing with (a score from one individual) and the comparison distribution 
(a distribution of individual scores).

Now, consider the situation when you have a sample of, say, 64 individuals (as 
in the attractiveness rating example). You now have a group of 64 scores (an at-
tractiveness rating from each of the 64 people in the study). As you will recall from 
Chapter 2, the mean is a very useful representative value of a group of scores. Thus, 
the score you care about most when there is more than one individual in your sample 
is the mean of the group of scores. In this example, you would focus on the mean of 
the 64 individuals’ scores. Suppose you were to compare the mean of this sample 
of 64 individuals’ scores to a distribution of a population of individual scores. This 
would be a mismatch—like comparing apples to oranges. Instead, when you are 
interested in the mean of a sample of 64 scores, you need a comparison distribution 
that is a distribution of means of samples of 64 scores. We call such a comparison 
distribution a distribution of means. So, the scores in a distribution of means are 
means, not scores of single individuals.

A distribution of means is a distribution of the means of lots and lots of samples 
of the same size, with each sample randomly taken from the same population of 
individuals. (Statisticians also call this distribution of means a sampling distribution 
of the mean. In this book, however, we use the term distribution of means to keep it 
clear that we are talking about populations of means, not samples or a distribution 
of samples.)

The distribution of means is the correct comparison distribution when there is 
more than one person in a sample. Thus, in most research situations, determining the 
characteristics of a distribution of means is necessary for Step ❷ of the hypothesis-
testing procedure, determining the characteristics of the comparison distribution.

Building a Distribution of Means
To help you understand the idea of a distribution of means, we consider how you 
could build up such a distribution from an ordinary population distribution of indi-
vidual scores. Suppose our population of individual scores was of the grade levels 
of the 90,000 elementary and junior-high schoolchildren in a particular region. Sup-
pose further (to keep the example simple) that there are exactly 10,000 children at 
each grade level, from first through ninth grade. This population distribution would 

distribution of means distribution of 
means of samples of a given size from 
a population (also called a sampling 
distribution of the mean); comparison 
distribution when testing hypotheses 
involving a single sample of more than 
one individual.
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be rectangular, with a mean of 5, a variance of 6.67, and a standard deviation of 2.58 
(see Figure 5-1).

Next, suppose that you wrote each child’s grade level on a table tennis ball 
and put all 90,000 balls into a giant tub. The tub would have 10,000 balls with a 
1 on them, 10,000 with a 2 on them, and so forth. You stir up the balls in the tub 
and then take two of them out. You have taken a random sample of two balls. Sup-
pose one ball has a 2 on it and the other has a 9 on it. The mean grade level of this 
sample of two children’s grade levels is 5.5, the average of 2 and 9. Now you put 
the balls back, mix up all the balls, and select two balls again. Maybe this time 
you get two 4s, making the mean of your second sample 4. Then you try again; 
this time you get a 2 and a 7, making your mean 4.5. So far you have three means: 
5.5, 4, and 4.5.

Each of these three numbers is a mean of a sample of grade levels of two 
school children. And these three means can be thought of as a small distribution 
in its own right. The mean of this little distribution of means is 4.67 (the sum of 
5.5, 4, and 4.5, divided by 3). The variance of this distribution of means is .39 (the 
variance of 5.5, 4, and 4.5). The standard deviation of this distribution of means  
is .62 (the square root of .39). A histogram of this distribution of your three means 
is shown in Figure 5-2.

Suppose you continued selecting samples of two balls and taking the mean 
of the numbers on each pair of balls. The histogram of means would continue to 
grow. Figure 5-3 shows examples of distributions of means varying from a sample 
with just 50 means, up to a sample with 1,000 means (with each mean being of a 
sample of two randomly drawn balls). (We actually made the histograms shown in  
Figure 5-3 using a computer to make the random selections instead of using 90,000 
table tennis balls and a giant tub.)

As you can imagine, the method we just described is not a practical way of de-
termining the characteristics of a distribution of means. Fortunately, however, you 
can figure out the characteristics of a distribution of means directly, using some 
simple rules, without taking even one sample. The only information you need is  
(a) the characteristics of the distribution of the population of individuals and (b) the 
number of scores in each sample. (Don’t worry for now about how you could know 
the characteristics of the population of individuals.) The laborious method of build-
ing up a distribution of means in the way we have just considered and the concise 
method you will learn shortly give the same result. We have had you think of the 
process in terms of the painstaking method only to help you understand the idea of a 
distribution of means.

T I P  F O R  S U C C E S S
Before moving on to later chap-
ters, be sure you fully understand 
the idea of a distribution of means 
(and why it is the correct com-
parison distribution when a sample 
contains more than one individual). 
You may need to go through 
this chapter a couple of times to 
achieve full understanding of this 
crucial concept.
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Figure 5-1 Distribution of grade levels among 90,000 
schoolchildren (fictional data).
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Figure 5-2 Distribution of the means of 
three randomly taken samples of two schoolchil-
dren’s grade levels, each from a population of grade 
levels of 90,000 schoolchildren (fictional data).
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Determining the Characteristics of a Distribution of Means
Recall that Step ❷ of hypothesis testing involves determining the characteristics of 
the comparison distribution. The three key characteristics of the comparison distri-
bution that you need to determine are:

 1. Its mean.
 2. Its spread (which you measure using the variance and standard deviation).
 3. Its shape.

Notice three things about the distribution of means we built in our example, as 
shown in Figure 5-3:

 1. The mean of the distribution of means is about the same as the mean of the 
original population of individuals (both are 5).

 2. The spread of the distribution of means is less than the spread of the distribution 
of the population of individuals.

 3. The shape of the distribution of means is approximately normal.

The first two observations, regarding the mean and the spread, are true for all 
distributions of means. The third, regarding the shape, is true for most distributions 
of means. These three observations, in fact, illustrate three basic rules you can use 
to find the mean, the spread (that is, the variance and standard deviation), and the 
shape of any distribution of means without having to write on plastic balls and take 
endless samples.

Now let’s look at the three rules more closely. The first is for the mean of a 
distribution of means.

mean of a distribution of means the 
mean of a distribution of means of sam-
ples of a given size from a population; it 
comes out to be the same as the mean of 
the population of individuals.
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Figure 5-3 Histograms of means of two grade levels randomly selected from a large 
group of students with equal numbers of grades 1 through 9. Histograms are shown for 50 
such means, 200 such means, 400 such means, 600 such means, 800 such means, and 1,000 
such means. Notice that the histograms become increasingly like a normal curve as the num-
ber of means increases.
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Rule 1: The mean of a distribution of means is the same as the mean of the 
population of individuals. Stated as a formula,

 �M = � (5-1)

�M is the mean of the distribution of means. � is the mean of the population of 
individuals (it is a Greek letter because the distribution of means is also a kind of 
population).

Each sample is based on a group of randomly selected individuals from the popu-
lation of individuals. Thus, the mean of a sample will sometimes be higher and some-
times lower than the mean of the whole population of individuals. However, because 
the selection process is random and we are taking a very large number of samples, 
eventually the high means and the low means perfectly balance each other out.

In Figure 5-3, as the number of sample means in the distributions of means 
increases, the mean of the distribution of means becomes more similar to the mean 
of the population of individuals, which in this example was 5. It can be proven math-
ematically that, if you took an infinite number of samples, the mean of the distribution 
of means of these samples would come out to be exactly the same as the mean of the 
distribution of individuals.

The second rule is about spread. Rule 2a is for the variance of a distribution 
of means.

Rule 2a: The variance of a distribution of means is the variance of the 
population of individuals divided by the number of individuals in each 
sample. A distribution of means will be less spread out than the distribution of 
individuals from which the samples are taken. If you are taking a sample of two 
scores, it is less likely that both scores will be extreme. Further, for a particular ran-
dom sample to have an extreme mean, the two extreme scores would both have to be 
extreme in the same direction (both very high or both very low). Thus, having more 
than a single score in each sample has a moderating effect on the mean of such sam-
ples. In any one sample, the extremes tend to be balanced out by a middle score or 
by an extreme in the opposite direction. This makes each sample mean tend toward 
the middle and away from extreme values. With fewer extreme means, the variance 
of the means is less than the variance of the population of individuals.

Consider our example again. There were plenty of 1s and 9s in the population, 
making a fair amount of spread. That is, about a ninth of the time, if you were taking 
samples of single scores, you would get a 1, and about a ninth of the time you would 
get a 9. If you are taking samples of two at a time, you would get a sample with a 
mean of 1 (that is, in which both balls were 1s) or a mean of 9 (both balls 9s) much 
less often. Getting two balls that average out to a middle value such as 5 is much 
more likely. (This is because several combinations could give this result—1 and 9, 2 
and 8, 3 and 7, 4 and 6, or two 5s).

The more individuals in each sample, the less spread out the means of the 
samples will be. This is because, the more scores in each sample, the rarer it will 
be for extremes in any particular sample not to be balanced out by middle scores 
or extremes in the other direction. In terms of the table tennis balls in our ex-
ample, we rarely got a mean of 1 when taking samples of two balls at a time. If 
we were taking three balls at a time, getting a sample with a mean of 1 (all three 
balls would have to be 1s) is even less likely. Getting middle values for the means 
 becomes even more likely.

Using samples of two balls at a time, the variance of the distribution of means 
came out to about 3.34. This is half of the variance of the population of individuals, 

�M mean of a distribution of means.

variance of a distribution of 
means variance of the population 
divided by the number of scores in each 
sample.

The mean of a distribution of 
means is equal to the mean of 
the population of individuals.
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which was 6.67. If we had built up a distribution of means using samples of three 
balls each, the variance of the distribution of means would have been 2.22. This is 
one-third of the variance of our population of individuals. Had we randomly se-
lected five balls for each sample, the variance of the distribution of means would 
have been one-fifth of the variance of the population of individuals.

These examples follow a general rule—our Rule 2a for the distribution of 
means: the variance of a distribution of means is the variance of the population of 
individuals divided by the number of individuals in each of the samples. This rule 
holds in all situations and can be proven mathematically.

Here is Rule 2a stated as a formula:

 �2
M =

�2

N
 (5-2)

�2
M is the variance of the distribution of means. �2 is the variance of the popula-

tion of individuals, and N is the number of individuals in each sample.
In our example, the variance of the population of individual children’s grade 

levels was 6.67, and there were two children’s grade levels in each sample. Thus,

�2
M =

�2

N
=

6.67

2
= 3.34

To use a different example, suppose a population had a variance of 400 and you 
wanted to know the variance of a distribution of means of 25 individuals each:

�2
M =

�2

N
=

400

25
= 16

The second part of this rule tells us about the standard deviation of a distribu-
tion of means.

Rule 2b: The standard deviation of a distribution of means is the square 
root of the variance of the distribution of means. Stated as a formula,

 �M = 2�2
M = A

�2

N
 (5-3)

�M is the standard deviation of the distribution of means.1

The standard deviation of the distribution of means also has a special name of 
its own, the standard error of the mean (SEM), or the standard error (SE), for 
short. (Thus, �M also stands for the standard error.) It has this name because it tells 
you how much the means of samples are typically “in error” as estimates of the 
mean of the population of individuals. That is, it tells you how much the various 
means in the distribution of means tend to deviate from the mean of the population. 
We have more to say about the standard error later in the chapter.

Finally, the third rule for finding the characteristics of a distribution of means 
focuses on its shape.

Rule 3: The shape of a distribution of means is approximately normal if 
either (a) each sample is of 30 or more individuals or (b) the distribution of 
the population of individuals is normal. Whatever the shape of the distribution 
of the population of individuals, the distribution of means tends to be unimodal and 
symmetrical. In the grade-level example, the population distribution was rectangu-
lar. (It had an equal number at each value.) However, the shape of the distribution 

�2
M variance of a distribution of means.

standard deviation of a distribution 
of means square root of the variance 
of a distribution of means; also called 
standard error of the mean (SEM) and 
standard error (SE).

�M standard deviation of a distribution 
of means.

standard error of the mean (SEM) 
same as standard deviation of a 
distribution of means; also called 
standard error (SE).

standard error (SE) same as standard 
deviation of a distribution of means; also 
called standard error of the mean (SEM).

T I P  F O R  S U C C E S S
When you figure the variance of a 
distribution of means 1�2

M2, be sure 
to divide the population variance 
1�22 by the number of individuals in 
each sample. In many real research 
situations (and thus in many of the 
practice problems and examples 
in this book) you know the popula-
tion standard deviation 1�2 and not 
the population variance 1�22. Thus, 
before you use Formula 5-2, you 
first have to remember to square 
the population standard deviation 
to find the population variance 1�22. 
Then you can use the formula to 
find the variance of the distribution 
of means 1�2

M2.

The standard deviation of a 
distribution of means is the 
square root of the variance 
of the distribution of means 
and also the square root of 
the result of dividing the 
variance of the population of 
individuals by the number of 
individuals in each sample.

The variance of a distribution 
of means is the variance of 
the population of individuals 
divided by the number of 
 individuals in each sample.
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of 1,000 sample means (see Figure 5-3) was roughly that of a bell—unimodal and 
symmetrical. Had we taken many more than 1,000 samples, the shape would have 
been even more clearly unimodal and symmetrical.

A distribution of means tends to be unimodal because of the same basic pro-
cess of extremes balancing each other out that we noted in the discussion of the 
variance: middle scores for means are more likely, and extreme means are less 
likely. A distribution of means tends to be symmetrical because a lack of symmetry 
(skew) is caused by extremes. With fewer extremes, there is less asymmetry. In our 
grade-level example, the distribution of means we built up also came out so clearly 
symmetrical because the population distribution of individual grade levels was sym-
metrical. Had the population distribution of individuals been skewed to one side, the 
distribution of means would have still been skewed, but not as much.

The more individuals in each sample, the closer the distribution of means will 
be to a normal curve. Although the distribution of means will rarely be an exactly 
normal curve, with samples of 30 or more individuals (even with a nonnormal popu-
lation of individuals), the approximation of the distribution of means to a normal 
curve is very close and the percentages in the normal curve table will be extremely 
accurate.2,3 (That is, samples that are larger than 30 make for even slightly better 
approximations, but for most practical research purposes, the approximation with 
30 is quite good enough.) Finally, whenever the population distribution of individu-
als is normal, the distribution of means will be normal, regardless of the number of 
individuals in each sample.

Summary of Rules and Formulas for Determining  
the Characteristics of a Distribution of Means
Rule 1: The mean of a distribution of means is the same as the mean of the 
population of individuals: 

�M = �

Rule 2a: The variance of a distribution of means is the variance of the 
population of individuals divided by the number of individuals in each 
sample: 

�2
M =

�2

N

Rule 2b: The standard deviation of a distribution of means is the square 
root of the variance of the distribution of means: 

�M = 2�2
M = A

�2

N

Rule 3: The shape of a distribution of means is approximately normal if 
either (a) each sample is of 30 or more individuals or (b) the distribution 
of the population of individuals is normal. Figure 5-4 shows these three rules 
graphically.

These three rules are based on the central limit theorem, a fundamental prin-
ciple in mathematical statistics we mentioned in Chapter 3. A notable strength of 
the central limit theorem is that it provides the key characteristics (central tendency, 
variability, and shape) of a distribution of means for a population with a distribution 
of any shape.
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Example of Determining the Characteristics  
of a Distribution of Means
Think back to the example from the start of the chapter in which students rated 
the attractiveness of a person in a photograph. Consider the population of stu-
dents’ ratings of the person in the photograph (when students are told nothing 
about the personality characteristics of the person in the photograph). Suppose the 
distribution is approximately normal with a mean of 200 and a standard deviation  
of 48. What will be the characteristics of the distribution of means for samples of  
64 students?

Rule 1: The mean of a distribution of means is the same as the mean of the 
population of individuals. The mean of the population is 200. Thus, the mean of 
the distribution of means will also be 200. That is, �M = � = 200.

Rule 2a: The variance of a distribution of means is the variance of the 
population of individuals divided by the number of individuals in each 
sample. The standard deviation of the population of individuals is 48; thus, the 
variance of the population of individuals is 482, which is 2,304. The variance of the 
distribution of means is therefore 2,304 divided by 64 (the size of the sample). This 
comes out to 36. That is, �2

M = �2>N = 2,304>64 = 36.

• Same Mean
• Less Variance
• Normal if population is normal
 or regardless of population shape
 if samples each contain 30 or
 more scores

Distribution of the Population of Individuals

Distribution of Means

Figure 5-4 Comparing the distribution of the population of individuals (upper curve) 
and the distribution of means (lower curve).
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Rule 2b: The standard deviation of a distribution of means is the square 
root of the variance of the distribution of means. The standard de-
viation of the distribution of means is the square root of 36, which is 6. That is, 
�M = 2�2

M = 236 = 6.

Rule 3: The shape of a distribution of means is approximately normal if 
either (a) each sample is of 30 or more individuals or (b) the distribution 
of the population of individuals is normal. Our situation meets both of these 
conditions—the sample of 64 students is more than 30, and the population of indi-
viduals follows a normal distribution. Thus, the distribution of means will follow a 
normal curve. (It would have been enough even if only one of the two conditions 
had been met.)

Review of the Three Kinds of Distributions
We have considered three kinds of distributions: (1) the distribution of a population 
of individuals, (2) the distribution of a particular sample of individuals from that 
population, and (3) the distribution of means. Figure 5-5 shows these three kinds of 
distributions graphically and Table 5-1 describes them.

T I P  F O R  S U C C E S S
Be sure you fully understand the 
different types of distribution 
shown in Table 5-1 before you 
move on to later chapters. To 
check your understanding, cover 
up portions of the table and then 
try to recall the information that is 
covered up.

(a) (b) (c)

Figure 5-5 Three kinds of distributions: (a) the distribution of a population of 
individuals, (b) the distribution of a particular sample taken from that population, and (c) the 
distribution of means.

Table 5-1 Comparison of Three Types of Distributions

Population’s Distribution

Particular  
Sample’s  
Distribution

Distribution  
of Means

Content Scores of all individuals  
in the population

Scores of the individuals  
in a single sample

Means of samples randomly  
taken from the population

Shape Could be any shape; often  
normal

Could be any shape Approximately normal  
if samples have Ú30
individuals in each or if  
population is normal

Mean � M = (gX )>N �M = �

Variance �2 SD2 = [g1X - M )2]>N �2
M = �2>N

Standard  
deviation

� SD = 2SD 2 �M = 2�2
M
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Hypothesis Testing with a Distribution  
of Means: The Z Test
Now we are ready to turn to hypothesis testing when there is more than one individual 
in the study’s sample. The hypothesis testing procedure you will learn is called a Z test.

The Distribution of Means as the Comparison  
Distribution in Hypothesis Testing
In the usual research situation, a psychologist studies a sample of more than one person. 
In this situation, the distribution of means is the comparison distribution. It is the distri-
bution whose characteristics you need to determine for Step ❷ of the hypothesis-testing 

How are you doing?

 1. What is a distribution of means?
 2. Explain how you could create a distribution of means by taking a large num-

ber of samples of four individuals each.
 3. (a) Why is the mean of the distribution of means the same as the mean of the 

population of individuals? (b) Why is the variance of a distribution of means 
smaller than the variance of the distribution of the population of individuals?

 4. Write the formula for the variance of the distribution of means, and define 
each of the symbols.

 5. (a) What is the standard error? (b) Why does it have this name?
 6. A population of individuals that follows a normal curve has a mean of 60 and 

a standard deviation of 10. What are the characteristics of a distribution of 
means from this population for samples of four scores each?

Answers

 1. A distribution of means is a distribution of the means of a very large number 
of samples of the same size randomly taken from a population of individuals.

 2. Take a random sample of four scores from the population and figure its mean. 
Do this a very large number of times. Make a distribution of all of these means.

 3. (a) With randomly taken samples, some will have higher means and some 
lower means than those of the population of individuals; in the long run these 
have to balance out. (b) In any one sample, you are less likely to get several 
scores with an extreme mean than you are to get a single extreme score. 
This is because in any random sample it is highly unlikely to get several ex-
tremes in the same direction; extreme scores tend to be balanced out by 
middle scores or extremes in the opposite direction. Thus, with fewer ex-
treme scores and more middle scores, there is less variance.

 4. The formula for the variance of the distribution of means is: �2
M = �2>N. �2

M is 
the variance of the distribution of means; �2 is the variance of the population 
of individuals; N is the number of individuals in your sample.

 5. (a) The standard error is the standard deviation of the distribution of means. 
(b) It has this name because it tells you about how much means of samples 
typically (standardly) differ from the population mean, and thus tells you the 
typical (standard) amount that the means of samples are in error as estimates 
of the population mean.

 6. The characteristics of the distribution of means for samples of four scores 
each are as fol lows: �M = � = 60; �2

M = �2>N = 102>4 = 25; �M = 5; 
shape = normal.



 Hypothesis Tests with Means of Samples 149

process. The distribution of means is the distribution to which you compare your  
sample’s mean. It is this comparison that tells you how likely it is that you could have 
selected a sample with a mean that is this extreme if the null hypothesis were true.

Figuring the Z Score of a Sample’s Mean 
on the Distribution of Means
There can be some confusion in figuring the location of your sample on the compari-
son distribution in hypothesis testing with a sample of more than one. In this situation, 
you are finding a Z score of your sample’s mean on a distribution of means. (Before, 
you were finding the Z score of a single individual on a distribution of single indi-
viduals.) The method of changing the sample’s mean to a Z score is the same as the 
usual way of changing a raw score to a Z score. However, you have to be careful not 
to get mixed up because more than one mean is involved. It is important to remember 
that you are treating the sample mean like a single score. Recall that the ordinary for-
mula (from Chapter 3) for changing a raw score to a Z score is Z = 1X - M2>SD. In 
the present situation, you are actually using the following formula:

 Z =
M - �M

�M
 (5-4)

For example, suppose your sample’s mean is 18 and the distribution of means 
has a mean of 10 and a standard deviation of 4. The Z score of this sample mean 
is +2. Using the formula,

Z =
M - �M

�M
=

18 - 10

4
=

8

4
= 2

If you think back to Box 3-3 on surveys and the Gallup 
poll, you will recall that we left two important questions 
unanswered about fine print included with the results of a 
poll, saying something like, “From a telephone survey of 
1,000 American adults taken on June 4 and 5. Sampling 
error {3%.” First, you might wonder how such small 
numbers, like 1,000 (but rarely much less), can be used 
to predict the opinion of the entire U.S. population. Sec-
ond, after working through the material in this chapter on 
the standard deviation of the distribution of means, you 
may wonder what the term sampling error means when a 
sample is not randomly sampled but rather selected by the 
complicated probability method used for polls.

Regarding sample size, you know from this chapter 
that large sample sizes, like 1,000, greatly reduce the 
standard deviation of the distribution of means. That is, 
the curve becomes very high and narrow, gathered all 
around the population mean. The mean of any sample of 
that size is very close to being the population mean.

When a sample is only a small part of a very large pop-
ulation, the sample’s absolute size is the only determiner 

BOX 5-1   More About Polls: Sampling Errors and Errors 
in Thinking About Samples

of accuracy. This absolute size determines the impact of 
the random errors of measurement and selection. What 
remains important is reducing bias or systematic error, 
which can be done only by careful planning.

As for the term sampling error, it is worked out ac-
cording to past experience with the sampling procedures 
used. It is given in tables for different sample sizes (usu-
ally below 1,000, because that is where error increases 
dramatically).

So the number of people polled is not very impor-
tant (provided that it is at least 1,000 or so), but what 
matters very much are the methods of sampling and 
estimating error, which will not be reported in the de-
tail necessary to judge whether the results are reliable. 
The reputation of the organization doing the survey is 
probably the best criterion. If the sampling and error- 
estimating approach is not revealed at all, be cautious. 
For more information about how polls are conducted, 
go to http://media.gallup.com/PDF/FAQ/HowArePolls.
pdf (note that sampling error is referred to as “margin 
of error” on the Web site).

The Z score for the sample’s 
mean on the distribution of 
means is the sample’s mean 
minus the mean of the distri-
bution of means, divided by 
the standard deviation of the 
distribution of means.

http://media.gallup.com/PDF/FAQ/HowArePolls.pdf
http://media.gallup.com/PDF/FAQ/HowArePolls.pdf
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This is shown in Figure 5-6.
The hypothesis test you are learning in this chapter is called a Z test, because 

you figure the Z score for your sample’s mean.

Example
Let’s return again to our example of whether being told a person has positive personal-
ity qualities increases ratings of the physical attractiveness of that person. The social 
psychologist asks 64 randomly selected students to rate the attractiveness of a particular 
person in a photograph. Prior to rating the attractiveness of the person, each student 
is told that the person has positive personality qualities (kindness, warmth, a sense of 
humor, and intelligence). On a scale of 0 (the lowest possible attractiveness) to 400 (the 
highest possible attractiveness), the mean attractiveness rating given by the 64 students 
is 220. From extensive previous research, the psychologist knows the distribution of 
attractiveness ratings of the person in the photograph (when there has been no mention 
of the person’s personality qualities). Those ratings when nothing is mentioned about 
the personality have a mean of 200 and a standard deviation of 48, and they follow an 
approximately normal distribution. This distribution is shown in Figure 5-7a.4

Now let’s carry out the Z test by following the five steps of hypothesis testing 
you learned in Chapter 4:

 ❶ Restate the question as a research hypothesis and a null hypothesis about 
the populations. The two populations are these:

Population 1: Students who are told that the person has positive personality 
qualities.
Population 2: Students in general (who are told nothing about the person’s person-
ality qualities).

Z test hypothesis-testing procedure in 
which there is a single sample and the 
population variance is known.

T I P  F O R  S U C C E S S
As in Chapter 4, Population 2 is the 
population for the comparison dis-
tribution, which is the distribution 
that shows the population situation 
if the null  hypothesis is true.

2 106 14 18

Z Scores:

Raw Scores:

0 +2+1−2 −1

18

Figure 5-6 Z score for the mean of a particular sample on the distribution of means.
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The research hypothesis is that the population of students who are told that the 
person has positive personality qualities will on the average give higher attractive-
ness scores for that person than the population of students who are told nothing 
about the person’s personality qualities: �1 7 �2. The null hypothesis is that Pop-
ulation 1’s scores will not on the average be higher than Population 2’s: �1 … �2. 
Note that these are directional hypotheses. The researcher wants to know if being 
told that the person has positive personality qualities will increase attractiveness 
scores; a result in the opposite direction would not be relevant to the theory the 
researcher is testing.

200

Z Scores: 0 +1

300

+2−1−2

100Test Scores: 280260240220180160140120

0

200

21

206 212

220

(a)

(b)

(c)

μ = 200

σ2 = 2,304

σ = 48

μM = 200

σM
2 = 36

M = 220
N = 64

Figure 5-7 For the fictional study of positive personality qualities and ratings of 
physical attractiveness, (a) the distribution of the population of individuals, (b) the distribu-
tion of means (the comparison distribution), and (c) the sample’s distribution. The shaded 
area in the distribution of means is the rejection region—the area in which the null hypothesis 
will be rejected if the study’s sample mean turns out to be in that area.
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 ❷ Determine the characteristics of the comparison distribution. The result of the 
study will be a mean of a sample of 64 individuals (students in this case). Thus, 
the comparison distribution has to be the distribution of means of samples of  
64 individuals each. This comparison distribution will have a mean of 200 
(the same as the population mean). That is, as we saw earlier in the chapter, 
�M = 200. Its variance will be the population variance divided by the number of 
individuals in the sample. The population variance, �2, is 2,304 (the population 
standard deviation of 48 squared); the sample size is 64. Thus, the variance of the 
distribution of means, �2

M will be 2,304/64, or 36. The standard deviation of the 
distribution of means, �M is the square root of 36, or 6. Finally, because there are 
more than 30 individuals in the sample, the shape of the distribution of means will 
be approximately normal. Figure 5-7b shows this distribution of means.

 ❸ Determine the cutoff sample score on the comparison distribution at which 
the null hypothesis should be rejected. Let’s assume the researcher decides to 
use the standard 5% significance level. As we noted in Step ❶, the researcher 
is making a directional prediction. Hence, the researcher will reject the null hy-
pothesis if the result is in the top 5% of the comparison distribution. The com-
parison distribution (the distribution of means) is a normal curve. Thus, the top 
5% can be found from the normal curve table. It starts at a Z of +1.64. This top 
5% is shown as the shaded area in Figure 5-7b.

 ❹ Determine your sample’s score on the comparison distribution. The result 
of the (fictional) study is that the 64 students told that the person has positive 
personality qualities gave a mean attractiveness rating of 220. (This sample’s 
distribution is shown in Figure 5-7c.) A mean of 220 is 3.33 standard deviations 
above the mean of the distribution of means:

Z =
M - �M

�M
=

220 - 200

6
=

20

6
= 3.33

 ❺ Decide whether to reject the null hypothesis. We set the minimum Z score to 
reject the null hypothesis to +1.64. The Z score of the sample’s mean is +3.33. 
Thus, the social psychologist will reject the null hypothesis and conclude  
that the research hypothesis is supported. To put this another way, the result 
of the Z test is statistically significant at the p 6 .05 level. You can see this 
in Figure 5-7b. Note how extreme the sample’s mean is on the distribution of 
means (the distribution that would apply if the null hypothesis were true). The 
final conclusion is that, among students, being told that a person has positive 
personality qualities does increase the attractiveness ratings of that person.  
(Results of actual studies show this effect, as well as showing that if you have 
heard negative information about a person, you then rate them as less physically 
attractive; e.g., Lewandowski, Aron, & Gee, 2007.)

A Second Example
Suppose a researcher wants to test the effect of a communication skills workshop on 
students’ use of verbal fillers during a presentation. Verbal fillers are words such as 
“um,” “uh,” and “you know” that people commonly use in conversations and when 
giving presentations. The researcher conducts a study in which 25 students attend 
communication skills workshops and then give a half-hour presentation on a topic 
of their choice. The presentations are recorded and the researcher later counts the 
number of verbal fillers each student used during his or her presentation. In this fic-
tional example, we assume it is known from previous studies that students typically 
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use a mean of 53 verbal fillers during a half-hour presentation of this kind, with a 
standard deviation of 7, and the distribution of verbal fillers follows a normal curve 
(see Figure 5-8a). The 25 students who took a communication skills workshop used 
a mean of 48 verbal fillers. The researcher wants to carry out the Z test using the 
1% significance level, and an effect in either direction would be important (that is, 
the researcher is interested in whether communications workshops could increase or 
 decrease the use of verbal fillers).

 ❶ Restate the question as a research hypothesis and a null hypothesis about 
the populations. The two populations are:

Population 1: Students who attend a communication skills workshop.
Population 2: Students in general (who do not attend a communication skills 
workshop).

39

–2

Memory Scores

Z Scores

46

–1

53

0

60

+1

(a)

(b)

μ = 53

σ2 = 49

σ = 7

67

+2

53

0

54.4

+1

55.8

+2

48.8

–3

50.2

–2

51.6

–1

48

μM = 53

σM
2 = 1.96

σM = 1.40

(c)

M = 48
N = 25

Figure 5-8 For the fictional study of the use of verbal filters in a presentation, (a) the 
distribution of the population of individuals, (b) the distribution of means (the comparison 
distribution), and (c) the sample’s distribution. The shaded areas in the distribution of means 
are the rejection regions—the areas in which the null hypothesis will be rejected if the study’s 
sample mean turns out to be in that area.
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  The research hypothesis is that the population of students who attend a com-
munication skills workshop will use a different number of verbal fillers dur-
ing a presentation than students in general: �1 � �2. The null hypothesis 
is that Population 1’s scores are on the average the same as Population 2’s: 
�1 = �2.

 ❷ Determine the characteristics of the comparison distribution. 
This comparison distribution is a distribution of means. It has a mean 
of 53 (the same as the population mean). Its variance is the popula-
tion variance divided by 25, the number of individuals in the sample: 
�2

M = �2>N = 72>25 = 49>25 = 1.96; �M = 21.96 = 1.40.  I ts  shape is 
normal, since the population of individual verbal filler scores is normally dis-
tributed. (Figure 5-8b shows the comparison distribution.)

 ❸ Determine the cutoff sample score on the comparison distribution at which 
the null hypothesis should be rejected. This is a two-tailed test (the researcher 
is interested in an effect in either direction) at the overall 1% significance level. 
Based on the normal curve table for the top and bottom .5%, the cutoffs are 
+2.58 and -2.58 (see tiny shaded areas in Figure 5-8b).

 ❹ Determine your sample’s score on the comparison distribution. The sample’s 
mean was 48 (see Figure 5-8c). This comes out to a Z of  -3.57 on the compari-
son distribution: Z = 1M - �M2>�M = 148 - 532>1.40 = -5>1.40 = -3.57.

 ❺ Decide whether to reject the null hypothesis. The Z score of the sample’s 
mean is -3.57, which is more extreme than the cutoffs of {2.58. Thus, the 
researchers would reject the null hypothesis and conclude that the research hy-
pothesis is supported. To put this another way, the result of the Z test is statisti-
cally significant at the p 6 .01 level. You can see this in Figure 5-8b. Note 
how extreme the sample’s mean is on the distribution of means (the distribution 
that would apply if the null hypothesis were true). The final conclusion is that 
students’ use of verbal fillers during a presentation decreases after attending a 
communication skills workshop.

When you next give a presentation, ask a friend to count the number of times 
you use verbal fillers (such as “um,” “uh,” and “you know”), or record the presenta-
tion and count your own verbal fillers. Verbal fillers can be distracting to listeners 
and may hurt the quality of a presentation. Communications specialists recommend 
replacing verbal fillers with brief pauses (that allow you to gather your thoughts) 
(O’Hair et al., 2009).

How are you doing?

 1. How is hypothesis testing with a sample of more than one person different 
from hypothesis testing with a sample of a single person?

 2. How do you find the Z score for the sample’s mean on the distribution of 
means?

 3. A team of researchers predict that showing a certain film will change people’s 
attitudes toward alcohol. The researchers then randomly select 36 people, 
show them the film, and give them an attitude questionnaire. The mean score 
on the attitude test for these 36 people is 70. The score for people in general 
on this test is 75, with a standard deviation of 12. Using the five steps of 
hypothesis testing and the 5% significance level, carry out a Z test to see if 
viewing the film changes people’s attitudes toward alcohol.
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Controversy: Marginal Significance
A long-standing controversy regarding significance testing is what to do when a  
result does not make the cutoff value at the usual 5% level but comes very close (say, 
p 6 .10). This is often called “marginal significance,” “approaching significance,” 
or a “near significant trend.” A few years ago, the controversy was spotlighted on an 
email listserv for social and personality psychologists. The discussion began when the 
following note was posted by Todd Nelson (California State University Stanislaus):

Throughout my ph.d. training . . . it was common parlance to refer to . . . P-values of 
between .05 and .10 as “marginally significant.” It was a very common term in all the 
major social psychological journals . . . and among my professors.

The other day, in a thesis defense I was chairing, I was dumfounded when the 
other thesis committee members strongly objected to the term “marginally significant” 
in the student’s results section . . . both saying they had NEVER heard of the term (!).

Wanting to make sure I was still on planet Earth, I consulted several statistics 
and research textbooks in my office, and found a few that referred to “marginal sig-
nificance” and several articles by noted statisticians who make the case for discussing 
results in the .05–.10 range . . .  

[H]ave you heard of this term . . .? Do you use it and teach it? If so, why? If not, 
what is your objection?

Almost immediately, there were more than 100 responses! First, it  
quickly became clear that calling results that are close “marginally significant” 
is indeed a common practice in many areas of psychology. As Frank LoSchiavo 

Answers

 1. In hypothesis testing with a sample of more than one person, the comparison 
distribution is a distribution of means.

 2. You use the usual formula for changing a raw score to a Z score, but using 
the mean and standard deviation of the distribution of means. The formula is 
Z = 1M - �M2>�M.

 3. ❶  Restate the question as a research hypothesis and a null hypothesis 

about the populations. The two populations are:
  Population 1: People shown the film.
  Population 2: People in general (who are not shown the film).
   The research hypothesis is that the mean attitude of the population shown 

the film is different from the mean attitude of the population of people 
in general: �1 � �2. The null hypothesis is that the populations have the 
same mean attitude score: �1 = �2.

  ❷  Determine the characteristics of the comparison distribution. �M =
� = 75; �2

M = �2>N = 122>36 = 144>36 = 4; �M = 2; shape is normal.
  ❸  Determine the cutoff sample score on the comparison distribution at 

which the null hypothesis should be rejected. Two-tailed cutoffs, 5% 
significance levels are +1.96 and -1.96.

  ❹  Determine your sample’s score on the comparison distribution. 
Z = 1M - �M2>�M = 170 - 752>2 = -2.50.

  ❺  Decide whether to reject the null hypothesis. The Z score of the sam-
ple’s mean is -2.50, which is more extreme than -1.96; reject the null 
hypothesis. Seeing the film does appear to change attitudes.
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(Ohio University) put it, “It sounds like it is the other committee members who are 
not on Earth.”

But it also became clear that while it may be fairly common, many think it is 
a bad idea. Charles Stangor (University of Maryland) called it a “completely bogus 
concept . . . used to make us poor scientists feel better when our results are close but 
no cigar.” Tricia Yurak (Rowan University) called it “a fudge term that I won’t use” 
adding that “even if I get a p value of .07, I will report it as not significant.” Rich-
ard St. Jean (University of Prince Edward Island) recalls “one of my stats profes-
sors said calling a finding marginally significant is like calling a woman marginally 
pregnant! The principle is that it is an all or none decision . . . ” David Washburn 
(Georgia State University) explains the logic: “One decides in advance or by con-
vention to call p 6 .05 effects ‘significant’. . . . [T]erms like ‘marginally significant’ 
are counterfactuals—like saying you ‘almost did’ something that you didn’t do.” As 
several of the email posts noted, the argument was spelled out in some detail in an 
article by Chet Insko (2002; University of North Carolina):

. . . null-hypothesis testing depends on traditional two-valued logic. Thus, one either 
rejects or fails to reject the null hypothesis, and rejection of the null hypothesis al-
lows for acceptance of the logical contradictory of the null hypothesis, the research 
hypothesis. The crucial point here is that deductive logic is two valued; for example, 
Socrates is or is not mortal. . . . A logician would not, for example, conclude that 
Socrates is marginally mortal. Since null-hypothesis testing depends on logic, only 
two-valued distinctions can be made, and this, of course, requires a single cut point 
to differentiate significant test statistics from nonsignificant test statistics. (p. 1331)

However, the majority opinion among those responding was expressed by  
Warren Thorngate (Carleton University): “. . . people who adhere to the ‘0.05 or 
nothing!’ philosophy either need to be reeducated or enter therapy.” Phoebe Ells-
worth (University of Michigan) added that “to act as though there is a gulf between 
.05 and .06 is not maintaining high standards; it is idiocy.” The point here is that .05 
is an arbitrary convention. Indeed, many quoted a comment in an influential article 
by Rosnow and Rosenthal (1989) “. . . surely God loves the .06 nearly as much as the 
.05” (p. 1277). In addition, many noted that it is more important to emphasize the 
size of the effect and the power of the study, issues we consider in the next chapter. 
Also, several mentioned that such “near significant results” may be appropriate par-
ticularly when there are related results that are clearly significant (for example, if a 
study of the effects on stress is significant when using a questionnaire measure and 
is also near significant when using a physiological measure). Finally, quite a few 
people emphasized that the acceptability of reporting such results varies consider-
ably among different specialty areas of psychology.

Hypothesis Tests About Means  
of Samples (Z Tests) and Standard 
Errors in Research Articles
As we have noted several times, research in which there is a known population mean 
and standard deviation is quite rare in psychology. Thus, you will not often see a  
Z test in a research article. We have asked you to learn about this situation mainly 
as another crucial building block for understanding hypothesis testing in more  
common research situations. Still, Z tests do show up now and then.
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Here is an example. As part of a larger study, Wiseman (1997) gave a loneliness 
test to a group of college students in Israel. As a first step in examining the results, 
Wiseman checked that the average score on the loneliness test was not significantly 
different from a known population distribution based on a large U.S. study of  
university students that had been conducted earlier by Russell and colleagues (1980). 
Wiseman reported:

. . . [T]he mean loneliness scores of the current Israeli sample were similar to those of 
Russell et al.’s (1980) university sample for both males (Israeli: M = 38.74, SD = 9.30; 
Russell: M = 37.06, SD = 10.91; z = 1.09, NS) and females (Israeli: M = 36.39, 
SD = 8.87; Russell: M = 36.06, SD = 10.11; z = .25, NS). (p. 291)

In this example, the researcher gives the standard deviation for both the sam-
ple studied (the Israeli group) and the population (the data from Russell). How-
ever, in the steps of figuring each Z (the sample’s score on the distribution of 
means), the researcher would have used the standard deviation only of the popula-
tion. Notice also that the researcher took the nonsignificance of the difference as 
support for the sample means being “similar” to the population means. However, 
the researcher was very careful not to claim that these results showed there was 
“no difference.”

Of the topics we have covered in this chapter, the one you are most likely 
to see in a research article is the standard deviation of the distribution of means, 
used to describe the amount of variation that might be expected among means of 
samples of a given size from this population. In this context, it is usually called 
the standard error (SE) or standard error of the mean (SEM). Standard errors are 
typically shown in research articles as the lines that go above (and sometimes 
also below) the tops of the bars in a bar graph; these lines are called error bars. 
For example, Ginoa and Flynn (2011) examined whether gift recipients are more 
appreciative of a gift they requested compared to one that they did not request. In 
one of their studies, 198 married adults completed an online survey about giving 
and receiving wedding gifts. The participants were randomly assigned to recall 
wedding gifts in one of four conditions: (a) receiving a gift at their own wedding 
that was not on their gift registry, (b) receiving a gift at their own wedding they 
had requested on their gift registry, (c) giving a gift at someone else’s wedding 
that was not on the receipient’s gift registry, and (d) giving a gift at someone 
else’s wedding that was on the recipient’s gift registry. The participants then an-
swered five questions (on a scale from 1 = not at all to 7 = to a great extent) 
about how much they appreciated receiving the gift or how much they think the 
recipient appreciated the gift. Each participant’s responses across the five ques-
tions were averaged to create a measure of overall appreciation. Their results are 
shown in Figure 5-9, which includes error bars. Interestingly, the results showed 
that gift recipients reported greater appreciation for requested than unrequested 
gifts. However, gift givers indicated that they thought the recipients of their gifts 
were equally  appreciative, regardless of whether the gift had been requested or 
not. The title of the article nicely summarized the main findings of Ginoa and 
Flynn’s (2011)  research: “Give them what they want: The benefits of explicitness 
in gift exchange.”

Error bars have been standard on bar graphs in certain areas of psychology, 
such as perception and neuroscience for a long time, but in recent years their use has 
 become increasingly common throughout the field (Cumming et al., 2007). 
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Advanced Topic: Estimation, Standard Errors,  
and Confidence Intervals
Hypothesis testing is our main focus in this book. However, there is another kind 
of statistical question related to the distribution of means that is also important in 
psychology: estimating the population mean based on the scores in a sample. Tra-
ditionally, this has been very important in survey research. However, it is often also 
important in experimental research (e.g., Wilkinson and Task Force on Statistical 
Inference, 1999) and can even serve as an alternative approach to hypothesis testing.

Estimating the Population Mean When It Is Unknown
When the population mean is unknown, the best estimate of the population mean is 
the sample mean. In the study of students who were told about a person’s positive 
personality qualities, the mean attractiveness rating given to that person by the sam-
ple of 64 students was 220. Thus, 220 is the best estimate of the mean attractiveness 
rating that would be given by the unknown population of students who would ever 
be told about a person’s positive personality qualities.

How accurate is the sample mean as an estimate of the population mean? A way 
to get at this question is to ask, “How much do means of samples from a population 
vary?” Fortunately we have already thought about this question when considering the 
distribution of means. The variation in means of samples from a population is the vari-
ation in the distribution of means. The standard deviation of this distribution of means, 
the standard error of the mean, is thus a measure of how much the means of samples 
vary from the overall population mean. (As we noted earlier, just because researchers 
are often interested in using a mean of a sample to estimate the population mean, this 
variation in the distribution of means is thought of as “error” and we give the name 
“standard error of the mean” to the standard deviation of a distribution of means.)

In our example, the accuracy of our estimate of 220 for the mean of the popula-
tion of students who are told about the person’s positive personality qualities is the 
standard error, which we figured earlier to be 6.

Unrequested Gift

7

6

5

4

3
Unrequested GiftRequested Gift Requested Gift

Gift Recipient Gift Giver

Figure 5-9 Appreciation ratings by condition, Study I. Error bars represent standard errors.

Source: Ginoa, F., & Flynn, F. J. (2011). Give them what they want: The benefits of explicitness in gift 
exchange. Journal of Experimental Social Psychology, 47, 915–922. Reproduced by permission of Else-
vier publishers.
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Range of Possible Means Likely to Include  
the Population Mean
You may also want to estimate the range of possible means that are likely to 
include the population mean. Consider our estimate of 220 with a standard error 
of 6. Now follow this closely: suppose you took a mean from our distribution of 
means; it is 34% likely you would get a mean between 220 (the mean of the distribution 
of means) and 226 (one standard error above 220). This is because the distribution 
of means is a normal curve. Thus, the standard error is 1 standard deviation on that 
curve, and 34% of a normal curve is between the mean and 1 standard deviation 
above the mean. From this reasoning, we could also figure that another 34% should 
be between 220 and 214 (1 standard error below 220). Putting this together, we have 
a region from 214 to 226 that we are 68% confident should include the population 
mean if our sample was randomly taken from this population.5 (See Figure 5-10a.)

This is an example of a confidence interval (usually abbreviated CI). We 
would call it the “68% confidence interval.” The upper and lower ends of a confi-
dence interval are called confidence limits. In this example, the confidence limits 
for the 68% confidence interval are 214 and 226 (see Figure 5-10a).

Let’s review the logic: based on our knowledge of a sample’s mean, we are try-
ing to estimate the mean of the population that sample came from. Our best estimate 
of the population mean has to be our sample mean. What we don’t know is how 

confidence interval (CI) roughly 
speaking, the range of scores (that is, 
the scores between an upper and lower 
value) that is likely to include the true 
population mean; more precisely, the 
range of possible population means from 
which it is not highly unlikely that you 
could have obtained your sample mean.

confidence limit upper or lower value 
of a confidence interval.

68%
(a)

95%
(b)

99%
(c)

220 226 231.76208.24 214

0 +1 +2–2 –1

235.48204.52

Figure 5-10 A distribution of means and the (a) 68%, (b) 95%, and (c) 99% confi-
dence intervals for students rating the physical attractiveness of a person after being told that 
the person has positive personality qualities (fictional data).
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good an estimate it is. If sample means from that population could vary a lot, then 
we cannot be very confident that our estimate is close to the true population mean. 
But if the sample means are likely all to be very close to the true population mean, 
we can assume our estimate is pretty close. To get a sense of how accurate our es-
timate is, we can use our knowledge of the normal curve to estimate the range of 
possible means that are likely to include the population mean. This estimate of the 
range of means is called a confidence interval.

The 95% and 99% Confidence Intervals
Normally, you would want to be more than 68% confident about your estimates. 
Thus, when figuring confidence intervals, psychologists use 95% or even 99% confi-
dence intervals. These are figured based on the distribution of means for the area that 
includes the middle 95% or middle 99%. For the 95% confidence interval, you want 
the area in a normal curve on each side between the mean and the Z score that includes 
47.5% (47.5% plus 47.5% adds up to 95%). The normal curve table shows this to be 
1.96. Thus, in terms of Z scores, the 95% confidence interval is from -1.96 to +1.96 
on the distribution of means. Changing these Z scores to raw scores for the attractive-
ness ratings example gives an interval of 208.24 to 231.76 (see Figure 5-10b). That 
is, for the lower confidence limit, 1-1.962162 + 220 = 11.76 + 220 = 208.24; for 
the upper confidence limit, 11.962162 + 220 = 11.76 + 220 = 231.76. In sum, 
based on the sample of 64 students who were told about the person’s positive per-
sonality qualities, you can be 95% confident that the true population mean for such 
students is between 208.24 and 231.76 (see Figure 5-10b).

For a 99% confidence interval, you use the Z scores for the middle 99% of the 
normal curve (the part that includes 49.5% above and below the mean). This comes 
out to {2.58.  Changing this to raw scores, the 99% confidence interval is from 
204.52 to 235.48 (see Figure 5-10c).

Notice in Figure 5-10 that the greater the confidence is, the broader is the confi-
dence interval. In our example, you could be 68% confident that the true population 
mean is between 214 and 226; but you could be 95% confident that it is between 
208.24 and 231.76 and 99% confident it is between 204.52 and 235.48. This is a 
general principle. It makes sense that you need a wider range of possibility to be 
more certain that you are right.

Steps for Figuring Confidence Limits
There are two steps for figuring confidence limits. These steps assume that the dis-
tribution of means is approximately a normal distribution.

 ❶ Figure the standard error. That is, find the standard deviation of the distribu-
tion of means in the usual way:

�M = 2�2
M = A

�2

N

 ❷ For the 95% confidence interval, figure the raw scores for 1.96 standard errors 
above and below the sample mean; for the 99% confidence interval, figure the 
raw scores for 2.58 standard errors above and below the sample mean. To fig-
ure these raw scores, first multiply 1.96 or 2.58 by the standard error, then add this to 
the mean for the upper limit and subtract this from the mean for the lower limit.

   In terms of the overall figuring, once you know the standard error, the up-
per limit of the 95% confidence interval is equal to the sample mean plus 1.96 
multiplied by the standard error of the mean: upper limit =  M + 11.9621�M2; 
the lower limit is the sample mean minus 1.96 multiplied by the standard error: 

95% confidence interval confidence 
interval in which, roughly speaking, 
there is a 95% chance that the population 
mean falls within this interval.

99% confidence interval confidence 
interval in which, roughly speaking, 
there is a 99% chance that the population 
mean falls within this interval.
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lower limit = M - 11.9621�M2. For the 99% CI, the computation for the up-
per limit is: M + 12.5821�M2; the lower 99% CI limit is M - 12.5821�M2.

Example  Let’s find the 99% confidence interval for the verbal fillers example 
from earlier in the chapter. Recall that, in that example, the number of verbal fillers 
used by students in the general population (that is, students who had not attended a 
communication skills workshop) was normally distributed with a mean of 53 and a 
standard deviation of 7. The 25 students who attended a communication skills work-
shop used a mean of 48 fillers.

 ❶ Figure the standard error.  �M = A
�2

N
= A

72

25
= 21.96 = 1.40.

 ❷ For the 95% confidence interval, figure the raw scores for 1.96 stan-
dard errors above and below the sample mean; for the 99% confidence 
interval, figure the raw scores for 2.58 standard errors above and below 
the sample mean. You want the 99% confidence interval. Thus, first multi-
ply 2.58 by 1.40 to get 3.61, which is how far the confidence limit is from 
the mean. For the upper confidence limit, add this distance to the sample 
mean: 48 + 3.61 = 51.61. In terms of the overall calculations, upper limit 
=  M + 12.5821�M2 = 48 + 12.582 11.402 = 51.61. For the lower confidence 
limit, subtract 3.61 (the results of multiplying 2.58 by 1.40) from 48, the mean 
of the sample, which gives 44.39. In terms of the overall calculations, lower 
limit = 48 - 12.58211.402 = 44.39. 

   Thus, based on this sample of 25 students, you can be 99% confident that 
an interval from 44.39 to 51.61 includes the true population mean.

The Subtle Logic of Confidence Intervals
If you understand the preceding explanation, it will be sufficient for practical purposes 
in working with confidence intervals. Basically, confidence intervals tell you the range 
of means that you can be pretty sure include the true population mean. However, if you 
want to think deeply about the situation, there is a subtle issue about precisely what 
these numbers mean. (What follows is kind of an “advanced, advanced” topic section!)

Strictly speaking, consider what we are figuring to be, say, a 95% confidence 
interval. We are figuring it as the range of means that are 95% likely to come from 
a population with a true mean that happens to be the mean of our sample. However, 
what we really want to know is the range that is 95% likely to include the true popu-
lation mean. This we cannot know. That is, we are figuring one thing and really want 
to know another. Read this paragraph again and think about it. It is easy to miss this 
subtle but logically significant twist.

The way this awkward situation has been dealt with traditionally by most research-
ers is just to ignore this subtlety. Researchers who are more sophisticated statistically 
are comfortable with the situation by emphasizing that what we actually say is that we  
are 95% confident that the true mean is in this range. That is, by using this language, 
we are acknowledging that what we are doing is really a bit backward, but it is the best we 
can do! “Confidence” is closer to the subjective interpretation of probability we discussed 
in Chapter 3. In fact, “confidence” is meant to be a slightly vaguer term than probability. 
Nevertheless, it is not completely vague. What we are doing does have a solid basis.

Here is how to understand this: suppose in our attractiveness ratings example, 
the true mean was indeed 220. As we have seen, this would give a 95% confidence 
interval of 208.24 to 231.76, as shown in Figure 5-11a. We don’t know what the true 
population mean is. But suppose the true population mean was 208.24. The range that 
includes 95% of sample means from this population’s distribution of means would be 
from 196.48 to 220.00, as shown in Figure 5-11b. (You can work this out yourself 

T I P  F O R  S U C C E S S
Note that you are figuring the con-
fidence interval based on the mean 
of your sample, not based on the 
mean of the known population. 
So, in the current example, you 
are figuring the confidence interval 
around a mean of 48, which was 
the mean number of fillers used 
by the 25 students who attended 
the workshop. The mean number 
of fillers used by the population of 
students in general is known (53); 
so there is no need to figure any 
kind of confidence interval based 
on that mean. 
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 following the two steps for figuring confidence limits.) Similarly, for the population 
with a mean of 231.76, the range that includes 95% of sample means from this popu-
lation’s distribution of means is from 220.00 to 243.52, as shown in Figure 5-11c.

What this shows is a general principle: for a 95% confidence interval, the lower 
confidence limit is the lowest possible population mean that would have a 95% proba-
bility of including our sample mean; the upper confidence limit is the highest possible 
population mean that would have a 95% probability of including our sample mean.

This convoluted logic is a bit like the double-negative logic behind hypothesis 
testing. This is no accident, since both are making inferences from samples to popu-
lations using the same information.

Confidence Intervals and Hypothesis Testing
A practical implication of the link of confidence intervals and hypothesis testing 
is that you can use confidence intervals to do hypothesis testing! If the confidence 
interval does not include the mean of the null hypothesis distribution, then the result 
is statistically significant. For example, in the attractiveness ratings study, the 95% 
confidence interval for those who were told that the person has positive personality 
qualities was from 208.24 to 231.76. However, the population that was told nothing 
about the person’s personality qualities had a mean of 200. This population mean 
is outside the range of the confidence interval. Thus, if you are 95% confident that 
the true range is 208.24 to 231.76 and the population mean for those who were told 
nothing about the person’s personality qualities is not in this range, you are 95% 
confident that that population is not the same as the one your sample came from.

Another way to understand this is in terms of the idea that the confidence lim-
its are the points at which a more extreme true population would not include your 

(b)196.48 (c) 243.52

(a)

220

208.24 231.76

Figure 5-11 (a) 95% confidence interval based on sample mean of 220 for students 
rating the physical attractiveness of a person after being told that the person has positive 
personality qualities (fictional data); (b) range including 95% of sample means, based on dis-
tribution of means shown above it with �Mb = lower limit of the 95% confidence interval for 
M = 220; (c) range including 95% of sample means, based on distribution of means above it 
with �Mc = upper limit of the 95% confidence interval for M = 220.
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sample mean 95% of the time. The population mean for those who were told noth-
ing about the person’s personality qualities was 200. If this were the true mean also 
for the group that was told about the person’s positive personality qualities, 95% of 
the time it would not produce a sample mean as high as the one we got.

How are you doing?

 1. (a) What is the best estimate of a population mean? (b) Why?
 2. (a) What number is used to indicate the accuracy of an estimate of the popu-

lation mean? (b) Why?
 3. What is a 95% confidence interval?
 4. A researcher predicts that showing a certain film will change people’s atti-

tudes toward alcohol. The researchers then randomly select 36 people, show 
them the film, and give them an attitude questionnaire. The mean score on the 
attitude test for these 36 people is 70. The score on this test for people in the 
general population (who do not see the film) is 75, with a standard deviation 
of 12. (a) Find the best estimate of the mean of people in general who see the 
film and (b) its 95% confidence interval. (c) Compare this result to the conclu-
sion you drew for this same situation when you used this example in the “How 
are you doing?” section for hypothesis testing with a distribution of means.

 5. (a) Why is it wrong to say that the 95% confidence interval is the region 
in which there is a 95% probability of finding the true population mean?  
(b) What is the basis for our 95% confidence?

Answers

 1. (a) The best estimate of a population mean is the sample mean. (b) It is more 
likely to have come from a population with the same mean than from any 
other population.

 2. (a) The standard error (or standard deviation of the distribution of means) is used 
to indicate the accuracy of an estimate of the population mean. (b) The standard 
error (or standard deviation of the distribution of means) is roughly the average 
amount that means vary from the mean of the distribution of means.

 3. A 95% confidence interval is the range of values that you are 95% confident 
includes the population mean, estimated based on the scores in a sample.

 4. (a) The best estimate is the sample mean: 70.
  (b) Standard error 1�M2 is 2�2>N = 2144>36 = 2. The lower confidence limit 

=  M - 11.9621�M2 = 70 - 11.962122 = 70 - 3.92 = 66.08; upper confidence 
limit =  M + 11.9621�M2 = 70 + 11.962 122 = 70 + 3.92 = 73.92. The 95% 
confidence interval is from 66.08 to 73.92.

  (c) The 95% confidence interval does not include the mean of the general 
population (which was 75). Thus, you can reject the null hypothesis that the 
two populations are the same. This is the same conclusion as when using 
this example for hypothesis testing.

 5. (a) It is wrong to say that the 95% confidence interval is the region in which 
there is a 95% probability of finding the true population mean because you 
do not know the true population mean; so you have no way of knowing for 
sure what to start with when figuring 95% probability.

  (b) The lower confidence limit is the point at which a true population any lower 
would not have a 95% probability of including a sample with our mean; simi-
larly, the upper confidence limit is the point at which a true population any higher 
would not have a 95% probability of including a sample with our mean.
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Advanced Topic Controversy: Confidence  
Intervals versus Significance Tests
You may recall from Chapter 4 that for a number of years there has been a lively 
debate among psychologists about significance testing. Among the major issues in 
that debate is a proposal that psychologists should use confidence intervals instead 
of significance tests.

Those who favor replacing significance tests with confidence intervals (e.g., 
Cohen, 1994; Coulsen, Healey, Fidler, & Cumming, 2010; Hunter, 1997; Schmidt, 
1996) cite several major advantages. First, as we noted above, confidence inter-
vals contain all the key information in a significance test,6 but also give additional 
information—the estimation of the range of values that you can be quite confident 
include the true population mean. A second advantage is that they focus attention on 
the estimation of effects instead of on hypothesis testing. Some researchers argue 
that the goal of science is to provide numeric estimates of effects (and the accuracy 
of those estimates), not just decisions as to whether an effect is different from zero.

Confidence intervals are particularly valuable when the results are not signifi-
cant (Frick, 1995). This is because knowing the confidence interval gives you an 
idea of just how far from no effect you can be confident that the true mean is to be 
found. If the results are not significant and the entire confidence interval is near to 
no effect, you can feel confident that, even if there is some true effect, it is probably 
small. However, if the results are not significant and the confidence interval, while 
including no effect, also spreads out to include means far from no effect, it would 
tell us that the study is really very inconclusive: it is possible that there is little or no 
effect, but it is also possible that there is a substantial effect.

A third advantage claimed by proponents of confidence intervals over signifi-
cance testing is that researchers are less likely to misuse them (Coulsen et al., 2010). 
As we noted in Chapter 4, a common error in the use of significance tests is to con-
clude that a nonsignificant result means there is no effect. With confidence intervals, 
it is harder to fall into this kind of error.

In light of these various advantages, the Publication Manual of the American 
Psychological Association (2009) now strongly recommends that confidence inter-
vals be routinely included in research articles. However, it is still relatively uncom-
mon to find confidence intervals in research articles. For example, in a survey of 
studies that were published in 2005 and 2006, confidence intervals were reported 
in only about 10% of articles (Cumming et al., 2007). The survey also found that is 
was rare to find confidence intervals without also seeing significance tests. In part, 
this is probably due to tradition and to most psychologists having been trained with 
significance tests and having become used to them.

Other researchers (e.g., Abelson, 1997; Harris, 1997; Nickerson, 2000)  
emphasize two reasons for not abandoning significance testing in favor of confi-
dence intervals. First, for some advanced statistical procedures, it is possible to do 
significance testing but not to figure confidence intervals. Second, just as it is pos-
sible to make mistakes with significance tests, it is also possible to make other kinds 
of mistakes with confidence intervals—especially since most research psychologists 
are less experienced in using them.

Whatever the eventual outcome of this controversy about confidence intervals, it is 
valuable to understand them, since you will run into them when reading research litera-
ture, and you are likely to see them more often in the future. On the other hand, there is 
no sign that they are likely to replace significance testing any time soon. For this reason 
(and to keep the amount of material to be learned manageable), we have made confidence 
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intervals an advanced topic and decided not to emphasize them in subsequent chapters of 
this book, which are mainly on significance testing in various types of research situations.

Advanced Topic: Confidence Intervals  
in Research Articles
As we noted, confidence intervals (usually abbreviated as CI) are sometimes  
reported in research articles. For example, Morey and colleagues (2009) conducted 
a study to test a diet and exercise intervention for overweight individuals age  
65 years and older who had been diagnosed with cancer. Participants were randomly 
assigned to be in the intervention group (a 12-month program of mailed materials 
and telephone counseling) or a control group (no intervention until the study was 
done). Morey et al. reported the following results: “Participants in the intervention 
group reported a mean weight loss of 2.06 kg (95% CI, 1.69–2.43 kg), which was 
more than twice that reported by the control group (0.92 kg; 95% CI, 0.51–1.33 kg)”  
(p. 1888). This means that we can be 95% confident that the true amount of weight 
lost on average by participants in the intervention group was between 1.69 kg and 
2.43 kg, and for control group participants it was between 0.51 kg and 1.33 kg. 
As another example, an organizational psychologist might explain that the average 
number of overtime hours per week worked in a particular industry is 3.7 with a 
95% confidence interval of 2.5 to 4.9. This would tell you that the true average num-
ber of overtime hours is probably somewhere between 2.5 and 4.9.

A shortcut that many researchers find helpful in reading research articles that 
give standard errors but not confidence intervals is that the 95% confidence interval 
is approximately 2 standard errors in both directions (it is exactly 1.96 SEs) and the 
99% confidence interval is approximately 2.5 standard errors in both directions (it is 
exactly 2.58 SEs).

Finally, we should note that although standard errors are the most common when 
error bars are included in graphs, about 15% of the time the error bars actually refer 
to confidence intervals (Cumming et al., 2007). Because confidence intervals are 2 
to 2.5 times wider than standard errors, this makes a huge difference in interpreting 
them. Thus, when you see error bars on a graph, you should be sure to read the figure 
caption to see whether they are standard errors or confidence intervals (and if they are 
confidence intervals, check whether they are for 95% or 99% intervals). 

Summary

 1. When studying a sample of more than one individual, the comparison distri-
bution in the hypothesis-testing process is a distribution of means. It can be 
thought of as what would result from (a) taking a very large number of samples, 
each of the same number of scores taken randomly from the population of indi-
viduals, and then (b) making a distribution of the means of these samples.

 2. The distribution of means has the same mean as the corresponding population 
of individuals. However, it has a smaller variance because the means of samples 
are less likely to be extreme than individual scores. (In any one sample, extreme 
scores are likely to be balanced by middle scores or extreme scores in the other 

Learning Aids
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direction.) Specifically, the variance of the distribution of means is the variance of 
the population of individuals divided by the number of individuals in each sam-
ple. Its standard deviation is the square root of its variance. The shape of the dis-
tribution of means approximates a normal curve if either (a) the samples are each 
of 30 or more scores or (b) the population of individuals follows a normal curve.

 3. Hypothesis tests with a single sample of more than one individual and a known 
population are called Z tests and are done the same way as the hypothesis tests 
of Chapter 4 (where the studies were of a single individual compared to a popu-
lation of individuals). The main exception is that the comparison distribution in 
a hypothesis test with a single sample of more than one individual and a known 
population is a distribution of means.

 4. There is some controversy about the use of terms such as marginal signifi-
cance, approaching significance, and near significant trend to describe results 
that come close to the significance cutoff value. Critics of these terms note that  
hypothesis testing is an all or nothing decision. However, other researchers  
advocate for greater flexibility and point out that the .05 and .01 significance 
levels are arbitrary conventions.

 5. The kind of hypothesis testing described in this chapter (the Z test) is rarely used 
in research practice; you have learned it as another stepping-stone. The standard 
deviation of the distribution of means (the standard error) is commonly used to 
describe the expected variability of means, particularly in bar graphs in which 
the standard error may be shown as the length of a line above (and sometimes 
below) the top of each bar.

 6. ADVANCED TOPIC: The sample mean is the best estimate for the popu-
lation mean when the population mean is unknown. The accuracy of the 
estimate is the standard deviation of the distribution of means (also known 
as the standard error), which tells you roughly the amount by which means 
vary. Based on the distribution of means, you can figure the range of pos-
sible means that are likely to include the population mean. If we assume the 
distribution of means follows a normal curve, the 95% confidence interval 
includes the range from 1.96 standard deviations below the sample mean 
(the lower confidence limit) to 1.96 standard deviations above the sample 
mean (the upper confidence limit). Strictly speaking, the 95% confidence 
interval around a sample mean is the range in which the lower limit is the 
mean of the lowest population that would have a 95% probability of includ-
ing a sample with this sample mean, and the upper limit is the correspond-
ing mean of the highest population. The 99% confidence interval includes 
the range from 2.58 standard deviations below the sample mean (the lower 
confidence limit) to 2.58 standard deviations above the sample mean (the 
upper confidence limit).

 7. ADVANCED TOPIC: An aspect of the ongoing controversy about significance 
tests is whether researchers should replace them with confidence intervals. Pro-
ponents of confidence intervals argue that they provide additional information, 
put the focus on estimation, and reduce misuses common with significance tests. 
Confidence intervals have become more common in recent years in psychology 
research articles, but they are still relatively uncommon, and it is very rare to 
see them entirely replacing significance tests. Opponents of relying exclusively 
on confidence intervals argue that they cannot be used in some advanced pro-
cedures, estimation is not always the goal, and they can have misuses of their 
own. When confidence intervals are reported in research articles, it is usually 
with the abbreviation CI.
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Key Terms

distribution of means (p. 140)
mean of a distribution of means  

(p. 142)
�M (p. 143)
variance of a distribution of 

means (p. 143)

�2
M (p. 144)

standard deviation of a distribution of 
means (p. 144)

�M (p. 144)
standard error of the mean 

(SEM) (p. 144)

standard error (SE) (p. 144)
Z test (p. 150)
confidence interval (CI) (p. 159)
confidence limit (p. 159)
95% confidence interval (p. 160)
99% confidence interval (p. 160)

Figuring the Standard Deviation  
of the Distribution of Means
Find the standard deviation of the distribution of means for a population with 
� = 13 and a sample size of 20.

Answer
Using Rules 2a and 2b for the characteristics of a distribution of means: The vari-
ance of a distribution of means is the variance of the population of individuals 
divided by the number of individuals in each sample. The standard deviation of 
a distribution of means is the square root of the variance of the distribution of 
means. The variance of the population is 169 (that is, 13 squared is 169); dividing 
this by 20 gives a variance of the distribution of means of 8.45. The square root of 
this, 2.91, is the standard deviation of the distribution of means.

Using the formula,

�M = A
�2

N
= A

132

20
= A

169

20
= 28.45 = 2.91

Hypothesis Testing with a Sample  
of More Than One: The Z Test
A sample of 75 people was given an experimental treatment and had a mean of 16 
on a particular measure. The general population of individuals has a mean of 15 on 
this measure and a standard deviation of 5. Carry out a Z test using the five steps of 
hypothesis testing with a two-tailed test at the .05 significance level, and make a 
drawing of the distributions involved.

Answer
 ❶ Restate the question as a research hypothesis and a null hypothesis about 

the populations. The two populations are:

Population 1: Those given the experimental treatment.
Population 2: People in the general population (who are not given the experi-
mental treatment).

  The research hypothesis is that the population given the experimental treatment 
will have a different mean on the particular measure from the mean of peo-
ple in the general population (who are not given the experimental treatment): 
�1 � �2. The null hypothesis is that the populations have the same mean score 
on this measure: �1 = �2.

Example Worked-Out Problems
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 ❷ Determine the characteristics of the comparison distribution. �M = � = 15; 

�M = A
�2

N
= A

52

75
= 2.33 = .57; shape is normal (sample size is greater 

than 30).

 ❸ Determine the cutoff sample score on the comparison distribution at which 
the null hypothesis should be rejected. Two-tailed cutoffs, 5% significance 
level, are +1.96 and -1.96.

 ❹ Determine your sample’s score on the comparison distribution. Using the 
formula, Z = 1M - �M2>�M, Z = 116 - 152>.57 = 1>.57 = 1.75.

 ❺ Decide whether to reject the null hypothesis. The sample’s Z score of 1.75 is 
not more extreme than the cutoffs of {1.96; do not reject the null hypothesis. 
Results are inconclusive. The distributions involved are shown in Figure 5-12.

5

–2

10

–1

15

0

20

+1

25

+2

0

15

–2 1

15.57

–1 2

16.14 

16

(b)

(a)

μ = 15

σ2 = 25

σ = 5

Raw Scores:

Z Scores:

μM = 15

σM
2 = .33

σM = .57

(c)

M = 16
N = 75

Figure 5-12 Answer to the hypothesis-testing problem in Example Worked-Out 
Problems: (a) the distribution of the population of individuals, (b) the distribution of means 
(the comparison distribution), and (c) the sample’s distribution.
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Outline for Writing Essays for Hypothesis-Testing  
Problems Involving a Single Sample of More Than  
One and a Known Population (Z Test)
 1. Describe the core logic of hypothesis testing in this situation. Be sure to explain 

the meaning of the research hypothesis and the null hypothesis in this situation 
where we focus on the mean of a sample and compare it to a known population 
mean. Explain the concept of support being provided for the research hypothesis 
when the study results allow the null hypothesis to be rejected.

 2. Explain the concept of the comparison distribution. Be sure to mention that, 
with a sample of more than one, the comparison distribution is a distribution 
of means because the information from the study is a mean of a sample. Men-
tion that the distribution of means has the same mean as the population mean 
because there is no reason for random samples in the long run to have a different 
mean. And mention the distribution of means has a smaller variance (the variance 
of the population divided by the number in each sample) because it is harder to 
get extreme means than extreme individual cases by chance, and the larger the 
samples are, the rarer it is to get extreme means.

 3. Describe the logic and process for determining (using the normal curve) the 
cutoff sample score(s) on the comparison distribution at which the null hypoth-
esis should be rejected.

 4. Describe how and why you figure the Z score of the sample mean on the com-
parison distribution.

 5. Explain how and why the scores from Steps ❸ and ❹ of the hypothesis-testing 
process are compared. Explain the meaning of the result of this comparison 
with regard to the specific research and null hypotheses being tested.

Advanced Topic: Finding Confidence Intervals
Find the 99% confidence interval for the sample mean in the study just described.

Answer
 ❶ Figure the standard error. The standard error is the standard deviation of the 

distribution of means. In the preceding problem, it was .57.
 ❷ For the 95% confidence interval, figure the raw scores for 1.96 standard 

errors above and below the sample mean; for the 99% confidence interval,  
figure the raw scores for 2.58 standard errors above and below the sample  
mean. For the 99% confidence interval, upper limit = M + 12.5821�M2=
16 + 12.5821.572 = 16 + 1.47 = 17.47;  lower limit = M - 12.5821�M2=
16 - 12.5821.572 = 16 - 1.47 = 14.53. Thus, the 99% confidence interval 
is from 14.53 to 17.47.

Advanced Topic: Outline for Writing Essays  
for Finding Confidence Intervals
 1. Explain that a confidence interval is an estimate (based on your sample’s 

mean and the standard deviation of the distribution of means) of the range of  
values that is likely to include the true population mean for the group studied  
(Population 1). Be sure to mention that the 95% (or 99%) confidence interval is the 
range of values you are 95% (or 99%) confident include the true population mean.
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Practice Problems

These problems involve figuring. Most real-life statistics problems are done with 
special statistical software. Even if you have such software, do these problems by 
hand to ingrain the method in your mind.

All data are fictional unless an actual citation is given.

Set I (for Answers to Set I Problems, see pp. 684–685)
 1. Why is the standard deviation of the distribution of means generally 

smaller than the standard deviation of the distribution of the population of 
individuals?

 2. For a population that has a standard deviation of 10, figure the standard  
deviation of the distribution of means for samples of size (a) 2, (b) 3, (c) 4, 
and (d) 9.

 3. For a population that has a standard deviation of 20, figure the standard  
deviation of the distribution of means for samples of size (a) 2, (b) 3, (c) 4, 
and (d) 9.

 4. ADVANCED TOPIC: Figure the 95% confidence interval (that is, the lower 
and upper confidence limits) for each part of problem 2. Assume that in each 
case the researcher’s sample has a mean of 100 and that the population of indi-
viduals is known to follow a normal curve.

 5. ADVANCED TOPIC: Figure the 99% confidence interval (that is, the lower 
and upper confidence limits) for each part of problem 3. Assume that in each 
case the researcher’s sample has a mean of 10 and that the population of indi-
viduals is known to follow a normal curve.

 6. For each of the following samples that were given an experimental treatment, 
test whether the samples represent populations that are different from the gen-
eral population: (a) a sample of 10 with a mean of 44, (b) a sample of 1 with 
a mean of 48. The general population of individuals has a mean of 40, a stan-
dard deviation of 6, and follows a normal curve. For each sample, carry out  
a Z test using the five steps of hypothesis testing with a two-tailed test at 
the .05 significance level, and make a drawing of the distributions involved.  
(c) ADVANCED TOPIC: Figure the 95% confidence interval for parts (a) and (b).

 7. For each of the following samples that were given an experimental treatment, 
test whether they represent populations that score significantly higher than 
the general population: (a) a sample of 100 with a mean of 82, (b) a sample of 
10 with a mean of 84. The general population of individuals has a mean of 81, 
a standard deviation of 8, and follows a normal curve. For each sample, carry 
out a Z test using the five steps of hypothesis testing with a one-tailed test at 
the .01 significance level, and make a drawing of the distributions involved. 
(c) ADVANCED TOPIC: Figure the 99% confidence interval for parts (a) 
and (b).

 2. Explain that the first step in figuring a confidence interval is to estimate the 
population mean (for which the best estimate is the sample mean), and figure 
the standard deviation of the distribution of means.

 3. Mention that you next find the Z scores that go with the confidence interval that 
you want.

 4. Describe how to change the Z scores to raw scores to find the confidence interval.
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 8. Twenty-five women between the ages of 70 and 80 were randomly selected 
from the general population of women their age to take part in a special  
program to decrease reaction time (speed). After the course, the women had an 
average reaction time of 1.5 seconds. Assume that the mean reaction time for 
the general population of women of this age group is 1.8, with a standard devia-
tion of .5 seconds. (Also assume that the population is approximately normal.) 
What should you conclude about the effectiveness of the course? (a) Carry out 
a Z test using the five steps of hypothesis testing (use the .01 level). (b) Make 
a drawing of the distributions involved. (c) Explain your answer to someone 
who is familiar with the general logic of hypothesis testing, the normal curve, 
Z scores, and probability, but not with the idea of a distribution of means. 
(d) ADVANCED TOPIC: Figure the 99% confidence interval and explain your 
answer to someone who is familiar with the general logic of hypothesis testing, 
the normal curve, Z scores, probability, and the idea of a distribution of means, 
but has not heard of confidence intervals.

 9. A large number of people were shown a particular video of an automobile col-
lision between a moving car and a stopped car. Each person then filled out a 
questionnaire about how likely it was that the driver of the moving car was 
at fault, on a scale from 0 = not at fault to 10 = completely at fault. The 
distribution of ratings under ordinary conditions follows a normal curve with 
� = 5.5 and � = .8. Sixteen randomly selected individuals are tested in a 
condition in which the wording of the question is changed so that the question 
asks, “How likely is it that the driver of the car who crashed into the other was 
at fault?” (The difference is that in this changed condition, instead of describ-
ing the event in a neutral way, the question uses the phrase “crashed into.”)  
Using the changed instruction, these 16 research participants gave a mean at-
fault rating of 5.9. Did the changed instructions significantly increase the rating 
of being at fault? (a) Carry out a Z test using the five steps of hypothesis testing 
(use the .05 level). (b) Make a drawing of the distributions involved. (c) Ex-
plain your answer to someone who has never taken statistics. (d) ADVANCED 
TOPIC: Figure the 95% confidence interval.

 10. Lee and colleagues (2000) tested a theory of the role of distinctiveness in face 
perception. In their study, participants indicated whether they recognized each 
of 48 faces of male celebrities when they were shown rapidly on a computer 
screen. A third of the faces were shown in caricature form, in which facial fea-
tures were electronically modified so that distinctive features were exaggerated; 
a third were shown in veridical form, in which the faces were not modified 
at all; and a third were shown in anticaricature form, in which facial features 
were modified to be slightly more like the average of the celebrities’ faces. The 
average percentage correct across their participants is shown in Figure 5-13. 
Explain the meaning of the error bars in this figure to a person who understands 
mean, standard deviation, and variance, but nothing else about statistics.

 11. ADVANCED TOPIC: Christakis and Fowler (2007) studied more than 12,000 
people over a 32-year period to examine if people’s chances of becoming obese 
are related to whether they have friends and family who become obese. They 
reported that “A person’s chance of becoming obese increased by 57% (95% 
confidence interval [CI], 6 to 123) if he or she had a friend who became obese 
in a given interval” (p. 370). Explain what the 95% confidence interval reported 
in this study means to a person who understands hypothesis testing with the 
mean of a sample of more than one, but who has never heard of confidence 
intervals.
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Set II
 12. Under what conditions is it reasonable to assume that a distribution of means 

will follow a normal curve?
 13. Indicate the mean and the standard deviation of the distribution of means for 

each of the following situations.

Anticaricature Caricature
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Figure 5-13 Identification accuracy as a function of image type. Standard error bars 
are shown.

Source: Lee, K., Byatt, G., & Rhodes, G. (2000). Caricature effects, distinctiveness, and identification: 
Testing the face-space framework. Psychological Science, 11, 379–385. Copyright © 2000 by Blackwell 
Publishing. Reprinted by permission of Sage Publications.

Population Sample Size

Mean Variance N

(a) 100 40 10

(b) 100 30 10

(c) 100 20 10

(d) 100 10 10

(e) 50 10 10

(f) 100 40 20

(g) 100 10 20

 14. Figure the standard deviation of the distribution of means for a population with a 
standard deviation of 20 and sample sizes of (a) 10, (b) 11, (c) 100, and (d) 101.

 15. ADVANCED TOPIC: Figure the 95% confidence interval (that is, the lower 
and upper confidence limits) for each part of problem 13. Assume that in each 
case the researcher’s sample has a mean of 80 and the population of individuals 
is known to follow a normal curve.

 16. ADVANCED TOPIC: Figure the 99% confidence interval (that is, the lower 
and upper confidence limits) for each part of problem 14. Assume that in each 
case the researcher’s sample has a mean of 50 and that the population of indi-
viduals is known to follow a normal curve.

 17. For each of the following studies, the samples were given an experimental treat-
ment and the researchers compared their results to the general population. (Assume 
all populations are normally distributed.) For each, carry out a Z test using the 
five steps of hypothesis testing for a two-tailed test, and make a drawing of  
the distributions involved. ADVANCED TOPIC: Figure the 95% confidence 
interval for each study.

MyStatLab
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Population
Sample  

Size
Sample  
Mean

Significance 
Level

� � N

(a) 36 8 16 38 .05

(b) 36 6 16 38 .05

(c) 36 4 16 38 .05

(d) 36 4 16 38 .01

(e) 34 4 16 38 .01

 18. For each of the following studies, the samples were given an experimental treat-
ment and the researchers compared their results to the general population. For 
each, carry out a Z test using the five steps of hypothesis testing for a two-
tailed test at the .01 level, and make a drawing of the distributions involved.  
ADVANCED TOPIC: Figure the 99% confidence interval for each study.

Population Sample Size Sample Mean

� � N

(a) 10 2 50 12

(b) 10 2 100 12

(c) 12 4 50 12

(d) 14 4 100 12

 19. A researcher is interested in whether people are able to identify emotions  
correctly when they are extremely tired. It is known that, using a particular method 
of measurement, the accuracy ratings of people in the general population (who are 
not extremely tired) are normally distributed with a mean of 82 and a variance of 20. 
In the present study, however, the researcher arranges to test 50 people who had no 
sleep the previous night. The mean accuracy for these 50 individuals was 78. Using 
the .05 level, what should the researcher conclude? (a) Carry out a Z test using the 
five steps of hypothesis testing. (b) Make a drawing of the distributions involved. 
(c) Explain your answer to someone who knows about hypothesis testing with a 
sample of a single individual but who knows nothing about hypothesis testing with 
a sample of more than one individual. (d) ADVANCED TOPIC: Figure the 95% 
confidence interval and explain your answer to someone who is familiar with the 
general logic of hypothesis testing, the normal curve, Z scores, probability, and the 
idea of a distribution of means, but who has not heard of confidence intervals.

 20. A psychologist is interested in the conditions that affect the number of dreams 
per month that people report in which they are alone. We will assume that based 
on extensive previous research, it is known that in the general population the 
number of such dreams per month follows a normal curve, with � = 5 and 
� = 4. The researcher wants to test the prediction that the number of such 
dreams will be greater among people who have recently experienced a trau-
matic event. Thus, the psychologist studies 36 individuals who have recently 
experienced a traumatic event, having them keep a record of their dreams for 
a month. Their mean number of alone dreams is 8. Should you conclude that 
people who have recently had a traumatic experience have a significantly  
different number of dreams in which they are alone? (a) Carry out a Z test using 
the five steps of hypothesis testing (use the .05 level). (b) Make a drawing of the 
distributions involved. (c) Explain your answer to a person who has never had a 
course in statistics. (d) ADVANCED TOPIC: Figure the 95% confidence interval.

MyStatLab
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 21. A government-sponsored telephone counseling service for adolescents tested 
whether the length of calls would be affected by a special telephone system that 
had a better sound quality. Over the past several years, the lengths of telephone 
calls (in minutes) were normally distributed with � = 18 and � = 8. They 
arranged to have the special phone system loaned to them for one day. On that 
day, the mean length of the 46 calls they received was 21 minutes. Test whether 
the length of calls has changed using the 5% significance level. (a) Carry 
out a Z test using the five steps of hypothesis testing. (b) Make a drawing of 
the distributions involved. (c) Explain your answer to someone who knows 
about hypothesis testing with a sample of a single individual but who knows 
nothing about hypothesis testing with samples of more than one individual.  
(d) ADVANCED TOPIC: Figure the 95% confidence interval.

 22. Stankiewicz and colleagues (2006) examined how limitations in human perception 
and memory (and other factors) affect people’s ability to find their way in indoor 
spaces. In one of their experiments, eight students used a computer keyboard to 
move through a virtual indoor space of corridors and hallways shown on a com-
puter monitor. The researchers calculated how efficiently students moved through 
the space, with efficiency ranging from 0 (extremely inefficient) to 1 (extremely ef-
ficient). The researchers compared the efficiency of moving through the space when 
students had a limited view of the space versus when they had a clear (or unlimited) 
view of the space. Their results are shown in Figure 5-14. In the figure caption, they 
note that “Error bars represent 1 standard error of the mean.” Explain the meaning 
of this statement, using one of the error bars as an example, to a person who under-
stands mean and standard deviation, but knows nothing else about statistics.

 23. Maier and colleagues (2008) conducted a study to examine whether the perception 
of the color red can adversely affect intellectual performance. The researchers 
based their hypothesis on a theory that, in achievement situations, red is associ-
ated with the risk of failure, such as when teachers use red ink to correct stu-
dents’ errors. To test their hypothesis, the researchers asked 20 German high 
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Figure 5-14 The mean navigation efficiency when navigating in the unlimited and 
limited viewing condition in Experiment 2. In the limited-view condition, visual information 
was available as far as the next intersection (further details were obscured by “fog”). In the 
unlimited-view condition, visual information was available to the end of the corridor. Error 
bars represent 1 standard error of the mean.

Source: Stankiewicz, B. J., Legge, G. E., Mansfield, J. S., & Schlicht, E. J. (2006). Lost in virtual space: 
Studies in human and ideal spatial navigation. Journal of Experimental Psychology: Human Perception 
and Performance, 32, 688–704. Copyright © 2006 by the American Psychological Association. 
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Figure 5-15 The effect of color on IQ test (numeric subtest) performance in Experiment 1. 
NOTE: Mean and standard error of the number of correctly solved items by color on the cover 
of the test.

Source: Maier, M. A., Elliot, A. J., & Lichtenfeld, S. (2008). Mediation of the negative effect of red 
on intellectual performance. Personality and Social Psychology Bulletin, 34, 1530–1540. Copyright © 
2008, Society for Personality and Social Psychology, Inc. Reprinted by permission of Sage Publications.

 1. The formula for figuring the standard deviation of a distribution of means can

  also be written as �M =
�

2N.
 We prefer to use Formula 5-3, because it provides

  a reminder of the basic logic that the variance of a distribution of means is

school students to take a 20-item numeric IQ test and randomly assigned them 
to one of two experimental conditions. In one condition, a large red rectangle  
appeared on the cover page of the test. In the other condition, the rectangle was 
a gray color. The results are shown in Figure 5-15, which includes standard error 
bars. Explain what the standard error bars mean, using one of the error bars as an 
example, to a person who understands mean and standard deviation, but knows 
nothing else about statistics. (You may be interested to know that the results 
supported the researchers’ hypothesis: Students who viewed the red rectangle 
solved fewer of the IQ items than students who viewed the gray rectangle.) 

 24. Cut up 90 small slips of paper, and write each number from 1 to 9 on 10 slips 
each. Put the slips in a large bowl and mix them up. (a) Take out a slip, write 
down the number on it, and put it back. Do this 20 times. Make a histogram, and 
figure the mean and the variance of the result. You should get an approximately 
rectangular distribution. (b) Take two slips out, figure out their mean, write it 
down, and put the slips back.7 Repeat this process 20 times. Make a histogram; 
then figure the mean and the variance of this distribution of means. The vari-
ance should be about half of the variance of the distribution of individual scores.  
(c) Repeat the process again, this time taking three slips at a time. Again, make 
a histogram and figure the mean and the variance of the distribution of means. 
The distribution of means of three slips each should have a variance of about a 
third of the distribution of individual scores. Also note that as the sample size in-
creases, your distributions get closer to normal. (Had you begun with a normally 
distributed distribution of slips, your distributions of means would have been 
fairly close to normal regardless of the number of slips in each sample.)

Chapter Notes
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  figured by dividing the variance of the population of individuals by the number 
of individuals in each sample.

 2. We have ignored the fact that a normal curve is a smooth theoretical distribu-
tion, whereas in most real-life distributions, scores are only at specific numbers, 
such as a child being in a particular grade and not in a fraction of a grade. So, 
one difference between our example distribution of means and a normal curve 
is that the normal curve is smooth. However, in psychology research, even 
when our measurements are at specific numbers, we usually treat the situation 
as if the underlying thing being measured is continuous.

 3. We have already considered this principle of a distribution of means tending toward 
a normal curve in Chapter 3. Though we had not yet discussed the distribution of 
means, we still used this principle to explain why the distribution of so many things 
in nature follows a normal curve. In that chapter, we explained it as the various 
influences balancing each other out, to make an averaged influence come out with 
most of the scores near the center and a few at either extreme. Now we have made 
the same point using the terminology of a distribution of means. Think of any distri-
bution of individual scores in nature as a situation in which each score is actually an 
average of a random set of influences on that individual. Consider the distribution 
of weights of pebbles. Each pebble’s weight is a kind of average of all the different 
forces that went into making the pebble have a particular weight.

 4. This fictional study would be much better if the social psychologist also had another 
group of students who were randomly assigned to rate the attractiveness of the per-
son after being told nothing about the person’s personality qualities. Relying on the 
attractiveness ratings for a known population of students is a bit hazardous. This is 
because the circumstances in the experiment might be somewhat different from that 
of the usual situation in which students rated the attractiveness of the person. How-
ever, we have taken liberties with this example to help introduce the hypothesis- 
testing process to you one step at a time. In this example and the others in this  
chapter, we use situations in which a single sample is contrasted with a “known” 
population. Starting in Chapter 7, we extend the hypothesis-testing procedure to 
more realistic research situations, those involving more than one group of partici-
pants and those involving populations whose characteristics are not known.

 5. Strictly speaking, being 68% confident that the population mean is within a cer-
tain interval of scores refers to the fact that if you created a series of intervals 
based on samples of the same sample size, about 68% of those intervals would 
include the actual population mean. See the later “Subtle Logic” section for 
more discussion of this issue.

 6. Some proponents of confidence intervals over significance testing argue that we 
should ignore the link with hypothesis testing altogether. This is the most radical 
antisignificance-test position. That is, these psychologists argue that our entire  
focus should be on estimation, and significance testing of any kind should be  
irrelevant. In Chapter 6, we will discuss the rationale for their position, along 
with the counterarguments.

 7. Technically, when taking the samples of two slips, this should be done by tak-
ing one, writing it down, putting it back, then taking the next, writing it down, 
and putting it back. You would consider these two scores as one sample for 
which you figure a mean. The same applies for samples of three slips. This 
is called sampling with replacement. However, with 90 slips in the bowl, tak-
ing two or three slips at a time and putting them back will be a close enough  
approximation for this exercise and will save you some time.
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Chapter 6

Making Sense of Statistical Significance
Decision Errors, Effect Size, and Statistical Power

Statistical significance is extremely important in psychology research, but 
 sophisticated researchers and readers of research understand that there is more 
to the story of a study’s result than p 6 .05 or ns (not significant). This chapter 

helps you become sophisticated about making sense of significance.  Gaining this 
sophistication means learning about three interrelated issues: decision errors, effect 
size, and statistical power.

Decision Errors
A crucial topic for making sense of statistical significance is the kinds of errors that 
are possible in the hypothesis-testing process. The kind of errors we consider here 
are about how, in spite of doing all your figuring correctly, your conclusions from 
hypothesis testing can still be incorrect. It is not about making mistakes in calcula-
tions or even about using the wrong procedures. That is, decision errors are situations 
in which the right procedures lead to the wrong decisions.

decision errors incorrect conclusions 
in hypothesis testing in relation to the 
real (but unknown) situation, such as 
 deciding the null hypothesis is false 
when it is really true.

T I P  F O R  S U C C E S S
This chapter builds directly on 
Chapters 4 and 5. We do not 
recommend embarking on this 
chapter until you have a good 
 understanding of the key material  
in those chapters, especially 
hypothesis testing and the  
distribution of means.
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Decision errors are possible in hypothesis testing because you are  making 
 decisions about populations based on information in samples. The whole 
 hypothesis-testing process is based on probabilities; it is set up to make the prob-
ability of decision errors as small as possible, but it can not eliminate the possibil-
ity of errors entirely. For example, we decide to reject the null hypothesis only if 
a sample’s mean is so extreme that there is a very small probability (say, less than 
5%) that we could have gotten such an extreme sample if the null hypothesis is true. 
But a very small probability is not the same as a zero probability! Thus, in spite of 
your best intentions, decision errors are always possible.

There are two kinds of decision errors in hypothesis testing: Type I error and 
Type II error.

Type I Error
You make a Type I error when you conclude that the study supports the research 
hypothesis when in reality the research hypothesis is false. Or, to put it in terms of 
the null hypothesis, you make a Type I error if you reject the null hypothesis when 
in fact the null hypothesis is true. A medical analogy for a Type I error would be 
when it is believed a medicine will help a patient, but in fact it is of no value.

Suppose you carried out a study in which you had set the significance level cut-
off at a very lenient probability level, such as 20%. This would mean that it would 
not take a very extreme result to reject the null hypothesis. If you did many stud-
ies like this, you would often (about 20% of the time) be deciding to consider the  
research hypothesis supported when you should not. That is, you would have a  
20% chance of making a Type I error.

Even when you set the probability at the conventional .05 or .01 levels, you 
will still make a Type I error sometimes (5% or 1% of the time). Consider again the 
example from Chapter 4 of giving a new therapy being tested to a depressed pa-
tient. Suppose the new therapy is in general about equally effective as the usual ther-
apy. However, in randomly picking a sample of one depressed patient to study, the 
clinical psychologists might just happen to pick a patient whose depression would 
 respond unusually well to the new therapy. Randomly selecting a sample patient like 
this is unlikely. But such extreme samples are possible. Should this happen, the clini-
cal psychologists would reject the null hypothesis and conclude that the new ther-
apy is different than the usual therapy. Their decision to reject the null hypothesis 
would be wrong—a Type I error. Of course, the  researchers could not know they had 
made a decision error of this kind. What  reassures  researchers is that they know from  
the logic of hypothesis testing that the probability of  getting a sample like this if there 
really is no difference, and thus  making a Type I error, is kept low (less than 5% if 
you use the .05 significance level).

Still, the fact that Type I errors can happen at all is of serious concern to 
 psychologists, who might construct entire theories and research programs, not to 
mention practical applications, based on a conclusion from hypothesis testing that is 
in fact mistaken. It is because these errors are of such serious concern that they are 
called Type I.

As we have noted, researchers cannot tell when they have made a Type I error. 
However, they can try to carry out studies so that the chance of making a Type  I 
 error is as small as possible.

What is the chance of making a Type I error? It is the same as the significance 
level you set. If you set the significance level at p 6 .05, you are saying you will 

Type I error rejecting the null hypoth-
esis when in fact it is true; getting a sta-
tistically significant result when in fact 
the research hypothesis is not true.
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reject the null hypothesis if there is less than a 5% (.05) chance that you could 
have gotten your result if the null hypothesis were true. When rejecting the null 
 hypothesis in this way, you are allowing up to a 5% chance that you got your results 
even though the null hypothesis was actually true. That is, you are allowing a 5% 
chance of a Type I error.

The significance level, which is the chance of making a Type I error, is called 
alpha (the Greek letter �). The lower the alpha, the smaller the chance of a Type I 
error. Researchers who do not want to take a lot of risk set alpha lower than .05, 
such as p 6 .001. In this way, the result of a study has to be very extreme for the 
hypothesis-testing process to reject the null hypothesis.

Using a .001 significance level is like buying insurance against making a Type I  
error. However, as when buying insurance, the better the protection, the higher the 
cost. There is a cost in setting the significance level at too extreme a level. We turn 
to that cost next.

Type II Error
If you set a very extreme significance level, such as p 6 .001, you run a  different 
kind of risk: you may carry out a study in which, in reality, the  research  hypothesis 
is true but the result does not come out extreme enough to reject the null hypoth-
esis. Thus, the decision error you would make here is when the  hypothesis-testing 
procedure leads you to decide that the results of the study are inconclusive when 
in reality the research hypothesis is true. To put this in terms of the null hypoth-
esis, this kind of decision error is in not rejecting the null  hypothesis when in 
reality the null hypothesis is false. This is called a Type II error. The probability 
of making a Type II error is called beta (the Greek letter �). (Do not confuse 
this beta with the standardized regression coefficient that you will learn about 
in Chapter 12, which is also called beta.) A medical analogy for a Type II error 
would be when it is decided that a medicine will not help a patient (that the medi-
cine will be ineffective for the patient; this is like the null hypothesis) when in 
fact it really would help.

Consider again our depression therapy example. Suppose that, in truth, the 
new therapy is better at treating depression than the usual therapy. However, in 
conducting your study, the results for the sample patient are not strong enough to 
allow you to reject the null hypothesis. Perhaps the random sample patient that you 
selected to try out the new therapy happened to be a rare person who responds to 
the new therapy about the same as people in general respond to the usual therapy. 
The results would not be significant and you would decide the research hypothesis 
(that the new therapy is different from the usual therapy) is not supported. How-
ever, by not rejecting the null hypothesis, and thus refusing to draw a conclusion, 
without knowing it, you would be making a Type II error.

Type II errors especially concern psychologists interested in practical applica-
tions. This is because a Type II error could mean that a valuable practical procedure 
(such as a new therapy) is not used.

As with a Type I error, you cannot know when you have made a Type II 
error. But researchers can try to carry out studies so as to reduce the chance of 
making one. One way of buying insurance against a Type II error is to set a very 
lenient significance level, such as p 6 .10 or even p 6 .20. In this way, even if 
a study produces only a very small effect, this effect has a good chance of being 
significant. There is a cost to this insurance policy, too.

alpha 1�2 probability of making a Type 
I error; same as significance level.

Type II error failing to reject the null 
hypothesis when in fact it is false; failing 
to get a statistically significant result when 
in fact the research hypothesis is true.

beta 1�2 probability of making a 
Type II error.
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Relationship Between Type I and Type II Errors
When it comes to setting significance levels, protecting against one kind of decision 
error increases the chance of making the other. The insurance policy against Type I 
error (setting a significance level of, say, .001) has the cost of increasing the chance 
of making a Type II error. (This is because with an extreme significance level  
like .001, even if the research hypothesis is true, the results have to be quite strong 
for you to reject the null hypothesis.) The insurance policy against Type II error 
(setting a significance level of, say, .20) has the cost of increasing the chance of 
making a Type I error. (This is because, with a level of significance like .20, even 
if the null hypothesis is true, it is fairly easy—it would happen about 20% of the 
time—to get a significant result just by accidentally getting a sample that is higher 
or lower than the general population before doing the study.)

The trade-off between these two conflicting concerns usually is worked out by 
compromise—thus the standard 5% 1p 6 .052 and 1% 1p 6 .012 significance levels.

Summary of Possible Outcomes of Hypothesis Testing
The entire issue of possibly correct or mistaken conclusions in hypothesis testing 
is shown in Table 6-1. Along the top of this table are the two possibilities about 
whether the null hypothesis or the research hypothesis is really true. (Remember, 
you never actually know this.)

Along the side is whether, after hypothesis testing, you decide that the research 
 hypothesis is supported (reject the null hypothesis) or decide that the results are 
inconclusive (do not reject the null hypothesis). Table 6-1 shows that there are two 
ways to be correct and two ways to be in error in any hypothesis-testing situation.

T I P  F O R  S U C C E S S
It is very easy to get confused be-
tween a Type I error and a Type II 
error. Be sure you understand each 
type of error (and the difference 
between them) before reading on 
in this chapter. Some students 
may find the following rhyme help-
ful. The rhyme is based on the 
idea that a researcher “wins” if 
the study results in the research 
hypothesis being supported, but 
loses if it is not supported. The 
rhyme uses the medical analogy of 
Type I being deciding a medicine 
will work when it won’t and Type II 
being deciding a medicine won’t 
work when it really would. “Type I 
you’ve wrongly won, and the 
medicine’s really no good. Type II’s 
when you wrongly lose, and the 
patient won’t get something she 
should.”

How are you doing?

 1. What is a decision error?
 2. (a) What is a Type I error? (b) Why is it possible? (c) What is its probability? 

(d) What is this probability called?
 3. (a) What is a Type II error? (b) Why is it possible? (c) What is its probability called?
 4. If you set a lenient alpha level (say .25), what is the effect on the probability of 

(a) Type I error and (b) Type II error?
 5. If you set an extreme alpha level (say .001), what is the effect on the probability 

of (a) Type I error and (b) Type II error?

Table 6-1 Possible Correct and Incorrect Decisions in Hypothesis Testing
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Effect Size
Consider again our example from Chapter 5, in which people rated the physical attractive-
ness of a person after being told that the person has positive personality qualities. In the 
hypothesis-testing  procedure for this example (the Z test), we compared two populations:

Population 1: Students who are told that the person has positive personality qualities.
Population 2: Students in general (who are told nothing about the person’s per-
sonality qualities).

The research hypothesis was that Population 1 would on the average give higher 
attractiveness ratings to the person in the photograph than Population 2. Population 2  
is known to have a mean of 200. In the example, we said the researcher found that 
the sample of 64 students who were told that the person has positive personality 
qualities gave a mean attractiveness rating of 220. Following the hypothesis-testing 
procedure, we rejected the null hypothesis that the two populations are the same. 
This was because it was extremely unlikely that we would get a sample with a score 
as high as 220 from a population like Population 2 (see Figure 6-1, which is the 
same as Figure 5-7 from the last chapter). Thus, we could conclude the result is “sta-
tistically significant.” In this example, the best estimate of the mean of Population 1 
is the sample’s mean, which is 220. Thus, we can estimate that telling students about 
the person’s positive personality qualities has an average effect of increasing the 
students’ ratings of the physical attractiveness of the person by 20 points.

Now look again at Figure 6-1. Suppose the sample’s score had been only 210. This 
would have given a Z score of 1.67 1that is, 3210 - 2004>6 = 1.672. This is more 
extreme than the cutoff in this example, which was 1.64, so the result would still have 
been significant. However, in this situation we would estimate that the average effect 
of telling students about the person’s positive personality qualities was only 10 points.

Notice that both results are significant, but in one example the effect is twice as 
big as in the other example. The point is that knowing statistical significance does 
not give you much information about the size of the effect. Significance tells us that 
the results of the experiment should convince us that there is an effect. But signifi-
cance does not tell us how big this effect is.

Answers

 1.  A decision error is a conclusion from hypothesis testing that does not match reality.
 2. (a) A Type I error is rejecting the null hypothesis (and thus supporting the 

research hypothesis) when the null hypothesis is actually true (and the  
research hypothesis is actually false). (b) You reject the null hypothesis when 
a sample’s result is so extreme that it is unlikely you would have gotten that 
result if the null hypothesis is true. However, even though it is unlikely, it is 
still possible that the null hypothesis is true. (c) The probability of a Type I 
error is the significance level (such as .05). (d) The probability is called alpha.

 3. (a) A Type II error is failing to reject the null hypothesis (and thus failing to 
support the research hypothesis) when the null hypothesis is actually false 
(and the research hypothesis is actually true). (b) You reject the null hypoth-
esis when a sample’s result is so extreme it is unlikely you would have gotten 
that result if the null hypothesis is true. However, the null hypothesis could 
be false, but the particular sample may happen not to be extreme enough to 
reject the null hypothesis. (c) A Type II error’s probability is called beta.

 4. (a) The probability is high; (b) the probability is low.
 5. (a) The probability is low; (b) the probability is high.
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effect size standardized measure of 
difference (lack of overlap) between 
populations. Effect size increases with 
greater differences between means.

Put another way, effect size is a measure of the difference between population 
means. You can think of effect size as how much something changes after a spe-
cific intervention. Effect size indicates the extent to which two populations do not 
 overlap—that is, how much they are separated due to the experimental procedure. In 
the attractiveness ratings example, Population 2 (the known population) had a mean 
of 200; based on our original sample’s mean of 220, we estimated that Population 1 
(those told that the person has positive personality qualities) would have a mean of 220.  
The left curve in Figure 6-2 is the distribution (of individual scores) for Population 2; 
the right curve is the distribution for Population 1. Now look at Figure 6-3. Again, the 
left curve is for Population 2 and is the same as in Figure 6-2. However, this time the 
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Figure 6-1 For the fictional study of positive personality qualities and ratings of phys-
ical attractiveness, (a) the distribution of the population of individuals, (b) the distribution of 
means for Population 2 (the comparison distribution), and (c) the sample’s distribution. The 
shaded area in the distribution of means is the rejection region—the area in which the null 
hypothesis will be rejected if the study’s sample mean turns out to be in that area.
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right curve for Population 1 is estimated based on a sample (the sample told that the 
person has positive personality qualities) with a mean of 210. Here you can see that 
the effect size is smaller and that the two populations overlap even more.

We often want to know not only whether a result is significant, but how big the 
effect is. As we will discuss later, an effect could well be statistically significant but 
not of much practical significance. That is, suppose an increase of only 10 points 
on the attractiveness measure is not considered important. Further, we may want to 
compare the results of this procedure to that of other procedures studied in the past. 
(You might think that psychologists could just compare studies using significance 
levels. And it is true that we are more confident of a result if it is significant at the 
.01 level than at the .05 level. However, significance, including whether you make 
the .01 or .05 level, is influenced by both the effect size and the number of people in 
the study. Thus, a study that is significant at the .05 level with a sample of 20 people 
would have had to have a much bigger effect size to be significant than a study of 

200180 220 240

Population 1Population 2

Effect Size

Figure 6-2 The distributions for the fictional study of positive personality qualities 
and ratings of physical attractiveness. Right curve: Population 1, those students told that the 
person has positive personality qualities. Left curve: Population 2, students told nothing about 
the person’s personality. Population 1’s mean is estimated based on the sample mean of 220, 
as originally described in Chapter 5; its standard deviation of 48 is assumed to be the same as 
Population 2’s, which is known.

210
200 220

Population 1Population 2

Effect Size

Figure 6-3 The distributions for the fictional study of positive personality qualities 
and ratings of physical attractiveness. Right curve: Population 1, those students told that the 
person has positive personality qualities. Left curve: Population 2, students told nothing about 
the person’s personality. Population 1’s mean is estimated based on a sample mean of 210; its 
standard deviation of 48 is assumed to be the same as Population 2’s, which is known.
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1000 people that came out significant at the .01 level. We discuss these issues in 
some detail in the later section on power.) 

For these reasons, the Publication Manual of the American Psychological Asso-
ciation (2009), the accepted standard for how to present psychology research results, 
recommends that some measure of effect size is included along with the results of sig-
nificance tests. Thus, whenever you use a hypothesis-testing procedure, you should also 
figure effect size. You can think of it as a sixth step in our standard hypothesis-testing 
procedure: figure the effect size. As you will see later in this chapter, effect size plays 
an important role in two other important statistical topics: meta-analysis and power. 

Figuring Effect Size
You just learned that effect size is a measure of the difference between two population 
means.1 In Figure 6-2, the effect size is shown as the difference between the Population 1 
mean and the Population 2 mean, which is 20 (that is, 220 - 200 = 20). This effect 
size of 20 is called a raw score effect size, because the effect size is given in terms of the 
raw score on the measure (which in this case is a measure of attractiveness, from a low 
of 0 to a high of 400). But what if you want to compare this effect size with the result of 
a similar study that used a different measure of attractiveness? This similar study used 
a measure with a 1-to-10 scale, and the researchers reported an estimated Population 2  
mean of 5, a Population 1 mean of 6, and a population standard deviation of 2. The 
raw score effect size in this study is 1 (that is, 6 - 5 = 1). How do we compare this 
raw score effect size of 1 with the raw score effect size of 20 in our original study? The 
solution to this problem is to use a standardized effect size—that is, to divide the raw 
score effect size for each study by its respective population standard deviation.

In the original attractiveness ratings example, the population standard deviation 
(of individuals) was 48. Thus, a raw score of effect size of 20 gives a standardized 
effect size of 20>48, which is .42. That is, the effect of knowing positive personality 
qualities was to increase attractiveness ratings by .42 of a standard deviation. The raw 
score effect size of 1 in the similar study (which had a population standard deviation of 
2) is a standardized effect size of 1>2 = .50. Thus, in this study, the effect was to in-
crease the ratings by .50 (half) of a standard deviation. So, in this case the effect size in 
our original example is smaller than the effect size in the similar study. Usually, when 
psychologists refer to an effect size in a situation like we are considering, they mean a 
standardized effect size.

Stated as a formula,

 d =
�1 - �2

�
 (6-1)

In this formula, d (also known as Cohen’s d) is a symbol for effect size. (In 
later chapters, you learn other measures of effect size that are appropriate to different 
hypothesis-testing situations.) �1 is the mean of Population 1 (the mean for the popu-
lation that receives the experimental  manipulation); �2 is the mean of Population 2 
(the known population, the basis for the comparison distribution); and � is the popu-
lation standard deviation. The numerator of the formula is the difference between the 
population means. Therefore, the larger this difference is, the larger the effect size is.

Notice that when figuring effect size, you don’t use �M, the standard deviation 
of the distribution of means. Instead, you use �, the standard deviation of the popu-
lation of individuals. Also notice that you are only concerned with one population’s 
standard deviation. This is because in hypothesis testing you usually assume that 
both populations have the same standard deviation. (We say more about this in 
later chapters.)d effect size

T I P  F O R  S U C C E S S
Notice that what you are doing 
here is basically the same as figur-
ing Z scores. And, as when figuring 
Z scores, you can compare apples 
to oranges in the sense that you 
can compare results on different 
measures with different means and 
standard deviations.

The standardized effect size 
is the difference between the 
population means divided 
by the population’s standard 
deviation.
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Consider again the attractiveness ratings example shown in Figure 6-1. The 
mean of Population 1 was 220, the mean of Population 2 was 200, and the popula-
tion standard deviation was 48. (In hypothesis-testing situations you don’t know the 
mean of Population 1, so you actually use an estimated mean. Thus, you are actually 
figuring an estimated effect size.) Using these numbers,

d = 1�1 - �22>� = 1220 - 2002>48 = 20>48 = .42.

For the example in which the sample mean was 210, we estimated Population 1’s  
mean to be 210. Thus,

d = 1�1 - �22>� = 1210 - 2002>48 = 10>48 = .21.

However, suppose the procedure actually reduced the score, so that those who 
were given the special instructions had a mean of 170:

d = 1�1 - �22>� = 1170 - 2002>48 = -30>48 = - .63.

The minus sign means that the effect is a decrease. In later chapters, you will learn 
how to use SPSS to figure the effect size of a research study.

Effect Size Conventions
What should you consider to be a “big” effect, and what is a “small” effect? Jacob 
Cohen (1988, 1992), a renowned psychologist who you learned about in Box 4-1 
in Chapter 4, helped solve this problem. Cohen came up with some effect size 
conventions based on the effects found in psychology research in general. Spe-
cifically, Cohen recommended that, for the kind of situation we are considering 
in this chapter, we should think of a small effect size as about .20. With a d of 
.20, the populations of individuals have an overlap of about 85%. This small ef-
fect size of .20 is, for example, the average difference in height between 15- and 
16-year-old girls (see Figure 6-4a), which is about a half-inch difference with a 

effect size conventions standard 
rules about what to consider a small, 
medium, and large effect size, based on 
what is typical in psychology research; 
also known as Cohen’s conventions.

(a)

(b)

(c)

Small
Effect
Size

Medium
Effect
Size

Large
Effect
Size

Figure 6-4 Comparisons of pairs of population distributions of individuals showing 
Cohen’s conventions for effect size: (a) small effect size 1d = .202, (b) medium effect size 1d = .502, (c) large effect size 1d = .802.
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standard deviation of about 2.1 inches. Cohen considered a medium effect size to 
be .50, which means an overlap of about 67%. This is about the average difference 
in heights between 14- and 18-year-old girls (see Figure 6-4b). Finally, Cohen 
defined a large effect size as .80. This is only about a 53% overlap. It is about the 
average difference in height between 13- and 18-year-old girls (see Figure 6-4c). 
These three effect size conventions are summarized in Table 6-2. (Note that these 
effect size conventions apply in the same way to both positive and negative effect 
sizes. So, - .20 is a small effect size, - .50 is a medium effect size, and - .80 is a 
large effect size.)

Consider another example. As noted earlier in the book, many IQ tests have 
a standard deviation of 15 points. An experimental procedure with a small effect 
size would create an increase in IQ of 3 IQ points. (A difference of 3 IQ points 
between the mean of the population who goes through the experimental proce-
dure and the mean of the population that does not, divided by the population 
standard deviation of 15, gives an effect size of .20. That is, d = 3>15 = .20.) 
An experimental procedure with a medium effect size would increase IQ by 7.5 
points. An experimental procedure with a large effect size would increase IQ by 
12.0 points.

Cohen’s effect size conventions provide a guide for deciding on the impor-
tance of the effect of a study in relation to what is typical in psychology. However, 
they are only a guide. That is, when evaluating a particular effect size, it is im-
portant to consider the magnitude of effect that is typically found in that specific 
area of research, as well as the potential practical or clinical implications of such 
an effect. 

Meta-Analysis
Meta-analysis is an important development in statistics that has had a pro-
found effect on psychology, especially clinical and social psychology, and on 
many other scientific fields, such as medicine, public health, education, and or-
ganizational behavior. This procedure combines results from different studies, 
even results using different methods of measurement. When combining results, 
the crucial results combined are effect sizes. As an example, a social psycholo-
gist might be interested in the effects of cross-race friendships on prejudice, a 
topic on which there has been a large number of studies. Using meta-analysis, 
the social psychologist could combine the results of these studies. This would 
provide an overall effect size. It would also tell how effect sizes differ for 
studies done in different countries or about prejudice toward different ethnic 
groups. (For an example of such a meta-analysis, see Davies and colleagues, 
2011. For another example of meta-analysis, see Box 6-1.) An educational psy-
chologist might be interested in the effects of different educational methods 
on students’ educational achievement. Walberg and Lai (1999) carried out a 
large meta-analysis on this very topic and provided effect size estimates for 
275 educational methods and conditions. The effect sizes for selected general 
educational methods are shown in Table 6-3. As you can see in the table, many 
of the methods are associated with medium effect sizes and several have large 
(or very large) effect sizes.

Reviews of the collection of studies on a particular topic that use meta- analysis 
are an alternative to the traditional “narrative” literature review article. Such  
traditional reviews describe and evaluate each study and then attempt to draw  

meta-analysis statistical method for 
combining effect sizes from different 
studies.

Table 6-2 Summary of 

Cohen’s Effect Size Conventions for 

Mean Differences

Verbal  
Description

Effect  
Size (d )

Small .20

Medium .50

Large .80
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some overall conclusion. The first formal meta-analysis in psychology, which  
focused on the effects of psychotherapy, was published more than 30 years ago 
(Smith & Glass, 1977). Since then, meta-analysis has become an increasingly popu-
lar statistical procedure. To get a sense of the popularity of meta-analysis, we used a 
research database commonly used by psychologists (called PsycINFO) to search for 
publications on meta-analysis in the psychological research literature during differ-
ent time periods. From 1977 to 1979, there were 18 research publications (research 
articles, books, book chapters, and dissertations) on meta-analysis. From 2009 to 
2011, there were more than 3500 research publications on meta-analysis in the 
literature.

In the 1970s and 1980s, the results of research on 
meditation and relaxation were the subject of con-
siderable controversy. Eppley, Abrams, and Shear 
(1989) decided to look at the issue systematically by 
conducting a meta-analysis of the effects of various 
relaxation techniques on trait anxiety (that is, ongo-
ing anxiety as opposed to a temporary state). Eppley 
and colleagues chose trait anxiety for their meta-
analysis because it is a definite problem related to 
many other mental health issues, yet in itself is fairly 
consistent from test to test.

Following the usual procedure, the researchers 
searched the scientific literature for studies—not only 
research journals, but books and doctoral dissertations. 
Finding all the relevant research studies is one of the 
most difficult parts of meta-analysis.

To find the “bottom line,” the researchers com-
pared effect sizes for each of the four widely studied 
methods of meditation and relaxation. The result was 
that the average effect size for the 35 transcendental 
meditation (TM) studies was .70 (meaning an average 
difference of .70 standard deviations in anxiety scores 
between those who practiced this meditation proce-
dure and those in the control groups). This effect size 
was significantly larger than the average effect size 
of .28 for the 44 studies on all other types of medita-
tion, the average effect size of .38 for the 30 studies 
on “progressive relaxation” (a widely used method at 
the time by clinical psychologists), and the average 
effect size of .40 for the 37 studies on other forms of 
relaxation.

Looking at different populations of research partici-
pants, they discovered that people who were screened to 
be highly anxious contributed more to the effect size, and 
prison populations and younger participants seemed to 
gain more from TM. There was no significant impact on 
effect size of the skill of the instructors, expectations of 
the participants, whether participants had volunteered or 
been randomly assigned to conditions, experimenter bias 
(the TM results were actually stronger when any appar-
ently pro-TM researchers’ studies were eliminated), the 
various measures of anxiety, and the research designs.

The researchers thought that one clue to TM’s high 
performance might be that techniques involving con-
centration produced a significantly smaller effect, 
whereas TM makes a point of teaching an “effortless, 
spontaneous” method. Also, TM uses Sanskrit mantras 
(special sounds) said to come from a very old tradition 
and selected for each student by the instructor. Results 
were lower for methods employing randomly selected 
 Sanskrit sounds or personally selected English words.

Whatever the reasons, the authors concluded that 
there are “grounds for optimism that at least some cur-
rent treatment procedures can effectively reduce trait 
anxiety” (p. 973). So, if you are prone to worry about 
matters like statistics exams, consider these results. 
(For a more recent meta-analyses of TM effects, in this 
case on blood pressure, see Anderson, Liu, & Kryscio, 
2008. For some more recent examples of meta-analyses 
of relaxation training and stress reduction techniques  
in general, see Chiesa & Serretti, 2009, and Manzoni  
et al., 2008.)

BOX 6-1  Effect Sizes for Relaxation and Meditation: 
A Restful Meta-Analysis
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Table 6-3 Effect Sizes of Selected General Educational Methods

Elements of Instruction

Cues 1.25

Reinforcement 1.17

Corrective feedback .94

Engagement .88

Mastery Learning .73

Computer-Assisted Instruction

For early elementary students 1.05

For handicapped students .66

Teaching

Direct instruction .71

Comprehension instruction .55

Teaching Techniques

Homework with teacher comments .83

Graded homework .78

Frequent testing .49

Pretests .48

Adjunct questions .40

Goal setting .40

Assigned homework .28

Explanatory Graphics .75

Source: Adapted from Walberg, H. J., & Lai, J. S. (1999). Meta-analytic effects for policy. In G. J. Cizek (Ed.). Handbook of 
Educational Policy (pp. 419–453). San Diego, CA. Academic Press. Copyright © 1999 by Elsevier. Reprinted by permission of 
Elsevier. 

How are you doing?

 1. What does effect size add to just knowing whether a result is significant?
 2. Why do researchers usually use a standardized effect size?
 3. Write the formula for effect size in the situation we have been considering, 

and define each of the symbols.
 4. On a standard test, the population is known to have a mean of 500 and a 

standard deviation of 100. Those receiving an experimental treatment have a 
mean of 540. What is the effect size?

 5. (a) Why are effect size conventions useful? (b) What are the effect size 
 conventions for d?

 6. (a) What is meta-analysis? (b) What is the role of effect size in a meta-analysis?

Answers

 1. A significant result can be just barely big enough to be significant or much 
bigger than necessary to be significant. Thus, knowing effect size tells you 
how big the effect is.

 2. A standardized effect size makes results of studies using different measures 
comparable.

 3. The formula for effect size is d = 1�1 - �22>�. d is effect size; �1 is the mean 
of Population 1 (the mean for the population that receives the experimental 
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Statistical Power
Power is the ability to achieve your goals. A goal of a researcher conducting a study 
is to get a significant result—but only if the research hypothesis really is true. The 
statistical power of a research study is the probability that the study will produce 
a statistically significant result if the research hypothesis is true. Power is not the 
probability that a study will produce a statistically significant result; it is the prob-
ability that a study will produce a statistically significant result, if the research hy-
pothesis is true. The “if” is the key here. When the research hypothesis is false, you 
do not want to get significant results. (That would be a Type I error, as you learned 
earlier in the chapter.) Remember, however, even when the research hypothesis is 
true, a study will not automatically give a significant result; the sample that happens 
to be selected from the population may not turn out to be extreme enough to reject 
the null hypothesis.

Statistical power is important for several reasons. As you will learn later in the 
chapter, figuring power when planning a study helps you decide how many participants 
you need. As you will also learn later in the chapter, understanding power is extremely 
important when you read a research article, particularly for making sense of results that 
are not significant or results that are statistically but not practically significant.

Consider once again our example in which students rated the physical attrac-
tiveness of a person after being told that the person has positive personality quali-
ties. Recall that we compared two populations:

Population 1: Students who are told that the person has positive personality 
qualities.
Population 2: Students in general (who are told nothing about the person’s per-
sonality qualities).

Also recall that the research hypothesis was that Population 1 would give higher 
attractiveness ratings than Population 2.

The curve in Figure 6-5 shows the distribution of means for Population 2. 
(Be careful: when discussing effect size, we showed figures, such as Figures 6-2  
and 6-3, for populations of individuals; now we are back to focusing on distributions 
of means.) This curve is the comparison distribution, the distribution of means that 
you would expect for both populations if the null hypothesis were true. The mean 
of this distribution of means is 200 and its standard deviation is 6. In Chapter 5, we 
found that using the 5% significance level, one-tailed, you need a Z score for the 
mean of your sample of at least 1.64 to reject the null hypothesis. Using the formula 
for converting Z scores to raw scores, this comes out to a raw score of 209.84; that is, 11.642162 + 200 = 209.84. Therefore, we have shaded the tail of the distribution 
above a raw score of 209.84 (a Z score of 1.64 on this distribution). This is the area 

statistical power probability that the 
study will give a significant result if the 
research hypothesis is true.

T I P  F O R  S U C C E S S
If you are at all unsure about Type I 
and Type II errors, take some time 
now to review the Decision Errors 
section earlier in the chapter. As a 
brief reminder, you make a Type I  
error if the hypothesis-testing pro-
cedure leads you to decide that  
a study supports the research hy-
pothesis when in reality the research 
hypothesis is false. You make a 
Type II error if the hypothesis- 
testing procedure leads you to 
decide that the results of a study 
are inconclusive when in reality the 
research hypothesis is true.

manipulation); �2 is the mean of Population 2 (the known population, the basis 
for the comparison distribution); and � is the population standard deviation.

 4. The effect size is d = 1�1 - �22>� = 1540 - 5002>100 = .40.
 5. (a) Effect size conventions allow you to compare the effect size of a study to 

what is typically found in psychology research. (b) The effect size conven-
tions for d are small = .20, medium = .50, large = .80.

 6. (a) Meta-analysis is a systematic procedure for combining results of different 
studies. (b) Meta-analyses usually come up with average effect sizes across 
studies and compare effect sizes for different subgroups of studies.
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where you would reject the null hypothesis if, as a result of your study, the mean of 
your sample was in this area. This shaded area is labeled “alpha” because alpha is a 
name for the significance level (which in this example is 5%, or p 6 .05).

Imagine that the researcher predicts that telling students about the positive per-
sonality qualities of the person will increase the attractiveness rating of the person to 
208. (This is an increase of 8 points from the mean of 200; 200 being the mean when 
no mention is made about the person’s personality). If this prediction is correct, the 
research hypothesis is true and the mean of Population 1 (the population of students 
who are told about the person’s positive personality qualities) is indeed greater than 
the mean of Population 2. The distribution of means for Population 1 for this hypo-
thetical predicted situation is shown in the top part of Figure 6-6. Notice that the 
distribution has a mean of 208.

Now take a look at the curve shown in the bottom part of Figure 6-6. This curve 
is exactly the same as the one shown in Figure 6-5: the comparison distribution, 
the distribution of means for Population 2. Notice that the distribution of means for 
Population 1 (the top curve) is set off to the right of the distribution of means for 
Population 2 (the bottom curve). This is because the researcher predicts the mean  
of Population 1 to be higher (a mean of 208) than the mean of Population 1 (which 
we know is 200). (If Population 1’s mean is predicted to be lower than Population 
2’s mean, then Population 1 would be set off to the left.) If the null hypothesis is 
true, the true distribution for Population 1 is the same as the distribution based on 
Population 2. Thus, the Population 1 distribution would be lined up directly above 
the Population 2 distribution and would not be set off to the right (or the left).

Recall that the cutoff score for rejecting the null hypothesis in this example 
is 209.84. Thus, the shaded rejection area for Population 2’s distribution of means 
(shown in the bottom curve in Figure 6-6) starts at 209.84. We can also create a 
rejection area for the distribution of means for Population 1. This rejection area will 
also start at 209.84 (see the shaded area in the top curve in Figure 6-6). Remember 
that, in this example, Population 1’s distribution of means represents the possible 
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(comparison distribution),
based on Population 2
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Figure 6-5 For the fictional study of positive personality qualities and ratings of 
physical attractiveness, distribution of means for Population 2 (the comparison distribu-
tion), students told nothing about the person’s personality. Significance cutoff score (209.84) 
shown for p 6 .05, one-tailed.
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sample means that we would get if we randomly selected 64 students from a popula-
tion of students with a mean of 208 (and a standard deviation of 48).

Now, suppose the researcher carries out the study. The researcher randomly 
selects a sample of 64 students, tells them that a particular person has positive 
 personality qualities, and then asks them to rate the attractiveness of that person. 
The researcher finds the mean of the attractiveness ratings given by the sample of  
64 students in the study. And suppose this sample’s mean turns out to be in the 
shaded area of the distributions (that is, a mean of 209.84 or higher). If that happens, 
the researcher will reject the null hypothesis. What Figure 6-6 shows us is that most 
of the means from Population 1’s distribution of means (assuming that its mean is 
208) will not be large enough to reject the null hypothesis. Less than half of the 
 upper distribution is shaded. Put another way, if the research hypothesis is true, as 
the researcher predicts, the sample studied is a random sample from this Population 1 

188 194 200 206 212 218 224Raw Scores:

μM

μM

188 194 200 206 212 218 224Raw Scores:

Research hypothesis
situation, based
on Population 1

Null hypothesis situation
(comparison distribution),
based on Population 2

power
37%

alpha
5%

209.84

−3 −2 −1 0 +1 +2Z Scores:
.31

209.84
−2 −1 0 +1 +2 +3Z Scores:

1.64
−3

208

beta
63%

Figure 6-6 Distributions of means for the fictional study of positive personality 
qualities and ratings of physical attractiveness. Upper curve: Population 1 based on predicted 
population mean of 208. Lower curve: Population 2 (the comparison distribution) based on 
known population mean of 200. Significance cutoff score (209.84) shown for p 6 .05, one-
tailed. Power = 37%.
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distribution of means. However, there is less than a 50-50 chance that the mean of a 
random sample from this distribution will be in the shaded rejection area.

Recall that the statistical power of a study is the probability that the study will 
produce a statistically significant result if the research hypothesis is true. Since we 
are assuming the research hypothesis is true in this example, the shaded region in the 
upper distribution represents the power of the study. It turns out that the power for 
this situation (shown in Figure 6-6) is only 37%. Therefore, assuming the research-
er’s prediction is correct, the researcher has only a 37% chance that the sample of 
64 students will have a mean high enough to make the result statistically significant.

Suppose that the particular sample of 64 students studied had a mean of 203. 
Since you would need a mean of at least 209.84 to reject the null hypothesis, the 
result of this study would not be statistically significant, even though the research 
hypothesis really is true. This is how you would come to make a Type II error.

It is entirely possible that the researcher might select a sample from Population 1 
with a mean far enough to the right (that is, with a high enough mean attractiveness 
rating) to be in the shaded rejection area. However, given the way we have set up 
the example, there is a better than even chance that the study will not turn out to be 
significant, even though we know the research hypothesis is true. (Of course, once 
again, the researcher would not know this.) When a study like the one in this ex-
ample has only a small chance of being significant even if the research hypothesis is 
true, we say the study has low power.

As you learned earlier in the chapter, you make a Type II error if you do not 
get a significant result when in fact the research hypothesis is true. You learned 
that beta is the probability of making a Type II error—that is, the probability of not 
getting a significant result when the research hypothesis is true. Notice that power, 
the probability of getting a significant result if the research hypothesis is true, is 
just the opposite of beta. Thus, beta + power = 100%, which means that beta is 
100% - power. In this example, power is 37%. Thus, beta for this example is 63% 
(that is, 100% - 37% = 63%) (see Figure 6-6).

Determining Statistical Power
The statistical power of a study can be figured. In a situation like the attractiveness 
ratings example (when you have a known population and a single sample), figuring 
power involves figuring out the area of the shaded portion of the upper distribution 
in Figure 6-6 (for more details, see the Advanced Topic section later in this chapter). 
The research situations faced by researchers (including those we consider in the next 
several chapters) are usually more complex than our current example, and figuring 
power is much more complicated. Thus, researchers do not usually figure power by 
hand and instead rely on computer programs or tables.

Researchers can use a power software package to determine power. There are also 
power calculators available on the Internet. When using a power software package 
or Internet power calculator, the researcher puts in the values for the various aspects 
of the research study (such as the known population mean, the predicted population 
mean, the population standard deviation, the sample size, the significance level, and 
whether the test is one- or two-tailed), and the figuring is done automatically.

Finally, researchers can find the power of a study using special charts, called 
power tables. [Such tables have been prepared by Cohen (1988) and by Kraemer & 
Thiemann (1987), among others.] In the following chapters, with each method you 
learn, we provide basic power tables and discuss how to use them. Table A-5 in the 
Appendix is an index to these tables.

power table table for a hypothesis-
testing procedure showing the statistical 
power of a study for various effect sizes 
and sample sizes.

T I P  F O R  S U C C E S S
Remember that power is expressed 
as a probability or percentage, and 
effect size (in the hypothesis testing 
situation you are learning about in 
this chapter) is a measure of the 
distance between two population 
means.
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What Determines the Power of a Study?
It is very important that you understand what power is about. It is especially impor-
tant to understand the factors that affect the power of a study and how to use power 
when planning a study and when making sense of a study you read.

The statistical power of a study depends on two main factors: (1) how big an effect 
(the effect size) the research hypothesis predicts and (2) how many participants are in the 
study (the sample size). Power is also affected by the significance level chosen, whether 
a one-tailed or two-tailed test is used, and the kind of hypothesis-testing procedure used.

Effect Size
Figure 6-6 shows the situation in our attractiveness ratings example in which the re-
searcher had reason to predict that students told that the person has positive personality 
qualities (Population 1, the upper curve) would have a mean score 8 points higher than 
students who were not told anything about the person’s personality (Population 2, the 
lower curve). Figure 6-7 shows the same study for a situation in which the researcher 
would have reason to expect that Population 1 would have a mean score 16 points 
higher than Population 2. Comparing Figure 6-7 to Figure 6-6, you are more likely to 
get a significant result in the situation shown in Figure 6-7. In fact, we noted earlier that 
the Figure 6-6 situation, in which the researcher had reason to predict a mean of only 
208, has a power of 37%. However, the Figure 6-7 situation, in which there was a basis 
for the researcher to predict a mean of 216, comes out to a power of 85%. In any study, 

How are you doing?

 1. (a) What is statistical power? (b) How is it different from just the probability of 
getting a significant result? (c) What is the probability of getting a significant 
result if the research hypothesis is false?

 2. Give two reasons why statistical power is important.
 3. (a) What is the relationship of power to beta? (b) How is beta figured?
 4. (a) Name three approaches that researchers typically use to determine power. 

(b) Why do researchers use these approaches, as opposed to figuring power 
themselves by hand?

Answers

 1. (a) Statistical power is the probability of getting a significant result if the re-
search hypothesis is true. (b) It is the probability if the research hypothesis is true. 
(c) The probability of getting a significant result if the research hypothesis is false 
is alpha, the significance level (that is, the probability of making a Type I error).

 2. Statistical power is important because (i) it can help you determine how many 
participants are needed for a study you are planning, and (ii) understanding 
power can help you make sense of results that are not significant or results 
that are statistically but not practically significant.

 3. (a) Beta, the probability of not getting a significant result if the research hy-
pothesis is true, is the opposite of power, the probability of getting a signifi-
cant result if the research hypothesis is true. (b) Beta is 100% minus power.

 4. (a) Three approaches that researchers typically use to determine power are 
(i) power software packages, (ii) Internet power calculators, and (iii) power 
tables. (b) In common hypothesis-testing situations, figuring power by hand 
is very complicated.
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Figure 6-7 Distributions of means for the fictional study of positive personality 
 qualities and ratings of physical attractiveness. Upper curve: Population 1, based on predicted 
population mean of 216. Bottom curve: Population 2 (the comparison distribution), based on 
the known population mean of 200. Significance cutoff score (209.84) shown for p 6 .05, 
one-tailed. Power = 85%. Compare with Figure 6-6, in which the predicted population mean 
was 208 and power was 37%.

the bigger the difference that your theory or previous research says you should expect 
between the two populations, the more power there is in the study. That is, if in fact there 
is a big mean difference in the population, you have more chance of getting a significant 
result in the study. So if you predict a bigger mean difference, the power you figure 
based on that prediction will be greater. (Thus, if you figure power based on a prediction 
that is unrealistically big, you are just fooling yourself about the power of the study.)

The difference in the means between populations we saw earlier is part of 
what goes into effect size. Thus, the bigger the effect size is, the greater the power 
is. The effect size for the situation in Figure 6-6, in which the researcher pre-
dicted Population 1 to have a mean of 208, is .17. That is, d = 1�1 - �22>� =  1208 - 2002>48 = 8>48 = .17. The effect size for the situation in Figure 6-7, in 
which the researcher predicted Population 1 to have a mean of 216, is .33. That is, 
d = 1�1 - �22>� = 1216 - 2002>48 = .33.
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Effect size, however, is also affected by the population standard deviation. The 
smaller the standard deviation is, the bigger the effect size is. In terms of the effect size 
formula, this is because, if you divide by a smaller number, the result is bigger. In terms 
of the actual distributions, this is because, if two distributions that are separated are 
narrower, they overlap less. Figure 6-8 shows two distributions of means based on the 
same example. However, this time we have changed the example so that the population 
standard deviation is exactly half of what it was. In this version, the predicted mean is 
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Figure 6-8 Distributions of means for the fictional study of positive personality qual-
ities and ratings of physical attractiveness. Upper curve: Population 1, based on predicted 
population mean of 208. Bottom curve: Population 2 (the comparison distribution), based 
on the known population mean of 200. In this example, the population standard deviation 
is half as large as that shown for this example in previous figures. Significance cutoff score 
(204.92) shown for p 6 .05, one-tailed. Power = 85%. Compare with Figure 6-6, which 
had the original population standard deviation and power was 37%.
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the original 208. However, both distributions of means are much narrower. Therefore, 
there is much less overlap between the upper curve and the lower curve (the compari-
son distribution). The result is that the power is 85%, much higher than the power of 
37% in the original situation shown in Figure 6-6. The idea here is that the smaller the 
population standard deviation becomes, the greater the power is.

Overall, these examples illustrate the general principle that the less overlap be-
tween the two distributions, the more likely it is that a study will give a significant 
result. Two distributions might have little overlap either because there is a large 
difference between their means (as in Figure 6-7) or because they have such a small 
standard deviation, that even with a small mean difference they do not overlap much 
(see Figure 6-8). This principle is summarized more generally in Figure 6-9.

Notice that these two factors, the difference between the means and the standard 
deviation of the population, are exactly what goes into figuring effect size. That is, 
effect size is the difference between the means divided by the population standard 
deviation: d = 1�1 - �22>�. Thus, the larger the expected difference is between 
the two  population means (that is, the larger �1 - �2 is), the greater the effect 
size becomes; and the smaller the standard deviation is within the two populations  
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Figure 6-9 The predicted and comparison distributions of means might have little 
overlap (and thus the study would have high power) because either (a) the two means are very 
different or (b) the population standard deviation is very small.
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(that is, the smaller �2 is and thus the smaller � is), the greater the effect size be-
comes. And the greater the effect size is, the greater the power is.

When figuring power in advance of doing a study, the difference between the means 
of the two populations is the difference between the known population mean (Popula-
tion 2) and the researcher’s prediction for the population to be given the experimental 
manipulation (Population 1). This prediction is based on a precise theory, on previous 
experience with research of this kind, or on what would be the smallest difference that 
would be useful. In the situations we have considered so far, the population standard  
deviation, the other number you need to figure the effect size, is known in advance.

Determining Power from Predicted Effect Sizes
Sometimes, instead of predicting a particular mean, researchers predict an effect 
size. Especially when studying something for the first time, researchers make this 
prediction using Cohen’s conventions. That is, they may have only a fairly vague 
idea of how big an effect to expect, so if they expect a small effect, for example, 
they use a predicted effect size of .20.

Once the researchers have predicted an effect size, in whatever way, they can use 
their predicted effect size to figure the predicted mean (the mean for Population 1), 
and then find the power in the usual way (using a power software package, an Internet 
power calculator, or a power table, or using the figuring shown in the Advanced Topic 
section later in this chapter). Consider our example in which the known population 
(Population 2) has a mean of 200 and a standard deviation of 48. Suppose the re-
searcher predicts an effect size of .20 (a small effect size, using Cohen’s conventions). 
In this situation, the predicted mean has to be enough higher than 200 so that the over-
all effect size, after dividing by 48, comes out to .20. That is, the mean difference has 
to increase by .20 standard deviations. In the example, .20 of 48 is 9.60. Thus, the pre-
dicted mean has to be 9.60 higher than the known mean. In this example, the known 
mean is 200; so the predicted mean for an effect size of .20 would be 209.60.

Stating this principle in terms of a formula,

 Predicted �1 = �2 + 1d21�2 (6-2)

Using the formula for our attractiveness ratings example with a predicted effect size 
of .20 (a small effect size),

Predicted �1 = �2 + 1d21�2 = 200 + 1.2021482 = 200 + 9.60 = 209.60.

Using the formula for our attractiveness ratings example with a predicted effect size 
of .50 (a medium effect size),

Predicted �1 = �2 + 1d21�2 = 200 + 1.5021482 = 200 + 24.00 = 224.00.

Figure 6-10 shows, for our attractiveness ratings example, the distributions of 
means for small (middle curve) and medium (upper curve) predicted effect sizes, 
along with the power for each situation.

Sample Size
The other major influence on power, besides effect size, is the number of people 
in the sample studied, the sample size. Basically, the more people there are in the 
study, the more power there is. Indeed, in most cases, sample size matters even 
more than effect size (and is a factor over which the researcher usually has more 
control). 

The predicted mean of the 
population to which the ex-
perimental procedure will be 
applied is the known popula-
tion mean plus the result of 
multiplying the predicted ef-
fect size by the known popu-
lation standard deviation.
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Sample size affects power because, the larger the sample size is, the smaller the 
standard deviation of the distribution of means becomes. If these distributions have 
a smaller standard deviation, they are narrower. And if they are narrower, there is 
less overlap between them. Figure 6-11 shows the situation for our attractiveness 
ratings example if the study included 100 students, instead of the 64 in the original 
example, with a predicted mean of 208 and a population standard deviation of 48. 
The power now is 51%. (It was 37% with 64 students.) With 500 participants in the 
study, power is 99% (see Figure 6-12).
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Figure 6-10 Distributions of means for the fictional study of positive personality 
qualities and ratings of physical attractiveness: (a) and (b) are based on predicted distributions 
of populations of individuals; (c) is based on a known distribution of population of individu-
als. Significance cutoff score (209.84) shown for p 6 .05, one-tailed. In this example, (a) is 
the predicted distribution with a medium effect size 1d = .50, power = 99%2; and (b) is the 
predicted distribution with a small effect size 1d = .20, power = 48%2.
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Don’t get mixed up. The distributions of means can be narrow (and thus have less 
overlap and more power) for two very different reasons. One reason is that the popula-
tion of individuals may have a small standard deviation; this has to do with effect size. 
The other reason is that the sample size is large. This reason is completely separate. 
Sample size has nothing to do with effect size. Both effect size and sample size affect 
power. However, as we will see shortly, these two different influences on power lead to 
completely different kinds of practical steps for increasing power when planning a study.

Figuring Needed Sample Size for a Given Level of Power
When planning a study, the main reason researchers consider power is to help de-
cide how many participants to include in the study. Sample size has an important 
influence on power. Thus, a researcher wants to be sure to have enough people in 
the study for the study to have fairly high power. (Too often, researchers carry out 
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Figure 6-11 Distributions of means for the fictional study of positive personality  qualities 
and ratings of physical attractiveness. Upper curve: Population 1, based on predicted population 
mean of 208. Bottom curve: Population 2 (the comparison distribution), based on the known 
population mean of 200. In this example, the sample size is 100, compared to 64 in the origi-
nal example. Significance cutoff score (207.87) shown for p 6 .05, one-tailed. Power = 51%. 
Compare with Figure 6-6, which had the original sample size and power was 37%.
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studies in which the power is so low that it is unlikely they will get a significant re-
sult even if the research hypothesis is true. See Box 6-2.)

A researcher can figure out the needed number of participants by turning the 
steps of figuring power on their head. You begin with the level of power you want—
say, 80%—and then figure how many participants you need to get that level of 
power. Suppose the researcher in our attractiveness ratings example was planning 
the study and wanted to figure out how many students to include in the sample. Let 
us presume that based on previous research for a situation like this, the researcher 
predicts a mean difference of 8 and there is a known population standard deviation of 
48. In this case, it turns out that the researcher would need 222 students to have 80% 
power. We won’t go into the computational details here. (However, if you read the 
Advanced Procedures section later in the chapter, you might want to try figuring this 
out on your own. See if you can get the same answer as we did, starting with 80% 
power and following the steps backward to get the number of participants needed.)

In practice, researchers use power software packages, Internet power calcula-
tors, or special power tables that tell you how many participants you need in a study 
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Figure 6-12 Distributions of means for the fictional distribution of positive  personality 
qualities and ratings of physical attractiveness. Upper curve: Population 1, based on predicted 
population mean of 208. Bottom curve: Population 2 (the comparison distribution), based on 
the known population mean of 200. In this example, the sample size is 500, compared to 64 
in the original example. Significance cutoff score (203.53) shown for p 6 .05, one-tailed. 
Power = 99%. Compare with Figure 6-6, which had the original sample size and power 
was 37%, and with Figure 6-7, which had a sample of 100 and a power of 51%.
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More than four decades ago, Jacob Cohen (1962), a 
psychologist specializing in statistical methods (see 
Box 4-1), published in the Journal of Abnormal and 
Social Psychology a now well-known analysis of the 
statistical power of studies. He had observed that great 
attention was given to significance, or the issue of 
whether a Type I error had been made (that the research 
hypothesis was mistakenly supported when in fact the 
null hypothesis was true; that an effect was being as-
sumed from the results that in fact did not exist). But 
essentially no attention was given to the possibility of 
a Type II error (that a real effect had been mistakenly 
missed; that the null hypothesis had mistakenly not 
been rejected and a real effect was ignored—indeed, 
often treated as nonexistent—because of inconclusive 
results). Power was not even mentioned in the studies 
he was discussing.

Cohen computed the power for the results in these 
articles. Not being familiar with the many content areas 
involved, he looked at power under three assumptions of 
effect size: small, medium, and large. If small, he found 
that the studies published had only one chance in six 
of detecting a significant effect if the research hypoth-
esis were true because of their small sample sizes. Not 
one of the studies he reviewed had a better than 50-50 
chance. If he assumed a medium effect in the popula-
tion, the studies had a slightly better than 50-50 chance 
of  getting a significant result. One quarter still had less 
than one chance in three. Only if one assumes large 
 effect sizes did the studies as they were designed have 
a good chance of reaching statistical significance. As 
 Cohen (1962) put it, “A generation of researchers could 
be suitably  employed in repeating interesting studies 
which originally used inadequate sample sizes” (p. 153).

These experiments that “failed,” when in fact their 
hypotheses were never adequately tested, represented 
tremendous knowledge that may have been lost, perhaps 
never to be explored again. And this loss was simply be-
cause of a failure to be concerned about power—most 
often a failure to calculate, through a consideration of ef-
fect size, significance level, and power, the sample size 
that would best test the hypothesis.

In 1969, Cohen published a handbook for analyz-
ing power in the social sciences, and a revised ver-
sion appeared in 1988. Still, in an article published in 
1989, Sedlmeier and Gigerenzer observed that Cohen’s 
admonitions apparently had had no effect during the 

intervening years. In fact, the power of studies in the 
same journal that Cohen had studied (now the Journal 
of Abnormal Psychology) had actually decreased over 
those years. And low power still went unnoticed. Only 2 
of 64 experiments even discussed power, and these two 
had not estimated it. Meanwhile, in 11% of the studies 
published in that issue, nonsignificance was considered 
a confirmation of the null hypothesis. Yet Sedlmeier and 
Gigerenzer found that the median power in these partic-
ular studies was only 25%. Certainly, if we are to con-
sider it valuable information in itself when results favor 
the null hypothesis, it can be taken that way only when 
power is high enough so that, if the research hypothesis 
was true, the study would at least have an even chance of 
showing it.

A number of analyses of the power of studies in 
 specific journals and research fields suggest that many 
studies are still conducted with low power (e.g.,  Bezeau 
and Graves’s 2001 analysis of three clinical neuro-
psychology journals, Clark-Carters’s 1997 study of 
the British Journal of Psychology, and the 2006 study 
by Woods et al. of the cognitive effect of subthalamic 
nucleus deep brain stimulation in Parkinson’s dis-
ease). However, this trend may not hold for all areas 
of  psychological research. For example, Shen et al. 
(2011) reported that studies published in The Journal of 
 Applied Psychology from 1995 to 2008 had, on  average, 
enough power to identify effect sizes of interest to 
 applied psychologists. Still, the stubborn failure by 
many researchers to consider power is a bit shocking. 
More often than not, it means that researchers are going 
through all their work for nothing. The odds are against 
their finding what they seek, even if it is true. But in an 
article in American Psychologist titled, “Things I Have 
Learned (So Far),” Jacob Cohen (1990) looked back 
over the decades philosophically:

I do not despair. I remember that W. S. Gosset, the fel-
low who worked in a brewery and appeared in print 
modestly as “Student,” published the t test a decade 
before we entered World War I, and the test didn’t get 
into the psychological statistics textbooks until after 
World War II.

These things take time. So, if you publish some-
thing that you think is really good, and a year or a decade 
or two go by and hardly anyone seems to have taken 
 notice, remember the t test, and take heart. (p. 1311)

BOX 6-2 The Power of Typical Psychology Experiments
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to have a high level of power, given a certain predicted effect size. We provide sim-
plified versions of power tables for each of the main hypothesis-testing procedures 
you learn in upcoming chapters.

Other Influences on Power
Three other factors, besides effect size and sample size, affect power.

 1. Significance level (alpha). Less extreme significance levels (such as p 6 .10 
or p 6 .20) mean more power. More extreme significance levels (p 6 .01 
or p 6 .001) mean less power. Less extreme significance levels result in more 
power because the shaded rejection area on the lower curve is bigger. Thus, more 
of the area in the upper curve is shaded. More extreme significance levels result in 
less power because the shaded rejection region on the lower curve is smaller. Sup-
pose in our attractiveness ratings example we had used the .01 significance level 
instead. The power would have dropped from 37% to only 16% (see Figure 6-13). 
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Figure 6-13 Distributions of means for the fictional study of positive personality 
qualities and ratings of physical attractiveness. Upper curve: Population 1, based on predicted 
population mean of 208. Bottom curve: Population 2 (the comparison distribution), based 
on the known population mean of 200. Significance cutoff score (213.98) now shown for 
p 6 .01, one-tailed. Power = 16%. Compare with Figure 6-6, which used a significance 
level of p 6 .05, one-tailed, and power was 37%.
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It is important to bear in mind that using a less extreme significance level (such as 
p 6 .10 or p 6 .20) increases the chance of making a Type I error. Also, using 
an extreme significance level (such as p 6 .01 or p 6 .001) increases the chance 
of making a Type II error.

 2. One- versus two-tailed tests. Using a two-tailed test makes it harder to get sig-
nificance on any one tail. Thus, keeping everything else the same, power is less 
with a two-tailed test than with a one-tailed test. Suppose in our attractiveness 
ratings example we had used a two-tailed test instead of a one-tailed test (but 
still using 5% overall). As shown in Figure 6-14, power would be only 26% 
(compared to 37% in the original one-tailed version).

 3. Type of hypothesis-testing procedure. Sometimes the researcher has a choice 
of more than one hypothesis-testing procedure to use for a particular study. We 
have not considered any such situations so far in this book, but we will do so in 
Chapter 14.
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Figure 6-14 Distributions of means for the fictional study of positive personality 
qualities and ratings of physical attractiveness. Upper curve: Population 1, based on predicted 
population mean of 208. Bottom curve: Population 2 (the comparison distribution), based 
on the known population mean of 200. Significance cutoff score (211.76) now shown for 
p 6 .05, two-tailed. Power = 26%. Compare with Figure 6-6, which used a significance 
level of p 6 .05, one-tailed, and power was 37%.



204 Chapter 6

Table 6-4 Influences on Power

Feature of the Study Increases Power Decreases Power

Effect size (d ) (d = 3�1 - �24>�2 Large d Small d

Effect size combines the following two features:  

Predicted difference between population  
means 1�1 - �22

Large differences Small differences

Population standard deviation 1�2 Small 1�2 Large 1�2
Sample size (N ) Large N Small N

Significance level 1�2 Lenient, high � 
(such as .05 or .10)

Extreme, low � 
(such as .01 or .001)

One-tailed versus two-tailed test One-tailed Two-tailed

Type of hypothesis-testing procedure used Varies Varies

Summary of Influences on Power
Table 6-4 summarizes the effects of various factors on the power of a study.

How are you doing?

 1. (a) What are the two factors that determine effect size? For each factor 
[(b) and (c)], explain how and why it affects power.

 2. In a planned study involving a standard test, the population is known to have 
a mean of 500 and a standard deviation of 100. The researchers predict that 
their planned experimental procedure will produce a large effect (that is, they 
predict an effect size of .80). What is the predicted mean of the population 
that will be given the experimental procedure?

 3. (a) How and (b) why does sample size affect power?
 4. (a) How and (b) why does the significance level used affect power?
 5. (a) How and (b) why does using a one-tailed versus a two-tailed test affect power?

Answers

 1. (a) The two factors that determine effect size are (i) the difference between 
the known and predicted population means and (ii) the population standard 
deviation.

  (b) The more difference there is between the means, the larger the effect size 
is, and the more power. This is because it drives the distributions of means 
farther apart and thus they have less overlap; so the area in the predicted 
distribution that is more extreme than the cutoff in the known distribution is 
greater.

  (c) The smaller the population standard deviation is, the larger the effect size 
becomes, and the greater the power. This is because it makes the distribu-
tions of means narrower and thus have less overlap. Therefore, the area in 
the predicted distribution that is more extreme than the cutoff in the known 
distribution is greater.

 2. The predicted mean of the population that will be given the experimental pro-
cedure is predicted �1 = �2 + (d )(�) = 500 + (.80)(100) = 580.

 3. (a) The larger the sample size is, the more power there is. (b) This is because 
a larger sample size makes the distributions of means narrower (because the 
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The Role of Power When Planning a Study
Determining power is very important when planning a study. If you do a study in 
which the power is low, even if the research hypothesis is true, the study will prob-
ably not give statistically significant results. Thus, the time and expense of carrying 
out the study, as it is currently planned, would probably not be worthwhile. So when 
the power of a planned study is found to be low, researchers look for practical ways 
to increase the power to an acceptable level.

What is an acceptable level of power? A widely used rule is that a study should 
have 80% power to be worth doing (see Cohen, 1988). Power of 80% means that 
there is an 80% (8 out of 10) chance that the study will produce a statistically sig-
nificant result if the research hypothesis is true. Obviously, the more power the bet-
ter. However, the costs of greater power, such as studying more people, often make 
even 80% power beyond your reach.

How can you increase the power of a planned study? In principle, you can do so 
by changing any of the factors summarized in Table 6-4. Let’s consider each.

 1. Increase effect size by increasing the predicted difference between popu-
lation means. You can’t just arbitrarily predict a bigger effect. There has 
to be a sound basis for your prediction. Thus, to increase the predicted dif-
ference, your method in carrying out the study must make it reasonable to 
expect a bigger effect. Consider again our example of the experiment about 
the impact of telling students about the positive personality characteristics 
of a person on the attractiveness ratings of that person. One way to increase 
the expected mean difference might be to use a more intense experimental 
procedure (such as telling students that the person has a great many positive 
personality qualities and does not have a single negative personality quality). 
A disadvantage of this approach of increasing the impact of the experimental 
procedure is that you may have to use an experimental procedure that is not 
like the one to which you want the results of your study to apply. It can also 
sometimes be difficult or costly. In some studies, another way to increase the 
expected mean difference might be to make the instructions more elaborate, 
spending more time explaining them, perhaps allowing time for practice, and 
so forth.

standard deviation of a distribution of means is the square root of the result 
of dividing the population variance by the sample size) and thus have less 
overlap; so the area in the predicted distribution that is more extreme than 
the cutoff in the known distribution is greater.

 4. (a) The more lenient the significance level is (for example, .10 versus .05), the 
more power there is. (b) This is because it makes the cutoff in the known dis-
tribution less extreme; so the corresponding area that is more extreme than 
this cutoff in the predicted distribution of means is larger.

 5. (a) A study with a one-tailed test has more power (for a result in the predicted di-
rection) than a two-tailed test. (b) This is because with a one-tailed test, the cutoff 
in the predicted direction in the known distribution is less extreme; so the cor-
responding area that is more extreme than this cutoff in the predicted distribution 
of means is larger. There is an added cutoff in the opposite side with a two-tailed 
test, but this is so far out on the distribution that it has little effect on power.
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 2. Increase effect size by decreasing the population standard deviation. You 
can decrease the population standard deviation in a planned study in at least two 
ways. One way is to study a population that has less variance within it than the 
one originally planned. For example, in a study of fifth-graders’ performance 
on a test, you might only use fifth-graders in a particular suburban school sys-
tem. The disadvantage is that your results will then apply only to the more lim-
ited population.

   Another way to decrease the population standard deviation is to use condi-
tions of testing that are more standardized and measures that are more precise. 
For example, testing in a controlled laboratory setting usually makes for less 
variation among scores in results (meaning a smaller standard deviation). Simi-
larly, using measures and tests with very clear wording also reduces variation. 
When practical, this is an excellent way to increase power, but often the study is 
already as rigorous as it can be.

 3. Increase the sample size. The most straightforward way to increase power is 
to study more people. Of course, if you are studying billionaires who have 
made their fortune by founding a tech company, there is a limit to how many 
are available. Also, using a larger sample size often adds to the time and 
cost of conducting the research study. In most research situations, though, 
increasing sample size is the main way to change a planned study to raise  
its power.

 4. Use a less extreme level of significance (such as p * .10 or p * .20). Or-
dinarily, the level of significance you use should be the least extreme that rea-
sonably protects against Type I error. Normally, in psychology research, this 
will be p 6 .05. In general, we don’t recommend using a less extreme signifi-
cance level to increase power because this increases the chances of making a Type I  
error. Also, most psychology research journals consider p 6 .05 to be the 
standard cutoff for determining statistical significance. Thus, if you use a less 
extreme level of significance, it may be hard to get the results of your study 
published.

 5. Use a one-tailed test. Whether you use a one- or two-tailed test depends on the 
logic of the hypothesis being studied (and in many areas of psychology one-
tailed tests are frowned upon under any circumstances). As with significance 
level, it is rare that you have much of a choice about this factor.

Table 6-5 Summary of Practical Ways of Increasing the Power of a Planned Study

Feature of the Study Practical Way of Raising Power Disadvantages

Predicted difference between population  
means 1�1 - �22

Increase the intensity of experimental  
procedure.

May not be practical or may distort  
study’s meaning.

Standard deviation 1�2 Use a less diverse population. May not be available; decreases  
generalizability.

Use standardized, controlled circumstances  
of testing or more precise measurement.

Not always practical.

Sample size (N ) Use a larger sample size. Not always practical; can be costly.

Significance level 1�2 Use a more lenient level of significance  
(such as .10).

Raises alpha, the probability of Type I error.

One-tailed versus two-tailed test Use a one-tailed test. May not be appropriate for the logic  
of the study.

Type of hypothesis-testing procedure Use a more sensitive procedure. None may be available or appropriate.
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 6. Use a more sensitive hypothesis-testing procedure. This is fine if alternatives 
are available. We consider some options of this kind in Chapter 14. Usually, 
however, the researcher begins with the most sensitive method available; so 
little more can be done.

Table 6-5 summarizes some practical ways to increase the power of a planned 
experiment.

The Role of Power When Interpreting  
the Results of a Study
Understanding statistical power and what affects it is very important in drawing 
conclusions from the results of research.

When a Result Is Statistically Significant: Statistical 
Significance versus Practical Significance
You have learned that a study with a larger effect size is more likely to come out 
statistically significant. It also is possible for a study with a very small effect size 
to come out significant. This is likely to happen when a study has high power due 
to other factors, especially a large sample size. Consider a sample of 10,000 adults 
who complete a new Internet-based counseling program designed to increase their 
level of happiness. At the end of the program, their mean happiness score is 100.6, 
compared to the mean happiness score of 100 1� = 102 for adults in general. This 
result would be significant at the .001 level. So the researchers would be confident 
that the new program increases people’s level of happiness. But the effect size is 
a tiny .06. This means that the new program increases happiness by only a very 
small amount. Such a small increase is unlikely to make a noticeable difference in 
people’s lives and thus the researchers might conclude that the effect of the program 
is statistically significant but has little practical significance.

Clinical and applied psychologists (as well as researchers and practitioners in 
other behavioral, social, and medical fields) often distinguish between a result  being 
statistically significant versus clinically significant. The latter phrase, clinically sig-
nificant, means that the result is big enough to make a difference that matters in 
treating people. Chambless and Hollon (1998) stated the issue quite simply: “If a 
treatment is to be useful to practitioners it is not enough for treatment effects to be 
statistically significant: they also need to be large enough to be clinically meaning-
ful” (p. 11).

The message here is that when judging a study’s results, there are two ques-
tions. First, is the result statistically significant? If it is, we consider it to be a real 
effect. The next question is whether the effect size is large enough for the result to 
be useful or interesting. This second question is especially important if the study 
has practical implications. (Sometimes, in a study testing purely theoretical issues, it 
may be enough just to be confident that there is an effect at all in a particular direc-
tion. We have more to say about this later when discussing controversies.)

If the sample was small, you can assume that a statistically significant result 
is probably also practically important. (That is, with a small sample size, the only 
way to get a statistically significant result using standard procedures is if the effect 
size is fairly large.) On the other hand, if the sample size is very large, you must 
consider the effect size directly, because it is quite possible that the effect size is too 
small to be useful. As Bakeman (2006) succinctly noted: “. . . statistical significance 
should not overly impress us. After all, even the most miniscule effect can achieve 
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 statistical significance if the sample size is large enough” (pp. 136–137). What we 
just said may seem a bit of a paradox. Most people assume that the more people 
there are in the study, the more important its results will be. In a sense, just the 
reverse is true. All other things being equal, if a study with only a few participants 
manages to be significant, that significance must be due to a large effect size. A 
study with a large number of people that is statistically significant may or may not 
have a large effect size. This is why the American Psychological Association (2009) 
urges researchers to include effect sizes when they describe the results of studies in 
research articles.

Also notice that it is usually not a good idea to compare the significance level 
of two studies to see which has the more important result. For example, a study with 
a small number of participants that is significant at the .05 level is likely to have a 
large effect size. However, a study with a large number of participants that is signifi-
cant even at the .001 level might well have a small effect size.

The level of significance does tell you something. It tells you how confident 
you can be that these results could not have been found if the null hypothesis were 
true. The more extreme (lower) the p level is, the stronger the evidence is for a non-
zero effect size (Frick, 1996). However, it is definitely not the case that the more 
extreme (smaller) the p level is, the larger the effect size will be. If two studies were 
identical in every other way, a more extreme (smaller) p level would mean a bigger 
effect. But if the studies differ, especially if they differ in sample size, p level is 
ambiguous in its relation to effect size. A small p level could be due to a large effect 
size, but it could just as well be due to a large sample size. Thus, the p level tells you 
about the strength of our confidence that there is a nonzero effect, but it does not tell 
you how big that nonzero effect is.

The most important lesson from all this is that the word significant in statisti-
cally significant has a very special meaning. It means that you can be pretty confi-
dent that there is some real effect. But it does not tell you much about whether that 
real effect is significant in a practical sense, that it is important or noteworthy.

Role of Power When a Result Is Not Statistically Significant
We saw in Chapter 4 that a result that is not statistically significant is inconclusive. 
Often, however, we really would like to conclude that there is little or no difference 
between the populations. Can we ever do that?

Consider the relationship of power to a nonsignificant result. Suppose you 
 carried out a study that had low power and did not get a significant result. In this sit-
uation, the result is entirely inconclusive. Not getting a significant result may have 
come about because the research hypothesis was false or because the study had too 
little power (for example, because it had too few participants).

On the other hand, suppose you carried out a study that had high power and you 
did not get a significant result. In this situation, it seems unlikely that the research 
hypothesis is true. In this situation (where there is high power), a nonsignificant re-
sult is a fairly strong argument against the research hypothesis. This does not mean 
that all versions of the research hypothesis are false. For example, it is possible that 
the research hypothesis is true and the populations are only very slightly different 
(and you figured power based on predicting a large difference).

In sum, a nonsignificant result from a study with low power is truly inconclu-
sive. However, a nonsignificant result from a study with high power does suggest 
either that the research hypothesis is false or that there is less of an effect than was 
predicted when figuring power.
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Summary of the Role of Power When Evaluating  
Results of a Study
Table 6-6 summarizes the role of significance and sample size in interpreting 
 research results.

Table 6-6 Role of Significance and Sample Size in Interpreting Research Results

Result Statistically Significant Sample Size Conclusion

Yes Small Important result

Yes Large Might or might not have practical importance

No Small Inconclusive

No Large Research hypothesis probably false

How are you doing?

 1. (a) What are the two basic ways of increasing the effect size of a planned 
study? For each [(b) and (c)], how can it be done, and what are the 
disadvantages?

 2. What is usually the easiest way to increase the power of a planned study?
 3. What are the disadvantages of increasing the power of a planned study by 

using (a) a more lenient significance level or (b) a one-tailed test rather than a 
two-tailed test?

 4. Why is statistical significance not the same as practical importance?
 5. You are comparing two studies in which one is significant at p 6 .01 and the 

other is significant at p 6 .05. (a) What can you conclude about the two stud-
ies? (b) What can you not conclude about the two studies?

 6. When a result is significant, what can you conclude about effect size if the 
study had (a) a very large sample size or (b) a very small sample size?

 7. When a result is not significant, what can you conclude about the truth of the 
research hypothesis if the study had (a) a very large sample size or (b) a very 
small sample size?

Answers

 1. (a) The two basic ways of increasing the effect size of a planned study are: 
(i) increase the predicted difference between population means, and (ii) re-
duce the population standard deviation.

  (b) You can increase the predicted difference by making the experimen-
tal procedure more impactful. The disadvantages are that it may change 
the meaning of the procedure you really want to study and it might not be 
practical.

  (c) You can decrease the population standard deviation by using a less di-
verse population (which has the disadvantage of not permitting you to apply 
your results to a more general population) and by using more standardized 
procedures or more accurate measurement (which may not be practical).

 2. Usually, the easiest way to increase the power of a planned study is to in-
crease the sample size.

 3. (a) Increasing the power of a planned study by using a more lenient signifi-
cance level increases the probability of a Type I error (and will make it harder 
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Controversy: Statistical Significance  
Versus Effect Size
In Chapter 4, we discussed an ongoing, heated controversy about the value of 
 significance tests, including the argument that they are often misused. We said 
that significance tests are misused in two main ways that seriously concern psy-
chologists. One of them is that nonsignificant results are unthinkingly interpreted as 
showing there is in fact no effect. In light of this chapter, you should be able to see 
even more clearly why this mistake is a problem: nonsignificant results could be due 
either to little or no true effect or simply to the low power of the experiment.

Also in Chapter 4, we said we would postpone discussing the other way 
 significance tests are often misused until we had covered material in a later chapter. 
That material was effect size, and we are now in a position to examine this issue. 
This misuse occurs when a significant result is unthinkingly interpreted as being an 
“important” result; that is, significance is confused with a large effect size.

Loosely speaking, statistical significance is about the probability that we could 
have gotten our pattern of results by chance if the null hypothesis were true. As 
Frick (1996) put it, significance is about the strength of the evidence that we have 
a nonzero effect. If our result is significant at the .05 level, that is pretty good evi-
dence; if it is significant at the .01 level, that is even better evidence (see also the 
marginal significance controversy section in Chapter 5).

However, as we have seen in this chapter, a significant result may not be impor-
tant in the sense of meaning a large effect size or having practical importance. For 
example, if the sample size was large, a result with a tiny effect size could be statisti-
cally significant at p 6 .001. In this situation we would be very confident that the 
true effect was other than zero. But the size of this true nonzero effect would still be 
very small. We would be concluding that we have a real, but slight, effect. Similarly, 
if the sample size was small enough, a result with a huge effect size might not be sta-
tistically significant at all. In this situation, our best estimate of the size of the effect 
is that it is large. But we would have no confidence that this effect is  really there at 
all; it could be that the true effect is very small or even in the opposite direction.

to get your study results published in a journal). (b) A one-tailed test rather 
than a two-tailed test may not be appropriate to the logic of the study, may 
not be acceptable in a particular area of psychology, and if the result comes 
out opposite to predictions, in principle, it would have to be considered 
nonsignificant.

 4. A statistically significant result means that you can be confident the effect 
would be unlikely to happen if the null hypothesis were true; it does not, how-
ever, mean that it is a large or substantial effect.

 5. (a) We can be more confident for the first study than for the second study in 
rejecting the null hypothesis. (b) We cannot conclude which one has the big-
ger effect size.

 6. (a) Given a very large sample size, the effect size could be small or large. 
(b) Given a very small sample size, the effect size is probably large.

 7. (a) The research hypothesis is probably not true (or has a much smaller effect 
size than predicted). (b) You can conclude very little about the truth of the 
research hypothesis.
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Several researchers have observed that the word significant is the cause of some 
confusion. Fidler and colleagues (2005) noted: “Confusion of clinical and statistical 
significance often manifests itself in ambiguous language: Researchers describe their 
results as significant or nonsignificant without distinguishing whether they are speak-
ing statistically or substantively” (p. 137). One solution might be to change the term 
statistically significant, but it is unlikely that this will happen anytime soon. Thus, it 
is important that when reading or conducting psychology research, you keep in mind 
the distinction between the special way the word significance is used in psychology 
versus the way it is used in ordinary language. As we noted in Chapter 4, most psy-
chologists do not see the misuses as a reason to abandon significance  testing. Instead, 
they argue, we should make more of an effort to prevent such misuse.

However, this is not the end of the matter. Many of those who oppose sig-
nificance testing argue that, even if properly used, significance testing misses the 
point. What psychology is fundamentally about, they argue, is effect size. It is not 
about whether a result is nonzero. We already saw a version of this argument in 
an Advanced Topic section in Chapter 5, with the suggestion that researchers use 
 confidence intervals instead of significance testing. The full version of that proposal 
is that researchers should really be reporting effect sizes (ideally, with confidence 
intervals around the effect sizes).

Proponents of emphasizing effect size argue that effect sizes provide informa-
tion that can be compared to other studies and used in accumulating information 
over independent studies as research in a field progresses. Effect sizes are crucial 
ingredients in meta-analysis, and many of the proponents of effect size see meta-
analysis as the wave of the future of psychology.

There are, however, counterarguments in favor of significance testing (and 
against using effect sizes alone). One such counterargument is that, when sample 
size is small, it is still possible for a study to come out with a large effect size just by 
chance. Thus, if we are interested in the result of a particular study that used a small 
sample, significance tests protect against taking the results of such a study too seri-
ously. Similarly, at times a very small effect size is nevertheless important. In such 
a situation, it is crucial to know whether the result should be trusted as very unlikely 
if the null hypothesis were true. Still, many of those making these counterarguments 
agree that significance has been overemphasized. Most hold that significance should 
always be reported but that effect size should also be given more emphasis in the 
discussion of results.

There is yet another view: in some circumstances effect sizes are actually mis-
leading, and we should rely only on significance testing. Chow (1988, 1996), for 
example, makes a distinction between applied and theoretically oriented research. In 
applied research, psychologists want to know the actual amount of effect a particu-
lar program has or how big is the actual difference between two particular groups. In 
these circumstances, Chow agrees, effect size is a good idea. However, when doing 
theoretical research, Chow argues, the situation is quite different. In this situation, 
he says, effect sizes can be irrelevant and even misleading.

Consider an experiment on the effect of familiarity on recognizing informa-
tion. The point of such a study is to examine the basic way that familiarity affects 
information processing. A particular study might show people a series of familiar 
and unfamiliar words to see how many milliseconds it takes to recognize them. The 
effect size of such a study would tell us very little to help interpret the results of the 
study. It depends on all sorts of details of how the study was done, such as just how 
familiar and unfamiliar the words were, the specific way the words were presented, 
and so forth. What matters in a study like this, Chow says, is that (a) the prediction 
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of a difference in recognizing familiar versus unfamiliar words was based on theory, 
(b) the results were consistent with what was predicted (as shown by the statistical 
significance), and (c) the theory was thus supported. On the other hand, if many 
studies are done using similar procedures but with meaningfully different aspects 
(for example, different kinds of familiarity), it may be very valuable to be able to 
compare effect sizes. 

The current balance of the use of significance tests and effect sizes is probably 
just what one might expect from the points that Chow makes. In applied areas of 
psychology, there is an increasing emphasis on effect size. But in more theoreti-
cal areas of psychology, explicit mentions of effect size are less common. (For ex-
ample, Sun et al., 2010, analyzed 1243 research articles published in mainstream 
journals in education and psychology between 2005 and 2007. In the education jour-
nals, which typically focus on relatively applied studies, 73% of articles included ef-
fect sizes; at the same time, psychology journals, which include many journals that 
 emphasize more theoretical issues, only 40% included effect sizes.) Nevertheless, 
the prevailing view among statistics experts in psychology seems to be that, even 
in theoretically oriented research, the potential loss (due to misplaced emphasis) by 
including effect size is probably offset by, among other benefits, the usefulness to 
future  researchers of having such information to help them in figuring power when 
planning their own studies and, most important, for future meta-analysts who will 
combine the results of this study with other related studies.

Decision Errors, Effect Size, and Power  
in Research Articles
Decision errors (Type I or Type II) are rarely mentioned in research articles. They 
might be mentioned if the study did not find statistically significant results and 
also had low power. In this situation, the researchers might mention that the lack 
of significant results may represent a Type II error. Since most academic journals 
generally avoid publishing such studies, you will seldom see such discussions. 
However, as noted earlier, it is increasingly common for articles to mention effect 
size, especially in applied research. For example, Morehouse and Tobler (2000) 
studied the effectiveness of an intervention program for “high-risk, multiprob-
lem, inner-city, primarily African-American and Latino youth.” The authors re-
ported, “Youth who received 5–30 hours of intervention ([the high dosage group], 
n = 101) were compared with those who received 1–4 hours (the low-dosage 
group, n = 31). . . . The difference between the groups in terms of reduction in 
[alcohol and drug] use was highly significant. A between-groups effect size of 
.68 was achieved for the high-dosage group when compared with the low-dosage 
group.” (Their wording about the study is a bit confusing; they are using dosage 
here to mean the amount of intervention, not the amount of drugs anyone was tak-
ing!) The meaning of the .68 effect size is that the group getting 5 to 30 hours of 
intervention was .68 standard deviations higher in terms of reduction on their drug 
and alcohol use than the group getting only 1 to 4 hours of the intervention. This is 
a medium to large effect size.

Effect size is most commonly reported in meta-analyses, in which results 
from different articles are being combined and compared. We have given several 
 examples of such meta-analytic studies, including one in Box 6-1. As an example of 
how these studies actually describe results in terms of effect size, consider a meta- 
analysis conducted by Hostetter (2011), which tested whether gesturing when speak-
ing improves communication. The meta-analysis included results from 38 research 
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studies (some of which provided results for several different samples) that examined 
whether people’s understanding of a message differs when speech is presented with 
gestures compared to when it is not. As noted in the article, “Cohen’s d, a standard-
ized estimate of effect size, was calculated for each unique sample in each study” 
(p. 304). In terms of the overall result of the meta-analysis, Hostetter reported: “. . . 
[T]he mean effect size was calculated as .61 . . . and shows that, across studies, ges-
tures do have a moderate, beneficial effect on communication” (p. 306). As shown 
in  Table 6-7, the article also reported the effect size for several different subgroups. 
The standardized effect sizes (d) are shown in the column labeled “Mean effect 
size.” (The final column of the table presents information that is beyond our discus-
sion of meta-analysis.) Effect sizes in the table that are significantly greater than 
zero at p 6 .05 are shown by an asterisk. From the table, you can see that almost all 
of the effect sizes were significantly greater than zero and most fell within the small 
to large range of Cohen’s effect size conventions. Hostetter conducted additional 
analyses and found that the magnitude of effect size differed according to three fac-
tors. “First, effects of gesture differ as a function of gesture topic, such that gestures 
that depict motor actions are more communicative than those that depict abstract 
topics. Second, effects of gesture on communication are larger when the gestures are 
not completely redundant with the accompanying speech; effects are smaller when 
there is more overlap between the information conveyed in the 2 modalities. Third, 
the size of the effect of gesture is dependent on the age of the listeners, such that 
children benefit more from gestures than do adults” (p. 297).

Table 6-7 Descriptive Information About the Effect Sizes of Each Subgroup

Moderator Subgroup
Number of 
samples

Mean  
effect size

Standard error 
of effect size

Speaking topic Abstract  8 0.31 0.18

Spatial 32 0.57* 0.10

Motor 23 0.77* 0.11

Gesture-speech redundancy Redundant 54 0.55* 0.07

Nonredundant  9 1.04* 0.21

Listener’s age Adults 42 0.51* 0.09

Children 21 0.84* 0.13

Special population Typical 55 0.61* 0.07

Special  8 0.66* 0.22

Speech controlled Controlled 57 0.63* 0.07

Not controlled  6 0.45 0.23

Gesture spontaneity Spontaneous 24 0.47* 0.11

Scripted 39 0.70* 0.09

Face visibility in control 
condition Visible 45 0.69* 0.09

Not Visible 18 0.46* 0.12

Dependent variable Comprehension 28 0.59* 0.11

Memory 20 0.56* 0.12

Learning 15 0.72* 0.14

Note. Effect size is significantly greater than zero, at * p 6 .05.

Source: Hostetter, A. B. (2011). When do gestures communicate? A meta-analysis. Psychological Bulletin, 137, 297–315. 
 Reproduced by permission of the American Psychological Association.
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You mainly think about power when planning research. (Power, for example, is 
often a major topic in grant proposals requesting funding for research and in thesis 
proposals; an estimate of the power of a planned study is also usually required in an 
application to a university’s human subjects review board for permission to conduct 
the planned study.) As for research articles, power is sometimes mentioned in the 
final section of an article where the author discusses the meaning of the results or in 
discussions of results of other studies. In either situation, the emphasis tends to be 
on the meaning of nonsignificant results. Also, when power is discussed, it may be 
explained in some detail because psychologists have been slow to be knowledgeable 
about power.

For example, Denenberg (1999), in discussing the basis for his own study, 
makes the following comments about a relevant previous study by Mody, Kennedy, 
and Brady (1997) that had not found significant results.

[T]hey were confronted with the serious problem of having to accept the null hy-
pothesis. . . . we can view this issue in terms of statistical power. . . . A minimal 
statistical power of .80 [80%] is required before one can consider the argument 
that the lack of significance may be interpreted as evidence that Ho [the null 
 hypothesis] is true. To conduct a power analysis, it is necessary to specify an ex-
pected mean difference, the alpha level, and whether a one-tailed or two-tailed test 
will be used. Given a power requirement of .80 [80%], one can then determine the 
N necessary. Once these conditions are satisfied, if the experiment fails to find a 
 significant  difference, then one can make the following kind of a statement: “We 
have designed an experiment with a .8 probability of finding a significant differ-
ence, if such exists in the population. Because we failed to find a significant effect, 
we think it quite unlikely that one exists. Even if it does exist, its contribution 
would appear to be minimal. . . .”

Mody et al. never discussed power, even though they interpreted negative findings 
as proof of the validity of the null hypothesis in all of their experiments. . . . Because 
the participants were split in this experiment, the ns [sample sizes] were reduced to 
10 per group. Under such conditions one would not expect to find a significant differ-
ence, unless the experimental variable was very powerful. In other words, it is more 
difficult to reject the null hypothesis when working with small ns [sample sizes]. The 
only meaningful conclusion that can be drawn from this study is that no meaningful 
interpretation can be made of the lack of findings. (pp. 380–381)

Here is another example. Huey and Polo (2008) conducted a review of research 
on psychological treatments for a variety of emotional and behavioral problems 
(such as anxiety, depression, and substance abuse) among ethnic minority youth. 
In discussing their results, they noted the following: “[a] concern is whether sample 
sizes have been sufficient to test key hypotheses. The absence of difference does not 
necessarily indicate group equivalence, and may suggest that studies lack adequate 
statistical power” (p. 295). They went on to state that: “larger samples are needed 
to better answer key questions of theoretical interest to minority mental health re-
searchers. Although there are other methods for maximizing statistical power (e.g., 
using more sensitive measures, adjusting alpha [significance] level), increasing 
sample size is perhaps the most practical approach” (p. 295).

Advanced Topic: Figuring Statistical Power
In this section, you will learn how to figure statistical power by hand for research 
situations in which the mean and standard deviation of the comparison distribution 
are known and a mean is predicted for the population of individuals receiving the 
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experimental procedure. Learning to figure power by hand will greatly deepen your 
understanding of this important topic.

Consider again the attractiveness ratings example shown in Figure 6-6. The 
population of individuals who were not told anything about the person’s posi-
tive personality qualities (Population 1) had a mean of 200 and a standard devia-
tion of 48 (a variance of 2,304). The researcher studied a sample of 64 students. 
Thus, we figured the standard deviation of the distribution of means to be 6; that

is, �M = A
�2

N
= A

2,304

64
= 6. We have presumed that the researcher predicted 

that telling students that the person had positive personality qualities would raise the 
mean attractiveness rating to 208.

You learned earlier that the power of the study is represented by the shaded 
region in the upper curve in Figure 6-6, the distribution of means for Population 1. 
Thus, figuring the percentage of the curve in that shaded area will tell us the power 
of the study. Recall that the cutoff Z score on Populations 2’s distribution of means 
(the lower distribution in Figure 6-6) was 1.64. This corresponded to a raw score 
cutoff of 209.84. Now, look at the top curve in Figure 6-6, the distribution of means 
for Population 1. This raw score cutoff of 209.84 corresponds to a Z score on that 
distribution of .31; that is, Z = 1M - �M2>�M = 1209.84 - 2082>6 = .31.

The normal curve table (Table A-1 in the Appendix) shows that 38% of a normal 
curve is in the tail region above a Z of .31. In other words, 38% of the means in predicted 
Population 1’s distribution of means are above a Z score of .31 (and therefore 38% of the 
means are above a raw score of 209.84). Thus, the power of the study is 38%. (The exact 
percentage shown in the table is 37.83%, but we can round power to the nearest whole 
percentage.) Recall that we told you earlier the power for the study was 37%. This dif-
ference between 37% and 37.83% occurs due to rounding error (the 37% we reported 
was rounding off based on using a computer program that kept multiple decimal places).

Notice that the way we figured power had nothing to do with the actual results 
of the study. It was based on predictions. In fact, researchers usually figure power 
before doing the study.

Steps for Figuring Power 
In our situation (the mean of a single sample compared to a known population), 
there are four steps to figure power:

 ❶ Gather the needed information: the mean and standard deviation of Popu-
lation 2’s distribution of means (the comparison distribution) and the pre-
dicted mean of Population 1’s distribution of means (the population that is 
given the experimental procedure). The mean of Population 2’s distribution 
of means is 200 and its standard deviation is 6. The predicted mean of Popula-
tion 1’s distribution of means is 208.

 ❷ Figure the raw-score cutoff point on the comparison distribution to reject 
the null hypothesis. For the 5% significance level, one-tailed, the Z score cut-
off is +1.64. A Z of +1.64 is a raw score of 209.84. Thus, in the lower curve 
(the comparison distribution) in Figure 6-6, we have shaded the area to the right 
of 209.84. This is the alpha region.

 ❸ Figure the Z score for this same point, but on the distribution of means 
for the population that receives the experimental procedure (Popu-
lation 1). On this distribution (based on the predicted scores for Popu-
lation 1), a raw score of 209.84 is the same as a Z score of .31; that is, 
Z = 1M - �M2>�M = 1209.84 - 2082>6 = .31. Thus, in the upper curve in 

T I P  F O R  S U C C E S S
When figuring power, it is very 
helpful to make a diagram of the 
two distributions, as in Figure 6-6.
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Figure 6-6, we have shaded the area to the right of .31. This shaded area shows 
the power of the study, the area in which a mean of an actual sample would pro-
duce statistically significant results for the study.

 ❹ Using the normal curve table, figure the probability of getting a score 
more extreme than that Z score.2 The normal curve table shows 38% in 
the tail region above a Z of .31. The power of this study is 38%. (Beta is thus 
100% - 38% = 62%.)

How are you doing?

 1. In a planned study, the population is known to have a mean of 500 and a 
standard deviation of 100. The researchers will give the experimental treat-
ment to 60 people and predict that the mean for those 60 will be 540. They 
will use the .05 significance level. (a) Figure the power of this study and  
(b) sketch the distributions involved. (c) What is beta in this study?

Answer

 1. (a)  ❶ Gather the needed information. The mean of the comparison 
 distribution is 500. The predicted mean of the population that receives 
the experimental procedure is 540. The standard deviation of the distribu-
tion of means, �M, is 2�2>N = 21002>60 = 12.91.

540

0
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+1

565.8

+2

514.2

–2
–1.46
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+2 
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(comparison distribution),
based on Population 2

Research hypothesis situation
based on Population 1

Power = 93% 
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beta (7%)

521.17
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5%

+1.64

Figure 6-15 Distributions of means for “How are you doing?” question 1.  Upper 
curve: Predicted. Lower curve: Known.
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Summary

 1. There are two kinds of possible decision errors in hypothesis testing. A Type I 
error is when a researcher rejects the null hypothesis, but the null hypothesis 
is actually true. A Type II error is when a researcher does not reject the null 
 hypothesis, but the null hypothesis is actually false.

 2. Effect size is a measure of the difference between population means. In the 
hypothesis-testing situations you learned about in this chapter, you can think 
of effect size as how much something changes after a specific intervention. 
A widely used standardized measure of effect size, Cohen’s d, is the differ-
ence between population means divided by the population standard deviation. 
 Cohen’s effect size conventions consider a small effect to be .20, a medium 
 effect to be .50, and a large effect to be .80.

 3. Meta-analysis is a procedure for systematically combining and comparing 
 effect sizes of separate studies.

 4. The statistical power of a study is the probability that it will give a statistically 
significant result if the research hypothesis is true.

 5. The larger the effect size is, the greater the power is. This is because the 
greater the difference is between means or the smaller the population stan-
dard deviation is (the two ingredients in effect size), the less overlap there is 
between the known and predicted populations’ distributions of means. Thus, 
the area in the predicted distribution that is more extreme than the cutoff in 
the known distribution is greater. Also, if you know or predict the effect size, 
you can figure the predicted mean; it will be the known mean plus the result 
of multiplying the effect size by the population standard deviation. You can 
then use this to figure power.

 6. The larger the sample size is, the greater the power is. This is because the larger 
the sample is, the smaller is the variance of the distribution of means. So, for a 
given effect size, there is less overlap between distributions of means.

 7. Power is also affected by significance level (the more extreme, such as .01, the 
lower the power), by whether a one-tailed or two-tailed test is used (with less 

 ❷ Figure the raw-score cutoff point on the comparison distribution 

to reject the null hypothesis. A Z of +1.64 (for the 5% significance level) 
gives a raw score of 521.17.

 ❸ Figure the Z score for this same point, but on the distribution 

of means for the population that receives the experimental pro-

cedure (Population 1). A raw score of 521.17 on this distribution is a 
Z score of -1.46.

 ❹ Using the normal curve table, figure the probability of getting a 

score more extreme than that Z score. Power = 93% (that is, 43% 
between the mean and a Z of -1.46, plus 50% above the mean).

(b) The distributions involved are shown in Figure 6-15.
(c) Beta is 7%: that is, 100% - 93% = 7%.

Learning Aids
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power for a two-tailed test), and by the type of hypothesis-testing procedure 
used (in the occasional situation where there is a choice of procedure).

 8. Statistically significant results from a study with high power (such as one with 
a large sample size) may not have practical importance. Results that are not 
statistically significant from a study with low power (such as one with a small 
sample size) leave open the possibility that significant results might show up if 
power were increased.

 9. Psychologists disagree about whether statistical significance or effect size is 
more important in interpreting experimental results; theoretically oriented 
psychologists are more likely to emphasize statistical significance; applied 
 researchers, effect size.

 10. Research articles in all areas increasingly report effect size (in addition to 
significance), and effect sizes are almost always reported in meta-analyses. 
Research articles sometimes include discussions of power, especially when 
evaluating nonsignificant results.

 11. ADVANCED TOPIC: To figure power (in the situation of a known popula-
tion and a single sample), you first find the cutoff point for significance, in 
raw-score terms, on the comparison distribution. Based on a specific predicted 
mean, you can find the Z score for this cutoff on the distribution of means for 
the population given the experimental procedure. Power is the probability of 
exceeding this Z score, the area greater than this Z score, which you can find 
from the normal curve table.

Each problem below is based on a known population with a normal distribution, 
� = 40, and � = 10.

Figuring the Effect Size
A sample given an experimental treatment has a mean of 37. What is the effect size? 
Is this approximately small, medium, or large?

Answer

d = (�1 - �2)>� = (37 - 40)>10 = -3>10 = -.30; approximately small.

Find the Predicted Mean from an Effect Size
The researcher predicts a small negative effect size. What is the predicted mean?

Example Worked-Out Problems

decision errors (p. 177)
Type I error (p. 178)
alpha (�) (p. 179)
Type II error (p. 179)

beta (�) (p. 179)
effect size (d) (p. 182)
d (p. 184)
effect size conventions (p. 185)

meta-analysis (p. 186)
statistical power (p. 189)
power table (p. 192)

Key Terms
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Answer
A small negative effect size is - .20. Predicted �1 = �2 + 1d21�2 = 40 + 1- .2021102 = 40 + 1-22 = 38.

Outline for Writing Essays on Effect Size and Power for 
Studies Involving a Sample of More Than One Individual 
and a Known Population
 1. Explain the idea of effect size as the degree of overlap between distribu-

tions, noting how this overlap is a function of mean difference and popula-
tion standard deviation (and describing precisely how it is figured and why 
it is figured that way). If required by the question, discuss the effect size 
conventions.

 2. Explain the idea of power as the probability of getting significant results if the 
research hypothesis is true. Be sure to mention that the standard minimum ac-
ceptable level of power for a research study is 80%. Explain the role played by 
power when you are interpreting the results of a study (both when a study is and 
is not significant), taking into account significance levels and sample size in 
relation to the likely effect size.

 3. Explain the relationship between effect size and power.

Advanced Topic: Figuring Power
The researcher plans to conduct a new study with a sample of 25 and predicts that, 
when given a new experimental treatment, this group will have a mean of 49. The 
researcher plans to use the 1% significance level (one-tailed). What is the power of 
the planned study? What is beta in this study? Make a diagram of the distributions 
on which you show the areas for alpha, beta, and power.

Answer

 ❶ Gather the needed information: the mean and standard deviation of Pop-
ulation 2’s distribution of means (the comparison distribution) and the 
predicted mean of Population 1’s distribution of means (the population 
given the experimental procedure). The mean of the comparison distribu-
tion is 40. The predicted mean of the distribution of means for the population 
that receives the experimental procedure is 49. The standard deviation of the 

distribution of means, �M, is 2102>25 = 2100>25 = 24 = 2.
 ❷ Figure the raw-score cutoff point on the comparison distribution to reject 

the null hypothesis. A Z of + 2.33 (for the 1% significance level) gives a raw 
score of 40 + 12.332122 = 44.66.

 ❸ Figure the Z score for this same point, but on the distribution of means for 
the population that receives the experimental procedure (Population 1). A 
raw score of 44.66 on the distribution that will be given the experimental 
 treatment is a Z score of 144.66 -  492>2 = -4.34>2 = -2.17.

 ❹ Using the normal curve table, figure the probability of getting a score more 
extreme than that Z score. From the normal curve table, the area between the 
mean and a Z of 2.17 is 48.5%. Since - 2.17 is below the mean, and there is 
another 50% above the mean, power = 98.5%, which we can round to 99%. 
The distributions involved are shown in Figure 6-16. Beta is 100% - power. 
Thus, beta = 100% - 99% = 1%.
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Figure 6-16 Distributions of means for Example Worked-Out Problem for figuring 
power. Upper curve: Predicted. Bottom curve: Known.

Practice Problems

These problems involve figuring. Most real-life statistics problems are done on a 
computer with special statistical software. Even if you have such software, do these 
problems by hand to ingrain the method in your mind.

All data are fictional unless an actual citation is given.

Set I (for Answers to Set I Problems, see pp. 685–688)
 1. Define alpha and beta.
 2. For each of the following studies, make a chart of the four possible correct and 

incorrect decisions, and explain what each would mean. Each chart should be 
laid out like Table 6-1, but put into the boxes the possible results, using the 
names of the variables involved in the study.

 (a) A study of whether increasing the amount of recess time improves school-
children’s in-class behavior.

 (b) A study of whether color-blind individuals can distinguish gray shades better 
than the population at large.

 (c) A study comparing individuals who have ever been in psychotherapy to the 
general public to see if they are more tolerant of other people’s upsets than 
is the general population.

MyStatLab
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 3. In a completed study, there is a known population with a normal distribution, 
� = 25, and � = 12. What is the estimated effect size if a sample given an experi-
mental procedure has a mean of (a) 19, (b) 22, (c) 25, (d) 30, and (e) 35? For each 
part, also indicate whether the effect is approximately small, medium, or large.

 4. In a planned study, there is a known population with a normal distribution, 
� = 50, and � = 5. What is the predicted effect size (d) if the researchers pre-
dict that those given an experimental treatment have a mean of (a) 50, (b) 52, 
(c) 54, (d) 56, and (e) 47? For each part, also indicate whether the effect is ap-
proximately small, medium, or large.

 5. In a planned study, there is a known population with a normal distribution, 
� = 15, and � = 2. What is the predicted mean if the researcher predicts (a) a 
small positive effect size, (b) a medium negative effect size, (c) a large positive 
effect size, (d) an effect size of d = .35, and (e) an effect size of d = -1.50?

 6. Here is information about several possible versions of a planned experiment. 
Figure effect size for each; sketch the distributions involved, showing the area 
for alpha, beta, and power. (Assume all populations have a normal distribution.) 
ADVANCED TOPIC: Figure the power for each version.

Population Predicted Mean N Significance Level One- or Two-Tailed

� �

(a) 90 4 91 100 .05 1

(b) 90 4 92 100 .05 1

(c) 90 2 91 100 .05 1

(d) 90 4 91 16 .05 1

(e) 90 4 91 100 .01 1

(f) 90 4 91 100 .05 2

 7. You read a study in which the result is significant (p  6  .05). You then look 
at the size of the sample. If the sample is very large (rather than very small), 
how should this affect your interpretation of (a) the probability that the null 
hypothesis is actually true and (b) the practical importance of the result?  
(c) Explain your answers to a person who understands hypothesis testing but 
has never learned about effect size or power.

 8. Aron and colleagues (1997) placed strangers in pairs and asked them to talk 
together following a series of instructions designed to help them become close. 
At the end of 45 minutes, individuals privately answered some questions about 
how close they now felt to their partners. (The researchers combined the an-
swers into a “closeness composite.”) One key question was whether closeness 
would be affected by either (a) matching strangers based on their attitude agree-
ment or (b) leading participants to believe that they had been put together with 
someone who would like them. The result for both agreement and expecting to 
be liked was that “there was no significant differences on the closeness composite” 
(p. 367). The researchers went on to argue that the results suggested that there 
was little true effect of these variables on closeness:

There was about 90% power in this study of achieving significant effects . . .  
for the two manipulated variables if in fact there were a large effect of this 
kind (d = .8). Indeed, the power is about 90% for finding at least a near- 
significant (p 6 .10) medium-sized effect (d = .5). Thus, it seems unlikely 
that we would have obtained the present results if in fact there is more than a 
small effect . . . . (p. 367)
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   Explain this result to a person who understands hypothesis testing but has 
never learned about power or effect size.

 9. How does each of the following affect the power of a planned study?
 (a) A larger predicted difference between the means of the populations.
 (b) A larger population standard deviation.
 (c) A larger sample size.
 (d) Using a more extreme significance level (e.g., .01 instead of .05).
 (e) Using a two-tailed test instead of a one-tailed test.
 10. List two situations in which it is useful to consider power, indicating what the 

use is for each.
 11. ADVANCED TOPIC: Based on a particular theory of creativity, a psychologist 

predicts that artists will be greater risk takers than the general population. The 
general population is normally distributed with a mean of 50 and a standard 
deviation of 12 on the risk-taking questionnaire this psychologist plans to use. 
The psychologist expects that artists will score, on the average, 55 on this ques-
tionnaire. The psychologist plans to study 36 artists and test the hypothesis at 
the .05 level. (a) What is the power of this study? (b) Sketch the distributions 
involved, showing the areas for alpha, beta, and power. (c) Explain your answer 
to someone who understands hypothesis testing with means of samples but has 
never learned about power.

 12. ADVANCED TOPIC: On a memory task in which words are learned in a ran-
dom order, it is known that people can recall a mean of 11 words with a stan-
dard deviation of 4 and that the distribution follows a normal curve. A cognitive 
psychologist, to test a theory, modifies that task so that the words are presented 
in a way in which words that have a related meaning are presented together. 
The cognitive psychologist predicts that, under these conditions, people will 
recall so many more words that there will be a large effect size. She plans to 
test this with a sample of 20 people, using the .01 significance level, two-tailed.  
(a) What is the power of this study? (b) Sketch the distributions involved, show-
ing the areas for alpha, beta, and power. (c) Explain your answer to someone 
who understands hypothesis testing involving means of samples but has never 
learned about effect size or power.

Set II
 13. For each of the following studies, make a chart of the four possible correct and 

incorrect decisions, and explain what each would mean. (Each chart should be 
laid out like Table 6-1, but put into the boxes the possible results, using the 
names of the variables involved in the study.)

 (a) A study of whether infants born prematurely begin to recognize faces later 
than do infants in general.

 (b) A study of whether high school students who receive an AIDS prevention 
program in their school are more likely to practice safe sex than are other 
high school students.

 (c) A study of whether memory for abstract ideas is reduced if the information 
is presented in distracting colors.

 14. In a completed study, there is a known population with a normal distribution, 
� = 122, and � = 8. What is the estimated effect size if a sample given an 
experimental procedure has a mean of (a) 100, (b) 110, (c) 120, (d) 130, and 
(e) 140? For each part, also indicate whether the effect is approximately small, 
medium, or large.
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 15. In a planned study, there is a known population with a normal distribution, 
� = 0, and � = 10. What is the predicted effect size (d ) if the researchers 
predict that those given an experimental treatment have a mean of (a) -8, (b) -5, 
(c) -2, (d) 0, and (e) 10? For each part, also indicate whether the effect is 
approximately small, medium, or large.

 16. In a planned study, there is a known population with a normal distribution, 
� = 17.5, and � = 3.2. What is the predicted mean if the researcher predicts 
(a) a small positive effect size, (b) a medium negative effect size, (c) an effect 
size of d = .40, (d) an effect size of d = - .40, (e) an effect size of d = 3?

 17. Here is information about several possible versions of a planned experi-
ment, each with a single sample. Figure effect size for each; then sketch the 
 distributions involved, showing the areas for alpha, beta, and power. (Assume 
all  populations have a normal distribution.) ADVANCED TOPIC: Figure the 
power for each version.

Population Predicted Mean N Significance Level One- or Two-Tailed

� �

(a) 0 .5 .1 50 .05 1

(b) 0 .5 .5 50 .05 1

(c) 0 .5 1.0 50 .05 1

(d) 0 .5 .5 100 .05 1

(e) 0 .5 .5 200 .05 1

(f) 0 .5 .5 400 .05 1

 18. You read a study that just barely fails to be significant at the .05 level. That 
is, the result is not significant. You then look at the size of the sample. If the 
sample is very large (rather than very small), how should this affect your in-
terpretation of (a) the probability that the null hypothesis is actually true and 
(b) the probability that the null hypothesis is actually false? (c) Explain your 
answers to a person who understands hypothesis testing but has never learned 
about power.

 19. In the Decision Errors, Effect Size, and Power in Research Articles section ear-
lier in this chapter, you read about a review study conducted by Huey and Polo 
(2008) that examined psychological treatments for clinical problems among 
ethnic minority youth. As part of their review, the researchers identified twenty-
five studies that compared the effect of a psychotherapy treatment versus a con-
trol treatment on youths’ clinical problems. They conducted a meta-analysis of 
the twenty-five studies and reported the results as follows: 

[T]he mean effect size was d = .44. Because coefficients of .20 or lower 
represent” “small” effects, coefficients around .50 “medium” effects, and 
coefficients of .80 or higher “large effects”, the overall d reported here falls 
somewhat below the standard for a “medium” effect (Cohen, 1988). (p. 282)

   Explain the purpose and results of this meta-analysis to someone who is 
familiar with effect size but has never heard of meta-analysis.

 20. Caspi and colleagues (1997) analyzed results from a large-scale longitudinal 
study of a sample of children born around 1972 in Dunedin, New Zealand. As 
one part of their study, the researchers compared the 94 in their sample who 
were, at age 21, alcohol dependent (clearly alcoholic) versus the 863 who were 
not alcohol dependent. The researchers compared these two groups in terms of 
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personality test scores from when they were 18 years old. After noting that all 
results were significant, they reported the following results:

Young adults who were alcohol dependent at age 21 scored lower at age 18 
on Traditionalism 1d = .492, Harm Avoidance 1d = .442, Control (d = .64), 
and Social Closeness 1d = .402, and higher on Aggression 1d = .862, Alien-
ation 1d = .662, and Stress Reaction 1d = .502.

   Explain these results, including why it was especially important for the re-
searchers in this study to give effect sizes, to a person who understands hypoth-
esis testing but has never learned about effect size or power.

 21. Tsang and colleagues (2009) conducted a review to examine the statistical 
power of studies that had compared patients’ experiences of serious adverse 
events (such as a life-threatening medical event) during randomized controlled 
trials of medical treatments. They identified six studies that reported the results 
of statistical analyses to test whether the number of adverse effects experienced 
by patients receiving one medical treatment differed from the number experi-
enced by those receiving a different treatment. Tsang et al. summarized their 
results as follows: “Three of the six studies included in this analysis reported 
non-statistically significant differences in serious adverse event rates, and con-
cluded that there was no difference in risk despite [having power] of less than 
0.37 to detect the reported differences” (p. 610). They also noted that: “A high 
probability of type II error may lead to erroneous clinical inference resulting in 
harm. The statistical power for nonsignificant tests should be considered in the 
interpretation of results” (p. 609). Explain the results of this review to a person 
who understands hypothesis testing and decision errors but has never learned 
about effect size or power. 

 22. You are planning a study that you compute as having quite low power. Name 
six things that you might do to increase power.

 23. ADVANCED TOPIC: A psychologist is planning a study on the effect of moti-
vation on performance on an attention task. In this task, participants try to iden-
tify target letters in a stream of letters passing by at a rapid rate. The researcher 
knows from long experience that, under ordinary experimental conditions, the 
population of students who participate in this task identify a mean of 71 of the 
key letters, that the standard deviation is 10, and that the distribution is ap-
proximately normal. The psychologist predicts that, if the participant is paid a 
dollar for each letter identified correctly, the number correctly identified will 
increase to 74. The psychologist plans to test 20 participants under these condi-
tions, using the .05 level. (a) What is the power of this study? (b) Sketch the dis-
tributions involved, showing the areas for alpha, beta, and power. (c) Explain 
your answer to someone who understands hypothesis testing involving means 
of samples but has never learned about power.

 24. ADVANCED TOPIC: An organizational psychologist predicts that assembly 
workers will have a somewhat higher level of job satisfaction if they are given 
a new kind of incentive program (that is, he predicts a medium effect size). On 
a standard job satisfaction scale, for assembly workers in this company overall, 
the distribution is normal, with � = 82 and � = 7. The psychologist plans to 
provide the new incentive program to 25 randomly selected assembly workers. 
(a) What is the power of this study (using p 6 .01)? (b) Sketch the distributions 
involved, showing the areas for alpha, beta, and power. (c) Explain your answer 
to someone who understands hypothesis testing involving means of samples but 
has never learned about effect size or power.
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Chapter Notes

 1. In other situations that you will learn about later in the book, effect size can 
refer to other kinds of effects, such as the overall extent to which there is varia-
tion among means of several different populations (Chapter 9), or the extent to 
which two variables in a population are related to each other (Chapter 11).

 2. This method of figuring power (which is the only method for figuring power by 
hand covered in this book) assumes that the distributions of means are normally 
distributed.
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Chapter 7

Introduction to t Tests

Single Sample and Dependent Means

At this point, you may think you know all about hypothesis testing. Here’s 
a surprise: what you know will not help you much as a researcher. Why? 
The procedures for testing hypotheses described up to this point were, of 

course, absolutely necessary for what you will now learn. However, these proce-
dures involved comparing a group of scores to a known population. In real research 
practice, you often compare two or more groups of scores to each other, without any 
direct information about populations. For example, you may have two scores for 
each person in a group of people, such as scores on an anxiety test before and after 
psychotherapy or number of familiar versus unfamiliar words recalled in a memory 
experiment. Or you might have one score per person for two groups of people, such 
as an experimental group and a control group in a study of the effect of sleep loss on 
problem solving, or comparing the self-esteem test scores of a group of 10-year-old 
girls to a group of 10-year-old boys.
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These kinds of research situations are among the most common in psychology, 
where usually the only information available is from samples. Nothing is known 
about the populations that the samples are supposed to come from. In particular, 
the researcher does not know the variance of the populations involved, which is a 
crucial ingredient in Step ❷ of the hypothesis-testing process (determining the char-
acteristics of the comparison distribution).

In this chapter, we first look at the solution to the problem of not knowing the 
population variance by focusing on a special situation: comparing the mean of a 
single sample to a population with a known mean but an unknown variance. Then, 
after describing how to handle this problem of not knowing the population variance, 
we go on to consider the situation in which there is no known population at all—the 
situation in which all we have are two scores for each of a number of people.

The hypothesis-testing procedures you learn in this chapter, those in which 
the population variance is unknown, are examples of t tests. The t test is some-
times called “Student’s t” because its main principles were originally developed by 
William S. Gosset, who published his research articles anonymously using the name 
“Student” (see Box 7-1).

The t Test for a Single Sample
Let’s begin with an example. Suppose your college newspaper reports an informal 
survey showing that students at your college study an average of 17 hours per week. 
However, you think that the students in your dormitory study much more than that. 
You randomly pick 16 students from your dormitory and ask them on an anonymous 
questionnaire how much they study each day. Your result is that these 16 students 
study an average of 21 hours per week. Should you conclude that students in your 
dormitory study more than the college average? Or should you conclude that your 
results are close enough to the college average that the small difference of 4 hours 
might well be due to your having picked, purely by chance, 16 of the more studious 
residents in your dormitory?

In this example you have scores for a sample of individuals and you want to 
compare the mean of this sample to a population for which you know the mean but 
not the variance. Hypothesis testing in this situation is called a t test for a single 
sample. (It is also called a one-sample t test.) The t test for a single sample works 
basically the same way as the Z test you learned in Chapter 5. In the studies we 
considered in that chapter, you had scores for a sample of individuals (such as a 
group of 64 students rating the attractiveness of a person in a photograph after being 
told that the person has positive personality qualities) and you wanted to compare 
the mean of this sample to a population (in that case, a population of students not 
told about the person’s personality qualities). However, in the studies we considered 
in Chapter 5, you knew both the mean and variance of the general population to 
which you were going to compare your sample. In the situations we are now going 
to consider, everything is the same, but you don’t know the population variance. 
This presents two important new wrinkles affecting the details of how you carry out 
two of the steps of the hypothesis-testing process.

The first important new wrinkle is in Step ❷. Because the population variance 
is not known, you have to estimate it. So the first new wrinkle we consider is how to 
estimate an unknown population variance. The other important new wrinkle affects 
both Steps ❷ and ❸. When the population variance has to be estimated, the shape of 
the comparison distribution is not quite a normal curve; so the second new wrinkle 

t test hypothesis-testing procedure 
in which the population variance is 
unknown; it compares t scores from 
a sample to a comparison distribution 
called a t distribution.

t test for a single sample hypothesis-
testing procedure in which a sample 
mean is being compared to a known 
population mean and the population 
variance is unknown.

T I P  F O R  S U C C E S S
You use the Z test (that you 
learned in Chapter 5) when the 
population variance is known; you 
use a t test when the population 
variance is not known.
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we consider is the shape of the comparison distribution (for Step ❷) and how to use 
a special table to find the cutoff (Step ❸) on what is a slightly differently shaped 
distribution.

Let’s return to the amount of studying example. Step ❶ of the hypothesis-testing 
procedure is to restate the problem as hypotheses about populations. There are two 
populations:

Population 1: The kind of students who live in your dormitory.
Population 2: The kind of students in general at your college.

The research hypothesis is that Population 1 students study more than Population 2  
students; the null hypothesis is that Population 1 students do not study more than 
Population 2 students. So far, the problem is no different from those in Chapter 5.

Step ❷ is to determine the characteristics of the comparison distribution. In this 
example, its mean will be 17, what the survey found for students at your college 
generally (Population 2).

William S. Gosset gradu-
ated from Oxford Univer-
sity in 1899 with degrees in 
mathematics and chemistry. 
It happened that in the same 
year the Guinness brewers in  
Dublin, Ireland, were seeking 
a few young scientists to take 
a first-ever scientific look at 
beer making. Gosset took one 
of these jobs and soon had im-

mersed himself in barley, hops, and vats of brew.
The problem was how to make beer of a consistently 

high quality. Scientists such as Gosset wanted to make 
the quality of beer less variable, and they were especially 
interested in finding the cause of bad batches. A proper 
scientist would say, “Conduct experiments!” But a busi-
ness such as a brewery could not afford to waste money 
on experiments involving large numbers of vats, some of 
which any brewer worth his hops knew would fail. So 
Gosset was forced to contemplate the probability of, say, 
a certain strain of barley producing terrible beer when the 
experiment could consist of only a few batches of each 
strain. Adding to the problem was that he had no idea of 
the variability of a given strain of barley—perhaps some 
fields planted with the same strain grew better barley. 
(Does this sound familiar? Poor Gosset, like today’s psy-
chologists, had no idea of his population’s variance.)

Gosset was up to the task, although at the time only 
he knew that. To his colleagues at the brewery, he was 

BOX 7-1  William S. Gosset, Alias “Student”: 
Not a Mathematician, But a Practical Man

a professor of mathematics and not a proper brewer at 
all. To his statistical colleagues, mainly at the Biometric 
Laboratory at University College in London, he was a 
mere brewer and not a proper mathematician.

So Gosset discovered the t distribution and in-
vented the t test—simplicity itself (compared to most of 
statistics)—for situations when samples are small and the 
variability of the larger population is unknown. However, 
the Guinness brewery did not allow its scientists to pub-
lish papers, because one Guinness scientist had revealed 
brewery secrets. To this day, most statisticians call the  
t distribution “Student’s t” because Gosset wrote under 
the anonymous name “Student.” A few of his fellow stat-
isticians knew who “Student” was, but apparently meetings 
with others involved the secrecy worthy of a spy novel. 
The brewery learned of his scientific fame only at his 
death, when colleagues wanted to honor him.

In spite of his great achievements, Gosset often wrote 
in letters that his own work provided “only a rough idea 
of the thing” or so-and-so “really worked out the com-
plete mathematics.” He was remembered as a thoughtful, 
kind, humble man, sensitive to others’ feelings. Gosset’s 
friendliness and generosity with his time and ideas also 
resulted in many students and younger colleagues mak-
ing major breakthroughs based on his help.

To learn more about William Gosset, go to http://www-
history.mcs.st-andrews.ac.uk/Biographies/Gosset.html.

Sources: Peters (1987); Salsburg (2001); Stigler (1986); 
Tankard (1984).

The Granger  Collection

http://www.history.mcs.st-andrews.ac.uk/Biographies/Gosset.html
http://www.history.mcs.st-andrews.ac.uk/Biographies/Gosset.html
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The next part of Step ❷ is finding the variance of the distribution of means. Now 
you face a problem. Up to now in this book, you have always known the variance of 
the population of individuals. Using that variance, you then figured the variance of the 
distribution of means. However, in the present example, the variance of the number of 
hours studied for students at your college (the Population 2 students) was not reported 
in the newspaper article. So you email the paper. Unfortunately, the reporter did not 
figure the variance, and the original survey results are no longer available. What to do?

Basic Principle of the t Test: Estimating the Population 
Variance from the Sample Scores
If you do not know the variance of the population of individuals, you can estimate it 
from what you do know—the scores of the people in your sample.

In the logic of hypothesis testing, you consider the group of people you study to 
be a random sample from a particular population. The variance of this sample ought 
to reflect the variance of that population. If the scores in the population have a lot of 
variation, then the scores in a sample randomly selected from that population should 
also have a lot of variation. If the population has very little variation, the scores in 
a sample from that population should also have very little variation. Thus, it should 
be possible to use the variation among the scores in the sample to make an informed 
guess about the spread of the scores in the population. That is, you could figure the 
variance of the sample’s scores, and that should be similar to the variance of the 
scores in the population. (See Figure 7-1.)

There is, however, one small hitch. The variance of a sample will generally be 
slightly smaller than the variance of the population from which it is taken. For this 
reason, the variance of the sample is a biased estimate of the population variance.1 

biased estimate estimate of a popula-
tion parameter that is likely systemati-
cally to overestimate or underestimate 
the true value of the population parame-
ter. For example, SD2 would be a biased 
estimate of the population variance (it 
would systematically underestimate it).

(c)(b)   (a)

Figure 7-1 The variation in a sample’s scores (shown in the lower distributions) is 
similar to the variation of scores in the population from which the sample is taken (shown in 
the upper distributions).
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It is a biased estimate because it consistently slightly underestimates the actual vari-
ance of the population. (For example, if a population has a variance of 180, a typical 
sample of 20 scores might have a variance of only 171.) If we used a biased estimate 
of the population variance in our research studies, our results would not be accurate. 
Therefore, we need to identify an unbiased estimate of the population variance.

Fortunately, you can figure an unbiased estimate of the population variance 
by slightly changing the ordinary variance formula. The ordinary variance formula 
is the sum of the squared deviation scores divided by the number of scores. The 
changed formula still starts with the sum of the squared deviation scores, but divides 
this by the number of scores minus 1. Dividing by a slightly smaller number makes 
the result slightly larger. Dividing by the number of scores minus 1 makes the vari-
ance you get just enough larger to make it an unbiased estimate of the population 
variance. (This unbiased estimate is our best estimate of the population variance. 
However, it is still an estimate, so it is unlikely to be exactly the same as the true 
population variance. But what we can count on is that our unbiased estimate of the 
population variance is equally likely to be too high as it is to be too low. This is what 
makes our estimate unbiased.)

The symbol we will use for the unbiased estimate of the population variance is 
S2. The formula is the usual variance formula, but now dividing by N - 1:

 S2 =
g1X - M22

N - 1
=

SS

N - 1
 (7-1)

 S = 2S2 (7-2)

Let’s return again to the example of hours spent studying and figure the esti-
mated population variance from the sample’s 16 scores. First, you figure the sum of 
squared deviation scores. (Subtract the mean from each of the scores, square those 
deviation scores, and add them.) Presume in our example that this comes out to 694 
(that is, SS = 694). To get the estimated population variance, you divide this sum of 
squared deviation scores by the number of scores minus 1. In this example, you di-
vide 694 by 16 - 1; 694 divided by 15 comes out to 46.27. In terms of the formula,

S2 =
g1X - M22

N - 1
=

SS

N - 1
=

694

16 - 1
=

694

15
= 46.27

Degrees of Freedom
The number you divide by (the number of scores minus 1) to get the estimated popula-
tion variance has a special name. It is called the degrees of freedom (and is abbrevi-
ated as df ). It has this name because it is the number of scores in a sample that are 
“free to vary.” The idea is that, when figuring the variance, you first have to know the 
mean. If you know the mean and all but one of the scores in the sample, you can figure 
out the one you don’t know with a little arithmetic. For example, suppose we know 
that two scores have a mean of 6 and one of the scores is a 4. The other score has to 
be an 8 (since the mean of 4 and 8 is 6). Even though there are two scores, if we know 
the mean, the number of scores “free to vary” is just one. So in this kind of situation 
the degrees of freedom are the number of scores minus 1. In terms of a formula,

 df = N - 1 (7-3)

df is the degrees of freedom.

unbiased estimate of the population 
variance (S2) estimate of the popula-
tion variance, based on sample scores, 
which has been corrected so that it is 
equally likely to overestimate or under-
estimate the true population variance; 
the correction used is dividing the sum 
of squared deviations by the sample size 
minus 1, instead of the usual procedure 
of dividing by the sample size directly.

degrees of freedom (df) number of 
scores free to vary when estimating a 
population parameter; usually part of a 
formula for making that estimate—for 
example, in the formula for estimating 
the population variance from a single 
sample, the degrees of freedom is the 
number of scores minus 1.

Table 7-1 Summary of 

Different Types of Standard Deviations 

and Variances

Statistical Term Symbol

Sample standard deviation SD

Population standard deviation �

Estimated population  
standard deviation

S

Standard deviation of the  
distribution of means 
(based on an estimated 
population variance)

SM

Sample variance SD2

Population variance �2

Estimated population variance S 2

Variance of the distribution of 
means (based on an esti-
mated population variance)

S 2
M

The estimated population 
variance is the sum of the 
squared deviation scores 
divided by the number of 
scores minus 1.

The estimated population 
standard deviation is the 
square root of the estimated 
population variance.

The degrees of freedom are 
the number of scores in the 
sample minus 1.
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In our example, df = 16 - 1 = 15. (In some situations you learn about in 
later chapters, the degrees of freedom are figured a bit differently. This is because in 
those situations, the number of scores free to vary is different. For all the situations 
you learn about in this chapter, df = N - 1.)

The formula for the estimated population variance is often written using df 
instead of N - 1:

 S2 =
g1X - M22

df
=

SS

df
 (7-4)

The Standard Deviation of the Distribution of Means
Once you have figured the estimated population variance, you can figure the stan-
dard deviation of the comparison distribution using the same procedures you learned 
in Chapter 5. Just as before, when you have a sample of more than one, the com-
parison distribution is a distribution of means, and the variance of a distribution of 
means is the variance of the population of individuals divided by the sample size. 
You have just estimated the variance of the population. Thus, you can estimate the 
variance of the distribution of means by dividing the estimated population variance 
by the sample size. The standard deviation of the distribution of means is the square 
root of its variance. Stated as formulas,

 S2
M =

S2

N
 (7-5)

 SM = 2S2
M (7-6)

Note that, with an estimated population variance, the symbols for the variance and 
standard deviation of the distribution of means use S instead of �.

In our example, the sample size was 16 and we worked out the estimated popu-
lation variance to be 46.27. The variance of the distribution of means, based on that 
estimate, will be 2.89. That is, 46.27 divided by 16 equals 2.89. The standard devia-
tion is 1.70, the square root of 2.89. In terms of the formulas,

 S2
M =

S2

N
=

46.27

16
= 2.89

 SM = 2S2
M = 22.89 = 1.70

At this point, you have now seen several different types of standard deviation 
and variance (that is, for a sample, for a known population, and unbiased estimates 
when the population standard deviation or variance are not known), and each of 
these types has used a different symbol. To help you keep them straight, a summary 
of the types of standard deviation and variance is shown in Table 7-1.

The Shape of the Comparison Distribution When Using  
an Estimated Population Variance: The t Distribution
In Chapter 5 you learned that when the population distribution follows a normal 
curve, the shape of the distribution of means will also be a normal curve. However, 
this changes when you do hypothesis testing with an estimated population variance. 
When you are using an estimated population variance, you have less true informa-
tion and more room for error. The mathematical effect is that there are likely to be 

The variance of the distribu-
tion of means based on an 
estimated population variance 
is the estimated population 
variance divided by the num-
ber of scores in the sample.

The estimated population  
variance is the sum of 
squared deviations divided  
by the degrees of freedom.

The standard deviation of the 
distribution of means based on 
an estimated population vari-
ance is the square root of the 
variance of the distribution of 
means based on an  estimated 
population variance.

T I P  F O R  S U C C E S S
Be sure that you fully understand 
the difference between S2 and S2

M. 
These terms look similar, but they 
are quite different. S2 is the esti-
mated variance of the population 
of individuals. S2

M is the estimated 
variance of the distribution of 
means (based on the estimated 
variance of the population of 
 individuals, S2).
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slightly more extreme means than in an exact normal curve. Further, the smaller 
your sample size, the bigger this tendency. This is because, with a smaller sample 
size, your estimate of the population variance is based on less information.

The result of all this is that, when doing hypothesis testing using an estimated 
variance, your comparison distribution will not be a normal curve. Instead, the com-
parison distribution will be a slightly different curve called a t distribution.

Actually, there is a whole family of t distributions. They all have the same gen-
eral shape of a slightly more spread out normal curve, but vary in terms of how 
much more spread out they are based on the number of degrees of freedom you used 
to estimate the population variance. However, for any particular degrees of freedom, 
there is only one t distribution.

Generally, as noted, t distributions look to the eye like a normal curve—
bell-shaped, symmetrical, and unimodal. A t distribution differs subtly in having 
heavier tails (that is, slightly more scores at the extremes). This slight difference in 
shape affects how extreme a score you need to reject the null hypothesis. As always, 
to reject the null hypothesis, your sample mean has to be in an extreme section of 
the comparison distribution of means, such as the top 5%. However, if the compari-
son distribution has more of its means in the tails than a normal curve would have, 
then the point where the top 5% begins has to be farther out on this comparison 
distribution. The result is that it takes a slightly more extreme sample mean to get a 
significant result when using a t distribution than when using a normal curve.

Just how much the t distribution differs from the normal curve depends on the 
degrees of freedom, the amount of information used in estimating the population 
variance. The t distribution differs most from the normal curve (that is, it is most 
spread out and has the thickest tails) when the degrees of freedom are low. (This is 
because your estimate of the population variance is based on a very small sample.) 
For example, using the normal curve, you may recall that 1.64 is the cutoff for a one-
tailed test at the .05 level. On a t distribution with 7 degrees of freedom (that is, with 
a sample size of 8), the cutoff is 1.895 for a one-tailed test at the .05 level. If your 
estimate is based on a larger sample, say a sample of 25 (so that df = 24), the cutoff 
is 1.711, a cutoff much closer to that for the normal curve. If your sample size is infi-
nite, the t distribution is the same as the normal curve. (Of course, if your sample size 
were infinite, it would include the entire population!) But even with sample sizes of 
30 or more, the t distribution is nearly identical to the normal curve. Figure 7-2 shows 
how t distributions with different degrees of freedom compare to a normal curve. As 
you can see in the figure, the t distribution with 20 degrees of freedom is more similar 
to the normal curve than the t distribution with just 2 degrees of freedom.

Shortly, you will learn how to find the cutoff using a t distribution, but let’s first 
return briefly to the example of how much students in your dorm study each week. 
You finally have everything you need for Step ❷ about the characteristics of the 

t distribution mathematically defined 
curve that is the comparison distribution 
used in a t test.

Normal distribution

t distribution, df = 20

t distribution, df = 2

Figure 7-2 t distributions (dashed blue lines) compared to the normal curve (solid 
black line).
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comparison distribution. We have already seen that the distribution of means in this 
example has a mean of 17 hours and a standard deviation of 1.70. You can now add 
that the shape of the comparison distribution will be a t distribution with 15 degrees 
of freedom.2

The Cutoff Sample Score for Rejecting the Null  
Hypothesis: Using the t Table
Step ❸ of hypothesis testing is determining the cutoff for rejecting the null hypothe-
sis. There is a different t distribution for any particular degrees of freedom. However, 
to avoid taking up pages and pages with tables for each possible t distribution, you 
use a simplified table that gives only the crucial cutoff points. We have included such 
a t table in the Appendix (Table A-2). Just as with the normal curve table, the t table 
shows only positive t scores. If you have a one-tailed test, you need to decide whether 
your cutoff score is a positive t score or a negative t score. If your one-tailed test is 
testing whether the mean of Population 1 is greater than the mean of Population 2, the 
cutoff t score is positive. However, if your one-tailed test is testing whether the mean 
of Population 1 is less than the mean of Population 2, the cutoff t score is negative.

In the hours-studied example, you have a one-tailed test. (You want to know 
whether students in your dorm study more than students in general at your college 
study.) You will probably want to use the 5% significance level, because the cost of a 
Type I error (mistakenly rejecting the null hypothesis) is not great. You have 16 par-
ticipants, making 15 degrees of freedom for your estimate of the population variance.

t table table of cutoff scores on the 
t distribution for various degrees of 
freedom, significance levels, and one- 
and two-tailed tests.

Table 7-2  Cutoff Scores for t Distributions with 1 Through 17 Degrees of Freedom 

(Highlighting Cutoff for Hours-Studied Example)

One-Tailed Tests Two-Tailed Tests

df .10 .05 .01 .10 .05 .01

1 3.078 6.314 31.821 6.314 12.706 63.657

2 1.886 2.920 6.965 2.920 4.303 9.925

3 1.638 2.353 4.541 2.353 3.182 5.841

4 1.533 2.132 3.747 2.132 2.776 4.604

5 1.476 2.015 3.365 2.015 2.571 4.032

6 1.440 1.943 3.143 1.943 2.447 3.708

7 1.415 1.895 2.998 1.895 2.365 3.500

8 1.397 1.860 2.897 1.860 2.306 3.356

9 1.383 1.833 2.822 1.833 2.262 3.250

10 1.372 1.813 2.764 1.813 2.228 3.170

11 1.364 1.796 2.718 1.796 2.201 3.106

12 1.356 1.783 2.681 1.783 2.179 3.055

13 1.350 1.771 2.651 1.771 2.161 3.013

14 1.345 1.762 2.625 1.762 2.145 2.977

15 1.341 1.753 2.603 1.753 2.132 2.947

16 1.337 1.746 2.584 1.746 2.120 2.921

17 1.334 1.740 2.567 1.740 2.110 2.898
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Table 7-2 shows a portion of the t table from Table A-2 in the Appendix. Find the 
column for the .05 significance level for one-tailed tests and move down to the row for  
15 degrees of freedom. The crucial cutoff is 1.753. In this example, you are testing 
whether students in your dormitory (Population 1) study more than students in general 
at your college (Population 2). In other words, you are testing whether students in your 
dormitory have a higher t score than students in general. This means that the cutoff t score 
is positive. Thus, you will reject the null hypothesis if your sample’s mean is 1.753 or 
more standard deviations above the mean on the comparison distribution. (If you were us-
ing a known variance, you would have found your cutoff from a normal curve table. The  
Z score to reject the null hypothesis based on the normal curve would have been 1.645.)

One other point about using the t table: In the full t table in the Appendix, there 
are rows for each degree of freedom from 1 through 30, then for 35, 40, 45, and 
so on up to 100. Suppose your study has degrees of freedom between two of these 
higher values. To be safe, you should use the nearest degrees of freedom to yours 
given on the table that is less than yours. For example, in a study with 43 degrees of 
freedom, you would use the cutoff for df = 40.

The Sample Mean’s Score on the Comparison  
Distribution: The t Score
Step ❹ of hypothesis testing is figuring your sample mean’s score on the compar-
ison distribution. In Chapter 5 this meant finding the Z score on the comparison 
distribution—the number of standard deviations your sample’s mean is from the 
mean on the distribution. You do exactly the same thing when your comparison 
distribution is a t distribution. The only difference is that, instead of calling this a 
Z score, because it is from a t distribution, you call it a t score. In terms of a formula,

 t =
M - �

SM
 (7-7)

In the example, your sample’s mean of 21 is 4 hours from the mean of the 
distribution of means, which amounts to 2.35 standard deviations from the mean  
(4 hours divided by the standard deviation of 1.70 hours).3 That is, the t score in the 
example is 2.35. In terms of the formula,

t =
M - �

SM
=

21 - 17

1.70
=

4

1.70
= 2.35

Deciding Whether to Reject the Null Hypothesis
Step ❺ of hypothesis testing is deciding whether to reject the null hypothesis. This step 
is exactly the same with a t test, as it was in the hypothesis-testing situations discussed 
in previous chapters. In the example, the cutoff t score was 1.753 and the actual t score 
for your sample was 2.35. Conclusion: reject the null hypothesis. The research hypothesis  
is supported that students in your dorm study more than students in the college overall.

Figure 7-3 shows the various distributions for this example.

Summary of Hypothesis Testing When the Population 
Variance Is Not Known
Table 7-3 compares the hypothesis-testing procedure we just considered (for a t test 
for a single sample) with the hypothesis-testing procedure for a Z test from Chapter 5. 
That is, we are comparing the current situation in which you know the population’s 
mean but do not know its variance, to the Chapter 5 situation, where you knew the 
population’s mean and you knew its variance.

t score on a t distribution, number of 
standard deviations from the mean (like 
a Z score, but on a t distribution).

The t score is your sample’s 
mean minus the population 
mean, divided by the standard 
deviation of the distribution 
of means.
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Table 7-3  Hypothesis Testing with a Single Sample Mean When Population Variance 

Is Unknown (t Test for a Single Sample) Compared to When Population 

Variance Is Known (Z  Test)

Steps in Hypothesis Testing
Difference From When Population  
Variance Is Known

❶  Restate the question as a research hypothesis 
and a null hypothesis about the populations.

No difference in method.

❷  Determine the characteristics of the comparison 
distribution:

Population mean No difference in method.

Population variance Estimate from the sample.

Standard deviation of the distribution  
of sample means

No difference in method (but based on estimated 
population variance).

Shape of the comparison distribution Use the t distribution with df = N - 1.

❸  Determine the significance cutoff. Use the t table.

❹  Determine your sample’s score on the 
comparison distribution.

No difference in method (but called a t score).

❺  Decide whether to reject the null hypothesis. No difference in method.

Comparison
distribution

(t)

Population
(normal)

17

15.3013.60 17.00 18.70 20.40
–1–2 0 1 2

21

Sample

Raw Scores:
t Scores:

Figure 7-3 Distributions for the hours-studied example.

Another Example of a t Test for a Single Sample
Consider another fictional example. Suppose a researcher was studying the psycho-
logical effects of a devastating flood in a small rural community. Specifically, the 
researcher was interested in how hopeful (versus unhopeful) people felt after the 
flood. The researcher randomly selected 10 people from this community to complete 
a short questionnaire. The key item on the questionnaire asked how hopeful they 
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felt, using a 7-point scale from extremely unhopeful (1) to neutral (4) to extremely 
hopeful (7). The researcher wanted to know whether the ratings of hopefulness for 
people who had been through the flood would be consistently above or below the 
neutral point on the scale (4).

Table 7-4 shows the results and figuring for the t test for a single sample; Figure 7-4 
shows the distributions involved. Here are the steps of hypothesis testing.

 ❶ Restate the question as a research hypothesis and a null hypothesis about 
the populations. There are two populations:

Population 1: People who experienced the flood.
Population 2: People who are neither hopeful nor unhopeful.

  The research hypothesis is that the two populations will score differently. The 
null hypothesis is that they will score the same.

 ❷ Determine the characteristics of the comparison distribution. If the null 
hypothesis is true, the mean of both populations is 4. The variance of these 
populations is not known, so you have to estimate it from the sample. As shown 
in Table 7-4, the sum of the squared deviations of the sample’s scores from 
the sample’s mean is 32.10. Thus, the estimated population variance is 32.10 
 divided by 9 degrees of freedom (10 – 1), which comes out to 3.57.

   The distribution of means has a mean of 4 (the same as the population mean). 
Its variance is the estimated population variance divided by the sample size (3.57 
divided by 10 equals .36). The square root of this, the standard deviation of the 
distribution of means, is .60. Its shape will be a t distribution for df = 9.

T I P  F O R  S U C C E S S
Be careful. To find the variance of 
a distribution of means, you always 
divide the population variance 
by the sample size. This is true 
whether the population’s variance 
is known or only estimated. It is 
only when making the estimate of 
the population variance that you 
divide by the sample size minus 1. 
That is, the degrees of freedom 
are used only when estimating the 
variance of the population of indi-
viduals, not when going to the next 
step of figuring the variance of the 
distribution of means.

Table 7-4  Results and Figuring for a Single-Sample t Test for a Study of 10 People’s 

Ratings of Hopefulness Following a Devastating Flood (Fictional Data)

Rating 
(X )

Difference  
From the Sample’s  

Mean (X � M )

Squared Difference  
From the Sample’s 
Mean (X � M )2

5 .30 .09

3 -1.70 2.89

6 1.30 1.69

2 -2.70 7.29

7 2.30 5.29

6 1.30 1.69

7 2.30 5.29

4 - .70 .49

2 -2.70 7.29

5 .30 .09

g : 47 32.10

M = (gX )>N = 47>10 = 4.70
df = N - 1 = 10 - 1 = 9
� = 4.00

S2 = SS>df = 32.10>110 - 12 = 32.10>9 = 3.57
S2

M = S2>N = 3.57>10 = .36
SM = 2S2

M = 2.36 = .60
t with df = 9 needed for 1% significance level, two-tailed = {3.250
Actual sample t = (M - �)>SM = (4.70 - 4.00)>.60 = .70>.60 = 1.17
Decision: Do not reject the null hypothesis.
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 ❸ Determine the cutoff sample score on the comparison distribution at which 
the null hypothesis should be rejected. The researcher wanted to be very cau-
tious about mistakenly concluding that the flood made a difference. Thus, she 
decided to use the .01 significance level. The hypothesis was nondirectional 
(that is, no specific direction of difference from the mean of 4 was specified; 
either result would have been of interest); so the researcher used a two-tailed 
test. The researcher looked up the cutoff in Table 7-2 (or Table A-2 in the Ap-
pendix) for a two-tailed test and 9 degrees of freedom. The cutoff given in the 
table is 3.250. Thus, to reject the null hypothesis, the sample’s score on the 
comparison distribution must be 3.250 or higher, or -3.250 or lower.

 ❹ Determine your sample’s score on the comparison distribution. The sam-
ple’s mean of 4.70 is .70 scale points from the null hypothesis mean of 4.00. 
That makes it 1.17 standard deviations on the comparison distribution from that 
distribution’s mean 1.70>.60 = 1.172; t = 1.17.

 ❺ Decide whether to reject the null hypothesis. The t of 1.17 is not as extreme 
as the needed t of {3.250. Therefore, the researcher cannot reject the null hy-
pothesis. The study is inconclusive. (If the researcher had used a larger sample, 
giving more power, the result might have been quite different.)

Summary of Steps for a t Test for a Single Sample
Table 7-5 summarizes the steps of hypothesis testing when you have scores from a 
single sample and a population with a known mean but an unknown variance.4

Comparison
distribution (t)

Population
(normal)

4.00

3.40 4.00 4.60
–1 0 1

4.70

Sample

Raw Scores:
t Scores:

Figure 7-4 Distributions for the example of how hopeful individuals felt following a 
devastating flood.
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Table 7-5 Steps for a t Test for a Single Sample

❶ Restate the question as a research hypothesis and a null hypothesis about the populations.

❷ Determine the characteristics of the comparison distribution.

 a. The mean is the same as the known population mean.

 b. The standard deviation is figured as follows:

  ●A  Figure the estimated population variance: S2 = SS>df.
  ●B  Figure the variance of the distribution of means: S2

M = S2>N.
  ●C  Figure the standard deviation of the distribution of means: SM = 2S2

M.

 c. The shape will be a t distribution with N - 1 degrees of freedom.

❸  Determine the cutoff sample score on the comparison distribution at which the null hypothesis 
should be rejected.

 a. Decide the significance level and whether to use a one-tailed or a two-tailed test.

 b. Look up the appropriate cutoff in a t table.

❹ Determine your sample’s score on the comparison distribution: t � 1M � �2 ,SM .

❺ Decide whether to reject the null hypothesis: Compare the scores from Steps ❸ and ❹.

How are you doing?

 1. In what sense is a sample’s variance a biased estimate of the variance of the 
population the sample is taken from? That is, in what way does a sample’s 
variance typically differ from the population’s?

 2. What is the difference between the usual formula for figuring the variance and 
the formula for estimating a population’s variance from the scores in a sam-
ple (that is, the formula for an unbiased estimate of the population variance)?

 3. (a) What are degrees of freedom? (b) How do you figure the degrees of free-
dom in a t test for a single sample? (c) What do they have to do with estimating 
the population variance? (d) What do they have to do with the t distribution?

 4. (a) How does a t distribution differ from a normal curve? (b) How do degrees of 
freedom affect this? (c) What is the effect of the difference on hypothesis testing?

 5. List three differences in how you do hypothesis testing for a t test for a single 
sample versus for the Z test (you learned in Chapter 5).

 6. A population has a mean of 23. A sample of 4 is given an experimental 
 procedure and has scores of 20, 22, 22, and 20. Test the hypothesis that 
the procedure produces a lower score. Use the .05 significance level. (a) Use 
the steps of hypothesis testing and (b) make a sketch of the distributions 
involved.

Answers

 1. The sample’s variance will in general be slightly smaller than the variance of 
the population the sample is taken from.

 2. In the usual formula you divide by the number of participants (N); in the for-
mula for estimating a population’s variance from the scores in a sample, you 
divide by the number of participants in the sample minus 1 (that is, N – 1).

 3. (a) The degrees of freedom are the number of scores free to vary. (b) The 
degrees of freedom in a t test for a single sample are the number of scores in 
the sample minus 1. (c) In estimating the population variance, the formula is 
the sum of squared deviations divided by the degrees of freedom. (d) t distri-
butions differ slightly from each other according to the degrees of freedom.
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 4. (a) A t distribution differs from a normal curve in that it has heavier tails; that 
is, it has more scores at the extremes. (b) The more degrees of freedom, the 
closer the shape (including the tails) is to a normal curve. (c) The cutoffs for 
significance are more extreme for a t distribution than for a normal curve.

 5. In the t test you (a) estimate the population variance from the sample (it is 
not known in advance); (b) you look up the cutoff on a t table in which you 
also have to take into account the degrees of freedom (you don’t use a nor-
mal curve table); and (c) your sample’s score on the comparison distribution, 
which is a t distribution (not a normal curve), is called a t score (not a Z score).

 6.  (a) Steps of hypothesis testing:
❶ Restate the question as a research hypothesis and a null hypothesis 

about the populations. There are two populations:

Population 1: People who are given the experimental procedure.
Population 2: The general population.

The research hypothesis is that Population 1 will score lower than Population 2. 
The null hypothesis is that Population 1 will not score lower than Population 2.
❷ Determine the characteristics of the comparison distribution.

a. The mean of the distribution of means is 23.
b. The standard deviation is figured as follows:

 ●A  Figure the estimated population variance. You first need to figure 
the sample mean, which is 120 + 22 + 22 + 202>4 = 84>4 = 21. The 

Comparison
distribution

(t)

Population
(normal)

23

21.86 22.43 23

21

Sample

21.29

–2 –1 0–3

Raw Scores:
t Scores:

Figure 7-5 Distributions for answer to “How are you doing?” question 6b.
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The t Test for Dependent Means
The situation you just learned about (the t test for a single sample) is for when you 
know the population mean but not its variance and you have a single sample of 
scores. It turns out that in most research you do not even know the population’s 
mean; plus, in most research situations you usually have not one set, but two sets, of 
scores. These two things, not knowing the population mean and having two sets of 
scores, are very, very common.

The rest of this chapter focuses specifically on this important research situation in 
which you have two scores from each person in your sample. (Finally, we are at the 
point where you are learning a method used in lots of real studies.) This kind of research 
situation is called a repeated measures design (also known as a within-subjects design). 
A common example is when you measure the same people before and after some psy-
chological or social intervention. For example, a psychologist might measure the quality 
of men’s communication before and after receiving premarital counseling. (For addi-
tional information on repeated measures designs, be sure to read our Web Chapter W1, 
“Overview of the Logic and Language of Psychology Research,” which is available at 
www.pearsonhighered.com/aron (and also at www.mystatlab.com for MyStatLab users).

The hypothesis-testing procedure for the situation in which each person is mea-
sured twice (that is, for the situation in which we have a repeated measures design) is a 
t test for dependent means. It has the name “dependent means” because the mean for 
each group of scores (for example, a group of before-scores and a group of after-scores) 
are dependent on each other in that they are both from the same people. (In Chapter 8, 
we consider the situation in which you compare scores from two different groups of 
people, a research situation you analyze using a t test for independent means.)

You do a t test for dependent means exactly the same way as a t test for a 
single sample, except that (a) you use something called difference scores, and (b) 
you  assume that the population mean (of the difference scores) is 0. We will now 
consider each of these two new aspects.

repeated measures design research 
strategy in which each person is tested 
more than once; same as within-subjects 
design.

t test for dependent means  
hypothesis-testing procedure in which 
there are two scores for each person and 
the population variance is not known; it 
determines the significance of a hypoth-
esis that is being tested using difference 
or change scores from a single group of 
people.

estimated population variance is  S2 = SS>1N - 12 = 3120 - 2122+
122 - 2122 + 122 - 2122 + 120 - 21224 >14 - 12 = 1-12 + 12 + 12+
-122>3 = 11 + 1 + 1 + 12>3 = 4>3 = 1.33.

 ●B Figure the variance of the distribution of means:

S2
M = S2>N = 1.33>4 = .33

 ●C Figure the standard deviation of the distribution of means:

SM = 2S2
M = 2.33 = .57

c.  The shape of the comparison distribution will be a t distribution with df = 3.
❸ Determine the cutoff sample score on the comparison distribution at 

which the null hypothesis should be rejected. From Table A-2, the cut-
off for a one-tailed t test at the .05 level for df = 3 is -2.353. The cutoff 
t score is negative because the research hypothesis is that the procedure 
produces a lower score.

❹ Determine your sample’s score on the comparison distribution. 
t = 1M - �2>SM = 121 - 232>.57 = -2>.57 = -3.51.

❺ Decide whether to reject the null hypothesis. The t of -3.51 is more 
extreme than the needed t of -2.353. Therefore, reject the null hypoth-
esis; the research hypothesis is supported.

(b) Sketches of distributions are shown in Figure 7-5.

www.pearsonhighered.com/aron
www.mystatlab.com
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Difference Scores
With a repeated measures design, your sample includes two scores for each person 
instead of just one. The way you handle this is to make the two scores per person 
into one score per person! You do this magic by creating difference scores: For 
each person, you subtract one score from the other. If the difference is before versus 
after, difference scores are also called change scores.

Consider the example of the quality of men’s communication before and  after 
receiving premarital counseling. The psychologist subtracts the communication 
quality score before the counseling from the communication quality score after the 
counseling. This gives an after-minus-before difference score for each man. When 
the two scores are a before-score and an after-score, we usually take the after-score 
minus the before-score to indicate the change.

Once you have the difference score for each person in the study, you do the rest of 
the hypothesis testing with difference scores. That is, you treat the study as if there were 
a single sample of scores (scores that in this situation happen to be difference scores).

Population of Difference Scores with a Mean of 0
So far in the research situations we have considered in this book, you have always 
known the mean of the population to which you compared your sample’s mean. For 
example, in the college dormitory survey of hours studied, you knew the population 
mean was 17 hours. However, now we are using difference scores, and we usually 
don’t know the mean of the population of difference scores.

Here is the solution. Ordinarily, the null hypothesis in a repeated measures de-
sign is that on the average there is no difference between the two groups of scores. 
For example, the null hypothesis in a study of the quality of men’s communication 
before and after receiving premarital counseling is that on the average there is no 
difference between communication quality before and after the counseling. What 
does no difference mean? Saying there is on the average no difference is the same 
as saying that the mean of the population of the difference scores is 0. Therefore, 
when working with difference scores, you are comparing the population of differ-
ence scores that your sample of difference scores comes from to a population of dif-
ference scores with a mean of 0. In other words, with a t test for dependent means, 
what we call Population 2 will ordinarily have a mean of 0 (that is, it is a population 
of difference scores that has a mean of 0).

Example of a t Test for Dependent Means
How can engaged couples improve their chances of a happy marriage? Here is an early 
study testing the effect of a communication skills course that is a good example (be-
cause of its small sample size) for understanding the t test for dependent means. Olthoff 
(1989) tested the communication quality of couples three months before and again 
three months after marriage. One group studied was 19 couples who had received ordi-
nary (very minimal) premarital counseling from the ministers who were going to marry 
them. (To keep the example simple, we will focus on just this one group, and only 
on the husbands in the group. Scores for wives were similar, though somewhat more  
varied, making it a more complicated example for learning the t test procedure.)

The scores for the 19 husbands are listed in the “Before” and “After” columns in 
Table 7-6, followed by all the t test figuring. (The distributions involved are shown 
in Figure 7-6.) The crucial column for starting the analysis is the difference scores. 
For example, the first husband, whose communication quality was 126  before mar-
riage and 115 after had a difference of -11. (We figured after minus before, so 

difference scores difference between 
a person’s score on one testing and the 
same person’s score on another testing; 
often an after-score minus a before-
score, in which case it is also called a 
change score.
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that an increase is positive and a decrease, as for this husband, is negative.) The 
mean of the difference scores is -12.05. That is, on the average, these 19 husbands’ 
 communication quality decreased by about 12 points.

Is this decrease significant? In other words, how likely is it that this sample of differ-
ence scores is a random sample from a population of difference scores whose mean is 0?

 ❶ Restate the question as a research hypothesis and a null hypothesis about 
the populations. There are two populations:

Population 1: Husbands who receive ordinary premarital counseling.
Population 2: Husbands whose communication quality does not change 
from before to after marriage. (In other words, it is a population of  husbands 

Table 7-6  t  Test for Communication Quality Scores Before and After Marriage for 

19 Husbands Who Received Ordinary Premarital Counseling

Husband
Communication  

Quality
Difference  

(After – Before)
Deviation  

(Difference – M )
Squared  
Deviation

Before After

A 126 115 -11 1.05 1.10

B 133 125 -8 4.05 16.40

C 126 96 -30 -17.95 322.20

D 115 115 0 12.05 145.20

E 108 119 11 23.05 531.30

F 109 82 -27 -14.95 223.50

G 124 93 -31 -18.95 359.10

H 98 109 11 23.05 531.30

I 95 72 -23 -10.95 119.90

J 120 104 -16 -3.95 15.60

K 118 107 -11 1.05 1.10

L 126 118 -8 4.05 16.40

M 121 102 -19 -6.95 48.30

N 116 115 -1 11.05 122.10

O 94 83 -11 1.05 1.10

P 105 87 -18 -5.95 35.40

Q 123 121 -2 10.05 101.00

R 125 100 -25 -12.95 167.70

S 128 118 -10 2.05 4.20

g : 2,210 1,981 -229 2,762.90

For difference scores:
M = -229>19 = -12.05
� = 0 (assumed as a no-change baseline of comparison)
S2 = SS>df = 2,762.90>119 - 12 = 153.49
S2

M = S2>N = 153.49>19 = 8.08
SM = 2S2

M = 28.08 = 2.84
t with df = 18 needed for 5% level, two-tailed = {2.101
t = 1M - �2>SM = 1-12.05 - 02>2.84 = -4.24
Decision: Reject the null hypothesis.

Source: Data from Olthoff (1989).



 Introduction to t Tests 243

whose mean difference in communication quality from before to after mar-
riage is 0.)

   The research hypothesis is that Population 1’s mean difference score 
(communication quality after marriage minus communication quality before 
marriage) is different from Population 2’s mean difference score (of zero). 
That is, the research hypothesis is that husbands who receive ordinary pre-
marital counseling, like the husbands Olthoff studied, do change in commu-
nication quality from before to after marriage. The null hypothesis is that the 
populations are the same—that the husbands who receive ordinary premarital 
counseling do not change in their communication quality from before to after 
marriage.

   Notice that you have no actual information about Population 2 husbands. 
The husbands in the study are a sample of Population 1 husbands. For the pur-
poses of hypothesis testing, you set up Population 2 as a kind of straw man 
comparison group. That is, for the purpose of the analysis, you set up a com-
parison group of husbands who, if measured before and after marriage, would 
on the average show no difference.

 ❷ Determine the characteristics of the comparison distribution. If the null 
hypothesis is true, the mean of the population of difference scores is 0. The  
variance of the population of difference scores can be estimated from the sam-
ple of difference scores. As shown in Table 7-6, the sum of squared deviations 
of the difference scores from the mean of the difference scores is 2,762.90. 

Comparison
distribution (t)

Population
of difference

scores

0

–2.85 0 2.85
–1 0 1

–12.05

Sample

Raw Scores
t Scores

Figure 7-6 Distributions for the Olthoff (1989) example of a t test for dependent 
means.

T I P  F O R  S U C C E S S
As in previous chapters, Popula-
tion 2 is the population for when 
the null hypothesis is true.
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With 19 husbands in the study, there are 18 degrees of freedom. Dividing the 
sum of squared deviation scores by the degrees of freedom gives an estimated 
population variance of difference scores of 153.49.

   The distribution of means (from this population of difference scores) has 
a mean of 0, the same as the mean of the population of difference scores. The 
variance of the distribution of means of difference scores is the estimated popu-
lation variance of difference scores (153.49) divided by the sample size (19), 
which gives 8.08. The standard deviation of the distribution of means of differ-
ence scores is 2.84, the square root of 8.08. Because Olthoff was using an esti-
mated population variance, the comparison distribution is a t distribution. The 
estimate of the population variance of difference scores is based on 18 degrees 
of freedom, so this comparison distribution is a t distribution for 18 degrees of 
freedom.

 ❸ Determine the cutoff sample score on the comparison distribution at which 
the null hypothesis should be rejected. Olthoff used a two-tailed test to allow 
for either an increase or decrease in communication quality. Using the .05 sig-
nificance level and 18 degrees of freedom, Table A-2 shows cutoff t scores of 
+2.101 and -2.101.

 ❹ Determine your sample’s score on the comparison distribution. Olthoff’s 
sample had a mean difference score of -12.05. That is, the mean was 12.05 
points below the mean of 0 on the distribution of means of difference scores. 
The standard deviation of the distribution of means of difference scores is 2.84. 
Thus, the mean of the difference scores of -12.05 is 4.24 standard deviations 
below the mean of the distribution of means of difference scores. So Olthoff’s 
sample of difference scores has a t score of -4.24.

 ❺ Decide whether to reject the null hypothesis. The t of -4.24 for the sample of 
difference scores is more extreme than the needed t of {2.101. Thus, you can 
reject the null hypothesis: Olthoff’s husbands are from a population in which 
husbands’ communication quality is different after marriage from what it was 
before (it is lower).

Olthoff’s actual study was more complex. You may be interested to know that 
he found that the wives also showed this decrease in communication quality after 
marriage. But a group of similar engaged couples who were given special communi-
cation skills training by their ministers (much more than the usual short session) had 
no significant decline in marital communication quality after marriage. In fact, there 
is a great deal of research showing that on the average marital happiness declines 
steeply over time (Umberson et al., 2006; VanLaningham et al., 2001), but it is cer-
tainly not inevitable for all couples (O’Leary et al., 2012). And many studies have 
now shown the value of a full course of premarital communications training. For 
example, a recent representative survey of 3,344 adults in the United States showed 
that those who had attended a premarital communication program had significantly 
greater marital satisfaction, had less marital conflict, and were 31% less likely to 
divorce (Stanley et al., 2006; similarly strong results have also been found in con-
trolled random assignment experiments; e.g., Stanley et al., 2010). Furthermore, 
benefits were greatest for those with a university education! (No one has yet tested 
it, but perhaps benefits are greatest of all for those who took a statistics course as 
part of their education?)

Summary of Steps for a t Test for Dependent Means
Table 7-7 summarizes the steps for a t test for dependent means.5

T I P  F O R  S U C C E S S
Step ❷ of hypothesis testing for 
the t test for dependent means 
is more complex than previously. 
This can make it easy to lose track 
of the purpose of this step. Step ❷ 
of hypothesis testing determines 
the characteristics of the com-
parison distribution. In the case of 
the t test for dependent means, 
this comparison distribution is a 
distribution of means of difference 
scores. The key characteristics 
of this distribution are its mean 
(which is assumed to equal 0), 
its standard deviation (which is 
estimated as SM), and its shape 
(a t distribution with degrees of 
freedom equal to the sample size 
minus 1).

T I P  F O R  S U C C E S S
You now have to deal with some 
rather complex terms, such as the 
standard deviation of the distribu-
tion of means of difference scores. 
Although these terms are complex, 
there is good logic behind them. 
The best way to understand such 
terms is to break them down into 
manageable pieces. For example, 
you will notice that these new 
terms are the same as the terms 
for the t test for a single sample, 
with the added phrase “of differ-
ence scores.” This phrase has 
been added because all of the 
figuring for the t test for dependent 
means uses difference scores.
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A Second Example of a t Test for Dependent Means
Here is another example. A team of researchers examined the brain systems 
 involved in human romantic love (Aron et al., 2005). One issue was whether ro-
mantic love engages a part of the brain called the ventral tegmental areas (VTA 
for short; a brain area that is engaged when people win money, are given cocaine, 
and other such “rewards”). Thus, the researchers recruited people who had very 
recently fallen “madly in love.” (For example, to be in the study participants had to 
think about their partner at least 80% of their waking hours.) Participants brought a 
picture of their beloved with them, plus a picture of a familiar, neutral person of the 
same age and sex as their beloved. Participants then went in to the functional mag-
netic resonance imaging (fMRI) machine and their brain was scanned while they 
looked at the two pictures—30 seconds at the neutral person’s picture, 30 seconds 
at their beloved, 30 seconds at the neutral person, and so forth.

Table 7-8 shows average brain activations (mean fMRI scanner values) in 
the VTA area of interest during the two kinds of pictures. (We have simplified  
the example for teaching purposes, including using only 10 participants when the 
actual study had 17.) It also shows the figuring of the difference scores and all the 
other figuring for the t test for dependent means. Figure 7-7 shows the distributions 
involved. Here are the steps of hypothesis testing:

 ❶ Restate the question as a research hypothesis and a null hypothesis about 
the populations. There are two populations:

Population 1: Individuals like those tested in this study.
Population 2: Individuals whose brain activation in the VTA area of interest is 
the same when looking at a picture of their beloved and a picture of a familiar, 
neutral person.

  The research hypothesis is that Population 1’s mean difference score (brain 
 activation when viewing the beloved’s picture minus brain activation when 

Table 7-7 Steps for a t Test for Dependent Means

❶  Restate the question as a research hypothesis and a null hypothesis about the populations.

❷ Determine the characteristics of the comparison distribution.

 a.  Make each person’s two scores into a difference score. Do all the remaining steps using these  
difference scores.

 b.  Figure the mean of the difference scores.

 c.  Assume a mean of the distribution of means of difference scores of 0: � = 0.

 d.  The standard deviation of the distribution of means of difference scores is figured as follows:

  ●A Figure the estimated population variance of difference scores: S2 = SS>df.
  ●B Figure the variance of the distribution of means of difference scores: S2

M = S2>N.

  ●C F igure the standard deviation of the distribution of means of difference scores: SM = 2S2
M.

 e. The shape is a t distribution with df = N - 1.

❸  Determine the cutoff sample score on the comparison distribution at which the null hypothesis 
should be rejected.

 a. Decide the significance level and whether to use a one-tailed or a two-tailed test.

 b. Look up the appropriate cutoff in a t table.

❹ Determine your sample’s score on the comparison distribution: t � 1M � �2,SM .

❺ Decide whether to reject the null hypothesis: Compare the scores from Steps ❸ and ❹.
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Table 7-8 t Test for a Study of Romantic Love and Brain Activation in the VTA

Brain Activation Difference  
(Beloved –  

Control)
Deviation  

(Difference – M )
Squared  
DeviationStudent Beloved’s photo Control photo

1 1487.8 1487.2 .6 - .800 .640

2 1329.4 1328.1 1.3 - .100 .010

3 1407.9 1405.9 2.0 .600 .360

4 1236.1 1234.0 2.1 .700 .490

5 1299.8 1298.2 1.6 .200 .040

6 1447.2 1444.7 2.5 1.100 1.210

7 1354.1 1354.3 - .2 -1.600 2.560

8 1204.6 1203.7 .9 - .500 .250

9 1322.3 1320.8 1.5 .100 .010

10 1388.5 1386.8 1.7 .300 .090

g : 13477.7 13463.7 14.0 5.660

For difference scores:

M = 14.0>10 = 1.400

� = 0 (assumed as a no-change baseline of comparison)

S2 = SS>df = 5.660>110 - 12 = 5.660>9 = .629

S2
M = S 2>N = .629>10 = .063

SM = 2S2
M = 2.063 = .251

t with df = 9 needed for 5% level, one-tailed = 1.833

t = 1M - �2>SM = 11.400 - 02>.251 = 5.58

Decision: Reject the null hypothesis.

Source: Data based on Aron et al. (2005).

viewing the neutral person’s picture) is greater than Population 2’s mean differ-
ence score (of no difference). That is, the research hypothesis is that brain acti-
vation in the VTA area of interest is greater when viewing the beloved person’s 
picture than when viewing the neutral person’s picture. The null hypothesis is 
that Population 1’s mean difference score is not greater than Population 2’s. 
That is, the null hypothesis is that brain activation in the VTA area of interest is 
not greater when viewing the beloved person’s picture than when viewing the 
neutral person’s picture.

 ❷ Determine the characteristics of the comparison distribution.
a. Make each person’s two scores into a difference score. This is shown in the 

column labeled “Difference” in Table 7-8. You do all the remaining steps 
 using these difference scores.

b. Figure the mean of the difference scores. The sum of the difference scores 
(14.0) divided by the number of difference scores (10) gives a mean of the 
difference scores of 1.400. So, M = 1.400.

c. Assume a mean of the distribution of means of difference scores of 0: � = 0.
d. The standard deviation of the distribution of means of difference scores is 

figured as follows:
●A Figure the estimated population variance of difference scores: 

S2 = SS>df = 5.660>110 - 12 = .629.
●B Figure the variance of the distribution of means of difference scores: 

S2
M = S2>N = .629>10 = .063.
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●C Figure the standard deviation of the distribution of means of difference 
scores: SM = 2S2

M = 2.063 = .251.
e. The shape is a t distribution with df = N - 1. Therefore, the comparison 

distribution is a t distribution for 9 degrees of freedom. It is a t distribution 
because we figured its variance based on an estimated population variance. 
It has 9 degrees of freedom because there were 9 degrees of freedom in the 
estimate of the population variance.

 ❸ Determine the cutoff sample score on the comparison distribution at which 
the null hypothesis should be rejected.
a. We will use the standard .05 significance level. This is a one-tailed test be-

cause the researchers were interested only in a specific direction of difference.
b. Using the .05 significance level with 9 degrees of freedom, Table A-2 shows 

a cutoff t of 1.833. In Table 7-8, the difference score is figured as brain ac-
tivation when viewing the beloved’s picture minus brain activation when 
viewing the neutral person’s picture. Thus, the research hypothesis predicts a 
positive difference score, which means that our cutoff is +1.833.

 ❹ Determine your sample’s score on the comparison distribution. 
t = 1M - �2>SM = 11.400 - 02>.251 = 5.58. The sample’s mean difference of 
1.400 is 5.58 standard deviations (of .251 each) above the mean of 0 on the dis-
tribution of means of difference scores.

 ❺ Decide whether to reject the null hypothesis. The sample’s t score of 5.58 
is more extreme than the cutoff t of 1.833. You can reject the null hypothesis. 
Brain activation in the VTA area of interest is greater when viewing a beloved’s 
picture than when viewing a neutral person’s picture. The results of this study 

Comparison
distribution (t)

Population
of difference

scores

0

–.251 0 .251
–1 0 1

1.400

Sample

Raw Scores:
t Scores:

Figure 7-7 Distributions for the example of romantic love and brain activation in 
the VTA.
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are not limited to North Americans or to individuals who have recently fallen 
in love. The study has now been replicated several times, for example, with 
virtually identical results in Beijing with Chinese students who were intensely 
in love (Xu et al., 2011). Perhaps especially encouraging, another recent study 
replicated the results with a group of long-term married couples who reported 
being very intensely in love (Acevedo et al., 2012).

t Test for Dependent Means with Scores 
from Pairs of Research Participants
The t test for dependent means is also called a paired-samples t test, t test for cor-
related means, t test for matched samples, and t test for matched pairs. Each of these 
names comes from the same idea that in this kind of t test you are comparing two 
sets of scores that are related to each other in a direct way. In the t test for dependent 
means examples in this chapter, the two sets of scores have been related because 
each individual had a score in both sets of scores (for example, a score before a pro-
cedure and a score after a procedure). However, you can also use a t test for depen-
dent means with scores from pairs of research participants, considering each pair as 
if it were one person, and figuring the difference score for each pair. For example, 
suppose you have 30 married couples and want to test whether wives consistently 
do more housework than husbands. You could figure for each couple a difference 
score of the wife’s hours of housework per week minus her husband’s number of 
hours of housework per week. There are also situations in which experimenters cre-
ate pairs. For example, a researcher might put participants into pairs to do a puzzle 
task together and, for each pair, assign one to be a leader and one a follower. At the 
end of the study, participants privately fill out a questionnaire about how much they 
enjoyed the interaction. The procedure for analyzing this study would be to create a 
difference score for each pair by taking the enjoyment rating of the leader minus the 
enjoyment rating of the follower.

Review and Comparison of Z Test, t Test for a Single 
Sample, and t test for Dependent Means
In Chapter 5 you learned about the Z test; in this chapter you have learned about the 
t test for a single sample and the t test for dependent means. Table 7-9 provides a 
review and comparison of the Z test, the t test for a single sample, and the t test for 
dependent means.

Table 7-9  Review of the Z Test, the t Test for a Single Sample, and the t Test for Dependent 

Means

Type of Test

Features Z Test
t Test for a 

Single Sample
t Test for 

Dependent Means

Population variance is known Yes No No

Population mean is known Yes Yes No

Number of scores for each participant 1 1 2

Shape of comparison distribution Z distribution t distribution t distribution

Formula for degrees of freedom Not applicable df = N - 1 df = N - 1

Formula Z = 1M - �M2>�M t = 1M - �2>SM t = 1M - �2>SM

T I P  F O R  S U C C E S S
We recommend that you spend 
some time carefully going through 
Table 7-9. Test your understanding 
of the different tests by covering 
up portions of the table and trying 
to recall the hidden information. 
Also, take a look at Chapter Note 3 
(page 273) for a discussion of the 
terminology used in the formulas.
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How are you doing?

 1. Describe the situation in which you would use a t test for dependent means.
 2. When doing a t test for dependent means, what do you do with the two 

scores you have for each participant?
 3. In a t test for dependent means, (a) what is usually considered to be the mean 

of the “known” population (Population 2). (b) Why?
 4. Five individuals are tested before and after an experimental procedure; their 

scores are given in the following table. Test the hypothesis that there is no 
change, using the .05 significance level. (a) Use the steps of hypothesis 
 testing and (b) sketch the distributions involved.

Person Before After

1 20 30

2 30 50

3 20 10

4 40 30

5 30 40

 5. What about the research situation makes the difference in whether you 
should carry out a Z test or a t test for a single sample?

 6. What about the research situation makes the difference in whether you 
should carry out a t test for a single sample or a t test for dependent means?

Answers

 1. A t test for dependent means is used when you are doing hypothesis testing 
and you have two scores for each participant (such as a before-score and an 
after-score) and the population variance is unknown. It is also used when a 
study compares participants who are organized into pairs.

 2. When doing a t test for dependent means, subtract one score from the other 
to create a difference (or change) score for each person. The t test is then 
done with these difference (or change) scores.

 3. (a) The mean of the “known” population (Population 2) is 0. (b) You are com-
paring your sample to a situation in which there is no difference—a popula-
tion of difference scores in which the average difference is 0.

 4. (a) Steps of hypothesis testing (all figuring is shown in Table 7-10):
❶ Restate the question as a research hypothesis and a null hypothesis 

about the populations. There are two populations:

Population 1: People like those tested before and after the experimental 
procedure.
Population 2: People whose scores are the same before and after the 
experimental procedure.

 The research hypothesis is that Population 1’s mean change score (after 
minus before) is different from Population 2’s. The null hypothesis is that 
Population 1’s mean change score is the same as Population 2’s.

❷ Determine the characteristics of the comparison distribution. The 
mean of the distribution of means of difference scores (the comparison 
distribution) is 0; the standard deviation of the distribution of means of 
difference scores is 6; it is a t distribution with 4 degrees of freedom.
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Comparison
distribution (t)

Population
of difference

scores

0

–6 0 6
–1 0 1

4.0

Sample

Raw Scores:
t Scores:

Figure 7-8 Distributions for answer to “How are you doing?” question 4.

Table 7-10 Figuring for Answer to “How Are You Doing?” Question 4

Score Difference Deviation Squared 
DeviationPerson Before After (After – Before) (Difference –  M)

1 20 30 10 6 36

2 30 50 20 16 256

3 20 10 -10 -14 196

4 40 30 -10 -14 196

5 30 40 10 6 36

�: 140 160 20 720

For difference scores:

M = 20>5 = 4.00

� = 0

S2 = SS>df = 720>15 - 12 = 720>4 = 180

S2
M = S2>N = 180>5 = 36

SM = 2S2
M = 236 = 6

t  for df = 4 needed for 5% significance level, two-tailed = {2.776

t = 1M - �2>SM = 14 - 02>6 = .67

Decision: Do not reject the null hypothesis.
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❸ Determine the cutoff sample score on the comparison distribution at 

which the null hypothesis should be rejected. For a two-tailed test at 
the .05 level, the cutoff sample scores are +2.776 and -2.776.

❹ Determine your sample’s score on the comparison distribution. 
t = 14 - 02>6 = .67.

❺ Decide whether to reject the null hypothesis. The sample’s t score of 
.67 is not more extreme than the cutoff t of{2.776. Therefore, do not reject 
the null hypothesis.

(b)  The distributions are shown in Figure 7-8.
 5. As shown in Table 7-9, whether the population variance is known determines 

whether you should carry out a Z test or a t test for a single sample. You use 
a Z test when the population variance is known and you use the t test for a 
single sample when it is not known.

 6. As shown in Table 7-9, when the population variance is not known, you do a 
t test. You use a t test for a single sample when you know the population 
mean and you have one score for each participant; you use the t test for 
dependent means when you do not know the population mean and there are 
two scores for each participant.

Assumptions of the t Test for a Single Sample 
and the t Test for Dependent Means
As we have seen, when you are using an estimated population variance, the com-
parison distribution is a t distribution. However, the comparison distribution will 
be exactly a t distribution only if the distribution of individuals follows a normal 
curve. Otherwise, the comparison distribution will follow some other (usually 
 unknown) shape.

Thus, strictly speaking, a normal population is a requirement within the logic 
and mathematics of the t test. A requirement like this for a hypothesis-testing pro-
cedure is called an assumption. That is, a normal population distribution is one 
assumption of the t test. The effect of this assumption is that if the population distri-
bution is not normal, the comparison distribution will be some indeterminate shape 
other than a t distribution—and thus the cutoffs on the t table will be incorrect.

Unfortunately, when you do a t test, you don’t know whether the population is 
normal. This is because, when doing a t test, usually all you have to go on are the 
scores in your sample. Fortunately, however, as we saw in Chapter 3, distributions 
in psychology research quite often approximate a normal curve. (This also applies 
to distributions of difference scores.) Also, statisticians have found that, in practice, 
you get reasonably accurate results with t tests even when the population is rather 
far from normal. In other words, the t test is said to be robust over moderate viola-
tions of the assumption of a normal population distribution. How statisticians figure 
out the robustness of a test is an interesting topic, which is described in Box 8-1 in 
Chapter 8.

The only very common situation in which using a t test for dependent means 
is likely to give a seriously distorted result is when you are using a one-tailed test 
and the population is highly skewed (is very asymmetrical, with a much longer tail 
on one side than the other). Thus, you need to be cautious about your conclusions 
when doing a one-tailed test if the sample of difference scores is highly skewed, 
 suggesting the population it comes from is also highly skewed.

assumption condition, such as 
a  population’s having a normal 
 distribution, required for carrying out a 
particular hypothesis-testing procedure; 
a part of the mathematical foundation 
for the  accuracy of the tables used in 
 determining cutoff values.

robustness extent to which a 
 particular hypothesis-testing procedure 
is reasonably accurate even when its 
 assumptions are violated.
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Effect Size and Power for the t Test 
for Dependent Means
Effect Size
You can figure the effect size for a study using a t test for dependent means the same 
way as in Chapter 6.6 d is the difference between the population means divided by 
the population standard deviation: d = 1�1 - �22>�. When using this formula for a 
t test for dependent means, �1 is for the predicted mean of the population of differ-
ence scores, �2 (the “known” population mean) is almost always 0, and � usually 
stands for the standard deviation of the population of difference scores. The conven-
tions for effect size for a t test for dependent means are also the same as you learned 
for the situation we considered in Chapter 6: A small effect size is .20, a medium 
effect size is .50, and a large effect size is .80.

Consider an example. A sports psychologist plans a study on attitudes toward 
teammates before versus after a game. She will administer an attitude questionnaire 
twice, once before and once after a game. Suppose that the smallest before-after dif-
ference that would be of any importance is 4 points on the questionnaire. Also sup-
pose that, based on related research, the researcher figures that the standard deviation 
of difference scores on this attitude questionnaire is about 8 points. Thus, �1 = 4 and 
� = 8. Applying the effect size formula, d = 1�1 - �22>� = 14 - 02>8 = .50. In 
terms of the effect size conventions, her planned study has a medium effect size.

To estimate the effect size after a study, use the actual mean of your sample’s 
difference scores as your estimate of �1, and use S (for the population of difference 
scores) as your estimate of �. Consider our first example of a t test for dependent 
means, the study of husbands’ change in communication quality. In that study, the 
mean of the difference scores was -12.05. The estimated population standard devia-
tion of the difference scores would be 12.41. That is, we figured the estimated variance 
of the difference scores 1S22 to be 153.49; 2S2 = 12.39. Therefore, the estimated 
effect size is d = 1�1 - �22>� = 1M - 02>S = 1-12.05 - 02>12.39 = - .97. This 
is a very large effect size. (The negative sign for the effect size means that the large 
effect was a decrease.)

Power
Power for a t test for dependent means can be determined using a power table, a 
power software package, or an Internet power calculator. Table 7-11 gives the ap-
proximate power at the .05 significance level for small, medium, and large effect 
sizes and one-tailed and two-tailed tests. In the sports psychology example, the  
researcher expected a medium effect size (d = .50). If she planned to conduct the 
study using the .05 level, two-tailed, with 20 participants, the study would have a 
power of .59. This means that, if the research hypothesis is true and has a medium 
effect size, there is a 59% chance that this study will come out significant.

The power table (Table 7-11) is also useful when you are reading about a 
nonsignificant result in a published study. Suppose that a study using a t test for 
dependent means has a nonsignificant result. The study tested significance at the  
.05 level, was two-tailed, and had 10 participants. Should you conclude that there 
is in fact no difference at all in the populations? Probably not. Even assuming 
a  medium effect size, Table 7-11 shows that there is only a 32% chance of getting a 
significant result in this study.

Consider another study that was not significant. This study also used the .05 signifi-
cance level, two-tailed. This study had 100 research participants. Table 7-11 tells you 

T I P  F O R  S U C C E S S
Recall from Chapter 6 that power 
can be expressed as a probability 
(such as .71) or as a percentage 
(such as 71%). Power is expressed 
as a probability in Table 7-11 (as 
well as in power tables in later 
chapters).
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that there would be a 55% chance of the study’s coming out significant if there were 
even a true small effect size in the population. If there were a medium effect size in the 
population, the table indicates that there is almost a 100% chance that this study would 
have come out significant. Thus, in this study with 100 participants, we could conclude 
from the results that in the population there is probably at most a small difference.

To keep Table 7-11 simple, we have given power figures for only a few different 
numbers of participants (10, 20, 30, 40, 50, and 100). This should be adequate for the 
kinds of rough evaluations you need to make when evaluating results of research articles.7

Planning Sample Size
Table 7-12 gives the approximate number of participants needed for 80% power 
for a planned study. (Eighty percent is a common figure used by researchers for the 
minimum power to make a study worth doing.) Suppose you plan a study in which 
you expect a large effect size and you use the .05 significance level, two-tailed. The 
table shows you would only need 14 participants to have 80% power. On the other 
hand, a study using the same significance level, also two-tailed, but in which you 
expect only a small effect size would need 196 participants for 80% power.8

Table 7-11  Approximate Power for Studies Using the t Test for Dependent Means for Testing 

Hypotheses at the .05 Significance Level

Difference Scores  
in Sample (N )

Effect Size

Small 
(d � .20)

Medium
 (d � .50)

Large 
(d � .80)

One-tailed test

10 .15 .46 .78

20 .22 .71 .96

30 .29 .86 *

40 .35 .93 *

50 .40 .97 *

100 .63 * *

Two-tailed test

10 .09 .32 .66

20 .14 .59 .93

30 .19 .77 .99

40 .24 .88 *

50 .29 .94 *

100 .55 * *

*Power is nearly 1.

Table 7-12  Approximate Number of Research Participants Needed for 80% Power for the 

t Test for Dependent Means in Testing Hypotheses at the .05 Significance Level

Effect Size

Small  
(d � .20)

Medium  
(d � .50)

Large 
 (d � .80)

One-tailed 156 26 12

Two-tailed 196 33 14
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Controversy: Advantages and Disadvantages 
of Repeated Measures Designs
The main controversies about t tests have to do with their relative advantages and 
disadvantages compared to various alternatives (alternatives we will discuss in 
Chapter 14). There is, however, one consideration that we want to comment on now. 
It is about all research designs in which the same participants are tested before and 
after some experimental intervention (the kind of situation the t test for dependent 
means is often used for).

How are you doing?

 1. (a) What is an assumption in hypothesis testing? (b) Describe a specific 
 assumption for a t test for dependent means. (c) What is the effect of  violating 
this assumption? (d) What does it mean to say that the t test for dependent 
means is robust? (e) Describe a situation in which it is not robust.

 2. How can you tell if you have violated the normal curve assumption for a t test 
for dependent means?

 3. (a) Write the formula for effect size; (b) describe each of its terms as they 
 apply to a planned t test for dependent means; (c) describe what you use 
for each of its terms in figuring effect size for a completed study that used a  
t test for dependent means.

 4. You are planning a study in which you predict the mean of the population of 
difference scores to be 40, and the population standard deviation is 80. You 
plan to test significance using a t test for dependent means, one-tailed, with 
an alpha of .05. (a) What is the predicted effect size? (b) What is the power of 
this study if you carry it out with 20 participants? (c) How many participants 
would you need to have 80% power?

Answers

 1. (a) An assumption is a requirement that you must meet for the results of the hy-
pothesis testing procedure to be accurate. (b) The population of individuals’ dif-
ference scores is assumed to be a normal distribution. (c) The significance level 
cutoff from the t table is not accurate. (d) Unless you very strongly violate the 
assumption (that is, unless the population distribution is very far from normal), 
the cutoff is fairly accurate. (e) The t test for dependent means is not robust when 
you are doing a one-tailed test and the population distribution is highly skewed.

 2. You look at the distribution of the sample of difference scores to see if it is 
dramatically different from a normal curve.

 3. (a) d = 1�1 - �22>�. (b) d is the effect size; �1 is for the predicted mean of 
the population of difference scores; �2 is the mean of the known population, 
which for a population of difference scores is almost always 0; � is for the 
standard deviation of the population of difference scores. (c) To estimate �1, 
you use M, the actual mean of your sample’s difference scores; �2 remains 
as 0; and for �, you use S, the estimated standard deviation of the population 
of difference scores.

 4. (a) Predicted effect size: d = 1�1 - �22>� = 140 - 02>80 = .50. (b) Power of 
this study: .71. (c) Using Table 7-12, 26 participants are needed for 80% power.

T I P  F O R  S U C C E S S
Before reading this section, you 
may find it helpful to review Web 
Chapter W1 (available at www.
pearsonhighered.com/aron and 
also at www.mystatlab.com for 
MyStatLab users) that provides an 
overview of research methods in 
psychology.

www.pearsonhighered.com/aron
www.pearsonhighered.com/aron
www.mystatlab.com


 Introduction to t Tests 255

Studies using difference scores (that is, studies using a repeated measures  design) 
often have much larger effect sizes for the same amount of expected  difference 
 between means than other kinds of research designs. That is, testing each of a group 
of participants twice (once under one condition and once under a different condition) 
usually produces a study with high power. In particular, this kind of study gives more 
power than dividing the participants up into two groups and testing each group once 
(one group tested under one condition and the other tested under another condition). 
In fact, studies using difference scores usually have even more power than those in 
which you have twice as many participants, but each is tested only once.

Why do repeated measures designs have so much power? The reason is that 
the standard deviation of difference scores is usually quite low. (The standard de-
viation of difference scores is what you divide by to get the effect size when using 
difference scores.) This produces a large effect size, which increases the power. In 
a repeated measures design, the only variation is in the difference scores. Variation 
among participants on each testing’s scores is not part of the variation involved in 
the analysis. As an example, look back at Table 7-8 from our romantic love and 
brain imaging study. Notice that there were very great differences between the 
scores (fMRI scanner activation values) for each participant. The first participant’s 
scores were around 1,487, the second’s was around 1,328, and so forth. Each person 
has a quite different overall level of activation. But the differences between the two 
conditions were relatively small. What we see in this example is that, because dif-
ference scores are all comparing participants to themselves, the variation in them 
is much less (and does not include the variation between participants). William S. 
Gosset, who essentially invented the t test (see Box 7-1), made much of the higher 
power of repeated measures studies in a historically interesting controversy over an 
experiment about milk, which is described in Box 7-2.

On the other hand, testing a group of people before and after an experimental 
procedure, without any kind of control group that does not go through the proce-
dure, is a weak research design (Cook & Campbell, 1979). Even if such a study 
produces a significant difference, it leaves many alternative explanations for that 
difference. For example, the research participants might have matured or improved 
during that period anyway, or perhaps other events happened between tests, or the 
participants not getting benefits may have dropped out. It is even possible that the 
initial test itself caused changes.

Note, however, that the difficulties of research that tests people before and after 
some intervention are shared only slightly with the kind of study in which participants 
are tested under two conditions, such as viewing a beloved person’s picture and a neu-
tral person’s picture, with half tested first viewing the beloved’s picture and half tested 
first viewing the neutral person’s picture. Another example would be a study examin-
ing the hand-eye coordination of a group of surgeons under both quiet and noisy con-
ditions (not while doing surgery, of course). Each surgeon would perform the test of 
hand-eye coordination during quiet conditions and noisy conditions. Ideally, any ef-
fects of practice or fatigue from taking the test twice would be equalized by testing half 
of the surgeons under noisy conditions first, and half under quiet conditions first.

Single Sample t Tests and Dependent Means 
t Tests in Research Articles
Research articles usually describe t tests in a fairly standard format that includes 
the degrees of freedom, the t score, and the significance level. For example, 
“t1242 = 2.80, p 6 .05” tells you that the researcher used a t test with 24 degrees 
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of freedom, found a t score of 2.80, and the result was significant at the .05 level. 
Whether a one-tailed or two-tailed test was used may also be noted. (If not, assume 
that it was two-tailed.) Usually the means, and sometimes the standard deviations, 
are given for each testing. Rarely does an article report the standard deviation of the 
difference scores.

Had our student in the dormitory example reported the results in a research ar-
ticle, she would have written something like this: “The sample from my dormitory 
studied a mean of 21 hours 1SD = 6.802. Based on a t test for a single sample, this 
was significantly different from the known mean of 17 for the college as a whole, 
t1152 = 2.35, p 6 .05, one-tailed.” The researchers in our fictional flood victims 
example might have written up their results as follows: “The reported hopefulness 
of our sample of flood victims 1M = 4.70, SD = 1.892 was not significantly differ-
ent from the midpoint of the scale, t192 = 1.17.”

As we noted earlier, psychologists only occasionally use the t test for a sin-
gle sample. We introduced it mainly as a stepping-stone to the more widely used  
t test for dependent means. Nevertheless, one sometimes sees the t test for a single 
sample in research articles. For example, Soproni and colleagues (2001), as part 
of a larger study, had pet dogs respond to a series of eight trials in which the 
owner would look at one of two bowls of dog food and the researchers measured 
whether the dog went to the correct bowl. (The researchers called these “at tri-
als” because the owner looked directly at the target.) For each dog, this produced 

In 1930, a major health experiment was conducted in 
Scotland involving 20,000 schoolchildren. Its main pur-
pose was to compare the growth of a group of children 
who were assigned to drink milk regularly to those who 
were in a control group. The results were that those who 
drank milk showed more growth.

However, William Gosset, a contemporary statisti-
cian and inventor of the t test (see Box 7-1), was ap-
palled at the way the experiment was conducted. It had 
cost about £7,500, which in 1930 was a huge amount 
of money, and was done wrong! Large studies such 
as this were very popular among statisticians in those 
days because they seemed to imitate the large numbers 
found in nature. Gosset, by contrast, being a brewer, 
was forced to use very small numbers in his studies—
experimental batches of beer were too costly. And he 
was often chided by the “real statisticians” for his small 
sample sizes. But Gosset argued that no number of 
participants was large enough when strict random as-
signment was not followed. And in this study, teachers 
were permitted to switch children from group to group 

if they took pity on a child whom they felt would ben-
efit from receiving milk!

However, even more interesting in light of the pres-
ent chapter, Gosset demonstrated that the researchers 
could have obtained the same result with 50 pairs of 
identical twins, flipping a coin to determine which  
of each pair was in the milk group (and sticking to it). 
Of course, the statistic you would use is the t test as 
taught in this  chapter—the t test for dependent means.

More recently, the development of power analy-
sis, which we introduced in Chapter 6, has thoroughly 
vindicated Gosset. It is now clear just how surpris-
ingly few participants are needed when a researcher 
can find a way to set up a repeated measures design in 
which difference scores are the basic unit of analysis. 
(In this case, each pair of twins would be one “partici-
pant.”) As Gosset could have told them, studies that 
use the t test for  dependent means can be extremely 
sensitive.

Sources: Peters (1987); Tankard (1984).

BOX 7-2  The Power of Studies Using Difference Scores: 

How the Lanarkshire Milk Experiment Could Have 

Been Milked for More
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an average percentage correct that was compared to chance, which would be 
50% correct. Here is part of their results: “During the eight test trials for gesture, 
dogs performed significantly above chance on at target trials: one sample t test, 
t1132 = 5.3, p 6 .01. . .” (p. 124).

As we have said, the t test for dependent means is much more commonly used. 
Olthoff (1989) might have reported the result of his study of husbands’ communica-
tion quality as follows: “There was a significant decline in communication quality, 
dropping from a mean of 116.32 before marriage to a mean of 104.26 after mar-
riage, t1182 = -4.24, p 6 .05.”

As another example, Rashotte and Webster (2005) carried out a study about 
people’s general expectations about the abilities of men and women. In the study, 
the researchers showed 174 college students photos of women and men (referred 
to as the female and male targets, respectively). The students rated the person in 
each photo in terms of that person’s general abilities (e.g., in terms of the per-
son’s intelligence, abstract abilities, capability at most tasks, and so on). For each 
participant, these ratings were combined to create a measure of the perceived 
status of the female targets and of the male targets. The researchers then com-
pared the status ratings given for the female targets and male targets. Since each 
participant in the study rated both the female and the male targets, the research-
ers compared the status ratings assigned to the female and male targets using a t 
test for dependent means. Table 7-13 shows the results. The row entitled “Whole 
sample 1N = 1742<gives the result of the t test for all 174 participants and shows 
that the status rating assigned to the male targets was significantly higher than 
the rating assigned to the female targets 1t = 3.46, p 6 .0012. As shown in the 
table, the researchers also conducted two additional t tests to see if this effect was 
the same among the female participants and the male participants. The results 
showed that both the female and the male participants assigned higher ratings to 
the male targets.

Often the results of a t test for dependent means will be given in the text and 
not in a table. For example, Song and Schwarz (2009) asked 20 university stu-
dents to rate the harm of food additives that were either easy to pronounce (e.g., 
Magnalroxate) or hard to pronounce (e.g., Hnegripitrom). (In case you are won-
dering, these are not real food additives!) Each student rated all of the food ad-
ditives using a scale from 1 = very safe to 7 = very harmful. Here is how 
Song and Schwarz reported the results of their t test for dependent means: 
“As predicted, participants . . . rated substances with hard-to-pronounce names 1M = 4.12, SD = 0.782 as more harmful than substances with easy-to-pronounce 
names 1M = 3.7, SD = 0.742, t1192 = 2.41, p 6 .03” (p. 136).

Table 7-13 Status Scale: Mean (and SE ) General Expectations for Female and Male Targets

Mean Score (SE ) M – F Target 
Difference t (1-tailed p )Respondents Female Target Male Target

Whole sample (N = 174) 5.60 (.06) 5.85 (.07) .25 3.46 16 .0012
Female respondents (N = 111) 5.62 (.07) 5.84 (.081) .22 2.62 16 .052
Male respondents (N = 63) 5.57 (.10) 5.86 (.11) .29 2.26 16 .052

Source: Rashotte, L. S., & Webster, M., Jr. (2005). Gender status beliefs. Social Science Research, 34, 618–633. Copyright © 
2005 by Elsevier. Reprinted by permission of Elsevier.



258 Chapter 7

Summary

 1. You use the standard steps of hypothesis testing even when you don’t know 
the population variance. However, in this situation you have to estimate the 
 population variance from the scores in the sample, using a formula that divides 
the sum of squared deviation scores by the degrees of freedom 1df = N - 12.

 2. When the population variance is estimated, the comparison distribution of 
means is a t distribution (with cutoffs given in a t table). A t distribution has 
slightly heavier tails than a normal curve (just how much heavier depends on 
how few the degrees of freedom are). Also, in this situation, a sample’s number 
of standard deviations from the mean of the comparison distribution is called a  
t score.

 3. You use a t test for a single sample when a sample mean is being compared to a 
known population mean and the population variance is unknown.

 4. You use a t test for dependent means in studies where each participant has two 
scores, such as a before-score and an after-score or a score in each of two ex-
perimental conditions. A t test for dependent means is also used when you have 
scores from pairs of research participants. In this t test, you first figure a differ-
ence or change score for each participant, then go through the usual five steps 
of hypothesis testing with the modifications described in summary points 1 and 2  
and making Population 2 a population of difference scores with a mean of 0  
(no difference).

 5. An assumption of the t test is that the population distribution is a normal curve. 
However, even when it is not, the t test is usually fairly accurate.

 6. The effect size of a study using a t test for dependent means is the mean of 
the difference scores divided by the standard deviation of the difference scores. 
You can look up power and needed sample size for any particular level of 
power using power software packages, an Internet power calculator, or special 
tables.

 7. The power of studies using difference scores is usually much higher than that 
of studies using other designs with the same number of participants. However, 
research using a single group tested before and after some intervening event, 
without a control group, allows for many alternative explanations of any ob-
served changes.

 8. t tests are reported in research articles using a standard format. For example, 
“t1242 = 2.80, p 6 .05.”

Learning Aids

Key Terms

t tests (p. 227)
t test for a single  sample (p. 227)
biased estimate (p. 229)
unbiased estimate of the population 

variance (S2) (p. 230)

degrees of freedom (df)  
(p. 230)

t distribution (p. 232)
t table (p. 233)
t score (p. 234)

repeated measures  design (p. 240)
t test for dependent means (p. 240)
difference scores (p. 241)
assumption (p. 251)
robustness (p. 251)
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Example Worked-Out Problems

t Test for a Single Sample
Eight participants are tested after being given an experimental procedure. Their 
scores are 14, 8, 6, 5, 13, 10, 10, and 6. The population of people not given this pro-
cedure is normally distributed with a mean of 6. Using the .05 level, two-tailed, does 
the experimental procedure make a difference? (a) Use the five steps of hypothesis 
testing and (b) sketch the distributions involved.

Answer
(a) Steps of hypothesis testing:

❶ Restate the question as a research hypothesis and a null hypothesis 
about the populations. There are two populations:

Population 1: People who are given the experimental procedure.
Population 2: The general population.

The research hypothesis is that the Population 1 will score differently than Popula-
tion 2. The null hypothesis is that Population 1 will score the same as Population 2.

❷ Determine the characteristics of the comparison distribution. The mean 
of the distribution of means is 6 (the known population mean). To figure 
the estimated population variance, you first need to figure the sample mean, 
which is 114 + 8 + 6 + 5 + 13 + 10 + 10 + 62>8 = 72>8 = 9. The es-
timated population variance is S2 = SS>df = 78>7 = 11.14; the variance of 
the distribution of means is S2

M = S2>N = 11.14>8 = 1.39. The standard 
deviation of the distribution of means is SM = 2S2

M = 21.39 = 1.18. Its 
shape will be a t distribution for df = 7.

❸ Determine the cutoff sample score on the comparison distribution at 
which the null hypothesis should be rejected. From Table A-2, the cutoffs 
for a two-tailed t test at the .05 level for df = 7 are +2.365 and -2.365.

❹ Determine your sample’s score on the comparison distribution. 
t = 1M - �2>SM = 19 - 62>1.18 = 3>1.18 = 2.54.

❺ Decide whether to reject the null hypothesis. The t of 2.54 is more extreme 
than the needed t of {2.365. Therefore, reject the null hypothesis; the research 
hypothesis is supported. The experimental procedure does make a difference.

(b) Sketches of distributions are shown in Figure 7-9.

t Test for Dependent Means
A researcher tests 10 individuals before and after an experimental procedure. The 
results are as follows:

Participant Before After

1 10.4 10.8

2 12.6 12.1

3 11.2 12.1

4 10.9 11.4

5 14.3 13.9

6 13.2 13.5

7  9.7 10.9

8 11.5 11.5

9 10.8 10.4

10 13.1 12.5
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Comparison
distribution

(t)

Population
(normal)

6

4.82 6 7.188.36
–1 0 1 2

9

Sample

Raw Scores:
t Scores:

Figure 7-9 Distributions for answer to Example Worked-Out Example Problem for 
t test for a single sample.

Test the hypothesis that there is an increase in scores, using the .05 significance 
level. (a) Use the five steps of hypothesis testing and (b) sketch the distributions 
involved.

Answer
(a) Table 7-14 shows the results, including the figuring of difference scores and 

all the other figuring for the t test for dependent means. Here are the steps of 
hypothesis testing:

❶ Restate the question as a research hypothesis and a null hypothesis about 
the populations. There are two populations:

 Population 1: People like those who are given the experimental procedure.
 Population 2: People who show no change from before to after.

 The research hypothesis is that Population 1’s mean difference score (figured 
using “after” scores minus “before” scores) is greater than Population 2’s mean 
difference score. The null hypothesis is that Population 1’s mean  difference 
score is not greater than Population 2’s.

❷ Determine the characteristics of the comparison distribution. Its popu-
lation mean is 0 difference. The estimated population variance of  difference 
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scores, S2, is shown in Table 7-14 to be .388. As shown in  Table 7-14, the 
standard deviation of the distribution of means of difference scores, SM, 
is .197. Therefore, the comparison distribution has a mean of 0 and a stan-
dard deviation of .197. It will be a t distribution for df = 9.

❸ Determine the cutoff sample score on the comparison distribution at 
which the null hypothesis should be rejected. For a one-tailed test at the .05 
level with df = 9, the cutoff is 1.833. (The cutoff is positive as the research 
hypothesis is that Population 1’s mean difference score will be greater than 
Population 2’s.)

❹ Determine your sample’s score on the comparison distribution. The 
sample’s mean change of .140 is .71 standard deviations (of .197 each) 
on the distribution of means above that distribution’s mean of 0. That is, 
t = 1M - �2>SM = 1.140 - 02>.197 = .71.

❺ Decide whether to reject the null hypothesis. The sample’s t of .71 is less 
extreme than the needed t of 1.833. Thus, you cannot reject the null hypoth-
esis. The study is inconclusive.

(b) Sketches of distributions are shown in Figure 7-10.

Table 7-14  Figuring for Answer to Example Worked-Out Problem for t Test 

for Dependent Means

Participant Score
Difference  

(After – Before)
Deviation 

 (Difference – M )
Squared 
Deviation

Before After

1 10.4 10.8 .4 .260 .068

2 12.6 12.1 - .5 - .640 .410

3 11.2 12.1 .9 .760 .578

4 10.9 11.4 .5 .360 .130

5 14.3 13.9 - .4 - .540 .292

6 13.2 13.5 .3 .160 .026

7 9.7 10.9 1.2 1.060 1.124

8 11.5 11.5 0.0 - .140 .020

9 10.8 10.4 - .4 - .540 .292

10 13.1 12.5 - .6 - .740 .548

�: 117.7 119.1 1.4 3.488

For difference scores:

M = 1.4>10 = .140

� = 0

S2 = SS>df = 3.488>110 - 12 = 3.488>9 = .388

S 2
M = S 2>N = .388>10 = .039

SM = 2S 2
M = 2.039 = .197

t for df = 9 needed for 5% significance level, one-tailed = 1.833

t = 1M - �2>SM = 1.140 - 02>.197 = .71
Decision: Do not reject the null hypothesis.
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Outline for Writing Essays for a t Test for a Single Sample
 1. Describe the core logic of hypothesis testing in this situation. Be sure to men-

tion that the t test for a single sample is used for hypothesis testing when you 
have scores for a sample of individuals and you want to compare the mean of 
this sample to a population for which the mean is known but the variance is un-
known. Be sure to explain the meaning of the research hypothesis and the null 
hypothesis in this situation.

 2. Outline the logic of estimating the population variance from the sample scores. 
Explain the idea of biased and unbiased estimates of the population variance, 
and describe the formula for estimating the population variance and why it is 
different from the ordinary variance formula.

 3. Describe the comparison distribution (the t distribution) that is used with a t test 
for a single sample, noting how it is different from a normal curve and why. 
Explain why a t distribution (as opposed to the normal curve) is used as the 
comparison distribution.

 4. Describe the logic and process for determining the cutoff sample score(s) on the 
comparison distribution at which the null hypothesis should be rejected.

 5. Describe how and why you figure the t score of the sample mean on the com-
parison distribution.

 6. Explain how and why the scores from Steps ❸ and ❹ of the hypothesis-testing 
process are compared. Explain the meaning of the result of this comparison 
with regard to the specific research and null hypotheses being tested.

Comparison
distribution (t)

Population
of difference

scores

0

–.20 0 .20
–1 0 1

.14

Sample

Raw Scores:
t Scores:

Figure 7-10 Distributions for answer to Example Worked-Out Problem for t test 
for dependent means.
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Practice Problems

Outline for Writing Essays for a t Test for Dependent Means
 1. Describe the core logic of hypothesis testing in this situation. Be sure to men-

tion that the t test for dependent means is used for hypothesis testing when you 
have two scores from each person in your sample. Be sure to explain the mean-
ing of the research hypothesis and the null hypothesis in this situation. Explain 
the logic and procedure for creating difference scores.

 2. Explain why you use 0 as the mean for the comparison distribution.
 3. Outline the logic of estimating the population variance of difference scores 

from the sample scores. Explain the idea of biased and unbiased estimates of 
the population variance, and describe the formula for estimating the population 
variance. Describe how to figure the standard deviation of the distribution of 
means of difference scores.

 4. Describe the comparison distribution (the t distribution) that is used with a t test 
for dependent means. Explain why a t distribution (as opposed to the normal 
curve) is used as the comparison distribution.

 5. Describe the logic and process for determining the cutoff sample score(s) on the 
comparison distribution at which the null hypothesis should be rejected.

 6. Describe how and why you figure the t score of the sample mean on the com-
parison distribution.

 7. Explain how and why the scores from Steps ❸ and ❹ of the hypothesis-testing 
process are compared. Explain the meaning of the result of this comparison 
with regard to the specific research and null hypotheses being tested.

These problems involve figuring. Most real-life statistics problems are done with 
special statistical software. Even if you have such software, do these problems by 
hand to ingrain the method in your mind. To learn how to use a computer to solve 
statistics problems like those in this chapter, refer to the Using SPSS section at the 
end of this chapter.

All data are fictional unless an actual citation is given.

Set I (for Answers to Set I Problems, see pp. 688–690)
 1. In each of the following studies, a single sample’s mean is being compared to 

a population with a known mean but an unknown variance. For each study, de-
cide whether the result is significant. (Be sure to show all of your calculations.)

Sample  
Size (N )

Population  
Mean 1�2

Estimated  
Population  

Variance (S 2)
Sample  

Mean (M ) Tails
Significance Level  

1�2

(a) 64 12.40 9.00 11.00 1 (low predicted) .05

(b) 49 1,006.35 317.91 1,009.72 2 .01

(c) 400 52.00 7.02 52.41 1 (high predicted) .01

 2. Suppose a candidate running for sheriff in a rural community claims that she 
will reduce the average speed of emergency response to less than 30 minutes, 
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which is thought to be the average response time with the current sheriff. There 
are no past records; so the actual standard deviation of such response times can-
not be determined. Thanks to this campaign, she is elected sheriff, and careful 
records are now kept. The response times for the first month are 26, 30, 28, 29, 
25, 28, 32, 35, 24, and 23 minutes.

   Using the .05 level of significance, did she keep her promise? (a) Use the 
steps of hypothesis testing. (b) Sketch the distributions involved. (c) Explain 
your answer to someone who has never taken a course in statistics.

 3. A researcher tests five individuals who have seen paid political ads about a 
particular issue. These individuals take a multiple-choice test about the issue 
in which people in general (who know nothing about the issue) usually get  
40 questions correct. The number correct for these five individuals was 48, 41, 
40, 51, and 50.

   Using the .05 level of significance, two-tailed, do people who see the ads 
score differently on this test? (a) Use the steps of hypothesis testing. (b) Sketch 
the distributions involved. (c) Explain your answer to someone who is familiar 
with the Z test (from Chapter 5) but is unfamiliar with t tests.

 4. For each of the following studies using difference scores, test the significance 
using a t test for dependent means.

Number of  
Difference  
Scores in  
Sample

Mean of  
Difference  
Scores in  
Sample

Estimated  
Population  
Variance of  

Difference Scores Tails
Significance  

Level

(a) 20 1.7 8.29 1 (high predicted) .05

(b) 164 2.3 414.53 2 .05

(c) 15 -2.2 4.00 1 (low predicted) .01

 5. A program to decrease littering was carried out in four cities in California’s 
Central Valley starting in August 2011. The amount of litter in the streets (av-
erage pounds of litter collected per block per day) was measured during July 
before the program started and then the next July, after the program had been in 
effect for a year. The results were as follows:

City July 2011 July 2012

Fresno 9 2

Merced 10 4

Bakersfield 8 9

Stockton 9 1

  Using the .01 level of significance, was there a significant decrease in the 
amount of litter? (a) Use the five steps of hypothesis testing. (b) Sketch 
the distributions involved. (c) Explain your answer to someone who under-
stands mean, standard deviation, and variance, but knows nothing else about 
statistics.

 6. A researcher assesses the level of a particular hormone in the blood in five pa-
tients before and after they begin taking a hormone treatment program. Results 
for the five patients are as follows:
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  Using the .05 significance level, was there a significant change in the level of 
this hormone? (a) Use the steps of hypothesis testing. (b) Sketch the distribu-
tions involved. (c) Explain your answer to someone who understands the t test 
for a single sample but is unfamiliar with the t test for dependent means.

 7. Figure the estimated effect size and indicate whether it is approximately small, 
medium, or large, for each of the following studies:

Patient Before After

A .20 .18

B .16 .16

C .24 .23

D .22 .19

E .17 .16

Mean Change S

(a) 20 32

(b) 5 10

(c) .1 .4

(d) 100 500

 8. What is the power of each of the following studies, using a t test for dependent 
means (based on the .05 significance level)?

Effect Size N Tails

(a) Small 20 One

(b) Medium 20 One

(c) Medium 30 One

(d) Medium 30 Two

(e) Large 30 Two

 9. About how many participants are needed for 80% power in each of the follow-
ing planned studies that will use a t test for dependent means with p 6 .05?

Predicted Effect Size Tails

(a) Medium Two

(b) Large One

(c) Small One

 10. Weller and Weller (1997) conducted a study of the tendency for the menstrual 
cycles of women who live together (such as sisters) to become synchronized. 
For their statistical analysis, they compared scores on a measure of synchro-
nization of pairs of sisters living together versus the degree of synchronization 
that would be expected by chance (lower scores mean more synchronization). 
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Their key results (reported in a table not reproduced here) were synchrony 
scores of 6.32 for the 30 roommate sister pairs in their sample compared to an 
expected synchrony score of 7.76; they then reported a t score of 2.27 and a 
p level of .011 for this difference. Explain this result to a person who is familiar 
with hypothesis testing with a known population variance, but not with the t test 
for a single sample.

 11. A psychologist conducts a study of perceptual illusions under two different 
lighting conditions. Twenty participants were each tested under both of the two 
different conditions. The experimenter reported: “The mean number of effec-
tive illusions was 6.72 under the bright conditions and 6.85 under the dimly lit 
conditions, a difference that was not significant, t1192 = 1.62.” Explain this 
result to a person who has never had a course in statistics. Be sure to use 
sketches of the distributions in your answer.

 12. A study was done of personality characteristics of 100 students who were tested 
at the beginning and end of their first year of college. The researchers reported 
the results in the following table:

Fall Spring Difference

Personality Scale M SD M SD M SD

Anxiety 16.82 4.21 15.32 3.84 1.50** 1.85

Depression 89.32 8.39 86.24 8.91 3.08** 4.23

Introversion 59.89 6.87 60.12 7.11 - .23 2.22

Neuroticism 38.11 5.39 37.22 6.02 .89* 4.21

*p 6 .05, **p 6 .01.

(a) Focusing on the difference scores, figure the t values for each personality 
scale. (Assume that SD in the table is for what we have called S, the unbiased 
estimate of the population standard deviation.)
(b) Explain to a person who has never had a course in statistics what this table 
means.

Set II
 13. In each of the following studies, a single sample’s mean is being compared to 

a population with a known mean but an unknown variance. For each study, de-
cide whether the result is significant.

Sample  
Size (N )

Population  
Mean ( �)

Estimated  
Population  
Standard  
Deviation 

(S )
Sample  

Mean (M ) Tails
Significance  

Level (�)

(a) 16 100.31 2.00 100.98 1 (high predicted) .05

(b) 16 .47 4.00 .00 2 .05

(c) 16 68.90 9.00 34.00 1 (low predicted) .01

 14. Evolutionary theories often emphasize that humans have adapted to their physi-
cal environment. One such theory hypothesizes that people should spontane-
ously follow a 24-hour cycle of sleeping and waking—even if they are not 
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exposed to the usual pattern of sunlight. To test this notion, eight paid volun-
teers were placed (individually) in a room in which there was no light from the 
outside and no clocks or other indications of time. They could turn the lights 
on and off as they wished. After a month in the room, each individual tended 
to develop a steady cycle. Their cycles at the end of the study were as follows:  
25, 27, 25, 23, 24, 25, 26, and 25.

   Using the .05 level of significance, what should we conclude about the 
theory that 24 hours is the natural cycle? (That is, does the average cycle length 
under these conditions differ significantly from 24 hours?) (a) Use the steps of 
hypothesis testing. (b) Sketch the distributions involved. (c) Explain your an-
swer to someone who has never taken a course in statistics.

 15. In a particular country, it is known that college seniors report falling in love 
an average of 2.20 times during their college years. A sample of five seniors, 
originally from that country but who have spent their entire college career in 
the United States, were asked how many times they had fallen in love during 
their college years. Their numbers were 2, 3, 5, 5, and 2. Using the .05 signifi-
cance level, do students like these who go to college in the United States fall in 
love more often than those from their country who go to college in their own 
country? (a) Use the steps of hypothesis testing. (b) Sketch the distributions 
involved. (c) Explain your answer to someone who is familiar with the Z test 
(from Chapter 5) but is unfamiliar with the t test for a single sample.

 16. For each of the following studies using difference scores, test the significance 
using a t test for dependent means.

Number of  
Difference  
Scores in  
Sample

Mean of  
Difference  

Scores

S 2 for 
Difference  

Scores Tails
Significance  

Level

(a) 10 3.8 50 One (high) .05

(b) 100 3.8 50 One (high) .05

(c) 100 1.9 50 One (high) .05

(d) 100 1.9 50 Two .05

(e) 100 1.9 25 Two .05

 17. Four individuals with high levels of cholesterol went on a special crash diet, 
avoiding high-cholesterol foods and taking special supplements. Their total 
cholesterol levels before and after the diet were as follows:

Participant Before After

J. K. 287 255

L. M. M 305 269

A. K. 243 245

R. O. S. 309 247

  Using the .05 level of significance, was there a significant change in choles-
terol level? (a) Use the steps of hypothesis testing. (b) Sketch the distributions 
involved. (c) Explain your answer to someone who has never taken a course in 
statistics.
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 18. Five people who were convicted of speeding were ordered by the court to attend 
a workshop. A special device put into their cars kept records of their speeds for 
two weeks before and after the workshop. The maximum speeds for each per-
son during the two weeks before and the two weeks after the workshop follow.

Participant Before After

L. B. 65 58

J. K. 62 65

R .C. 60 56

R. T. 70 66

J. M. 68 60

  Using the .05 significance level, should we conclude that people are likely to 
drive more slowly after such a workshop? (a) Use the steps of hypothesis test-
ing. (b) Sketch the distributions involved. (c) Explain your answer to someone 
who is familiar with hypothesis testing involving known populations, but has 
never learned anything about t tests.

 19. The amount of oxygen consumption was measured in six individuals over two 
10-minute periods while sitting with their eyes closed. During one period, they 
listened to an exciting adventure story; during the other, they heard restful music.

Participant Story Music

1 6.12 5.39

2 7.25 6.72

3 5.70 5.42

4 6.40 6.16

5 5.82 5.96

6 6.24 6.08

  Based on the results shown, is oxygen consumption less when listening to the 
music? Use the .01 significance level. (a) Use the steps of hypothesis testing. 
(b) Sketch the distributions involved. (c) Explain your answer to someone who 
understands mean, standard deviation, and variance but knows nothing else 
about statistics.

 20. Five sophomores were given an English achievement test before and after re-
ceiving instruction in basic grammar. Their scores are shown below.

Student Before After

A 20 18

B 18 22

C 17 15

D 16 17

E 12 9

  Is it reasonable to conclude that future students would show higher scores af-
ter instruction? Use the .05 significance level. (a) Use the steps of hypothesis  
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testing. (b) Sketch the distributions involved (c) Explain your answer to some-
one who understands mean, standard deviation, and variance but knows nothing 
else about statistics.

 21. Figure the predicted effect size and indicate whether it is approximately small, 
medium, or large, for each of the following planned studies:

Predicted  
Mean Change �

(a) 8 30

(b) 8 10

(c) 16 30

(d) 16 10

 22. What is the power of each of the following studies, using a t test for dependent 
means (based on the .05 significance level)?

Effect Size N Tails

(a) Small 50 Two

(b) Medium 50 Two

(c) Large 50 Two

(d) Small 10 Two

(e) Small 40 Two

(f) Small 100 Two

(g) Small 100 One

 23. About how many participants are needed for 80% power in each of the follow-
ing planned studies that will use a t test for dependent means with p 6 .05?

Predicted Effect Size Tails

(a) Small Two

(b) Medium One

(c) Large Two

 24. A study compared union activity of employees in 10 plants during two differ-
ent decades. The researchers reported “a significant increase in union activ-
ity, t192 = 3.28, p 6 .01.” Explain this result to a person who has never had a 
course in statistics. Be sure to use sketches of the distributions in your answer.

 25. Baker and Moore (2008) surveyed 58 people when they first started using 
MySpace (the researchers called this “Time 0”) and again 2 months later (re-
ferred to as “Time 1” by the researchers). At both time points, the participants 
completed a measure of social integration (a sense of belonging to a group 
of friends). Also, at Time 1, the researchers examined participants’ MySpace 
profiles to see whether they had started blogging in the past 2 months. The 
researchers used t tests for dependent means (which they refer to as paired sam-
ple t tests) to test whether bloggers and nonbloggers differed in their level of 
social integration from Time 0 to Time 1. Here is how the researchers reported 

MyStatLab

MyStatLab

MyStatLab

MyStatLab
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Using SPSS

the results: “Paired samples t tests showed bloggers were significantly higher 
in social integration at Time 1 than Time 0, t1302 = 3.19, p 6 .01, . . . with no 
difference for nonbloggers, t 1262 = -0.370, p 7 .05.” Explain these results 
to someone who is familiar with the t test for a single sample but not with the 
t test for dependent means.

 26. Table 7-15 (reproduced from a study by Larson et al., 2001) shows ratings of 
various aspects of work and home life of 100 middle-class men in India who 
were fathers. Pick three rows of interest to you and explain the results to some-
one who is familiar with the mean, variance, and Z scores but knows nothing 
else about statistics.

Table 7-15  Comparison of Fathers’ Mean Psychological States in the Job and Home 

Spheres (N = 100)

Sphere

Scale Range Work Home Work vs. Home

Important 0–9 5.98 5.06 6.86***

Attention 0–9 6.15 5.13 7.96***

Challenge 0–9 4.11 2.41 11.49***

Choice 0–9 4.28 4.74 -3.38***

Wish doing else 0–9 1.50 1.44 0.61

Hurried 0–3 1.80 1.39 3.21**

Social anxiety 0–3 0.81 0.64 3.17**

Affect 1–7 4.84 4.98 -2.64**

Social climate 1–7 5.64 5.95 4.17***

Note: Values for column 3 are t scores; df = 90 for all t tests.

**p 6 .01.

***p 6 .001.

Source: Larson, R., Dworkin, J., & Verma, S. (2001). Men’s work and family lives in India: The daily organiza-
tion of time and emotions. Journal of Family Psychology, 15, 206–224. Copyright © 2001 by the American 
Psychological Association.

The  in the following steps indicates a mouse click. (We used SPSS version 19 for 
Windows to carry out these analyses. The steps and output may be slightly different 
for other versions of SPSS.)

t Test for a Single Sample
 ❶ Enter the scores from your distribution in one column of the data window.
 ❷  Analyze.
 ❸  Compare means.
 ❹  One-sample T test (this is the name SPSS uses for a t test for a single sample).
 ❺  on the variable for which you want to carry out the t test and then  the arrow.
 ❻ Enter the population mean in the “Test Value” box.
 ❼  OK.

MyStatLab
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Practice these steps by carrying out a single sample t test for the example shown 
earlier in this chapter of 10 people’s ratings of hopefulness after a flood. The sam-
ple scores, population mean, and figuring for that study are shown in Table 7-4 on 
page 236. Your SPSS output window should look like Figure 7-11. The first table 
provides information about the variable: the number of scores (“N”); the mean of the 
scores (“Mean”); the estimated population standard deviation, S (“Std. Deviation”); 
and the standard deviation of the distribution of means, SM (“Std. Error Mean”). 
Check that the values in that table are consistent (allowing for rounding error) with 
the values in Table 7-4.

The second table in the SPSS output window gives the outcome of the  
t test. Compare the values of t and df in that table and the values shown in Table 
7-4. The exact two-tailed significance level of the t test is given in the “Sig. 
(2-tailed)” column. In this study, the researcher was using the .01 significance 
level. The significance level given by SPSS (.271) is not more extreme than .01, 
which means that the researcher cannot reject the null hypothesis and the study is 
inconclusive.

t Test for Dependent Means
 ❶ Enter one set of scores (for example, the “before” scores) in the first column 

of the data window. Then enter the second set of scores (for example, the 
“after” scores) in the second column of the data window. (Be sure to enter 
the scores in the order they are listed.) Since each row in the SPSS data 
window represents a separate person, it is important that you enter each per-
son’s scores in two separate columns (for example, a “before” column and an  
“after” column).

 ❷  Analyze.
 ❸  Compare means.
 ❹  Paired-Samples T Test (this is the name SPSS uses for a t test for dependent 

means).

Figure 7-11 Using SPSS to carry out a t test for a single sample for the example of 
10 people’s ratings of hopefulness after a flood.
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 ❺  on one of the variables, such as the “after” variable (this will highlight 
the variable).  the arrow. The variable will now appear as “Variable 1” for 
“Pair 1” in the “Paired Variables” box.  on the second variable, such as the 
“before” variable (this will highlight the variable).  the arrow. The variable 
will now appear as “Variable 2” for “Pair 1”.

 ❻  OK.

Practice these steps by carrying out a t test for dependent means for Olthoff’s 
(1989) study of communication quality of 19 men who received ordinary premar-
ital counseling. The scores and figuring for that study are shown in Table 7-6 
on page 242. Your SPSS output window should look like Figure 7-12. The key in-
formation is contained in the third table (labeled “Paired Samples Test”). The final 
three columns of this table give the t score (–4.240), the degrees of freedom (18), 
and the two-tailed significance level (.000 in this case) of the t test. The signifi-
cance level is so small that, even after rounding to three decimal places, it is less 
than .001. Because the significance level is more extreme than the .05 significance 
level we set for this study, you can reject the null hypothesis. By looking at the 
means for the “after” variable and the “before” variable in the first table (labeled 
“Paired Samples Statistics”), you can see that the husbands’ communication qual-
ity was lower after marriage (a mean of 104.2632) than before marriage (a mean 
of 116.3158).

Figure 7-12 Using SPSS to carry out a t test for dependent means for Olthoff’s (1989) 
study of communication quality of 19 men who received ordinary premarital counseling.
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Chapter Notes

 1. A sample’s variance is slightly smaller than the population’s because it is 
based on deviations from the sample’s mean. A sample’s mean is the optimal 
balance point for its scores. Thus, deviations of a sample’s scores from its 
mean will be smaller than deviations from any other number. The mean of 
a sample generally is not exactly the same as the mean of the population it 
comes from. Thus, deviations of a sample’s scores from its mean will gener-
ally be smaller than deviations of that sample’s scores from the population 
mean.

 2. Statisticians make a subtle distinction in this situation between the comparison 
distribution and the distribution of means. (We avoid this distinction to sim-
plify your learning of what is already fairly difficult.) The general procedure 
of hypothesis testing, as we introduced it in Chapter 5, can be described as cal-
culating a Z score for your sample’s mean, where Z = 1M - �2>�M, and then 
comparing this Z score to a cutoff Z score from the normal curve table. We 
described this process as using the distribution of means as your comparison 
distribution. Statisticians would say that actually you are comparing the Z score 
you figured for your sample mean to a distribution of Z scores (which is simply 
a standard normal curve). Similarly, for a t test, statisticians think of the proce-
dure as figuring a t score (like a Z score, but figured using an estimated standard 
deviation), where t = 1M - �2>SM, and then comparing your computed t score 
to a cutoff t score from a t distribution table. Thus, according to the formal 
statistical logic, the comparison distribution is a distribution of t scores, not of 
means.

 3. In line with the terminology we used in Chapter 5, the symbol � in the formula 
should read �M, since it refers to the population mean of a distribution of 
means. In Chapter 5, we used the �M terminology to emphasize the concep-
tual difference between the mean of a population of individuals and the mean 
of a population of means. But � and �M are always equal. Thus, to keep the 
terminology as straightforward as possible in this and subsequent chapters, 
we refer to the mean of a distribution of means as �. (If we were even more 
formal, we might use �2 or even �M2

 because we are referring to the mean of 
Population 2.)

 4. The steps of carrying out a t test for a single sample can be combined into a 
computational formula for t based on difference scores. For learning purposes 
in your class, you should use the steps as we have discussed them in this chap-
ter. In a real research situation, the figuring is usually all done by computer (see 
this chapter’s Using SPSS section). Should you ever have to do a t test for a 
single sample for an actual research study by hand, you may find the following 
formula useful:

t =
M - �

A
gX2 - 11gX22>N2
1N - 121N2

 5. The steps of carrying out a t test for dependent means can be combined into a 
computational formula for t based on difference scores. For learning purposes 
in your class, you should use the steps as we have discussed them in this chap-
ter. In a real research situation, the figuring is usually all done by computer (see 
the Using SPSS section at the end of this chapter). However, if you ever have to 

The t score for a t test for a 
single sample is the result of 
subtracting the population 
mean from the sample mean 
and dividing that difference 
by the square root of the 
following: the sum of the 
squared scores minus the 
result of taking the sum of all 
the scores, squaring this sum 
and dividing by the number 
of scores, then taking this 
whole difference and dividing 
it by the result of multiplying 
the number of scores minus 1 
by the number of scores.
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do a t test for dependent means for an actual research study by hand, you may 
find the formula useful:

t =
1gD2>N

A
gD2 - 11gD22>N2
1N - 121N2

 6. Single sample t tests are quite rare in practice; so we didn’t include a discussion 
of effect size or power for them in the main text. However, the effect size for a 
single sample t test can be figured using the same approach as in Chapter 6 (which 
is the same as the approach for figuring effect size for the t test for dependent 
means). It is the difference between the population means divided by the pop-
ulation standard deviation: d = 1�1 - �22>�. When using this formula for a 
t test for a single sample, �1 is the predicted mean of Population 1 (the popula-
tion from which you are studying a sample), �2 is the mean of the “known” 
population, and � is the population standard deviation. The conventions for ef-
fect size for a t test for a single sample are the same as you learned for the situa-
tion we considered in Chapter 6: A small effect size is .20, a medium effect size 
is .50, and a large effect size is .80.

 7. Cohen (1988, pp. 28–39) provides more detailed tables in terms of numbers of 
participants, levels of effect size, and significance levels. If you use his tables, 
note that the d referred to is actually based on a t test for independent means 
(the situation we consider in Chapter 8). To use these tables for a t test for 
dependent means, first multiply your effect size by 1.4. For example, if your 
effect size is .30, for purposes of using Cohen’s tables, you would consider it 
to be .42 (that is, .30 * 1.4 = .42). The only other difference from our table is 
that Cohen describes the significance level by the letter a (for “alpha level”), 
with a subscript of either 1 or 2, referring to a one-tailed or two-tailed test. For 
example, a table that refers to “a1 = .05” at the top means that this is the table 
for p 6 .05, one-tailed.

 8. More detailed tables, giving the needed numbers of participants for levels of 
power other than 80% (and also for effect sizes other than .20, .50, and .80 and for 
other significance levels) are provided in Cohen (1988, pp. 54–55). However, see 
Chapter Note 7 about using Cohen’s tables for a t test for dependent means.

The t score for a t test for 
dependent means is the result 
of dividing the sum of the 
difference scores by the num-
ber of difference scores and 
then dividing that result by 
the square root of the follow-
ing: the sum of the squared 
difference scores minus the 
result of taking the sum of all 
the difference scores, squar-
ing this sum and dividing 
by the number of difference 
scores, then taking this whole 
difference and dividing it by 
the result of multiplying the 
number of difference scores 
minus 1 by the number of  
difference scores.
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Chapter 8

The t Test for Independent Means

In the previous chapter, you learned how to use the t test for dependent means to 
compare two sets of scores from a single group of people (such as the same men 
measured on communication quality before and after premarital counseling). In this 

chapter, you learn how to compare two sets of scores, one from each of two entirely 
separate groups of people. This is a very common situation in psychology research. For 
example, a study may compare the scores from individuals in an experimental group 
to the scores from individuals in a control group (or from a group of men and a group 
of women). This is a t test situation because you don’t know the population variances 
(so they must be estimated). The scores of the two groups are independent of each 
other; so the test you learn in this chapter is called a t test for independent means.

Let’s consider an example. A team of researchers is interested in whether 
writing one’s thoughts and feelings associated with traumatic life events can affect 
physical health. This kind of writing is called expressive writing. Suppose the  
researchers recruit undergraduate students to take part in a study and randomly  

t test for independent means 
hypothesis-testing procedure in which 
there are two separate groups of people 
tested and in which the population  
variance is not known.
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T I P  F O R  S U C C E S S
You should be thoroughly  
comfortable with the material in 
Chapter 7, particularly the basic 
logic and procedures of the t test 
for a single sample, before going 
on to the material in this chapter.
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assign them to be in an expressive writing group or a control group. Students 
in the expressive writing group are instructed to write four 20-minute essays, 
one over each of four consecutive days, about their most traumatic life experi-
ences. Students in the control group also write four 20-minute essays over four 
consecutive days, but their essays are each about their plans for that day. One 
month later, the researchers ask the students to rate their overall level of physi-
cal health (on a scale from 0 = very poor health to 100 = perfect health). Since 
the expressive writing and the control group contain different students, a t test 
for independent means is the appropriate test of the effect of expressive writ-
ing on physical health. We will return to this example later in the chapter. But 
first, you will learn about the logic of the t test for independent means, which 
involves learning about a new kind of distribution (called the distribution of 
differences between means).

The Distribution of Differences Between Means
In the previous chapter, you learned the logic and figuring for the t test for depen-
dent means. In that chapter, within the same group of people, each person had two 
scores, such as a before score and an after score. This allowed you to figure a dif-
ference score for each person. You then carried out the hypothesis-testing procedure 
using these difference scores. The comparison distribution you used for this hypoth-
esis testing was a distribution of means of difference scores.

In the situation you face in this chapter, the scores in one group are for different 
people than the scores in the other group. So you don’t have any pairs of scores, as 
you did when the same group of people each had two scores. Thus, it wouldn’t be 
possible to create difference scores in any meaningful way, so you can’t use differ-
ence scores for the hypothesis-testing procedure in this chapter. Instead, when the 
scores in one group are for different people than the scores in the other group, what 
you can compare is the mean of one group to the mean of the other group.

So the t test for independent means focuses on the difference between the means 
of the two groups. The hypothesis-testing procedure, however, for the most part 
works just like the hypothesis-testing procedures you have already learned. The 
main difference is that the focus is now on the difference between means, so the 
comparison distribution is a distribution of differences between means.

A distribution of differences between means is, in a sense, two steps removed 
from the populations of individuals: First, there is a distribution of means from each 
population of individuals; second, there is a distribution of differences between 
pairs of means, one of each pair of means taken from its particular distributions of 
means.

Think of this distribution of differences between means as being built up as 
follows: (a) randomly select one mean from the distribution of means for the first 
group’s population, (b) randomly select one mean from the distribution of means for 
the second group’s population, and (c) subtract. (That is, take the mean from the first 
distribution of means and subtract the mean from the second distribution of means.) 
This gives a difference score between the two selected means. Then repeat the pro-
cess. This creates a second difference score, a difference between the two newly 
selected means. Repeating this process a large number of times creates a distribution 
of differences between means. You would never actually create a distribution of 
differences between means using this lengthy method (there is a simpler mathemati-
cal rule that accomplishes the same thing). But it shows clearly what makes up the 
distribution.

distribution of differences between 
means distribution of differences 
between means of pairs of samples such 
that, for each pair of means, one is from 
one population and the other is from 
a second population; the comparison 
distribution in a t test for independent 
means.

T I P  F O R  S U C C E S S
The comparison distributions for 
the t test for dependent means 
and the t test for independent 
means have similar names: a 
distribution of means of difference 
scores, and a distribution of 
differences between means, 
respectively. Thus, it can be easy 
to confuse these comparison 
distributions. To remember which 
is which, think of the logic of each 
t test. The t test for dependent 
means involves difference scores. 
So, its comparison distribution 
is a distribution of means of 
difference scores. The t test for 
independent means involves 
differences between means. Thus, 
its comparison distribution is a 
distribution of differences between 
means.
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The Overall Logic and a Visual Picture of the Distribution  
of Differences Between Means
Figure 8-1 shows the entire logical construction for a distribution of differences be-
tween means. At the top are the two population distributions. We do not know the 
characteristics of these population distributions, but we do know that if the null hy-
pothesis is true, the two population means are the same. That is, the null hypothesis 
is that �1 = �2. We also can estimate the variance of these populations based on the 
sample information (these estimated variances will be S2

1 and S2
2).

Below each population distribution is the distribution of means for that popula-
tion. Using the estimated population variance and knowing the size of each sample, 
you can figure the variance of each distribution of means in the usual way. (It is the 
estimated variance of its parent population divided by the size of the sample from 
that population that is being studied.)

Below these two distributions of means, and built from them, is the crucial dis-
tribution of differences between means. This distribution’s variance is ultimately 
based on estimated population variances. Thus, we can think of it as a t distribu-
tion. The goal of a t test for independent means is to decide whether the difference 
between the means of your two actual samples is a more extreme difference than the 
cutoff difference on this distribution of differences between means. The two actual 
samples are shown (as histograms) at the bottom.

Remember, this whole procedure is really a kind of complicated castle in the 
air. It exists only in our minds to help us make decisions based on the results of an 
actual experiment. The only concrete reality in all of this is the actual scores in the 
two samples. You estimate the population variances from these sample scores. The 
variances of the two distributions of means are based entirely on these estimated 
population variances (and the sample sizes). And, as you will see shortly, the char-
acteristics of the distribution of differences between means are based on these two 
distributions of means.

Still, the procedure is a powerful one. It has the power of mathematics and  
logic behind it. It helps you develop general knowledge based on the specifics of  
a particular study.

Distributions of
means

Populations

Samples

Distribution of
differences between

means

Figure 8-1 Diagram of the logic of a distribution of differences between means.
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With this overview of the basic logic, we now turn to six key details: (1) the 
mean of the distribution of differences between means, (2) the estimated population 
variance, (3) the variance of the two distributions of means, (4) the variance and 
standard deviation of the distribution of differences between means, (5) the shape of 
the distribution of differences between means, and (6) the t score for the difference 
between the two means being compared.

Mean of the Distribution of Differences  
Between Means
In a t test for independent means, you are considering two populations: for ex-
ample, one population from which an experimental group is taken and one popu-
lation from which a control group is taken. In practice, you don’t know the mean 
of either population. You do know that if the null hypothesis is true, these two 
populations have equal means. Also, if these two populations have equal means, 
the two distributions of means have equal means. (This is because each distribu-
tion of means has the same mean as its parent population of individuals.) Finally, 
if you take random samples from two distributions with equal means, the differ-
ences between the means of these random samples, in the long run, balance out to 0. 
The result of all this is the following: whatever the specifics of the study, you 
know that, if the null hypothesis is true, the distribution of differences between 
means has a mean of 0.

Estimating the Population Variance
In Chapter 7, you learned to estimate the population variance from the scores in 
your sample. It is the sum of squared deviation scores divided by the degrees of 
freedom (the number in the sample minus 1). To do a t test for independent means, it 
has to be reasonable to assume that the populations the two samples come from have 
the same variance (which, in statistical terms, is called homogeneity of variance). 
(If the null hypothesis is true, they also have the same mean. However, whether 
or not the null hypothesis is true, you must be able to assume that the two popula-
tions have the same variance.) Therefore, when you estimate the variance from the 
scores in either sample, you are getting two separate estimates of what should be the 
same number. In practice, the two estimates will almost never be exactly identical. 
Since they are both supposed to be estimating the same thing, the best solution is to 
average the two estimates to get the best single overall estimate. This is called the 
pooled estimate of the population variance 1S2

Pooled2.
In making this average, however, you also have to take into account that the two 

samples may not be the same size. If one sample is larger than the other, the estimate 
it provides is likely to be more accurate (because it is based on more information). 
If both samples are exactly the same size, you could just take an ordinary average 
of the two estimates. On the other hand, when they are not the same size, you need 
to make some adjustment in the averaging to give more weight to the larger sample. 
That is, you need a weighted average, an average weighted by the amount of infor-
mation each sample provides.

Also, to be precise, the amount of information each sample provides is not its 
number of scores, but its degrees of freedom (its number of scores minus 1). Thus, 
your weighted average needs to be based on the degrees of freedom each sample 
provides. To find the weighted average, you figure out what proportion of the total 
degrees of freedom each sample contributes and multiply that proportion by the 

pooled estimate of the population 
variance (S2

Pooled) in a t test for 
independent means, weighted average of 
the estimates of the population variance 
from two samples (each estimate 
weighted by the proportion consisting of 
its sample’s degrees of freedom divided 
by the total degrees of freedom for both 
samples).

weighted average average in which 
the scores being averaged do not have 
equal influence on the total, as in 
figuring the pooled variance estimate  
in a t test for independent means.
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population variance estimate from that sample. Finally, you add up the two results, 
and that is your weighted, pooled estimate. In terms of a formula,

 S2
Pooled =

df1
dfTotal

1S2
12 +

df2
dfTotal

1S2
22 (8-1)

In this formula, S2
Pooled is the pooled estimate of the population variance. df1 is 

the degrees of freedom in the sample from Population 1, and df2 is the degrees of 
freedom in the sample from Population 2. (Remember, each sample’s df is its num-
ber of scores minus 1.) dfTotal is the total degrees of freedom 1dfTotal = df1 + df22. S2

1 
is the estimate of the population variance based on the scores in Population 1’s sam-
ple; S2

2 is the estimate based on the scores in Population 2’s sample.
Consider a study in which the population variance estimate based on an experi-

mental group of 11 participants is 60, and the population variance estimate based on 
a control group of 31 participants is 80. The estimate from the experimental group is 
based on 10 degrees of freedom (11 participants minus 1), and the estimate from the 
control group is based on 30 degrees of freedom (31 minus 1). The total information 
on which the estimate is based is the total degrees of freedom—in this example, 40 
(that is, 10 + 30). Thus, the experimental group provides one-quarter of the total 
information (10>40 = 1>4) and the control group provides three-quarters of the 
total information (30>40 = 3>4).

You then multiply the estimate from the experimental group by 1>4, making 15 
(that is, 60 * 1>4 = 15), and you multiply the estimate from the control group by 
3>4, making 60 (that is, 80 * 3>4 = 60). Adding the two gives an overall estimate 
of 15 plus 60, which is 75. Using the formula,

 S2
Pooled =

df1
dfTotal

1S2
12 +

df2
dfTotal

1S2
22 = 10

40
1602 +

30

40
1802

 =
1

4
1602 +

3

4
1802 = 15 + 60 = 75.

Notice that this procedure does not give the same result as ordinary aver-
aging (without weighting). Ordinary averaging would give an estimate of 70 3that is, 160 + 802>2 = 704. Your weighted, pooled estimate of the population vari-
ance of 75 is closer to the estimate based on the control group alone than to the 
estimate based on the experimental group alone. This is as it should be, because the 
control group estimate in this example was based on more information.

Figuring the Variance of Each of the Two  
Distributions of Means
The pooled estimate of the population variance is the best estimate for both popu-
lations. (Remember, to do a t test for independent means, you have to be able to 
assume that the two populations have the same variance.) However, even though 
the two populations have the same variance, if the samples are not the same size, 
the distributions of means taken from them do not have the same variance. That is 
because the variance of a distribution of means is the population variance divided by 
the sample size. In terms of formulas,

 S2
M1

=
S2

Pooled

N1
 (8-2)

T I P  F O R  S U C C E S S
You know you have made a 
mistake in figuring S2

Pooled if it 
does not come out between the 
two estimates of the population 
variance. (You also know you have 
made a mistake if it does not come 
out closer to the estimate from the 
larger sample.)

The variance of the 
distribution of means for the 
first population (based on an 
estimated population variance) 
is the pooled estimate of the 
population variance divided 
by the number of participants 
in the sample from the first 
population.

The pooled estimate of the 
population variance is the 
degrees of freedom in the first 
sample divided by the total 
degrees of freedom (from 
both samples), multiplied by 
the population estimate based 
on the first sample, plus the 
degrees of freedom in the 
second sample divided by 
the total degrees of freedom 
multiplied by the population 
variance estimate based on 
the second sample.
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 S2
M2

=
S2

Pooled

N2
 (8-3)

Consider again the study with 11 in the experimental group and 31 in the con-
trol group. We figured the pooled estimate of the population variance to be 75. For 
the experimental group, the variance of the distribution of means would be 75>11, 
which is 6.82. For the control group, the variance would be 75>31, which is 2.42. 
Using the formulas,

 S2
M1

=
S2

Pooled

N1
=

75

11
= 6.82

 S2
M2

=
S2

Pooled

N2
=

75

31
= 2.42.

The Variance and Standard Deviation of the Distribution 
of Differences Between Means
The variance of the distribution of differences between means (S2

Difference) is the 
variance of Population 1’s distribution of means plus the variance of Population 2’s 
distribution of means. (This is because, in a difference between two numbers, the 
variation in each contributes to the overall variation in their difference. It is like sub-
tracting a moving number from a moving target.) Stated as a formula,

 S2
Difference = S2

M1
+ S2

M2
 (8-4)

The standard deviation of the distribution of differences between means 
1SDifference2 is the square root of the variance:

 SDifference = 2S2
Difference (8-5)

In the example we have been considering, the variance of the distribution of 
means for the experimental group was 6.82, and the variance of the distribution of 
means for the control group was 2.42; the variance of the distribution of the difference 
between means is thus 6.82 plus 2.42, which is 9.24. This makes the standard devia-
tion of this distribution the square root of 9.24, which is 3.04. In terms of the formulas,

 S2
Difference = S2

M1
+ S2

M2
= 6.82 + 2.42 = 9.24

 SDifference = 2S2
Difference = 29.24 = 3.04.

You have learned about several new types of variance in this chapter. For a 
summary of all of the types of variance that are used in a t test for independent 
means, see Table 8-1.

Steps to Find the Standard Deviation of the Distribution  
of Differences Between Means
 ●A Figure the estimated population variances based on each sample. That is, 

figure one estimate for each population using the formula S2 = SS>1N - 12.
 ●B Figure the pooled estimate of the population variance:

S2
Pooled =

df1
dfTotal

1S2
12 +

df2
dfTotal

1S2
22

(df1 = N1 - 1 and df2 = N2 - 1; dfTotal = df1 + df2)

variance of a distribution of 
differences between means 
(S2

Difference ) one of the numbers figured 
as part of a t test for independent means; 
it equals the sum of the variances of the 
distributions of means associated with 
each of the two samples.

standard deviation of the distribution 
of differences between means 
(SDifference ) in a t test for independent 
means, square root of the variance of 
the distribution of differences between 
means.

T I P  F O R  S U C C E S S
Remember that when figuring 
estimated variances, you divide 
by the degrees of freedom. But 
when figuring the variance of 
a distribution of means, which 
does not involve any additional 
estimation, you divide by the 
actual number in the sample.

The variance of the 
distribution of differences 
between means is the variance 
of the distribution of means 
for the first population (based 
on an estimated population 
variance) plus the variance of 
the distribution of means for 
the second population (based 
on an estimated population 
variance).

The variance of the distribution 
of means for the second 
population (based on an 
estimated population variance) 
is the pooled estimate of the 
population variance divided 
by the number of participants 
in the sample from the second 
population.

The standard deviation of the 
distribution of differences 
between means is the square 
root of the variance of the 
distribution of differences 
between means.
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 ●C Figure the variance of each distribution of means: S2
M1

= S2
Pooled>N1 and 

S2
M2

= S2
Pooled>N2.

 ●D Figure the variance of the distribution of differences between means: 
S2

Difference = S2
M1

+ S2
M2

.
 ●E Figure the standard deviation of the distribution of differences between 

means: SDifference = 2S2
Difference.

The Shape of the Distribution of Differences  
Between Means
The distribution of differences between means is based on estimated population vari-
ances. Thus, the distribution of differences between means (the comparison distribu-
tion) is a t distribution. The variance of this distribution is figured based on population 
variance estimates from two samples. Therefore, the degrees of freedom for this t distri-
bution are the sum of the degrees of freedom of the two samples. In terms of a formula,

 dfTotal = df1 + df2 (8-6)

In the example we have been considering with an experimental group of 11 and 
a control group of 31, we saw earlier that the total degrees of freedom is 40 (that is, 
11 - 1 = 10; 31 - 1 = 30; and 10 + 30 = 40). To find the t score needed for 
significance, you look up the cutoff point in the t table in the row with 40 degrees 
of freedom. Suppose you are conducting a one-tailed test using the .05 significance 
level. The t table in the Appendix (Table A-2) shows a cutoff of 1.684 for 40 degrees 
of freedom. That is, for a result to be significant, the difference between the means 
has to be at least 1.684 standard deviations above the mean difference of 0 on the 
distribution of differences between means.

The t Score for the Difference Between 
the Two Actual Means
Here is how you figure the t score for Step ❹ of the hypothesis testing: First, figure 
the difference between your two actual samples’ means. (That is, subtract one from 
the other). Then, figure out where this difference is on the distribution of differences 
between means. You do this by dividing your difference by the standard deviation 
of this distribution. In terms of a formula,

 t =
M1 - M2

SDifference
 (8-7)

Table 8-1 Summary of Different Types of Variance Used for the t Test for Independent Means

Type of Variance Symbol

Estimated population variance for the first population S2
1

Estimated population variance for the second population S2
2

Pooled estimate of the population variance S2
Pooled

Variance of the distribution of means for the first population (based on an estimated  
population variance)

S2
M1

Variance of the distribution of means for the second population (based on an estimated  
population variance)

S2
M2

Variance of the distribution of differences between means S2
Difference

The t score is the difference 
between the two sample 
means divided by the 
standard deviation of the 
distribution of differences 
between means.

The total degrees of freedom 
for a t test for independent 
means is the degrees of 
freedom in the first sample 
plus the degrees of freedom 
in the second sample.
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For our example, suppose the mean of the first sample is 198 and the mean 
of the second sample is 190. The difference between these two means is 8 (that is, 
198 - 190 = 8). Earlier we figured the standard deviation of the distribution of 
differences between means in this example to be 3.04. That would make a t score of 
2.63 (that is, 8>3.04 = 2.63). In other words, in this example the difference between 
the two means is 2.63 standard deviations above the mean of the distribution of dif-
ferences between means. In terms of the formula,

t =
M1 - M2

SDifference
=

198 - 190

3.04
=

8

3.04
= 2.63

How are you doing?

 1. (a) When would you carry out a t test for independent means? (b) How is this 
different from the situation in which you would carry out a t test for depen-
dent means?

 2. (a) What is the comparison distribution in a t test for independent means? 
(b) Explain the logic of going from scores in two samples to an estimate of the 
variance of this comparison distribution. (c) Illustrate your answer with sketches 
of the distributions involved. (d) Why is the mean of this distribution 0?

 3. Write the formula for each of the following: (a) pooled estimate of the popula-
tion variance, (b) variance of the distribution of means for the first population,  
(c) variance of the distribution of differences between means, and (d) t score in a 
t test for independent means. (e) Define all the symbols used in these formulas.

 4. Explain (a) why a t test for independent means uses a single pooled estimate of 
the population variance, and (b) why and (c) how this estimate is “weighted.”

 5. For a particular study comparing means of two samples, the first sample 
has 21 participants and an estimated population variance of 100; the sec-
ond sample has 31 participants and an estimated population variance of 200. 
(a) What is the standard deviation of the distribution of differences between 
means? (b) What is its mean? (c) What will be its shape? (d) Illustrate your 
answer with sketches of the distributions involved.

Answers

 1.  (a) You carry out a t test for independent means when you have done a study 
in which you have scores from two samples of different individuals and you 
do not know the population variance.

  (b) In a t test for dependent means you have two scores from each of several 
individuals.

 2. (a) The comparison distribution in a t test for independent means is a distribu-
tion of differences between means.

  (b) You estimate the population variance from each sample’s scores. Since you 
assume the populations have the same variance, you then pool the two estimates 
(giving proportionately more weight in this averaging to the sample that has more 
degrees of freedom in its estimate). Using this pooled estimate, you figure the 
variance of the distribution of means for each sample’s population by dividing 
this pooled estimate by the sample’s number of participants. Finally, since your 
interest is in a difference between means, you create a comparison distribution 
of differences between means. This comparison  distribution will have a variance 
equal to the sum of the variances of the two distributions of means. (Because 
the distribution of differences between means is made up of pairs of means, one 
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taken from each distribution of means, the variance of both of these distributions 
of means contributes to the variance of the comparison distribution.)

  (c) Your sketch should look like Figure 8-1.
  (d) The mean of this distribution will be zero because, if the null hypothesis 

is true, the two populations have the same mean. So differences between 
means would on the average come out to zero.

 3. (a) Pooled estimate of the population variance: 

S2
Pooled =

df1
dfTotal

1S2
12 +

df2
dfTotal

1S2
22.

(b) Variance of the distribution of means for the first population: 

S2
M1

=
S2

Pooled

N1
.

(c) Variance of the distribution of differences between means: 
S2

Difference = S2
M1

+ S2
M2

.

(d) t score in a t test for independent means: t =
M1 - M2

SDifference
.

 (e) S2
Pooled is the pooled estimate of the population variance; df1 and df2 are 

the degrees of freedom in the samples from the first and second populations, 
respectively; dfTotal is the total degrees of freedom (the sum of df1 and df2); S

2
1 

and S2
2 are the population variance estimates based on the samples from the 

first and second populations, respectively; S2
M1

 is the variance of the distribution 
of means for the first population based on an estimated variance of the popula-
tion of individuals; N1 is the number of participants in the sample from the first 
population; S2

Difference is the variance of the distribution of differences between 
means based on estimated variances of the populations of individuals; t is the 
t score for a t test for independent means (the number of standard deviations 
from the mean on the distribution of differences between means); M1 and M2 
are the means of the samples from the first and second populations, respec-
tively; and SDifference is the standard deviation of the distribution of differences 
between means based on estimated variances of the populations of individuals.

 4. (a) You assume that both populations have the same variance; thus the 
 estimates from the two samples should be estimates of the same number.

 (b) We weight (give more influence to) an estimate from a larger sample be-
cause, being based on more information, it is likely to be more accurate.

 (c) The actual weighting is done by multiplying each sample’s estimate 
by the degrees of freedom for that sample divided by the total degrees of 
 freedom; you then sum these two products.

 5. (a) Standard deviation of the distribution of differences between means:
S2

Pooled = 120>50211002 + 130>50212002 = 40 + 120 = 160.
S2

M1
= 160>21 = 7.62; S2

M2
= 160>31 = 5.16;

S2
Difference = 7.62 + 5.16 = 12.78;

SDifference = 212.78 = 3.57.
 (b) Mean: 0; (c) Shape: t distribution with df = 50; (d) Should look like 

Figure 8-1 with numbers written in (see Figure 8-2 for an example).

Hypothesis Testing with a t Test 
for Independent Means
Considering the five steps of hypothesis testing, there are three new wrinkles for a 
t test for independent means: (1) the comparison distribution is now a distribution 
of differences between means (this affects Step ❷); (2) the degrees of freedom for 
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finding the cutoff on the t table is based on two samples (this affects Step ❸); and 
(3) your sample’s score on the comparison distribution is based on the difference 
between your two means (this affects Step ❹).

Example of a t Test for Independent Means
Let’s return to the expressive writing study that we introduced at the start of the 
chapter. Twenty students were recruited to take part in the study. The 10 students 
randomly assigned to the expressive writing group wrote about their thoughts 
and feelings associated with their most traumatic life events. The 10 students ran-
domly assigned to the control group wrote about their plans for the day. One month 
later, all of the students rated their overall level of physical health on a scale from 
0 = very poor health to 100 = perfect health. (Although this example is based on 
actual studies, we made up the details we use here to be an easier example to follow 
for learning. Mainly, actual studies usually have large samples. Real studies on this 
kind of topic also often use more objective measures of health, such as number of 
physician visits or days missed from school.)

The scores and figuring for the t test are shown in Table 8-2. Figure 8-2 
shows the distributions involved. Let’s go through the five steps of hypothesis testing.

Table 8-2  t Test for Independent Means for a Fictional Study of the Effect 

of Expressive Writing on Physical Health

Expressive Writing Group Control Writing Group

Score

Deviation 
from Mean 
(Score – M )

Squared 
Deviation 

from Mean Score

Deviation 
from Mean 
(Score – M)

Squared 
 Deviation 

from Mean

77 -2 4 87 19 361

88 9 81 77 9 81

77 -2 4 71 3 9

90 11 121 70 2 4

68 -11 121 63 -5 25

74 -5 25 50 -18 324

62 -17 289 58 -10 100

93 14 196 63 -5 25

82 3 9 76 8 64

79 0 0 65 -3 9

g :790 850 680 1002

M1 = 79.00; S2
1 = 850>9 = 94.44; M2 = 68.00; S2

2 = 1002>9 = 111.33

N1 = 10; df1 = N1 - 1 = 9; N2 = 10; df2 = N2 - 1 = 9
dfTotal = df1 + df2 = 9 + 9 = 18

S2
Pooled =

df1
dfTotal

1S2
12 +

df2
dfTotal

1S2
22 = 9

18
194.442 +

9
18
1111.332=  47.22 + 55.67 = 102.89

S2
M1

= S2
Pooled>N1 = 102.89>10 = 10.29

S2
M2

= S2
Pooled>N2 = 102.89>10 = 10.29

S2
Difference = S2

M1
+ S2

M2
= 10.29 + 10.29 = 20.58

SDifference = 2S2
Difference = 220.58 = 4.54

Needed t with df = 18, 5% level, two-tailed = {2.101

t = 1M1 - M22>SDifference = 179.00 - 68.002>4.54 = 2.42

Decision: Reject the null hypothesis.
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 ❶  Restate the question as a research hypothesis and a null hypothesis about 
the populations. There are two populations:

Population 1: Students who engage in expressive writing.
Population 2: Students who write about a neutral topic (their plans for the day).

  The researchers were interested in identifying a positive or a negative health 
effect of expressive writing. Thus, the research hypothesis was that Popula-
tion 1 students would rate their health differently from Population 2 students: 
�1 � �2. The null hypothesis was that Population 1 students would rate their 
health the same as Population 2 students: �1 = �2.

 ❷ Determine the characteristics of the comparison distribution. The compari-
son distribution is a distribution of differences between means. (a) Its mean is 
0 (as it almost always is in a t test for independent means, because we are inter-
ested in whether there is more than 0 difference between the two populations). 
(b) Regarding its standard deviation,
●A Figure the estimated population variances based on each sample. As 

shown in Table 8-2, S2
1 comes out to 94.44 and S2

2 = 111.33.
●B Figure the pooled estimate of the population variance: As shown in 

Table 8-2, the figuring for S2
Pooled gives a result of 102.89.

T I P  F O R  S U C C E S S
Note that in previous chapters, 
Population 2 represented the 
population situation if the null 
hypothesis is true.

Students who engage in expressive writing Students who write about a neutral topic

Distributions of meansSM = 3.21

(SM = 10.29)

SM = 3.21

(SM = 10.29)

SDifference = 4.54

S2 = 94.44 S2 = 111.33

79.00 68.00

Samples

Distribution of differences
between means
(comparison distribution)

t Score = 2.420

2 2

Populations
(SPooled = 102.89)2

Figure 8-2 Distributions for a t test for independent means for the expressive 
 writing example.

T I P  F O R  S U C C E S S
Notice that, in this example, the 
value for S2

M1
 is the same as the 

value for S2
M2

. This is because there 
was the same number of students 
in the two groups (that is, N1 was 
the same as N2). When the number 
of individuals in the two groups is 
not the same, the values for S2

M1
 

and S2
M2

 will be different.
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●C Figure the variance of each distribution of means: Dividing S2
Pooled by the N 

in each sample, as shown in Table 8-2, gives S2
M1

= 10.29 and S2
M2

= 10.29.
●D Figure the variance of the distribution of differences between means: 

Adding up the variances of the two distributions of means, as shown in  
Table 8-2, comes out to S2

Difference = 20.58.
●E Figure the standard deviation of the distribution of differences between 

means: SDifference = 2S2
Difference = 220.58 = 4.54.

(c)  The shape of this comparison distribution will be a t distribution with a total 
of 18 degrees of freedom.

 ❸ Determine the cutoff sample score on the comparison distribution at which 
the null hypothesis should be rejected. This requires a two-tailed test because 
the researchers were interested in an effect in either direction. As shown  
in Table A-2 (in the Appendix), the cutoff t scores at the .05 level are 2.101 
and -2.101.

 ❹ Determine your sample’s score on the comparison distribution. The 
t score is the difference between the two sample means (79.00 - 68.00, which 
is 11.00), divided by the standard deviation of the distribution of differences 
between means (which is 4.54). This comes out to 2.42.

 ❺ Decide whether to reject the null hypothesis. The t score of 2.42 for the dif-
ference between the two actual means is larger than the cutoff t score of 2.101. 
You can reject the null hypothesis. The research hypothesis is supported: students 
who engage in expressive writing report a higher level of health than students who 
write about a neutral topic.

The actual numbers in this study were fictional. However, the results are con-
sistent with those from many actual studies that have shown beneficial effects of 
expressive writing on self-reported health outcomes, as well as additional outcomes, 
such as number of doctor visits and psychological well-being (e.g., Pennebaker & 
Beall, 1986; Wallander et al., 2011; see also Frattaroli, 2006).

Summary of Steps for a t Test for Independent Means
Table 8-3 summarizes the steps for a t test for independent means.1

A Second Example of a t Test for Independent Means
Suppose a researcher wants to study the effectiveness of a new job skills training 
program for people who have not been able to hold a job. Fourteen people who 
have not been able to hold a job agree to be in the study. The researcher randomly 
picks 6 of these volunteers to be an experimental group that will go through the 
special training program. The other 8 volunteers are put in a control group that will 
go through an ordinary job skills training program. After finishing their training pro-
gram (of whichever type), all 14 are placed in similar jobs.

A month later, each volunteer’s employer is asked to rate how well the new 
employee is performing, using a 9-point scale. The scores and figuring for the t test 
are shown in Table 8-4. The distributions involved are shown in Figure 8-3. Let’s 
carry out the analysis, following the five steps of hypothesis testing.

 ❶ Restate the question as a research hypothesis and a null hypothesis about 
the populations. There are two populations:

Population 1: Individuals who could not hold a job, who then participate in the 
special job skills program.
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Table 8-3 Steps for a t Test for Independent Means

❶ Restate the question as a research hypothesis and a null hypothesis about the populations.
❷ Determine the characteristics of the comparison distribution.
 a. Its mean will be 0.
 b. Figure its standard deviation.

  ●A Figure the estimated population variances based on each sample. For each population,
   S2 = SS>1N - 12
  ●B Figure the pooled estimate of the population variance:

   S2
Pooled =

df1
dfTotal

1S2
12 +

df2
dfTotal

1S2
22

   1df1 = N1 - 1 and df2 = N2 - 1; dfTotal = df1 + df22
  ●C Figure the variance of each distribution of means:

   S2
M1

= S2
Pooled>N1 and S2

M2
= S2

Pooled>N2

  ●D Figure the variance of the distribution of differences between means:

   S2
Difference = S2

M1
+ S2

M2

  ●E Figure the standard deviation of the distribution of differences between means:

   SDifference = 2S2
Difference

 c. Determine its shape: It will be a t distribution with dfTotal degrees of freedom.
❸  Determine the cutoff sample score on the comparison distribution at which the null hypothesis 

should be rejected.
 a. Determine the degrees of freedom 1dfTotal2, desired significance level, and tails in the test (one or two).
 b. Look up the appropriate cutoff in a t table. If the exact df is not given, use the df below it.
❹ Determine your sample’s score on the comparison distribution:

 t = 1M1 - M22>SDifference

❺ Decide whether to reject the null hypothesis: Compare the scores from Steps ❸ and ❹.

Table 8-4 Figuring for a t Test for Independent Means for the Job Skills Example

Experimental Group  
(Receiving Special Program)

Control Group  
(Receiving Ordinary Program)

Score
Deviation  

from Mean
Squared Deviation  

from Mean Score
Deviation  

from Mean
Squared Deviation  

from Mean

6 0 0 6 3 9
4 –2 4 1 -2 4
9 3 9 5 2 4
7 1 1 3 0 0
7 1 1 1 -2 4
3 –3 9 1 -2 4

g : 36 0 24 4 1 1
3 0 0

g : 24 0 26

M1 = 36>6; S2
1 = 24>5 = 4.8; M2 = 24>8 = 3; S2

2 = 26>7 = 3.71
N1 = 6; df1 = 6 - 1 = 5; N2 = 8; df2 = 8 - 1 = 7
dfTotal = df1 + df2 = 5 + 7 = 12

S2
Pooled =

df1
dfTotal

 (S2
1) +

df2
dfTotal

 (S2
2) =

5
12

 (4.8) +
7

12
 (3.71) = 2 + 2.16 = 4.16

S2
M1

= S2
Pooled>N1 = 4.16>6 = 0.69

S2
M2

= S2
Pooled>N2 = 4.16>8 = 0.52

S2
Difference = S2

M1
+ S2

M2
= 0.69 + 0.52 = 1.21

SDifference = 2S2
Difference = 21.21 = 1.10

Needed t with df = 12, 5% level, two-tailed ={2.179
t = (M1 - M2)>SDifference = (6 - 3)>1.10 = 3>1.10 = 2.73
Decision: Reject the null hypothesis, the research hypothesis is supported.
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Population 2: Individuals who could not hold a job, who then participate in an 
ordinary job skills program.

It is possible for the special program to have either a positive or a nega-
tive effect compared to the ordinary program, and either result would be of 
interest. Thus, the research hypothesis is that the means of Population 1 and 
Population 2 are different: �1 � �2. This is a nondirectional hypothesis. The 
null hypothesis is that the means of Population 1 and Population 2 are the 
same: �1 = �2.

 ❷ Determine the characteristics of the comparison distribution.
a. Its mean will be 0.
b. Figure its standard deviation. See Table 8-4 for the figuring for each step 

below.
●A Figure the estimated population variances based on each sample. 

S2
1 = 4.80 and S2

2 = 3.71.
●B Figure the pooled estimate of the population variance. S2

Pooled = 4.16.
●C Figure the variance of each distribution of means. Dividing S2

Pooled by 
the N in each sample gives S2

M1
= .69 and S2

M2
= .52.

Experimental group Control group

Distributions of meansSM = .83
(SM = .69)

SM = .72
(SM = .52)

S2 = 4.80 S2 = 3.71

6 3

Samples

Distribution of differences
between means
(comparison distribution)

t Score = 2.730

2 2

Populations
(SPooled = 4.16)

SDifference = 1.10

2

Figure 8-3 The distributions involved in the job skills example of a t test for indepen-
dent means.
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●D Figure the variance of the distribution of differences between means. 
Adding up the variances of the two distribution of means comes out to 
S2

Difference = 1.21.
●E Figure the standard deviation of the distribution of differences 

 between means. SDifference = 21.21 = 1.10
c. It is a t distribution with dfTotal = 12.

 ❸ Determine the cutoff sample score on the comparison distribution at which 
the null hypothesis should be rejected. The cutoff you need is for a two-tailed 
test (because the research hypothesis is nondirectional) at the usual .05 level, 
with 12 degrees of freedom. Looking this up on the t table in the Appendix 
(Table A-2), the cutoff t scores are 2.179 and -2.179.

 ❹ Determine your sample’s score on the comparison distribution. The t score 
is the difference between the two sample means, divided by the standard devia-
tion of the distribution of differences between means. This comes out to a t of 
2.73. (That is, t = 3.00>1.10 = 2.73.)

 ❺ Decide whether to reject the null hypothesis. The t score of 2.73 is more ex-
treme than the cutoff t score of 2.179. Thus, the researchers can reject the null 
hypothesis. The research hypothesis is supported: The new special job skills 
program is more effective than the ordinary job skills program.

How are you doing?

 1. List the ways in which hypothesis testing for a t test for independent means is 
different from a t test for dependent means in terms of (a) Step ❷, (b) Step ❸, 
and (c) Step .

 2. Using the .05 significance level, figure a t test for independent means for 
an experiment in which scores in an experimental condition are predicted to 
be lower than scores in a control condition. For the experimental condition, 
with 26 participants, M = 5, S2 = 10; for the control condition, with 36 par-
ticipants, M = 8, S2 = 12. (a) Use the steps of hypothesis testing. (b) Sketch 
the distributions involved.

Answers

 1.  (a) The comparison distribution for a t test for independent means is a distri-
bution of differences between means.
(b) The degrees of freedom for a t test for independent means is the sum of 
the degrees of freedom for the two samples.
(c) The t score for a t test for independent means is based on differences 
between means (divided by the standard deviation of the distribution of dif-
ferences between means).

 2. (a) Steps of hypothesis testing:
❶  Restate the question as a research hypothesis and a null hypoth-

esis about the populations. There are two populations.

 Population 1: People given the experimental procedure.
 Population 2: People given the control procedure.

The research hypothesis is that the mean of Population 1 is less than the 
mean of Population 2: �1 6 �2. The null hypothesis is that the mean of 
Population 1 is not less than the mean of Population 2: �1 Ú �2.

❷ Determine the characteristics of the comparison distribution.

(a) Its mean will be 0.
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Populations
(SPooled = 11.17)

Control Group

Distributions of meansSM = .66

(SM = .43)

SM = .56

(SM = .31)

SDifference = .86

S2 = 10 S2 = 12

5 8

Samples

Distribution of differences
between means
(comparison distribution)

t Score = –3.49 0

2 2

2

Experimental Group

Figure 8-4 Distributions for a t test for independent means for the answer to “How 
are you doing?” question 2.

(b) Figure its standard deviation,
●A  Figure the estimated population variances based on each 

sample. S2
1 = 10; S2

2 = 12.
●B  Figure the pooled estimate of the population variance: 

S2
Pooled = 125>6021102 + 135>6021122 = 4.17 + 7.00 = 11.17.

 ●C   Figure the variance of each distribution of means: 
S2

M1
= 11.17>26 = .43 and S2

M2
= 11.17>36 = .31.

 ●D   Figure the variance of the distribution of differences between 

means: S2
Difference = .43 + .31 = .74.

 ●E   Figure the standard deviation of the distribution of differences 

between means: SDifference = 2S2
Difference = 2.74 = .86.

(c) The shape is a t distribution with dfTotal = 60.
❸  Determine the cutoff sample score on the comparison distribu-

tion at which the null hypothesis should be rejected. The t cutoff 
for .05 level, one-tailed, dfTotal = 60 is -1.671. (The cutoff is a negative 
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Assumptions of the t Test for Independent Means
The first assumption for a t test for independent means is the same as that for any 
t test: each of the population distributions is assumed to follow a normal curve. In 
practice, this is only a problem if you have reason to think that the two populations 
are dramatically skewed distributions and in opposite directions. The t test holds up 
well even when the shape of the population distributions is fairly far from normal.

In a t test for independent means, you also have to be able to assume that the 
two populations have the same variance. (As you learned earlier in the chapter, this 
assumption is called homogeneity of variance.) Once again, however, it turns out 
that in practice the t test gives pretty accurate results even when there are fairly large 
differences in the population variances, particularly when there are equal or near 
equal numbers of scores in the two samples. (How do we know that the t test holds 
up well to moderate violations of its assumptions? See Box 8-1 for a description of 
what are called Monte Carlo methods.)

However, the t test can give quite misleading results if (a) the scores in the 
samples suggest that the populations are very far from normal, (b) the variances are 
very different, or (c) there are both problems. In these situations, there are alterna-
tives to the ordinary t test procedure, some of which we will consider in Chapter 14.

Many computer programs for figuring the t test for independent means actually 
provide two sets of results. One set of results figures the t test assuming the popula-
tion variances are equal. This method is the standard one, the one you have learned 
in this chapter. A second set of results uses a special alternative procedure that takes 
into account that the population variances may be unequal. (But it still assumes 
that the populations follow a normal distribution.) An example of these two sets of 
results is shown in the Using SPSS section at the end of this chapter (see Figure 8-7).  
However, in most situations we can assume that the population variances are equal. 
Thus, researchers usually use the standard method. Using the special alternative pro-
cedure has the advantage that you don’t have to worry about whether you met the 
equal population variance assumption. But it has the disadvantage that if you have 
met that assumption, with this special method you have less power. That is, when 
you do meet the assumption, you are slightly less likely to get a significant result 
using the special method.

A final assumption of the t test for independent means is that the scores are 
independent from each other. In other words, none of the scores within each group 
or between the groups can be paired or matched up in any way (as this would make 
the scores dependent on each other to some degree). (Of course we can allow that 
those in each group are similar, in that they have the same experimental condition or 
the same characteristic that put them into the two groups.) For example, consider a 
study comparing the effects of a cognitive therapy to an emotion-based therapy with 

t score, because the research hypothesis is that the mean of Popula-
tion 1 will be lower than the mean of Population 2.)

❹  Determine your sample’s score on the comparison distribution. 
t = 1M1 - M22>SDifference = 15 - 82>.86 = -3.49.

❺  Decide whether to reject the null hypothesis. The t of -3.49 is 
more extreme than the cutoff t of -1.671. Therefore, reject the null 
hypothesis.

(b) The distributions involved are shown in Figure 8-4. 
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The name for the methods, Monte Carlo (after the 
famous casino resort city in Monaco), has been adopted 
only in recent years. But the approach itself dates back 
at least a few centuries to when mathematicians would 
set down their pens or chalk and go out and try an actual 
experiment to test a particular understanding of a prob-
ability problem. For example, in 1777 Buffon described, 
in his Essai d’Arithmétique morale, a method of comput-
ing the ratio of the diameter of a circle to its circumfer-
ence by tossing a needle onto a flat surface containing 
parallel lines. Assuming that the needle fell randomly 
into any position, one could figure the odds of its taking 
certain positions, such as touching the lines or not and 
lying at certain angles. The term Monte Carlo no doubt 
reflects the early understanding of mathematicians and 
statisticians that many of their problems were like those 
involving games of chance. (Recall Pascal and the prob-
lem of points from Chapter 3, Box 3-3.)

Wide use of Monte Carlo methods by statisticians 
became possible with the advent of computers. This is 
because the essence of Monte Carlo studies is the inter-
action of randomness and probabilities, which means 
testing out a great many possibilities. Indeed, the first 
application of Monte Carlo methods was in neutron phys-
ics because the behavior of particles when scattered by a 
neutron beam is so complicated and so close to random 
that solving the problem mathematically from equations 
was practically impossible. But by artificially simulating 
the statistical conditions of what were essentially physical 
experiments, the physical world could be understood—or 
at least approximated in an adequate way.

Do you remember being shown Brownian motion in 
your chemistry or physics class in high school? Its study 
is a good example of a Monte Carlo problem. Here are 
atomic particles, more or less, this time in fluids, free to 
do an almost limitless number of almost random things. 
In fact, Brownian motion has been likened to a “random 
walk” of a drunkard. At any moment, the drunkard could 
move in any direction. But the problem is simplified by 
limiting the drunkard (or particle) to an imaginary grid.

Picture the grid of a city’s streets. Further imagine 
that there is a wall around the city that the drunkard can-
not escape (just as all particles must come to a limit; they 
cannot go on forever). At the limit, the wall, the drunk-
ard must pay a fine, which also varies randomly. The 

point of this example is how much is random—all the 
movements and also all the ultimate consequences. So 
the number of possible paths is enormous.

The random walk example brings us to the main fea-
ture of Monte Carlo methods: they require the use of 
random numbers. And for an explanation of them, you 
can look forward to Chapter 14, Box 14-1.

Now, let’s return to what interests us here: the use of 
Monte Carlo studies to check out what will be the result 
of the violations of assumptions of statistical tests. For 
example, the computer may set up two populations with 
identical means, but the other parameters are supplied by 
the statistical researcher so that these violate an important 
assumption. Perhaps the populations are skewed a certain 
way or the two populations have different variances.

Then, samples are randomly selected from each of 
these two offbeat populations (remember, they were 
invented by the computer). The means of these samples 
are compared using the usual t-test procedure with the 
usual t tables with all their assumptions. A large num-
ber, often around 10,000, of such pairs of samples are 
selected, and a t test is figured for each. The question 
is, “How many of these 10,000 t tests will come out sig-
nificant at the 5% significance level?” Ideally, the result 
would be about 5%, or 50 of the 10,000. But what if 10% 
(1,000) of these supposedly 5%-level tests come out sig-
nificant? What if only 1% do? If these kinds of results 
arise, then this particular violation of the assumptions of 
the t test cannot be tolerated. But, in fact, most viola-
tions (except for very extreme ones) checked with these 
methods do not create very large changes in the p values.

Monte Carlo methods are a boon to statistics, but 
like everything else, they have their drawbacks as well 
and consequently their critics. One problem is that the 
ways in which populations can violate assumptions are 
almost limitless in their variations. But even computers 
have their limits; Monte Carlo studies are tried on only 
a representative set of those variations. A more specific 
problem is that there is good reason to think that some of 
the variations that are not studied are far more like the 
real world than those that have been studied (see the dis-
cussion in Chapter 3 of the controversy about how com-
mon the normal curve really is). Finally, when we are 
deciding whether to use a particular statistic in any spe-
cific situation, we have no idea about the population our 

BOX 8-1  Monte Carlo Methods: When Mathematics Becomes 
Just an Experiment, and Statistics Depend on a  
Game of Chance
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25 clients receiving each type of therapy. And suppose that the 25 people receiving 
cognitive therapy consist of 5 seeing therapist Jones, 10 seeing therapist Gonzales, 
and 10 seeing therapist Johnson. The people seeing therapist Jones are likely to have 
more similar effects from their therapy to each other than they are to those seeing 
one of the other therapists. Thus, their scores on the effects of therapy are especially 
closely linked together and are not truly independent. Using a standard t test would 
treat these as 25 different people receiving cognitive therapy. However, these 25 
are not really separate people drawn from the population. In technical terms, the 
t test would be giving a result that is based on too many degrees of freedom. The 
result would be a more extreme level of significance than is truly warranted. There 
are special procedures for handling situations like this, called multilevel modeling, 
which we will describe briefly in Chapter 15. But for now, the main point is that this 
kind of situation is one that seriously distorts the results of a standard t test.

Effect Size and Power for the t Test 
for Independent Means
Effect Size
Effect size for the t test for independent means is figured in basically the same way 
as we have been using all along:

 d =
�1 - �2

�
 (8-8)

Cohen’s (1988) conventions for the t test for independent means are the same 
as in all the situations we have considered so far: .20 for a small effect size, .50 for a 
medium effect size, and .80 for a large effect size.

Suppose that an environmental psychologist is working in a city with high lev-
els of air pollution. This psychologist plans a study of the number of problems com-
pleted on a creativity test over a one-hour period. The study compares performance 
under two conditions. In the experimental condition, each participant takes the test 
in a room with a special air purifier. In the control condition, each participant takes 
the test in a room without the air purifier. The researcher expects that the control 
group will probably score like others who have taken this test in the past, which is a 
mean of 21. But the researcher expects that the experimental group will perform bet-
ter, scoring about 29. This test is known from previous research to have a standard 
deviation of about 10. Thus, �1 = 29, �2 = 21, and � = 10. Given these figures, 
d = 1�1 - �22>� = 129 - 212>10 = .80, a large effect size.

sample came from; is it like any on which there has been 
a Monte Carlo study performed, or not? Simply knowing 
that Monte Carlo studies have shown some statistic to 
be robust in the face of many kinds of assumption viola-
tions does not prove that it is robust in a given situation. 
We can only hope that it increases the chances that using 
the statistic is safe and justifiable.

At any rate, Monte Carlo studies are a perfect exam-
ple of how the computer has changed science. Shreider 
(1966) expressed it this way:

Computers have led to a novel revolution in mathemat-
ics. Whereas previously an investigation of a random 
process was regarded as complete as soon as it was 
reduced to an analytic description, nowadays it is con-
venient in many cases to solve an analytic problem by 
reducing it to a corresponding random process and then 
simulating that process. (p. vii)

In other words, instead of math helping us analyze 
experiments, experiments are helping us analyze math.

The effect size is the 
difference between the 
population means divided 
by the population’s standard 
deviation.
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When you have the results of a completed study, you estimate the effect size as 
the difference between the sample means divided by the pooled estimate of the popu-
lation standard deviation (the square root of the pooled estimate of the population vari-
ance). You use the sample means because they are the best estimate of the population 
means, and you use SPooled because it is the best estimate of �. Stated as a formula,

 Estimated d =
M1 - M2

SPooled
 (8-9)

Consider Valenzuela’s (1997) study of the quality of instructional assistance 
provided by mothers of poor children. The mean for the sample of mothers of the 
adequately nourished children was 33.10; the mean for the sample of mothers of 
chronically undernourished children was 27.00. We figured the pooled estimate of 
the population variance to be 168.77; the standard deviation is thus 12.99. The dif-
ference in means of 6.10, divided by 12.99, gives an effect size of .47—a medium 
effect size. In terms of the formula,

Estimated d =
M1 - M2

SPooled
=

33.10 - 27.00

12.99
=

6.10

12.99
= .47

Power
Power for a t test for independent means can be determined using a power table, a 
power software package, or an Internet power calculator. The power table shown 
in Table 8-5 gives the approximate power for the .05 significance level for small, 
medium, and large effect sizes, and one-tailed or two-tailed tests.2 Consider again 
the environmental psychology example of a planned study, where the researchers 
expected a large effect size 1d = .802. Suppose this researcher plans to use the .05 
level, one-tailed, with 10 participants. Based on Table 8-5, the study would have 

Table 8-5  Approximate Power for Studies Using the t Test for Independent Means Testing 

Hypotheses at the .05 Significance Level

Number of Participants 
in Each Group

Effect Size

Small (.20) Medium (.50) Large (.80)

One-tailed test

10 .11 .29 .53

20 .15 .46 .80

30 .19 .61 .92

40 .22 .72 .97

50 .26 .80 .99

100 .41 .97 *

Two-tailed test

10 .07 .18 .39

20 .09 .33 .69

30 .12 .47 .86

40 .14 .60 .94

50 .17 .70 .98

100 .29 .94 *

*Nearly 1.

The estimated effect size 
is the difference between 
the sample means divided 
by the pooled estimate of 
the population’s standard 
deviation.
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a power of .53. This means that, even if the research hypothesis is in fact true and 
has a large effect size, there is only a 53% chance that the study will come out 
significant.

Now consider an example of a completed study. Suppose you have read a study 
using a t test for independent means that had a nonsignificant result using the .05 
significance level, two-tailed. There were 40 participants in each group. Should you 
conclude that there is in fact no difference at all in the populations? This conclusion 
seems quite unjustified. Table 8-5 shows a power of only .14 for a small effect size. 
This suggests that even if such a small effect does indeed exist in the populations, 
this study would probably not come out significant. Still, we can also conclude that, 
if there is a true difference in the populations, it is probably not large. Table 8-5 
shows a power of .94 for a large effect size. This suggests that, if a large effect 
exists, it almost surely would have produced a significant result.

Planning Sample Size
Table 8-6 gives the approximate number of participants needed for 80% power for 
estimated small, medium, and large effect sizes, using one-tailed and two-tailed 
tests, all using the .05 significance level.3 Suppose you plan a study in which you 
expect a medium effect size and will use the .05 significance level, one-tailed. Based 
on Table 8-6, you need 50 people in each group (100 total) to have 80% power. 
However, if you did a study using the same significance level but expected a large 
effect size, you would need only 20 people in each group (40 total).

Table 8-6  Approximate Number of Participants Needed in Each Group (Assuming Equal 

Sample Sizes) for 80% Power for the t Test for Independent Means, Testing 

Hypotheses at the .05 Significance Level

Effect Size

Small (.20) Medium (.50) Large (.80)

One-tailed 310 50 20

Two-tailed 393 64 26

How are you doing?

 1. List two assumptions for the t test for independent means. For each, give 
the situations in which violations of these assumptions would be seriously 
problematic.

 2. Why do you need to assume the populations have the same variance?
 3. What is the meaning of the assumption of independent scores for the t test 

for independent means?
 4. What is the effect size for a planned study in which Population 1 is predicted 

to have a mean of 17, Population 2 is predicted to have a mean of 25, and the 
population standard deviation is assumed to be about 20?

 5. What is the power of a study using a t test for independent means, with a 
two-tailed test at the .05 significance level, in which the researchers predict a 
large effect size and there are 20 participants in each group?

 6. How many participants do you need in each group for 80% power in a 
planned study in which you predict a small effect size and will be using a  
t test for independent means, one-tailed, at the .05 significance level?
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Review and Comparison of the Three  
Kinds of t Tests
You have now learned about three kinds of t tests: In Chapter 7, you learned about 
the t test for a single sample and the t test for dependent means, and in this chapter 
you learned about the t test for independent means. Table 8-7 provides a review and 
comparison of these three kinds of t tests.

As you can see in Table 8-7, the population variance is not known for each 
test, and the shape of the comparison distribution for each test is a t distribution. 
The single sample t test is used for hypothesis testing when you are comparing the 
mean of a single sample to a known population mean. However, in most research in 
psychology, you do not know the population mean. With an unknown population 
mean, the t test for dependent means is the appropriate t test when each participant 

Table 8-7 Review of the Three Kinds of t Tests

Type of t Test

Feature of the t Tests Single Sample Dependent Means Independent Means

Population variance 
is known

No No No

Population mean is  
known

Yes No No

Number of scores for  
each participant

1 2 1

t test carried out on 
difference scores

No Yes No

Shape of comparison 
distribution

t distribution t distribution t distribution

Formula for degrees 
of freedom

df = N - 1 df = N - 1 dfTotal = df1 + df2
1df1 = N1 - 1; df2 = N2 - 12

Formula for t t = 1M - �2>SM t = 1M - �2>SM t = 1M1 - M22>SDifference

T I P  F O R  S U C C E S S
We recommend that you spend 
some time carefully going through 
Table 8-7. Test your understanding 
of the three kinds of t tests by 
covering up portions of the table 
and trying to recall the hidden 
information. If you are at all unsure 
about any information in the table, 
be sure to review the relevant 
material in this chapter and in 
Chapter 7.

Answers

 1. One assumption is that the two populations are normally distributed; this is 
mainly a problem if you have reason to think the two populations are strongly 
skewed in opposite directions. A second assumption is that the two popula-
tions have the same variance; this is mainly a problem if you believe the two 
distributions have quite different variances and the sample sizes are different.

 2. You need to assume the populations have the same variance because you 
make a pooled estimate of the population variance. The pooling would not 
make sense if the estimates from the two samples were for populations with 
different variances.

 3. The assumption of independent scores is that the scores within and between 
the two groups cannot be matched or paired in any way.

 4. The effect size is d = 117 - 252>20 = -8>20 = - .40.
 5. The power is .69.
 6. You need 310 participants.
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has two scores (such as a before-score and an after-score) and you want to see if, on 
average, there is a difference between the participants’ pairs of scores. The t test for 
independent means is used for hypothesis testing when you are comparing the mean 
of scores from one group of individuals (such as an experimental group) with the 
mean of scores from a different group of individuals (such as a control group).

Controversy: The Problem of Too Many t Tests
A long-standing controversy is what is usually called the problem of “too many  
t tests.” The basic issues come up in all types of hypothesis testing, not just in the 
t test. However, we introduce this problem now because it has traditionally been 
brought up in this context.

Suppose you do a large number of t tests for the same study. For example, you 
might compare two groups on each of 17 different measures, such as different indi-
cators of memory on a recall task, various intelligence test subscales, or different 
aspects of observed interactions between infants. When you do several t tests in 
the same study, the chance of any one of them coming out significant at, say, the 
5% level is really greater than 5%. If you make 100 independent comparisons, on 
the average five of them will come out significant at the 5% level just by chance. 
That is, about five will come out significant even if there is no true difference at all 
between the populations the t tests are comparing.

The fundamental issue is not controversial. Everyone agrees that there is a 
problem in a study involving a large number of comparisons. And everyone agrees 
that in a study like this, if only a few results come out significant, these differences 
should be viewed very cautiously. The controversy is about how cautious to be and 
about how few is “only a few.” One reason there is room for controversy is that, in 
most cases, the many comparisons being made are not independent; the chance of 
one coming out significant is related to the chance of another coming out significant.

Here is an example. A study compares a sample of lawyers to a sample of  
doctors on 100 personality traits. Now suppose the researcher simply conducts  
100 t tests. If these 100 t tests were truly independent, we would expect that on the 
average five would come out significant just by chance. In fact, tables exist that tell 
you quite precisely the chance of any particular number of t tests coming out signifi-
cant. The problem, however, is that in practice these 100 t tests are not independent. 
Many of the various personality traits are probably related: if doctors and lawyers 
differ on assertiveness, they probably also differ on self-confidence. Thus, certain 
sets of comparisons may be more or less likely to come out significant by chance so 
that 5 in 100 may not be what you should expect by chance.

There is yet another complication: in most cases, differences on some of the 
variables are more important than on others. Some comparisons may directly test a 
theory or the effectiveness of some practical procedure; other comparisons may be 
more “exploratory.”

Here is another kind of example. In studies using brain imaging procedures 
(such as functional magnetic resonance imagery [fMRI]), the way the analysis 
works for a typical study is like this: a person’s brain is scanned every few seconds 
over a 10- or 15-minute period. During this time, the person is sometimes looking  
at one kind of image, say a picture of a person smiling, and at other times is looking 
at a different kind of image, say a picture of the same person frowning. For each 
little area of the brain, the fMRI produces a number for how active that area was 
during each 2- to 3-second scan. Thus, for each little area of the brain, you might 
have 60 numbers for activation when looking at the smile and 60 numbers for when 
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looking at the frown. Thus, for each little area, you can figure a t test for dependent 
means. In fact, this is exactly what is done in this kind of research. (We considered 
an example like this in Chapter 7.) The problem, however, is that you have a great 
many little areas of the brain. (Typically, in fMRI research, each little area may be 
about a 1>4-inch cube or smaller.) Thus, you have several thousand t tests, and you 
would expect some of them to be significant just by chance. This whole situation is 
further complicated by the issue that some brain areas might be expected to be more 
likely to show different levels of activity for this kind of image. In addition, the situ-
ation is still further complicated by the fact that you might want to pay more atten-
tion when two or more little areas that are right next to each other show significant 
differences.

In these various examples, there are a variety of contending solutions. We intro-
duce one kind of solution in Chapter 9 (the Bonferroni procedure), when we con-
sider a related situation, one that comes up in studies comparing more than two 
groups. However, the issue remains at the forefront of work on the development of 
statistical methods. (Aron et al. [2005] used one of the more conservative methods 
in the study that was the basis of the Chapter 7 example; so they were very confident 
of their results—but, using that method, they might have missed finding even more 
differences.) In the fMRI research literature, this issue has been a particularly lively 
discussion topic (e.g., Nichols & Hayasaka, 2003; Zhang, Fan, & Yu, 2011).

The t Test for Independent Means 
in Research Articles
A t test for independent means is usually described in a research article by giv-
ing the means (and sometimes the standard deviations) of the two samples, plus 
the usual way of reporting any kind of t test—for example, t1382 = 4.72, p 6 .01 
(recall that the number in parentheses is the degrees of freedom). The result 
of the study of the health effects of expressive writing might be written up as 
 follows: “The mean level of self-reported health in the expressive writing group 
was 79.00 1SD = 9.722, and the mean for the control writing group was 68.00 1SD = 10.552; t1182 = 2.42, p 6 .05, two-tailed.”

Here is another example. Muise and colleagues (2009) conducted a study of 
the use of the social networking Web site Facebook among 308 university stu-
dents. The students completed survey items about their use of Facebook, includ-
ing a 27-item measure of Facebook jealousy (with scores ranging from a low of 
1 to a high of 7) created by the researchers (e.g., “How likely are you to moni-
tor your partner’s activities on Facebook?”). Here is an excerpt from the results 
section of the study: “Participants in the current sample reported spending an 
average of 38.93 minutes on Facebook each day 1SD = 32.132 and had between 
25 and 1,000 Facebook friends 1M = 296.19, SD = 173.042.  .  .  .  Women, 
M = 40.57, SD = 26.76, in our sample spent significantly more time on Face-
book than men, M = 29.83, SD = 23.73; t13052 = -3.32, p 6 0.01, and women, 
M = 3.29, SD = 1.24, score significantly higher on Facebook jealousy than men, 
M = 2.81, SD = 1.09; t13052 = -3.32, p 6 0.01” (p. 442). How do these results 
compare to the experiences that you and your friends have using Facebook?

Table 8-8 is an example in which the results of several t tests are given in a 
table. This table is taken from a series of studies conducted by McConnell and col-
leagues (2011) that examined whether people who own pets differ from those who 
don’t in terms of their well-being, personality, and attachment styles (that is, their 
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general expectations about close relationships). A total of 217 people completed the 
survey measures, 167 of whom reported owning a pet. As shown in Table 8-8, the 
researchers used t tests for independent means to compare the responses of pet own-
ers and nonowners on each of the variables of interest. The results showed that, 
compared to nonowners, pet owners had higher self-esteem, greater levels of exer-
cise and fitness, and higher levels of conscientiousness and extraversion. Pet own-
ers also more strongly endorsed a dismissive attachment style, which according to  
the researchers, indicated that they have “. . . an ability to ‘take or leave’ human rela-
tionships.” As shown by the † symbol in the table, several of the other results were 
close to being statistically significant (they had p values of less than .08), but they 
did not reach the standard p 6 .05 cutoff.

Advanced Topic: Power for the t Test for 
Independent Means When Sample Sizes  
Are Not Equal
For a study with any given total number of participants, power is greatest when 
the participants are divided into two equal groups. Recall the example from ear-
lier in this chapter where the 42 participants were divided into 11 in the experi-
mental group and 31 in the control group. This study has much less power than it 

Table 8-8  Mean Differences Between Pet Owners and Nonowners in Study 1 on Well-Being, 

Personality, and Attachment Style Measures in Study 1

Variable Owners Nonowners t (215)

Well-being measures

Depression 30.00 31.72 1.29

Loneliness 38.64 41.64 1.79†

Self-esteem 34.27 32.21 2.59*

Physical illnesses and symptoms 3.98 4.21 0.45

Subjective happiness 5.20 5.06 0.66

Exercise and fitness 4.40 3.94 2.64**

Personality factors

Openness 4.06 3.98 0.81

Agreeableness 3.98 3.88 1.02

Conscientiousness 4.03 3.68 3.52**

Extraversion 3.52 3.25 2.13*

Neuroticism 2.16 2.23 0.67

Attachment style endorsement

Secure 4.62 4.50 0.40

Fearful 3.16 3.72 1.77†

Preoccupied 2.53 3.06 1.90†

Dismissing 3.64 3.10 2.64**

† p 6 .08. * p 6 .05. ** p 6 .01.

Source: McConnell, A. R., Brown, C. M., Shoda, T. M., Stayton, L. E., & Martin, C. E. (2011). Friends with benefits: On the 
 positive consequences of pet ownership. Journal of Personality and Social Psychology, 101, 1239–1252. Reproduced by 
permission of the American Psychological Association.
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Summary

 1. A t test for independent means is used for hypothesis testing with scores from 
two entirely separate groups of people. The comparison distribution for a t test 
for independent means is a distribution of differences between means of sam-
ples. This distribution can be thought of as being built up in two steps: each 
population of individuals produces a distribution of means, and then a new dis-
tribution is created of differences between pairs of means selected from these 
two distributions of means.

would have if the researchers had been able to divide their 42 participants into 21 in  
each group.

There is a practical problem in figuring power from tables when sample sizes 
are not equal. (Power software packages and Internet power calculators require you 
to specify the sample sizes, which are then taken into account when they figure 
power.) Like most power tables, Table 8-5 assumes equal numbers in each of the 
two groups. What do you do when your two samples have different numbers of 
people in them? It turns out that in terms of power, the harmonic mean of the num-
bers of participants in two unequal sample sizes gives the equivalent sample size for 
what you would have with two equal samples. There are several accounts as to the 
origin of the harmonic mean, but it seems most likely that it originated from ancient 
Greek times (around 350 bce) in the context of music and harmonious tones. The 
harmonic mean sample size is given by this formula:

 Harmonic mean =
1221N121N22

N1 + N2
 (8-10)

In our example with 11 in one group and 31 in the other, the harmonic mean is 16.24:

Harmonic mean =
1221N121N22

N1 + N2
=
12211121312

11 + 31
=

682

42
= 16.24

Thus, even though you have a total of 42 participants, the study has the power 
of a study with equal sample sizes of only about 16 in each group. (This means that 
a study with a total of 32 participants divided equally would have had about the 
same power.)

harmonic mean special average 
influenced disproportionately by smaller 
numbers; in a t test for independent 
means when the number of scores in the 
two groups differ, the harmonic mean is 
used as the equivalent of each group’s 
sample size when determining power.

How are you doing?

 1. What is the approximate power of a study using a t test for independent 
means, with a two-tailed test at the .05 significance level, in which the 
researchers predict a large effect size, and there are 6 participants in one 
group and 34 participants in the other group?

Answer

 1. Harmonic mean = 1221621342>16 + 342 = 408>40 = 10.20. Power for a 
study like this with 10 in each group = .39 (see Table 8-5).

The harmonic mean is two 
times the first sample size 
times the second sample size, 
all divided by the sum of the 
two sample sizes.

Learning Aids
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 2. The distribution of differences between means has a mean of 0 and is a t distribu-
tion with the total of the degrees of freedom from the two samples. Its standard  
deviation is figured in several steps:
●A Figure the estimated population variances based on each sample.
●B Figure the pooled estimate of the population variance.
●C Figure the variance of each distribution of means.
●D Figure the variance of the distribution of differences between means.
●E Figure the standard deviation of the distribution of differences between 

means.
 3. Assumptions of the t test for independent means include that the two popula-

tions are normally distributed and have the same variance. However, the t test 
gives fairly accurate results when the true situation is moderately different from 
the assumptions. Additionally, the scores must be entirely independent from 
each other.

 4. Effect size for a t test for independent means is the difference between the 
means divided by the population standard deviation. Power for a t test for inde-
pendent means can be determined using a table (see Table 8-5), a power soft-
ware package, or an Internet power calculator.

 5. When you carry out many significance tests in the same study, such as a series 
of t tests comparing two groups on various measures, the possibility that any 
one of the comparisons may turn out significant at the .05 level by chance is 
greater than .05. There is controversy about how to adjust for this problem, 
though most agree that results should be interpreted cautiously in a situation of 
this kind.

 6. t tests for independent means are usually reported in research articles with the 
means of the two groups plus the degrees of freedom, t score, and significance 
level. Results may also be reported in a table in which each significant differ-
ence may be shown by asterisks.

 7. ADVANCED TOPIC: Power is greatest when the sample sizes of the two 
groups are equal. When they are not equal, you use the harmonic mean of the 
two sample sizes when looking up power in a table.

Key Terms

t test for independent means (p. 275)
distribution of differences between 

means (p. 276)
pooled estimate of the population 

variance 1S2
Pooled2 (p. 278)

weighted average (p. 278)
variance of the distribution of 

differences between means 1S2
Difference2 (p. 280)

standard deviation of the distribu-
tion of differences between means 1SDifference2 (p. 280)

harmonic mean (p. 300)

Example Worked-Out Problems

Figuring the Standard Deviation of the Distribution  
of Differences Between Means
Figure SDifference for the following study: N1 = 40, S2

1 = 15; N2 = 60; S2
2 = 12.
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Answer
 ●A  Figure the estimated population variances based on each sample: 

S2
1 = 15; S2

2 = 12.

 ●B Figure the pooled estimate of the population variance:

 df1 = N1 - 1 = 40 - 1 = 39; df2 = N2 - 1 = 60 - 1 = 59;

 dfTotal = df1 + df2 = 39 + 59 = 98

 S2
Pooled =

df1
dfTotal

1S2
12 + df2

dfTotal
1S2

22 = 139>9821152 + 159>9821122 = 13.19

 ●C Figure the variance of each distribution of means:

S2
M1

= S2
Pooled>N1 = 13.19>40 = .33

S2
M2

= S2
Pooled>N2 = 13.19>60 = .22

 ●D Figure the variance of the distribution of differences between means:

S2
Difference = S2

M1
+ S2

M2
= .33 + .22 = .55

 ●E  Figure the standard deviation of the distribution of differences between 
means:

SDifference = 2S2
Difference = 2.55 = .74

Hypothesis Testing Using the t Test 
for Independent Means
A researcher randomly assigns five individuals to receive a new experimental pro-
cedure and five to a control condition. At the end of the study, all 10 are measured. 
Scores for those in the experimental group were 7, 6, 9, 7, and 6. Scores for those 
in the control group were 5, 2, 4, 3, and 6. Carry out a t test for independent means 
using the .05 level of significance, two-tailed. Use the five steps of hypothesis testing 
and sketch the distributions involved.

Answer
The figuring is shown in Table 8-9; the distributions are shown in Figure 8-5. Here 
are the steps of hypothesis testing.

 ❶ Restate the question as a research hypothesis and a null hypothesis about 
the populations. There are two populations:

Population 1: People like those who receive the experimental procedure.
Population 2: People like those who receive the control procedure.

  The research hypothesis is that the means of the two populations are different: 
�1 � �2. The null hypothesis is that the means of the two populations are the 
same: �1 = �2.

 ❷ Determine the characteristics of the comparison distribution.
 (a) The distribution of differences between means has a mean of 0. (b) Regard-

ing its standard deviation,
●A Figure the estimated population variances based on each sample: 

S2
1 = 1.50; S2

2 = 2.50.
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Populations
(SPooled = 2.00)

Experimental group Control group

Distributions of meansSM = .63

(SM = .40)

SM = .63

(SM = .40)

SDifference = .89

S2 = 1.50 S2 = 2.50

7 4

Samples

Distribution of differences
between means
(comparison distribution)

t Score = 3.370

2 2

2

Figure 8-5 The distributions in the Example Worked-Out Problem for hypothesis 
testing using the t test for independent means.

Table 8-9  Figuring for Example Worked-Out Problem for Hypothesis Testing Using the t Test for Independent Means

Experimental Group Control Group

Score
Deviation  

From Mean
Squared Deviation  

From Mean Score
Deviation  

From Mean
Squared Deviation  

From Mean

7 0 0 5 1 1
6 -1 1 2 -2 4
9 2 4 4 0 0
7 0 0 3 -1 1
6 -1 1 6 2 4

g : 35 0 6 20 0 10

M1 = 7; S2
1 = 6>4 = 1.50; M2 = 4; S2

2 = 10>4 = 2.50
N1 = 5; df1 = N1 - 1 = 4; N2 = 5; df2 = N2 - 1 = 4
dfTotal = df1 + df2 = 4 + 4 = 8

S2
Pooled =

df1
dfTotal

 (S2
1) +

df2
dfTotal

 (S2
2) =

4
8

 (1.50) +
4
8

 (2.50) = .75 + 1.25 = 2.00

S2
M1

= S2
Pooled>N1 = 2.00>5 = .40

S2
M2

= S2
Pooled>N2 = 2.00>5 = .40

S2
Difference = S2

M1
+ S2

M2
= .40 + .40 = .80

SDifference = 2S2
Difference = 2.80 = .89

Needed t with df = 8, 5% level, two-tailed = {2.306
t = 1M1 - M22>SDifference = 17 - 42>.89 = 3>.89 = 3.37
Decision: Reject the null hypothesis; the research hypothesis is supported.
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●B Figure the pooled estimate of the population variance: S2
Pooled = 2.00.

●C Figure the variance of each distribution of means: S2
M1

= .40; S2
M2

= .40.
●D  Figure the variance of the distribution of differences between means: 

S2
Difference = .80.

●E  Figure the standard deviation of the distribution of differences 
between means: SDifference = .89.

 (c) The shape of the comparison distribution is a t distribution with dfTotal = 8
 ❸ Determine the cutoff sample score on the comparison distribution at which 

the null hypothesis should be rejected. With dfTotal = 8, .05 significance 
level, two-tailed test, the cutoffs are 2.306 and -2.306.

 ❹ Determine the sample’s score on the comparison distribution. 
t = (7 - 4)>.89 = 3.37.

 ❺ Decide whether to reject the null hypothesis. The t of 3.37 is more extreme 
than the cutoffs of {2.306. Thus, you can reject the null hypothesis. The 
research hypothesis is supported.

Advanced Topic: Finding Power When  
Sample Sizes Are Unequal
A planned study with a predicted small effect size has 22 in one group and 51 in the 
other. What is the approximate power for a one-tailed test at the .05 significance level?

Answer

Harmonic mean =
1221N121N22

N1 + N2
=
12212221512

22 + 51
=

 2244

 73
= 30.7

From Table 8-5, for a one-tailed test with 30 participants in each group, power for a 
small effect size is .19.

Outline for Writing Essays for a t Test for Independent Means
 1. Describe the core logic of hypothesis testing in this situation. Be sure to 

mention that the t test for independent is used for hypothesis testing when 
you have scores from two entirely separate groups of people. Be sure to ex-
plain the meaning of the research hypothesis and the null hypothesis in this 
situation.

 2. Explain the logic of the comparison distribution that is used with a t test for 
independent means (the distribution of differences between means). Be sure to 
explain why you use 0 as its mean.

 3. Outline the logic of estimating the population variance and the variance of the 
two distributions of means. Describe how to figure the standard deviation of the 
distribution of differences between means.

 4. Explain why the shape of the comparison distribution that is used with a t test 
for independent means is a t distribution (as opposed to the normal curve).

 5. Describe the logic and process for determining the cutoff sample score(s) on the 
comparison distribution at which the null hypothesis should be rejected.

 6. Describe why and how you figure the t score of the sample mean on the com-
parison distribution.

 7. Explain how and why the scores from Steps ❸ and ❹ of the hypothesis-testing 
process are compared. Explain the meaning of the result of this comparison 
with regard to the specific research and null hypotheses being tested.
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Practice Problems

These problems involve figuring. Most real-life statistics problems are done with 
special statistical software. Even if you have such software, do these problems by 
hand to ingrain the method in your mind. To learn how to use a computer to solve 
statistics problems like those in this chapter, refer to the Using SPSS section at the 
end of this chapter.

All data are fictional unless an actual citation is given.

Set I (for Answers to Set I Problems, see pp. 690–692)
 1. For each of the following studies, say whether you would use a t test for depen-

dent means or a t test for independent means.
(a) A researcher randomly assigns a group of 25 unemployed workers to  

receive a new job skills program and 24 other workers to receive the stan-
dard job skills program, and then measures how well they all do on a job 
skills test.

(b) A researcher measures self-esteem in 21 students before and after taking a 
difficult exam.

(c) A researcher tests reaction time of each member of a group of 14 indi-
viduals twice, once while in a very hot room and once while in a normal- 
temperature room.

 2. Figure SDifference for each of the following studies:

N1 S 2
1 N2 S 2

2

(a) 20 1 20 2

(b) 20 1 40 2

(c) 40 1 20 2

(d) 40 1 40 2

(e) 40 1 40 4

 3. For each of the following experiments, decide whether the difference between 
conditions is statistically significant at the .05 level (two-tailed).

Experimental Group Control Group

N M S 2 N M S 2

(a) 30 12.0 2.4 30 11.1 2.8

(b) 20 12.0 2.4 40 11.1 2.8

(c) 30 12.0 2.2 30 11.1 3.0

 4. A social psychologist studying mass communication randomly assigned 
82 volunteers to one of two experimental groups. Sixty-one were instructed 
to get their news for a month only from television, and 21 were instructed to 
get their news for a month only from the Internet. (Why the researcher didn’t 
assign equal numbers to the two conditions is a mystery!) After the month 
was up, all participants were tested on their knowledge of several political 
issues. The researcher did not have a prediction as to which news source 
would make people more knowledgeable. That is, the researcher  simply 
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 predicted that there is some kind of difference. These were the results of the 
study. TV group: M = 24, S2 = 4; Internet group: M = 26, S2 = 6. Using 
the .01 level, what should the social psychologist conclude? (a) Use the steps 
of hypothesis testing, (b) sketch the distributions involved, and (c) explain 
your answers to someone who is familiar with the t test for a single sample, 
but not with the t test for independent means.

 5. An educational psychologist was interested in whether using a student’s own 
name in a story affected children’s attention span while reading. Six children 
were randomly assigned to read a story under ordinary conditions (using names 
like Dick and Jane). Five other children read versions of the same story, but 
with each child’s own name substituted for one of the children in the story. The 
researcher kept a careful measure of how long it took each child to read the 
story. The results are shown in the following table. Using the .05 level, does 
including the child’s name make any difference? (a) Use the steps of hypothesis 
testing, (b) sketch the distributions involved, and (c) explain your answers to 
someone who has never had a course in statistics.

Ordinary Story Own-Name Story

Student Reading Time Student Reading Time

A 2 G  4

B 5 H 16

C 7 I 11

D 9 J  9

E 6 K  8

F 7

 6. A developmental psychologist compares 4-year-olds and 8-year-olds on their 
ability to understand the analogies used in stories. The scores for the five 
4-year-olds tested were 7, 6, 2, 3, and 8. The scores for the three 8-year-olds 
tested were 9, 2, and 5. Using the .05 level, do older children do better? (a) 
Use the steps of hypothesis testing, (b) sketch the distributions involved, and 
(c) explain your answers to someone who understands the t test for a single 
sample but does not know anything about the t test for independent means.

 7. Figure the estimated effect size for problems (a) 4, (b) 5, and (c) 6. (d) Explain 
what you have done in part (a) to someone who understands the t test for inde-
pendent means but knows nothing about effect size.

 8. Figure the approximate power of a t test for independent means for each of the 
following planned studies:

Number of People  
in Each Group

One- or  
Two-Tailed

 
Effect Size

(a)  30 1 Small (.20)

(b) 100 2 Large (.80)

(c)  40 1 Medium (.50)

(d)  40 1 Large (.80)
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 9. ADVANCED TOPIC: Figure the approximate power of each of the following 
planned studies, all using a t test for independent means at the .05 significance 
level, one-tailed, with a predicted small effect size:

N1 N2

(a)  3 57

(b) 10 50

(c) 20 40

(d) 30 30

Expected

�1 �2 � Tails

(a) 107.0 149.0 84.0 1

(b)  22.5  16.2 31.5 2

(c)  14.0  12.0  2.5 1

(d) 480.0 520.0 50.0 2

 11. Van Aken and Asendorpf (1997) studied 139 German 12-year-olds. All 
of the children completed a general self-worth questionnaire and were 
interviewed about the supportiveness they experienced from their moth-
ers, fathers, and classmates. The researchers then compared the self-worth 
of those with high and low levels of support of each type. The researchers 
reported that “lower general self-worth was found for children with a low-
supportive mother 1t11372 = 4.52, p 6 .001, d = 0.782 and with a low-
supportive father 1t11372 = 4.03, p 6 .001, d = 0.692. . . . A lower general 
self-worth was also found for children with only low supportive classmates 1t11372 = 2.04, p 6 .05, d = 0.352.” (a) Explain what these results mean 
to a person who has never had a course in statistics. (b) Include a discussion 
of effect size and power. (When figuring power, you can assume that the two 
groups in each comparison had about equal sample sizes.)

 12. Gallagher-Thompson and her colleagues (2001) compared 27 wives who were 
caring for their husbands who had Alzheimer’s disease to 27 wives in which 
neither partner had Alzheimer’s. The two groups of wives were otherwise 
similar in terms of age, number of years married, and social economic status. 
Table 8-10 (reproduced from their Table 1) shows some of their results. Focus-
ing on the Geriatric Depression Scale (the first row of the table) and the Mutu-
ality Scale for Shared Values (the last row in the table), explain these results to 
a person who knows about the t test for a single sample but is unfamiliar with 
the t test for independent means.

 10. What are the approximate numbers of participants needed for each of the 
following planned studies to have 80% power, assuming equal numbers in 
the two groups and all using the .05 significance level? (Be sure to give the 
total number of participants needed, not just the number needed for each 
group.)
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Set II
 13. Make up two examples of studies (not in the book or from your lectures) that 

would be tested with a t test for independent means.
 14. For each of the following studies, say whether you would use a t test for depen-

dent means or a t test for independent means.
(a) A researcher measures the heights of 40 university students who are the 

firstborn in their families and compares the 15 who come from large 
 families to the 25 who come from smaller families.

(b) A researcher tests performance on a math skills test of each of 250 individuals 
before and after they complete a one-day seminar on managing test anxiety.

(c) A researcher compares the resting heart rate of 15 individuals who have 
been taking a particular drug to the resting heart rate of 48 other individuals 
who have not been taking the drug.

 15. Figure SDifference for each of the following studies:

Table 8-10   Comparison of Caregiving and Noncaregiving Wives on Select Psychosocial Variables

Caregiving Wives (n = 27) Noncaregiving Wives (n = 27)

M SD Range M SD Range t p

Geriatric Depression Scalea 9.42 6.59 1–25 2.37 2.54 0–8 5.14 .0001

Perceived Stress Scaleb 22.29 8.34 6–36 15.33 6.36 7–30 3.44 .001

Hope questionnairec

Agency 11.88 1.63 9–16 13.23 1.39 10–16 3.20 .002

Resilience 11.89 0.91 10–14 13.08 1.60 10–16 3.31 .002

Total 23.77 2.03 21–29 26.31 2.56 22–31 3.97 .0001

Mutuality Scaled

Closeness 3.51 .81 .33–4 3.70 .41 2.67–4 -1.02 .315

Reciprocity 2.25 1.19 .17–4 3.25 .55 1.67–4 -3.68 .001

Shared pleasures 2.65 1.00 0–4 3.52 .61 1.75–4 -3.66 .001

Shared values 3.15 .89 0–4 3.46 .45 2.4–4 -1.51 .138

Note: For all measures, higher scores indicate more of the construct being measured.
aMaximum score is 30.
bMaximum score is 56.
cFour questions in each subscale, with a maximum total score of 32.
dMaximum mean for each subscale is 4.

Source: Gallagher-Thompson, D., Dal Canto, P. G., Jacob, T., & Thompson, L. W. (2001). A comparison of marital interaction patterns between couples in which the 
 husband does or does not have Alzheimer’s disease. The Journals of Gerontology Series B: Psychology Sciences and Social Sciences, 56, 5140–5150. Copyright © 2001 
by the Gerontological Society of America. Reprinted by permission of Oxford University Press.

N1 S 2
1 N2 S 2

2

(a) 30 5 20 4

(b) 30 5 30 4

(c) 30 5 50 4

(d) 20 5 30 4

(e) 30 5 20 2

 16. For each of the following experiments, decide whether the difference between 
conditions is statistically significant at the .05 level (two-tailed).
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 18. Twenty students randomly assigned to an experimental group receive an instruc-
tional program; 30 in a control group do not. After 6 months, both groups are tested 
on their knowledge. The experimental group has a mean of 38 on the test (with an 
estimated population standard deviation of 3); the control group has a mean of 35 
(with an estimated population standard deviation of 5). Using the .05 level, what 
should the experimenter conclude? (a) Use the steps of hypothesis testing, (b) sketch 
the distributions involved, and (c) explain your answer to someone who is familiar 
with the t test for a single sample but not with the t test for independent means.

 19. A study of the effects of color on easing anxiety compared anxiety test scores 
of participants who completed the test printed on either soft yellow paper or on 
harsh green paper. The scores for five participants who completed the test printed 
on the yellow paper were 17, 19, 28, 21, and 18. The scores for four participants 
who completed the test on the green paper were 20, 26, 17, and 24. Using the 
.05 level, one-tailed (predicting lower anxiety scores for the yellow paper), what 
should the researcher conclude? (a) Use the steps of hypothesis testing, (b) sketch 
the distributions involved, and (c) explain your answers to someone who is famil-
iar with the t test for a single sample but not with the t test for independent means.

 20. Figure the estimated effect size for problems (a) 16, (b) 17, and (c) 18. 
(d) Explain your answer to part (a) to a person who understands the t test for 
 independent means but is unfamiliar with effect size.

 21. Figure the approximate power of a t test for independent means for each of the 
following planned studies:

 17. A psychologist theorized that people can hear better when they have just eaten 
a large meal. Six individuals were randomly assigned to eat either a large meal 
or a small meal. After eating the meal, their hearing was tested. The hearing 
ability scores (high numbers indicate greater ability) are given in the follow-
ing table. Using the .05 level, do the results support the psychologist’s theory?  
(a) Use the steps of hypothesis testing, (b) sketch the distributions involved, and 
(c) explain your answers to someone who has never had a course in statistics.

Experimental Group Control Group

N M S 2 N M S 2

(a) 10 604 60 10 607 50

(b) 40 604 60 40 607 50

(c) 10 604 20 40 607 16

Big Meal Group Small Meal Group

Subject Hearing Subject Hearing

A 22 D 19

B 25 E 23

C 25 F 21

Number of People  
in Each Group

One- or  
Two-Tailed

 
Effect Size

(a)  60 1 Small (.20)

(b)  60 2 Large (.80)

(c)  10 2 Medium (.50)

(d) 100 2 Medium (.50)
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 22. ADVANCED TOPIC: What is the approximate power of each of the following 
planned studies, all using a t test for independent means at the .05 significance 
level, two-tailed, with a predicted medium effect size?

Table 8-11  Mean and Standard Deviation of Scores for Women and Men on Measures 

of Machismo, Attitudes Toward Women, and Adoption Beliefs

Women 
(n � 64)

Men 
(n � 88) t p

Machismo 1.17 { .15 1.32 { .20 4.77 6 .001

AWSA 3.26 { .31 2.98 { .35 5.00 6 .001

Adoption 3.10 { .39 2.85 { .41 3.07 6 .01

Source: Gibbons, J. L., Wilson, S. L., & Rufener, C. A. (2006). Gender attitudes mediate gender differences in attitudes towards adop-
tion in Guatemala. Sex Roles, 54, 139–145. Copyright © 2006. Reprinted by permission of Springer Science and Business Media.

N1 N2

(a) 90 10

(b) 50 50

(c)  6 34

(d) 20 20

Expected

�1 �2 � Tails

(a) 10 15 25 1

(b) 10 30 25 1

(c) 10 30 40 1

(d) 10 15 25 2

 23. What are the approximate numbers of participants needed for each of the fol-
lowing planned studies to have 80% power, assuming equal numbers in the two 
groups and all using the .05 significance level? (Be sure to give the total num-
ber of participants needed, not just the number needed for each group.)

 24. Gibbons and colleagues (2006) surveyed 152 college students in Guatemala 
on their beliefs about machismo (a strong sense of masculinity), their atti-
tudes toward women, and their beliefs about adoption. As shown in Table 
8-11, the researchers used three t tests for independent means to examine 
whether female and male students differed on these beliefs and attitudes. The 
scales were scored so that higher scores were for more positive attitudes about 
machismo, more egalitarian (equal) gender beliefs (which were measured using 
the Attitudes Towards Women Scale for Adolescents, abbreviated as AWSA in  
Table 8-11), and more favorable beliefs about adoption. Explain the study 
results to a person who has never had a course in statistics. ADVANCED 
TOPIC: Include a discussion of effect size and power.

 25. Jackson and colleagues (2001) gave a questionnaire about Internet usage to 
 university students. Table 8-12 shows their results comparing men and women. 
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(a) Select one significant and one nonsignificant result and explain these two 
results to a person who understands the t test for a single sample but does 
not know anything about the t test for independent means. (b) ADVANCED 
TOPIC: Include a discussion of effect size and power (note that the sample 
sizes for the male and female groups are shown in the table footnote).

Table 8-12 Gender Differences in Internet Use and Potential Mediators

Malesa Femalesb t-value df p-value

E-mail use 4.16 (0.66) 4.30 (0.57) 2.81 626 .005

Web use 3.57 (0.67) 3.30 (0.67) -4.84 627 .000

Overall Internet use 3.86 (0.58) 3.80 (0.53) -1.44 627 .130

Computer anxiety 1.67 (0.56) 1.80 (0.57) 4.03 612 .000

Computer self-efficacy 3.89 (0.52) 3.71 (0.62) -3.49 608 .001

Loneliness 2.06 (0.64) 1.96 (0.64) -1.88 607 .061

Depression 1.22 (0.32) 1.28 (0.34) 2.36 609 .019

E-mail privacy 4.04 (0.78) 4.10 (0.69) -0.97 609 .516

E-mail trust 3.50 (0.77) 3.46 (0.75) -0.65 610 .516

Web privacy 4.06 (0.74) 4.09 (0.71) 0.62 623 .534

Web trust 3.14 (0.73) 3.12 (0.73) -0.28 624 .780

Web search success 4.05 (0.85) 4.13 (0.81) 1.12 568 .262

Importance of computer skills 2.54 (1.03) 2.31 (0.90) -2.57 477 .011

Computers cause health problems 2.67 (1.00) 3.00 (1.08) 3.36 476 .001

Gender stereotypes about  
computer skills

3.45 (1.15) 4.33 (0.96) -8.95 476 .000

Racial/ethnic stereotypes about 
computer skills

3.63 (1.17) 3.99 (1.07) 3.40 477 .001

Computers are taking over 3.08 (1.19) 2.87 (1.08) -1.89 476 .059

Note: For the attitude items, 1 = strongly agree, 2 = strongly disagree. For gender, 1 = male, 2 = female. Numbers in 
parentheses are standard deviations.
an = 227.
bn = 403.

Source: Jackson, L. A., Ervin, K. S., Gardner, P. D., & Schmitt, N. (2004). Gender and the Internet Women communicating and 
men searching. Sex Roles, 44, 363–379. Copyright © 2004. Reprinted by permission of Springer Science and Business Media.

Using SPSS

The  in the following steps indicates a mouse click. (We used SPSS version 19 for 
Windows to carry out these analyses. The steps and output may be slightly different 
for other versions of SPSS.)

t Test for Independent Means
It is easier to learn these steps using actual numbers, so we will use the expressive 
writing example from earlier in the chapter. The scores for that example are shown 
in Table 8-2 on page 284.

 ❶ Enter the scores into SPSS. SPSS assumes that all scores in a row are from 
the same person. In this example, each person is in only one of the two groups 
(either the expressive writing group or the control writing group). Thus, to tell 
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SPSS which person is in each group, you should enter the numbers as shown 
in Figure 8-6. In the first column (labeled “group”), we used the number “1” to 
indicate that a person is in the expressive writing group and the number “2” to 
indicate that a person is in the control writing group. Each person’s score on the 
health measure is listed in the second column (labeled “health”). (For the t test for 

Figure 8-6 SPSS data editor window for the expressive writing example (in 
which 20 students were randomly assigned to be in an expressive writing or a control 
writing group).
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dependent means in the previous chapter, you set up the SPSS data with a before-
scores column and an after-scores column so that both scores for a particular per-
son were on the same line. In this example, you have only one score per person; 
so you have one column of scores and another column to show which experimen-
tal group each person is in; that is, you have a score column and a group column.)

 ❷  Analyze.
 ❸  Compare means.
 ❹  Independent-Samples T Test (this is the name SPSS uses for a t test for inde-

pendent means).
 ❺  on the variable called “health” and then  the arrow next to the box labeled 

“Test Variable(s).” This tells SPSS that the t test should be carried out on the 
scores for the “health” variable.

 ❻  the variable called “group” and then  the arrow next to the the box labeled 
“Grouping Variable.” This tells SPSS that the variable called “group” shows 
which person is in which group.  Define Groups. You now tell SPSS the val-
ues you used to label each group. Put 1 in the Group 1 box and put 2 in the 
Group 2 box.  Continue.

 ❼  OK. Your SPSS output window should look like Figure 8-7.

The first table in the SPSS output provides information about the two variables. 
The first column gives the levels of the grouping variable (1 and 2, which indicate 
the expressive writing group and the control writing group, respectively). The sec-
ond, third, and fourth columns give, respectively, the number of individuals (N ), 
mean (M ), and estimated population standard deviation (S ) for each group. The fifth 
column, labeled “Std. error mean,” is the standard deviation of the distribution of 
means, SM, for each group. Note that these values for the standard error of the mean 
are based on each population variance estimate and not on the pooled estimate; so 
they are not quite the same for each group as the square root of each S2

M figured in 
the text. (See Table 8-2 on page 284 for the figuring for this example.)

Figure 8-7 SPSS output window for a t test for independent means for the expressive 
writing example.
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The second table in the SPSS output shows the actual results of the t test for 
independent means. Before the t test results, SPSS shows the results of “Levene’s 
Test for Equality of Variances,” which is a test of whether the variances of the two 
populations are the same. This test is important mainly as a check on whether you 
have met the assumption of equal population variances (called “homogeneity of 
variance”). If this test is significant (that is, the value in the “Sig.” column is less 
than .05), this assumption is brought into question. However, in this example, the re-
sult is clearly not significant (.766 is not below .05), so we have no reason to doubt 
the assumption of equal population variances. Thus, we can feel more confident that 
whatever conclusion we draw from the t test will be accurate.

The t test results begin with the column labeled “t.” Note that there are two rows 
of t test results. The first row (a t of 2.425, df of 18, and so on), labeled “Equal vari-
ances assumed” (on the left hand side of the table), shows the t test results assum-
ing the population variances are equal. The second row (a t of 2.425, df of 17.880, 
and so on), labeled “Equal variances not assumed,” shows the t test results if we do 
not assume that the population variances are equal. In the present example (as in 
most real-life cases), the Levene test was not significant; so we use the t test results 
assuming equal population variances. Notice that the values for “t” (the sample’s 
t score), “df” (degrees of freedom), and “Std. Error Difference” (the standard devia-
tion of the distribution of differences between means, SDifference) in Figure 8-7 are 
the same (within rounding error) as their respective values we figured by hand in 
Table 8-2 (see page 284). The column labeled “Sig. (2-tailed)” shows the exact sig-
nificance level of the sample’s t score. The significance level of .026 is less than our 
.05 cutoff for this example, which means that you can reject the null hypothesis and 
the research hypothesis is supported. (You can ignore the final two columns of the 
table, listed under the heading “95% Confidence Interval of the Difference.” These 
columns refer to the raw scores corresponding to the t scores at the bottom 2.5% and 
the top 2.5% of the t distribution; see Chapter 5 for a discussion of confidence in-
tervals). Note that SPSS does not know if you are doing a one-tailed or a two-tailed 
test. So it always gives results for a two-tailed test. If you are doing a one-tailed test, 
the true significance level is exactly half of what is given by SPSS.

You can use the information from the SPSS output to calculate the effect size for 
the t test for independent means. Specifically, the first table shows the estimated popula-
tion standard deviation for each group (S). This allows you to calculate S2

Pooled, using the 

formula S2
Pooled =

df1
dfTotal

1S2
12 + df2

dfTotal
1S2

22 = 9

18
194.442 + 9

18
(111.33) = 102.89.

The formula for the effect size for a t test for independent means from a completed

study is: Estimated d =
M1 - M2

SPooled
=

79 - 68

2102.89
= 1.08. This is a very large effect

size.

Chapter Notes

 1. In a real research situation, the figuring for a t test for independent means is 
usually all done by computer (see this chapter’s Using SPSS section). However, 
if you ever have to do a t test for independent means for an actual research 
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study with a fairly large sample size by hand (or with just a calculator), you 
may find the following formula useful:

t =
M1 - M2

A
1N1 - 121S2

12 + 1N2 - 121S2
22

N1 + N2 - 2
 a 1

N1
+

1

N2
b

 2. Cohen (1988, pp. 28–39) provides more detailed tables in terms of number of 
participants, levels of effect size, and significance levels. Note that Cohen de-
scribes the significance level by the letter a (for “alpha level”), with a subscript 
of either 1 or 2, referring to a one-tailed or two-tailed test. For example, a table 
that refers to “a1 = .05” at the top means that this is the table for p 6 .05, 
one-tailed.

 3. Cohen (1988, pp. 54–55) provides fuller tables, indicating needed numbers of 
participants for levels of power other than 80%; for effect sizes other than .20, 
.50, and .80; and for other significance levels. If you just need a rough approxi-
mation, Dunlap and Myers (1997) have developed a shortcut for finding the 
approximate number of participants needed for studies using the t test for inde-
pendent means. For 50% power, the number of participants needed per group is 
approximately 18>d22 + 1. For 80%–90% power, 116>d22 + 2.

The t score for a t test for 
independent means is the 
result of subtracting Sample 
2’s mean from Sample 1’s 
mean and dividing that 
difference by the square root 
of the following: multiplying 
one less than the number 
of scores in Sample 1 by 
Population 1’s estimated 
population variance and 
adding this product to the 
result of multiplying one less 
than the number of scores 
in Sample 2 by Population 
2’s estimated population 
variance, and then dividing 
this summed result by two 
less than the sum of the 
number of scores in Sample 
1 and the number of scores 
in Sample 2, and then taking 
the result of this division and 
multiplying it by the result 
of adding one divided by the 
number of scores in Sample 1 
to one divided by the number 
of scores in Sample 2.
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In Chapter 8, you learned about the t test for independent means, a procedure for 
comparing two groups of scores, one group of scores from one group of people 
and a second group of scores from an entirely separate group of people (such as 

an experimental group versus a control group or men versus women). In this chap-
ter, you will learn about a procedure for comparing more than two groups of scores, 
each of which is from an entirely separate group of people.

Let’s begin with an example. In a classic study, Cindy Hazan and Philip Shaver 
(1987) arranged to have the Rocky Mountain News, a large Denver area newspa-
per, print a mail-in survey. The survey included the question shown in Table 9-1 to 
measure what is called attachment style. (How would you answer this item?) Those 
who selected the first choice are “secure”; those who selected the second, “avoid-
ant”; and those who selected the third, “anxious-ambivalent.” These attachment 
styles are thought to be different ways of behaving and thinking in close relationships 
that develop from a person’s experience with early caretakers (Mikulincer & Shaver, 
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T I P  F O R  S U C C E S S
This chapter assumes you 
understand the logic of hypothesis 
testing and the t test (particularly 
estimated population variance and 
the distribution of means). So be 
sure you understand the relevant 
material in Chapters 4, 5, 7, and 8 
before starting this chapter.

Introduction to the Analysis of Variance
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2007). (Of course, this single item is only a very rough measure that works for a large 
survey but is certainly not definitive in any particular person.) Readers also answered 
questions about various aspects of love, including an item about their level of jeal-
ousy in their current or most recent relationship. Hazan and Shaver then compared 
the amount of jealousy reported by people with the three different attachment styles.

With a t test for independent means, Hazan and Shaver could have compared 
the mean jealousy scores of any two of the attachment styles. Instead, they were 
interested in the overall difference among all three attachment styles. The statistical 
procedure for testing variation among the means of more than two groups is called 
the analysis of variance, abbreviated as ANOVA. (You could use the analysis of 
variance for a study with only two groups, but the simpler t test gives the same 
result.)

In this chapter, we introduce the analysis of variance, focusing on the situ-
ation in which the different groups being compared each have the same number 
of scores. In an Advanced Topic section later in the chapter, we describe a more 
flexible way of thinking about analysis of variance that allows groups to have dif-
ferent numbers of scores. In Chapter 10, we consider situations in which the differ-
ent groups are arrayed across more than one dimension. For example, in the same 
analysis we might consider both gender and attachment style, making six groups 
in all (female secure, male secure, female avoidant, etc.), arrayed across the two 
dimensions of gender and attachment style. That situation is known as a factorial 
analysis of variance. To emphasize the difference from factorial analysis of vari-
ance, what you learn in this chapter is often called a one-way analysis of variance. 
(If this is confusing, don’t worry. We will go through it slowly and systematically 
in Chapter 10. We only mention this now so that, if you hear these terms, you will 
not be surprised.)

Basic Logic of the Analysis of Variance
The null hypothesis in an analysis of variance is that the several populations being 
compared all have the same mean. For example, in the attachment style example, the 
null hypothesis is that the populations of secure, avoidant, and anxious-ambivalent 
people all have the same degree of jealousy. The research hypothesis would be that 
the degree of jealousy differs among these three populations.

Hypothesis testing in analysis of variance is about whether the means of the 
samples differ more than you would expect if the null hypothesis were true. This 
question about means is answered, surprisingly, by analyzing variances (hence the 

analysis of variance (ANOVA) 
hypothesis-testing procedure for studies 
with three or more groups.

Table 9-1 Question Used in Hazan and Shaver (1987) Newspaper Survey

Which of the following best describes your feelings? [Check one]

[  ] I find it relatively easy to get close to others and am comfortable depending on them and having them 
 depend on me. I don’t often worry about being abandoned or about someone getting too close to me.

[  ] I am somewhat uncomfortable being close to others; I find it difficult to trust them completely, difficult to 
allow myself to depend on them. I am nervous when anyone gets too close, and often, love partners want 
me to be more intimate than I feel comfortable being.

[  ] I find that others are reluctant to get as close as I would like. I often worry that my partner doesn’t really 
love me or won’t want to stay with me. I want to merge completely with another person, and this desire 
sometimes scares people away.

Source: Hazan and Shaver (1987, p. 515).
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name analysis of variance). Among other reasons, you focus on variances because, 
when you want to know how several means differ, you are asking about the varia-
tion among those means.

Thus, to understand the logic of analysis of variance, we consider variances. In 
particular, we begin by discussing two different ways of estimating population vari-
ances. As you will see, the analysis of variance is about a comparison of the results 
of these two different ways of estimating population variances.

Estimating Population Variance from Variation  
Within Each Sample
With the analysis of variance, as with the t test, you do not know the true population 
variances. However, as with the t test, you can estimate the variance of each of the 
populations from the scores in the samples. Also, as with the t test, you assume in 
the analysis of variance that all populations have the same variance. This allows you 
to average the estimates from each sample into a single pooled estimate, called the 
within-groups estimate of the population variance. It is an average of estimates 
figured entirely from the scores within each of the samples.

One of the most important things to remember about this within-groups esti-
mate is that it is not affected by whether the null hypothesis is true. This estimate 
comes out the same whether the means of the populations are all the same (the null 
hypothesis is true) or the means of the populations are not all the same (the null 
hypothesis is false). This estimate comes out the same because it focuses only on the 
variation inside each population. Thus, it doesn’t matter how far apart the means of 
the different populations are.

If the variation in scores within each sample is not affected by whether the null 
hypothesis is true, what determines the level of within-group variation? The answer 
is that chance factors (that is, factors that are unknown to the researcher) account for 
why different people in a sample have different scores. These chance factors include 
the fact that different people respond differently to the same situation or treatment 
and that there may be some experimental error associated with the measurement of 
the variable of interest. Thus, we can think of the within-groups population variance 
estimate as an estimate based on chance (or unknown) factors that cause different 
people in a study to have different scores.

Estimating the Population Variance from Variation  
Between the Means of the Samples
There is also a second way to estimate the population variance. Each sample’s mean 
is a number in its own right. If there are several samples, there are several such num-
bers, and these numbers will have some variation among them. The variation among 
these means gives another way to estimate the variance in the populations that the 
samples come from. Just how this works is a bit tricky; so follow the next two sec-
tions closely.

When the Null Hypothesis Is True First, consider the situation in which the null 
hypothesis is true. In this situation, all samples come from populations that have the 
same mean. Remember, we are always assuming that all populations have the same 
variance (and also that they are all normal curves). Thus, if the null hypothesis is 
true, all populations are identical and thus they have the same mean, variance, and 
shape.

within-groups estimate of the 
population variance estimate of the 
variance of the population of individuals 
based on the variation among the scores 
in each of the actual groups studied.
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However, even when the populations are identical (that is, even when the null 
hypothesis is true), samples from the different populations will each be a little dif-
ferent. How different can the sample means be? That depends on how much varia-
tion there is in each population. If a population has very little variation in the scores 
in it, then the means of samples from that population (or any identical population) 
will tend to be very similar to each other. When the null hypothesis is true, the vari-
ability among the sample means is influenced by the same chance factors that influ-
ence the variability among the scores within each sample.

What if several identical populations (with the same population mean) have a lot of 
variation in the scores within each? In that situation, if you take one sample from each 
population, the means of those samples could easily be very different from each other. 
Being very different, the variance of these means will be large. The point is that the 
more variance within each of several identical populations, the more variance there will 
be among the means of samples when you take a random sample from each population.

Suppose you were studying samples of six children from each of three large 
playgrounds (the populations in this example). If each playground had children 
who were all either 7 or 8 years old, the means of your three samples would all 
be between 7 and 8. Thus, there would not be much variance among those means. 
However, if each playground had children ranging from 3 to 12 years old, the means 
of the three samples would probably vary quite a bit. What this shows is that the 
variation among the means of samples is related directly to the amount of variation 
in each of the populations from which the samples are taken. The more variation in 
each population, the more variation there is among the means of samples taken from 
those populations.

This principle is shown in Figure 9-1. The three identical populations on the 
left have small variances, and the three identical populations on the right have large 
variances. In each set of three identical populations, even though the means of the 
populations (shown by triangles) are exactly the same, the means of the samples from 
those populations (shown by Xs) are not exactly the same. Most important, the sam-
ple means from the populations that each have a small amount of variance are closer 
together (have less variance among them). The sample means from the populations 
that each have more variance are more spread out (have more variance among them).

We have now seen that the variation among the means of samples taken from 
identical populations is related directly to the variation of the scores in each of those 
populations. This has a very important and perhaps surprising implication: it should 
be possible to estimate the variance in each population from the variation among the 
means of our samples.

Such an estimate is called a between-groups estimate of the population vari-
ance. (It has this name because it is based on the variation between the means of the 
samples, the “groups.” Grammatically, it ought to be among groups, but between 
groups is traditional.) You will learn how to figure this estimate later in the chapter.

So far, all of this logic we have considered has assumed that the null hypothesis 
is true, so that there is no variation among the means of the populations. In this situa-
tion, the between-groups estimate of the population variance (which reflects variabil-
ity in the means of the samples) is influenced by the chance factors that cause different 
people in the same sample to have different scores. Let’s now consider what happens 
when the null hypothesis is not true, when instead the research hypothesis is true.

When the Null Hypothesis Is Not True If the null hypothesis is not true (and 
thus the research hypothesis is true), the populations themselves have different 
means. In this situation, variation among the means of samples taken from these 

between-groups estimate of the 
population variance estimate of the 
variance of the population of individuals 
based on the variation among the means 
of the groups studied.
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populations is still caused by the chance factors that cause variation within the 
populations. So the larger the variation within the populations, the larger the varia-
tion will be among the means of samples taken from the populations. However, in 
this situation, in which the research hypothesis is true, variation among the means 
of the samples also is caused by variation among the population means. You can 

(a) (b)

Figure 9-1 Means of samples from identical populations will not be identical. 
(a) Sample means from populations with less variation will vary less. (b) Sample means from 
populations with more variation will vary more. (The scores in each sample are shown by 
dots, population means are indicated by a triangle, and sample means are shown by an X.)
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think of this variation among population means as resulting from a treatment 
effect—that is, the different treatment received by the groups (as in an experi-
ment) causes the groups to have different means. So, when the research hypoth-
esis is true, the means of the samples are spread out for two different reasons:  
(1) because of variation in each of the populations (due to chance factors) and  
(2) because of variation among the population means (that is, a treatment effect). 
The left side of Figure 9-2 shows populations with the same means (shown by 
triangles) and the means of samples taken from them (shown by Xs). (This is the 
same situation as in both sides of Figure 9-1.) The right side of Figure 9-2 shows 
three populations with different means (shown by triangles) and the means of 
samples taken from them (shown by Xs). (This is the situation we have just been 
discussing.) Notice that the means of the samples are more spread out in the situ-
ation on the right side of Figure 9-2. This is true even though the variations in the 
populations are the same for the situation on both sides of Figure 9-2. This addi-
tional spread (variance) for the means on the right side of Figure 9-2 is due to the 
populations having different means.

In summary, the between-groups estimate of the population variance is figured 
based on the variation among the means of the samples. If the null hypothesis is true, 
this estimate gives an accurate indication of the variation within the populations (that 
is, the variation due to chance factors). But if the null hypothesis is false, this method 
of estimating the population variance is influenced both by the variation within the 
populations (the variation due to chance factors) and the variation among the popu-
lation means (the variation due to a treatment effect). It will not give an accurate 
estimate of the variation within the populations because it also will be affected by 
the variation among the populations. This difference between the two situations has 

(b)(a)

Figure 9-2 Means of samples from populations whose means differ (b) will vary 
more than sample means taken from populations whose means are the same (a). (The scores 
in each sample are shown by dots, population means are indicated by a triangle, and sample 
means are shown by an X.)

T I P  F O R  S U C C E S S
You may want to read this 
paragraph again to ensure that you 
fully understand the logic we are 
presenting. 
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Table 9-2 Sources of Variation in Within-Groups and Between-Groups Variance Estimates

Variation Within  
Populations (Due to  

Chance Factors)

Variation Between  
Populations (Due to  
a Treatment Effect)

Null hypothesis is true

Within-groups estimate reflects ✓

Between-groups estimate reflects ✓

Research hypothesis is true

Within-groups estimate reflects ✓

Between-groups estimate reflects ✓ ✓

important implications. It is what makes the analysis of variance a method of testing 
hypotheses about whether there is a difference among means of populations.

Comparing the Within-Groups and Between-Groups 
Estimates of Population Variance
Table 9-2 summarizes what we have seen so far about the within-groups and 
between-groups estimates of population variance, both when the null hypothesis is 
true and when the research hypothesis is true. When the null hypothesis is true, the 
within-groups and between-groups estimates are based on the same thing (that is, the 
chance variation within populations). Literally, they are estimates of the same popu-
lation variance. Therefore, when the null hypothesis is true, both estimates should 
be about the same. (Only about the same; these are estimates). Here is another way 
of describing this similarity of the between-groups estimate and the within-groups 
estimate when the null hypothesis is true: In this situation, the ratio of the between-
groups estimate to the within-groups estimate should be approximately one to one. 
For example, if the within-groups estimate is 107.5, the between-groups estimate 
should be around 107.5, so that the ratio would be about 1. (A ratio is found by 
dividing one number by the other; thus 107.5>107.5 = 1.)

Now let’s turn to the bottom half of Table 9-2, regarding when the research 
hypothesis is true (and thus, the null hypothesis is not true). The situation is quite 
different here. When the research hypothesis is true, the between-groups estimate is 
influenced by two sources of variation: (1) the variation of the scores in each popu-
lation (due to chance factors), and (2) the variation of the means of the populations 
from each other (due to a treatment effect). Yet, even when the research hypothesis 
is true, the within-groups estimate still is influenced only by the variation in the pop-
ulations. Therefore, when the research hypothesis is true, the between-groups esti-
mate should be larger than the within-groups estimate. In this situation, because the 
research hypothesis is true, the ratio of the between-groups estimate to the within-
groups estimate should be greater than 1. For example, the between-groups estimate 
might be 638.9 and the within-groups estimate 107.5, making a ratio of 638.9 to 
107.5, or 5.94. In this example, the between-groups estimate is nearly six times big-
ger (5.94 times to be exact) than the within-groups estimate.

This is the central principle of the analysis of variance: When the null hypoth-
esis is true, the ratio of the between-groups population variance estimate to the 
within-groups population variance estimate should be about 1. When the research 
hypothesis is true, this ratio should be greater than 1. If you figure this ratio and 
it comes out much greater than 1, you can reject the null hypothesis. That is, it is 

T I P  F O R  S U C C E S S
Table 9-2 summarizes the logic 
of the analysis of variance. Test 
your understanding of this logic by 
trying to explain Table 9-2, without 
referring to the book. You might 
try writing your answer down and 
swapping it with someone else in 
your class.
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unlikely that the null hypothesis could be true and the between-groups estimate be a 
lot bigger than the within-groups estimate.

The F Ratio
This crucial ratio of the between-groups to the within-groups population variance 
estimate is called an F ratio. (The F is for Sir Ronald Fisher, an eminent statistician 
who developed the analysis of variance; see Box 9-1.)

The F Distribution and the F Table
We have said that if the crucial ratio of between-groups estimate to within-groups 
estimate (the F ratio) is a lot larger than 1, you can reject the null hypothesis. The 
next question is, “Just how much bigger than 1 should it be?”

F ratio ratio of the between-groups 
population variance estimate to the 
within-groups population variance 
estimate.

Ronald A. Fisher, a contem-
porary of William Gosset 
(see Chapter 7, Box 7-1) and 
Karl Pearson (see Chapter 
13, Box 13-1), was probably 
the brightest and certainly the 
most productive of this close-
knit group of British statisti-
cians. In the process of writing 
300 papers and seven books, 
he developed many of the 
modern field’s key concepts: 
variance, analysis of variance, 

significance levels, the null hypothesis, and almost all of 
our basic ideas of research design, including the funda-
mental importance of randomization. In fact, he has been 
described as producing the “scaffolding onto which the 
discipline [of statistics] was built” (Wright, 2009, p. 588). 
For good measure, he was also a major contributor to the 
field of genetics.

A family legend is that little Ronald, born in 1890, was 
so fascinated by math that one day, at age 3, when put into 
his highchair for breakfast, he asked his nurse, “What is a 
half of a half?” Told it was a quarter, he asked, “What’s 
half of a quarter?” To that answer he wanted to know 
what was half of an eighth. At the next answer he purport-
edly thought a moment and said, “Then I suppose that a 
half of a sixteenth must be a thirty-toof.” Ah, baby stories.

As a grown man, however, Fisher seems to have been 
anything but darling. Some observers ascribe this to a cold 
and unemotional mother, but whatever the reason, through-
out his life he was embroiled in bitter feuds, even with 
scholars who had previously been his closest allies and 
who certainly ought to have been comrades in research.

Fisher’s thin ration of compassion extended to his read-
ers as well; not only was his writing hopelessly obscure, 
but it often simply failed to supply important assumptions 
and proofs. Gosset said that when Fisher began a sentence 
with “Evidently,” it meant two hours of hard work before 
one could hope to see why the point was evident.

Indeed, his lack of empathy extended to all of human-
kind. Like Galton, Fisher was fond of eugenics, favoring 
anything that might increase the birthrate of the upper 
and professional classes and skilled artisans. Not only 
did he see contraception as a poor idea—fearing that 
the least desirable persons would use it least—but he 
defended infanticide as serving an evolutionary function. 
It may be just as well that his opportunities to experi-
ment with breeding never extended beyond the raising of 
his own children and some crops of potatoes and wheat.

Although Fisher eventually became the Galton Profes-
sor of Eugenics at University College, his most influential 
appointment probably came when he was invited to Iowa 
State College in Ames for the summers of 1931 and 1936 
(where he was said to be so put out with the terrible heat 
that he stored his sheets in the refrigerator all day). At Ames, 
Fisher greatly impressed George Snedecor, an American 
professor of mathematics also working on agricultural prob-
lems. Consequently, Snedecor wrote a textbook of statistics 
for agriculture that borrowed heavily from Fisher’s work. 
The book so popularized Fisher’s ideas about statistics and 
research design that its second edition sold 100,000 copies.

You can learn more about Fisher at the following 
Web site: http://www-groups.dcs.st-and.ac.uk/~history/
Biographies/Fisher.html.

Sources: Peters (1987); Salsburg (2001); Stigler (1986); 
Tankard (1984); Wright (2009).

BOX 9-1 Sir Ronald Fisher, Caustic Genius of Statistics

http://www.groups.dcs.st-and.ac.uk/~history/Biographies/Fisher.html
http://www.groups.dcs.st-and.ac.uk/~history/Biographies/Fisher.html


324 Chapter 9

Statisticians have developed the mathematics of an F distribution and have pre-
pared tables of F ratios. For any given situation, you merely look up in an F table 
how extreme an F ratio is needed to reject the null hypothesis at, say, the .05 level. 
(You learn to use the F table later in the chapter.)

For an example of an F ratio, let’s return to the attachment style study from the start 
of the chapter. The results of that study, for jealousy, were as follows: The between-
groups population variance estimate was 23.27, and the within-groups population vari-
ance estimate was .53. (You learn shortly how to figure these estimates on your own.) 
The ratio of the between-groups to the within-groups variance estimates 123.27>.532 
came out to 43.91; that is, F = 43.91. This F ratio is considerably larger than 1. The 
F ratio needed to reject the null hypothesis at the .05 level in this study is only 3.01. 
Thus, the researchers confidently rejected the null hypothesis and concluded that the 
amount of jealousy is not the same for the three attachment styles. (Mean jealousy 
ratings were 2.17 for secures, 2.57 for avoidants, and 2.88 for anxious-ambivalents. 
The question was “I [loved/love] __________ so much that I often felt/feel jealous.” 
The blank was for the respondent’s current or most recent relationship partner’s name. 
Responses were on a 1 to 4 scale, from strongly disagree to strongly agree.)

An Analogy
Some students find an analogy helpful in understanding the analysis of variance. The 
analogy is to what engineers call the signal-to-noise ratio. For example, your abil-
ity to make out the words in a cell phone conversation with poor reception depends 
on the strength of the signal versus the amount of random noise. With the F ratio in 
the analysis of variance, the difference among the means of the samples is like the 
signal; it is the information of interest. The variation within the samples is like the 
noise. When the variation among the samples is sufficiently great in comparison to 
the variation within the samples, you conclude that there is a significant effect.

F distribution mathematically defined 
curve that is the comparison distribution 
used in an analysis of variance.

F table table of cutoff scores on the 
F distribution.

T I P  F O R  S U C C E S S
These “How are you doing?” 
questions and answers provide 
a useful summary of the logic of 
the analysis of variance. Be sure 
to review them (and the relevant 
sections in the text) as many times 
as necessary to fully understand 
this logic.

How are you doing?

 1. When can you use an analysis of variance?
 2. (a) What is the within-groups population variance estimate based on? (b) How 

is it affected by the null hypothesis being true or not? (c) Why?
 3. (a) What is the between-groups population variance estimate based on? 

(b) How is it affected by the null hypothesis being true or not? (c) Why?
 4. What are two sources of variation that can contribute to the between-groups 

population variance estimate?
 5. (a) What is the F ratio; (b) why is it usually about 1 when the null hypothesis is 

true; and (c) why is it usually larger than 1 when the null hypothesis is false?

Answers

 1. Analysis of variance can be used when you are comparing means of samples 
from more than two populations.

 2. (a) The within-groups population variance estimate is based on the variation 
among the scores in each of the samples. (b) It is not affected. (c) Whether the 
null hypothesis is true has to do with whether the means of the populations differ. 
Thus, the within-groups estimate is not affected by whether the null hypothesis 
is true because the variation within each population (which is the basis for the 
variation in each sample) is not affected by whether the population means differ.
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Carrying Out an Analysis of Variance
Now that we have considered the basic logic of the analysis of variance, we will go 
through an example to illustrate the details. (We use a fictional study to keep the 
numbers simple.)

Suppose a social psychologist is studying the influence of knowledge of previ-
ous criminal record on juries’ perceptions of the guilt or innocence of defendants. The 
researcher recruits 15 volunteers who have been selected for jury duty (but have not 
yet served at a trial). The researcher shows them a DVD of a four-hour trial in which a 
woman is accused of passing bad checks. Before viewing the video, however, all of the 
research participants are given a “background sheet” with age, marital status, education, 
and other such information about the accused woman. The sheet is the same for all 15 
participants, with one difference. For five of the participants, the last section of the sheet 
says that the woman has been convicted several times before of passing bad checks; we 
will call those participants the Criminal Record group. For five other participants, the 
last section of the sheet says the woman has a completely clean criminal record—the 
Clean Record group. For the remaining five participants, the sheet does not mention any-
thing about criminal record one way or the other—the No Information group.

The participants are randomly assigned to the groups. After viewing the video of the 
trial, all 15 participants make a rating on a 10-point scale, which runs from completely sure 
she is innocent (1) to completely sure she is guilty (10). The results of this fictional study 
are shown in Table 9-3. As you can see, the means of the three groups are different (8, 4, 
and 5). Yet there is also quite a bit of variation within each of the three groups. Population 
variance estimates from the scores in each of these three groups are 4.5, 5.0, and 6.5.

You need to figure the following numbers to test the hypothesis that the three 
populations are different: (a) a population variance estimate based on the variation 
of the scores within each of the samples, (b) a population variance estimate based on 

 3. (a) The between-groups population variance estimate is based on the varia-
tion among the means of the samples. (b) It is larger when the null hypothesis 
is false. (c) Whether the null hypothesis is true has to do with whether the 
means of the populations differ. When the null hypothesis is false, the means 
of the populations differ. Thus, the between-groups estimate is bigger when 
the null hypothesis is false, because the variation among the means of the 
populations (which is one basis for the variation among the means of the 
samples) is greater when the population means differ.

 4. Two sources of variation that can contribute to the between-groups popula-
tion variance estimate are (1) variation among the scores in each of the popu-
lations (that is, variation due to chance factors), and (2) variation among the 
means of the populations (that is, variation due to a treatment effect).

 5. (a) The F ratio is the ratio of the between-groups population variance esti-
mate to the within-groups population variance estimate. (b) Both estimates 
are based entirely on the same source of variation—the variation among the 
scores in each of the populations (that is, due to chance factors). (c) The 
between-groups estimate is also influenced by the variation among the means 
of the populations (that is, a treatment effect) whereas the within-groups esti-
mate is not. Thus, when the null hypothesis is false (and thus the means of the 
populations are not the same), the between-groups estimate will be bigger 
than the within-groups estimate.
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the differences between the group means, and (c) the ratio of the two, the F ratio. (In 
addition, you need the significance cutoff F from an F table.)

Figuring the Within-Groups Estimate  
of the Population Variance
You can estimate the population variance from any one group (that is, from any one 
sample) using the usual method of estimating a population variance from a sample. 
First, you figure the sum of the squared deviation scores. That is, you take the devia-
tion of each score from its group’s mean, square that deviation score, and sum all the 
squared deviation scores. Second, you divide that sum of squared deviation scores 
by that group’s degrees of freedom. (The degrees of freedom for a group are the 
number of scores in the group minus 1.) For the example, as shown in Table 9-3, 
this gives an estimated population variance of 4.5 based on the Criminal Record 
group’s scores, an estimate of 5.0 based on the Clean Record group’s scores, and an 
estimate of 6.5 based on the No Information group’s scores.

Once again, in the analysis of variance, as with the t test, we assume that the 
populations have the same variance and that the estimates based on each sample’s 
scores are all estimating the same true population variance. The sample sizes are 
equal in this example; so the estimate for each group is based on an equal amount of 
information. Thus, you can pool these variance estimates by straight averaging. This 
gives an overall estimate of the population variance based on the variation within 
groups of 5.33 (that is, the sum of 4.5, 5.0, and 6.5, which is 16, divided by 3, the 
number of groups).

To summarize, the two steps for figuring the within-groups population variance 
estimate are:

 ●A Figure population variance estimates based on each group’s scores.
 ●B Average these variance estimates. The estimated population variance based on 

the variation of the scores within each of the groups is the within-groups vari-
ance estimate. This is symbolized as S2

Within or MSWithin. MSWithin is short for 
mean squares within. The term mean squares is another name for the variance, 
because the variance is the mean of the squared deviations. (S2

Within or MSWithin is 
also sometimes called the error variance and symbolized as S2

Error or MSError.)
S2

Within or MSWithin within-groups 
estimate of the population variance.

Table 9-3  Results of the Criminal Record Study (Fictional Data)

Criminal Record Group Clean Record Group No Information Group

Rating
Deviation 

from Mean

Squared 
Deviation 

from Mean Rating 
Deviation 

from Mean

Squared  
Deviation  

from Mean Rating
Deviation 

from Mean

Squared 
Deviation 

from Mean

10 2 4 5 1 1 4 -1 1

7 -1 1 1 -3 9 6 1 1

5 -3 9 3 -1 1 9 4 16

10 2 4 7 3 9 3 -2 4

8 0 0 4 0 0 3 -2 4

g :  40 0 18 20 0 20 25 0 26

M = 40>5 = 8 M = 20>5 = 4 M = 25>5 = 5

S2 = 18>4 = 4.5 S2 = 20>4 = 5.0 S2 = 26>4 = 6.5
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In terms of a formula,

 S2
Within  or  MSWithin =

S2
1 + S2

2 + c + S2
Last

NGroups
 (9-1)

In this formula, S2
1 is the estimated population variance based on the scores in 

the first group (the group from Population 1), S2
2 is the estimated population vari-

ance based on the scores in the second group, and S2
Last is the estimated population 

variance based on the scores in the last group. (The dots, or ellipsis, in the formula 
show that you are to fill in a population variance estimate for as many other groups 
as there are in the analysis.) NGroups is the number of groups.

Using this formula for our figuring, we get

S2
Within =  

S2
1 + S2

2 + c+ S2
Last

NGroups
=

4.5 + 5.0 + 6.5

3
=

16

3
= 5.33

Figuring the Between-Groups Estimate  
of the Population Variance
Figuring the between-groups estimate of the population variance also involves two 
steps (though quite different ones from the within-groups estimate). First estimate, 
from the means of your samples, the variance of a distribution of means. Second, 
based on the variance of this distribution of means, figure the variance of the popu-
lation of individuals. Here are the two steps in more detail:

 ●A Estimate the variance of the distribution of means: Add up the sample 
means’ squared deviations from the overall mean (the mean of all the scores) 
and divide this by the number of means minus 1.

You can think of the means of your samples as taken from a distribution 
of means. Follow the standard procedure of using the scores in a sample to 
estimate the variance of the population from which these scores are taken. In 
this situation, you think of the means of your samples as the scores and the dis-
tribution of means as the population from which these scores come. What this 
all boils down to are the following procedures. You begin by figuring the sum 
of squared deviations. (You find the mean of your sample means, figure the 
deviation of each sample mean from this mean of means, square each of these 
deviations, and finally sum these squared deviations.) Then, divide this sum of 
squared deviations by the degrees of freedom, which is the number of means 
minus 1. In terms of a formula (when sample sizes are all equal),

 S2
M = a 1M - GM22

dfBetween
 (9-2)

In this formula, S2
M is the estimated variance of the distribution of means 

(estimated based on the means of the samples in your study). M is the mean of 
each of your samples. GM is the grand mean, the overall mean of all your scores, 
which is also the mean of your means. dfBetween is the degrees of freedom in the 
between-groups estimate, the number of groups minus 1. Stated as a formula,

 dfBetween = NGroups - 1 (9-3)

In the criminal record example, the three means are 8, 4, and 5. The figur-
ing of S2

M is shown in Table 9-4.

grand mean (GM) overall mean of all 
the scores, regardless of what group they 
are in; when group sizes are equal, mean 
of the group means.

The within-groups population 
variance estimate is the sum 
of the population variance 
estimates based on each 
sample, divided by the 
number of groups.

The estimated variance of the 
distribution of means is the 
sum of each sample mean’s 
squared deviation from the 
grand mean, divided by the 
degrees of freedom for  
the between-groups population 
variance estimate.

The degrees of freedom 
for the between-groups 
population variance estimate 
is the number of groups 
minus 1.
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 ●B Figure the estimated variance of the population of individual scores: Multiply 
the variance of the distribution of means by the number of scores in each group.

What we just figured in Step ●A, from a sample of a few means, is the estimated 
variance of a distribution of means. From this we want to estimate the variance of 
the population (the distribution of individuals) on which the distribution of means 
is based. We saw in Chapter 5 that the variance of a distribution of means is smaller 
than the variance of the population (the distribution of individuals) that it is based 
on. This is because means are less likely to be extreme than are individual scores 
(because any one sample is unlikely to include several scores that are extreme in the 
same direction). Specifically, you learned in Chapter 5 that the variance of a distri-
bution of means is the variance of the distribution of individual scores divided by 
the number of scores in each sample.

Now, however, we are going to reverse what we did in Chapter 5. In Chapter 5 
you figured the variance of the distribution of means by dividing the variance of the 
distribution of individuals by the sample size. Now you are going to figure the vari-
ance of the distribution of individuals by multiplying the variance of the distribution 
of means by the sample size (see Table 9-5). That is, to come up with the variance 
of the population of individuals, you multiply your estimate of the variance of the 
distribution of means by the sample size in each of the groups. The result of all this 
is the between-groups variance estimate. Stated as a formula (for when sample sizes 
are equal),

 S2
Between or MSBetween = S2

M1n2 (9-4)

In this formula, S2
Between or MSBetween is the estimate of the population variance 

based on the variation between the means (the between-groups population variance 
estimate). n is the number of participants in each sample.

Let’s return to our example in which there were five participants in each  sample 
and an estimated variance of the distribution of means of 4.34. In this example, 

S2
Between or MSBetween between-groups 

estimate of the population variance.

Table 9-4  Estimated Variance of the Distribution of Means Based on Means of the Three 

Experimental Groups in the Criminal Record Study (Fictional Data)

Sample Means
Deviation from  

Grand Mean
Squared Deviation  
from Grand Mean

(M) 1M - GM2 1M - GM22
4 -1.67 2.79

8 2.33 5.43

5 - .67 .45

g       17 8.67

GM = 1gM2>NGroups = 17>3 = 5.67; S2
M = g1M - GM22>dfBetween = 8.67>2 = 4.34

The between-groups 
population variance estimate 
(or mean squares between) 
is the estimated variance of 
the distribution of means 
multiplied by the number of 
scores in each group.

Table 9-5  Comparison of Figuring the Variance of a Distribution of Means 

from the Variance of a Distribution of Individuals, and the Reverse

• From distribution of individuals to distribution of means: S2
M = S2>n

• From distribution of means to distribution of individuals: S2 = 1S2
M21n2
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 multiplying 4.34 by 5 gives a between-groups population variance estimate of 21.70. 
In terms of the formula,

S2
Between or MSBetween = 1S2

M21n2 = 14.342152 = 21.70

Figuring the F Ratio
The F ratio is the ratio of the between-groups to the within-groups estimate of the 
population variance. Stated as a formula,

 F =
S2

Between

S2
Within

 or 
MSBetween

MSWithin
 (9-5)

In the example, the ratio of between to within is 21.70 to 5.33. Carrying out the 
division gives an F ratio of 4.07. In terms of the formula,

F =
S2

Between

S2
Within

 or 
MSBetween

MSWithin
=

21.70

5.33
= 4.07

The F Distribution
You are not quite done. You still need to find the cutoff for the F ratio that is large 
enough to reject the null hypothesis. This requires a distribution of F ratios that you 
can use to figure out what is an extreme F ratio.

In practice, you simply look up the needed cutoff on a table (or read the 
exact significance from the computer output). To understand where that number 
on the table comes from, you need to understand the F distribution. The easiest 
way to understand this distribution is to think about how you would go about 
making one.

Start with three identical populations. Next, randomly select five scores from 
each. Then, on the basis of these three samples (of five scores each), figure the  
F ratio. (That is, use these scores to make a within-groups estimate and a between-
groups estimate, then divide the between estimate by the within estimate.) Let’s say 
that you do this and the F ratio you come up with is 1.36. Now you select three new 
random samples of five scores each and figure the F ratio using these three samples. 
Perhaps you get an F of .93. If you do this whole process many, many times, you 
will eventually get a lot of F ratios. The distribution of all possible F ratios figured 
in this way (from random samples from identical populations) is called the F distri-
bution. Figure 9-3 shows an example of an F distribution. (There are many different 
F distributions, and each has a slightly different shape. The exact shape depends on 
how many samples you take each time and how many scores are in each sample. 
The general shape is like that shown in the figure.)

No one actually goes about making F distributions in this way. It is a mathemat-
ical distribution whose exact characteristics can be found from a formula. Statisti-
cians can also prove that the formula gives exactly the same result as if you had the 
patience to follow this procedure of taking random samples and figuring the F ratio 
of each for a very long time.

As you can see in Figure 9-3, the F distribution is not symmetrical but has a 
long tail on the right. The reason for the positive skew is that an F distribution is a 
distribution of ratios of variances. Variances are always positive numbers. (A vari-
ance is an average of squared deviations, and anything squared is a positive num-
ber.) A ratio of a positive number to a positive number can never be less than 0. Yet 
there is nothing to stop a ratio from being a very high number. Thus, the F ratio’s 

The F ratio is the between-
groups population variance 
estimate (or mean squares 
between) divided by the 
within-groups population 
variance estimate (or mean 
squares within).

T I P  F O R  S U C C E S S
A very common mistake when 
figuring the F ratio is to turn 
the formula upside down. Just 
remember that it is as simple as 
Black and White, so it is Between 
divided by Within.
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distribution cannot be lower than 0 and can rise quite high.1 (Most F ratios pile up 
near 1, but they spread out more on the positive side, where they have more room to 
spread out.)

The F Table
The F table is a little more complicated than the t table. This is because there is a dif-
ferent F distribution according to both the degrees of freedom used in the between-
groups variance estimate and the degrees of freedom used in the within-groups 
variance estimate. That is, you have to take into account two different degrees 
of freedom to look up the needed cutoff. One is the between-groups degrees of 
freedom. It is also called the numerator degrees of freedom. This is the degrees 
of freedom you use in the between-groups variance estimate, the numerator of the 
F ratio. As shown earlier in Formula 9-3, the degrees of freedom for the between-
groups population variance estimate is equal to the number of groups minus 1 1dfBetween = NGroups - 12.

The other type of degrees of freedom is the within-groups degrees of free-
dom, also called the denominator degrees of freedom. This is the sum of the degrees 
of freedom from each sample you use when figuring out the within-groups variance 
estimate, the denominator of the F ratio.

Stated as a formula,

 dfWithin = df1 + df2 + c + dfLast (9-6)

In the criminal record study example, the between-groups degrees of freedom is 2. 
(There are 3 means, minus 1.) In terms of the formula,

dfBetween = NGroups - 1 = 3 - 1 = 2

between-groups (or numerator) 
degrees of freedom 1dfBetween2 
degrees of freedom used in the between-
groups estimate of the population 
variance in an analysis of variance (the 
numerator of the F ratio); number of 
scores free to vary (number of means 
minus 1) in figuring the between-groups 
estimate of the population variance.

within-groups (or denominator) 
degrees of freedom 1dfWithin2 
degrees of freedom used in the within-
groups estimate of the population 
variance in an analysis of variance, 
denominator of the F ratio; number of 
scores free to vary (number of scores in 
each group minus 1, summed over all 
the groups) in figuring the within-groups 
population variance estimate.

10 2 3 4 5

Figure 9-3 An F distribution.

The degrees of freedom for 
the within-groups population 
variance estimate is the sum 
of the degrees of freedom 
used in making estimates of 
the population variance from 
each sample.
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The within-groups degrees of freedom is 12. This is because each of the groups 
has 4 degrees of freedom on which the estimate is based (5 scores minus 1) and there 
are 3 groups overall, making a total of 12 degrees of freedom. In terms of the formula,

 dfWithin = df1 + df2 + c + dfLast = 15 - 12 + 15 - 12 + 15 - 12
 = 4 + 4 + 4 = 12

You would look up the cutoff for an F distribution “with 2 and 12” degrees of 
freedom. As shown in Table 9-6, for the .05 level, you need an F ratio of 3.89 to 
reject the null hypothesis. (The full F table is Table A-3 in the Appendix.)

How are you doing?

For part (c) of each question, use the following scores involving three samples: 
The scores in Sample A are 5 and 7 1M = 62, the scores in Sample B are 6 and 9 
1M = 7.52, and the scores in Sample C are 8 and 9 1M = 8.52.
 1. (a) Write the formula for the within-groups population variance estimate and 

(b) define each of the symbols. (c) Figure the within-groups population vari-
ance estimate for these scores.

 2. (a) Write the formula for the variance of the distribution of means when using it 
as part of an analysis of variance and (b) define each of the symbols. (c) Figure 
the variance of the distribution of means for these scores.

 3. (a) Write the formula for the between-groups population variance estimate 
based on the variance of the distribution of means and (b) define each of the 
symbols and explain the logic behind this formula. (c) Figure the between-
groups population variance estimate for these scores.

 4. (a) Write the formula for the F ratio and (b) define each of the symbols and 
explain the logic behind this formula. (c) Figure the F ratio for these scores.

Table 9-6  Selected Cutoffs for the F  Distribution (with Values Highlighted for the Criminal 

Record Study)

Denominator 
Degrees of 
Freedom

Significance  
Level Numerator Degrees of Freedom

1 2 3 4 5 6

10 .01 10.05 7.56 6.55 6.00 5.64 5.39

.05 4.97 4.10 3.71 3.48 3.33 3.22

.10 3.29 2.93 2.73 2.61 2.52 2.46

11 .01 9.65 7.21 6.22 5.67 5.32 5.07

.05 4.85 3.98 3.59 3.36 3.20 3.10

.10 3.23 2.86 2.66 2.54 2.45 2.39

12 .01 9.33 6.93 5.95 5.41 5.07 4.82

.05 4.75 3.89 3.49 3.26 3.11 3.00

.10 3.18 2.81 2.61 2.48 2.40 2.33

13 .01 9.07 6.70 5.74 5.21 4.86 4.62

.05 4.67 3.81 3.41 3.18 3.03 2.92

.10 3.14 2.76 2.56 2.43 2.35 2.28

Note: Full table is Table A-3 in the Appendix.

2.812.81

6.706.70

3.813.81

2.762.76

22

7.567.56

4.104.10

2.932.93

7.217.21

3.983.98

2.862.86

6.936.93

3.493.49 3.263.26 3.113.11 3.003.00.05.05 4.754.75 3.893.89
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 5. (a) Write the formulas for the between-groups and within-groups degrees of 
freedom and (b) define each of the symbols. (c) Figure the between-groups 
and within-groups degrees of freedom for these scores.

 6. (a) What is the F distribution? (b) Why is it skewed to the right? (c) What is the 
cutoff F for these scores for the .05 significance level?

Answers

 1. (a) Formula for the within-groups population variance estimate:

S2
Within = 1S2

1 + S2
2 +

g
+ S2

Last2>1NGroups2.
(b) S2

Within is the within-groups population variance estimate; S2
1 is the estimated 

population variance based on the scores in the first group (Sample A); S2
2 is the 

estimated population variance based on the scores in the second group; S2
Last 

is the estimated population variance based on the scores in the last group; the 
dots show that you are to fill in a population variance estimate for as many other 
groups as there are in the analysis; NGroups is the number of groups.
(c) Figuring for the within-groups population variance estimate: 

S2
1 = [15 - 622 + 17 - 6224>12 - 12 = 11 + 12>1 = 2; 

S2
2 = 316 - 7.522 + 19 - 7.5224>12 - 12 = 12.25 + 2.252>1 = 4.5; 

S2
3 = 318 - 8.522 + 19 - 8.5224>12 - 12 = 1.25 + .252>1 = .5; 

S2
Within = 1S2

1 + S2
2 + c+ S2

Last2>NGroups = 12 + 4.5 + .52>3 = 7>3 = 2.33.
 2. (a) Formula for the variance of the distribution of means when using it as part 

of an analysis of variance: S2
M = g1M - GM22>dfBetween.

(b) S2
M is the estimated variance of the distribution of means (estimated 

based on the means of the samples in your study). M is the mean of each 
of your samples. GM is the grand mean, the overall mean of all your scores, 
which is also the mean of your means. dfBetween is the degrees of freedom in 
the between-groups estimate, the number of groups minus 1.
(c) Grand mean (GM) is 16 + 7.5 + 8.52>3 = 7.33.

 S2
M = g1M - GM22>dfBetween

 = [16 - 7.3322 + 17.5 - 7.3322 + 18.5 - 7.33224>3 - 1
  = 11.77 + .03 + 1.372>2 = 3.17>2 = 1.59.

 3. (a) Formula for the between-groups population variance estimate based on 
the variance of the distribution of means: S2

Between = 1S2
M21n2.

(b) S2
Between is the between-groups population variance estimate; S2

M is the 
estimated variance of the distribution of means (estimated based on the 
means of the samples in your study); n is the number of participants in each 
sample. The goal is to have a variance of a distribution of individuals based 
on the variation among the means of the groups. S2

M is the estimate of the 
variance of a distribution of means from the overall population based on the 
means of the samples. To go from the variance of a distribution of means to 
the variance of a distribution of individuals, you multiply by the size of each 
sample. This is because the variance of the distribution of means is always 
smaller than the distribution of individuals (because means of samples are 
less likely to be extreme than are individual scores); the exact relation is that 
the variance of distribution of means is the variance of the distribution of indi-
viduals divided by the sample size; thus you reverse that process here.
(c) S2

Between = 1S2
M21n2= 11.592122= 3.18.

 4. (a) Formula for the F ratio: F = S2
Between>S2

Within.
(b) F is the F ratio; S2

Between is the between-groups population variance esti-
mate; S2

Within is the within-groups population variance estimate. The null 
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Hypothesis Testing with the Analysis of Variance
Here are the five steps of hypothesis testing for the criminal record study. The distri-
butions involved are shown in Figure 9-4.

 ❶ Restate the question as a research hypothesis and a null hypothesis about 
the populations. There are three populations:

Population 1: Jurors told that the defendant has a criminal record.
Population 2: Jurors told that the defendant has a clean record.
Population 3: Jurors given no information about the defendant’s record.

  The null hypothesis is that these three populations have the same mean 1�1 = �2 = �32. The research hypothesis is that the populations’ means are not 
the same.

 ❷ Determine the characteristics of the comparison distribution. The compari-
son distribution is an F distribution with 2 and 12 degrees of freedom.

 ❸ Determine the cutoff sample score on the comparison distribution at which 
the null hypothesis should be rejected. Using the F table for the .05 signifi-
cance level, the cutoff F ratio is 3.89.

  Determine your sample’s score on the comparison distribution. In the analy-
sis of variance, the comparison distribution is an F distribution, and the sample’s 
score on that distribution is thus its F ratio. In the example, the F ratio was 4.07.

hypothesis is that all the samples come from populations with the same mean. 
If the null hypothesis is true, the F ratio should be about 1. This is because the 
two population variance estimates are based on the same thing, the variation 
within each of the populations (due to chance factors). If the research hypothe-
sis is true, so that the samples come from populations with different means, the  
F ratio should be larger than 1. This is because the between-groups estimate 
is now influenced by the variation both within the populations (due to chance 
factors) and among them (due to a treatment effect). But the within-groups 
estimate is still affected only by the variation within each of the populations.
(c) F = S2

Between>S2
Within = 3.18>2.33 = 1.36.

 5. (a) Formulas for the between-groups and within-groups degrees of freedom: 
dfBetween = NGroups - 1 and dfWithin = df1 + df2 + c + dfLast.
(b) dfBetween is the between-groups degrees of freedom; NGroups is the num-
ber of groups; dfWithin is the within-groups degrees of freedom; df1 is the 
degrees of freedom for the population variance estimate based on the scores 
in the first sample; df2 is the degrees of freedom for the population variance 
estimate based on the scores in the second sample; dfLast is the degrees of 
freedom for the population variance estimate based on the scores in the last 
sample; the dots show that you are to fill in the population degrees of free-
dom for as many other samples as there are in the analysis.
(c) dfBetween = NGroups - 1 = 3 - 1 = 2; dfWithin = df1 + df2 + c + dfLast =
1 + 1 + 1 = 3.

 6. (a) The F distribution is the distribution of F ratios you would expect by chance. 
(b) F ratios, because they are a ratio of variances (which as averages of squared 
numbers have to be positive), are ratios of two positive numbers, which always 
have to be positive. Thus, they can’t be less than 0. But there is no limit to how 
high an F ratio can be. Thus, the scores bunch up at the left (near 0) and spread 
out to the right. (c) Cutoff F for the .05 significance level: 9.55.
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 ❺ Decide whether to reject the null hypothesis. In the example, the F ratio of 
4.07 is more extreme than the .05 significance level cutoff of 3.89. Thus, the re-
searcher would reject the null hypothesis that the three groups come from popu-
lations with the same mean. This suggests that they come from populations with 
different means: that people exposed to different kinds of information (or no 
information) about the criminal record of a defendant in a situation of this kind 
will differ in their ratings of the defendant’s guilt.

You may be interested to know that several real studies have looked at whether 
knowing a defendant’s prior criminal record affects the likelihood of conviction 
(Steblay et al., 2006). The overall conclusion seems to be reasonably consistent with 
that of the fictional study described here.

Another Example
Mikulincer (1998) conducted a series of studies in Israel using the same attachment 
style classification measure we discussed earlier in the chapter (see Table 9-1). One 
of his studies included 30 university students (10 of each attachment style), all of 
whom were in serious romantic relationships. As part of the study, each evening the 
students wrote down whether during that day their partner had done something to 
violate their trust. Participants noted such events as the partner being very late for a 

1 3 5 7 9 11 1 3 5 7 9 11

Criminal Record Group Clean Record Group No Information Group

F(2, 12) Distribution

0 1 2 3 4 5 6
F ratio

4.07 = F based on samples 

Population distributions are assumed to be normal and to have the same variance. They have either
the same means (null hypothesis is true) or different means (research hypothesis is true).

F distribution of ratios comparing
variances of this number of groups with
their respective number of scores
(adjusted—i.e., as degrees of freedom)

5% of Area

Distributions of samples

1 3 5 7 9 11

3.89 = F cutoff

Figure 9-4 Distributions involved in the criminal record study example (fictitious data).
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promised meeting or “forgetting” to tell the participant about some important plan. 
The results, along with the analysis of variance figuring, are shown in Table 9-7. The 
distributions involved are shown in Figure 9-5. The steps of the hypothesis  testing 
follow.

 ❶ Restate the question as a research hypothesis and a null hypothesis about 
the populations. There are three populations.

Population 1: Students with a secure attachment style.
Population 2: Students with an avoidant attachment style.
Population 3: Students with an anxious-ambivalent attachment style.

The null hypothesis is that these three populations have the same mean 1�1 = �2 = �32. The research hypothesis is that their means are not the same.
 ❷ Determine the characteristics of the comparison distribution. The compari-

son distribution will be an F distribution. Its degrees of freedom are figured as 
follows: the between-groups variance estimate is based on three groups, making 
2 degrees of freedom. The within-groups estimate is based on 9 degrees of free-
dom (10 participants) in each of the three groups, making a total of 27 degrees 
of freedom.

Table 9-7  Number of Trust Violation Events by Romantic Partners Over 3 Weeks Reported 

by Individuals of Three Attachment Styles

Attachment Style

Secure Avoidant Anxious-Ambivalent

n 10 10 10

M 2.10 3.70 4.20

S 1.66 1.89 1.93

S2 2.76 3.57 3.72

F distribution:

 dfBetween = NGroups - 1 = 3 - 1 = 2

 dfWithin = df1 + df2 +
g

+ dfLast = 110 - 12 + 110 - 12 + 110 - 12 = 9 + 9 + 9 = 27

F needed for significance at .05 level from F  table, df = 2, 27: 3.36

Between-groups population variance estimate:

Table for finding S2 for the three means

M Deviation Squared Deviation

Secure 2.10 -1.23 1.51

Avoidant 3.70 .37 .14

Anxious-Ambivalent  4.20 .87  .76

g : 10.00 g1M - GM22: 2.41

GM: 3.33

S2
M = g1M - GM22>dfBetween = 2.41>2 = 1.205

S2
Between or MSBetween = 1S2

M21n2 = 11.20521102 = 12.05

Within-groups population variance estimate:

S2
Within or MSWithin =

S2
1 + S2

2 +
g

+ S 2
Last

Ngroups
=

2.76 + 3.57 + 3.72
3

=
10.05

3
= 3.35

F ratio: F = S2
Between>S2

Within or MSBetween>MSWithin = 12.05>3.35 = 3.60

Decision: Reject the null hypothesis.

Source: Data from Mikulincer (1998).
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 ❸ Determine the cutoff sample score on the comparison distribution at which 
the null hypothesis should be rejected. Using Table A-3 in the Appendix, 
look down the column for 2 degrees of freedom in the numerator and stop at the 
row for our denominator degrees of freedom of 27. We will use the .05 signifi-
cance level. This gives a cutoff F of 3.36.

 ❹ Determine your sample’s score on the comparison distribution. This step 
requires determining the sample’s F ratio. You find the between-groups vari-
ance estimate (the numerator of the F ratio) in two steps.
●A Estimate the variance of the distribution of means: Add up the sample 

means’ squared deviations from the grand mean, and divide by the number of 
means minus 1. From Table 9-7, this comes out to 1.205.

●B Figure the estimated variance of the population of individual scores: 
Multiply the variance of the distribution of means by the number of scores in 
each group. From Table 9-7, this comes out to 12.05.

  You find the within-groups variance estimate (the denominator of the F ratio) 
in two steps.

●A Figure population variance estimates based on each group’s scores: As 
shown in Table 9-7, the population variance estimates are 2.76, 3.57, and 3.72.

Secure Avoidant Anxious-Ambivalent

F(2, 27) Distribution

0 1 2 3 4 5 6
F ratio

3.60 = F based on samples 

Population distributions are assumed to be normal and to have the same variance. They have either
the same means (null hypothesis is true) or different means (research hypothesis is true).

F distribution of ratios comparing
variances of this number of groups with
their respective number of scores
(adjusted—i.e., as degrees of freedom)

5% of Area

Distributions of samples

S2 = 2.76

2.10

S2 = 3.57

3.70

S2 = 3.72

4.20

3.36 = F cutoff

Figure 9-5 Distributions involved in the attachment style example. (Source: Data from 
Mikulincer, 1998.)
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●B Average these variance estimates: The average of 2.76, 3.57, and 3.72 
comes out to 3.35. The F ratio is the between-groups variance estimate 
divided by the within-groups variance estimate, which comes out to 3.60 
(that is, 12.05>3.35 = 3.60).

 ❺ Decide whether to reject the null hypothesis. The F ratio of 3.60 is more 
extreme than the .05 significance level cutoff F of 3.36. Therefore, Mikulincer 
(1998) rejected the null hypothesis. He was able to conclude that students hav-
ing the three attachment styles differ in the number of trust violations by their 
romantic partners they reported over a 3-week period. This conclusion was con-
sistent with Mikulincer’s hypotheses based on attachment theory.

Summary of Steps for Hypothesis Testing  
with the Analysis of Variance
Table 9-8 summarizes the steps of an analysis of variance of the kind we have been 
considering in this chapter.

Assumptions in the Analysis of Variance
The assumptions for the analysis of variance are basically the same as for the t test 
for independent means. That is, the cutoff F ratio from the table (or the exact p level 
from the computer output) is strictly accurate only when the populations follow a 
normal curve and have equal variances. As with the t test, in practice the cutoffs are 
reasonably accurate even when your populations are moderately far from normal 

Table 9-8 Steps for the Analysis of Variance (When Sample Sizes Are Equal)

❶ Restate the question as a research hypothesis and a null hypothesis about the populations.

❷ Determine the characteristics of the comparison distribution.
a. The comparison distribution is an F distribution.
b. The between-groups (numerator) degrees of freedom is the number of groups minus 1: 

dfBetween = NGroups - 1.
c. The within-groups (denominator) degrees of freedom is the sum of the degrees of freedom in each  

group (the number in the group minus 1):

dfWithin = df1 + df2 +
g

+ dfLast.

❸ Determine the cutoff sample score on the comparison distribution at which the null hypothesis 
should be rejected.
a. Decide the significance level.

b. Look up the appropriate cutoff in an F table, using the degrees of freedom from Step ❷.

❹ Determine your sample’s score on the comparison distribution. This will be an F ratio.
a. Figure the between-groups population variance estimate 1S2

Between or MSBetween2. 
Figure the means of each group.

●A Estimate the variance of the distribution of means: S2
M = g1M - GM22>dfBetween.

●B Figure the estimated variance of the population of individual scores:

S2
Between or MSBetween = 1S2

M21n2
b. Figure the within-groups population variance estimate 1S2

Within or MSWithin2.
●A Figure population variance estimates based on each group’s scores: For each group,

S2 = g1X - M22>1n - 12 = SS>df.
●B Average these variance estimates:

S2
Within or MSWithin = 1S2

1 + S2
2 +

g
+ S2

Last2>NGroups.

c. Figure the F ratio: F = S2
Between>S2

Within or F = MSBetween>MSWithin.

❺ Decide whether to reject the null hypothesis: Compare the scores from Steps ❸ and .
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and have moderately different variances. As a general rule, if the variance estimate 
of the group with the largest estimate is no more than four or five times that of the 
smallest and the sample sizes are equal, the conclusions using the F distribution 
should be adequately accurate. In Chapter 14, we consider what to do when your 
populations are a long way from meeting these assumptions. As with the t test for 
independent means, the type of analysis of variance you are learning about in this 
chapter assumes that all of the scores in the groups are independent from each other 
(that is, none of the scores within each group or across the groups are paired or 
matched in any way).

How are you doing?

 1. A study compares the effects of three experimental treatments, A, B, and C, by 
giving each treatment to 16 participants and then assessing their performance on 
a standard measure. The results on the standard measure are as follows. Treat-
ment A group: M = 20, S2 = 8; Treatment B group: M = 22, S2 = 9; Treatment C 
group: M = 18, S2 = 7. Using the .01 significance level, do the three experimental 
treatments create any difference among the populations these groups represent? 
(a) Use the steps of hypothesis testing and (b) sketch the distributions involved.

 2. Give three assumptions for the analysis of variance.
 3. Why do we need the equal variance assumption?
 4. What is the general rule about when violations of the equal variance assump-

tion are likely to lead to serious inaccuracies in results?

Answers
 1. (a) Steps of hypothesis testing:

❶ Restate the question as a research hypothesis and a null hypoth-

esis about the populations. There are three populations.

Population 1: People given experimental treatment A.
Population 2: People given experimental treatment B.
Population 3: People given experimental treatment C.

 The null hypothesis is that these three populations have the same mean 
1�1 = �2 = �32. The research hypothesis is that their means are not the 
same.

❷ Determine the characteristics of the comparison distribution. The 
comparison distribution will be an F distribution. Its degrees of free-
dom are figured as follows: The between-groups variance estimate 
is based on three groups, making 2 degrees of freedom. The within-
groups estimate is based on 15 degrees of freedom (16 participants) in 
each of the three groups, making 45 degrees of freedom.

❸ Determine the cutoff sample score on the comparison distribution 

at which the null hypothesis should be rejected. Using Table A-3 
in the Appendix, the cutoff F for numerator df = 2 and denominator 
df = 45 at the .01 significance level is 5.11.

❹ Determine your sample’s score on the comparison distribution.

(a) Figure the between-groups population variance estimate 1S2
Between2: 

First, figure the mean of each group. The group means are 20, 22, 
and 18.
●A Estimate the variance of the distribution of means: Add up 

the sample means’ squared deviations from the grand mean and 
divide by the number of means minus 1:

 S2
M = 3120 - 2022 + 122 - 2022 + 118 - 20242>13 - 12

 = 10 + 4 + 42>2 = 4
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●B Figure the estimated variance of the population of individual 

scores: Multiply the variance of the distribution of means by the 
number of scores in each group.

S2
Between = 1421162= 64

(b) Figure the within-groups population variance estimate 1S2
Within2:

●A Figure population variance estimates based on each group’s 

scores: Treatment A group, S2 = 8; Treatment B group, S2 = 9; 
Treatment C group, S2 = 7.

●B Average these variance estimates: S2
Within = 18 + 9 + 72>3 = 8.

 The F ratio is the between-groups estimate divided by the 
within-groups estimate: F = 64>8 = 8.00.

❺ Decide whether to reject the null hypothesis. The F of 8.00 is more ex-
treme than the .01 cutoff F of 5.11. Therefore, reject the null hypothesis. 
The research hypothesis is supported; the different experimental treat-
ments do produce different effects on the standard performance measure.

  (b) The distributions involved are shown in Figure 9-6.
 2. The assumptions for the analysis of variance are that the populations are 

assumed each to be normally distributed with equal variances and the scores 
are independent of each other.

 3. We need the equal variance assumption to be able to justify averaging the estimates 
from each sample into an overall within-groups population variance estimate.

 4. The analysis can lead to inaccurate results when the variance estimate from 
the group with the largest estimate is more than four or five times the small-
est variance estimate.

Treatment A Treatment B Treatment C

F(2, 45) Distribution

0 1 2 3 4 5 6
F ratio

8.00 = F based on
           samples 

Population distributions are assumed to be normal and to have the same variance. They have either
the same means (null hypothesis is true) or different means (research hypothesis is true).

F distribution of ratios comparing
variances of this number of groups with
their respective number of scores
(adjusted—i.e., as degrees of freedom)

1% of Area

Distributions of samples

7
5.11 = F cutoff

S2 = 8

20

S2 = 9

22

S2 = 7

18

Figure 9-6 Distributions for “How are you doing?” question 1.
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Planned Contrasts
When you reject the null hypothesis in an analysis of variance, this implies that the 
population means are not all the same. What is not clear, however, is which popula-
tion means differ from which. For example, in the criminal record study, the Crimi-
nal Record group jurors had the highest ratings for the defendant’s guilt 1M = 82; 
the No Information group jurors, the second highest 1M = 52; and the Clean Record 
group jurors, the lowest 1M = 42. From the analysis of variance results, we con-
cluded that the true means of the three populations these groups represent are not all 
the same. (That is, the overall analysis of variance was significant.) However, we 
do not know which populations’ means are significantly different from each other.

In practice, in most research situations involving more than two groups, our 
real interest is not in an overall, or omnibus, difference among the several groups, 
but rather in more specific comparisons. For example, in the criminal record study, 
the researchers’ prediction in advance would probably have been that the Criminal 
Record group would rate the defendant’s guilt higher than both the No Information 
group and the Clean Record group. If, in fact, the researchers had made such predic-
tions, these predictions would be examples of what are called planned contrasts. 
(They are called “contrasts” because they contrast the results from specific groups.)

Researchers use planned contrasts to look at some particular, focused differ-
ences between groups that directly follow from a theory or that are related directly 
to some practical application. Planned contrasts are also sometimes called a priori 
comparisons because they have been planned in advance (a priori) of the study. 
They may also be called planned comparisons because they were planned in 
advance. Finally, a general name you may see for most contrasts you would figure 
(whether planned in advance or not) is linear contrasts.

Figuring Planned Contrasts
The procedure to compare the means of a particular pair of groups is a direct exten-
sion of what you already know: figure a between-groups population variance esti-
mate, a within-groups population variance estimate, and an F.

The within-groups population variance estimate will be the same as for the overall 
analysis of variance. This is because, regardless of the particular groups you are compar-
ing, you are still assuming that all groups are from populations with the same variance. 
Thus, your best estimate of that variance is the one that makes use of the information from 
all the groups, the average of the population variance estimates from each of the samples.

The between-groups population variance estimate, however, in a planned con-
trast is different from the between-groups variance estimate in the overall analysis. 
It is different because in a planned contrast you are interested in the variation only 
between a particular pair of means. Specifically, in a planned contrast between two 
group means, you figure the between-groups population variance estimate with the 
usual two-step procedure, but using just the two means of interest.2

Once you have the two variance estimates for the planned contrast, you figure 
the F in the usual way, and compare it to a cutoff from the F table based on the df 
that go into the two estimates, which are the same as the overall analysis for dfWithin 
and are usually exactly 1 for dfBetween (because the between estimate is based on two 
means, and 2 - 1 = 1).

An Example
Consider the planned contrast of the Criminal Record group 1M = 82 to the No 
Information group 1M = 52.

planned contrast comparison 
in which the particular means to be 
compared were decided in advance.  
Also called planned comparison.
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The within-groups population variance estimate for a planned contrast is always 
the same as the within-groups estimate from the overall analysis: In the criminal 
record example S2

Within was 5.33.
For the between-groups population variance estimate, you follow the usual two-

step procedure, but using only the two means you plan to compare.

 ●A Estimate the variance of the distribution of means: Add up the sample 
means’ squared deviations from the grand mean and divide by the number of 
means minus 1. The grand mean for these two means would be 6.5 [that is, 
(8 + 5)>2 = 6.5] and dfBetween when there are two means being compared is 
2 - 1 = 1. Thus,

 S2
M = g1M - GM22>dfBetween = 318 - 6.522 + 15 - 6.5224>1

 = 31.52 + 1-1.5224>1 = 2.25 + 2.25 = 4.5.

 ●B Figure the estimated variance of the population of individual scores: Mul-
tiply the variance of the distribution of means by the number of scores in each 
group. There are five scores in each group in this study. Thus,

S2
Between = 1S2

M21n2 = 14.52152 = 22.5

  Thus, for this planned contrast, F = S2
Between>S2

Within = 22.5>5.33 = 4.22. The 
.05 cutoff F for df = 1, 12 is 4.75. Thus, the planned contrast is not significant. 
You can conclude that the three means differ overall (from the original analysis 
of variance, which was significant), but you cannot conclude specifically that 
the Criminal Record condition makes a person rate guilt differently from being 
in the No Information condition.

A Second Example
What about the other planned contrast of the Criminal Record Group 1M = 82 to the 
Clean Record group 1M = 42?

For the between-groups population variance estimate,

 ●A Estimate the variance of the distribution of means: Add the sample 
means’ squared deviations from the grand mean and divide by the number of 
means minus 1. The grand mean for these two means is 18 + 42>2 = 6.0 and 
dfBetween = 2 - 1 = 1. Thus,

S2
M = 318 - 6.022 + 14 - 6.0224>1 = 32.02 + 1-2.022]>1 = 4.0 + 4.0 = 8.0

 ●B Figure the estimated variance of the population of individual scores: Mul-
tiply the variance of the distribution of means by the number of scores in each 
group:

S2
Between = 1S2

M21n2 = 182152 = 40.0

The within-groups estimate, again, is the same as we figured for the overall 
analysis—5.33.

Thus, F = S2
Between>S2

Within = 40.0>5.33 = 7.50. This F of 7.50 is larger than 
4.75 (the .05 cutoff F for df = 1, 12), which means that the planned contrast is sig-
nificant. Thus, you can conclude that the Criminal Record condition makes a person 
rate guilt differently from the Clean Record condition.
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The Bonferroni Procedure
There is a problem when you carry out several planned contrasts. Normally, when you 
set the .05 significance level, this means you have selected a cutoff so extreme that 
you have only a .05 chance of getting a significant result if the null hypothesis is true. 
However, with multiple contrasts, if you use the .05 cutoff, you can actually have much 
more than a .05 chance of getting a significant result if the null hypothesis is true!

The reason is this: if you are making several contrasts (comparisons), each at the 
.05 level, the chance of any one of them coming out significant is more than .05. (It 
is like flipping coins. If you flip any one coin, it has only a 50% chance of coming up 
heads. But if you flip five coins, there is a lot better than 50% chance at least one of 
them will come up heads.) In fact, if you make two contrasts, each at the .05 signifi-
cance level, there is about a .10 chance that at least one will come out significant just by 
chance (that is, that at least one would come out significant even if the null hypothesis 
is true). If you make three planned contrasts at the .05 level, there is about a .15 chance.

A widely used approach for dealing with this problem with planned contrasts 
is the Bonferroni procedure. (It is also known as Dunn’s test.) The idea of the 
Bonferroni procedure is that you use a more stringent significance level for each 
contrast. The result is that the overall chance of any one of the contrasts being mis-
takenly significant is still reasonably low. For example, if each of two planned con-
trasts used the .025 significance level, the overall chance of any one of them being 
mistakenly significant would still be less than .05. (That is, .05>2 = .025.) With 
three planned contrasts, you could use the .017 level 1.05>3 = .0172.

The general principle is that the Bonferroni corrected cutoff you use is the true 
significance level you want divided by the number of planned contrasts. Thus, if 
you want to test your hypothesis at the .01 level and you will make three planned 
contrasts, you would test each planned contrast using the .0033 significance level. 
That is, .01>3 = .0033.

If you are doing your analyses on a computer, it gives exact significance prob-
abilities as part of the output—that is, it might give a p of .037 or .0054, not just 
whether you are beyond the .05 or .01 level. However, if you are using tables, nor-
mally only the .01 or .05 cutoffs would be available. Thus, even though almost all 
researchers use computers for their analyses, this situation has led to some traditions 
that are still followed today. Specifically, for simplicity, when the Bonferroni cor-
rected cutoff might be .017 or even .025, researchers often use the .01 significance 
level. Also, if there are only two planned contrasts (or even three), it is common for 
researchers not to correct at all.

Bonferroni procedure multiple-
comparison procedure in which the total 
alpha percentage is divided among the 
set of comparisons so that each is tested 
at a more stringent significance level.

How are you doing?

 1. (a) What is a planned contrast? (b) Why do researchers make them?
 2. How is the procedure for figuring a planned contrast between two particular 

groups different from the overall analysis of variance?
 3. A study has three groups of 25 participants each in the overall analysis of 

variance, and S2
Within is 100. The researcher makes a single planned contrast 

between a group that has a mean of 10 and another group that has a mean of 16. 
Is it significant? (Use the .05 significance level.)

 4. (a) Why do researchers making multiple planned contrasts need to make the 
Bonferroni correction? (b) What is the principle of the Bonferroni correction?

 5. If a researcher is making four planned contrasts using the .05 significance 
level, what would be the Bonferroni corrected significance level?
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Post Hoc Comparisons
As we have noted, rejecting the null hypothesis in an analysis of variance implies 
that the population means are not all the same, but it does not tell you which popula-
tion means differ from which. As you learned in the preceding section on planned 
contrasts, researchers often plan specific comparisons based on theory or practical 
considerations. Sometimes, however, researchers take a more exploratory approach, 
for example, comparing all the different pairings of means to discover which ones 
do and do not differ significantly. (We call this making pairwise comparisons, 
because you are comparing all possible pairings of means.) That is, after the study 
is done, the researcher is fishing through the results to see which groups differ from 
each other. These are called post hoc comparisons (or a posteriori comparisons) 
because they are after the fact and not planned in advance.

In post hoc comparisons, all possible comparisons have to be taken into account 
when figuring the overall chance of any one of them turning out significant. Using 
the Bonferroni procedure for post hoc comparisons is safe, in the sense that you 
are confident you won’t get too many results significant by chance. But in post 
hoc comparisons there are often so many comparisons to consider that the overall 

post hoc comparisons multiple 
comparisons, not specified in advance; 
procedure conducted as part of an 
exploratory analysis after an analysis of 
variance.

Answers

 1.  (a) A planned contrast is a focused comparison of two groups in an over-
all analysis of variance that the researcher planned in advance of the study 
based on a theory or practical issue.

  (b) Researchers make planned contrasts because they are more likely to be of 
theoretical or practical interest than the overall difference among means.

 2. The procedure for figuring a planned contrast between two particular groups 
is the same except that you make the between-groups estimate using only 
the means of the two groups being compared.

 3. The planned contrast is significant. For the between-groups population vari-
ance estimate for the planned contrast,
●A Estimate the variance of the distribution of means:

 GM = 110 + 162>2 = 13; dfBetween = 2 - 1 = 1.

 S2
M = 3110 - 1322 + 116 - 13242>1 = 18

●B Figure the estimated variance of the population of individual scores:

S2
Between = 11821252 = 450

The within-groups estimate is the same as the overall within-groups 
estimate, 100.

F = 450>100 = 4.5.

The cutoff for df = 1, 72 (actually 1, 70, since 1, 72 is not in the table) is 3.98.
You can reject the null hypothesis. The planned contrast is significant.

 4. (a) Researchers make a Bonferroni correction with multiple planned con-
trasts because the chance of any one coming out significant is greater than 
the direct significance level used.

  (b) To carry out a Bonferroni correction, you divide your overall desired true 
significance level by the number of contrasts. This way, the chance of any 
one of them coming out significant is taken into account.

 5. The Bonferroni corrected significance level is .05>4 = .0125.
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 significance level is divided into such a small number by the Bonferroni proce-
dure that getting any one comparison to come out significant would be a long shot. 
For example, with four groups, there are six possible pairs to compare; so using a 
 Bonferroni correction and an overall significance level of .05, you would have to 
test each comparison at .05/6 or .0083. If there are five groups, there are 10 possible 
comparisons; .05 overall becomes .005 for each comparison. And so forth. Thus, the 
power for any one comparison becomes very low.

Of course, you might think, “I’ll just test the pairs of means that have the big-
gest difference so that the number of comparisons won’t be so great.” Unfortu-
nately, this strategy won’t work. Since you did not decide in advance which pairs 
of means would be compared, when exploring after the fact, you have to take into 
account that any of the pairs might have been the biggest ones. So unless you made 
specific predictions in advance—and had a sound theoretical or practical basis for 
those  predictions—all the possible pairings have to be counted.

For this reason, statisticians have developed a variety of procedures to use in 
these fishing expeditions. These procedures attempt to keep the overall risk of a Type I  
error at some level like .05, while at the same time not too drastically reducing sta-
tistical power. You may see some of these referred to in articles you read, described 
by the names of their developers; the Scheffé test and Tukey test are the most widely 
used, with the Neuman-Keuls and Duncan procedures almost as common. Which 
procedure is best under various conditions remains a topic of dispute. You can learn 
the details about the possibilities and controversies in intermediate statistics.

The Scheffé Test
As a post hoc test, the Scheffé method has the advantage of being the most widely 
applicable method. We say that because it is the only one that can be used when 
you are making relatively simple comparisons (such as the ones we have consid-
ered in which two groups are being compared), as well as when you are making 
more complex comparisons (for example, comparing the average of two groups to 
a third group). Its disadvantage, however, is that, compared to the Tukey and other 
procedures, it is the most conservative. That is, for any given post hoc compari-
son, its chance of being significant using the Scheffé is usually still better than the 
 Bonferroni, but worse than the Tukey or any of the other post hoc contrasts.

To use the Scheffé test, you first figure the F for your comparison in the usual 
way. But then you divide that F by the overall study’s dfBetween (the number of groups 
minus 1). You then compare this much smaller F to the overall study’s F cutoff.

Here is an example. Recall that for the comparison of the Criminal Record 
group versus the No Information group, we figured an F of 4.22. Since the overall 
dfBetween in that study was 2 (there were three groups), for a Scheffé test, you would 
actually consider the F for this contrast to be an F of only 4.22>2 = 2.11. You would 
then compare this Scheffé corrected F of 2.11 to the cutoff F for the overall between 
effect (in this example, the F for df = 2, 12), which was 3.89. Thus, the comparison 
is not significant using the Scheffé test.

Scheffé test method of figuring the 
significance of post hoc comparisons 
that takes into account all possible 
comparisons that could be made.

How are you doing?

 1. (a) What are post hoc comparisons? (b) Why do researchers make them?
 2. (a) Why do researchers typically not use the Bonferroni procedure for post 

hoc comparisons?
  (b) What is the advantage over the Bonferroni procedure of procedures such 

as the Tukey and Scheffé tests?
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Effect Size and Power for the Analysis of Variance
Effect Size
Effect size for the analysis of variance is a little more complex than for a t test. 
With the t test, you took the difference between the two means and divided by the 
standard deviation. In the analysis of variance, you have more than two means; so it 
is not obvious just what is the equivalent to the difference between the means—the 
numerator in figuring effect size.3 Thus, in this section we consider a quite different 
approach to effect size, the proportion of variance accounted for 1R22.

To be precise, R2 is the proportion of the total variation of scores from the 
grand mean that is accounted for by the variation between the means of the groups. 
(In other words, you consider how much of the variance in the measured variable— 
such as ratings of guilt—is accounted for by the variable that divides up the groups—
such as what experimental condition one is in.) In terms of a formula,

 R2 =
1S2

Between21dfBetween2
1S2

Between21dfBetween2 + 1S2
Within21dfWithin2 (9-7)

proportion of variance accounted for 
1R22 proportion of the total variation 
of scores from the grand mean that is 
accounted for by the variation between 
the means of the groups.

 3. What are the (a) advantages and (b) disadvantages of the Scheffé procedure 
versus other post hoc tests (such as the Tukey)?

 4. How do you carry out the Scheffé procedure?
 5. Suppose in a study with four groups of 50 participants each, for a particular 

contrast, you figure an F of 12.60. Using a Scheffé test, is this significant at 
the .05 significance level?

Answers

 1. (a) Post hoc comparisons are comparisons figured after an analysis of vari-
ance, such as between two groups, that were not planned in advance.

 (b) Researchers make them as an exploratory procedure to see what patterns 
of relations among populations are suggested by the data over and above any 
comparisons that were planned in advance.

 2. (a) In any follow-up analysis, there are usually so many possible post hoc 
comparisons that, if you used the Bonferroni procedure, your corrected sig-
nificance level would be so extreme that it would be very hard for any result 
to be significant.

 (b) The effect of the Tukey and Scheffé tests, and others like them, when 
doing multiple post hoc comparisons and correctly adjusting for the many 
comparisons being made, is that a result does not have to be quite so 
extreme to be significant.

 3. (a) You can use the Scheffé procedure for any number of comparisons, 
including complex comparisons.

 (b) The Scheffé procedure is more conservative: the chance of any 
comparison being significant is less.

 4. Figure the comparison in the usual way, but divide the F by the overall study’s 
dfBetween and use the overall study’s F cutoff.

 5. Overall study’s dfBetween = 4 - 1 = 3; dfWithin = 49 + 49 + 49 + 49 = 196. 
Scheffé corrected F = 12.60>3 = 4.20. Overall study’s .05 cutoff F (df = 3, 
196; closest on table = 3, 100) is 2.70. Thus, even with the Scheffé correc-
tion, this comparison is significant.

The proportion of variance 
accounted for is the between-
groups population variance 
estimate multiplied by the 
between-groups degrees 
of freedom, divided by the 
sum of the between-groups 
population variance estimate 
multiplied by the between-
groups degrees of freedom, 
plus the within-groups 
population variance estimate 
multiplied by the within-
groups degrees of freedom.



346 Chapter 9

The between- and within-groups degrees of freedom are included in the formula 
to take into account the number of participants and the number of groups used in the 
study. But this formula looks more complicated than it really is. Basically the numer-
ator is a version of the between-groups variance estimate, and the denominator is a 
version of the total variance (between plus within). Consider once again the criminal 
record study. In that example, S2

Between = 21.70, dfBetween = 2, S2
Within = 5.33, and 

dfWithin = 12. Thus, the proportion of the total variation accounted for by the varia-
tion between groups is 121.702122>3121.702122 + 15.33211224, which is .40 (or 40%). In 
terms of the formula,

 R2 =
1S2

Between21dfBetween)

1S2
Between21dfBetween2+ 1S2

Within21dfWithin2

 =
121.702122

121.702122+ 15.3321122 =
43.40

107.36
= .40

What if the between-groups and within-groups variance estimates are not avail-
able, as is often true in published studies? It is also possible to figure R2 directly 
from F and the degrees of freedom. The formula is

 R2 =
1F21dfBetween2

1F21dfBetween2 + dfWithin
 (9-8)

For example, in the criminal record study,

R2 =
1F21dfBetween2

1F21dfBetween2 + dfWithin
=

14.072122
14.072122 + 12

=
8.14

20.14
= .40

You should also know that another common name for this measure of effect size 
(besides R2) is �2, the Greek letter eta squared; �2 is also known as the correlation ratio.

The proportion of variance accounted for is a useful measure of effect size because 
it has the direct meaning suggested by its name. (Further, researchers are familiar with 
R2 from its use in regression [see Chapter 12] and its square root, R, is a kind of cor-
relation coefficient that is very familiar to most researchers [see Chapter 11].)

R2 has a minimum of 0 and a maximum of 1. However, in practice it is rare in 
most psychology research for an analysis of variance to have an R2 even as high as 
.20. Cohen’s (1988) conventions for R2 are .01, a small effect size; .06, a medium 
effect size; and .14, a large effect size.

Power
Table 9-9 shows the approximate power for the .05 significance level for small, 
medium, and large effect sizes; sample sizes of 10, 20, 30, 40, 50, and 100 per 
group; and three, four, and five groups.4

Consider a planned study with five groups of 10 participants each and an expected 
large effect size (.14). Using the .05 significance level, the study would have a power of 
.56. Thus, even if the research hypothesis is in fact true and has a large effect size, there 
is only a little greater than even chance (56%) that the study will come out significant.

As we have noted in previous chapters, determining power is especially useful 
when interpreting the practical implication of a nonsignificant result. For example, 
suppose that you have read a study using an analysis of variance with four groups of  
30 participants each, and there is a nonsignificant result at the .05 level. Table 9-9 shows 
a power of only .13 for a small effect size. This suggests that even if such a small effect 

eta squared 1�22 common name 
for the R2 measure of effect size for 
the analysis of variance. Also called 
correlation ratio.

The proportion of variance 
accounted for is the F ratio 
multiplied by the between-
groups degrees of freedom 
(the degrees of freedom 
for the between-groups 
population variance estimate), 
divided by the sum of the 
F ratio multiplied by the 
between-groups degrees of 
freedom, plus the degrees of 
freedom for the within-groups 
population variance estimate.
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exists in the population, this study would be very unlikely to have come out significant. 
But the table shows a power of .96 for a large effect size. This suggests that if a large 
effect existed in the population, it almost surely would have shown up in that study.

Planning Sample Size
Table 9-10 gives the approximate number of participants you need in each group 
for 80% power at the .05 significance level for estimated small, medium, and large 
effect sizes for studies with three, four, and five groups.5

Table 9-9  Approximate Power for Studies Using the Analysis of Variance Testing Hypotheses 

at the .05 Significance Level

Effect Size

Participants per Group (n ) Small (R2 � .01) Medium (R2 � .06) Large (R2 � .14)

Three groups (dfBetween = 2)

10 .07 .20 .45

20 .09 .38 .78

30 .12 .55 .93

40 .15 .68 .98

50 .18 .79 .99

100 .32 .98 *

Four groups (dfBetween = 3)

10 .07 .21 .51

20 .10 .43 .85

30 .13 .61 .96

40 .16 .76 .99

50 .19 .85 *

100 .36 .99 *

Five groups (dfBetween = 4)

10 .07 .23 .56

20 .10 .47 .90

30 .13 .67 .98

40 .17 .81 *

50 .21 .90 *

100 .40 * *

*Nearly 1.

Table 9-10  Approximate Number of Participants Needed in Each Group (Assuming Equal 

Sample Sizes) for 80% Power for the One-Way Analysis of Variance Testing 

Hypotheses at the .05 Significance Level

Effect Size

Small  
(R2 � .01)

Medium  
(R2 � .06)

Large  
(R2 � .14)

Three groups (dfBetween = 2) 322 52 21

Four groups (dfBetween = 3) 274 45 18

Five groups (dfBetween = 4) 240 39 16
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For example, suppose you are planning a study involving four groups and you 
expect a small effect size (and will use the .05 significance level). For 80% power, 
you would need 274 participants in each group, a total of 1,096 in all. However, 
suppose you could adjust the research plan so that it was now reasonable to predict 
a large effect size (perhaps by using more accurate measures and a stronger experi-
mental procedure). Now you would need only 18 in each of the four groups, for a 
total of 72.

How are you doing?

 1. (a) Why is the method of figuring effect size for analysis of variance quite dif-
ferent from that used for the t tests? (b) Explain the logic of why proportion of 
variance accounted for can serve as an effect size in analysis of variance.

 2. (a) Write the formula for effect size in analysis of variance using S2
Between and 

S2
Within; (b) define each of the symbols; (c) give an alternative symbol for R2; 

and (d) figure the effect size for a study in which S2
Between = 12.22, S2

Within =  
7.20, dfBetween = 2, and dfWithin = 8.

 3. (a) Write the formula for effect size in analysis of variance from a study in 
which only the F ratio and degrees of freedom are available; (b) define each 
of the symbols; and (c) figure the effect size for a study with 18 participants in 
each of the three groups and an F of 4.50.

 4. What is the power of a study with four groups of approximately 40 partici-
pants each to be tested at the .05 significance level, in which the researchers 
predict a large effect size?

 5. About how many participants do you need in each group for 80% power in a 
planned study with five groups in which you predict a medium effect size and 
will be using the .05 significance level?

Answers

 1. (a) With t tests, your focus is on the difference between two means; there 
is no direct equivalent in the analysis of variance. (b) You are figuring the 
percentage of the total variation among the scores that is accounted for by 
which group the participant is in.

 2. (a) The formula for effect size in analysis of variance: R2 = 1S2
Between21dfBetween2>31S2

Between21dfBetween2+ 1S2
Within21dfWithin24. (b) R2 is the proportion of variance 

accounted for; S2
Between is the between-groups population variance estimate; 

dfBetween is the between-groups degrees of freedom (number of groups minus 
1); S2

Within is the within-groups population variance estimate; dfWithin is the 
within-groups degrees of freedom (the sum of the degrees of freedom for 
each group’s population variance estimate). (c) �2. (d) Effect size: .30.

 3. (a) R2 = 1F21dfBetween2>31F2 1dfBetween2 + dfWithin4. (b) R2 is the proportion of 
variance accounted for; F is the F ratio from the study; dfBetween is the 
between-groups degrees of freedom; and dfWithin is the within-groups 
degrees of freedom. (c) Effect size:

 dfBetween = 3 - 1 = 2; dfWithin = 17 + 17 + 17 = 51.

 R2 = 1F21dfBetween2>31F2 1dfBetween2+ dfWithin4
 = 14.52122>314.52122+ 514 = 9>39 + 514 = 9>60 = .15.

 4. The power of the study is .99.
 5. The number of participants needed in each group is 39.
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Controversy: Omnibus Tests versus 
Planned Contrasts
The analysis of variance is commonly used in situations comparing three or more 
groups. (If you are comparing two groups, you can use a t test.) However, follow-
ing the logic we introduced earlier, Rosnow and Rosenthal (1989) argue that such 
diffuse or omnibus tests are not very useful. They say that, in almost all cases when 
we test the overall difference among three or more groups, “we have tested a ques-
tion in which we almost surely are not interested” (p. 1281). In which questions 
are we interested? We are interested in specific comparisons, such as between two 
particular groups.

Rosnow and Rosenthal (1989; see also Furr & Rosenthal, 2003) advocate that, 
when figuring an analysis of variance, you should analyze only planned contrasts. 
These should replace entirely the overall F test (that is, the diffuse or omnibus 
F test) for whether you can reject the hypothesis of no difference among population 
means. Traditionally, planned contrasts, when used at all, are a supplement to the 
overall F test. So this has been a rather revolutionary idea.

Consider an example. Orbach and colleagues (1997) compared a group of sui-
cidal mental hospital patients (individuals who had made serious suicide attempts), 
nonsuicidal mental hospital patients with similar diagnoses, and a control group of 
volunteers from the community. The purpose of the study was to test the theory that 
suicidal individuals have a higher tolerance for physical pain. The idea is that their 
higher pain threshold makes it easier for them to do the painful acts usually involved 
in suicide. The researchers carried out standard pain threshold and other sensory 
tests and administered a variety of questionnaires to all three groups. Here is how 
they describe their analysis:

To examine the study hypothesis, we performed a set of two linear contrasts for each 
pain measure…. The first linear contrast, suicidality contrast, compared the suicidal 
group with the two nonsuicidal groups (psychiatric inpatients and control partici-
pants). The second contrast compared the two nonsuicidal groups…. We did not 
make a previous omnibus F because we conducted preplanned group comparisons 
testing the study hypothesis. Because of multiple comparisons needed, the critical 
alpha was set at .01, to avoid Type I error….

The suicidality contrast was significant for thermal sensation threshold, 
F11, 952 = 21.64, p 6 .01; pain threshold, F11, 952 = 23.65, p 6 .01; pain tol-
erance F11, 952 = 6.55, p 6 .01; and maximum tolerance F11, 952 = 16.05. No 
significant difference was found between the suicidal and nonsuicidal groups in the 
magnitude estimate measure. An examination of the means… supports our main 
hypothesis: Suicidal participants, as expected, had high sensation and pain thresh-
olds, high pain tolerance, and were more likely to tolerate the maximum temperature 
administered than inpatients and control participants. Interestingly, the second set of 
contrasts revealed no significant differences between the psychiatric inpatients and 
control participants in any of the five pain measures. (p. 648)

The study by Orbach and colleagues study exemplifies Rosnow and Rosenthal’s 
advice to use planned contrasts instead of an overall analysis of variance. But, 
although the idea was originally proposed more than two decades ago, this approach 
has not yet been widely adopted and is still controversial. The main concern is much 
like the issue we considered in Chapter 4 regarding one-tailed and two-tailed tests. 
If we adopt the highly targeted, planned contrasts recommended by Rosnow and 
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Rosenthal, critics argue, we lose out on finding unexpected differences not initially 
planned, and we put too much control of what is found in the hands of the researcher 
(versus nature).

Analyses of Variance in Research Articles
Analyses of variance (of the kind we have considered in this chapter) are usually 
described in a research article by giving the F, the degrees of freedom, and the sig-
nificance level. For example, “F13, 682 = 5.21, p 6  .01.” The means for the groups 
usually are given in a table, although if there are only a few groups and only one or 
a few measures, the means may be given in the regular text of the article. Usually, 
there is some report of additional analyses, such as planned contrasts.

Returning again to the criminal record study example, we could describe the anal-
ysis of variance results this way: “The means for the Criminal Record, Clean Record, 
and No Information groups were 8.0, 4.0, and 5.0, respectively. These were signifi-
cantly different, F12, 122 = 4.07, p 6  .05. We also carried out two planned contrasts: 
The Criminal Record versus the No Information condition, F11, 122= 4.22, p 6  .10; 
and the Criminal Record versus the Clean Record condition, F11, 122 = 7.50, p 6  .05. 
Although the first contrast approached significance, after a Bonferroni correction (for 
two planned contrasts), it does not even reach the .10 level.”

Note that it is also common for researchers to report planned contrasts using  
t tests. These are not ordinary t tests for independent means, but rather special t tests 
for the comparisons that are mathematically equivalent to the method we described—
that is, the results in terms of significance are identical (see Chapter Note 2).

Researchers often report results of post hoc comparisons among all pairs of 
means. The most common method of doing this is by putting small letters by the 
means in the tables. Usually, means with the same letter are not significantly differ-
ent from each other; those with different letters are. For example, Table 9-11 presents 
the actual results on the love experience measures in the Hazan and Shaver (1987) 

Table 9-11 Love Subscale Means for the Three Attachment Types (Newspaper Sample)

Scale Name Avoidant
Anxious/  

Ambivalent Secure F (2, 571)

Happiness 3.19a 3.31a 3.51b 14.21***

Friendship 3.18a 3.19a 3.50b 22.96***

Trust 3.11a 3.13a 3.43b 16.21***

Fear of closeness 2.30a 2.15a 1.88b 22.65***

Acceptance 2.86a 3.03b 3.01b 4.66**

Emotional extremes 2.75a 3.05b 2.36c 27.54***

Jealousy 2.57a 2.88b 2.17c 43.91***

Obsessive preoccupation 3.01a 3.29b 3.01a 9.47***

Sexual attraction 3.27a 3.43b 3.27a 4.08*

Desire for union 2.81a 3.25b 2.69a 22.67***

Desire for reciprocation 3.24a 3.55b 3.22a 14.90***

Love at first sight 2.91a 3.17b 2.97a 6.00**

Note: Within each row, means with different subscripts differ at the .05 level of significance according to a Scheffé 
test.*p 6 .05; **p 6 .01; ***p 6 .001.

Source: Hazan, C., & Shaver, P. (1987). Romantic love conceptualized as an attachment process. Journal of Personality and 
Social Psychology, 52, 511–524. Published by the American Psychological Association. Reprinted with permission.
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study (our example at the start of the chapter). Consider the first row (the happiness 
results). The avoidant and anxious-ambivalent groups are not significantly different 
from each other, since they have the same letter (a). But both are significantly dif-
ferent on happiness compared to the secure group, which has a different letter (b). In 
the jealousy row, however, all three groups differ from one another.

When reading results of post hoc comparisons, you will see many different  
procedures named. For example, Table 9-11 (from the Hazan and Shaver study) 
explicitly mentions that the results are “according to a Scheffé test.”

Advanced Topic: The Structural Model  
in the Analysis of Variance
This chapter introduced the basic logic of the analysis of variance. Building on 
this understanding, we now briefly describe an alternative but mathematically 
equivalent way of understanding the analysis of variance. This alternative is 
called the structural model. The core logic you learned earlier in the chapter still 
applies. However, the structural model provides a different and more flexible way 
of figuring the two population variance estimates. Understanding the structural 
model provides deeper insights into the underlying logic of the analysis of vari-
ance, including helping you understand the way analysis of variance results are 
laid out in computer printouts. Also, the structural method more easily handles the 
situation in which the number of individuals in each group is not equal. Finally, 
the structural model method is related to a fundamental mathematical approach to 
which we want to expose those of you who might be going on to more advanced 
statistics courses.

Principles of the Structural Model
Dividing Up the Deviations
The structural model is all about deviations. To start with, there is the deviation of a 
score from the grand mean. In the criminal record example earlier in the chapter (see 
Tables 9-3 and 9-4), the grand mean of the 15 scores was 85>15 = 5.67.

The deviation from the grand mean is just the beginning. You then think of this 
deviation from the grand mean as having two parts: (a) the deviation of the score 
from the mean of its group and (b) the deviation of the mean of its group from the 
grand mean. Consider a participant in the criminal record study who rated the defen-
dant’s guilt as a 10. The grand mean of all participants’ guilt ratings was 5.67. This 
person’s score has a total deviation of 4.33 (that is, 10 - 5.67 = 4.33). The mean 
of the Criminal Record group by itself was 8. Thus, the deviation of this person’s 
score from his or her group’s mean is 2 (that is, 10 - 8 = 2), and the deviation of 
that group’s mean from the grand mean is 2.33 (that is, 8 - 5.67 = 2.33). Note that 
these two deviations (2 and 2.33) add up to the total deviation of 4.33. This is shown 
in Figure 9-7. We encourage you to study this figure until you grasp it well.

Summing the Squared Deviations
The next step in the structural model is to square each of these deviation scores 
and add up the squared deviations of each type for all the participants. This gives a 
sum of squared deviations for each type of deviation score. It turns out that the sum 
of squared deviations of each score from the grand mean is equal to (a) the sum of 
the squared deviations of each score from its group’s mean plus (b) the sum of the 

structural model way of understanding 
the analysis of variance as a division 
of the deviation of each score from 
the overall mean into two parts: the 
variation in groups (its deviation from its 
group’s mean) and the variation between 
groups (its group’s mean’s deviation 
from the overall mean); an alternative 
(but mathematically equivalent) way of 
understanding the analysis of variance.
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squared deviations of each score’s group’s mean from the grand mean. This prin-
ciple can be stated as a formula:

  g1X - GM22 = g1X - M22 + g1M - GM22 or 

  SSTotal = SSWithin + SSBetween  (9-9)

In this formula, g1X - GM22 or SSTotal is the sum of squared deviations of each 
score from the grand mean, completely ignoring the group a score is in. g1X - M22 
or SSWithin is the sum of squared deviations of each score from its group’s mean, 
added up for all participants. g1M - GM22 or SSBetween is the sum of squared devia-
tions of each score’s group’s mean from the grand mean—again, added up for all 
participants.

This rule applies only to the sums of the squared deviations. For each individual 
score, the deviations themselves, but not the squared deviations, always add up.

From the Sums of Squared Deviations  
to the Population Variance Estimates
Now we are ready to use these sums of squared deviations to figure the needed  
population variance estimates for an analysis of variance. To do this, you divide 
each sum of squared deviations by an appropriate degrees of freedom. The between-
groups population variance estimate (S2

Between or MSBetween) is the sum of squared 
deviations of each score’s group’s mean from the grand mean 1SSBetween2 divided by 
the degrees of freedom on which it is based (dfBetween, the number of groups minus 1). 
Stated as a formula,

 S2
Between =

g1M - GM22
df Between

 or   MS Between =
SSBetween

df Between
 (9-10)

The within-groups population variance estimate (S2
Within or MSWithin) is the sum 

of squared deviations of each score from its group’s mean 1SSWithin2 divided by the 
total degrees of freedom on which this is based (dfWithin; the sum of the degrees of 
freedom over all the groups—the number of scores in the first group minus 1, plus 
the number in the second group minus 1, etc.). Stated as a formula,

 S2
Within =

g1X - M22
dfWithin

   or MSWithin =
SSWithin

dfWithin
 (9-11)

Notice that we have ignored the sum of squared deviations of each score from 
the grand mean 1SSTotal2. This sum of squares is useful mainly for checking our 
arithmetic. Recall that SSTotal = SSWithin + SSBetween.

SSTotal sum of squared deviations of 
each score from the overall mean of all 
scores, completely ignoring the group a 
score is in.

SSWithin sum of squared deviations of 
each score from its group’s mean.

SSBetween sum of squared deviations 
of each score’s group’s mean from the 
grand mean.

Score’s deviation
from its group’s mean

(10 − 8 = 2)

Group’s mean’s deviation
from the grand mean

(8 − 5.67 = 2.33)

Score’s deviation from the grand mean
(10 − 5.67 = 4.33)

Score Group Mean Grand Mean

10 8 5.67

Figure 9-7 Example from the fictional criminal record study of the deviation of one 
individual’s score from the grand mean being that individual’s score’s deviation from his or 
her group’s mean plus that individual’s group’s mean’s deviation from the grand mean.

The sum of squared deviations 
of each score from the grand 
mean is the sum of squared 
deviations of each score from 
its group’s mean plus the sum 
of squared deviations of each 
score’s group’s mean from the 
grand mean.

The between-groups 
population variance estimate is 
the sum of squared deviations 
of each score’s group’s mean 
from the grand mean divided 
by the degrees of freedom for 
the between-groups population 
variance estimate.

The within-groups population 
variance estimate is the sum 
of squared deviations of each 
score from its group’s mean 
divided by the degrees of 
freedom for the within-groups 
population variance estimate.
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Figure 9-8 again shows the division of the deviation score into two parts, but 
this time emphasizes which deviations are associated with which population vari-
ance estimates.

Relation of the Structural Model Method to the Method 
You Learned Earlier in the Chapter
The methods we have just described for figuring the within-groups and between-
groups population variance estimates using the structural model approach give 
exactly the same result as the methods you learned earlier in the chapter. (If you 
enjoy algebra, you might see whether you can derive the earlier formulas from 
the ones you have just learned.) However, the procedures you follow to figure 
those estimates are quite different. In the structural model method, when figuring  
the within-groups variance estimate method, you never actually figure the variance 
estimate for each group and average them. Similarly, for the between-groups esti-
mate, with the structural model method, you never multiply anything by the number 
of scores in each sample. The point is that, with either method, you get the same 
within-groups and between-groups variance estimates, and thus the same F and the 
same overall result.

The deeper logic of the analysis of variance with the structural model is also 
essentially the same as what you learned earlier in the chapter, with a twist. The 
twist is one of emphasis. The method you learned earlier in the chapter emphasizes 
entire groups, comparing a variance based on differences among group means to a 
variance based on averaging variances of the groups. The structural model method 
emphasizes individual scores. It compares a variance based on deviations of indi-
vidual scores’ groups’ means from the grand mean to a variance based on devia-
tions of individual scores from their group’s mean. The method earlier in the chapter 
focuses directly on what contributes to the overall population variance estimates; the 
structural model method focuses directly on what contributes to the divisions of the 
deviations of scores from the grand mean.

An Example
Table 9-12 shows all the figuring using the structural model for an analysis of vari-
ance for the criminal record study. This table shows all three types of deviations and 
squared deviations for each score. For example, for the first person, the deviation 
from the grand mean is 4.33 (the score of 10 minus the grand mean of 5.67). This 

Score’s deviation
from its group’s mean

(basis of the within-groups
variance estimate)

Group’s mean’s deviation
from the grand mean

(basis of the between-groups
variance estimate)

Score’s deviation from the grand mean

Score Group Mean Grand Mean

Figure 9-8 The score’s deviations from its group’s mean is the basis for the within-
groups population variance estimate; the group’s mean’s deviation from the grand mean is the 
basis for the between-groups population variance estimate.
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Table 9-12  Analysis of Variance for the Criminal Record Study (Fictional Data) Using the 

Structural Model Method (Compare to Tables 9-3 and 9-4)

Criminal Record Group
X � GM X � M M � GM

X Deviation
Squared  
Deviation Deviation

Squared 
Deviation Deviation

Squared  
Deviation

10 4.33 18.75 2 4 2.33 5.43

 7 1.33 1.77 -1 1 2.33 5.43

 5 - .67 .45 -3 9 2.33 5.43

10 4.33 18.75 2 4 2.33 5.43

 8 2.33  5.43 0  0 2.33  5.43

40 45.15 18 27.15

M = 40>5 = 8

Clean Record Group
X � GM X � M M � GM

X Deviation
Squared  
Deviation Deviation

Squared  
Deviation Deviation

Squared  
Deviation

 5 - .67 .45 1 1 -1.67 2.79

 1 -4.67 21.81 -3 9 -1.67 2.79

 3 -2.67 7.13 -1 1 -1.67 2.79

 7  1.33 1.77 3 9 -1.67 2.79

 4 -1.67  2.79 0  0 -1.67  2.79

20 33.95 20 13.95

M = 20>5 = 4

No Information Group
X � GM X � M M � GM

X Deviation
Squared  
Deviation Deviation

Squared  
Deviation Deviation

Squared  
Deviation

 4 -1.67 2.79 -1 1 - .67 .45

 6 .33 .11 1 1 - .67 .45

 9 3.33 11.09 4 16 - .67 .45

 3 -2.67 7.13 -2 4 - .67 .45

 3 -2.67  7.13 -2  4 - .67  .45

25 28.25 26 2.25

M = 25>5 = 5

Sums of squared deviations:

 g1X - GM22 or SSTotal = 45.15 +  33.95 +  28.25 = 107.35

 g1X - M22 or SSWithin = 18 + 20 + 26 = 64

 g1M - GM22 or SSBetween = 27.15 +  13.95 +  2.25 = 43.35

Check (SSTotal = SSWithin + SSBetween ):

SSTotal = 107.35; SSWithin + SSBetween = 64 +  43.35 = 107.35
Degrees of freedom:

 dfTotal = N - 1 = 15 - 1 = 14

 dfWithin = df1 + df2 +
g

+ dfLast = 15 - 12 + 15 - 12 + 15 - 12 = 4 + 4 + 4 = 12

 dfBetween = NGroups - 1 = 3 - 1 = 2

 Check (dfTotal = dfWithin + dfBetween ): 14 = 12 + 2
Population variance estimates:

 S2
Within or MSWithin = SSWithin>dfWithin = 64>12 = 5.33

 S2
Between or MSBetween = SSBetween>dfBetween = 43.35>2 = 21.68

F ratio: F = S2
Between >S2

Within  or MSBetween>MSWithin = 21.68>5.33 = 4.07
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deviation squared is 18.75. The deviation of the score from its group’s mean is 2; 
this deviation squared is 4. Finally, the deviation of the score’s group’s mean from 
the grand mean is 2.33; this deviation squared is 5.43. Notice that the deviations 
of each score’s group’s mean from the grand mean (in this case, 2.33) is the same 
number for all the scores in a group. At the bottom of each column, we have also 
summed the squared deviations of each type.

The bottom part of Table 9-12 shows the analysis of variance figuring. First, 
you figure the three sums of squared deviations (SSTotal, SSWithin, and SSBetween). The 
next step is to check for accuracy. You do this following the principle that the sum 
of squared deviations of each score from the grand mean comes out to the total of 
the other two kinds of sums of squared deviations.

The degrees of freedom, the next step shown in the table, is figured the same 
way as you learned earlier in the chapter. Then, the table shows the figuring of the 
two crucial population variance estimates. You figure them by dividing each sum of 
squared deviations by the appropriate degrees of freedom. Finally, the table shows 
the figuring of the F ratio in the usual way—dividing the between-groups variance 
estimate by the within-groups variance estimate. All these results, degrees of free-
dom, variance estimates, and F come out exactly the same (within rounding error) as 
we figured earlier in the chapter.

Analysis of Variance Tables
An analysis of variance table lays out the results of an analysis of variance based 
on the structural model method. These kinds of charts are automatically produced 
by most analysis of variance computer programs (see, for example, Figure 9-11 later 
in the chapter). A standard analysis of variance table has five columns. Table 9-13 
shows an analysis of variance table for the criminal record study.

The first column in a standard analysis of variance table is labeled “Source”; it 
lists the type of variance estimate or deviation score involved (“between” [groups], 
“within” [groups], and “total”). The next column is usually labeled “SS”(sum of 
squares); it lists the different types of sums of squared deviations. The third column 
is “df” (the degrees of freedom of each type). The fourth column is “MS” (mean 
square); this refers to mean squares, that is, MS is SS divided by df, the variance esti-
mate. MS is, as usual, the same thing as S2. However, in an analysis of variance table 
the variance is almost always referred to as MS. The last column is “F,” the F ratio. 
(In a computer printout there may be additional columns, listing the exact p value 
and possibly effect size or confidence intervals.) Each row of the table refers to one 
of the variance estimates. The first row is for the between-groups variance estimate. 
It is usually listed under Source as “Between” or “Group,” although you will some-
times see it called “Model” or “Treatment.” The second row is for the within-groups 
variance estimate, though it is sometimes labeled as “Error.” The final row is for 
the sum of squares based on the total deviation of each score from the grand mean. 
Note, however, that computer printouts will sometimes use a different order for the 
columns and will sometimes omit either SS or MS, but not both.

analysis of variance table chart 
showing the major elements in figuring 
an analysis of variance using the 
structural model approach.

Table 9-13 Analysis of Variance Table for the Criminal Record Study (Fictional Data)

Source SS df MS F

Between  43.35  2 21.68 4.07

Within 64 12  5.33

Total 107.35 14
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Table 9-14   Hypothesis Testing Steps for an Analysis of Variance Using the Structural 

Model Approach (Equal- or Unequal-Sized Groups)

❶ Restate the question as a research hypothesis and a null hypothesis about the populations.

❷ Determine the characteristics of the comparison distribution.

a. The comparison distribution will be an F distribution.

b. The between-groups (numerator) degrees of freedom is the number of groups minus 1:

dfBetween = NGroups - 1.

c. The within-groups (denominator) degrees of freedom is the sum of the degrees of freedom in each 

group (the number of scores in the group minus 1):

dfWithin = df1 + df2 +
g

+ dfLast..

d. Check the accuracy of your figuring by making sure that dfWithin and dfBetween sum to dfTotal (which is 

the total number of participants minus 1).

❸ Determine the cutoff sample score on the comparison distribution at which the null hypothesis 

should be rejected.

a. Decide the significance level.

b. Look up the appropriate cutoff in an F table, using the degrees of freedom from Step ❷.

❹ Determine your sample’s score on the comparison distribution. This will be an F ratio.

a. Figure the mean of each group and the grand mean of all scores.

b. Figure the following deviations for each score:

   i. Its deviation from the grand mean 1X - GM2.
  ii. Its deviation from its group’s mean 1X - M2.
 iii. Its group’s mean’s deviation from the grand mean 1M - GM2.
c. Square each of these deviation scores.

d. Figure the sums of each of these three types of deviation scores (SSTotal, SSWithin, and SSBetween).

e. Check the accuracy of your figuring by making sure that SSWithin + SSBetween = SSTotal.

f. Figure the between-groups variance estimate: SSBetween>dfBetween.

g. Figure the within-groups variance estimate: SSWithin>dfWithin.

h. Figure the F ratio: F = S2
Between>S2

Within or F = MSBetween>MSWithin.

❺ Decide whether to reject the null hypothesis: Compare scores from Steps ❸ and ❹.

Table 9-15   Analysis of Variance Table Showing Symbols and Formulas for Figuring the 

Analysis of Variance

Symbols Corresponding to Each Part  
of an Analysis of Variance Table

Source SS df MS F

Between SSBetween dfBetween MSBetween 1or S2
Between2 F

Within SSWithin dfWithin MSWithin 1or S2
Within2

Total SSTotal dfTotal

Formulas for Each Part of an Analysis of Variance Table

Source SS df MS F

Between g1M - GM22 NGroups - 1 SSBetween>dfBetween MSBetween>MSWithin

Within g1X - M22 df1 + df2 +
g

+ dfLast SSWithin>dfWithin

Total g1X - GM22 N - 1

T I P  F O R  S U C C E S S
Check your understanding of 
the structural model method for 
analysis of variance by covering up 
portions of Table 9-15 and trying 
to recall the hidden material.
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Summary of Procedures for an Analysis  
of Variance Using the Structural Model
Table 9-14 summarizes the steps in an analysis of variance using the structural model 
method. Note that the only difference from what you learned earlier in this chapter is 
in Step , substeps b through g (compare to Table 9-8). Table 9-15 shows an analysis 
of variance table with the symbols for all the parts put in each section where the num-
bers would usually go. It is followed by the same style of analysis of variance table 
with the various formulas filled in where the numbers would usually go.6

Learning Aids

Summary

 1. The analysis of variance (ANOVA) is used to test hypotheses based on differ-
ences among means of more than two samples. The procedure compares two 
estimates of population variance. One, the within-groups estimate, is the aver-
age of the variance estimates from each of the samples. The other, the between-
groups estimate, is based on the variation among the means of the samples.

 2. The F ratio is the between-groups estimate divided by the within-groups estimate. 
The null hypothesis is that all the samples come from populations with the same 
mean. If the null hypothesis is true, the F ratio should be close to 1. This is because 
the two population variance estimates are based on the same thing, the variation 
within each of the populations (due to chance factors). If the research hypoth-
esis is true, so that the samples come from populations with different means, the  
F ratio should be larger than 1. This is because the between-groups estimate is 
now influenced by the variation both within the populations (due to chance fac-
tors) and among them (due to a treatment effect). But the within-groups estimate 
is still affected only by the variation within each of the populations.

 3. When the samples are of equal size, the within-groups population variance esti-
mate is the ordinary average of the estimates of the population variance figured 
from each sample. The between-groups population variance estimate is done in 
two steps. First, you estimate the variance of the distribution of means based on 
the means of your samples. (This is figured with the usual formula for estimating 
population variance from sample scores.) Second, you multiply this estimate by 
the number of participants in each group. This step takes you from the variance of 
the distribution of means to the variance of the distribution of individual scores.

 4. The distribution of F ratios when the null hypothesis is true is a mathematically 
defined distribution that is skewed to the right. Significance cutoffs are given 
on an F table according to the degrees of freedom for each population variance 
estimate: the between-groups (numerator) degrees of freedom is the number of 
groups minus 1, and the within-groups (denominator) degrees of freedom is the 
sum of the degrees of freedom within all samples.

 5. The assumptions for the analysis of variance are the same as for the t test. The 
populations must be normally distributed, with equal variances. Like the t test, 
the analysis of variance is robust to moderate violations of these assumptions.

 6. The overall results of an analysis of variance are often followed up by planned 
contrasts, based on theory or a specific practical need, that examine differences 
such as those between specific pairs of means. These contrasts (or comparisons) 
are figured using the usual analysis of variance method, but with the between-
groups estimate based on the variation between the two means being compared.
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 7. When making more than one planned contrast, researchers often protect against 
the possibility of getting some contrasts significant just by chance by making 
a Bonferroni correction of the significance level (dividing the overall desired 
significance level by the number of contrasts).

 8. An analysis of variance may be followed up by exploratory, post hoc compari-
sons. Such comparisons have to protect against the possibility of getting some 
significant results just by chance because of the great many comparisons that 
could be made. There are a number of methods for dealing with this problem that 
are not as severe as the Bonferroni correction. In one such method, the Scheffé 
test, you figure each comparison of interest in the usual way and then divide its F 
by the between-groups degrees of freedom from the overall analysis of variance.

 9. The proportion of variance accounted for 1R22, also called “eta squared” 1�22, 
is a measure of analysis of variance effect size. R2 represents how much of the 
variation in the measured variable is accounted for by the division into groups. 
Power depends on effect size, number of people in the study, significance level, 
and number of groups.

 10. Some experts recommend that, instead of using an analysis of variance to make 
diffuse, overall comparisons among several means, researchers should plan in 
advance to conduct only specific planned contrasts, targeted directly to their 
theoretical or practical questions.

 11. Analysis of variance results are reported in a standard fashion, such as 
F13, 682 = 5.21, p 6 .01. Results of planned contrasts are also commonly re-
ported (sometimes using special t tests instead of analysis of variance). Results of 
post hoc comparisons are usually shown by putting small letters by the means in 
tables.

 12. ADVANCED TOPIC: An alternative approach to the analysis of variance uses 
the structural model. In the structural model method, the deviation of each score 
from the grand mean is divided into two parts: (a) the score’s difference from its 
group’s mean and (b) its group’s mean’s difference from the grand mean. These 
deviations, when squared, summed, and divided by the appropriate degrees of 
freedom, give the same within-groups and between-groups estimates as using the 
standard analysis of variance method you learned. However, the structural model 
is more flexible and can be applied to studies with unequal sample sizes. Com-
putations using the structural model are usually summarized in an analysis of 
variance table, with a column for source of variation (between, within, and total), 
sums of squared deviations (SS), degrees of freedom (df), population variance 
estimates (MS, which equals SS>df ), and F (which equals MSBetween>MSWithin).

analysis of variance (ANOVA)  
(p. 317)

within-groups estimate of the 
population variance (S2

Within or 
MSWithin) (p. 318)

between-groups estimate of the 
population variance (S2

Between or 
MSBetween) (p. 319)

F ratio (p. 323)
F distribution (p. 324)

F table (p. 324)
S2

Within or MSWithin (p. 326)
grand mean (GM) (p. 327)
S2

Between or MSBetween (p. 328)
between-groups (or numerator) 

degrees of freedom 1dfBetween2  
(p. 330)

within-groups (or denominator) 
degrees of freedom 1dfWithin2  
(p. 330)

planned contrasts (p. 340)
Bonferroni procedure (p. 342)
post hoc comparisons (p. 343)
Scheffé test (p. 344)
proportion of variance accounted for 1R22 (p. 345)
eta squared 1�22 (p. 346)
structural model (p. 351)
SSTotal, SSWithin, SSBetween (p. 352)
analysis of variance table (p. 355)

Key Terms



 Introduction to the Analysis of Variance 359

Overall Analysis of Variance
An experiment compares the effects of four treatments, giving each treatment to 
20 participants and then assessing their performance on a standard measure. The 
results on the standard measure are as follows. Treatment 1: M = 15, S2 = 20; 
Treatment 2: M = 12, S2 = 25; Treatment 3: M = 18, S2 = 14; Treatment 4: 
M = 15, S2 = 27. Using the .05 significance level, does treatment matter? Use the 
five steps of hypothesis testing and sketch the distributions involved.

Answer
The distributions involved are shown in Figure 9-9.

 ❶ Restate the question as a research hypothesis and a null hypothesis about 
the populations. There are four populations.

Population 1: People given experimental treatment 1.
Population 2: People given experimental treatment 2.
Population 3: People given experimental treatment 3.
Population 4: People given experimental treatment 4.

Example Worked-Out Problems

Treatment 1 Treatment 2 Treatment 3

F(3, 76) Distribution

0 1 2 3 4 5 6
F ratio

5.58 = F based on
   samples

Population distributions are assumed to be normal and to have the same variance. They have either
the same means (null hypothesis is true) or different means (research hypothesis is true).

F distribution of ratios comparing
variances of this number of groups with
their respective number of scores
(adjusted—i.e., as degrees of freedom)

5% of Area

Distributions of samples

Treatment 4

2.73 = F cutoff

S2 = 20

15

S2 = 25

12

S2 = 14

18

S2 = 27

15

Figure 9-9 Distributions involved in Example Worked-Out Problem for overall 
 analysis of variance.
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The null hypothesis is that these four populations have the same mean 1�1 = �2 = �3 = �42. The research hypothesis is that the four population 
means are not the same.

 ❷ Determine the characteristics of the comparison distribution. The compari-
son distribution will be an F distribution. dfBetween = NGroups - 1 = 4 - 1 = 3;
  dfWithin = df1 + df2 + c+ dfLast = 19 + 19 + 19 + 19 = 76.

 ❸ Determine the cutoff sample score on the comparison distribution at which 
the null hypothesis should be rejected. Using Table A-3 in the Appendix for 
df = 3, 75 (the closest below 3, 76) at the .05 level, the cutoff F is 2.73.

 ❹ Determine your sample’s score on the comparison distribution.
 a. Figure the between-groups population variance estimate 1S2

Between2:
  Figure the mean of each group. The group means are 15, 12, 18, and 15.

 ●A   Estimate the variance of the distribution of means: Add up the sample 
means’ squared deviations from the grand mean and divide by the num-
ber of means minus 1:

 GM = 115 + 12 + 18 + 152>4 = 15

 S2
M = g1M - GM22>dfBetween

 = 3115 - 1522 + 112 - 1522 + 118 - 1522
 + 115 - 15224>14 - 12

 = 10 + 9 + 9 + 02>3 = 18>3 = 6.

 ●B  Figure the estimated variance of the population of individual scores: 
Multiply the variance of the distribution of means by the number of scores 
in each group.

S2
Between = 1S2

M21n2 = 1621202 = 120.

 b. Figure the within-groups population variance estimate 1S2
Within2:

 ●A  Figure population variance estimates based on each group’s scores: 
Treatment 1 group, S2 = 20; Treatment 2 group, S2 = 25; Treatment 3 
group, S2 = 14; Treatment 4 group, S2 = 27.

 ●B Average these variance estimates:

 S2
Within = 120 + 25 + 14 + 272>4 = 86>4 = 21.5.

 F = S2
Between>S2

Within = 120>21.5 = 5.58.

 ❺ Decide whether to reject the null hypothesis. The F of 5.58 is more extreme 
than the .05 cutoff F of 2.73. Therefore, reject the null hypothesis. The research 
hypothesis is supported; the different experimental treatments do produce dif-
ferent effects on the standard performance measure.

Planned Contrasts
For the preceding study, figure a planned contrast comparing Treatment 2 to Treat-
ment 3 using the .01 significance level.

Answer
For the between-groups population variance estimate,
 ●A  Estimate the variance of the distribution of means: Add up the 

sample means’ squared deviations from the grand mean and divide by 
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the number of means minus 1. The grand mean for these two means is 112 + 182>2 = 15 and dfBetween = NGroups - 1 = 2 - 1 = 1.

 S2
M = 3g1M - GM224>dfBetween

 = 3112 - 1522 + 118 - 15224>1
 = 31-322 + 324>1 = 19 + 92>1 = 18.

 ●B  Figure the estimated variance of the population of individual scores: 
Multiply the variance of the distribution of means by the number of 
scores in each group.

 S2
Between = 1S2

M21n2 = 11821202 = 360

 S2
Within 1from the overall analysis2 = 21.5

 F = S2
Between>S2

Within = 360>21.5 = 16.74.

The cutoff F for .05, df = 1, 75 (the closest on the table below the 
true df of 1, 76) = 3.97.

Reject the null hypothesis; the contrast is significant.

Bonferroni Procedure
What is the Bonferroni corrected significance level for each of six planned contrasts 
at the overall .05 significance level?

Answer
Bonferroni corrected significance = .05>6 =  .0083.

Post Hoc Comparisons Using the Scheffé Method
A study has five groups with 10 participants in each. Using a Scheffé test, is a com-
parison with a computed F of 11.21 significant at the .01 significance level?

Answer
The overall study’s dfBetween = 5 - 1 = 4; dfWithin = 9 + 9 + 9 + 9 + 9 = 45. 
The Scheffé corrected F for this contrast is 11.21>4 = 2.80. The overall study’s .01 
cutoff F 1df = 4, 452 is 3.77. The contrast is not significant.

Figuring Effect Size for an Analysis of Variance
Figure the effect size for the overall analysis of variance Example Worked-Out 
Problem.

Answer

 R2 = 1S2
Between21dfBetween2>31S2

Within21dfBetween2 + 1S2
Within21dfWithin24

 = 11202132>311202132 + 121.5217624 = 13602>313602 + 1163424 = .18.
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Advanced Topic: Figuring an Analysis of Variance Using  
the Structural Model Method
A researcher at an alcohol treatment center conducts a study of client satisfaction 
with treatment methods A, B, and C. The researcher randomly assigns each of the 
available 10 clients to receive one of these treatments; four clients end up with 
Treatment A, three with Treatment B, and three with Treatment C. Two weeks later, 
the researcher measures client satisfaction with the three treatments on a scale from 
1 (low satisfaction) to 20 (high satisfaction). Scores for Treatment A were 8, 13, 10, 
and 9. Scores for Treatment B were 7, 3, and 8. Scores for Treatment C were 6, 4, 
and 2. Use the steps of hypothesis testing and figure an analysis of variance (at the 
.05 level) using the structural model method. (Although the example we used for the 
structural model method earlier in the chapter had the same number of participants 
in each group, you can use the same method in this example with unequal sized 
groups. Just remember to figure the grand mean, GM, as the average of all of the 
scores across all of the groups.)

Answer
Table 9-16 shows the figuring and the analysis of variance table.

Table 9-16 Analysis of Variance Figuring and Analysis of Variance Table Problem for an Alcohol Treatment Study (Fictional Data)

Treatment A Treatment B Treatment C

X X - GM X - M M - GM X X - GM X - M M - GM X X - GM X - M M -  GM

Dev Dev2 Dev Dev2 Dev Dev2 Dev Dev2 Dev Dev2 Dev Dev2 Dev Dev2 Dev Dev2 Dev Dev2

8 1 1 -2 4 3 9 7 0 0 1 1 -1 1 6 -1 1 2 4 -3 9

13 6 36 3 9 3 9 3 -4 16 -3 9 -1 1 4 -3 9 0 0 -3 9

10 3 9 0 0 3 9 8 1 1 2 4 -1 1 2 -5 25 -2 4 -3 9

9 2  4 -1  1 3  9        

40 50 14 36 18 17 14 3 12 35 8 27

M = 40>4 = 10 M = 18>3 = 6 M = 12>3 = 4

Note: Dev = Deviation; Dev2 = Squared deviation.

 GM = 140 + 18 + 122>10 = 70>10 = 7

 dfTotal = N - 1 = 10 - 1 = 9
 dfWithin = df1 + df2 +

g
+ dfLast = 14 - 12 + 13 - 12 + 13 - 12 = 3 + 2 + 2 = 7

 dfBetween = NGroups - 1 = 3 - 1 = 2

F needed for df = 2, 7 at the .05 level = 4.74

  SSTotal = 50 + 17 + 35 = 102

  SSWithin = 14 + 14 + 8 = 36

  SSBetween = 36 + 3 + 27 = 66

ANALYSIS OF VARIANCE TABLE:

Source SS df MS F

Between 66 2 33 6.42

Within 36 7 5.14

Total 102 9

Decision: Reject the null hypothesis.
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 ❶ Restate the question as a research hypothesis and a null hypothesis about 
the populations. There are three populations:

Population 1: Alcoholics receiving Treatment A.
Population 2: Alcoholics receiving Treatment B.
Population 3: Alcoholics receiving Treatment C.

  The null hypothesis is that these three populations have the same mean 1�1 = �2 = �32. The research hypothesis is that they do not all have the same 
mean.

 ❷ Determine the characteristics of the comparison distribution. An F distribu-
tion; from Table 9-16, df = 2, 7.

 ❸ Determine the cutoff sample score on the comparison distribution at which 
the null hypothesis should be rejected. Using Table A-3, for df = 2, 7 and a 
.05 significance level, the cutoff F is 4.74.

 ❹ Determine your sample’s score on the comparison distribution. From the 
figuring shown in Table 9-16, F = 6.42.

 ❺ Decide whether to reject the null hypothesis. The F ratio of 6.42 is more 
extreme than the .05 significance level cutoff F of 4.74. Thus, the researcher 
can reject the null hypothesis. If these were real data, the researcher could con-
clude that the three kinds of treatment have different effects on how satisfied 
clients like theirs are with their treatment.

Outline for Writing Essays for a One-Way  
Analysis of Variance
 1. Explain that the one-way analysis of variance is used for hypothesis testing 

when you have scores from three or more entirely separate groups of people. Be 
sure to explain the meaning of the research hypothesis and the null hypothesis 
in this situation.

 2. Describe the core logic of hypothesis testing in this situation. Be sure to men-
tion that the analysis of variance involves comparing the results of two ways of 
estimating the population variance. One population variance estimate (the within-
groups estimate) is based on the variation within each sample and the other esti-
mate (the between-groups estimate) is based on the variation among the means of 
the samples. Be sure to describe these estimates in detail (including how they are 
figured, why they are figured that way, and how each is affected by whether the 
null hypothesis is true); explain how and why they are used to figure an F ratio.

 3. Explain the logic of the comparison distribution that is used with a one-way 
analysis of variance (the F distribution).

 4. Describe the logic and process for determining the cutoff sample F score on the 
comparison distribution at which the null hypothesis should be rejected.

 5. Explain how and why the scores from Steps ❸ and ❹ of the hypothesis-testing 
process are compared. Explain the meaning of the result of this comparison 
with regard to the specific research and null hypotheses being tested.

Practice Problems

These problems involve figuring. Most real-life statistics problems are done with 
special statistical software. Even if you have such software, do these problems by 
hand to ingrain the method in your mind. To learn how to use a computer to solve 
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statistics problems like those in this chapter, refer to the Using SPSS section at the 
end of this chapter.

All data are fictional unless an actual citation is given.

Set I (for Answers to Set I Problems, see pp. 692–695)
 1. For each of the following studies, decide whether you can reject the null hy-

pothesis that the groups come from identical populations. Use the .05 level. 
Note that study (b) provides S, not S2.

(a) Group 1 Group 2 Group 3

n 10 10 10

M 7.4 6.8 6.8

S 2 .82 .90 .80

(b) Group 1 Group 2 Group 3 Group 4

n 25 25 25 25

M 94 101 124 105

S 24 28 31 25

 2. For each of the following studies, (a) and (b), decide whether you can reject 
the null hypothesis that the groups come from identical populations. Use the  
.01 level. (c) Figure the effect size for each study. (d) ADVANCED TOPIC: 
For study (a), carry out an analysis of variance using the structural model 
method.

(a) Group 1 Group 2 Group 3

8 6 4

8 6 4

7 5 3

9 7 5

(b) Group 1 Group 2 Group 3

12 10 8

4 2 0

12 10 8

4 2 0

 3. A psychologist at a private psychiatric hospital was asked to determine whether 
there was any clear difference in the length of stay of patients with different cat-
egories of diagnosis. Looking at the last four patients in each of the three major 
categories, the results (in terms of weeks of stay) were as follows:

Diagnosis Category

Affective Disorders Cognitive Disorders Drug-Related Conditions

7 12 8

6 8 10

5 9 12

6 11 10

MyStatLab
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  (a) Using the .05 level and the five steps of hypothesis testing, is there a sig-
nificant difference in length of stay among diagnosis categories? (b) Sketch the 
distributions involved. (c) Figure the effect size for the study. (d) Explain your 
answer to part (a) to someone who understands everything involved in conduct-
ing a t test for independent means but is unfamiliar with the analysis of vari-
ance. (e) Test the significance of planned contrasts (using the .05 level without 
a Bonferroni correction) for affective disorders versus drug-related conditions 
and (f) cognitive disorders versus drug-related conditions. (g) Explain your 
answers to parts (e) and (f) to a person who understands analysis of variance but 
is unfamiliar with planned contrasts.

 4. A study compared the felt intensity of unrequited love (loving someone who 
doesn’t love you) among three groups: 50 individuals who were currently experi-
encing unrequited love who had a mean experienced intensity =  3.5, S2 = 5.2; 
50 who had previously experienced unrequited love and described their experi-
ences retrospectively, M = 3.2, S2 = 5.8; and 50 who had never experienced 
unrequited love but described how they thought they would feel if they were 
to experience it, M = 3.8, S2 = 4.8. Determine the significance of the differ-
ence among groups, using the 5% level. (a) Use the steps of hypothesis testing; 
(b) sketch the distributions involved; (c) figure the effect size for the study; and 
(d) explain your answer to part (a) to someone who has never had a course in 
statistics.

 5. A researcher studying genetic influences on learning compares the maze perfor-
mance of four genetically different strains of mice, using eight mice per strain. 
Performance for the four strains were as follows:

Strain Mean S

J 41 3.5

M 38 4.6

Q 14 3.8

W 37 4.9

  Using the .01 significance level, is there an overall difference in maze per-
formance among the four strains? (a) Use the steps of hypothesis testing;  
(b) sketch the distributions involved; (c) figure the effect size for the study; and 
(d) explain your answer to part (a) to someone who is familiar with hypothesis 
testing with known populations but unfamiliar with the t test or the analysis 
of variance. (e) Test the significance of planned contrasts using the overall  
.05 level (with a Bonferroni correction for testing each of the five contrasts) 
for strain J versus strain M, (f) for strain J versus strain Q, (g) for strain  
J versus strain W, (h) for strain Q versus strain M, and (i) for strain Q versus 
strain W. (j) Explain your answers to parts (e) through (i) to a person who 
understands analysis of variance but is unfamiliar with planned contrasts and 
the Bonferroni correction.

 6. What is the Bonferroni corrected significance level for each of the following 
situations?

Situation  (a)  (b)  (c)  (d)

Overall significance level .05 .05 .01 .01

Number of planned contrasts 2 4 3 5

MyStatLab
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 7. For each of the following studies, test whether a comparison in which the 
researcher figures an F of 17.21 would be significant using the Scheffé method.

Number of  
Groups

Participants in  
Each Group

Significance  
Level

(a) 5 10 .05

(b) 6 10 .05

(c) 5 20 .05

(d) 5 10 .01

 8. What is the power of each of the following planned studies, using the analysis 
of variance with p 6 .05?

Predicted Effect  
Size

Number of  
Groups

Participants in  
Each Group

(a) Small 3 20

(b) Small 3 30

(c) Small 4 20

(d) Medium 3 20

 9. About how many participants do you need in each group for 80% power in each 
of the following planned studies, using the analysis of variance with p 6 .05?

Predicted Effect  
Size

Number of  
Groups

(a) Small 3

(b) Large 3

(c) Small 4

(d) Medium 3

 10. Grilo and colleagues (1997) are clinical psychologists interested in the relation-
ship of depression and substance use to personality disorders. Personality disor-
ders are persistent, problematic traits and behaviors that exceed the usual range 
of individual differences. The researchers conducted interviews assessing per-
sonality disorders with adolescents who were psychiatric inpatients and had one 
of three diagnoses: (1) those with major depression, (2) those with substance 
abuse, and (3) those with both major depression and substance abuse. The mean 
number of disorders was as follows: major depression M = 1.0, substance 
abuse M = .7, those with both conditions M = 1.9. The researchers reported, 
“The three study groups differed in the average number of diagnosed personal-
ity disorders, F12, 1122 = 10.18, p 6 .0001.” Explain this result to someone 
who is familiar with hypothesis testing with known populations but is unfamil-
iar with the t test or the analysis of variance.

 11. A researcher wants to know whether the need for mental health care among pris-
oners varies according to the different types of prison facilities. The researcher 
randomly selects 40 prisoners from each of the three main types of prisons in 
a particular Canadian province and conducts exams to determine their need for 
mental health care. In the article describing the results, the researcher reported 
the means for each group and then added: “The need for mental health care 
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among prisoners in the three types of prison systems appeared to be clearly  
different, F12, 1172 = 5.62, p 6 .01. A planned comparison [contrast] of 
System 1 to System 2 was significant, F11, 1172 = 4.03, p 6 .05.” Explain this 
result to a person who has never had a course in statistics.

 12. Based on Table 9-11 from the Hazan and Shaver (1987) study, indicate for 
which variables, if any, (a) the Avoidants are significantly different from the 
other two groups, (b) the Anxious-Ambivalents are different from the other two 
groups, (c) the Secures are different from the other two groups, and (d) all three 
groups are different. (e) Explain, to a person who understands analysis of vari-
ance but does not know anything about post hoc comparisons, what is meant in 
the table note that the results are “according to a Scheffé test.”

 13. Which type of English word is longer: nouns, verbs, or adjectives? Go to a book 
of at least 400 pages (not this book) and turn to random pages using the random 
numbers listed at the end of this paragraph. Go down the page until you come 
to a noun. Note its length (in number of letters). Do this for 10 different nouns. 
Do the same for 10 verbs and then for 10 adjectives. Using the .05 significance 
level, (a) carry out an analysis of variance comparing the three types of words, 
and (b) figure a planned contrast of nouns versus verbs. (Be sure also to give 
the full bibliographic information on the book you used: authors, title, year pub-
lished, publisher, city.)

  73, 320, 179, 323, 219, 176, 167, 102, 228, 352, 4, 335, 118, 12, 333, 123, 38, 49, 
399, 17, 188, 264, 342, 89, 13, 77, 378, 223, 92, 77, 152, 34, 214, 75, 83, 198, 210

Set II
 14. For each of the following studies, decide whether you can reject the null 

 hypothesis that the groups come from identical populations. Use the .05 level.

(a) Group 1 Group 2 Group 3

n 5 5 5

M 10 12 14

S 2 4 6 5

(b) Group 1 Group 2 Group 3

n 10 10 10

M 10 12 14

S 2 4 6 5

 15. For each of the following studies, (a) and (b), decide whether you can reject 
the null hypothesis that the groups come from identical populations. Use the  
.01 level. (c) Figure the effect size for each study. (d) ADVANCED TOPIC: 
Carry out an analysis of variance for study (a) using the structural model method.

(a) Group 1 Group 2 Group 3

1 1 8

2 2 7

1 1 8

2 2 7

MyStatLab
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 16. An organizational psychologist was interested in whether individuals working 
in different sectors of a company differed in their attitudes toward the com-
pany. The results for the three people surveyed in development were 10, 12, 
and 11; for the three in the marketing department, 6, 6, and 8; for the three in 
accounting, 7, 4, and 4; and for the three in production, 14, 16, and 13 (higher 
numbers mean more positive attitudes). Was there a significant difference in 
attitude toward the company among employees working in different sectors of 
the company at the .05 level? (a) Use the steps of hypothesis testing; (b) sketch 
the distributions involved; (c) figure the effect size for the study; (d) explain 
your answer to part (a) to someone who understands everything involved in 
conducting a t test for independent means but is unfamiliar with the analysis 
of variance; (e) test the significance of planned contrasts using the overall  
.05 level (with a Bonferroni correction for testing each of the five contrasts) for 
engineering versus production, (f ) marketing versus production, (g) account-
ing versus production, (h) development versus marketing, and (i) development 
versus accounting. (j) Explain your answers to parts (e) through (i) to a person 
who understands analysis of variance but is unfamiliar with planned contrasts 
or Bonferroni corrections. (k) ADVANCED TOPIC: Carry out an analysis of 
variance for the study using the structural model method.

 17. Do students at various universities differ in how sociable they are? Twenty-five 
students were randomly selected from each of three universities in a region and 
were asked to report on the amount of time they spent socializing each day 
with other students. The result for University X was a mean of 5 hours and an 
estimated population variance of 2 hours; for University Y, M = 4, S2 = 1.5; 
and for University Z, M = 6, S2 = 2.5. What should you conclude? Use the 
.05 level. (a) Use the steps of hypothesis testing, (b) figure the effect size for 
the study; and (c) explain your answers to parts (a) and (b) to someone who has 
never had a course in statistics.

 18. A psychologist studying artistic preference randomly assigns a group of 45 par-
ticipants to one of three conditions in which they view a series of unfamiliar 
abstract paintings. The 15 participants in the Famous condition are led to believe 
that these are each famous paintings; their mean rating for liking the paintings 
is 6.5 1S = 3.52. The 15 in the Critically Acclaimed condition are led to believe 
that these are paintings that are not famous but are very highly thought of by a 
group of professional art critics; their mean rating is 8.5 1S = 4.22. The 15 in 
the Control condition are given no special information about the paintings; their 
mean rating is 3.1 1S = 2.92. Does what people are told about paintings make 
a difference in how well they are liked? Use the .05 level. (a) Use the steps of 
hypothesis testing; (b) sketch the distributions involved; (c) figure the effect 
size for the study; (d) explain your answer to part (a) to someone who is famil-
iar with the t test for independent means but is unfamiliar with analysis of vari-
ance; (e) test the significance of planned contrasts (using the .05 significance 
level without a Bonferroni correction) for Famous versus Control and (f) Criti-
cally Acclaimed versus Control. (g) Explain your answers to parts (e) and (f) to 

(b) Group 1 Group 2 Group 3

1 4 8

2 5 7

1 4 8

2 5 7

MyStatLab
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a person who understands analysis of variance but is unfamiliar with planned 
contrasts.

 19. What is the Bonferroni corrected significance level for each of the following 
situations?

Situation  (a) (b) (c) (d)

Overall significance level  .01  .01  .05  .05

Number of planned contrasts 4 2 4 3

 20. For each of the following studies, test whether a comparison in which the 
researcher figures an F of 8.12 would be significant using the Scheffé method.

Number of  
Groups

Participants in  
Each Group

Significance  
Level

(a) 4 30 .05

(b) 5 80 .05

(c) 4  5 .05

(d) 8 30 .01

 21. What is the power of each of the following planned studies, using the analysis 
of variance with p 6 .05?

Predicted Effect  
Size

Number of  
Groups

Participants in  
Each Group

(a) Small 4 50

(b) Medium 4 50

(c) Large 4 50

(d) Medium 5 50

 22. About how many participants do you need in each group for 80% power in each 
of the following planned studies, using the analysis of variance with p 6 .05?

Predicted Effect  
Size

Number of  
Groups

(a) Small 5

(b) Medium 5

(c) Large 5

(d) Medium 3

 23. An experiment is conducted in which 60 participants each fill out a personal-
ity test, but not according to the way the participants see themselves. Instead, 
15 are randomly assigned to fill it out according to the way they think their 
mothers see them (that is, the way they think their mothers would fill it out to 
describe the participants); 15 as their fathers would fill it out for them; 15 as 
their best friends would fill it out for them; and 15 as the professors they know 
best would fill it out for them. The main results appear in Table 9-17. Explain 
these results to a person who has never had a course in statistics.

 24. Rosalie Friend (2001), an educational psychologist, compared three methods 
of teaching writing. Students were randomly assigned to three different experi-
mental conditions involving different methods of writing a summary. At the end 
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of the two days of instructions, participants wrote a summary. One of the ways 
it was scored was the percentage of specific details of information it included 
from the original material. Here is a selection from her article describing one of 
the findings:

The effect of summarization method on inclusion of important information was 
significant: F12, 1442 = 4.1032, p 6 .019. The mean scores (with standard de-
viations in parentheses) were as follows: Argument Repetition, 59.6% (17.9); 
Generalization, 59.8% (15.2); and Self-Reflection, 50.2% (18.0). (p. 14)

(a) Explain these results to a person who has never had a course in statistics. 
(b) Using the information in the preceding description, figure the effect size for 
the study.

 25. Miller (1997) asked 147 female students to view slides of magazine ads that 
included, among other things, pictures of attractive men. The participants were 
measured for physiological arousal (skin conductance) while viewing the ads 
and also after viewing them; they were asked to rate the attractiveness and how 
much they would like to meet each person in the ads. As part of the analy-
sis, Miller compared results for women dating no one, women in casual dating 
relationships, and women in exclusive dating relationships. Table 9-18 shows 
Miller’s results. (a), (b), and (c) Describe the pattern of results on each variable. 
(d) Explain, to a person who understands analysis of variance but is unfamiliar 
with post hoc comparisons, what is meant in a general way by the table note 
that the results are based on “Duncan’s multiple range test.” (That is, you don’t 
need to explain this specific test, but you do need to explain why a test like this 
was used and what it attempts to accomplish.)

Table 9-17   Means for Main Personality Scales for Each Experimental Condition 

(Fictional Data)

Scale Mother Father Friend Professor F (3, 56)

Conformity 24 21 12 16 4.21**

Extroversion 14 13 15 13 2.05

Maturity 15 15 22 19 3.11*

Self-confidence 38 42 27 32 3.58*

*p 6 .05, **p 6 .01.

Table 9-18  Effects of Relationship Status

Relationship Status

Dependent measure Dating No One Casual Dating Exclusive Dating

Skin conductance 19.5b 19.1b 15.8a

Desire to meet target 14.6b 15.3b 11.2a

Perceived physical attractiveness of target 15.6b 17.1b 13.8a

Note: Higher numbers reflect greater arousal, desire to meet target, and perceived attractiveness; for the latter two items the 
possible range was 1–19. Within each row, means with different subscripts differ significantly 1p 6 .052 by Duncan’s multiple 
range test.

Source: Miller, R.S. (1997). Inattentive and contented: Relationship commitment and attention to alternatives. Journal of 
 Personality and Social Psychology, 73, 758–766. Published by the American Psychological Association. Reprinted with 
permission.
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The  in the following steps indicates a mouse click. (We used SPSS version 19 for 
Windows to carry out these analyses. The steps and output may be slightly different 
for other versions of SPSS.)

It is easier to learn these steps using actual numbers; so we will use the criminal 
record example from earlier in the chapter. The scores for that example are shown in 
Table 9-3 on page 326.

Figuring a One-Way Analysis of Variance

 ❶ Enter the scores into SPSS. SPSS assumes that all scores across a row are from 
the same person. In this example, each person is in only one of the three groups 
(the Criminal Record group, the Clean Record group, or the No Information 
group). Thus, to tell SPSS which person is in each group, enter the numbers as 
shown in Figure 9-10. In the first column (labeled “group”), we used the num-
ber “1” to indicate that a person is in the Criminal Record group, the number “2” 
to indicate a person in the Clean Record group, and the number “3” to indicate a 
person in the No Information group.

 ❷  Analyze.
 ❸  Compare means.
 ❹  One-Way ANOVA.
 ❺  on the variable called “guilt” and then  the arrow next to the box labeled 

“Dependent List.” This tells SPSS that the analysis of variance should be car-
ried out on the scores for the “guilt” variable.

 ❻  the variable called “group” and then  the arrow next to the box labeled 
“Factor.” This tells SPSS that the variable called “group” shows which person 
is in which group.

 ❼  Options.  the box labeled Descriptive (this checks the box). This tells 
SPSS to provide descriptive statistics (such as the mean and standard deviation) 
for each group.  Continue. (Step ❼ is optional, but we strongly recommend 
requesting descriptive statistics for any hypothesis testing situation.)

 ❽  OK. Your SPSS output window should look like Figure 9-11.

The first table in the SPSS output provides descriptive statistics (number of in-
dividuals, mean, estimated population standard deviation, and other statistics) for 
the “guilt” scores for each of the three groups.

The second table in the SPSS output shows the actual results of the one-way 
analysis of variance. The first column lists the types of population variance esti-
mates (between groups and within groups). The second column lists the between 
groups and within groups sums of squares: these are described in the Advanced 
Topic section earlier in this chapter, but ignore this column if you did not read 
that section. The third column, “df,” gives the degrees of freedom. In the between 
groups row, this corresponds to dfBetween; in the within groups row, this corresponds 
to dfWithin. The fourth column, “Mean Square,” gives the population variance esti-
mates (S2

Between and S2
Within), with the between-groups estimate first and then the 

within-groups estimate. The next column gives the F ratio for the analysis of 
variance. Allowing for rounding error, the values for “df,” “Mean Square,” and  
“F” (and “Sum of Squares”) are the same as those reported earlier in the chapter. 
The final column, “Sig.,” shows the exact significance level of the F ratio. The 

Using SPSS
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significance level of .045 is less than our .05 cutoff for this example. Thus, you 
can reject the null hypothesis and the research hypothesis is supported (that is, the 
result is statistically significant). You can also use the information in the table to 
calculate the effect size (R2). For example, using formula 9-8 (shown on page 346), 

R2 =
1F21dfBetween2

1F21dfBetween2 + dfWithin
=

14.0632122
14.0632122+ 12

= .40.

Figure 9-10 SPSS data editor window for the criminal record example (in which 
15 individuals rated the guilt of a defendant after being randomly assigned to one of the 
three groups that were given different information about the defendant’s previous criminal 
record).
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Figuring a Planned Contrast for a One-Way  
Analysis of Variance
We will again use the criminal record example that we used for the one-way analy-
sis of variance. Note that, before going through the following steps, we went to the 
“Variable View” window in SPSS and entered value labels (in the “Values” column) 
for the “group” variable (1 = “criminal record”; 2 = “clean record”; 3 = “no in-
formation”). Doing this makes it easier to read the SPSS output for the planned con-
trast. We will use the example from earlier in the chapter in which we considered a 
planned contrast of the Criminal Record group to the No Information group.

First, follow Steps ❶ through ❼ shown above for a one-way analysis of variance.
❽  Contrasts. In order to tell SPSS which groups you would like to compare 

in the planned contract, you assign special numbers, called “coefficients,” to each 
group. In this example we are comparing the Criminal Record group (which had 
a value of “1” for the “group” variable) to the No Information group (which had a 
value of “3” for the “group” variable). When assigning coefficients to the groups 
to create the planned contrast, the main things to know are that any group assigned 
a coefficient of 0 is not included in the contrast and that the contrasts for all of the 
groups should sum to 0. In our example, we wish to compare the first group (the 
Criminal Record group) with the third group (the No Information group), so we 
can do that by using contrasts of: 1, 0, and -1. To do that, enter “1” in the box next 
to “Coefficients” and  Add. Then enter “0” in the box next to “Coefficients” and 

 Add. Finally, enter “-1” in the box next to “Coefficients” and  Add.  Continue.
❾  OK.
The first two tables shown in your SPSS output window will be the same as the 

tables shown in Figure 9-11. There will also be two new tables in your SPSS output 
window, which are shown in Figure 9-12. The first new table, labeled “Contrast 
Coefficients,” shows which groups are being compared in the planned contrast. In 

Figure 9-11 SPSS output window for a one-way analysis of variance for the criminal 
record example.
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our example, the contrast coefficients confirm that the Criminal Record group and 
the No Information group are being compared. The second new table, labeled “Con-
trast Tests,” shows the result of the planned contrast. SPSS calculates the contrast 
in two different ways, one assuming that the groups have equal population variance 
and the other assuming that they do not. We will assume that the groups have equal 
population variance, so we will focus on the first row of results in the table. The 
“Value of Contrast” of 3.0000 is the difference between the means of the two groups 
in the contrast (as shown in Figure 9-11, the Criminal Record group had a mean 
of 8 and the No Information group had a mean of 5). The “Sig. (2-tailed)” column 
shows a p value of .062 for the planned contrast. Since the p value is greater than the 
standard .05 cutoff, the planned contrast is not statistically significant. (Incidentally, 
don’t worry that the contrast test shown in Figure 9-12 gives a t value instead of an 
F value, which is what you learned when calculating planned contrasts earlier in the 
chapter. When comparing two groups, which is what we are doing in this planned con-
trast, the t test and the F test are conceptually the same. It turns out that the value of t is 
the square root of the value of F. Thus, the t value of 2.054 shown in Figure 9-12 cor-
responds to an F value of 4.22, which is the F value that we calculated for this planned 
contrast earlier in the chapter. You can learn more about the relationship between the 
t test and the F test in Web Chapter W4, which is available at www.pearsonhighered.
com/aron and also at www.mystatlab.com for MyStatLab users.)

Post Hoc Tests for a One-Way Analysis of Variance
We will again use the criminal record example that we used for the one-way analy-
sis of variance. Note that, before going through the following steps, we went to the 
“Variable View” window in SPSS and entered value labels (in the “Values” column) 
for the “group” variable (1 = “criminal record”; 2 = “clean record”; 3 = “no in-
formation”). Doing this makes it easier to read the SPSS output for the post hoc tests.

First, follow Steps ❶ through ❼ shown earlier for a one-way analysis of variance.

Figure 9-12 SPSS output window for a planned contrast for a one-way analysis of 
variance for the criminal record example.

T I P  F O R  S U C C E S S
Always double check that the 
groups you want to compare are 
the ones that are actually being 
compared in the contrast.

www.pearsonhighered.com/aron
www.pearsonhighered.com/aron
www.mystatlab.com
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❽  Post Hoc. As you will see in the window that appears, there are many dif-
ferent types of post hoc tests available. In this chapter, we focused on the Scheffé 
test, so  the box labeled Scheffe (this checks the box).  Continue.

❾  OK.
The first two tables shown in your SPSS output window will be the same as the 

tables shown in Figure 9-11. There will also be two new tables in your SPSS output 
window; the first of these tables, labeled “Post Hoc Tests,” is the most important and 
is shown in Figure 9-13. The table shows the results of all possible comparisons of the 
study groups (Criminal Record, No Record, and No Information). Let’s start by looking 
at the first row of numbers, which shows the comparison of the Criminal Record group 
to the Clean Record group. The value of 4 in the “Mean Difference” column tells you 
that the difference between the means of these groups was 4. The “Sig.” column tells 
you the exact significance level associated with a difference of that size. The value of 
.054 is not less than our standard .05 cutoff value, which tells you that the means of 
the Criminal Record and Clean Record groups are not significantly different. (For the 
current purposes, you do not need to worry about the columns labeled “Std. Error” or 
“95% Confidence Interval.”) The second row of numbers shows the result of comparing 
the Criminal Record group to the No Information group. As you can see in the “Mean 
Difference” column, the difference between the means of these groups was 3; this dif-
ference is not statistically significant since the significance level of .164 is greater than 
our standard .05 cutoff. You can ignore the third row of numbers because it shows the 
result of comparing the Clean Record group to the Criminal Record group, and you 
have already seen the result of that comparison in the first row of the table. The only 
remaining comparison to consider is the difference between the Clean Record group 
and the No Information group. That comparison is shown in the fourth row of numbers. 
The difference between the means of those groups was -1 and the significance level of 
.795 tells you that this difference is not statistically significant. So, overall, none of the 
three Scheffé post hoc comparisons was statistically significant.

Figure 9-13 SPSS output window for post hoc tests for a one-way analysis of vari-
ance for the criminal record example.
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 1. It is possible, by chance, for F to be larger or smaller than 1 in any particular situation. 
Both the between-groups and the within-groups estimates are only estimates and can 
each vary a fair amount even when the null hypothesis is perfectly true. If F is con-
siderably larger than 1, you reject the null hypothesis that the populations all have the 
same mean. But what if F is substantially smaller than 1? This rarely happens. When 
it does, it could mean that there is less variation among the groups than would be 
expected by chance—something is restricting the variation between groups.

 2. Why not just use a t test to compare the two groups? If you used an ordinary t test, 
your pooled estimate of the population variance would be based on only these two 
groups. Thus, you would be ignoring the information about the population variance 
provided by the scores in the other groups. One way to deal with this would be to do 
the ordinary t test in the usual way at every step, except wherever you would ordinar-
ily use the pooled estimate, you would instead use the within-groups population vari-
ance estimate from the overall analysis of variance. Also, you would determine your 
significance cutoff using the df for the overall within-groups estimate. Actually, this 
modified t test procedure for a planned contrast and the one we describe using the F 
test are mathematically equivalent and give exactly the same final result in terms  
of whether or not your result is significant. (For a more general discussion of the rela-
tion of the t test to the analysis of variance, see Chapter 15 as well as Web Chapter W4, 
which is available at www.pearsonhighered.com/aron and also at www.mystatlab.com 
for MyStatLab users.) We emphasize the F test approach here because it is more 
straightforward in terms of the rest of the material in this chapter.

 3. There actually is a kind of analysis of variance equivalent to the difference 
between means—the variation among the means. In fact, Cohen (1988) recom-
mends using the standard deviation of the distribution of means. Thus, he defines 
what he calls f as an effect size for the analysis of variance, which is figured as 
the standard deviation of the distribution of means (estimated as SM) divided by 
the standard deviation of the individuals (estimated as SWithin). However, this 
measure of effect size is rarely used in research articles and is less intuitively 
meaningful than the more common one we discuss here.

 4. More detailed tables are provided in Cohen (1988, pp. 289–354). When using 
these tables, note that the value of u at the top of each of his tables refers to 
dfBetween, which for a one-way analysis of variance is the number of groups 
minus 1, not the number of groups as used in our Table 9-9.

 5. More detailed tables are provided in Cohen (1988, pp. 381–389). If you use 
these, see Chapter Note 4.

 6. There are also computational formulas for figuring an analysis of variance with 
the structural model method. For learning purposes in your class, you should use 
the steps as we have discussed them in this Advanced Topic section. In a real 
research situation, the figuring is usually all done by computer (see this chapter’s 
Using SPSS section). However, if you are ever in the unlikely situation of hav-
ing to do a one-way analysis of variance for an actual research study by hand (or 
just using a hand calculator), you may find the following formulas useful:

 SSTotal = gX2 -
1gX22

N

 SSBetween =
1gX122

n1
+
1gX222

n2
+ c +

1gX
Last
22

n
Last

-
1gX22

N

 SSWithin = SSTotal - SSBetween  

Chapter Notes

www.pearsonhighered.com/aron
www.mystatlab.com
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Chapter 10
Factorial Analysis of Variance

Factorial analysis of variance is an extension of the procedures you learned 
in Chapter 9. This method provides a flexible and efficient approach to ana-
lyzing results of studies that use what is called a factorial research design. 

As you will learn in this chapter, in a factorial research design, the effects of two or 
more variables are examined at the same time by making groupings of every com-
bination of the variables. Factorial research designs are widely used in psychology.

We first consider in depth the nature of the research approach used in these kinds of 
studies. We then go on to a discussion of the reasoning for, and basic logic of, a factorial 
analysis of variance. We also discuss some extensions to the analysis of variance. We 
present the computational procedures for a factorial analysis of variance in an Advanced 
Topic section. Power and effect size for a factorial analysis of variance are also covered 
in an Advanced Topic section. (We cover a particular type of advanced analysis of vari-
ance called repeated measures analysis of variance in a Web Chapter available at www.
pearsonhighered.com/aron and also at www.mystatlab.com for MyStatLab users.)

factorial analysis of variance 
analysis of variance for a factorial  
research design.

factorial research design way of 
organizing a study in which the effects 
of two or more variables are studied at 
once by making groupings of every  
combination of the variables.
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Basic Logic of Factorial Designs  
and Interaction Effects
An Example
E. Aron and A. Aron (1997; see also E. Aron et al., 2012) proposed that people dif-
fer on a basic, inherited tendency they call “sensory-processing sensitivity” that is 
found in about a fifth of humans and in many animal species. People with this trait 
process information especially thoroughly. Table 10-1 gives six items from their 
Highly Sensitive Person Scale. If you score high on most of the items, you are prob-
ably among the 20% of people who are “highly sensitive.” (See also Box 1-2.)

One implication of being a highly sensitive person, according to this model, is that 
such people are more affected than others by success and failure. This is because they 
process all experiences more completely. So one would expect highly sensitive people 
to feel especially good when they succeed and especially bad when they fail. To test this 
prediction, E. Aron, A. Aron, and Davies (2005, Study 4) conducted an experiment. In 
the experiment, students first completed the sensitivity questions in Table 10-1. (This 
permitted the researchers when analyzing the results to divide them into highly sensi-
tive and not highly sensitive.) Later, as part of a series of tests on attitudes and other 
topics, everyone was given a timed test of their “applied reasoning ability,” something 
important to most students. But without their knowing it, half took an extremely easy 
version and half took a version so difficult that some problems had no right answer.

The questionnaires were handed out to people in alternate seats (it was ran-
domly determined where this process began in each row); so if you had the hard 
version of the test, the people on either side had an easy version and you were prob-
ably aware that they finished quickly while you were still struggling. On the other 
hand, if you had the easy version, you were probably aware that you had finished 
easily while the others around you were still working on what you presumed to be 
the same test.

Right after the test, everyone was asked some items about their mood, how 
depressed, anxious, and sad they felt at the moment. (The mood items were buried 
in other questions, so it was not obvious that testing mood was the purpose of the 
study.) Responses to the mood items were averaged to create a measure of overall 
negative mood.

In sum, the study looked at the effect of two different factors on negative 
mood: (1) whether the students were highly sensitive or not highly sensitive and 
(2) whether the students had taken the easy test (which caused them to feel they had 
succeeded) or the hard test (which caused them to feel they had failed).

Table 10-1 Selected Items from the Highly Sensitive Person Scale

1. Do you find it unpleasant to have a lot going on at once?

2.  Do you find yourself wanting to withdraw during busy days, into bed or into a darkened room or any place 
where you can have some privacy and relief from stimulation?

3.  Are you easily overwhelmed by things like bright lights, strong smells, coarse fabrics, or sirens close by?

4.  Do you get rattled when you have a lot to do in a short amount of time?

5.  Do changes in your life shake you up?

6.  Are you bothered by intense stimuli, like loud noises and chaotic scenes?

Note: Each item is answered on a scale from 1 “Not at all” to 7 “Extremely.”

Source: Aron, E., & Aron, A. (1997). Sensory-processing sensitivity and its relation to introversion and emotionality. Journal of 
Personality and Social Psychology, 73, 345–368. Published by the American Psychological Association. Reprinted with permission.

T I P  F O R  S U C C E S S
What you need to have mastered 
before starting this chapter: for 
the first part of this chapter, you 
need to have read and understood 
Chapters 1 through 9; for the 
Advanced Topic sections of this 
chapter, you also need to have 
mastered the Advanced Topic 
material in Chapter 9 on the 
structural model in the analysis of 
variance.
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Aron and colleagues could have done two studies, one comparing highly sensi-
tive versus not highly sensitive individuals and one comparing people who took the 
easy test versus people who took the hard test. Instead, they studied the effects of 
both sensitivity and test difficulty in a single study. With this setup there were four 
groups of participants (see Table 10-2): (a) those who are not highly sensitive and 
took the easy test, (b) those who are highly sensitive and took the easy test, (c) those 
who are not highly sensitive and took the hard test, and (d) those who are highly 
sensitive and took the hard test.

Factorial Research Design Defined
The Aron and colleagues (2005) study is an example of a factorial research design. 
As you learned at the beginning of the chapter, in a factorial research design the  
effects of two or more variables are examined at once by making groupings of every 
combination of the variables. In this example, there are two levels of sensitivity (not 
high and high) and two levels of test difficulty (easy and hard). This creates four  
possible group combinations, and the researchers used all of them in their study.

A factorial research design has a major advantage over conducting separate 
studies of each variable: efficiency. With a factorial design, you can study both vari-
ables at once, without needing twice as many participants. In the example, Aron 
and colleagues were able to use a single group of participants to study the effects of 
sensitivity and test difficulty on negative mood. (The two “studies” don’t get in each 
other’s way because for each part of each comparison, there are equal numbers in 
each part of the other conditions.)

Interaction Effects
There is, however, an even more important advantage of a factorial research design. 
A factorial design lets you study the effects of combining two or more variables. In 
this example, sensitivity and test difficulty might affect negative mood in a simple 
additive way. By additive, we mean that their combined influence is the sum of 
their separate influences; if you are more of one and also more of the other, then the 
overall effect is the total of the two individual effects. For example, suppose being 
highly sensitive makes you more likely to experience a negative mood; similarly, 
suppose the test being hard makes you more likely to experience a negative mood. 
If these two effects are additive, then participants in the high sensitivity, hard test 
group will be most likely to experience a negative mood; participants who are not 
highly sensitive and take the easy test will be the least likely to experience a nega-
tive mood; and those in the other two conditions would have an intermediate likeli-
hood of experiencing a negative mood.

It could also be that one variable but not the other has an effect. Or perhaps nei-
ther variable has any effect. In the additive situation, or when only one variable or 
neither has an effect, looking at the two variables in combination does not give any 
interesting additional information.

However, it is also possible that the combination of the two variables changes 
the result. In fact, as noted earlier, Aron and colleagues predicted that the effect of 
being highly sensitive would be especially strong in the hard test condition. A situ-
ation where the combination of variables has a special effect is called an interac-
tion effect. An interaction effect is an effect in which the effect of one variable that 
divides the groups on the measured variable is different across the levels of the other 
variable that divides the groups—a situation in which the “whole is greater than (or 
less than!) the sum of the parts”.  

interaction effect situation in the 
factorial analysis of variance in which a 
combination of variables has an effect 
that could not be predicted from the  
effects of the two variables individually; 
situation in which the effect of  
one variable that divides the groups  
on the measured variable is different 
across the levels of the other variable 
that divides the groups.

Table 10-2 Factorial 

Research Design Employed by Aron 

and colleagues (2005)

Test
Difficulty

Easy Hard

Se
ns

iti
vi

ty Not High a c

High b d

Source: Based on Aron, E., Aron, A., & Davies, 
K. M. (2005). Adult shyness: The interaction of 
temporal sensitivity and an adverse childhood 
environment. Personality and Social Psychology 
Bulletin, 31, 181–197. Copyright © 2005 by 
Sage Publications, Inc. Reprinted by permission 
of Sage Publications, Inc.
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In the Aron and colleagues study, there was an interaction effect. Look at  
Table 10-3. The result was that the students in the High Sensitivity/Hard Test group 
had the most negative mood (remember, a high number means a more negative 
mood), and the students in the High Sensitivity/Easy Test group had the least nega-
tive mood. The level of negative mood in the other two groups (the Not High Sen-
sitivity groups) was similar and in between that of the two High Sensitivity groups. 
These results show that the effect of test difficulty (on negative mood) is different 
according to the level of sensitivity: for students who are not highly sensitive, their 
level of negative mood is slightly higher with a hard test (2.56) compared to an easy 
test (2.43); but for students who are highly sensitive, their level of negative mood is 
much higher with a hard test (3.01) compared to an easy test (2.19).

Suppose the researchers had studied sensitivity and test difficulty in two sepa-
rate studies. In the study of sensitivity (assuming equal numbers of students in each 
group), they would have concluded that sensitivity had little (if any) effect on nega-
tive mood: the average level of negative mood for students who are not highly sensi-
tive is 2.50 (that is, the average of 2.43 and 2.56) and for highly sensitive students 
2.60 (the average of 2.19 and 3.01). In the study of test difficulty (again assuming 
equal numbers of students in each group), they would have concluded that students 
experienced a lower level of negative mood when taking an easy test than a hard 
test: The average level of negative mood for students taking the easy test was 2.31 
(the average of 2.43 and 2.19), and the average for those taking the hard test was 
2.79 (the average of 2.56 and 3.01). Thus, following the approach of two separate 
studies, the researchers would have completely missed the most important result. 
The most important result had to do with the combination of the two factors.

Some Terminology
The Aron and colleagues study used a two-way factorial research design. It would 
be analyzed with what is called a two-way analysis of variance because it consid-
ers the effects of two variables that divide the groups. These variables are called 
grouping variables. By contrast, the situations in Chapter 9 (such as the attachment 
style study or the criminal record study) used a one-way analysis of variance. Such 
analyses are called one-way because they consider the effect of only one grouping 
variable (such as a person’s attachment style or kind of information about a defen-
dant’s criminal record).

In a two-way analysis of variance, each grouping variable or “way” (each dimen-
sion in the diagram) is a possible main effect. If the result for a grouping variable, 
averaging across the other grouping variable(s), is significant, it is a main effect. This 
is entirely different from an interaction effect, which is based on the combination of 
grouping variables. In the two-way Aron and colleagues study, there was a possibil-
ity of two main effects and one interaction effect. The two possible main effects are 
one for sensitivity and one for test difficulty. The possible interaction effect is for the 
combination of sensitivity and test difficulty. In a two-way analysis of variance you 
are always testing two possible main effects and one possible interaction effect.

Each grouping combination in a factorial design is called a cell. The mean of 
the scores in each cell is a cell mean. In the Aron and colleagues study, there are 
four cells and thus four cell means, one for each combination of the levels of sensi-
tivity and test difficulty. That is, one cell is Not High Sensitivity and an Easy Test 
(as shown in Table 10-3, its cell mean is 2.43); one cell is High Sensitivity and an 
Easy Test (2.19); one cell is Not High Sensitivity and a Hard Test (2.56); and one 
cell is High Sensitivity and a Hard Test (3.01).

two-way factorial research 
design factorial research design in 
analysis of variance with two variables 
that each divide the groups.

two-way analysis of variance 
analysis of variance for a two-way 
factorial research design.

grouping variable a variable that 
separates groups in analysis of variance.

one-way analysis of variance 
analysis of variance in which there is 
only one grouping variable.

main effect difference between groups 
on one grouping variable in a factorial 
design in analysis of variance; result for 
a grouping variable, averaging across the 
levels of the other grouping variable(s).

cell in a factorial design, particular 
combination of levels of the variables 
that divide the group.

cell mean mean of a particular 
combination of levels of the variables 
that divide the groups in a factorial 
design in analysis of variance.

Table 10-3 Mean Levels 

of Negative Mood in the Aron and 

colleagues (2005) Study

Test  
Difficulty

Easy Hard

Se
ns

iti
vi

ty

Not High 2.43 2.56

High 2.19 3.01
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The means of one grouping variable alone are called marginal means. For 
example, in the Aron and colleagues study there are two marginal means for each 
grouping variable. For sensitivity, there is one marginal mean for all the students 
who are not highly sensitive (as we saw earlier, 2.50) and one for all the students 
who are highly sensitive (2.60). For the test difficulty grouping variable, there is one 
marginal mean for all the students who took the easy test (2.31) and one marginal 
mean for all the students who took the hard test (2.79). (Because we were mainly 
interested in the interaction, we did not show these marginal means in our tables.) To 
look at a main effect, you focus on the marginal means for each grouping variable. 
To look at the interaction effect, you focus on the pattern of individual cell means.

Some studies investigate the effect of three or more grouping variables at a time. 
For example, Aron and colleagues could have looked at whether their results were 
different for women and men. To do this, they would have divided each of their 
four groups into two subgroups, women and men. This would have created eight 
grouping combinations: Not High Sensitivity/Easy Test/Women; Not High Sensi-
tivity/Easy Test/Men; Not High Sensitivity/Hard Test/Women; and so forth. The 
complete set of groupings is shown in Figure 10-1. This analysis would examine 
the influence of three grouping variables at one time: sensitivity, test difficulty, and 
gender. It takes three dimensions to diagram such a study. Thus, this is an example 
of a three-way factorial design. You can do studies with four-way and even higher 
factorial designs, though you can’t diagram such studies in any simple way. How-
ever, most psychology research is limited to two-way and occasionally three-way 
factorial designs.

Factorial research designs are often described in terms of the number of group-
ing variables in the study and the number of levels that each grouping variable has. 
So, for example, consider a study of the effects of two grouping variables in which 
the first grouping variable has two levels (such as low and high) and the second 
grouping variable has three levels (such as small, medium, and large). This would 
be called a 2 * 3 factorial design: the 2 is for the number of levels of the first 
grouping variable and the 3 is for the number of levels of the second grouping vari-
able. As another example, consider a study with three grouping variables, with the 
first grouping variable having two levels and the other two grouping variables each 
having three levels. This would be a 2 * 3 * 3 design. The Aron and colleagues 
study used a 2 * 2 design.

marginal means in a factorial design 
in analysis of variance, mean score for 
all the participants at a particular level of 
one of the grouping variables.

Se
ns

iti
vi

ty
Not

High

High

Gender

Women

Men

Easy Hard

Test Difficulty

Figure 10-1 Possible three-way factorial research design for the Aron and colleagues 
(2005) study.
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How are you doing?

 1. (a) What is a factorial research design? (b) and (c) Give two advantages of a 
factorial research design over doing two separate studies.

 2. In a factorial design, (a) what is a main effect, and (b) what is an interaction 
effect?

 3. In the following table are the means from a study in which participants rated 
the originality of paintings under various conditions. For each mean, indicate 
its grouping and whether it is a cell or marginal mean.

Contemporary Renaissance Overall

Landscape 6.5 5.5 6

Portrait 3.5 2.5 3

Overall 5 4

 4. In each of the following studies, participants’ performance on a coordina-
tion task was measured under various conditions or compared for different 
groups. For each study, make a diagram of the research design and indicate 
whether it is a one-way, two-way, or three-way design: (a) a study in which 
people are assigned to either a high-stress condition or a low-stress condi-
tion, and, in each of these conditions, half are assigned to work alone and half 
to work in a room with other people; (b) a study comparing students majoring 
in physics, chemistry, or engineering; (c) a study comparing people doing a 
task in a hot room versus a cold room, with half in each room doing the task 
with their right hand and half with their left hand, and within each of these vari-
ous temperature/ hand combinations, half are blindfolded and half are not.

 5. Explain what it means to say that a study is using a 2 * 4 research design.

Answers

 1. (a) A factorial research design is a research design in which the effect of two 
or more grouping variables is examined at once by making groupings of 
every combination of the variables.

  (b) A factorial research design is more efficient. For example, you can study 
the effects of two grouping variables at once with only a single group of 
participants.

  (c) A factorial research design makes it possible to see if there are interaction 
effects.

 2. (a) A main effect in a factorial research design is the effect of one of the group-
ing variables, ignoring the pattern of results on the other grouping variable(s) 
(or a difference in the marginal means for the different levels of a particular 
grouping variable).

  (b) An interaction effect is the different effect of one grouping variable accord-
ing to the level of the other grouping variable(s).

 3. 6.5 = cell mean for Contemporary/Landscape group; 5.5 = cell mean 
for Renaissance/Landscape group; 6 = marginal mean for Landscape 
groups; 3.5 = cell mean for Contemporary/Portrait group; 2.5 = cell mean 
for Renaissance/Portrait group; 3 = marginal mean for Portrait groups; 
5 = marginal mean for Contemporary groups; and 4 = marginal mean for 
Renaissance groups.

 4. (a) Two-way.
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Recognizing and Interpreting Interaction Effects
It is very important to understand interaction effects. In many experiments and other 
kinds of research (such as the combined effects of genetics and the environment on 
various behaviors), the interaction effect is the main point of the research. As we 
have seen, an interaction effect is an effect in which the impact of one grouping 
variable depends on the level of another grouping variable. You can think out and 
describe an interaction effect in three ways: in words, in numbers, or in a graph. 
Note that, in discussing the examples in this section on interaction effects, we will 
treat all differences that have the pattern of an interaction effect or of a main effect 
as if they were statistically significant. (In reality, you would carry out hypothesis 
testing steps to test whether the particular patterns were strong enough to be statisti-
cally significant.) We are taking this approach here to keep the focus on the idea of 
interaction effects while you are learning this fairly abstract notion.

Identifying Interaction Effects in Words and Numbers
You can think out an interaction effect in words by saying that you have an interac-
tion effect when the effect of one grouping variable varies according to the level of 
another grouping variable. In the Aron and colleagues example, the effect of test dif-
ficulty (easy versus hard) varies according to the level of sensitivity (not high versus 

Stress

Task High Low

Alone

With Others

Ha
nd

Left

Right

Room

Cold

Hot

Yes No

Blindfolded

Subject

Physics Chemistry Engineering

  (c) Three-way.

 5. A study is using a 2 * 4 research design when it has two grouping variables, 
one that has two levels and one that has four levels.

(b) One-way.
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high). Another way of saying this is that the effect of test difficulty depends on the 
level of sensitivity (the effect of test difficulty is different for highly sensitive indi-
viduals than for individuals who are not highly sensitive). (You can also talk about 
this interaction effect by focusing on the other grouping variable first. So you could 
say that the effect of sensitivity varies according to the level of test difficulty, or that 
the effect of sensitivity depends on the level of test difficulty. Interaction effects 
are completely symmetrical in that you can describe them from the point of view of 
either grouping variable.)

You can see an interaction effect numerically by looking at the pattern of cell 
means. If there is an interaction effect, the pattern of differences in cell means across 
one row will not be the same as the patterns of differences in cell means across 
another row. (Again, all of this is symmetrical: you can also look at the differences 
in cell means for one column compared to another column, but we will focus here 
on rows.) Consider the Aron and colleagues example. In the Not High Sensitiv-
ity row, the cell mean for negative mood of the Easy Test students (2.43) was just 
slightly lower than the cell mean for negative mood of the Hard Test students (2.56). 
This is a difference of - .13 (that is, 2.43 - 2.56 = - .13). However, now look at 
the High Sensitivity row. In this row, the cell mean for Easy Test students’ negative 
mood (2.19) was a lot lower than the cell mean for negative mood for the Hard Test 
students (3.01). This difference of - .82 is not at all the same as the difference of 
- .13 in the Not High Sensitivity row; this dissimilar pattern of differences in cell 
means indicates an interaction effect.

Some Examples
Table 10-4 gives cell means and marginal means for six possible results of a fic-
tional two-way factorial study on the relation of age and education (the grouping 
variables) to income (the measured variable) in North America. The grouping vari-
able age has two levels (younger, such as 25 to 30, versus older, such as 40 to 45), 
and the grouping variable education has two levels (high school versus college). 
Thus, the study is using a 2 * 2 research design. These fictional results are exagger-
ated to make clear when there are interactions and main effects. Before you look at 
the six possible results, take a minute to think about what kind of results you might 
expect (and hope!) to see. For example, do you expect that people with a college 
education will earn less than or more than people with only a high school education? 
Would you expect younger people to earn more than or less than older people? Most 

Table 10-4 Possible Means for Results of a Study of the Relation of Age and Education to Income (in Thousands of Dollars)

Result A Result B Result C

Age High School College Overall High School College Overall High School College Overall

Younger 40 40 40 60 40 50 20 60 40

Older 40 60 50 40 60 50 40 80 60

Overall 40 50 50 50 30 70

Result D Result E Result F

Age High School College Overall High School College Overall High School College Overall

Younger  20  20 20 40 60 50 30 45 37.5

Older 120 120 120 40 80 60 35 60 47.5

Overall  70  70 40 70 32.5 52.5
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importantly (since we are focusing on interaction effects), what about the possibil-
ity of an interaction effect? Do you think that the effect of education (college versus 
high school) will be different according to age (younger versus older)? Let’s take 
a look at the six possible results and then we’ll tell you what the results of actual 
research show.

Result A Interaction. Note that in the Younger row, education makes no differ-
ence, but in the Older row, the college cell mean is much higher than the high-
school cell mean. One way to say this is that for the younger group, education is 
unrelated to income; but for the older group, people with a college education earn 
much more than those with less education. There are also two main effects: overall, 
older people earn more than younger people, and overall, people with a college edu-
cation earn more than those with only a high school education.

Result B Interaction. This is because, in the Younger row, the high school mean 
income is higher than the college mean income, but in the Older row the high-school 
mean income is lower. Put in words, among younger people, those with only a high 
school education make more money (perhaps because they entered the workplace 
earlier or the kinds of jobs they have start out at a higher level); but among older 
people, those with a college education make more money. (There are no main 
effects in Result B, since the marginal means for the two rows are the same and the 
marginal means for the two columns are the same.)

Result C No interaction. In the Younger row, the high-school mean is 40 lower 
than the college mean, and the same is true in the Older row. Whether young or old, 
people with college educations earn $40,000 more. (That is, there is a main effect 
for age and also a main effect for education.)

Result D No interaction. There is no difference in the pattern of income between 
the two rows. Regardless of education, older people earn $100,000 more. (That is, 
there is a main effect for age; but there is no main effect for education.)

Result E Interaction. In the Younger row, the college mean is 20 higher than the 
high-school mean, but in the Older row, the college mean is 40 higher than the high-
school mean. So among young people, college-educated people earn a little more; 
but, among older people, those with a college education earn much more. (There are 
also main effects for both age and education.)

Result F Interaction. There is a smaller difference between the high school and col-
lege mean in the Younger row than in the Older row. As with Result E, for people 
with a college education, income increases more with age than it does for those with 
only a high school education. (There are also main effects for both age and education.)

Based on statistics from the U.S. Census Bureau, the actual situation in the 
United States is closest to Result F (Day & Newberger, 2002). People with a col-
lege education earn more than those with only a high school education in both 
age groups, but the difference is somewhat greater for the older group. You also 
may be interested to know that, based on data from 2009, individuals with a col-
lege degree in the United States earn an average of $30,000 more per year than 
those with only a high school education (U.S. Census Bureau, 2009). However, 
it is important to keep in mind that whether people receive a college education is 

T I P  F O R  S U C C E S S
Remember, you tell whether there 
is an interaction effect by looking 
at the pattern of cell means. 
There is an interaction effect if the 
pattern of cell means in one row 
is different from the pattern of cell 
means across another row.

T I P  F O R  S U C C E S S
You tell whether there is a main 
effect by looking at the marginal 
means. The marginal means in 
Tables 10-4 and 10-5 are the 
means in the “Overall” columns 
and rows. There is a main effect for 
a particular grouping variable if the 
marginal means for the different 
levels of that grouping variable are 
not the same.
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also related to the social class of their parents and other factors that may affect 
income as much as education does.

More Examples
Table 10-5 shows possible results of another fictional study. In this factorial experi-
ment, the two experimentally manipulated variables are difficulty of the task (which 
has two levels: easy versus hard) and level of physiological arousal (which has 
three levels: low, moderate, or high). (This study is using a 2 * 3 research design.) 
Arousal in this study is how anxious the participant is made to feel about the impor-
tance of doing well. The variable being measured is how well the participant per-
forms a set of arithmetic tasks. Let’s consider each possible pattern of results.

Result A No interaction. The pattern of cell means in the Easy row is the same as 
the pattern of cell means in the Hard row. In each row, the cell means are the same 
for each level of arousal. (There is one main effect: task difficulty affects perfor-
mance; arousal does not.)

Result B No interaction. The cell means in the Easy row increase by 10 from 
low to moderate and from moderate to high. The cell means in the Hard row do the 
same. (Again, there is only one main effect: arousal affects performance; task dif-
ficulty does not.)

Result C No interaction. The cell means in the Easy row increase by 10 from low 
to moderate and from moderate to high; the cell means in the Hard row do the same. 
(In this example, there are two main effects: arousal affects performance and task 
difficulty affects performance.)

Result D Interaction. The pattern of cell means in the Easy row is an increase of 
10 from low to moderate and another increase of 10 from moderate to high. This 
pattern is not the same as the pattern of cell means in the Hard row, where there is 
again an increase of 10 from low to moderate, but there is an increase of 40 from 
moderate to high. Thus, in all cases, performance on easy and hard tasks tends to 
improve with greater arousal. However, the impact of high versus moderate arousal 
is much greater for hard than for easy tasks. (There are two main effects: arousal 
affects performance and task difficulty affects performance.)

Table 10-5 Some Possible Results of an Experiment on the Effect of Task Difficulty and Arousal Level on Performance (Fictional Data)

Result A Result B Result C

Manipulated Arousal Manipulated Arousal Manipulated Arousal

Task Low Moderate High Overall Low Moderate High Overall Low Moderate High Overall

Easy 10 10 10 10 10 20 30 20 10 20 30 20

Hard 20 20 20 20 10 20 30 20 20 30 40 30

Overall 15 15 15 10 20 30 15 25 35

Task Result D Result E Result F

Easy 10 20 30 20 10 20 10 13.3 10 20 30 20

Hard 10 20 60 30 20 10 20 16.7 30 20 10 20

Overall 10 20 45 15 15 15 20 20 20
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Result E Interaction. The pattern of cell means in the Easy row is an increase of 
10 and then a decrease of 10. This is quite different from the Hard row, where the 
pattern is a decrease of 10 and then an increase of 10. For easy tasks, performance 
is best under moderate arousal, but, for hard tasks, performance is worst under mod-
erate arousal. (There is only one main effect: task difficulty affects performance; 
arousal does not.)

Result F Interaction. In the Easy row, the cell means increase as you go across; 
in the Hard row, they decrease as you go across. For easy tasks, the more arousal, 
the better; for hard tasks, arousal interferes with performance. (There are no main 
effects.) (Result F is closest to a well established finding in psychology known as 
the Yerkes-Dodson law.)

Identifying Interaction Effects Graphically
Another common way of making sense of interaction effects is by graphing the pat-
tern of cell means. This is usually done with a bar graph, although a line graph is 
sometimes used. The bar graph in Figure 10-2 shows the results from Aron and col-
leagues’ (2005) study. Figure 10-3 is a line graph that shows the same results as the 
bar graph in Figure 10-2. Figures 10-4 and 10-5 show the bar graphs for the fictional 
results we just considered from Tables 10-3 and 10-4, respectively.

One thing to notice about such graphs is this: whenever there is an interaction, 
the pattern of bars on one section of the graph is different from the pattern on the 
other section of the graph. Thus, in Figure 10-2, the pattern for not highly sensitive 
is a small step up, but the pattern for highly sensitive is a much larger step up. The 
bars having a different pattern is just a graphic way of saying that the pattern of dif-
ferences between the cell means from row to row is not the same. In a line graph, 
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Figure 10-2 Bar graph for level of negative mood as a function of sensitivity (not 
high versus high) and test difficulty (easy versus hard).

Source: Based on Aron, E., Aron, A., & Davies, K. M. (2005). Adult shyness: The interaction of 
 temporal sensitivity and an adverse childhood environment. Personality and Social Psychology 
 Bulletin, 31, 1–17. Copyright © 2005 by Sage Publications, Inc. Reprinted by permission of Sage 
 Publications, Inc.
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Figure 10-3 Line graph for level of negative mood as a 
function of sensitivity (not high versus high) and test difficulty 
(easy versus hard).

Source: Based on Aron, E., Aron, A., & Davies, K. M. (2005). Adult 
shyness: The interaction of temporal sensitivity and an adverse child-
hood environment. Personality and Social Psychology Bulletin, 31, 
1–17. Copyright © 2005 by Sage Publications, Inc. Reprinted by 
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Figure 10-4 Bar graphs of fictional results in Table 10-4.
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such as Figure 10-3, you can tell there is an interaction by the lines not being paral-
lel; as with a bar graph, this shows that there is a different pattern of cell means from 
row to row.

Consider Figure 10-4, based on the age and education examples. First look at 
Results C and D. In Result C, the younger and older sets of bars have the same pat-
tern: both step up by 40. In Result D, both are flat. Within both Results C and D, 
the younger bars and the older bars have the same pattern. These were the examples 
that did not have interactions. All the other results, which did have interactions, 
have patterns of bars that are not the same for the younger and older groups. For 
example, in Result A, the two younger bars are flat, but the older bars show a step 
up. In Result B, the younger bars show a step down from high school to college, but 
the older bars show a step up from high school to college. In Results E and F, both 
younger and older bars show a step up, but the younger bars show a smaller step up 
than the older bars.

Consider Figure 10-5. Results A, B, and C show no interaction; within each 
result, the patterns of bars for low, moderate, and high arousal are the same. Result D 
is an interaction. You can see this in the figure as follows: the bars within low are 
flat and the bars within moderate are flat; but for the high arousal bars, there is a step 
up from easy to hard tasks. Result E’s interaction shows steps up for low and high 
arousal, but a step down for moderate arousal. Result F’s interaction is seen in there 
being a step up for low, flat for moderate, and a step down for hard.
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Figure 10-5 Bar graphs of fictional results in Table 10-5.
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Figure 10-6 shows an alternate way of graphing the results from Table 10-5 
than shown in Figure 10-5. Here we have grouped the bars according to hard versus 
easy. The easy task bars for low, moderate, and high arousal are next to each other 
and the hard task bars for low, moderate, and high arousal are next to each other. 
This alternate way of grouping is completely equivalent in meaning and leads to 
exactly the same conclusions. For example, in Result A the three hard-task bars are 
flat and the three easy-task bars are flat. In Results B and C, where there is also no 
interaction, the three easy-task bars rise up in the same step pattern as the three hard 
task bars. However, consider Result D, where there is an interaction. The pattern of 
the easy task bars is different from the pattern of the hard task bars. There is a bigger 
step up from moderate to high arousal in the hard task bars than there is in the easy 
task bars.

You can also see main effects from these graphs. In Figure 10-4, a main 
effect for age would be shown by the bars for younger being overall higher or 
lower than the bars for older. For example, in Result C, the bars for older are 
clearly higher than the bars for younger. What about the main effect for the  
bars that are not grouped together—college versus high school in this example? 
With these bars, you have to see whether the overall step pattern goes up or down. 
For example, in Result C, there is also a main effect for education, because the 
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Figure 10-6 Alternative bar graphs (compared to Figure 10-5) of fictional results in 
Table 10-5.
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general pattern of the bars for high school to college goes up, and it does this for 
both the younger and older bars. Result D shows a main effect for age (the older 
bars are higher than the younger bars). But Result D does not show a main effect 
for education; the pattern is flat for both the older and younger bars. Result A  
in Figure 10-5 shows a main effect for task difficulty but no main effect for 
arousal. This is because the average heights of the bars are the same for low, 
moderate, and high arousal, while within each arousal level, the bars step up from 
easy to hard.

Relation of Interaction and Main Effects
A study can have any combination of main and interaction effects. For example, you 
can have both main effects and the interaction, as in the pattern in Result F of Table 
10-4. In this result, as you saw, older students earn more (a main effect for age), col-
lege students earn more (a main effect for level of education), and how much more 
college students earn depends on age (the interaction effect). Similarly, in Result D 
of Table 10-5, on the average people perform better at hard tasks (a main effect for 
task difficulty) and at higher levels of arousal (a main effect for arousal level), but 
the effect of task difficulty shows up only at high levels of arousal (the interaction). 
(Notice, however, that the main effect for task difficulty—the higher average for 
hard tasks—is entirely due to the high arousal condition. We have more to say about 
this kind of situation shortly.)

There can also be an interaction effect with no main effects. Result B of Table 
10-4 is an example. The average level of income is the same for younger and older 
(no main effect for age), and it is the same for college and high school (no main 
effect for level of education). Similarly, in Result F of Table 10-5, the average per-
formance is the same for low, moderate, and high arousal (no main effect for arousal 
level) and is the same for easy and hard tasks (no main effect for task difficulty). 
However, in both examples there are clear interactions.

It is also possible for there to be one main effect along with an interaction, one 
main effect by itself, or no main or interaction effects.

When there is no interaction, a main effect has a straightforward mean-
ing. However, when there is an interaction along with a main effect, things are  
more complicated. Consider Result D in the arousal and task difficulty example 
(Table 10-5). There are two main effects and an interaction. But as we noted earlier, 
the main effect for task difficulty is entirely due to the high arousal hard task cell. 
It would be misleading to say anything about hard versus easy tasks overall without 
also saying that the effect really depends on the level of arousal. You should be 
especially cautious about the meaning of a main effect when the direction of the 
effect is reversed for some levels of the other grouping variable.

On the other hand, even when there is an interaction, sometimes the main 
effect clearly holds up over and above the interaction. That is, the main effect may 
be there at every level of the other grouping variable, but even more strongly at 
some points than at others. Consider again Result D in the arousal and task diffi-
culty example (Table 10-5). In this result, the main effect for arousal holds up over 
and above the interaction. The effect for arousal is there for both easy and hard 
tasks; in both cases, low arousal produces the least performance, moderate the next 
most, and high arousal the most. (There is still an interaction because how much 
high arousal produces better performance than moderate arousal is more for hard 
than for easy tasks.)



392 Chapter 10

How are you doing?

 Questions 1 to 3 are based on the following results for a fictional study of the 
effects of vividness and length of examples (the grouping variables) on number 
of examples recalled (the measured variables).

Vividness

Example Length Low High Overall

Short 5 7 6

Long 3 1 2

Overall 4 4

 1. Describe the pattern of results in words.
 2. Explain the pattern in terms of numbers.
 3. (a) and (b) Make two bar graphs of these results.
 4. For a two-way factorial research design, what are the possible combinations 

of main and interaction effects?
 5. When there is both a main and an interaction effect, (a) under what conditions 

must you be careful in interpreting the main effect, and (b) under what condi-
tions can you still be confident in the overall main effect?
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Figure 10-7 Answer to “How are you doing?” question 3.

Answers

 1. There is a main effect in which short examples are recalled better, there is no 
main effect for vividness, and there is an interaction effect in which there is a 
bigger advantage of short over long examples when they are highly vivid.
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Basic Logic of the Two-Way Analysis of Variance
The statistical procedure for analyzing the results of a two-way factorial study is 
called a two-way analysis of variance. The basic logic is the same as you learned in 
Chapter 9. In any analysis of variance, you figure an F ratio, and this F ratio compares 
a population variance estimate based on the variation between the means of the group-
ings of interest to a population variance estimate based on variation within groups.

The Three F Ratios in a Two-Way Analysis of Variance
In a two-way analysis of variance, there are three F ratios: one for the grouping vari-
able spread across the columns (the column main effect), one for the grouping variable 
spread across the rows (the row main effect), and one for the interaction effect. In 
the test difficulty and sensitivity example, there would be one F for the main effect 
for Test Difficulty, one F for main effect for Sensitivity, and one F for the interac-
tion of Test Difficulty with Sensitivity.

The numerator of each of these three F ratios will be a between-groups popu-
lation variance estimate based on the groupings being compared for the particular 
main or interaction effect. The within-groups variance estimate is the same for all 
three F ratios; it is always the average of the population variance estimates made 
from the scores in each of the cells. Since this within-groups variance estimate 
is based on estimates from each cell, it can also be called a within-cells variance 
estimate.

Logic of the F Ratios for the Column and Row Main Effects
One way of understanding how the analysis is done for main effects is as follows. 
Consider the main effect for the columns grouping variable. Figure the following  
F ratio: the numerator is a between-groups variance estimate based on the variation 
between the column marginal means. The denominator is a within-groups (within-
cells) variance estimate based on averaging the variance estimates from each of  
the cells. Think again of the Aron and colleagues (2005) example. The F ratio for 
test difficulty (the columns grouping variable, as we have drawn the chart—see 
Table 10-6) is figured as follows. The numerator, the between-groups variance esti-
mate, is based on the difference between the easy test difficulty marginal mean and 

 2. The main effect is that on the average people recall six short examples but 
only two long examples. There is no main effect for vividness because people 
on the average recall four examples, regardless of how vivid the examples 
are. The interaction effect is that for short examples, people recall two more 
highly vivid than low vivid; but for long examples, they recall two fewer highly 
vivid than low vivid.

 3. See Figure 10-7.
 4. All possible combinations: no main or interaction effects; either main effect only; 

the interaction only; both main effects but no interaction effect; an interaction 
effect with either main effect; or an interaction effect with both main effects.

 5. (a) You should be careful in interpreting the main effect when it is found for 
only one level of the other grouping variable or when its direction is reversed 
at different levels of the other grouping variable.

  (b) You can still be confident in the overall main effect when it holds and is in 
the same direction at each level of the other grouping variable.

Table 10-6 Mean Levels of 

Negative Mood in the Aron and 

colleagues (2005) Study

  
Test  

Difficulty

Se
ns

iti
vi

ty  
Not High

Easy

2.43

Hard

2.56

High 2.19 3.01
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In a certain sense, the study of statistics is training in a 
style of seeing the world.

Regardless of whether psychological researchers draw 
an explicit comparison between analysis of variance and 
the way they think, they probably often use the crisp 
model of analysis of variance as a guide to their own logic. 
They do this not only when analyzing data or even when 
designing research, but they probably also use the analysis 
of variance as a metaphor when theorizing as well.

An important example of how statistics has influ-
enced the way psychologists think about their subject 
matter, not just their data, is in the history of the study 
of personality. In the 1960s, the field of personality was 
forever changed by the work of Walter Mischel (1968; 
for an insider’s description, see Mischel, 2007). Mischel 
appeared to have demonstrated that, as a rule, situa-
tion (a street signal turning red, for example, or a well-
dressed person asking for help) is a far better predictor 
of how a person will act than any personality trait (for 
example, that a person is by nature cautious or altruistic). 
The embattled personality theorists, typically trained in 
psychodynamics, struggled to defend themselves within 
the rules of the game as Mischel had defined them: how 
much of the variation in behavior could really be pre-
dicted by their personality measures? That is, personality 
theorists were forced to think statistically.

One result of this challenge was something called 
“interactionism” (e.g., Endler & Magnusson, 1976; for 
a recent discussion of the issue, see Reynolds et al., 
2010). That is the idea that behavior is best predicted by 
the interaction of person and situation. You can instantly 
guess what statistical method has had its influence. (You 
are studying it in this chapter!)

For example, according to interactionism, neither the 
personality trait of anxiety nor the situation of taking the 
SAT is nearly as good a predictor of anxiety as knowing  
that a person with a given tendency toward anxiety perceives 
the taking of the SAT as an anxiety-producing situation. The 
emphasis is that behavior is being altered constantly by the 
individual’s internal disposition interacting with his or her 
perception of the changing situation. (In fact, even Walter 
Mischel [2004] later proposed a theory of this kind.)

Let’s follow an anxious man through some situations. 
He may feel even more—or perhaps less—anxiety while 

proceeding from the testing situation to a dark, empty 
parking lot, depending again on the interaction of his 
trait anxiety and his perception of this new situation. The 
same is true as he proceeds to drive home on the high-
way, to open the garage door, to enter an empty house.

According to interactionism, the person is not a  
passive component but an “intentional active agent in 
this interaction process” (Endler & Magnusson, 1976,  
p. 968).

The important part of the person aspect of the  
interaction is how a person thinks about a situation. 
The important part of the situation aspect of the inter-
action is, again, its meaning for the person. (Note that 
the Aron et al. [2005] study we have been using as  
an example in this chapter is a current version of just 
such an interaction of personality [sensitivity] with 
a situation [being faced with an easy or a hard test].) 
Some form of interactionism now appears to be true 
in general for explaining what people do and the idea 
continues to be highly important in personality psy-
chology. For example, whether one is a “morning per-
son” or a “night person” (the personality trait) interacts 
with one’s work schedule in predicting one’s alertness 
(Cavallera & Giudici, 2008). (It is now turning out 
that interactionism may even explain the way ordinary 
people typically understand other people’s behavior 
[Kammrath et al., 2005]. That is, people may be intui-
tive statisticians!)

This influence of statistics on theory has been hap-
pening throughout the history of nearly every area of 
psychology. Indeed, the influence of recent statisti-
cal developments on thinking has become particularly 
important in recent years as new ideas are developed 
in statistical methods (such as multilevel modeling; see 
Chapter 15) and as new opportunities emerge as psy-
chologists more thoroughly take into account the role 
of culture, genetics, and neural processes in predicting 
behavior. In a sense, we could say that pioneers in sta-
tistics are now determining not only the complexity of 
psychological research that is possible, but the depth 
of theorizing itself. They are carving out the channels 
through which psychologists’ actual thinking patterns 
flow and therefore are shaping and directing much of our 
understanding of psychology.

BOX 10-1  Personality and Situational Influences on Behavior: 
An Interaction Effect
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the hard test difficulty marginal mean. The denominator, the within-groups (within-
cells) variance estimate, is based on averaging the population variance estimates 
from within each of the four cells.

The procedure for the row main effect is the same idea. You figure it using 
a between-groups variance estimate based on the difference between the two row 
marginal means. (The Aron and colleagues study was designed so that the row mar-
ginal means are the mean for all the nonhighly sensitive participants and the mean 
for all the highly sensitive participants.)

Figure 10-8a shows the column between-groups variance estimate as based on 
the difference between the mean of the scores in the first column (the shaded area) 
and the mean of the scores in the second column (the unshaded area). Figure 10-8b 
shows the row between-groups estimate as based on the difference between the 
mean of the scores in its top row (the shaded area) and the mean of the scores in the 
bottom row (the unshaded area). And Figure 10-8c shows the within-groups vari-
ance estimate (used for all the F ratios) as based on the variation among the scores 
in each of the cells.

Logic of the F Ratio for the Interaction Effect
The logic of the F ratio for the interaction effect is a bit more complex. One approach 
is to think of the interaction effect as the combinations left over after considering the 
row and column main effects. Consider a study with two grouping variables, each of 
which has two levels. (As you learned earlier, this is called a 2 * 2 research design.) 
In this study, the main effects have grouped the four cells into rows and columns. But 
it is also possible to divide the cells into other kinds of groupings. Figure 10-9, based 
on the Aron and colleagues (2005) study, shows a remaining possible organization 
of the four cells into two larger groupings: (a) one grouping of two cells consist-
ing of the upper left cell (Not High Sensitivity/Easy Test Difficulty) along with the 
lower right cell (High Sensitivity/Hard Test Difficulty), and (b) another grouping of 
two cells consisting of the lower left cell (High Sensitivity/Easy Test Difficulty) and 
the upper right cell (Not High Sensitivity/Hard Test Difficulty). The between-groups 
variance estimate for the interaction effect can then be figured from the variation 
between the means of these two groupings. (In this example, these two groupings of 
cells are the diagonals.)

With a 2 * 2 design, there is only one organization of pairs of cells that is not 
already accounted for by the row and column organizations: the grouping pattern  

(a) (b) (c)

Figure 10-8 A diagram to help you understand a two-way factorial analysis of vari-
ance: (a) the column between-groups variance estimate as based on the difference between 
the mean of the participants in the first (shaded) and second (unshaded) columns; (b) the row 
between-groups variance estimate as based on the difference between the mean of the par-
ticipants in the top (shaded) and bottom (unshaded) rows; and (c) the within-groups (within-
cells) variance estimate as based on the variation among scores in each cell.

Test
Difficulty

Se
ns

iti
vi

ty Not High

High

HardEasy

Figure 10-9 Interaction as a 
comparison of scores in the shaded 
cells (easy test difficulty and high 
sensitivity; hard test difficulty and 
not high sensitivity) to the mean 
of the scores in the unshaded cells 
(easy test difficulty and not high 
sensitivity; hard test difficulty and 
high sensitivity) in the study by  
Aron and colleagues (2005).
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(of diagonals) shown in the example in Figure 10-9. But the situation is not so sim-
ple with a larger two-way design, such as a 2 * 3 study (a study in which the first 
variable has two levels and the second variable has three levels, such as the study 
of task difficulty and arousal we considered earlier). In such a study, there is more 
than one way to make the groupings, and all must be taken into account. Thus, it can 
be quite complicated to figure the between-groups variance estimate for the inter-
action effect when dealing with situations other than a 2 * 2 design. Fortunately, 
it turns out that figuring the between-groups variance estimate for the interaction 
is much more straightforward when using the structural model approach that was 
presented in an Advanced Topic section in Chapter 9. Thus, we describe the actual 
figuring for the factorial analysis of variance using the structural model approach 
in a later Advanced Topic section in this chapter. (But the procedures we have just 
described actually work quite well and simply when you have the very common 
2 * 2 situation.)

Assumptions in the Factorial Analysis of Variance
The assumptions for a factorial analysis of variance are the same as for the one-way 
analysis of variance. However, in a factorial analysis of variance, the requirements 
of population normality and equal variances apply to the populations that go with 
each cell.

Extensions and Special Cases of the Analysis  
of Variance
The analysis of variance is an extremely versatile technique. We cannot, in this 
introductory book, go into the details of the statistical procedures for handling all 
the possibilities. (These are covered in most intermediate statistics texts in psychol-
ogy as well as in what are often called “experimental design” textbooks.) However, 
it is possible to describe some of the main variations and to provide some insight 
into the basic modifications to what you have already learned.

Three-Way and Higher Analysis of Variance Designs
The most straightforward extension of the two-way analysis of variance is to stud-
ies involving three-way designs (in which there are three grouping variables) or 
even four-way and higher designs. The basic logic of such studies is the same as we 
have described in this chapter, except that there are additional main and interaction 
effects.

Sometimes a study involves secondary grouping variables, such as the order 
of the presentation of different parts of an experimental task or which of two 
experimenters conducted the study for each participant. Such secondary group-
ing variables are usually of interest only if they interact with the major grouping 
variables. In these situations, the researcher may start with a multiway factorial 
analysis of variance. If these grouping variables of secondary interest do not 
have significant interaction effects with the grouping variables of primary inter-
est, you run the analysis again, ignoring these secondary variables. The design 
then becomes a more manageable two-way or three-way analysis of variance. 
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The resulting analysis is said to be collapsed over the variables that are being 
ignored.

Repeated Measures Analysis of Variance
In all the situations in this chapter and Chapter 9, the different cells or groupings 
are based on scores from different individuals. Sometimes, however, a researcher 
measures the same individual in several different situations. (In a study with only 
one grouping variable of this kind that has two levels, such as the levels of before 
and after some treatment, you can use a t test for dependent means, as described in 
Chapter 7. But if there are more than two levels or if there is another grouping 
variable involved as well, you have to use analysis of variance.) Consider a study 
in which, for each participant, you measure speed of recognizing a syllable when 
embedded in three word types: familiar words, unfamiliar words, and nonword 
sounds. The result is that for each participant you have an average number of errors 
for each word type. Or suppose you do a study of psychotherapy effects testing 
patients on their depression before, immediately following, and again three months 
after therapy. In each of these examples, you have three groups of scores, but in 
each example, all three scores are from the same people. These studies are examples 
of repeated measures designs.

Repeated measures designs are analyzed with a repeated measures analysis of 
variance. It has this name because the same participants are being measured repeat-
edly. This kind of design and analysis is also called a within-subjects design or 
within-subjects analysis of variance because the comparison is within, not between, 
the different participants or subjects. (The American Psychological Association rec-
ommends the use of the term participants rather than “subjects.”)

Sometimes a repeated measures variable is crossed in the same study with an 
ordinary between-subjects variable. For example, in the therapy study, there might 
be a control group not getting the therapy but tested at the same three points in 
time. This would be a mixed 2 (therapy versus control group) * 3 (before, after, 
3 months after) design in which the first variable is the usual between-subjects type 
and the second is a repeated measures type. It is even possible to have two repeated  
measures factors or even more complicated combinations.

We cover repeated measures analysis of variance in more detail in a Web Chap-
ter available at www.pearsonhighered.com/aron (and also at www.mystatlab.com for 
MyStatLab users).

repeated measures analysis of 
variance analysis of variance for a 
repeated measures design in which each 
person is tested more than once so that 
the levels of the grouping variable(s) are 
different times or types of testing for the 
same persons.

How are you doing?

 1. In a two-way analysis of variance, what is the numerator of the F ratio for the 
row main effect?

 2. In a 2 * 2 analysis of variance, what is the numerator of the F ratio for the 
interaction effect?

 3. In any two-way analysis of variance, what is the denominator of the F ratio for 
(a) each main effect and (b) the interaction?

 4. What are the assumptions for a factorial analysis of variance?
 5. (a) What does it mean when a research study reports that “results were col-

lapsed over order of testing”? (b) How is a repeated measures analysis of 
variance different from an ordinary between-subjects analysis of variance?  
(c) What is a mixed design?

www.pearsonhighered.com/aron
www.mystatlab.com
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Controversy: Dichotomizing Numeric Variables
Suppose a developmental psychologist measured anxiety and social skills in a group 
of children. The psychologist then observed their behavior in a playgroup with 
other children, focusing on their aggressive responses. To examine the results of 
this study, the researcher divided the children in half on their anxiety scores (mak-
ing a high anxiety and a low anxiety group), then divided them in half on social 
skills (making a high and low social skills group). The combinations resulted in 
four groups: High Anxiety/High Social Skills; High Anxiety/Low Social Skills; and 
so forth. Having divided up the children in this way, the researcher then carried 
out a two-way 12 * 22 factorial analysis of variance, with grouping variables of 
anxiety (high versus low) and social skills (high versus low). With this analysis, the 
researcher could see whether there was a main effect of anxiety on aggression, a 
main effect of social skills on aggression, and/or an interaction effect of anxiety and 
social skills on aggression.

The thing to notice here is that the researcher divided up the children into two 
groups on anxiety and two groups on social skills. Consider anxiety first. In this 
study anxiety was a numeric, quantitative variable measured along a continuum. 
Nevertheless, the researcher ignored all the fine gradations and simply divided the 
group in half, making a high anxiety and a low anxiety grouping. This resulted in 
everyone in the high anxiety grouping being treated as having the same (high) level 
of anxiety and everyone in the low anxiety grouping being treated as having the 
same (low) level of anxiety.

This kind of division is called dichotomizing—making into a dichotomy, or 
two groupings. Since the dichotomizing is usually done by taking those above and 
below the median, it is also called making a median split of the scores. In this exam-
ple, the researcher also dichotomized (made a median split) on social skills.

The advantage of dichotomizing numeric variables is that you can then do a 
factorial analysis of variance, with all of its advantages of efficiency and testing 
interaction effects. Also, most psychologists are familiar with factorial analysis 
of variance. Many psychologists are less familiar with alternative procedures that 

dichotomizing dividing the scores for 
a variable into two groups. Also called 
median split.

Answers

 1. The numerator of the F ratio for the row main effect is the estimated popula-
tion variance estimate based on the variation between the two row means.

 2. The numerator of the F ratio for the interaction effect is the estimated popula-
tion variance estimate based on the variation between the means of the two 
diagonals.

 3. (a) The denominator of the F ratio for each main effect is the within-groups 
(within-cells) population variance estimate. (b) The denominator of the F ratio 
for the interaction is the same thing: within-groups (within-cells) population 
variance estimate.

 4. The populations associated with each cell follow a normal distribution and all 
have the same variance.

 5. (a) Which order of testing a participant was given is ignored in the analysis. 
(b) In a repeated measures analysis of variance, each participant has a score 
in each of the groups or cells of the analysis; in an ordinary, between-subjects 
analysis of variance, each participant has a score in only one group or cell.  
(c) One factor is a repeated measures factor and one factor is between-subjects.
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accomplish much the same thing but do not require dichotomizing. (The alternative 
procedures one would use in these cases are mainly those based on multiple regres-
sion, see Chapters 12 and 15.)

A major disadvantage of dichotomizing is that you lose information when you 
reduce a whole range of scores to just two, high and low; it is just less accurate. 
Owen and Froman (2005) outlined the problem clearly (referring to dichotomiz-
ing by splitting the sample in half at the median): “With a median split, a person’s 
score barely above the median is now put into the same category (high) as a person 
three standard deviations above the mean. That does not make good sense or good 
use of the data” (p. 499). One result is that the effect size and power of a study 
that dichotomizes is lower than when using the original scores (DeCoster, Iselin, &  
Gallucci, 2009; MacCallum et al., 2002; Taylor et al., 2006). Cohen (1983) calculated 
this reduction in power and effect size to be between 20% and 66%! It is equivalent, 
he suggested, to “discarding one-third to two-thirds of the sample” (p. 253).

On the other hand, many researchers dichotomize their variables, claiming that 
the effect is “conservative”—that, while it may increase the chance of a Type II error 
(failing to reject the null hypothesis when in fact it is false), it does not increase  
the chance of a Type I error (rejecting the null hypothesis when it is true). Put 
another way, dichotomizing reduces accuracy so that it is harder, not easier, to get 
significant results.

However, even assuming that, on the average, the effect of dichotomizing a 
single variable is conservative, there are still problems. One concern is that the anal-
ysis is now overly conservative in the sense that true results will go undiscovered 
(you will make Type II errors) and true effect sizes will be underestimated. There is 
also a general inaccuracy. Dichotomizing is conservative on the average. But in any 
particular case the inaccuracy in dichotomizing could happen to work in favor of 
the researcher’s hypothesis, making a true nondifference come out significant in the 
study and a true large effect size come out smaller.

Indeed, Maxwell and Delaney (1993) have shown that, when both variables 
in a two-way factorial design are dichotomized (as in our example of anxiety and 
social skills), the effect is not automatically conservative. Under a number of com-
mon conditions in psychology research, dichotomizing two variables can produce 
the opposite of conservative effects even on the average. According to Maxwell and 
Delaney, you should be especially skeptical of the results of studies using a two-way 
analysis of variance in which both variables have been dichotomized.

There are, however, a few limited instances when dichotomization is appro-
priate. For example, MacCallum and colleagues (2002) note that it is appropriate 
when there is clear and convincing evidence that the two groups created by dichoto-
mization represent very different types of people (see also DeCoster et al., 2009). 
Recall in the Aron and colleagues (2005) example that the researchers dichotomized 
scores on the measure of sensitivity to create a group of individuals who were not 
highly sensitive and a group who were highly sensitive. In their article, Aron and 
colleagues cited evidence from a variety of sources, including research on sensitiv-
ity in both infants and animals, indicating that sensitivity is best considered as a 
dichotomous variable rather than as a continuous variable. That is, the evidence is 
that people are essentially either highly sensitive or not, and variations along the 
scale are just due to the test’s not being perfectly accurate.

Interestingly, dichotomizing can also be misleading to our understanding in 
important applied situations. Markon, Chmielewski, and Miller (2011) analyzed 
data from 58 studies (involving a total of 59,575 participants) focusing on differ-
ent kinds of clinical conditions, such as depression and personality disorders. They 
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found that across the many different kinds of mental illnesses studied, at least when 
using standard measurement procedures, it is more accurate to consider these condi-
tions as continuous, running from none to some to a lot, rather than as a condition 
that a person either has or doesn’t have.

In spite of the common problems of dichotomization, dichotomizing (even of 
both variables in two-way analysis of variance) is still surprisingly common in psy-
chology research. It is our impression, however, that it is dying out.

Factorial Analysis of Variance in Research Articles
In a factorial analysis of variance, researchers usually give a description plus a table 
or figure. The text gives the F ratio and the information that goes with it for each 
main and interaction effect. The table gives the cell means and sometimes also the 
marginal means. If there is a significant interaction effect, there may also be a graph.

Van Prooijen and colleagues (2004) carried out a series of studies focusing on 
the effect of belongingness (whether a person feels included in, or excluded from, 
a group) and being able to voice one’s opinion about a decision. The research-
ers examined the effect of these two variables on a person’s satisfaction with the 
decision-making process (also known as procedural satisfaction). The participants 
were Dutch university students who were asked to imagine themselves as mem-
bers of a team working on a project. They were then told that one member of the 
team would have to be excluded from a hypothetical project. Some students were 
told that they were not chosen to be excluded (the inclusion condition), other stu-
dents were told that they were the person selected to be excluded from the proj-
ect (the exclusion condition), and a final group of students were told that it was 
unclear whether they would be excluded (the not yet known condition). (Thus, the 
belongingness grouping variable had three levels: inclusion, exclusion, and not yet 
known.) Then, each student was either told that he or she would or would not be 
able to voice an opinion about a financial bonus to be received by the group (the 
voice condition and no voice condition, respectively). (Thus, the procedure group-
ing variable—as the researchers called it—had two levels: voice and no voice.) The 
researchers measured procedural satisfaction by asking the students to rate how sat-
isfied they were with the way they were treated by the other people on their team. 
Here is how they reported the results:

A 3 * 2 analysis of variance (ANOVA) on the procedural satisfaction scale showed main 
effects of both procedure, F11, 1362 = 94.28, p 6 .01, �2 = .41, and group belonging-
ness, F12, 1362 = 3.70, p 6 .03, �2 = .05. More important . . . was that this analysis 
also yielded the predicted interaction effect, F12, 1362 = 3.46, p 6 .04, �2 = .05. The 
cell means and standard deviations are shown in Table [10-7] . . . . Findings . . . showed 
that inclusion in a group leads to stronger effects of voice as opposed to no-voice  
procedures on participants’ ratings of procedural satisfaction than exclusion from a  
group. (p. 70)

Note that van Prooijen and colleagues (2004) provided the effect size for each 
main effect and the interaction effect. The effect sizes were shown as values of eta 
squared, �2, which is another name for R2 (which you learned about in Chapter 9). 
In an Advanced Topic section later in this chapter, we describe how to figure R2 
for a factorial analysis of variance. Notice in Table 10-7 that the researchers used  
subscript letters 1a, b, c2 to show the results of post hoc comparisons of the means.
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As we mentioned earlier in the chapter, researchers sometimes show inter-
action effects using a kind of line graph. Consider an example. Shao and 
Skarlicki (2009) conducted a study to examine whether there was an interac-
tion effect of mindfulness and gender (the two grouping or independent vari-
ables) on academic performance (the measured or dependent variable) among 
students in an MBA (Master’s of Business Administration) program. Mind-
fulness can be defined as a person’s tendency to be “attentive to and aware 
of what is taking place in the present” (Brown & Ryan, 2003, p. 822) and the 
researchers measured it using a 15-item survey. Based on previous neurosci-
ence research on mindfulness and gender differences in activation of the left 
and right brain hemispheres, the researchers hypothesized that women would 
show a stronger positive association between mindfulness and academic  
performance than men. The results of the study are shown in the line graph in  
Figure 10-10. As you can see, the results supported the researchers’ hypothesis: 
Women with higher mindfulness had better academic performance than women 
with lower mindfulness, but that was not the case among men (and in fact, the 
researchers noted that mindfulness was not significantly associated with perfor-
mance among men). In a line graph, such as Figure 10-10, you can tell that there is 
an interaction by the lines not being parallel. As with a bar graph, this shows that 
there is a different pattern of cell means from row to row.
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Figure 10-10 Two-way interaction of mindfulness and gender on performance.

Source: Shao, R., & Skarlicki, D. P. (2009). The role of mindfulness in predicting individual 
 performance. Canadian Journal of Behavioral Science, 41, 195–201. Published by the American 
 Psychological Association. Reprinted with permission.

Table 10-7  Means and Standard Deviations of Participants’ Procedural Satisfaction Ratings as a Function of Group Belongingness and 

Procedure, Experiment 1

Group Belongingness

Inclusion Exclusion Not yet known

Procedure M SD M SD M SD

Voice 4.86a 1.82 3.31b 1.83 4.46a 1.95

No voice 1.89c 1.14 1.81c 0.84 1.69c 0.83

Note: Means are on 7-point scales, with higher values indicating more positive ratings of procedural satisfaction. Means with no subscript in common differ as indicated by a least 
 significant difference test for multiple comparisons between means 1p 6 .052.
Source: van Prooijen, J. W., van den Bos, K., & Wilke, H. A. M. (2004). Group belongingness and procedural justice: Social inclusion and exclusion by peers affects the psychology of 
voice. Journal of Personality and Social Psychology, 87, 66–79. Published by the American Psychological Association. Reprinted with permission.
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Advanced Topic: Figuring a Two-Way Analysis  
of Variance
As we noted earlier, to figure the interaction effect in a factorial analysis of variance 
beyond a 2 * 2 design, it is much easier to use the structural model approach you 
learned in the Advanced Topic sections of Chapter 9. Rather than mix approaches, 
researchers carry out the entire factorial analysis of variance using the structural 
model approach. Thus, in this section we first consider the structural model approach 
as it applies to factorial analysis of variance and then go into the details of how to 
do the figuring for a full factorial analysis of variance. As you will soon see, this 
Advanced Topic section builds directly on the Advanced Topic section in Chapter 9 
on the structural model in the analysis of variance.

The Structural Model for the Two-Way Analysis of Variance
From the structural model perspective, each score’s overall deviation from the grand 
mean of all scores can be divided into several parts. In a two-way analysis, there are 
four such parts of this overall deviation (see Figure 10-11):

 1. The score’s deviation from the mean of its cell (used for the within-groups pop-
ulation variance estimate).

 2. The deviation of the score’s row’s mean from the grand mean (used for the 
between-groups population variance estimate for the main effect for the group-
ing variable that divides the rows).

 3. The deviation of the score’s column’s mean from the grand mean (used for the 
between-groups population variance estimate for the main effect for the group-
ing variable that divides the columns).

Score Cell Mean

Score’s deviation
from its cell’s mean

(basis of the within-group
variance estimate)

Cell’s mean’s deviation
from the grand mean

Column mean’s
deviation from the

grand mean
(basis of the between-column

variance estimate)

Row mean’s
deviation from the

grand mean
(basis of the

between-rows
variance estimate)

Remaining
deviation

(basis of the
interaction effect
variance estimate)

Score’s deviation from the grand mean
(basis of the overall variance estimate)

Grand Mean

Figure 10-11 Dividing each score’s deviation from the grand mean.

T I P  F O R  S U C C E S S
Be sure to study Figure 10-11 
very carefully. It is the best way 
to understand and remember the 
structural model for the two-way 
analysis of variance.

T I P  F O R  S U C C E S S
Be sure you have mastered the 
material in the Advanced Topic 
section in Chapter 9 before reading 
on in this Advanced Topic section.
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 4. What remains after subtracting the other three deviations from the overall 
deviation from the grand mean (used for the between-groups estimate for the 
interaction effect).

Steps for the Two-Way Analysis of Variance
When figuring an analysis of variance using the structural model, you figure the  
F ratios as follows:

 ●A Figure the mean of each cell, row, and column, plus the grand mean of all 
scores.

 ●B Figure all the deviation scores of each type.
 ●C Square each deviation score. This gives the squared deviations.
 ●D Add up the squared deviation scores of each type. This gives the sums of 

squared deviations.
 ●E Divide each sum of squared deviations by its appropriate degrees of free-

dom. This gives the variance estimates.
 ●F Divide the various between-groups variance estimates by the within-groups 

variance estimate. This gives the F ratios.

In terms of formulas, the sums of squares are as follows:

 SSRows = g1MRow - GM22 (10-1)

 SSColumns = g1MColumn - GM22 (10-2)

 SSInteraction = g31X - GM2 - 1X - M2 - 1MRow - GM2
                        -  1MColumn - GM242 (10-3)

  SSWithin = g1X - M22 (10-4)

  SSTotal = g1X - GM22 (10-5)

In these formulas, SSRows, SSColumns, SSInteraction, and SSWithin are the sums of 
squared deviations for rows, columns, interaction, and within groups (within cells). 
The sum sign 1g2 tells you to add up over all scores (not just over all rows or 

The sum of squared deviations  
for rows is the sum of each 
score’s row’s mean’s squared 
deviation from the grand 
mean.

The sum of squared deviations  
for columns is the sum of 
each score’s column’s mean’s 
squared deviation from the 
grand mean.

The sum of squared deviations 
total is the sum of each score’s 
squared deviation from the 
grand mean.

The sum of squared deviations 
within groups (within cells) 
is the sum of each score’s 
squared deviation from its 
cell’s mean.

The sum of squared deviations 
within groups (within cells) 
is the sum of each score’s 
squared deviation from its 
cell’s mean.

The sum of squared deviations  
for the interaction is the sum 
of the squares of each score’s 
deviation from the grand 
mean minus its deviation 
from its cell’s mean, minus 
its row’s mean’s deviation 
from the grand mean, minus 
its column’s mean’s  
deviation from the grand 
mean.
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columns or cells). GM is the grand mean; X is the score. MRow and MColumn are the 
mean of a score’s row or column, and M is the mean of a score’s cell.

As was the case for the one-way analysis of variance, here too the different 
individual sums of squares add up to the total sums of squares. (You can use this as 
a check on your arithmetic.) Stated as a formula,

 SSTotal = SSRows + SSColumns + SSInteraction + SSWithin (10-6)

The formulas for the population variance estimates are, as was the case for 
the one-way analysis of variance using the structural model approach, the sums of 
squares divided by the degrees of freedom:

  S2
Rows or MSRows =

SSRows

dfRows
 (10-7)

  S2
Columns or MSColumns =

SSColumns

dfColumns
 (10-8)

  S2
Interaction or MSInteraction =

SSInteraction

dfInteraction
 (10-9)

  S2
Within or MSWithin =

SSWithin

dfWithin
 (10-10)

The F ratios are the population variance estimates for the different effects, each 
divided by the within-groups population variance estimate:

  FRows =
S2

Rows

S2
Within

 or 
MSRows

MSWithin
 (10-11)

  FColumns =
S2

Columns

S2
Within

 or 
MSColumns

MSWithin
 (10-12)

The sum of squared deviations 
total is the sum of squared 
deviations for rows, plus the 
sum of squared deviations 
for columns, plus the sum 
of squared deviations for the 
interaction, plus the sum of 
squared deviations within 
groups (within cells).

The population variance 
estimate based on the 
variation between rows is the 
sum of squared deviations for 
rows divided by the degrees 
of freedom for rows.

The population variance 
estimate based on the variation 
between columns is the sum of 
squared deviations for columns 
divided by the degrees of 
freedom for columns.

The population variance 
estimate based on the variation 
associated with the interaction 
is the sum of squared 
deviations for the interaction 
divided by the degrees of 
freedom for the interaction.

The population variance 
estimate based on the 
variation within groups 
(within cells) is the sum of 
squared deviations within 
groups (within cells) divided 
by the within-groups (within-
cells) degrees of freedom.

The F ratio for the row main 
effect is the population 
variance estimate based on 
the variation between rows 
divided rows divided by the 
population variance estimate 
based on the variation within 
groups (within cells).

The F ratio for the column 
main effect is the population 
variance estimate based 
on the variation between 
columns divided by the 
population variance estimate 
based on the variation within 
groups (within cells).
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  FInteraction =
S2

Interaction

S2
Within

 or 
MSInteraction

MSWithin
 (10-13)

Degrees of Freedom in a Two-Way  
Analysis of Variance
Degrees of Freedom for Between-Groups Variance Estimates for the Main 
Effects The degrees of freedom for each main effect (each between-groups 
variance estimate) is the number of levels of the grouping variable minus 1. For 
example, if there are two levels to a grouping variable, as in each main effect in 
the Aron and colleagues (2005) study, there is one degree of freedom for each of 
these main effects. In the arousal levels and task difficulty examples we consid-
ered earlier, the columns grouping variable (arousal level) main effect had three 
levels. Thus, there were two degrees of freedom for this grouping variable’s main 
effect.

Stated as formulas,

 dfRows = NRows - 1 (10-14)

 dfColumns = NColumns - 1 (10-15)

Degrees of Freedom for the Interaction Effect Variance Estimate The 
degrees of freedom for the variance estimate for the interaction effect is the total 
number of cells minus the number of degrees of freedom for both main effects, 
minus 1. In the Aron and colleagues (2005) study, there were four cells and one 
degree of freedom for each main effect. This leaves two degrees of freedom, minus 
1 more, leaving one degree of freedom for the interaction. In the arousal level and 
task difficulty examples, there were six cells. There were two degrees of freedom 
for the column effect and one for the row effect (easy versus hard task). This leaves 
three degrees of freedom. When one more is subtracted, there are two degrees of 
freedom left for the interaction.

Stated as a formula,

 dfInteraction = NCells - dfRows - dfColumns - 1 (10-16)

Applying the formula to the Aron and colleagues study,

dfInteraction = NCells - dfRows - dfColumns - 1 = 4 - 1 - 1 - 1 = 1.

Applying the formula to the arousal and task difficulty example,

dfInteraction = NCells - dfRows - dfColumns - 1 = 6 - 1 - 2 - 1 = 2.

Degrees of Freedom for the Within-Groups Population Variance 
 Estimate As usual, the within-groups degrees of freedom is the sum of the 
degrees of freedom for all the groups (in this case, all the cells). For each cell, you 
take its number of scores minus 1, then add up what you get for all the cells. In 
terms of a formula,

 dfWithin = df1 + df2 +
g

+ dfLast (10-17)

The F ratio for the interaction 
effect is the population 
variance estimate based on 
the variation associated with 
the interaction divided by the 
population variance estimate 
based on the variation within 
groups (within cells).

The degrees of freedom for 
the rows main effect is the 
number of rows minus 1.

The degrees of freedom for 
the columns main effect is the 
number of columns minus 1.

The degrees of freedom for 
the interaction effect is the 
number of cells minus the 
degrees of freedom for the row 
main effect minus the degrees 
of freedom for the column 
main effect minus 1.

The degrees of freedom for 
the within-groups (within-
cells) population variance 
estimate is the sum of the 
degrees of freedom for all 
the cells.
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In this formula, df1, df2,c , dfLast are the degrees of freedom for each cell 
(the number of scores in the cell minus 1), in succession, from the first cell to 
the last.

Total Degrees of Freedom The total degrees of freedom, as usual, is the number 
of scores minus 1. In terms of a formula,

 dfTotal = N - 1 (10-18)

You can also figure the total degrees of freedom by adding up all the indi-
vidual degrees of freedom (for columns, rows, interaction, and within). This pro-
vides a check of your arithmetic in figuring degrees of freedom. In terms of a 
formula,

 dfTotal = dfRows + dfColumns + dfInteraction + dfWithin (10-19)

Table for a Two-Way Analysis of Variance
The analysis of variance table in a two-way analysis is similar to the ones in Chapter 9 
(where you were doing one-way analyses of variance). However, with a two-
way analysis of variance there is a line in the table for each between-groups effect 
(that is, for the columns main effect, the rows main effect, and the interaction). 
Table 10-8 shows the layout.

Example Let’s return to the Aron and colleagues (2005) example, in which stu-
dents, who were either highly sensitive or not highly sensitive, took an easy test 
or a hard test. The study was a 2 * 2 factorial design, with grouping variables of 
sensitivity and test difficulty. The variable measured was students’ level of nega-
tive mood. There were 160 students in the original study, but, to keep the figuring 
simple, we have made up scores that give the same cell and marginal means, but 
with only five students per cell. The cell means and marginal means are shown  
in Table 10-9. The scores and the figuring for all the deviations are shown in 
Table 10-10. Table 10-11 shows the cutoff F values and the analysis of variance 
table. Figure 10-2 (earlier in the chapter) graphs the results. We can explore the 
example following the usual step-by-step hypothesis-testing procedure.

The total degrees of freedom 
is the number of scores 
minus 1.

Table 10-8  Layout of an Analysis of Variance Table for a Two-Way Analysis of 

Variance

Source SS df MS F

Between:

Columns SSColumns dfColumns MSColumns FColumns

Rows SSRows dfRows MSRows FRows

Interaction SSInteraction dfInteraction MSInteraction FInteraction

Within SSWithin dfWithin MSWithin

Total SSTotal dfTotal

Table 10-9 Cell and 

Marginal Means for Level of Negative 

Mood

Test  
Difficulty

Easy Hard

Se
ns

iti
vi

ty Not High 2.43 2.56 2.50

High 2.19 3.01 2.60

2.31 2.79

Source: Data from Aron et al. (2005).

The total degrees of freedom 
are the degrees of freedom  
for the row main effect plus  
the degrees of freedom  
for the column main effect 
plus the degrees of freedom 
for the interaction effect plus 
the degrees of freedom for the 
within-groups (within-cells) 
population variance estimate.
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Table 10-10  Scores, Squared Deviations, and Sums of Squared Deviations for Fictional Data Based on the Aron and Colleagues 

(2005) Study

Easy Test Difficulty Hard Test Difficulty

X (X � GM)2 (X � M)2 (MRow � GM)2 (MColumn � GM)2 INT2 X (X � GM)2 (X - M)2 (MRow � GM)2 (MColumn � GM)2 INT 2

Not Highly Sensitive

2.63 .01 .04 .00 .06 .03 2.69 .02 .02 .00 .06 .03

2.53 .00 .01 .00 .06 .03 2.31 .06 .06 .00 .06 .03

2.25 .09 .03 .00 .06 .03 2.45 .01 .01 .00 .06 .03

2.22 .11 .04 .00 .06 .03 2.80 .06 .06 .00 .06 .03

2.52 .00 .01 .00 .06 .03 2.55 .00 .00 .00 .06 .03

12.15 .21 .13 .00 .30 .15 12.80 .15 .15 .00 .30 .15

Highly Sensitive

2.06 .24 .02 .00 .06 .03 3.21 .44 .04 .00 .06 .03

2.32 .05 .02 .00 .06 .03 3.21 .44 .04 .00 .06 .03

2.04 .26 .02 .00 .06 .03 2.77 .05 .06 .00 .06 .03

2.31 .06 .01 .00 .06 .03 2.83 .08 .03 .00 .06 .03

2.22 .11 .00 .00 .06 .03 3.03 .23 .00 .00 .06 .03

10.95 .72 .07 .00 .30 .15 15.05 1.24 .17 .00 .30 .15

 GM = grand mean1mean of all the scores2
 M = mean of the score’s cell

 MRow = mean of the score’s row

 MColumn = mean of the score’s column

 INT = score’s remaining deviation for the interaction

Examples of figuring of deviations, using the first score in the Not Highly Sensitive/Easy Test cell:

 1X - GM22 = 12.63 - 2.5522 = .082 = .01

 1X - M22 = 12.63 - 2.4322 = .202 = .04

 1MRow - GM22 = 12.50 - 2.5522 = - .052 = .00

 1MColumn - GM22 = 12.31 - 2.5522 = - .242 = .06

 INT2 = 31X - GM2 - 1X - M2 - 1MRow - GM2 - 1MColumn - GM242
 = 31.082 - 1.202 - 1- .052 - 1- .24242 = 1.08 - .20 + .05 + .2422 = .172 = .03

 SSTotal = .21 + .15 + .72 + 1.24 = 2.32

 SSWithin = .13 + .15 + .07 + .17 = .52

 SSRows = .00 + .00 + .00 + .00 = .00

 SSColumns = .30 + .30 + .30 + .30 = 1.20

 SSInteraction = .15 + .15 + .15 + .15 = .60

 Accuracy check: SSTotal = 2.32, SSWithin + SSRows + SSColumns + SSInteraction = .52 + .00 + 1.20 + .60 = 2.32

Table 10-11 Factorial Analysis of Variance Based on the Aron and Colleagues (2005) Study (Fictional Data)

F needed for Sensitivity main effect (df � 1, 16; p * .05) � 4.49.
F needed for Test Difficulty main effect (df � 1, 16; p * .05) � 4.49.
F needed for Interaction effect (df � 1, 16; p * .05) � 4.49.

Source SS df MS F Decision

Sensitivity  .00  1  .00  0.00 Do not reject the null hypothesis

Test Difficulty 1.20  1 1.20 40.00 Reject the null hypothesis

Sensitivity * Test Difficulty  .60  1  .60 20.00 Reject the null hypothesis

Within groups  .52 16  .03



408 Chapter 10

 ❶ Restate the question as a research hypothesis and a null hypothesis about 
the populations for each main effect and the interaction effect. There are 
four populations:

 Population 1, 1: People who are not highly sensitive and take an easy test.
 Population 1, 2: People who are not highly sensitive and take a hard test.
 Population 2, 1: People who are highly sensitive and take an easy test.
 Population 2, 2: People who are highly sensitive and take a hard test.

   The first null hypothesis is that the combined populations for individuals 
who are not highly sensitive (Populations 1, 1 and 1, 2) have the same level of 
negative mood as the combined populations for individuals who are highly sen-
sitive (Populations 2, 1 and 2, 2). This is the null hypothesis for testing the main 
effect for sensitivity (not highly sensitive versus highly sensitive). The research 
hypothesis is that the populations of not highly sensitive and highly sensitive 
individuals have different means.

   The second null hypothesis is that the combined populations for those who 
take an easy test (Populations 1, 1 and 2, 1) have the same level of negative 
mood as the combined populations for those who take a hard test (Populations 
1, 2 and 2, 2). This is the null hypothesis for testing the main effect for test diffi-
culty (easy versus hard). The research hypothesis is that populations taking easy 
and hard tests have different means.

   The third null hypothesis is that the difference between the level of 
negative mood of the two populations for individuals who are not highly 
sensitive (Population 1, 1 minus Population 1, 2) will be the same as the 
difference between the means of the two populations for individuals who 
are highly sensitive (Population 2, 1 minus Population 2, 2). This is the null 
hypothesis for testing the interaction effect. (We could also say the same 
thing, with no change in meaning, as the difference between the two popula-
tions for the easy test equaling the difference between the two populations 
for the hard test.) The research hypothesis is that these differences will not 
be the same.

 ❷ Determine the characteristics of the comparison distributions. The three 
comparison distributions will be F distributions. The denominator degrees 
of freedom are the sum of the degrees of freedom in each of the cells (the 
number of scores in the cell minus 1). In this example, there are five par-
ticipants in each of the four cells. This makes four degrees of freedom per 
cell, for a total of 16 within-groups degrees of freedom. The numerator for 
the comparison distribution for the sensitivity main effect has one degree 
of freedom (two rows minus 1); the numerator for the test difficulty main 
effect also has one degree of freedom; and the numerator degrees of free-
dom for the interaction effect is, again, 1 (it is the number of cells, four, 
minus the degrees of freedom for columns, minus the degrees of freedom 
for rows, minus 1).

 ❸ Determine the cutoff sample scores on the comparison distributions at 
which each null hypothesis should be rejected. Using the .05 significance 
level, Table A-3 (in the Appendix) gives a cutoff for 1 and 16 degrees of free-
dom of 4.49. The degrees of freedom and the significance level are the same in 
this example for both main effects and the interaction, so the cutoff is the same 
for all three (see Table 10-11).

T I P  F O R  S U C C E S S
As a check of the accuracy of the 
degrees of freedom calculations, 
the three numerators plus the 
denominator degrees of freedom 
come out to 19 (that is, 1 + 1 +
1 + 16 = 19). This is the same 
as the total degrees of freedom 
figured as number of participants 
minus 1, which is also 19 (that is, 
20 - 1 = 19).
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 ❹ Determine your samples’ scores on each comparison distribution. This 
requires figuring three F ratios.
●A Figure the mean of each cell, row, and column, plus the grand mean 

of all scores. The cell means, row means, and column means are shown in 
Table 10-9. The grand mean of all the scores (the sum of all the scores, divided 
by the total number of scores) is 2.55.

●B Figure all the deviation scores of each type. To save space, Table 10-10 
shows only the squared deviations. However, following the table of squared 
deviations, we show how we figured all the deviations for the first score. For 
example, the deviation of the first score from the grand mean is 2.63 minus 2.55.

●C Square each deviation score. All of these squared deviations are shown in 
Table 10-10. For example, the first score’s deviation of .12 from the grand 
mean, when squared, is .01.

●D Add up the squared deviation scores of each type. For example, for the 
sum of squared deviations from the grand mean, the total in the first cell 
(Not Highly Sensitive/Easy Test) is .21; for the second cell, .15; for the 
third, .72; and for the fourth, 1.24. This adds up to a total of 2.32. That is, 
SSTotal = 2.32. Remember that the sums of the various squared deviations 
(SSWithin, SSRows, SSColumns, SSInteraction ) add up to SSTotal.

  But within a single participant, the various squared deviations do not  
add up to the overall squared deviation of the score from the grand mean. 
Table 10-10 also shows the check for accuracy: The sum of the squared de-
viations from the grand mean equals the total of the sums of the other four 
kinds of squared deviations (within rounding error).

●E Divide each sum of squared deviations by its appropriate degrees of 
freedom. This is shown in Table 10-11. For example, the population vari-
ance estimate for Test Difficulty (the columns) comes out to 1.20, the sum of 
squares of 1.20 divided by the degrees of freedom of 1.

●F Divide the various between-groups variance estimates by the within-
groups variance estimate. This gives the F ratios and is shown in 
Table 10-11. For example, the F for Test Difficulty comes out to 40.00, the 
between-rows population variance estimate of 1.20 divided by the within-
groups population variance estimate of .03.

 ❺ Decide whether to reject the null hypotheses. The F ratio for the test dif-
ficulty main effect of 40.00 is much larger than the cutoff of 4.49. Thus, 
you can reject the null hypothesis that the populations of individuals who 
take an easy test and a difficult test have the same mean level of negative 
mood. That is, the test difficulty effect is significant. The F of 0.00 for 
the sensitivity main effect did not reach the necessary 4.49 cutoff.  Finally, 
the interaction effect F of 20.00 is larger than 4.49; so the interaction 
effect is significant. As can be seen from the cell means in Table 10-9 (and 
from Figure 10-2), the test difficulty main effect is due to individuals taking 
the hard test having a higher level of negative mood than individuals who 
take the easy test. The interaction effect is due to a different effect of test 
difficulty on negative mood according to the level of sensitivity. The level 
of negative mood of students who are not highly sensitive is slightly higher 
with a hard test compared to an easy test; but the level of negative mood of 
students who are highly sensitive is much higher with a hard test compared 
to an easy test. You can see how using an analysis of variance to look at in-
teraction effects uncovered an interesting relationship among the variables.

T I P  F O R  S U C C E S S
When figuring the deviation for 
the interaction effect, keep close 
track of the signs of the deviations 
you are subtracting and remember 
that this interaction deviation, prior 
to squaring, is figured from the 
original unsquared deviations, not 
the squared deviations.



410 Chapter 10

Table 10-12 Steps of Hypothesis Testing for a Two-Way Analysis of Variance

Table 10-13 Analysis of Variance Table and Formulas for a Two-Way Analysis of Variance

Analysis of variance table:

Source SS df MS F

Between:

Columns SSColumns dfColumns MSColumns 1or S2
Columns2 FColumns

Rows SSRows dfRows MSRows 1or S2
Rows2 FRows

Interaction SSInteraction dfInteraction MSInteraction (or S2
Interaction) FInteraction

Within SSWithin dfWithin MSWithin 1or S2
Within2

Total SSTotal dfTotal

Summary of Procedures for a Two-Way Analysis of Variance Table 10-12 
summarizes the steps of hypothesis testing and Table 10-13 shows the analysis of 
variance table and the formulas for a two-way analysis of variance. 

(continued)

❶  Restate the question as a research hypothesis and a null hypothesis about the populations for each main effect and the interaction effect.

❷ Determine the characteristics of the comparison distributions.

 a.  The numerator degrees of freedom for the F distribution for the columns main effect is the number of columns minus 1: dfColumns = NColumns - 1.

 b.  The numerator degrees of freedom for the F distribution for the rows main effect is the number of rows minus 1: dfRows = NRows - 1.

 c.  The numerator degrees of freedom for the F distribution for the interaction effect is the number of cells minus the degrees of freedom for columns minus 
the degrees of freedom for rows minus 1: dfInteraction = NCells - dfColumns - dfRows - 1.

 d.  The comparison distributions will be F distributions with denominator degrees of freedom equal to the sum of the degrees of freedom in each of the cells 
(the number of scores in the cell minus 1): dfWithin = df1 + df2 +

g
+ dfLast.

 e.  Check the accuracy of your figuring by making sure that all of the degrees of freedom add up to the total degrees of freedom: 
dfTotal = N - 1 = dfWithin + dfColumns + dfRows + dfInteraction.

❸  Determine the cutoff sample scores on the comparison distributions at which each null hypothesis should be rejected.

 a.  Determine the desired significance levels.

 b.  Look up the appropriate cutoffs in an F table (Table A-3 in the Appendix).

❹  Determine your samples’ scores on each comparison distribution.

  ●A  Figure the mean of each cell, row, and column, plus the grand mean of all scores.

 ●B  Figure all the deviation scores of each type. For each score figure:

   i.  Its deviation from the grand mean: X - GM.

  ii.  Its deviation from its cell’s mean: X - M.

 iii.  Its row’s mean’s deviation from the grand mean: MRow - GM.

 iv.  Its column’s mean’s deviation from the grand mean: MColumn - GM. 

 v. Its deviation from the grand mean minus all the other deviations: Interaction deviation = (X - GM2 - (X - M) - (MRow - GM) - (MColumn - GM).

 ●C  Square each deviation score. This gives the squared deviations.

 ●D  Add up the squared deviation scores of each type. This gives the sums of squared deviations: SSTotal, SSWithin, SSColumns, SSRows, and SSInteraction.

 ●E   Divide each sum of squared deviations by its appropriate degrees of freedom. This gives the variance estimates. That is, MSColumns or 
S2

Columns = SSColumns>dfColumns; MSRows or S2
Rows = SSRows>dfRows; MSInteraction or S2

Interaction = SSInteraction>dfInteraction.

 ●F   Divide the various between-groups variance estimates by the within-groups variance estimate. This gives the F ratios: FColumns = S2
Columns>S2

Within 
or MSColumns>MSWithin; FRows = S2

Rows>S2
Within or MSRows>MSWithin; FInteraction = S2

Interaction>S2
Within or MSInteraction>MSWithin.

❺ Decide whether to reject the null hypotheses. Compare scores in Steps ❸ and ❹.
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How are you doing?

 1. List the steps for figuring the F ratios in a two-way factorial analysis of variance.
 2. Write the formula for the sum of squares for rows and define each of the symbols.
 3. Write the formula for the sum of squares for the interaction and define each 

of the symbols.
 4. Write the formula for the degrees of freedom for the interaction and define 

each of the symbols.
 5. Here are the scores for participants A through H (a total of eight; two partici-

pants per cell) for the fictional study of the effects of vividness and length of 
examples on the number of examples recalled used in an earlier “How are you 
doing?” question. Find the three F ratios (and test their significance at p 6 .05).

Table 10-13 (continued ) 

Formulas for each section of the analysis of variance table:

Source SS df MS F

Between:

Columns g (MColumn - GM)2 NColumns - 1 SSColumns>dfColumns MSColumns>MSWithin

Rows g1MRow - GM22 NRows - 1 SSRows>dfRows MSRows>MSWithin

Interaction g31X - GM2 NCells - dfColumns - dfRows - 1 SSInteraction>dfInteraction MSInteraction>MSWithin

-1X - M2
-1MRow - GM2
-1MColumn - GM242

Within g1X - M22 df1 + df2 +
g

+ dfLast SSWithin>dfWithin

Total g1X - GM22 N - 1

Definitions of basic symbols:

g = sum of the appropriate numbers for all scores 1not all cells2  
M = mean of a score’s cell

MRow = mean of a score’s row
MColumn = mean of a score’s column
GM = grand mean of all scores
NCells = number of cells
NRows = number of rows
NColumns = number of columns
X = each score
N = total number of scores in the study

Participant
Vividness  
Condition

Length  
Condition

Number  
Recalled

A Low Short 6

B Low Short 4

C High Short 9

D High Short 5

E Low Long 2

F Low Long 4

G High Long 1

H High Long 1
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Table 10-14 Figuring for “How Are You Doing?” question 5

F needed for main effect for Vividness (df � 1, 4; p * .05) � 7.71.

F needed for main effect for Length (df � 1, 4; p * .05) � 7.71.

F needed for interaction effect (df � 1, 4; p * .05) � 7.71.

Low Vividness High Vividness

X (X � GM)2 (X � M)2 (MRow � GM)2 (MColumn � GM)2 INT2 X (X � GM)2 (X � M)2 (MRow � GM)2 (MColumn � GM)2 INT2

Short

6 4 1 4 0 1 9 25 4 4 0 1

4 0
4

1
2

4
8

0
0

1
2

5  1
26

4
8

4
8

0
0

1
2

Long

2 4 1 4 0 1 1 9 0 4 0 1

4 0
4

1
2

4
8

0
0

1
2

1 9
18

0
0

4
8

0
0

1
2

SSTotal = 4 + 26 + 4 + 18 = 52

SSWithin = 2 + 8 + 2 + 0 = 12

SSRows = 8 + 8 + 8 + 8 = 32

SSColumns = 0 + 0 + 0 + 0 = 0

SSInteraction = 2 + 2 + 2 + 2 = 8

Accuracy check: SSTotal = SSWithin + SSRows + SSColumns + SSInteraction = 12 + 32 + 0 + 8 = 52

Source SS df MS F Decision

Length (rows) 32 1 32 10.67 Reject the null hypothesis.

Vividness (columns) 0 1 0 0 Do not reject the null hypothesis.

Interaction 1Length * Vividness2 8 1 8 2.67 Do not reject the null hypothesis.

Within groups 12 4 3

Answers

 1. ●A   Figure the mean of each cell, row, and column, plus the grand mean 

of all scores.
 ●B  Figure all the deviation scores of each type.

 ●C Square each deviation score.

 ●D  Add up the squared deviation scores of each type.

 ●E  Divide each sum of squared deviations by its appropriate degrees of 

freedom.

 ●F  Divide the various between-groups variance estimates by the within-

groups variance estimate.

 2. Formula for the sum of squares for rows: SSRows = g (MRow - GM)2.
   SSRows is the sum of squared deviations for rows; g  tells you to add up 

what follows over all scores; MRow is the mean of a score’s row; and GM is 
the grand mean (the mean of all the scores).

 3. Formula for the sum of squares for the interaction: 
SSInteraction = g [(X - GM ) -  (X - M ) - (MRow - GM) - (MColumn - GM )]2.

   SSInteraction is the sum of squared deviations for the interaction; g  tells 
you to add up what follows over all scores; X is each score; GM is the grand 
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The proportion of variance 
accounted for by variation 
between columns is the 
product of the F ratio for 
columns multiplied by its 
degrees of freedom divided 
by the sum of the F ratio for 
columns multiplied by its 
degrees of freedom plus the 
degrees of freedom within 
groups (within cells).

Advanced Topic: Power and Effect Size 
in the Factorial Analysis of Variance
You figure power and effect size in a factorial analysis of variance using the same 
approach as for a one-way analysis of variance (see Chapter 9), except that you fig-
ure power and effect size separately for each main effect and the interaction.

Effect Size
You can figure the effect size for each main and interaction effect as an R2, 
the proportion of variance accounted for (also called eta squared, symbol-
ized as �2) by the effect. In Chapter 9 we described the proportion of vari-
ance accounted for in a one-way analysis of variance as the proportion of 
the total variation of scores from the grand mean that is accounted for by the 
variation between the means of the groups. In a one-way analysis of variance, 
R2 = 1S2

Between21dfBetween2>31S2
Between21dfBetween2 + 1S2

Within21dfWithin24. Now, consider 
the situation of the column effect in a two-way analysis of variance. We can cer-
tainly substitute S2

Columns for S2
Between and dfColumns for dfBetween in the numerator of 

the equation. S2
Columns (the sum of squared deviations of the columns’ means from 

the grand mean) is the variance created by the effect of the grouping variable that 
divides the groups across the columns and is otherwise not accounted for.

However, what about the denominator—the baseline, which is the vari-
ance that is to be accounted for in the proportion of variance accounted for? In a 
two-way analysis, the squared deviations of each score from the grand mean are 
now partly accounted for by the column effect, the row effect, and the interac-
tion effect. But the column effect should not be held responsible for variance 
already accounted for by the row and interaction effects; the squared deviations 
to be accounted for by columns should include only those squared deviations not 
already accounted for by rows or the interaction. Thus, we can substitute S2

Columns 
for S2

Between and dfColumns for dfBetween in the denominator of the equation. To put 
this in terms of a formula,

 R2
Columns =

1S2
Columns21dfColumns2

1S2
Columns21dfColumns2 + 1S2

Within21dfWithin2 (10-20)

mean (the mean of all the scores); M is the mean of a score’s cell; and MRow 
and MColumn are the means, respectively, of a score’s row and column.

 4. Formula for the degrees of freedom for the interaction:
 dfInteraction = NCells -  dfColumns - dfRows - 1.

   dfInteraction is the degrees of freedom for the interaction effect; NCells is the 
number of cells; dfColumns is the degrees of freedom for columns (the number 
of columns -1); and dfRows is the degrees of freedom for rows (the number of 
rows -1).

 5. The major figuring is shown in Table 10-14. For the Length effect, F = 10.67; 
significant. For the Vividness effect, F = 0; not significant. For the interaction 
effect, F = 2.67; not significant.
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The same principle holds for the row and interaction effects. Stated as formulas,

 R2
Rows =

1S2
Rows21dfRows2

1S2
Rows21dfRows2 + 1S2

Within21dfWithin2 (10-21)

 R2
Interaction =

1S2
Interaction21dfInteraction2

1S2
Interaction21dfInteraction2 + 1S2

Within21dfWithin2 (10-22)

Technically, each of these is a “partial” R2 because it describes the proportion 
of variance accounted for by an effect after “partialing out” the other effects. (We 
say more about partial correlations in Chapters 15.)

In our example based on the Aron and colleagues (2005) study, R2 would be 
figured as follows:

 R2
Columns1Test Difficulty2 = 1S2

Columns21dfColumns2
1S2

Columns21dfColumns2 + 1S2
Within21dfWithin2

 =
11.202112

11.202112 + 1.0321162 = .71

 R2
Rows1Sensitivity2 = 1S2

Rows21dfRows2
1S2

Rows21dfRows2 + 1S2
Within21dfWithin2

 =
1.002112

1.002112 + 1.0321162 = .00

 R2
Interaction1Interaction2 = 1S2

Interaction21dfInteraction2
1S2

Interaction21dfInteraction2 + 1S2
Within21dfWithin2

 =
1.602112

1.602112 + 1.0321162 = .56

Based on Cohen’s conventions for R2 in the analysis of variance (.01, small 
effect size; .06, medium effect size; .14, large effect size), there is an enormous 
effect size—a high R2—for test difficulty and also an extremely large effect size for 
the interaction. The nonsignificant effect for affiliation had a zero effect size. (In the 

The proportion of variance 
accounted for by variation 
between rows is the population 
variance estimate based on 
the variation between rows 
multiplied by the degrees of 
freedom for the rows, divided 
by the sum of the population 
variance estimate based on 
the variation between rows 
multiplied by the degrees of 
freedom for the rows, plus the 
within-groups (within-cells) 
population variance estimate 
multiplied by the within-
groups (within-cells) degrees 
of freedom.

The proportion of variance 
accounted for by the 
interaction is the population 
variance estimate based on 
the variation associated with 
the interaction multiplied 
by the degrees of freedom for 
the interaction, divided by the 
sum of the population variance 
estimate based on the variation 
associated with the interaction 
multiplied by the degrees of 
freedom for the interaction, 
plus the within-groups (within-
cells) population variance 
estimate multiplied by the 
within-groups (within-cells) 
degrees of freedom.
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actual study, the effect sizes were much smaller. The effect sizes for test difficulty 
and the interaction are so large in the example because we made up scores with 
much less variance than in the actual study. We did this to help you see the patterns 
very clearly.)

Power
In a factorial analysis of variance, the power of each effect is influenced by the over-
all design. For example, a three-level column effect will have different power if it is 
crossed with a two-level row effect than if it is crossed with a three-level row effect. 
To keep things simple, we present power figures for only the three most common 
two-way analysis of situations: all effects in a 2 * 2 design, a two-level (two-row 
or two-column) main effect in a 2 * 3 design, and a three-level (three-row or three-
column) main effect in a 2 * 3 design. (The power of the interaction in a 2 * 3 
design is the same as for the three-level main effect.)

Table 10-15 presents approximate power at the .05 significance level for each 
of these situations for small, medium, and large effect sizes and for cell sizes of 
10, 20, 30, 40, 50, and 100.1

Consider a planned 2 * 2 study with 30 participants in each cell and an 
expected medium effect size 1R2 = .062 for the row main effect (and using the 

Table 10-15  Approximate Power for Studies Using 2 * 2 or 2 * 3 Analysis of Variance 

for Hypotheses Tested at the .05 Significance Level

Effect Size

N Per Cell
Small  

(R2 � .01)
Medium  

(R2 � .06)
Large  

(R2 � .14)

All effects in a 2 * 2 analysis:

10 .09 .33 .68

20 .13 .60 .94

30 .19 .78 .99

40 .24 .89 *

50 .29 .94 *

100 .52 * *

Two-level main effect in a 2 * 3 analysis:

10 .11 .46 .84

20 .18 .77 .99

30 .26 .92 *

40 .34 .97 *

50 .41 .99 *

100 .70 * *

Three-level main effect and interaction effect in a 2 * 3 analysis:

10 .09 .36 .76

20 .14 .67 .98

30 .21 .86 *

40 .27 .94 *

50 .32 .98 *

100 .59 * *

*Nearly 1.
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.05 significance level). The row main effect for this planned study would have a 
power of .78, meaning that, if the research hypothesis for this row main effect is in 
fact true and has a medium effect size, the chance that the study will come out sig-
nificant is about 78%.

Or consider an example of a published study in which a nonsignificant result is 
found for an interaction effect in a 2 * 3 analysis of variance with 20 participants 
per cell. Based on the table, power is only .14 for a small effect size. This means 
that, even if such a small effect exists in the population, this study would be very 
unlikely to have come out significant. By contrast, the table shows a power of .98 
for a large effect size. This means that if a large interaction effect existed in the 
population, it would almost certainly have been significant in this study.

Planning Sample Size
Table 10-16 gives the approximate number of participants per cell needed for 80% 
power at the .05 significance level for estimated small, medium, and large effect 
sizes for the same situations as were included in the power table.2

Suppose that you are planning a 2 * 3 analysis of variance in which you are pre-
dicting a large effect size for the main effect on the three-level variable and a medium 
effect size for the other main effect and interaction. For 80% power (at the .05 signifi-
cance level), you need 11 participants per cell for the three-level main effect, 22 per 
cell for the two-level main effect, and 27 per cell for the interaction effect. Of course, 
you have to do the whole study at once. Thus, you need at least 27 per cell (unless you 
choose to risk lower power for the interaction effect). This would mean recruiting 162 
participants (27 for each of the six cells of the 2 * 3 design).

Table 10-16  Approximate Number of Participants Needed in Each Cell (Assuming Equal 

Sample Sizes) for 80% Power for Studies Using a 2 * 2 or 2 * 3 Analysis 

of Variance, Testing Hypotheses at the .05 Significance Level

Effect Size

Small  
(R2 � .01)

Medium  
(R2 � .06)

Large  
(R2 � .14)

2 * 2: All effects 197 33 14

2 * 3: Two-level main effect 132 22 9

Three-level main effect and interaction 162 27 11

How are you doing?

 1. (a) Write the formula for the effect size for rows in a two-way analysis of vari-
ance, (b) define each of the symbols, and (c) figure the effect size for a study 
in which S2

Rows is 9.45, S2
Within is 3.67, dfRows is 1, and dfWithin is 36.

 2. (a) What is the power of the two-level main effect in a 2 * 3 analysis of vari-
ance with approximately 40 participants in each group to be tested at the 
.05 significance level, in which the researchers predict a medium effect size? 
(b) About how many participants do you need in each cell for 80% power in 
a planned 2 * 2 study in which you predict a medium effect size and will be 
using the .05 significance level?
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Summary

 1. In a factorial research design, participants are put into groupings according to 
the combinations of the grouping variables whose effects are being studied. 
In such designs, you can study the effects of two grouping variables without 
needing twice as many participants. Also, such designs allow you to study the 
 effects of combinations of the two grouping variables.

 2. An interaction effect is when the impact of one grouping variable varies ac-
cording to the level of the other grouping variable. A main effect is the impact 
of one grouping variable, ignoring the effect of the other grouping variable. 
Interaction effects and main effects can be described verbally, numerically, and 
graphically (usually on a graph with bars for each combination of the grouping 
variables, with the height of the bar being the score on the measured variable). 
When there is an interaction along with a main effect, you have to be cautious 
in drawing conclusions about the main effect.

 3. In a two-way analysis of variance, there are three types of between-groups vari-
ance estimates: one for differences on the grouping variable dividing the rows, 
one for differences on the grouping variable dividing the columns, and one 
for the interaction of the row and column variables. Since the within-groups 
variance estimate is based on estimates from each cell, it can also be called a 
within-cells variance estimate.

 4. The assumptions for a factorial analysis of variance are the same as for the one-
way analysis of variance except that the requirements of population normality 
and equal variances apply to the populations that go with each cell.

 5. The factorial analysis of variance can be extended beyond two-way designs 
and can also be used for repeated measures studies. (For more information on 
 repeated measures analysis of variance, see the Web chapter available at www.
pearsonhighered.com/aron and also at www.mystatlab.com for MyStatLab users.)

 6. There is a long-standing controversy about whether to dichotomize continuous 
variables to do an analysis of variance. This is a decreasingly common proce-
dure; alternative procedures that use the full range of values of each variable are 
generally considered the better approach.

Answers

 1. (a) Effect size for rows in a two-way analysis of variance:

  R2
Rows =

1S2
Rows21dfRows2

1S2
Rows21dfRows2 + 1S2

Within21dfWithin2.
  (b) R2

Rows is the proportion of variance accounted for by variation between 
rows; S2

Rows is the population variance estimate for rows; dfRows is the degrees 
of freedom for rows (number of rows minus 1); S2

Within is the within-groups 
population variance estimate; and dfWithin is the degrees of freedom within 
groups (the number of scores in each cell minus 1, added up over all cells).

  (c) R2
Rows = 19.452112>319.452112 + 13.67213624 = 9.45>141.57 = .07.

 2. (a) Power: 97. (b) Number of participants per cell: 33.

Learning Aids

www.pearsonhighered.com/aron
www.pearsonhighered.com/aron
www.mystatlab.com
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Key Terms

factorial analysis of  
variance (p. 377)

factorial research design (p. 377)
interaction effect (p. 379)
two-way factorial research 

design (p. 380)

two-way analysis of 
variance (p. 380)

grouping variable (p. 380)
one-way analysis of 

variance (p. 380)
main effect (p. 380)

cell (p. 380)
cell mean (p. 380)
marginal means (p. 381)
repeated measures analysis of 

variance (p. 397)
dichotomizing (p. 398)

7. Results of factorial analyses of variance often include graphical descriptions of 
results, particularly when the interaction effect is significant. These are usually 
bar graphs but sometimes include line graphs.

8. ADVANCED TOPIC: The figuring for a two-way analysis of variance uses 
an expanded version of the structural model approach. The within-groups esti-
mate is based on deviations of each score from its cell’s mean. The row effect is 
based on deviations between row means and the grand mean; the column main 
effect, on deviations between column means and the grand mean. The interaction 
effect is based on the deviation of scores from the grand mean remaining after 
subtracting all the other deviations from the grand mean (deviations from the cell 
mean, the row means, and the column means). To get the actual population vari-
ance estimates, the various deviations (within, rows, columns, and interaction) are 
squared, summed, and divided by their degrees of freedom. The F ratios for row, 
column, and interaction effects are the population variance estimates for each of 
these divided by the within-groups (within-cells) population variance estimate.

9. ADVANCED TOPIC: In a factorial analysis of variance, you figure effect size 
and power separately for each main and interaction effect. R2 is the variance 
estimate for that particular effect multiplied by the degrees of freedom for that 
effect, divided by the sum of the variance estimate for that particular effect mul-
tiplied by the degrees of freedom for that effect, plus the within-groups variance 
estimate multiplied by the within-groups degrees of freedom.

Example Worked-Out Problems

Recognizing and Interpreting Main Effects  
and Interaction Effects
Each of the following tables of means shows the result of a fictional study using a 
two-way factorial research design. Assuming that any differences are statistically 
significant, for each table, (a) indicate which effects (main and interaction), if any, 
are found, and (b) describe the meaning of the pattern of means (that is, any main or 
interaction effects or the lack thereof).

1. Measured variable: Level of happiness

Stress  

Low High Overall

Ag
e

Young 8 4 6

Old 8 4 6

Overall 8 4 6

4488

4488
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2. Measured variable: Symptoms of depression

Therapy  

No Yes Overall

M
ed

ic
at

io
n No 9 6 7.5

Yes 6 2 4

Overall 7.5 4 5.75

Answers
1. (a) Main effect for stress, no main effect for age, no interaction effect; 

(b) happiness is lower for people with high stress, but there is no difference in 
happiness between younger and older people, and each combination of stress 
and age has the level of happiness you would expect knowing the level of each 
variable.

2. (a) Main effects for therapy and medication, interaction effect; (b) fewer symp-
toms of depression are found for people who have therapy and people who take 
medication, and people who have therapy and take medication have an espe-
cially low number of symptoms.

Bar Graphs and Figuring a Two-Way Analysis of Variance
In a 3 * 2 experiment, Variable A has three levels (1, 2, and 3), and Variable B has 
two levels (1 and 2). Four participants are randomly assigned to each combination 
of Variables A and B and are then observed on the measured variable. Scores of the 
24 participants follow:

 Variable B

 Level 1 Level 2

Variable A Level 1 25 19

 20 24

 23 21

 24 20

Variable A Level 2 22 24

 19 18

 22 22

 21 20

Variable A Level 3 16 18

 19 21

 13 16

 16 17

(a) Make a table of cell and marginal means. (b) Make a bar graph of the cell means. 
(c) ADVANCED TOPIC: Are there any significant main or interaction effects (use 
the .05 significance level)?

6699

2266
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Answers
(a) 

 Variable B

  Level 1 Level 2 Overall

Va
ria

bl
e 

A

Level 1 23 21 22

Level 2 21 21 21

Level 3 16 18 17

Overall 20 20 20

(b) See Figure 10-12.
(c) Table 10-17 shows the figuring and conclusions.

Outline for Writing Essays for a Two-Way  
Analysis of Variance
 1. Explain that the two-way analysis of variance is used for hypothesis testing 

when a study uses a two-way factorial research design; with such a design, par-
ticipants are put into groupings according to the combinations of the variables 
whose effects are being studied.

 2. Describe the core logic of hypothesis testing in this situation. Be sure to explain 
what is meant by the terms main effect and interaction effect. Also, describe the 
three F ratios that are tested in a two-way analysis of variance, including how 
each F ratio is figured.

 3. Describe the assumptions of a two-way analysis of variance.
 4. ADVANCED TOPIC: Describe the structural model for the analysis of variance, 

including how each score’s overall deviation from the grand mean can be divided 
into several components. Explain the logic of the comparison distributions that 
are used with the two-way analysis of variance. Describe the logic and process for 
determining the cutoff sample F scores at which each null hypothesis should be 
rejected. Explain how and why the scores from Steps ❸ and ❹ of the hypothesis-
testing process are compared. Explain the meaning of the results of these com-
parisons with regard to the specific research and null hypotheses being tested.

21212323

21212121

18181616

Variable A

Level 1

Level 2

Variable B

Sc
or

e 
on

 M
ea

su
re

d 
V

ar
ia

bl
e

24 –

23 –

22 –

21 –

20 –

19 –

18 –

17 –

16 –

15 –

14 –

Level 2 Level 3Level 1

Figure 10-12 Bar graph for Example Worked-Out Problem.
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1X - GM22 = 125 - 2022 = 52 = 25.

1X - M22 = 125 - 2322 = 22 = 4.

1MRow - GM22 = 122 - 2022 = 22 = 4.

1MColumn - GM22 = 120 - 2022 = 02 = 0.

INT2 = 31X - GM2 - 1X - M2 - 1MRow - GM2 - 1MColumn - GM242 = 15 - 2 - 2 - 022 = 12 = 1

SSTotal = 50 + 18 + 10 + 24 + 82 + 30 = 214

SSWithin = 14 + 14 + 6 + 20 + 18 + 14 = 86

SSColumn = 0 + 0 + 0 + 0 + 0 + 0 = 0

SSRow = 16 + 16 + 4 + 4 + 36 + 36 = 112

SSInteraction = 4 + 4 + 0 + 0 + 4 + 4 = 16

Table 10-17 Figuring for Two-Way Factorial Analysis of Variance Example Worked-Out Problem

F needed for main effect for Variable B 1df � 1, 18; p * .052 = 4.41.

F needed for main effect for Variable A 1df � 2, 18; p * .052 � 3.56.

F needed for interaction effect 1df � 2, 18; p * .052 � 3.56.

Variable B Level 1 Variable B Level 2

X 1X - GM22 1X - M22 1MRow - GM22 1MColumn - GM22 INT2 X 1X - GM22 1X - M22 1MRow - GM22 1MColumn - GM22 INT2

Variable A Level 1

25 25  4  4 0 1 19  1  4  4 0 1

20  0  9  4 0 1 24 16  9  4 0 1

23  9  0  4 0 1 21  1  0  4 0 1

24 16  1  4 0 1 20  0  1  4 0 1

50 14 16 0 4 18 14 16 0 4

Variable A Level 2

22  4  1  1 0 0 24 16  9  1 0 0

19  1  4  1 0 0 18  4  9  1 0 0

22  4  1  1 0 0 22  4  1  1 0 0

21  1  0  1 0 0 20  0  1  1 0 0

10  6  4 0 0 24 20  4 0 0

Variable A Level 3

16 16  0  9 0 1 18  4  0  9 0 1

19  1  9  9 0 1 21  1  9  9 0 1

13 49  9  9 0 1 16 16  4  9 0 1

16 16  0  9 0 1 17  9  1  9 0 1

82 18 36 0 4 30 14 36 0 4

M  = mean of the score’s cell
MRow = mean of the score’s row
MColumn = mean of the score’s column

INT = score’s remaining deviation for the interaction
Sample figuring of deviations, using the first score in the Variable A Level 1/Variable B Level 1 cell:

Accuracy check: SSTotal = 214; SSWithin + SSRows + SSColumns + SSInteraction = 86 + 0 + 112 + 16 = 214

Source SS df MS F Decision
Variable B (columns)   0  1  0  0.0 Do not reject the null hypothesis.

Variable A (rows) 112  2 56 11.7 Reject the null hypothesis.

Interaction 1columns * rows2  16  2  8  1.7 Do not reject the null hypothesis.

Within groups  86 18 4.8
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Practice Problems

These problems involve figuring. Most real-life statistics problems are done with 
special statistical software. Even if you have such software, do these problems by 
hand to ingrain the method in your mind. To learn how to use a computer to solve 
statistics problems like those in this chapter, refer to the Using SPSS section at the 
end of this chapter.

All data are fictional unless an actual citation is given.

Set I (for Answers to Set I Problems, see pp. 695–697)
 1. Each of the following is a table of means showing the results of a study using a 

factorial design. Assuming that any differences are statistically significant, for 
each table, (a) and (b) make two bar graphs showing the results (in one graph 
grouping the bars according to one variable and in the other graph grouping the 
bars according to the other variable); (c) indicate which effects (main and inter-
action), if any, are found; and (d) describe the meaning of the pattern of means 
(that is, any main or interaction effects or the lack thereof) in words.
  (i) Measured variable: Income (thousands of dollars)

Age

Young Old

Lower 20 35

Upper 25 100Cl
as

s

 (ii) Measured variable: Grade point average

Major

Science Arts

Community 2.1 2.8

Liberal Arts 2.8 2.1Co
lle

ge

(iii) Measured variable: Days sick per month

Gender

Females Males

Exercisers 2.0 2.5

Controls 3.1 3.6Gr
ou

p

 2. Each of the following is a table of means showing the results of a study using a 
factorial design. Assuming that any differences are statistically significant, for 
each table, (a) and (b) make two bar graphs showing the results (in one graph 

MyStatLab

MyStatLab
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grouping the bars according to one variable and in the other graph grouping the 
bars according to the other variable); (c) indicate which effects (main and inter-
action), if any, are found; and (d) describe the meaning of the pattern of means 
(that is, any main or interaction effects or the lack thereof) in words.
  (i) Measured variable: Conversation length

Topic

Nonpersonal Personal

Friend
Parent

16 20

10 6

Re
la

tio
ns

hi
p 

 (ii) Measured variable: Rated restaurant quality

Co
st

City

New York Chicago Vancouver

Expensive 9 5 7

6

4 3 5

4 6Moderate

Inexpensive

(iii) Measured variable: Ratings of flavor

Coffee Brand

X Y

Regular

Decaf
7 4

5 2Ty
pe

Z

6

6

 3. A sports psychologist studied the effect of a motivational program on injuries 
among players of three different sports. The following chart shows the design. 
For each of the following possible patterns of results, make up a set of cell 
means, figure the marginal means, and make a bar graph of the results (assume 
that any differences are statistically significant): (a) a main effect for type of 
sport and no other main effect or interaction; (b) a main effect for program and 
no other main effect or interaction; (c) both main effects but no interaction; 
(d) a main effect for program and an interaction, but no main effect for type of 
sport; (e) both main effects and an interaction.

Measured Variable: Number of injuries per person over 10 weeks

Sp
or

t

Sport

Baseball Football Basketball
With motivational
    program
Without motivational
    program

MyStatLab
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 4. Kunda and Oleson (1997) studied the effect on stereotypes of counterinformation, 
learning about someone who is opposite to what you would expect from the ste-
reotype. They predicted that extreme counterinformation may have a boomerang 
effect—making the stereotype even stronger. Participants were preselected to be 
in the study based on a questionnaire in which they rated public relations (PR) 
agents for their typical degree of extroversion: an “extreme-stereotype” group of 
participants who had rated PR agents as extremely extroverted and a “moderate-
stereotype” group of participants who had rated PR agents as only moderately 
extroverted. During the actual study, some participants were given a description 
of a particular PR agent who was highly introverted, the extreme deviant condi-
tion; the other participants were given no special description, the control con-
dition. Finally, all participants were asked about their beliefs about PR agents. 
Kunda and Oleson (1997) reported the results as follows:

A 2 (prior stereotype) * 2 (condition) ANOVA yielded a significant interaction, 
F11, 422 = 5.69, p 6 .05, indicating that the impact of the target on participants’ 
stereotypes depended on their prior stereotypes. As can be seen in Figure [10-13], 
 extreme-stereotype participants exposed to the highly introverted target came to view 
PR agents as even more extroverted than did extreme controls . . . [a] boomerang 
 effect . . . . A different pattern was observed for the moderate-stereotype participants: 
Their stereotypes were unaffected by exposure to the same target . . . . The ANOVA 
also revealed a large effect for prior stereotypes, F11, 422 = 38.94, p 6 .0001 
indicating, not surprisingly, that extreme-stereotype participants continued to view 
PR agents as more extroverted than did moderate-stereotype participants. There was 
also a marginal effect for condition, F11, 422 = 2.89, p 6 .10, which was clearly 
due entirely to the extreme-stereotype participants. (p. 974)

Moderate-stereotype
participants
Extreme-stereotype
participants

PR
 e

xt
ra

ve
rs

io
n

10 –

9 –

8 –

7 –
Control Extreme Deviant

7.87

8.92

7.69

9.96

Figure 10-13 Mean ratings of the extraversion of public relations (PR) agents 
made by participants with moderate or extreme prior stereotypes who were exposed to an  
extremely introverted PR agent or to no target (controls). Higher numbers indicate a greater 
PR extraversion.

Source: Kunda, Z., & Oleson, K. C. (1997). When exceptions prove the rule: How extremity of deviance 
determines the impact of defiant examples on stereotypes. Journal of Personality and Social Psychology, 
72, 965–979. Published by the American Psychological Association. Reprinted with permission.

MyStatLab
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Briefly describe the meaning of these results to a person who has never had 
a course in statistics. (Do not go into the computational details, just the basic 
logic of the pattern of means, the significant results, and issues of interpreting 
nonsignificant results.)

 5. Yamagishi and Melara (2001) studied people’s ability to separate visual images 
from the background. Participants were shown images differing from the back-
ground in either just chromaticity (color) or just luminescence (brightness). 
Also, they made the figures more difficult to identify by degrading (distorting) 
either the contour (shape of the edges) or the surface of the figure. The key 
measure was “difference in sensitivity from baseline,” which the researchers 
abbreviated as �da. Here is an excerpt from their results (note that MSe refers 
to mean squared error, which is the same as MSWithin, the population variance 
estimate based on the variation within groups (within cells).

The only factor to yield a significant main effect was task 31F(1, 32 = 373.35, MSe =
0.01, p 6 .0014. Greater overall loss was observed in the chromacity tasks 
1�da = -0.862 than in the luminance tasks 1�da = -0.372  .  .  .  .  [T]he 
critical effect is found in the interaction between degradation and task. This 
interaction, depicted in Figure [10-14], was highly significant 3F(1, 32 =  
178.77, MSe = 0.02, p 6 .0014. As one can see, figural identification in the 

Chromaticity
Luminance

1.0

–0.5

–1.0

–1.5
Surface

Degradation
Contour

Degradation

Condition

d a

Figure 10-14 Average difference in sensitivity from baseline 1�da2 in luminance 
and chromaticity tasks under contour-degradation and surface-degradation conditions across 
 Experiments IA and IB. Note the crossover interaction between degradation and task: performance 
in the luminance tasks was most disrupted by contour degradation, whereas performance in 
the chromaticity tasks was most disrupted by surface degradation.

Source: Yamagishi, N., & Melara, R. D. (2001). Informational primacy of visual dimensions: Special-
ized roles for luminance and chromaticity in figure-ground perception. Perception and Psychophysics, 
63, 824–846. Reprinted with permission.
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luminance tasks was disrupted by contour degradation, but not by surface degrada-
tion. On the other hand, figural identification in the chromacity task was disrupted 
by both forms of degradation; however, surface degradation was twice as harmful 
to performance in these tasks as contour degradation. (p. 831)

Describe the meaning of these results to a person who understands one-
way analysis of variance but is completely unfamiliar with factorial designs or 
the two-way analysis of variance.

 6. ADVANCED TOPIC: For each of the following data sets, carry out an analysis 
of variance, including making a table of cell and marginal means and making a 
bar graph of the cell means. Use the .05 significance level.

(a) Experimental Condition

A B

Group 1 0 3

1 2

1 3

Group 2 3 0

2 1

3 1

(b) Experimental Condition

A B

Group 1 0 0

1 1

1 1

Group 2 3 3

2 2

3 3

(c) Experimental Condition

A B

Group 1 0 3

1 2

1 3

Group 2 0 3

1 2

1 3

 7. ADVANCED TOPIC: Patients with two kinds of diagnoses were randomly 
assigned to one of three types of therapy and the effectiveness of the therapy 
was measured on a 1-to-15 scale (with a higher number indicating greater 
effectiveness). There were two patients per cell. Based on the following results, 
(a) carry out the analysis of variance (use the .05 significance level), (b) make 
a table of cell and marginal means, (c) make a bar graph of the results, and  
(d) describe the results in words (indicate which effects are significant and, on 
the basis of the significant effects, how to understand the pattern of cell means).

MyStatLab

MyStatLab
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 8. ADVANCED TOPIC: A psychologist who studies the legal system conducted 
a study of the effect of defendants’ likability and nervousness on willingness 
to convict the defendant. Each participant read the same transcript, taken from 
an actual trial, in which the guilt or innocence of a male defendant was quite 
ambiguous. All participants also saw a brief videotape that supposedly showed 
the defendant on the witness stand. However, the way the actor played the part 
on the videotape differed for different participants, including the four possibili-
ties of likable versus not and nervous versus not. After viewing the tape, par-
ticipants rated the likelihood that the defendant is innocent (on a scale of 1, very 
unlikely, to 10, very likely). The results for the first 12 participants in the study 
were as follows:

Therapy A Therapy B Therapy C

Diagnosis I 6 3 2

2 1 4

Diagnosis II 11 7 8

9 9 10

Likeable Not Likeable

Nervous 7 3

8 4

6 2

Not nervous 3 7

3 5

3 9

  (a) Carry out the analysis of variance (use the .05 significance level). (b) 
Make a table of cell and marginal means. (c) Make a bar graph of the results.  
(d) Explain the results and the way you arrived at them to someone who is 
familiar with the one-way analysis of variance (including the structural model 
approach) but not with the factorial analysis of variance.

 9. ADVANCED TOPIC: Figure the effect size for each main and interaction 
effect for problems (a) 6a, (b) 6b, (c) 6c, (d) 7, and (e) 8.

 10. ADVANCED TOPIC: What is the power of the effect in the following planned 
studies using the analysis of variance with p 6 .05?

Predicted Effect Size Overall Design
Number of Levels  

of the Effect Participants Per Cell

(a) Small 2 * 2 2 30

(b) Small 2 * 2 2 50

(c) Small 2 * 3 2 30

(d) Small 2 * 3 3 30

(e) Medium 2 * 2 2 30

 11. ADVANCED TOPIC: About how many participants do you need in each cell 
for 80% power in each of the following planned studies, using the analysis of 
variance with p 6 .05?

MyStatLab

MyStatLab

MyStatLab

MyStatLab
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Set II
 12. Each of the following tables of means shows the results of a study using a facto-

rial design. Assuming that any differences are statistically significant, for each 
table (a) and (b), make two bar graphs showing the results (in one graph group-
ing the bars according to one variable and in the other graph grouping the bars 
according to the other variable); (c) indicate which effects (main and interac-
tion), if any, are found; and (d) describe the meaning of the pattern of means 
(that is, any main or interaction effects or the lack thereof) in words.

  (i) Measured variable: Degree of envy of another person’s success

Predicted Effect Size Design Effect

(a) Small 2 * 2 Main effect

(b) Small 2 * 2 Interaction effect

(c) Medium 2 * 2 Main effect

(d) Small 2 * 3 Two-level main effect

(e) Small 2 * 3 Three-level main effect

(f) Small 2 * 3 Interaction effect

Degree of Success

Great Small

Friend 8

Stranger 1

5

4

St
at

us
 o

f
Ot

he
r 

  (ii) Measured variable: Observed engagement in the activity

Play Activity

Blocks Dress Up

Alone
With playmate

Si
tu

at
io

n

4.5

2.5 4.5

2.5

  (iii) Measured variable: Intensity of attention

Ty
pe

 o
f

Ba
lle

tg
oe

r

Program

Swan Lake Modern

Regular 20 15

Sometime 15 15

Novice 10 5

 13. Each of the following tables of means shows the results of a study using a fac-
torial design. Assuming that any differences are statistically significant, for  
each table (a) and (b), make two bar graphs showing the results (in one graph 
grouping the bars according to one variable and in the other graph grouping  
the bars according to the other variable); (c) indicate which effects (main and 
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interaction), if any, are found; and (d) describe the meaning of the pattern of 
means (that is, any main or interaction effects or the lack thereof) in words.

    (i) Measured variable: Right frontal neural activity in brain during memory task

Items Remembered

Words Pictures

Once
TwiceTi

m
es

 
Pr

es
en

te
d

45 

30 30

68

   (ii) Measured variable: Approval rating of the U.S. president

Region

West East Midwest South

Middle 70 45 55 50

Lower 50 25 35 30Cl
as

s

  (iii) Measured variable: Satisfaction with education

Ti
m

e 
Af

te
r

Ob
ta

in
in

g 
BA

Gender

Females Males

1 month 3

1 year 4

5 years 9

3

4

9

 14. In this study, English-speaking participants were instructed to try to read a para-
graph for a half hour in one of three languages they did not understand. They read 
the paragraph after either being told the main idea of the paragraph, told the main 
idea of the first sentence only, or not told anything about the meaning. They were 
given translations of some words. The researchers then measured how many of the 
other words they could correctly translate. The following chart shows the design. 
For each of the following possible patterns of results, make up a set of cell means, 
figure the marginal means, and make a bar graph of the results: (a) a main effect 
for language and no other main effect or interaction; (b) a main effect for knowl-
edge of meaning and no other main effect or interaction; (c) both main effects but 
no interaction; (d) a main effect for language and an interaction, but no main effect 
for knowledge of meaning; (e) both main effects and an interaction.

   Measured variable: Number of words not given that participant could cor-
rectly translate

Language

Dutch Rumanian Swedish

Paragraph

Sentence

NoneKn
ow

le
dg

e 
of

M
ea

ni
ng
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 15. Brockner and colleagues (2001) studied the effect of cultural values about the 
appropriateness of power differentials on how employees feel about having 
input to managers about important decisions. Their participants were business 
students in China (a culture in which power differentials are considered appro-
priate and normal), a “high power distance” culture, and in the United States, 
a “low power distance” culture. The students were asked to imagine that they 
were working in a company and had just been put under the direction of a new 
manager; they were then assigned to one of three conditions: (1) the new manager 
discouraged input from them (the low voice condition), (2) the new manager 
encouraged input from them (high voice), or (3) no information was given 
about the manager’s style (the control condition). They then had the students 
answer questions about how committed they would feel to the organization. 
Here is how the researchers reported the results:

A two-factor ANOVA yielded a significant main effect of voice, F12, 2452 =
26.30, p 6 .001. As expected, participants responded less favorably in the low 
voice condition 1M = 2.932 than in the high voice condition 1M = 3.582. 
The mean rating in the control condition 1M = 3.342 fell between these two 
 extremes. Of greater importance, the interaction between culture and voice was 
also significant, F12, 2452 = 4.11, p 6 .02. . . . As can be seen in Table [10-18] 
the voice effect was more pronounced in the low power distance culture (the 
United States) than in the high power distance culture (the People’s Republic of 
China). (p. 304)

  Briefly describe the meaning of these results to a person who has never had 
a course in statistics. (Do not go into the computational details, just the basic 
logic of the pattern of means, the significant results, and issues of interpreting 
nonsignificant results.)

 16. Sinclair and Kunda (2000) tested the idea that, if you want to think well of 
someone (for example, because he or she has said positive things about you), 
you are less influenced by the normal stereotypes when evaluating them. Par-
ticipants filled out a questionnaire on their social skills, then either a male or 
female “manager in training” gave them feedback, rigged so that half the par-
ticipants were given positive feedback and half, negative feedback. Finally, 
the participants rated the managers for their skill at evaluating them. The 

Table 10-18  Mean Level of Organizational Commitment as a Function of Culture and Level 

of Voice (Study 1)

Level of Voice

Culture Low High Control

United States  
 (low power distance) 2.63 (0.72) 3.57 (0.56) 3.17 (0.66)

People’s Republic of China  
 (high power distance) 3.27 (0.68) 3.60 (0.43) 3.52 (0.55)

Note: Scores could range from 1 to 5, with higher scores reflecting greater organizational commitment. Standard deviations are 
in parentheses.
Source: Brockner, J., Ackerman, G., Greenberg, J., Gelfand, M. J., Francesco, A. M., Chen, Z. X., Leung, K., Bierbrauer, G., 
Gomez, C., Kirkman, B. L., & Shapiro, D. (2001). Culture and procedural justice: The influence of power distance on reactions to 
voice. Journal of Experimental Social Psychology, 37, 300–315. Copyright © 2001 with permission from Elsevier.
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question was whether the usual tendency to stereotype women as less skillful 
managers would be undermined when people got positive ratings. Here are 
the results:

Participants’ ratings of the manager’s skill at evaluating them were analyzed with 
a 2 (feedback) * 2 (manager gender) ANOVA. Managers who had provided 
positive feedback 1M = 9.082 were rated more than were managers who had pro-
vided negative feedback 1M = 7.462, F11, 462 = 19.44, p 6 .0001. However, 
as may be seen in Figure [10-15], the effect was qualified by a significant interac-
tion, F11, 462 = 4.71, p 6 .05. (pp. 1335–1336)

  Describe the meaning of these results to a person who understands one-way 
analysis of variance but is completely unfamiliar with factorial designs or the 
two-way analysis of variance.

 17. ADVANCED TOPIC: For each of the following data sets, carry out an analysis 
of variance, including making a table of cell and marginal means and making a 
bar graph of the cell means. Use the .05 significance level.

(a) Group

I II

Experimental Condition A 8 8

6 6

Experimental Condition B 3 3

1 1

Feedback

Male

Female
Sk

ill
 R

at
in

gs

11 –

10 –

9 –

8 –

7 –

6 –

5 –
Positive Negative

8.85

9.33

8.00

6.85

Manager's gender

Figure 10-15 Participants’ ratings of the manager’s skill at evaluating them as a 
function of feedback favorability and the manager’s gender (Study 2).

Source: Sinclair, L., & Kunda, Z. (2000). Motivated stereotyping of women: She’s fine if she praised 
me but incompetent if she criticized me. Personality and Social Psychology Bulletin, 26, 1329–1342. 
Copyright © 2000 by Society for Personality and Social Psychology, Inc. Reprinted by permission of 
Sage Publications, Inc.
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(b) Group

I II

Experimental Condition A 9 9

5 5

Experimental Condition B 4 4

0 0

 18. ADVANCED TOPIC: A developmental psychologist studied the effects of 
loudness of a sudden noise on infants of different inherited temperaments. The 
infants were exposed either to a sudden loud noise or a sudden soft noise, then 
the infants’ startle reactions were observed. The startle reaction scores were as 
follows:

Sudden Noise

Loud Soft

Temperament K 14 7

10 5

9 9

Temperament R 3 8

8 8

7 2

  (a) Make a table of cell and marginal means; (b) draw a bar graph of them;  
(c) carry out the five steps of hypothesis testing (use the .05 significance 
level); and (d) describe the results in words (indicate which effects are signifi-
cant and, on the basis of the significant effects, how to understand the pattern 
of cell means).

 19. ADVANCED TOPIC: In a particular high school, three types of video teach-
ing programs were each tried for English, history, and math. The researchers 
then measured amount learned. There were two students per cell. Based on 
the following results, (a) make a table of cell and marginal means, (b) draw 
a bar graph of them, (c) carry out the five steps of hypothesis testing (use the 
.05 significance level), and (d) explain the results and the way you arrived 
at them to someone who is familiar with the one-way analysis of variance 
(including the structural model approach), but not with the factorial analysis 
of variance.

 English History Math

Program Type A 3 15 2

3 14 3

Program Type B 6 18 6

8 10 5

Program Type C 1 13 2

3 4 0

 20. ADVANCED TOPIC: Figure the effect size for each main and interaction 
effect for problems (a) 17a, (b) 17b, (c) 18, and (d) 19.
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 21. ADVANCED TOPIC: What is the power of the effect in the following planned 
studies using the analysis of variance with p 6 .05?

 
Predicted  
Effect Size

Overall  
Design

Number of Levels  
of the Effect

Participants  
Per Cell

(a) Small 2 * 2 2 10

(b) Medium 2 * 2 2 10

(c) Large 2 * 2 2 10

(d) Medium 2 * 3 3 10

(e) Medium 2 * 3 3 20

(f) Medium 2 * 2 Interaction 20

 22. ADVANCED TOPIC: About how many participants do you need in each cell 
for 80% power in each of the following planned studies, using the analysis of 
variance with p 6 .05?

 
Predicted  
Effect Size Design Effect

(a) Medium 2 * 2 Main effect

(b) Large 2 * 2 Main effect

(c) Medium 2 * 2 Interaction effect

(d) Medium 2 * 3 Three-level main effect

(e) Large 2 * 3 Three-level main effect

(f) Medium 2 * 3 Interaction effect

Using SPSS

The  in the following steps indicates a mouse click. (We used SPSS version 19 for 
Windows to carry out these analyses. The steps and output may be slightly different 
for other versions of SPSS.)

Figuring a Two-Way Analysis of Variance
It is easier to learn these steps using actual numbers; so we will use the study of 
the effects of vividness (low versus high) and length of examples (short versus 
long) on the number of examples recalled. The scores for that example are shown 
in “How are you doing?” question 5 on p. 411, and the figuring is shown in Table 
10-14 on p. 412.

 ❶ Enter the scores into SPSS. SPSS assumes that all scores in a row are from the 
same person. In this example, each person is in only one of the four cells. Further, 
we want to be able to tell SPSS what each score means in terms of the grouping 
variables. Thus, you should enter the numbers as shown in Figure 10-16. In the 
first column (labeled “vivid”), we used the number “1” to indicate that a person 
is in the low vividness condition and the number “2” to indicate a person is in the 
high vividness condition. That is, the first column is for the first grouping variable 
(vividness in this case), and we arbitrarily used a 1 or a 2 to show which level a 
person is in on this grouping variable (we could have used any two numbers, but 
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1 and 2 are simple). In the second column (labeled “length”), we used the number 
“1” for a person being in the short length condition and “2” for a person being in 
the long length condition. In the third column (labeled “recall”), we put in each 
person’s score on the measured variable (that is, the number of examples each 
person recalled).

 ❷  Analyze.
 ❸  General Linear Model.
 ❹  Univariate.
 ❺  the variable called “recall” and then  the arrow next to the box labeled 

“Dependent Variable.” This tells SPSS that the analysis of variance should be 
carried out on the scores for the “recall” variable. (“Dependent variable” is 
another name for the measured variable.)

 ❻  the variable called “length” and then  the arrow next to the box labeled 
“Fixed Factor(s).” This tells SPSS that the grouping variable called “length” 
shows whether people saw examples that were short or long. (“Fixed factors” 
is another name for the kind of grouping variables usually used in a factorial 
analysis of variance.)

 ❼  the variable called “vivid” and then  the arrow next to the box labeled 
“Fixed Factor(s).” This tells SPSS that the grouping variable called “vivid” 
shows whether people saw examples that had low or high vividness.

Figure 10-16 SPSS data editor window for the fictional study of the effects of vivid-
ness and length of examples on the number of examples recalled.
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 ❽  Options.  the box labeled Descriptive statistics (this checks the box). This 
tells SPSS to provide descriptive statistics (means, standard deviations, etc.) 
for each cell.  the box labeled Estimates of Effect Size (this checks the box). 

 Continue. (Step ❽ is optional, but we strongly recommend requesting descrip-
tive statistics and effect size estimates for any hypothesis-testing situation.)

 ❾  OK. Your SPSS output window should look like Figure 10-17.

Figure 10-17 SPSS output window for a two-way analysis of variance for the 
 fictional study of the effects of vividness and length of examples on the number of examples 
recalled.
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The first table in the SPSS output (which is not shown in Figure 10-17) gives 
the number of individuals in each level of the two grouping variables (“vivid” and 
“length”). Be sure to look at this closely to check that the analysis actually used the 
participants and variables you intended! The second table (labeled “Descriptive Sta-
tistics”) provides descriptive statistics (mean, estimated population standard devia-
tion, and number of individuals) for the “recall” scores for each cell. Knowing the 
mean value of each cell is important when it comes to interpreting significant results 
from an analysis of variance. This table also provides marginal means for each row 
and column and the overall mean. These are shown in the “Total” rows and “Total” 
section.

The third table in the SPSS output (labeled “Tests of Between-Subjects Effects”) 
shows the actual results of the two-way analysis of variance. You can ignore the 
results shown in the rows labeled “Corrected Model,” “Intercept,” and “Corrected 
Total.” The first column (“Source”) lists the types of population variance estimates, 
including the effects for “vivid,” “length,” the interaction (“vivid * length”), and the 
within-groups estimate (“Error”). The second column lists the sums of squares: these 
are described in the Advanced Topic section earlier in this chapter, but ignore this 
column if you did not read that section. The third column, “df,” gives each type of 
degrees of freedom. The fourth column, “Mean Square,” gives the population vari-
ance estimates for each main effect (vivid, length), for the interaction, and for the 
within-groups (or “Error”). The next column gives the F ratio for each main effect 
and for the interaction. The values for “df,” “Mean Square,” and “F” (and “Sum of 
Squares”) are consistent with those shown in Table 10-14, where we worked this 
out by hand using the procedures in the Advanced Topic section. The “Sig.” col-
umn shows the exact significance level of each F ratio. The significance level of 
.031 for the “length” effect is less than our .05 cutoff for this example, which means 
that you can reject the null hypothesis and the research hypothesis is supported (that 
is, the result is statistically significant). For the “vivid” effect, the significance level 
of 1.000 is greater than our .05 cutoff, which means that you cannot reject the null 
hypothesis. The significance level of .178 for the interaction effect is also greater 
than our .05 cutoff, which means that you cannot reject the null hypothesis.

The effect size estimates are shown in the final column of table, labeled “Par-
tial Eta Squared.” As you learned earlier in the chapter, eta squared (�2) is another 
name for R squared (R2). (The eta squared values are referred to as being par-
tial because they describe the proportion of variance accounted for by an effect 
after the other effects have been taken into account or “partialed out”—an idea 
we will consider in Chapter 15.) The most important effect size estimates to focus 
on are those for each of the main effects and for the interaction. The SPSS output 
also provides an effect size estimate for the overall analysis, which is shown in the 
“Corrected Model” row (eta squared = .769) as well as in a note underneath the 
table (“R squared = .769”). For more information on how to calculate effect size 
for a factorial analysis of variance, see the Advanced Topic section earlier in this 
chapter.

Making a Bar Graph of the Results of a Two-Way  
Analysis of Variance
As you learned earlier in the chapter, it is often helpful to make a bar graph to visual-
ize the results of a two-way analysis of variance. We will use the same example from 
the preceding two-way analysis of variance to show how to create such a bar graph. 
Note that, before we undertook the following steps to produce the bar graph, we went 
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to the “Variable View” window in SPSS and entered value labels (in the “Values”  
column) for the “vivid” (1 = “Low”; 2 = “High”) and “length” (1 = “Short”; 2 =
“Long”) variables. This makes it easier to understand the bar graph, as these value 
labels are then shown on the graph.

Figure 10-18 SPSS output window for a bar graph of the fictional study of the  effects 
of vividness and length of examples on the number of examples recalled.
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 ❶ Enter the scores into SPSS as shown in Figure 10-16.
 ❷  Graphs.
 ❸  Legacy Dialogs.
 ❹  Bar.
 ❺  the graph next to “Clustered.”  Define.
 ❻  the circle labeled Other statistic (e.g., mean).  the variable called “recall” 

and  the arrow next to the box labeled “Variable:”. This tells SPSS to plot 
mean scores of the “recall” grouping variable on the vertical axis.

 ❼  the variable called “vivid” and  the arrow next to the box labeled “Cate-
gory Axis:”. This tells SPSS to plot separate sets of bars according to the levels 
of the “vivid” grouping variable on the horizontal axis.

 ❽  the variable called “length” and  the arrow next to the box labeled “Defined 
Clusters by:”. This tells SPSS to plot separate bars for each level of the group-
ing variable “length.”

 ❾  OK. Your SPSS output window should look like Figure 10-18. As you can see, 
the bar graph shown in Figure 10-18 is the same as the bar graph shown in the left 
hand side of Figure 10-7 on p. 392. (Note that in Step ❼ we could have told SPSS 
to use “length” as the “category axis” variable. Had we done that, we would have 
also told it to use “vivid” for the “define clusters” variable in Step ❽. The result-
ing bar graph would then have looked like the right hand side of Figure 10-7.)

 1. More detailed tables are provided in Cohen (1988, pp. 389–354). However, 
using these tables with a factorial design requires some preliminary figuring, as 
Cohen explains on pages 364–379.

 2. More detailed tables are provided in Cohen (1988, pp. 381–389). If you use 
these, be sure to read Cohen’s pages 396–403.

Chapter Notes
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Chapter 11
Correlation

This chapter is about a statistical procedure that allows you to look at the 
relationship between two groups of scores. To give you an idea of what we 
mean, let’s consider some real-world examples. Among students, there is a 

 relationship between high school grades and college grades. It isn’t a perfect relation-
ship, but generally speaking students with better high school grades tend to get better 
grades in college. Similarly, there is a relationship between parents’ heights and the 
adult height of their children. Taller parents tend to give birth to children who grow up 
to be taller than the children of shorter parents. Again, the relationship isn’t perfect, 
but the general pattern is clear. Now we’ll look at an example in detail.

One hundred thirteen married people in the small college town of Santa Cruz, 
California, responded to a questionnaire in the local newspaper about their mar-
riage. (This was part of a larger study reported by Aron and colleagues [2000].) As 
part of the questionnaire, they answered the question, “How exciting are the things 
you do together with your partner?” using a scale from 1 = not exciting at all to 
5 = extremely exciting. The questionnaire also included a standard measure of 
marital satisfaction (that included items such as, “In general, how often do you think 
that things between you and your partner are going well?”).
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T I P  F O R  S U C C E S S
You can learn most of the material 
in this chapter if you have mastered 
just Chapters 1 through 3; but if 
you are reading this before having 
studied Chapters 4 through 7, you 
should wait until you have learned 
that material before trying to read 
the material near the end of this 
chapter on the significance of a 
correlation coefficient or on effect 
size and power.
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The researchers were interested in finding out the relationship between doing 
exciting things with a marital partner and the level of marital satisfaction people 
reported. In other words, they wanted to look at the relationship between two groups 
of scores: the group of scores for doing exciting things and the group of scores for 
marital satisfaction. As shown in Figure 11-1, the relationship between these two 
groups of scores can be shown very clearly using a graph. The horizontal axis is for 
people’s answers to the question, “How exciting are the things you do together with 
your partner?” The vertical axis is for the marital satisfaction scores. Each person’s 
score on the two variables is shown as a dot.

The overall pattern is that the dots go from the lower left to the upper right. That 
is, lower scores on the variable “doing exciting activities with your partner” most often 
go with lower scores on the variable “marital satisfaction,” and higher most often with 
higher. So, in general, this graph shows that the less people did exciting activities with 
their partner, the less satisfied they were in their marriage; and the more they did excit-
ing activities together, the more satisfied they were in their marriage. Even though the 
pattern is far from one to one, you can see a general trend. This general pattern is of 
low scores on one variable going with low scores on the other variable, high scores 
going with high scores, and mediums with mediums. This is an example of a cor-
relation. (This finding that doing exciting activities with an established relationship 
partner is positively associated with good relationship quality has since been found in 
other surveys, as well as in longitudinal studies, daily diary report studies, and labora-
tory experiments; e.g., Aron et al., 2000; Tsapelas et al., 2009.)

A correlation describes the relationship between two variables. More pre-
cisely, the usual measure of a correlation describes the relationship between two 

correlation association between scores 
on two variables.
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Figure 11-1 Scatter diagram showing the correlation for 113 married individuals be-
tween doing exciting activities with their partner and their marital satisfaction. (Data from 
Aron et al., 2000.)
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equal-interval numeric variables. As you learned in Chapter 1, the differences 
between values for equal-interval numeric variables correspond to differences in the 
underlying thing being measured. (Most psychologists consider scales like a 1 to 10 
rating scale as approximately equal-interval scales.) There are countless examples of 
correlations: in children, there is a correlation between age and coordination skills; 
among students, there is a correlation between amount of time studying and amount 
learned; in the marketplace, we often assume that a correlation exists between price 
and quality—that high prices go with high quality and low with low.

This chapter explores correlation, including how to describe it graphically, dif-
ferent types of correlations, how to figure the correlation coefficient (which gives 
a number for the degree of correlation), the statistical significance of a correlation 
coefficient, issues about how to interpret a correlation coefficient, and effect size 
and power for a correlation coefficient.

Graphing Correlations: The Scatter Diagram
Figure 11-1 shows the correlation between exciting activities and marital satisfaction 
and is an example of a scatter diagram (also called a scatterplot). A scatter diagram 
shows you at a glance the pattern of the relationship between the two variables.

How to Make a Scatter Diagram
There are three steps to making a scatter diagram:

 ❶ Draw the axes and decide which variable goes on which axis. Often, it 
doesn’t matter which variable goes on which axis. However, sometimes the re-
searchers are thinking of one of the variables as predicting or causing the other. 
In that case, the variable that is doing the predicting or causing goes on the 
horizontal axis and the variable that is being predicted about or caused goes on 
the vertical axis. In Figure 11-1, we put exciting activities on the horizontal axis 
and marital satisfaction on the vertical axis. This was because the study was 
based on a theory that the more exciting activities that an established couple 
does together, the more the couple is satisfied with their marriage. (We will 
have more to say about this later in the chapter when we discuss causality, and 
also in Chapter 12 when we discuss prediction.)

 ❷ Determine the range of values to use for each variable and mark them on 
the axes. Your numbers should go from low to high on each axis, starting from 
where the axes meet. Your low value on each axis should be 0.

   Each axis should continue to the highest value your measure can possibly 
have. When there is no obvious highest possible value, make the axis go to a 
value that is as high as people ordinarily score in the group of people of inter-
est for your study. Note that scatter diagrams are usually made roughly square, 
with the horizontal and vertical axes being about the same length (a 1:1 ratio).

 ❸ Mark a dot for each pair of scores. Find the place on the horizontal axis for 
the first pair of scores on the horizontal-axis variable. Next, move up to the 
height for the score for the first pair of scores on the vertical-axis variable. Then 
mark a clear dot. Continue this process for the remaining pairs of scores. Some-
times the same pair of scores occurs twice (or more times). This means that the 
dots for these pairs would go in the same place. When this happens, you can put 
a second dot as near as possible to the first—touching, if possible—but making 
it clear that there are in fact two dots in the one place. Alternatively, you can put 
the number 2 in that place.

scatter diagram graph showing the 
relationship between two variables:  
the values of one variable are along the 
horizontal axis and the values of the 
other variable are along the vertical  
axis; each score is shown as a dot in  
this two-dimensional space.

T I P  F O R  S U C C E S S
If you’re in any way unsure about 
what an equal-interval numeric 
variable is, be sure to review the 
Chapter 1 material on kinds of 
variables.
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An Example
Suppose a researcher is studying the relationship of sleep to mood. As an initial test, 
the researcher asks six students in her morning seminar two questions:

 1. How many hours did you sleep last night?
 2. How happy do you feel right now on a scale from 0 = not at all happy to 

8 = extremely happy?

The (fictional) results are shown in Table 11-1. (In practice, a much larger 
group would be used in this kind of research. We are using an example with just six 
to keep things simple for learning. In fact, we have done a real version of this study. 
Results of the real study are similar to what we show here, except not as strong as 
the ones we made up to make the pattern clear for learning.)

 ❶ Draw the axes and decide which variable goes on which axis. Because sleep 
comes before mood in this study, it makes most sense to think of sleep as the   
predictor. Thus, as shown in Figure 11-2a, we put hours slept on the horizontal 
axis and happy mood on the vertical axis.
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Figure 11-2 Steps for making a scatter diagram. (a) ❶ Draw the axes and decide 
which variable goes on which axis—the predictor variable (Hours Slept Last Night) on the 
horizontal axis, the other (Happy Mood) on the vertical axis. (b) ❷ Determine the range of 
values to use for each variable and mark them on the axes. (c) ❸ Mark a dot for the pair of 
scores for the first student. (d) ❸ continued: Mark dots for the remaining pairs of scores.

Table 11-1 Hours Slept 

Last Night and Happy Mood Example 

(Fictional Data)

Hours Slept Happy Mood

5 2

7 4

8 7

6 2

6 3

10 6
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 ❷ Determine the range of values to use for each variable and mark them on 
the axes. For the horizontal axis, we start at 0 as usual. We do not know the 
maximum possible, but let us assume that students rarely sleep more than 12 
hours. The vertical axis goes from 0 to 8, the lowest and highest scores possible 
on the happiness question. See Figure 11-2b.

 ❸ Mark a dot for each pair of scores. For the first student, the number of hours 
slept last night was 5. Move across to 5 on the horizontal axis. The happy mood 
rating for the first student was 2, so move up to the point across from the 2 on the 
vertical axis. Place a dot at this point, as shown in Figure 11-2c. Do the same for 
each of the other five students. The result should look like Figure 11-2d.

How are you doing?

 1. What does a scatter diagram show, and what does it consist of?
 2. (a) Which variable goes on the horizontal axis when one variable in a study 

can be thought of as predicting another variable? (b) Which goes on the 
 vertical axis?

 3. Make a scatter diagram for the following scores for four people who were 
each tested on two variables, X and Y. X is the variable we are predicting 
from; it can have scores ranging from 0 to 6. Y is the variable being predicted; 
it can have scores from 0 to 7.

Person X Y

A 3 4

B 6 7

C 1 2

D 4 6

0 1 2 3 4 5 6

Y

X

7

6

5

4

3

2

1

0

Figure 11-3 Scatter diagram for scores in “How are you doing?” question 3.
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Patterns of Correlation
Linear and Curvilinear Correlations
In each example so far, the pattern in the scatter diagram very roughly approximates 
a straight line. Thus, each is an example of a linear correlation. In the scatter dia-
gram for the study of happy mood and sleep (Figure 11-2d), you could draw a line 
showing the general trend of the dots, as we have done in Figure 11-4. Notice that 
the scores do not all fall right on the line. Notice also, however, that the line does 
describe the general tendency of the scores. (In Chapter 12 you learn the precise 
rules for drawing such a line.)

Sometimes, however, the general relationship between two variables does 
not follow a straight line at all, but instead follows the more complex pattern of a  
curvilinear correlation. Consider, for example, the relationship between your satis-
faction with a romantic relationship and how much your partner idealizes you (how 
positively you believe your partner sees you minus how positively you see yourself). 
Up to a point we like being idealized (and we certainly don’t like being seen less 
positively by a partner than we see ourselves!). However, what the latest studies have 
shown is that there can be too much of a good thing (Tomlinson et al., 2011). That 

linear correlation relation between 
two variables that shows up on a scatter 
diagram as the dots roughly following a 
straight line.

curvilinear correlation relation 
between two variables that shows  
up on a scatter diagram as dots following 
a systematic pattern that is not a  
straight line.

Answers

 1. A scatter diagram is a graph that shows the relation between two variables. 
One axis is for one variable; the other axis, for the other variable. The graph 
has a dot for each individual’s pair of scores. The dot for each pair is placed 
above that of the score for that pair on the horizontal axis variable and directly 
across from the score for that pair on the vertical axis variable.

 2. (a) The variable that is doing the predicting goes on the horizontal axis. 
(b) The variable that is being predicted goes on the vertical axis.

 3. See Figure 11-3.
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Figure 11-4 Scatter diagram from Figure 11-2d with a line drawn to show the general 
trend.
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is, when feeling over-idealized, we feel less satisfied with the relationship. It is as if 
we are being put on a pedestal, that our autonomy is threatened, that our partner will 
eventually find out we are not as wonderful as he or she thinks we are, or that we sim-
ply don’t have to try as hard in the relationship because we are seen as so wonderful. 
This particular curvilinear pattern is shown in Figure 11-5. As shown in the figure, 
up to a certain point, husbands with a higher perceived partner idealization of their 
abilities were more satisfied with their relationship. However, husbands’ level of 
relationship satisfaction starts to decrease among those with the highest levels of per-
ceived partner idealization. Notice that you could not draw a straight line to describe 
this pattern. More generally, a recent review described how a number of positive 
characteristics, such as generosity, happiness, and even conscientiousness, can have 
negative effects at very high levels, and that psychologists need to pay more attention 
to the possibility of curvilinear relationships (Grant & Schwartz, 2011). Some other 
examples of curvilinear relationships are shown in Figure 11-6.

The usual way of figuring the correlation (the one you learn shortly in this 
chapter) gives the degree of linear correlation. If the true pattern of association is 
curvilinear, figuring the correlation in the usual way could show little or no correla-
tion. Thus, it is important to look at scatter diagrams to identify these richer relation-
ships rather than automatically figuring correlations in the usual way, assuming that 
the only possible relationship is a straight line.

No Correlation
It is also possible for two variables to be essentially unrelated to each other. For 
example, if you were to do a study of income and shoe size, your results might 
appear as shown in Figure 11-7. The dots are spread everywhere, and there is no 
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Figure 11-5 Association of satisfaction with perceived partner idealization of abilities 
(extent to which wife is perceived to see self’s abilities more positively than one sees one’s 
own abilities) 1N = 892.
Source: Tomlinson, J. M., Aron, A., Carmichael, C. L., Reis, H. T., & Holmes, J. G. (2011). The effects 
of feeling over-idealized in dating and married relationships. Presented at the International Association 
for Relationships Research Mini Conference, Tucson, AZ.
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Figure 11-6 Examples of curvilinear relationships: (a) the way we feel and the 
complexity of a stimulus; (b) the number of people who remember an item and its position on 
a list; and (c) children’s rate of and motivation for substituting digits for symbols.

line, straight or otherwise, that is any reasonable representation of a trend. There is 
simply no correlation.

Positive and Negative Linear Correlations
In the examples so far of linear correlations, such as exciting activities and marital 
satisfaction, high scores go with high scores, lows with lows, and mediums with 
mediums. This is called a positive correlation. (One reason for the term “positive” 
is that in geometry, the slope of a line is positive when it goes up and to the right on 
a graph like this. Notice that in Figure 11-4 the positive correlation between happy 
mood and sleep is shown by a line that goes up and to the right.)

Sometimes, however, high scores on one variable go with low scores on the 
other variable and low scores with high scores. This is called a negative correlation. 
For example, in the newspaper survey about marriage, the researchers also asked 

no correlation no systematic 
relationship between two variables.

positive correlation relation between 
two variables in which high scores on 
one go with high scores on the other, 
mediums with mediums, and lows with 
lows; on a scatter diagram, the dots 
roughly follow a straight line sloping up 
and to the right.

negative correlation relation between 
two variables in which high scores on 
one go with low scores on the other, 
mediums with mediums, and lows with 
highs; on a scatter diagram, the dots 
roughly follow a straight line sloping 
down and to the right.
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about boredom with the relationship and the partner. Not surprisingly, the more 
bored a person was, the lower was the person’s marital satisfaction. That is, low 
scores on one variable went with high scores on the other. Similarly, the less bored 
a person was, the higher the marital satisfaction. This is shown in Figure 11-8, where 
we also put in a line to emphasize the general trend. You can see that as it goes from 
left to right, the line slopes slightly downward.

Another example of a negative correlation is from organizational psychology. 
A well established finding in that field is that absenteeism from work has a negative  
linear correlation with satisfaction with the job (e.g., Mirvis & Lawler, 1977). That 
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Figure 11-7 Two variables with no association with each other: income and shoe size 
(fictional data).
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Figure 11-8 Scatter diagram with the line drawn in to show the general trend for a 
negative correlation between two variables: greater boredom with the relationship goes with 
lower marital satisfaction. (Data from Aron et al., 2000.)
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is, the higher the level of job satisfaction, the lower the level of absenteeism. Put 
another way, the lower the level of job satisfaction is, the higher the absenteeism 
becomes. Research on this topic has continued to show this pattern all over the world 
(e.g., Punnett et al., 2007), and the same pattern is found for university classes: the 
more satisfied students are, the less they miss class (Yorges et al., 2007). (Perhaps 
also, the less you miss class, the more satisfied you will be! Again, we’ll turn to the 
issue of what causes what later in the chapter.)

Strength of the Correlation
What we mean by the strength of the correlation is how much there is a clear pat-
tern of some particular relationship between two variables. For example, we saw 
that a positive linear correlation is when high scores go with highs, mediums with 
mediums, lows with lows. The strength (or degree) of such a correlation, then, is 
how much highs go with highs, and so on. Similarly, the strength of a negative linear 
correlation is how much the highs on one variable go with the lows on the other, and 
so forth. To put this another way, the strength of a linear correlation can be seen in a 
scatter diagram by how close the dots fall to a simple straight line. There is a “large” 
(or “strong”) linear correlation if the dots fall close to a straight line (the line sloping 
up or down depending on whether the linear correlation is positive or negative). A 
perfect linear correlation means all the dots fall exactly on the straight line. There is 
a “small” (or “weak”) correlation when you can barely tell there is a correlation at 
all; the dots fall far from a straight line. The correlation is “moderate” (also called 
a “medium” correlation) if the pattern of dots is somewhere between a small and a 
large correlation.

Importance of Identifying the Pattern of Correlation
The procedure you learn in the next main section is for figuring the direction  
and strength of linear correlation. As we suggested earlier, the best approach to  
such a problem is first to make a scatter diagram and to identify the pattern of cor-
relation. If the pattern is curvilinear, then you would not go on to figure the linear 
correlation. This is important because figuring the linear correlation when the true 
correlation is curvilinear would be misleading. (For example, you might conclude 
that there is little or no correlation when in fact there is a quite strong relationship; 
it is just not a linear relationship.) It is however reasonable to assume that a correla-
tion is linear unless the scatter diagram shows a curvilinear correlation. We say this, 
because when the linear correlation is small, the dots will fall far from a straight line. 
In such situations, it can sometimes be hard to imagine a straight line that roughly 
shows the pattern of dots, and it is best to assume that if there is a pattern it is the 
simplest (most “parsimonious”) pattern, which is a straight line.

If you can see from the dots even a vague linear pattern, it is also valuable to 
eyeball the scatter diagram a bit more. The idea is to note the direction (positive or 
negative) of the linear correlation and also to make a rough guess as to the strength 
of the correlation. Scatter diagrams with varying directions and strengths of cor-
relation are shown in Figure 11-9. You can see that Figure 11-9a is a large positive 
correlation (because the dots go up and to the right and all fall close to what would 
be a simple straight line, 11-9b is a large negative correlation, 11-9c seems more of 
a moderate positive correlation, 11-9d seems more of a small to moderate negative 
correlation, and 11-9e and 11-9f appear either very small or no correlation. Using a 
scatter diagram to examine the direction and approximate strength of correlation is 
important because it lets you check to see whether you have made a major mistake 
when you then do the figuring you learn in the next section.
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(a) (b)

(c) (d)

(e) (f)

Figure 11-9 Examples of scatter diagrams with different degrees of correlation.

How are you doing?

 1. What is the difference between a linear and curvilinear correlation in terms of 
how they appear in a scatter diagram?

 2. What does it mean to say that two variables have no correlation?
 3. What is the difference between a positive and negative linear correlation? 

Answer this question in terms of (a) the patterns in a scatter diagram and  
(b) what those patterns tell you about the relationship between the two variables.

 4. For each of the scatter diagrams shown in Figure 11-10, say whether the pat-
tern is roughly linear, curvilinear, or no correlation. If the pattern is roughly linear, 
also say if it is positive or negative, and whether it is large, moderate, or small.

 5. Give two reasons why it is important to identify the pattern of correlation in a 
scatter diagram before figuring the precise correlation.
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(a)

(c)

(b)

(d)

Figure 11-10 Scatter diagrams for “How are you doing?” question 4.

Answers

 1. In a linear correlation, the pattern of dots roughly follows a straight line 
(although with a small correlation, the dots will be spread widely around a 
straight line); in a curvilinear correlation, there is a clear systematic pattern to 
the dots, but it is not a straight line.

 2. Two variables have no correlation when there is no pattern of relationship 
between them.

 3. (a) In a scatter diagram for a positive linear correlation, the line that roughly 
describes the pattern of dots goes up and to the right; in a negative linear 
correlation, the line goes down and to the right. (b) In a positive linear correla-
tion, the basic pattern is that high scores on one variable go with high scores 
on the other, mediums go with mediums, and lows go with lows; in a nega-
tive linear correlation, high scores on one variable go with low scores on the 
other, mediums go with mediums, and lows go with highs.

 4. In Figure 11-10: (a) linear, negative, large; (b) curvilinear; (c) linear, positive, 
large; (d) no correlation (it may at first look one way or the other to you; but try 
seeing it as the other direction and you will see that too!).

 5. Identifying whether the pattern of correlation in a scatter diagram is linear 
tells you whether it is appropriate to use the standard procedures for figur-
ing a linear correlation. If it is linear, identifying the direction and approximate 
strength of correlation before doing the figuring lets you check the results of 
your figuring when you are done.
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The Correlation Coefficient
Looking at a scatter diagram gives you a rough idea of the relationship between two 
variables, but it is not a very precise approach. What you need is a number that gives 
the exact correlation (in terms of its direction and strength).

Logic of Figuring the Linear Correlation
A linear correlation (when it is positive) means that highs go with highs and lows 
with lows. Thus, the first thing you need in figuring the linear correlation is some 
way to measure what is a high score and what is a low score. This means comparing 
scores on different variables in a consistent way. As you learned in Chapter 3, you 
can solve this problem of comparing apples and oranges by using Z scores.

To review, a Z score is the number of standard deviations that a score is from 
the mean. Whatever the range of values of the variable, if you change your raw 
scores to Z scores, a raw score that is high (i.e., above the mean of the scores on 
that variable) will always have a positive Z score. Similarly, a raw score that is low 
(below the mean) will always have a negative Z score. Furthermore, regardless of 
the particular measure used, Z scores tell you in a very standard way just how high 
or low each score is. A Z score of 1 is always exactly 1 standard deviation above 
the mean, and a Z score of 2 is twice as many standard deviations above the mean. 
Z scores on one variable are directly comparable to Z scores on another variable.

There is an additional reason why Z scores are so useful when figuring the exact 
correlation. It has to do with what happens if you multiply a score on one variable  
by a score on the other variable, which is called a cross-product. When using 
Z scores, this is called a cross-product of Z scores. If you multiply a high Z score 
by a high Z score, you will always get a positive cross-product. This is because 
no matter what the variable, scores above the mean are positive Z scores, and any 
positive number multiplied by any positive number has to be a positive number. 
Furthermore—and here is where it gets interesting—if you multiply a low Z score 
by a low Z score, you also always get a positive cross-product. This is because no 
matter what the variable, scores below the mean are negative Z scores, and a nega-
tive multiplied by a negative gives a positive.

If highs on one variable go with highs on the other, and lows on the one go with 
lows on the other, the cross-products of Z scores always will be positive. Consider-
ing a whole distribution of scores, suppose you take each person’s Z score on one 
variable and multiply it by that person’s Z score on the other variable. The result of 
doing this when highs go with highs, and lows with lows, is that the multiplications 
all come out positive. If, for all the people in the study, you add up these cross-
products of Z scores, which are all positive, you will end up with a large positive 
number.

On the other hand, with a negative correlation, highs go with lows and lows with 
highs. In terms of Z scores, this would mean positives with negatives and negatives 
with positives. Multiplied out, that gives all negative cross-products. If you add all 
these negative cross-products together, you get a large negative number.

Finally, suppose there is no linear correlation. In this situation, for some people 
highs on one variable would go with highs on the other variable (and some lows 
would go with lows), making positive cross-products. For other people, highs on 
one variable would go with lows on the other variable (and some lows would go 
with highs), making negative cross-products. Adding up these cross-products for all 
the people in the study would result in the positive cross-products and the negative 
cross-products cancelling each other out, giving a result of 0 (or close to 0).

cross-product of Z scores the result 
of multiplying a person’s Z score on 
one variable by the person’s Z score 
on another variable.
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In each situation, we changed all the scores to Z scores, multiplied each person’s two 
Z scores by each other, and added up these cross-products. The result was a large positive 
number if there was a positive linear correlation, a large negative number if there was a 
negative linear correlation, and a number near 0 if there was no linear correlation.

Table 11-2 summarizes the logic up to this point. The table shows the effect 
on the correlation of different patterns of raw scores and resulting Z scores. For 
example, the first row shows a high score on X going with a high score on Y. In this 
situation, the Z score for variable X is a positive number (since X is a high number, 
above the mean of X), and similarly the Z score for variable Y is a positive number 
(since Y is a high number, above the mean of Y). Thus, the product of these two 
positive Z scores must be a positive number (since a positive number multiplied by 
a positive number always gives a positive number). The overall effect is that when 
a high score on X goes with a high score on Y, the pair of scores contribute toward 
making a positive correlation. The table shows that positive products of Z scores 
contribute toward making a positive correlation, negative products of Z scores con-
tribute toward making a negative correlation, and products of Z scores that are zero 
(or close to zero) contribute toward making a correlation of zero.

However, you are still left with the problem of figuring the strength of a positive 
or negative correlation on some standard scale. The larger the number (either posi-
tive or negative), the bigger the correlation. But how large is large, and how large is 
not very large? You can’t judge the strength of the correlation from the sum of the 
cross-products alone, because it gets bigger just by adding the cross-products of more 
people together. (That is, a study with 100 people would have a larger sum of cross-
products than the same study with only 25 people, even if the two studies had the same 
degree of correlation.) The solution is to divide this sum of the cross-products by the 
number of people in the study. That is, you figure the average of the cross-products 
of Z scores. It turns out that because of the nature of Z scores, this average can never 
be more than +1, which would be a positive linear perfect correlation. It can never be 
less than -1, which would be a negative linear perfect correlation. In the situation of 
no linear correlation, the average of the cross-products of Z scores is 0.

For a positive linear correlation that is not perfect, which is the usual situation, 
the average of the cross-products of Z scores is between 0 and +1. To put it another 
way, if the general trend of the dots is upward and to the right, but they do not fall 
exactly on a single straight line, this number is between 0 and +1. The same rule 
holds for negative correlations: They fall between 0 and -1. So, overall, a correla-
tion varies from -1 to +1.

Table 11-2 The Effect on the Correlation of Different Patterns of Raw Scores and Z Scores

Pair of Raw Scores Pair of Z Scores
Cross-Product  

of Z Scores

X Y ZX ZY ZXZY Effect on Correlation

High High + + + Contributes to positive correlation

Low Low - - + Contributes to positive correlation

High Low + - - Contributes to negative correlation

Low High - + - Contributes to negative correlation

Middle Any 0 + , - , or 0 0 Makes correlation near 0

Any Middle + , - , or 0 0 0 Makes correlation near 0

Note: +  indicates a positive number, -  indicates a negative number.

T I P  F O R  S U C C E S S
Test your understanding of 
correlation by covering up portions 
of Table 11-2 and trying to recall 
the hidden information.

T I P  F O R  S U C C E S S
If you figure a correlation 
coefficient to be larger than +1 
or less than -1, you have made a 
mistake in your figuring.
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Interpreting the Correlation Coefficient
The result of dividing the sum of the products of Z scores by the number of people in 
the study is called the correlation coefficient. It is also called the Pearson correlation 
coefficient (or the Pearson product-moment correlation coefficient, to be very tradi-
tional). It is named after Karl Pearson (whom you meet in Box 13-1). Pearson, along 
with Francis Galton (see Box 11-1 in this chapter), played a major role in developing 
the correlation coefficient. The correlation coefficient is abbreviated by the letter r, 
which is short for regression, an idea closely related to correlation (see Chapter 12).

The sign (+  or -) of a correlation coefficient tells you the direction of the lin-
ear correlation between two variables (a positive correlation or a negative correla-
tion). The actual value of the correlation coefficient—from a low of 0 to a high of 1, 
ignoring the sign of the correlation coefficient—tells you the strength of the linear 
correlation. So, a correlation coefficient of + .85 represents a larger linear correla-
tion than a correlation of + .42. Similarly, a correlation of - .90 represents a larger 
linear correlation than + .85 (since .90 is bigger than .85). Another way of thinking of 

correlation coefficient (r) measure 
of degree of linear correlation between 
two variables ranging from -1 (a perfect 
negative linear correlation) through 0 
(no correlation) to +1 (a perfect positive 
correlation).

Sir Francis Galton is credited 
with inventing the correla-
tion statistic. (Karl Pearson, 
the hero of our Chapter 13, 
worked out the formulas, but 
Pearson was a student of Gal-
ton and gave Galton all the 
credit.) Statistics at this time 
(around the end of the 19th 
century) was a tight little 

British club. In fact, most of 
science was an only slightly larger club. Galton also was 
influenced greatly by his own cousin, Charles Darwin.

Galton was a typical eccentric, independently wealthy 
gentleman scientist. Aside from his work in statistics, he 
possessed a medical degree, invented glasses for reading 
underwater, experimented with stereoscopic maps, dab-
bled in meteorology and anthropology, devised a system 
for classifying fingerprints that is still in use, and wrote a 
paper about receiving intelligible signals from the stars.

Above all, Galton was a compulsive counter. Some of 
his counts are rather infamous. Once while attending a lec-
ture he counted the fidgets of an audience per minute, look-
ing for variations with the boringness of the subject matter. 
While twice having his picture painted, he counted the 
artist’s brush strokes per hour, concluding that each por-
trait required an average of 20,000 strokes. While walking 
the streets of various towns in the British Isles, he classi-
fied the beauty of the female inhabitants using a recording 
device in his pocket to register good, medium, or bad.

Galton’s consuming interest, however, was the count-
ing of geniuses, criminals, and other types in families. 
He wanted to understand how each type was produced so 
that science could improve the human race by encourag-
ing governments to enforce eugenics—selective breed-
ing for intelligence, proper moral behavior, and other 
qualities—to be determined, of course, by the eugeni-
cists. (Eugenics has since been generally discredited.) 
The concept of correlation came directly from his first 
simple efforts in this area, the study of the relation of the 
height of children and their parents.

At first, Galton’s method of exactly measuring the 
tendency for “one thing to go with another” seemed 
almost the same as proving the cause of something. 
For example, if it could be shown mathematically that 
most of the brightest people came from a few highborn 
British families and most of the least intelligent people 
came from poor families, that seemed at first to “prove” 
that intelligence was caused by the inheritance of cer-
tain genes (provided that you were prejudiced enough to 
overlook the differences in educational opportunities). 
Now the study only proves that if you were a member 
of one of those highborn British families, history would 
make you a prime example of how easy it is to misinter-
pret the meaning of a correlation.

You can learn more about Galton on the following 
Web page: http://www-history.mcs.st-andrews.ac.uk/
Biographies/Galton.html.

Sources: Peters (1987); Salsburg (2001); Tankard (1984).

BOX 11-1 Galton: Gentleman Genius

Corbiss/Bettman

http://www.history.mcs.st-andrews.ac.uk/Biographies/Galton.html
http://www.history.mcs.st-andrews.ac.uk/Biographies/Galton.html
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this is that, in a scatter diagram, the closer the dots are to falling on a single straight 
line, the larger the linear correlation. Figure 11-11 shows the scatter diagrams from  
Figure 11-9, with the correlation coefficient shown for each scatter diagram. Be sure that  
the correlation coefficient for each scatter diagram agrees roughly with the correlation 
coefficient you would expect based on the pattern of dots.

Formula for the Correlation Coefficient
The correlation coefficient, as we have seen, is the sum of the products of the  
Z scores divided by the number of people in the study. Put as a formula,

 r =
gZXZY

N
 (11-1)

(a) (b)

(c) (d)

(e) (f)

r = .81 r = −.75

r = .46 r = −.42

r = .16 r = −.18

Figure 11-11 Examples of scatter diagrams and correlation coefficients for different 
degrees of linear correlation.

The correlation coefficient is 
the sum, over all the people 
in the study, of the product of 
each person’s two Z scores, 
then divided by the number 
of people.
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r is the correlation coefficient. ZX is the Z score for each person on the X variable and 
ZY is the Z score for each person on the Y variable. ZXZY is ZX multiplied by ZY (the cross-
product of the Z scores) for each person and �ZXZY is the sum of the cross-products of 
Z scores over all the people in the study. N is the number of people in the study.1

Steps for Figuring the Correlation Coefficient
Here are the steps for figuring the correlation coefficient.

 ❶ Change all scores to Z scores. This requires figuring the mean and the stan-
dard deviation of each variable, then changing each raw score to a Z score 
(using the method from Chapter 2).

 ❷ Figure the cross-product of the Z scores for each person. That is, for each 
person, multiply the person’s Z score on one variable by the person’s Z score on 
the other variable.

 ❸ Add up the cross-products of the Z scores.
 ❹ Divide by the number of people in the study.

An Example
Let us try these steps with the sleep and mood example.

 ❶ Change all scores to Z scores. Starting with the number of hours slept last 
night, the mean is 7 (sum of 42 divided by 6 students), and the standard devia-
tion is 1.63 (sum of squared deviations, 16, divided by 6 students, for a variance 
of 2.67, the square root of which is 1.63). For the first student, the number of 
hours slept is 5. The Z score for this person is (5 -7)/1.63, which is -1.23. Thus 
the first score is a Z score of -1.23. We figured the rest of the Z scores for 
the number of hours slept in the same way and you can see them in the appro-
priate column in Table 11-3. We also figured the Z scores for the happy mood 
scores and they are also shown in Table 11-3. For example, you will see that the 
happy mood Z score for the first student is -1.04.

 ❷ Figure the cross-product of the Z scores for each person. For the first stu-
dent, multiply -1.23 by -1.04, which gives 1.28. The cross-products for all the 
students are shown in the last column of Table 11-3.

T I P  F O R  S U C C E S S
Note, you use the formula for 
the sample’s actual standard 
deviation, SD, not the estimated 
population standard deviation (S).

T I P  F O R  S U C C E S S
If you have drawn a scatter 
diagram, which we recommend, 
check that the correlation 
coefficient you figured is 
consistent with the pattern of 
correlation shown in the diagram 
(that is, it should have the same 
sign and be very roughly the same 
degree of correlation).

T I P  F O R  S U C C E S S
When changing the raw scores to 
Z scores in Step ❶, you will make 
fewer mistakes if you do all the Z 
scores for one variable and then all 
the Z scores for the other variable. 
Also, to make sure you have done 
it correctly, when you finish all 
the Z scores for a variable, add 
them up—they should add up to 0 
(within rounding error).

Table 11-3 Figuring the Correlation Coefficient for the Sleep and Mood Study (Fictional Data)

Number of Hours Slept (X ) Happy Mood (Y ) Cross-Products

Deviation Dev Squared Z Scores Deviation Dev Squared Z Scores

X X - M (X � M )2 ZX  ❶ Y Y � M (Y � M )2 ZY  ❶ ZXZY

5 -2 4 -1.23 2 -2 4 -1.04 ❷ 1.28

7 0 0 0 4 0 0 0 0

8 1 1 .61 7 3 9 1.56 .95

6 -1 1 - .61 2 -2 4 -1.04 .63

6 -1 1 - .61 3 -1 1 - .52 .32

10 3 9 1.84 6 2 4 1.04 1.91

g = 42 g1X - M22 = 16 g = 24 g1Y - M22 = 22 ❸ gZXZY = 5.09

M = 7 SD2 = 16>6 =  2.67 M =  4 SD 2 = 22>6 =  3.67 r = 5.09>6 =  .85

SD =  1.63 SD =  1.92 ❹
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 ❸ Add up the cross-products of the Z scores. Adding up all the cross-products 
of Z scores, as shown in Table 11-3, gives a sum of 5.09.

 ❹ Divide by the number of people in the study. Dividing 5.09 by 6 (the number 
of students in the study) gives a result of .848, which rounds off to .85. This is 
the correlation coefficient.

In terms of the correlation coefficient formula,

r =
gZXZY

N
=

5.09

6
= .85.

Because this correlation coefficient is positive and near 1, the highest possible value, 
this is a very large positive linear correlation.

A Second Example
Suppose that a memory researcher does an experiment to test a theory predicting 
that the number of exposures to a word increases the chance that the word will be 
remembered. One research participant is randomly assigned to be exposed to the 
list of 10 words once, one participant to be exposed to the list twice, and so forth, 
up to a total of eight exposures to each word. This makes eight participants in all, 
one for each of the eight levels of exposure. The researchers record how many of 
the 10 words each participant is able to remember. Results are shown in Table 11-4. 
(An actual study of this kind would probably show a pattern in which the relative 
improvement in recall is less at higher numbers of exposures.) The steps for figuring 
the correlation coefficient are shown in Table 11-5.

 ❶ Change all scores to Z scores. The mean number of exposures is 4.50 and the 
standard deviation is 2.29. The Z score for the first person is -1.53. The mean 
number of words recalled is 5.00 and the standard deviation is 2.00. The Z score 
for the first person is -1.00.

Table 11-4 Effect of Number 

of Exposures to Words on the Number 

of Words Recalled (Fictional Data)

Number of  
Exposures

Number of  
Words Recalled

1 3

2 2

3 6

4 4

5 5

6 5

7 6

8 9

Table 11-5  Figuring the Correlation Coefficient for the Effect of Number of Exposures to Each Word on the Number of Words Recalled 

(Fictional Data)

Number of Exposures (X ) Number of Words Recalled (Y ) Cross-Products

Deviaition Dev Squared Z Scores Deviation Dev Squared Z Scores

X X � M (X � M )2 ZX  ❶ Y Y � M (Y � M )2 ZY  ❶ ZxZy  ❷

1 -3.5 12.25 -1.53 3 -2 4 -1.00 1.53

2 -2.5 6.25 -1.09 2 -3 9 -1.50 1.64

3 -1.5 2.25 - .66 6 1 1 .50 - .33

4 - .5 .25 - .22 4 -1 1 - .50 .11

5 .5 .25 .22 5 0 0 .00 .00

6 1.5 2.25 .66 5 0 0 .00 .00

7 2.5 6.25 1.09 6 1 1 .50 .55

8 3.5 12.25 1.53 9 4 16 2.00 3.06

g = 36

M = 4.50
g1X - M22 = 42

SD2 = 42>8 =  5.25

SD =  2.29

g = 40

M =  5.00
g1Y - M22 = 32

SD 2 = 32>8 =  4.00

SD =  2.00

❸ gZXZY = 6.56

❹ r = 6.56>8 =  .82

T I P  F O R  S U C C E S S
When figuring the cross-products 
of the Z scores, pay careful attention 
to the sign of each Z score. As you 
know, a negative score multiplied 
by a negative score gives a positive 
score. Mistakes in this step are 
common, so do your figuring 
carefully!
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How are you doing?

 1. Give two reasons why we use Z scores for figuring the exact linear corre-
lation between two variables, thinking of correlation as how much high 
scores go with high scores and lows go with lows (or vice versa for negative 
correlations).

 2. When figuring the correlation coefficient, why do you divide the sum of cross-
products of Z scores by the number of people in the study?

 3. Write the formula for the correlation coefficient and define each of the 
symbols.

 4. Figure the correlation coefficient for the Z scores shown below for three peo-
ple who were each tested on two variables, X and Y.

Person ZX ZY

K .5 - .7

L -1.4 - .8

M .9 1.5

 ❷ Figure the cross-product of the Z scores for each person. For the first per-
son, multiply -1.53 by -1.00, which gives 1.53. The cross-products for all of 
the people in the study are shown in the last column of Table 11-5.

 ❸ Add up the cross-products of the Z scores. Adding up all the cross-products 
of Z scores, as shown in Table 11-5, gives a sum of 6.56.

 ❹ Divide by the number of people in the study. Dividing 6.56 by 8 (the number 
of people in the study) gives a result of .82. This is the correlation coefficient. 
In terms of the correlation coefficient formula,

r =
gZXZY

N
=

6.56

8
= .82

  Because this correlation coefficient is positive and near 1, the highest possible 
value, this is a very large positive linear correlation.

Answers

 1. First, Z scores put both variables on the same scale of measurement so 
that a high or low score (and how much it is high or low) means the same 
thing for both variables. Second, high Z scores are positive and low Z scores 
are negative. Thus, if highs go with highs and lows with lows, the cross- 
products of the Z scores will all be positive. Similarly, with a negative correla-
tion where highs go with lows and lows with highs, the cross-products will all 
be negative.

 2. You divide the sum of cross-products of the Z scores by the number of peo-
ple in the study, because otherwise the more people in the study, the big-
ger the sum of the cross-products, even if the strength of correlation is the 
same. Dividing by the number of people corrects for this. (Also, when using  
Z scores, after dividing the sum of the cross-products by the number of peo-
ple, the result has to be in a standard range of -1 to 0 to +1.)
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Significance of a Correlation Coefficient
The correlation coefficient is a descriptive statistic, like the mean or standard  
deviation. The correlation coefficient describes the linear relationship between two 
variables. However, in addition to describing this relationship, we may also want to 
test whether it is statistically significant. In the case of a correlation, the question is 
usually whether it is significantly different from zero. That is, the null hypothesis in 
hypothesis testing for a correlation is usually that in the population the true relation 
between the two variables is no correlation 1r = 02.2

The overall logic is much like that we have considered for the various t test 
and analysis of variance situations discussed in previous chapters. Suppose for a 
particular population we had the distribution of two variables, X and Y. And suppose 
further that in this population there was no correlation between these two variables. 
The scatter diagram might look like that shown in Figure 11-12. Thus, if you were to 
consider the dot for one random person from this scatter diagram, the scores might 
be X = 4 and Y = 2. For another random person, it might be X = 2 and Y = 1. 
For a third person, X = 3 and Y = 5. The correlation for these three persons would 
be r = .24. If you then took out another three persons and figured the correlation 
it might come out to r = - .12. Presuming there was no actual correlation in the 
population, if you did this lots and lots of times, you would end up with a distribu-
tion of correlations with a mean of zero. This is a distribution of correlations of 

T I P  F O R  S U C C E S S
You will not be able to make much 
sense of this section if you have not 
yet studied Chapters 4 through 7.

Y

X

Figure 11-12 Scatter diagram for variables X and Y for a population in which there is 
no relationship between X and Y.

 3. The formula for the correlation coefficient is: r = 1gZX ZY2>N. r is the correla-
tion coefficient. g  is the symbol for sum of—add up all the scores that follow 
(in this formula, you add up all the cross-products that follow). ZX is the Z 
score for each person’s raw score on one of the variables (the one labeled X) 
and ZY  is the Z score for each person’s raw score on the other variable 
(labeled Y). N is the number of people in the study.

 4. r = 1gZX ZY2>N = 31.521- .72 + 1-1.421- .82 + 1.9211.524>3 = 3- .35 + 1.12 +
  1.354>3 = 2.12>3 = .71.
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three persons’ each. As shown in Figure 11-13, it would have a mean of zero and be 
spread out in both directions up to a maximum of 1 and a minimum of -1.

It would actually be possible to figure out the cutoffs for significance on such a 
distribution of correlation coefficients, just as we did for example for the t and the F 
distributions. Then you could just compare your actual r to that cutoff to see if it was 
significant. However, we do not need to introduce a whole new distribution with its 
own tables and such. It turns out that we can figure out a number based on the cor-
relation coefficient that will follow a t distribution. This number is figured using the 
following formula:

 t =
r

211 - r22>1N - 22 (11-2)

Notice that in this formula if r = 0, t = 0. This is because the numerator 
would be 0 and the result of dividing 0 by any number is 0. Also notice that the big-
ger the r, the bigger the t.

If you were to take three persons’ scores at random from the distribu-
tion with no true correlation, you could figure this t value. For example, for the 
first three-person example we just considered, the correlation was .24. So, 

−1 0 +1
r (correlation coefficient)

Figure 11-13 Distribution of correlation coefficients for a large number of samples 1N = 32 drawn from a population with no correlation between variables X and Y.

The t score for a correlation 
coefficient is the result of 
dividing the correlation 
coefficient by the square 
root of what you get when 
you divide one minus the 
correlation coefficient squared 
by two less than the number 
of people in the study.

The degrees of freedom for 
the t test for a correlation are 
the number of people in the 
sample minus 2.

t = .24>211 - .2422>13 - 22 = .24>21.94242>112 = .25. If you took a large 
number of such samples of three persons each, computed the correlation and then 
the t for each, you would eventually have a distribution of t scores. And here is the 
main point: you could then compare the t score figured in this way for the actual cor-
relation in the study, using the standard t table cutoffs.

As usual with the t statistic, there are different t distributions for different 
degrees of freedom. In the case of the t test for a correlation, df is the number of 
people in the sample minus 2. (We subtract 2 because the figuring involved two 
 different means, the mean of X and the mean of Y.) In terms of a formula,

 df = N - 2 (11-3)

Finally, note that the t value will be positive or negative, according to whether 
your correlation is positive or negative. Thus, as with any t test, the t test for a 
correlation can be either one-tailed or two-tailed. A one-tailed test means that the 
researcher has predicted the sign 1+ or -2 of the correlation. However, in practice, 
as with other t tests, even when a researcher expects a certain direction of correlation, 
correlations are most often tested with two-tailed tests.
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An Example
In the sleep and mood study example, let’s suppose that the researchers predicted 
a correlation between number of hours slept and happy mood the next day, to be 
tested at the .05 level, two-tailed.

 ❶ Restate the question as a research hypothesis and a null hypothesis about 
the populations. There are two populations:

Population 1: People like those in this study.
Population 2: People for whom there is no correlation between number of 
hours slept the night before and mood the next day.

The null hypothesis is that the two populations have the same correlation. The 
research hypothesis is that the two populations do not have the same correlation.

 ❷ Determine the characteristics of the comparison distribution. The com-
parison distribution is a t distribution with df = 4. (That is, df = N - 2 =
6 - 2 = 4.)

 ❸ Determine the cutoff sample score on the comparison distribution at which 
the null hypothesis should be rejected. The t table (Table A-2 in the Appen-
dix) shows that for a two-tailed test at the .05 level, with 4 degrees of freedom, 
the cutoff t scores are 2.776 and -2.776.

 ❹ Determine your sample’s score on the comparison distribution. We figured 
a correlation of r = .85. Applying the formula to find the equivalent t, we get

t =
r

211 - r22>1N - 22 =
.85

211 - .8522>16 - 22 =
.85

2.0694
= 3.23

 ❺ Decide whether to reject the null hypothesis. The t score of 3.23 for our sam-
ple correlation is more extreme than a cutoff t score of 2.776. Thus, we can 
reject the null hypothesis and the research hypothesis is supported.

Assumptions for the Significance Test  
of a Correlation Coefficient
The assumptions for testing the significance of a correlation coefficient are similar 
to those for the t test for independent means and analysis of variance. In those situ-
ations you have to assume the population for each group follows a normal distri-
bution and has the same variance as the population for the other groups. With the 
correlation you have to assume that:

 1. The population of each variable (X and Y) follows a normal distribution. Actu-
ally you also assume that the relationship between the two variables also follows a 
normal curve. This creates what is called a bivariate normal distribution (think of 
this as a three-dimensional normal curve set on top of a scatter diagram, with a big 
hill in the middle that spreads out evenly in both directions). In practice, however, 
we usually check whether we have met the requirement by checking whether the 
distribution in the sample for each of our variables is roughly normal.

 2. There is an equal distribution of each variable at each point of the other 
variable. For example, in a scatter diagram, if there is much more variation 
at the low end than at the high end (or vice versa), this suggests a problem. In 
practice, you should look at the scatter diagram for your study to see if it looks 
like the dots are much more spread out at the low or high end (or both). A lot of 
dots in the middle are to be expected. So long as the greater number of dots in 
the middle are not a lot more spread out than those at either end, this does not 
suggest a problem with the assumptions.
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Like the t tests you have already learned and like the analysis of variance, the 
t test for the significance of a correlation coefficient is pretty robust to all but 
extreme violations of its assumptions of normal distributions and an equal distribu-
tion of each variable at each point of the other variable.

Also, remember that the correlation coefficient assumes the relationship 
between the two variables is linear (and not curvilinear). A final assumption is that 
the people (or cases) are independent. (That is, no one pair of scores can be matched 
in any particular way with another pair of scores. For example, in a study of doing 
exciting activities and marital satisfaction, you could not properly figure the signifi-
cance of a correlation coefficient in the usual way if some of the people in the group 
were married to each other.)

How are you doing?

 1. What is the usual null hypothesis in hypothesis testing with a correlation 
coefficient?

 2. Write the formula for testing the significance of a correlation coefficient, and 
define each of the symbols.

 3. Use the five steps of hypothesis testing to determine whether a correlation 
coefficient of r = - .31 from a study with a sample of 60 people is significant 
at the .05 level, two-tailed.

 4. What are the assumptions for the significance test of a correlation coefficient?

Answers

 1. In hypothesis testing with a correlation coefficient, the usual null hypothesis 
is that in the population the true relation between the two variables is no cor-
relation 1r = 02.

 2. Formula for testing the significance of a correlation coefficient: 
  t =

r

211 - r22>1N - 22. t is the t statistic for testing the significance of the 

  correlation coefficient; r is the correlation coefficient; N is the number of people
 in the study.

 3. ❶ Restate the question as a research hypothesis and a null hypothesis 

about the populations. There are two populations:

Population 1: People like those in this study.
Population 2: People for whom there is no correlation between the two 
variables.

The null hypothesis is that the two populations have the same correlation. 
The research hypothesis is that the two populations do not have the same 
correlation.

❷ Determine the characteristics of the comparison distribution. The com-
parison distribution is a t distribution with df = 58. (That is, df = N - 2 =
60 - 2 = 58.)

❸ Determine the cutoff sample score on the comparison distribution 

at which the null hypothesis should be rejected. The t table (Table A-2 
in the Appendix) shows that for a two-tailed test at the .05 level, with 58 
degrees of freedom, the cutoff t scores are 2.004 and -2.004 (we used 
the cutoffs for df = 55, the closest df in the table below 58).
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Correlation and Causality
If two variables have a significant linear correlation, we normally assume that there 
is something causing them to go together. However, you can’t know the direction of 
causality (what is causing what) just from the fact that the two variables are correlated.

Three Possible Directions of Causality
Consider the example with which we started the chapter, the correlation between 
doing exciting activities with your partner and satisfaction with the relationship. 
There are three possible directions of causality for these two variables:

 1. It could be that doing exciting activities together causes the partners to be more 
satisfied with their relationship.

 2. It could also be that people who are more satisfied with their relationship choose 
to do more exciting activities together.

 3. Another possibility is that something like having less stress (versus more stress) 
at work makes people happier in their marriage and also gives them more time 
and energy to do exciting activities with their partner.

These three possible directions of causality are shown in Figure 11-14a.
The principle is that for any correlation between variables X and Y, there are at 

least three possible directions of causality:

 1. X could be causing Y.
 2. Y could be causing X.
 3. Some third factor could be causing both X and Y.

These three possible directions of causality are shown in Figure 11-14b.
It is also possible (and often likely) that there is more than one direction of cau-

sality making two variables correlated.

Ruling Out Some Possible Directions of Causality
Sometimes you can rule out one or more of these three possible directions based on 
additional knowledge of the situation in which you know that one variable was mea-
sured before the other. For example, the correlation between sleep the night before 

direction of causality path of causal 
effect; if X is thought to cause Y then the 
direction of causality is from X to Y.

❹ Determine your sample’s score on the comparison distribution. The 
correlation in the study was - .31. Applying the formula to find the equiva-
lent t, we get

t =
r

211 - r22>1N - 22 =
- .31

211 - (- .3122)>1582 =
- .31
.125

= -2.48.

❺ Decide whether to reject the null hypothesis. The t score of -2.48 
for our sample correlation is more extreme than a cutoff t score of -2.004. 
Thus, we can reject the null hypothesis and the research hypothesis is 
supported.

 4. The population of each variable (and the relationship between them) follows 
a normal distribution, there is an equal distribution of each variable at each 
point of the other variable, the relationship between the two variables is lin-
ear, and the people (or cases) are independent from each other.
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and a happy mood the next day cannot be due to happy mood the next day causing 
you to sleep more the night before (causality doesn’t go backward in time). But we 
still do not know whether the sleep the night before caused the happy mood or some 
third factor, such as a general tendency to be happy, caused people both to sleep 
well and to be happy on any particular day.

Using this principle of the future not causing the past, Tsapelas et al. (2009) con-
ducted a study in which they found that doing exciting activities, measured in a group 
of people when they were 7 years into their marriages, was strongly correlated with 
their satisfaction measured 9 years later. But again, this does not rule out the possibil-
ity that some third aspect of the marriage, such as absence of conflict, makes for both 
more exciting activities and more satisfaction at all points. (The researchers actually 
did some further analyses to get at this, which we will describe in Chapter 15.)

Most psychologists would argue that the strongest way we can rule out alterna-
tive directions of causality is by conducting a true experiment. In a true experiment, 
participants are randomly assigned to a particular level of a variable and then mea-
sured on another variable. An example of this is the study in which participants were 
randomly assigned (say, by flipping a coin) to different numbers of exposures to a 
list of words, and then the number of words they could remember was measured. 
There was a .82 correlation between number of exposures and number of words 
recalled. In this situation, any causality has to be from the variable that was manipu-
lated (number of exposures) to the variable that is measured (words recalled). The 
number of words recalled can’t cause more exposures because the exposures came 
first. And a third variable can’t be causing both number of exposures and words 
recalled because number of exposures was determined randomly; nothing can be 
causing it other than the random method we used (such as flipping a coin).

Correlational Statistical Procedures versus Correlation 
Research Methods
Discussions of correlation and causality in psychology research are often confused 
by there being two uses of the word correlation. Sometimes the word is used as the 
name of a statistical procedure, the correlation coefficient (as we have done in this 
chapter). At other times, the term correlation is used to describe a kind of research 

Exciting
Activities

Marital
Satisfaction

Exciting
Activities

Marital
Satisfaction

Low Work
Stress

Exciting
Activities

Marital
Satisfaction

X Y

X Y

Z

X Y

(a) (b)

Figure 11-14 Three possible directions of causality (shown with arrows) for a cor-
relation for (a) the exciting activities and marital satisfaction example and (b) the general 
principle for any two variables X and Y.

T I P  F O R  S U C C E S S
To learn more about true 
experiments, be sure to read Web 
Chapter W1 (available at www.
pearsonhighered.com/aron and 
also at www.mystatlab.com for 
MyStatLab users), which focuses 
on the logic and language of 
psychology research.

www.pearsonhighered.com/aron
www.pearsonhighered.com/aron
www.mystatlab.com
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design. A correlational research design is any research design other than a true 
experiment. A correlational research design is not necessarily statistically analyzed 
using the correlation coefficient, and some studies using experimental research 
designs are most appropriately analyzed using a correlation coefficient. Hence the 
confusion. We recommend you take one or more research methods courses to learn 
more about research designs used in research in psychology.

correlational research design any 
research design other than a true 
experiment.

How are you doing?

 1. If anxiety and depression are correlated, what are three possible directions of 
causality that might explain this correlation?

 2. If high school and college grades are correlated, what directions of causality 
can and cannot be ruled out by the situation?

 3. A researcher randomly assigns participants to eat zero, two, or four cookies 
and then asks them how full they feel. The number of cookies eaten and feel-
ing full are highly correlated. What directions of causality can and cannot be 
ruled out?

 4. What is the difference between correlation as a statistical procedure and a 
correlational research design?

Answers

 1. Three possible directions of causality are: (a) being depressed can cause a 
person to be anxious; (b) being anxious can cause a person to be depressed; 
and (c) some third variable (such as some aspect of heredity or childhood 
traumas) could be causing both anxiety and depression.

 2. College grades cannot be causing high school grades (causality doesn’t go 
backward), but high school grades could be causing college grades (maybe 
knowing you did well in high school gives you more confidence), and some 
third variable (such as general academic ability) could be causing students to 
do well in both high school and college.

 3. Eating more cookies can cause participants to feel full. Feeling full cannot 
have caused participants to have eaten more cookies, because how many 
cookies were eaten was determined randomly. Third variables can’t cause 
both, because how many cookies were eaten was determined randomly.

 4. The statistical procedure of correlation is about using the formula for the cor-
relation coefficient, regardless of how the study was done. A correlational 
research design is any research design other than a true experiment.

Issues in Interpreting the Correlation Coefficient
There are a number of subtle cautions in interpreting a correlation coefficient. (And 
there’s the important issue that in daily life we sometimes see correlations when 
they aren’t really there—see Box 11-2.)

The Correlation Coefficient and the Proportionate Reduction 
in Error or Proportion of Variance Accounted For
A correlation coefficient tells you the direction and strength of a linear correlation. Big-
ger rs (values farther from 0) mean a higher degree of correlation. That is, an r of .60 is 
a larger correlation than an r of .30. However, most researchers would hold that an r of 
.60 is more than twice as large as an r of .30. To compare correlations with each other, 
most researchers square the correlations (that is, they use r2 instead of r). This is called, 
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for reasons you will learn in an Advanced Topic section of Chapter 12, the proportion-
ate reduction in error (and also the proportion of variance accounted for).

For example, a correlation of .30 is an r 2 of .09 and a correlation of .60 is an r 2 
of .36. Thus, a correlation of .60 is actually four times as large as one of .30 (that is, 
.36 is four times as big as .09).

Restriction in Range
Suppose an educational psychologist studies the relation of grade level to  
knowledge of geography. If this researcher studied students from the entire range 
of school grade levels, the results might appear as shown in the scatter diagram in  
Figure 11-15a. That is, the researcher might find a large positive correlation. But 
suppose the researcher had studied students only from the first three grades. The  
scatter diagram (see Figure 11-15b) would show a much smaller correlation 
(the general increasing tendency is in relation to much more noise). However,  
the researcher would be making a mistake by concluding that grade level is only 
slightly related to knowledge of geography over all grades.

The problem in this situation is that the correlation is based on people who 
include only a limited range of the possible values on one of the variables. (In this 
example, there is a limited range of grade levels.) It is misleading to think of the 
correlation as if it applied to the entire range of values the variable might have. This 
situation is called restriction in range.

It is easy to make such mistakes in interpreting correlations. (You will occa-
sionally see them even in published research articles.) Consider another example. 
Businesses sometimes try to decide whether their hiring tests are correlated with 
how successful the persons hired turn out on the job. Often, they find very little 
relationship. What they fail to take into account is that they hired only people who 
did well on the tests. Their study of job success included only the subgroup of high 
scorers. This example is shown in Figure 11-16.

Yet another example is any study that tries to correlate intelligence with other 
variables that uses only college students. The problem here is that college stu-
dents do not include many lower or below-average intelligence students. Thus, a 
researcher could find a low correlation in such a study. But if the researcher did 
the same study with people who included the full range of intelligence levels, there 
could well be a high correlation.

proportionate reduction in error 
1r 22 measure of association between 
variables that is used when comparing 
associations. Also called proportion of 
variance accounted for.

restriction in range situation in 
which you figure a correlation but only 
a limited range of the possible values on 
one of the variables is included in the 
group studied.
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Figure 11-15 Example of restriction in range comparing two scatter diagrams 
(a) when the entire range is shown (of school grade level and knowledge of geography) and 
(b) when the range is restricted (to the first three grades) (fictional data).
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Unreliability of Measurement
Suppose the number of hours slept and mood the next day have a very high degree 
of correlation. However, suppose also that in a particular study the researcher had 
asked people about their sleep on a particular night three weeks ago and about their 
mood on the day after that particular night. There are many problems with this kind 
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Figure 11-16 Additional example of restriction in range comparing two scatter dia-
grams (a) when the entire range is shown (of all persons tested) and (b) when the range is 
restricted (to just those persons who were hired) (fictional data).

The concept of correlation was not really invented by 
statisticians. It is one of the most basic of human mental 
processes. The first humans must have thought in terms 
of correlation all the time—at least those who survived. 
“Every time it snows, the animals we hunt go away. 
Snow belongs with no animals. When the snow comes 
again, if we follow the animals, we may not starve.”

In fact, correlation is such a typically human and highly 
successful thought process that we seem to be psychologi-
cally organized to see more correlation than is there—like 
the Aztecs, who thought that good crops correlated with 
human sacrifices (let’s hope they were wrong), and like 
the following examples from social psychology of what is 
called illusory correlation (Hamilton, 1981; Hamilton & 
Gifford, 1976; Johnson & Mullen, 1994).

Illusory correlation is the term for the overestimation 
of the strength of the relationship between two variables 
(the term has also had other special meanings in the past). 
Right away, you may think of some harmful illusory 
correlations related to ethnicity, race, gender, and age. 
One source of illusory correlation is the tendency to link 
two infrequent and therefore highly memorable events. 

Suppose Group B is smaller than Group A, and in both 
groups one-third of the people are known to commit cer-
tain infrequent but undesirable acts. In this kind of situa-
tion, research shows that Group B, whose members are 
less frequently encountered, will in fact be blamed for 
far more of these undesirable acts than Group A. This is 
true even though the odds are greater that a particular act 
was committed by a member of Group A, since Group A 
has more members. The problem is that infrequent events 
stick together in memory. Membership in the less fre-
quent group and the occurrence of less frequent behaviors 
form an illusory correlation. One obvious consequence is 
that we remember anything unusual done by the member 
of a minority group better than we remember anything 
unusual done by a member of a majority group.

Illusory correlation due to “paired distinctiveness” 
(two unusual events being linked in our minds) may 
occur because when we first encounter distinctive expe-
riences, we think more about them, processing them 
more deeply so that they are more accessible in memory 
later (Johnson & Mullen, 1994). If we encounter, for 
example, members of a minority we don’t see often, or 

BOX 11-2  Illusory Correlation: When You Know Perfectly Well 

That If It’s Big, It’s Fat—and You Are Perfectly Wrong
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of study, but one is that the measurement of hours slept and mood would not be very 
accurate. For example, what a person recalls about how many hours were slept on 
a particular night three weeks ago is probably not very close to how many hours 
the person actually slept. Thus, the true correlation between sleep and mood could 
be high, but the correlation in the particular study might be quite low, just because 
there is lots of “random noise” (random inaccuracy) in the scores.

Here is another way to understand this issue: think of a correlation in terms of 
how close the dots in the scatter diagram fall to a straight line. One of the reasons 
why dots may not fall close to the line is inaccurate measurement.

Consider another example. Height and social power have been found in 
many studies to have a moderate degree of correlation. However, if someone 
were to do this study and measure each person’s height using an elastic measur-
ing tape, the correlation would be much lower. Some other examples of not fully 
accurate measurement are personality questionnaires that include items that are 
difficult to understand (or are understood differently by different people), rat-
ings of behavior (such as children’s play activity) that require some subjective 
judgment, or physiological measures that are influenced by things like ambient 
magnetic fields.

Often in psychology research our measures are not perfectly accurate or reliable 
(this idea is discussed in more detail in Chapter 15). The result is that a correlation 
between any two variables is lower than it would be if you had perfect measures of 
the two variables.

The reduction in a correlation due to unreliability of measures is called attenu-
ation. More advanced statistics texts and psychological measurement texts describe 
formulas for correction for attenuation that can be used under some conditions. 

negative acts that we rarely see or hear about, we really 
think about them. If they are paired, we study them 
both and they are quicker to return to memory. It also 
seems that we can continue to process information about 
groups, people, and their behaviors without any aware-
ness of doing so. Sometime along the way, or when we 
go to make a judgment, we overassociate the unusual 
groups or people with the unusual (negative) behaviors 
(McConnell et al., 1994). This effect is stronger when 
information about the groups or people is sparse, as if we 
try even harder in ambiguous situations to make sense of 
what we have seen (Berndsen et al., 2001).

Indeed, observing a single instance of a rare group 
showing some unusual behavior, a “one-shot illusory 
correlation,” is sufficient to create the effect (Risen 
et al., 2007). (There is also some evidence that we can 
sometimes unlearn the illusion with increased experi-
ence; Murphy et al., 2010.)

Most illusory correlations, however, occur simply 
because of prejudices. Prejudices are implicit, errone-
ous theories that we carry around with us. For exam-
ple, we estimate that we have seen more support for an 

association between two social traits than we have actu-
ally seen: driving skills and a particular age group; level 
of academic achievement and a specific ethnic group; 
certain speech, dress, or social behaviors and residence 
in some region of the country. One especially interesting 
example is that most people in business believe that job 
satisfaction and job performance are closely linked, when 
in fact the correlation is quite low. People who do not like 
their jobs can still put in a good day’s work; people who 
rave about their job can still be lazy about doing it.

By the way, some people form their implicit theories 
impulsively and hold them rigidly; others seem to base 
them according to what they remember about people 
and change their theories as they have new experiences 
(McConnell, 2001). Which are you?

The point is, the next time you ask yourself why you 
are struggling to learn statistics, it might help to think of 
it as a quest to make ordinary thought processes more 
moral and fair. So, again, we assert that statistics can be 
downright romantic: it can be about conquering dark, 
evil mistakes with the pure light of numbers, subduing 
the lie of prejudices with the honesty of data.
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However, studies using such procedures are relatively rare in most areas of psychol-
ogy research.

The main thing to remember from all of this is that, to the extent the measures 
used in a study are less than perfectly accurate, the correlations reported in that study 
usually underestimate the true correlation between the variables (the correlation that 
would be found if there was perfect measurement).

Influence of Outliers
The direction and strength of a correlation can be drastically distorted by one or 
more individual’s scores on the two variables if each pair of scores is a very unusual 
combination. For example, suppose in the sleep and mood example that an addi-
tional person was added to the study who had only 1 hour of sleep and yet was 
extremely happy the next day (8 on the happiness scale). (Maybe the person was 
going through some sort of manic phase!) We have shown this situation in the scat-
ter diagram in Figure 11-17. It turns out that the correlation, which without this 
added person was a large positive correlation 1r = .852, now becomes a small neg-
ative correlation 1r = - .112!

As we mentioned in Chapter 2, extreme scores are called outliers (they lie out-
side of the usual range of scores, a little like “outlaws”). Outliers are actually a prob-
lem in most kinds of statistical analyses and we will have more to say about them in 
Chapter 14. However, the main point for now is this: if the scatter diagram shows 
one or more unusual combinations, you need to be aware that these individuals have 
an especially large influence on the correlation.

What If There Is Some Curvilinearity? The Spearman Rho
The correlation coefficient, as we have seen, describes the direction and strength 
of the linear relationship between two variables. It shows us how well the dots in a 
scatter diagram follow a straight line in which highs go with highs and lows go with 

outliers scores with an extreme (very 
high or very low) value in relation to the 
other scores in the distribution.
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Figure 11-17 A scatter diagram for the hours slept last night and happy mood ex-
ample (see Table 11-1 and Figure 11-2d) with an outlier combination of scores (1 hour slept 
and happy mood of 8) for an extra person (correlation is now r = - .11 compared to r = .85 
without the extra person).
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lows (a positive correlation) or highs go with lows and lows with highs (a nega-
tive correlation). Sometimes however, as you saw earlier in the chapter, the pattern 
of dots follow a precise pattern, but that pattern is curved. For example, consider  
Figure 11-6b. In this example, highs go with highs, middle scores go with lows, and 
low scores go with highs. It is a kind of U shape. There are methods of figuring the 
degree to which the dots follow such a curved line; these procedures are considered 
in advanced textbooks (e.g., Cohen et al., 2003).

Sometimes, however, as shown in Figure 11-5, highs go with highs and lows 
with lows, but the pattern is still not quite linear. In these particular kinds of situ-
ations we can in a sense straighten out the line and then use the ordinary correla-
tion. One way this can be done is by changing all the scores to their rank order. 
So, separately for each variable, you would rank the scores from lowest to highest 
(starting with 1 for the lowest score and continuing until all the scores have been 
ranked). This makes the pattern more linear. In fact, we could now proceed to 
figure the correlation coefficient in the usual way, but using the rank-order scores 
instead of the original scores. A correlation figured in this way is called Spear-
man’s rho. (It was developed in the 1920s by Charles Spearman, an important 
British psychologist who invented many statistical procedures to help him solve 
the problems he was working on, mainly involving the nature and measurement of 
human intelligence.)

We discuss changing scores to ranks more generally in Chapter 14, and con-
sider Spearman’s rho again in that context. We bring it up now, however, because 
in some areas of psychology it is common practice to use Spearman’s rho instead 
of the ordinary correlation coefficient, even if the dots do not show curvilinearity. 
Some researchers prefer Spearman’s rho because it works correctly even if the origi-
nal scores are not based on true equal-interval measurement (as we discussed in 
Chapter 1). Finally, many researchers like to use Spearman’s rho because it is much 
less affected by outliers.

Spearman’s rho the equivalent of a 
correlation coefficient for rank-ordered 
scores.

How are you doing?

 1. (a) What numbers do psychologists use when they compare the size of two 
correlation coefficients? (b) What are these numbers called? (c) How much 
larger is a correlation of .80 than a correlation of .20?

 2. (a) What is restriction in range? (b) What is its effect on the correlation coefficient?
 3. (a) What is unreliability of measurement? (b) What is its effect on the correla-

tion coefficient?
 4. (a) What is the outlier combination of scores in the set of scores below? 

X Y

10 41

8 35

12 46

7 48

9 37

  (b) Why are outliers a potential problem with regard to correlation?
 5. Give three reasons why a researcher might choose to use Spearman’s rho 

instead of the regular correlation coefficient.
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Effect Size and Power for the Correlation Coefficient
The correlation coefficient itself is a measure of effect size. (Thus, in the study of 
sleep and mood, effect size was r = .85.) Cohen’s (1988) conventions for the cor-
relation coefficient are .10 for a small effect size, .30 for a medium (or moderate) 
effect size, and .50 for a large effect size.

Power for a correlation can be determined using a power table, a power soft-
ware package, or an Internet power calculator. Table 11-6 gives the approximate 
power for the .05 significance level for small, medium, and large correlations, and 
one-tailed or two-tailed tests.3 For example, the power for a study with an expected 
medium effect size (r = .30), two-tailed, with 50 participants, is .57 (which is 
below the standard desired level of at least .80 power). This means that even if the 
research hypothesis is in fact true and has a medium effect size (that is, the two vari-
ables are correlated at r = .30 in the population), there is only a 57% chance that 
the study will produce a significant correlation.

Planning Sample Size
Table 11-7 gives the approximate number of participants needed for 80% power 
for estimated small, medium, and large correlations, using one-tailed and two-tailed 
tests, all using the .05 significance level.4

Answers

 1. (a) When psychologists compare the size of two correlation coefficients, 
they use the correlation coefficients squared. (b) The correlation coefficient 
squared is called the proportionate reduction in error (or proportion of variance 
accounted for). (c) A correlation of .80 is 16 times larger than a correlation of .20 
(for r = .80, r2 = .64; for r = .20, r2 = .04; and .64 is 16 times larger than .04).

 2. (a) Restriction in range is a situation in correlation in which the scores of the 
group of people studied on one of the variables do not include the full range 
of scores that are found among people more generally. (b) The effect is often 
to drastically reduce the correlation compared to what it would be if people 
more generally were included in the study (presuming there would be a cor-
relation among people more generally).

 3. (a) Unreliability of measurement is when the procedures used to measure a 
particular variable are not perfectly accurate. (b) The effect is to make the cor-
relation smaller than it would be if perfectly accurate measures were used (pre-
suming there would be a correlation if perfectly accurate measures were used).

 4. (a) The outlier combination of scores is the fourth pair of scores (X = 7 and 
Y = 48). The other pairs of scores all suggest a positive correlation between 
variables X and Y, but the pair of X = 7 and Y = 48 is a very low score for 
variable X and a very high score for variable Y. (b) Outliers have a larger effect 
on the correlation than other combinations of scores.

 5. First, Spearman’s rho can be used in certain situations when the scatter 
diagram suggests a curvilinear relationship between two variables. Sec-
ond, Spearman’s rho can be used in certain situations to figure a correlation 
when the original scores are not based on true equal-interval measurement. 
Finally, Spearman’s rho is less affected by outliers than the regular correla-
tion coefficient.

T I P  F O R  S U C C E S S
Do not read this section if you have 
not studied Chapters 3 through 7.
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Table 11-6  Approximate Power of Studies Using the Correlation Coefficient (r) for Testing 

Hypotheses at the .05 Level of Significance

Effect Size

Small  
(r � .10)

Medium  
(r � .30)

Large  
(r � .50)

Two-tailed

Total N: 10 .06 .13 .33

20 .07 .25 .64

30 .08 .37 .83

40 .09 .48 .92

50 .11 .57 .97

100 .17 .86 *

One-tailed

Total N: 10 .08 .22 .46

20 .11 .37 .75

30 .13 .50 .90

40 .15 .60 .96

50 .17 .69 .98

100 .26 .92 *

* Power is nearly 1.

Table 11-7  Approximate Number of Participants Needed for 80% Power for a Study Using the 

Correlation Coefficient (r ) for Testing a Hypothesis at the .05 Significance Level

Effect Size

Small  
(r � .10)

Medium  
(r � .30)

Large  
(r � .50)

Two-tailed 783 85 28

One-tailed 617 68 22

How are you doing?

 1. What are the conventions for effect size for correlation coefficients?
 2. What is the power of a study using a correlation, with a two-tailed test at the 

.05 significance level, in which the researchers predict a large effect size and 
there are 50 participants?

 3. How many participants do you need for 80% power in a planned study in 
which you predict a small effect size and will be using a correlation, two-
tailed, at the .05 significance level?

Answers

 1. The conventions for effect size for correlation coefficients: r = .10, small 
effect size; r = .30, medium effect size; r = .50, large effect size.

 2. Power is .97.
 3. The number of participants needed is 783.
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Controversy: What Is a Large Correlation?
An ongoing controversy about the correlation coefficient is, “What is a large r?” 
Traditionally in psychology, a large correlation is considered to be about .50 or 
above, a moderate correlation to be about .30, and a small correlation to be about .10 
(Cohen, 1988). In fact, in many areas of psychology it is rare to find correlations that 
are greater than .40. Even when we are confident that X causes Y, X will not be the 
only cause of Y. For example, doing exciting activities together may cause people to 
be happier in their marriage. (In fact, we have done a number of true experiments 
supporting this direction of causality; Aron et al., 2000.) However, exciting activi-
ties is still only one of a great many factors that affect marital satisfaction. All those 
other factors are not part of our correlation. No one correlation could possibly tell 
the whole story. Small correlations are also due to the unavoidably low reliability of 
many measures in psychology.

It is traditional to caution that a low correlation is not very important even if it 
is statistically significant. (A small correlation can be statistically significant if the 
study includes a very large number of participants.)

Further, even experienced research psychologists tend to treat any particular 
size of correlation as meaning more of an association between two variables than it 
actually does. Michael Oakes (1982) at the University of Sussex gave 30 research 
psychologists the two columns of numbers shown in Table 11-8. He then asked them 
to estimate r (without doing any calculations). What is your guess? The intuitions 
of the British researchers (who are as a group at least as well trained in statistics as 
psychologists anywhere in the world) ranged from - .20 to + .60, with a mean of .24. 
You can figure the true correlation for yourself. It comes out to .50! That is, what 
psychologists think a correlation of .50 means in the abstract is a much stronger 
degree of correlation than what they think when they see the actual numbers (which 
even at r = .50 only look like .24).

Oakes (1982) gave a different group of 30 researchers just the X column and 
asked them to fill in numbers in the Y column that would come out to a correlation 
of .50 (again, just using their intuition and without any figuring). When Oakes fig-
ured the actual correlations from their answers, these correlations averaged .68. In 
other words, once again, even experienced researchers think of a correlation coef-
ficient as meaning more linkage between the two variables than it actually does.

In contrast, other psychologists hold that small correlations can be very impor-
tant theoretically. They also can have major practical implications in that small 
effects may accumulate over time (Prentice & Miller, 1992).

To demonstrate the practical importance of small correlations, Rosnow and Rosenthal 
(1989) give an example of a now famous study (Steering Committee of the Physicians’ 
Health Study Research Group, 1988) in which doctors either did or did not take aspirin 
each day. Whether or not they took aspirin each day was then correlated with heart 
attacks. The results were that taking aspirin was correlated - .034 with heart attacks.5 
This means that taking aspirin explains only .1% (r2 = - .034 * - .034 = .001, 
which is .1%) of the variation in whether people get heart attacks. So taking aspirin is 
only a small part of what affects people getting heart attacks; 99.9% of the variation in 
whether people get heart attacks is due to other factors (diet, exercise, genetic factors, 
and so on). However, Rosnow and Rosenthal point out that this correlation of “only 
- .034” meant that among the more than 20,000 doctors who were in the study, there 
were 72 more heart attacks in the group that did not take aspirin. (In fact, there were 
also 13 more heart attack deaths in the group that did not take aspirin.) Certainly, this 
difference in getting heart attacks is a difference we care about.

Table 11-8 Table Presented 

to 30 Psychologists to Estimate r

X Y

1 1

2 10

3 2

4 9

5 5

6 4

7 6

8 3

9 11

10 8

11 7

12 12

Source: Based on Oakes (1982).
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Another argument for the importance of small correlations emphasizes research 
methods. Prentice and Miller (1992) explain:

Showing that an effect holds even under the most unlikely circumstances possible 
can be as impressive as (or in some cases, perhaps even more impressive) than show-
ing that it accounts for a great deal of variance. (p. 163)

Some examples they give are studies showing correlations between attractiveness 
and judgments of guilt or innocence in court cases (e.g., Sigall & Ostrove, 1975). 
The point is that “legal judgments are supposed to be unaffected by such extraneous 
factors as attractiveness.” Thus, if studies show that attractiveness is associated with 
legal judgments even slightly, we are persuaded of just how important attractiveness 
could be in influencing social judgments in general.

Finally, you should be aware that there is even controversy about the wide-
spread use of Cohen’s (1988) conventions for the correlation coefficient (that is, 
.10 for a small effect size, .30 for a medium effect size, and .50 for a large effect 
size). When proposing conventions for effect size estimates, such as the correlation 
coefficient (r), Cohen himself noted: “. . . these proposed conventions were set forth 
throughout with much diffidence, qualifications, and invitations not to employ them 
if possible. The values chosen had no more a reliable basis than my own intuition. 
They were offered as conventions because they were needed in a research climate 
characterized by a neglect of issues of [effect size] magnitude” (p. 532). Thus, some 
researchers strongly suggest that the magnitude of effects found in research stud-
ies should not be compared with Cohen’s conventions, but rather with the effects 
reported in previous similar research studies (Thompson, 2007).

Correlation in Research Articles
Scatter diagrams are occasionally included in research articles, most commonly when 
there are relatively small numbers of individuals involved, such as in many perception 
and neuroscience studies. But sometimes they are included in larger studies, especially 
in some applied research areas. For example, Gump and colleagues (2007) conducted 
a study of the level of lead in children’s blood and the socioeconomic status of their 
family. The participants were 122 children who were taking part in an ongoing study 
of the developmental effects of environmental toxicants. Between the ages of 2 and 3 
years, a blood sample was taken from each child (with parental permission), and the 
amount of lead in each sample was determined with a laboratory test. The research-
ers measured the socioeconomic status of each child’s family, based on the parents’ 
self-reported occupation and education level. As shown in Figure 11-18, Gump et al. 
(2007) used a scatter diagram to describe the relationship between childhood blood 
levels and family socioeconomic status. There was a clear linear negative trend, with 
the researchers noting “. . . increasing family SES [socioeconomic status] was signifi-
cantly associated with declining blood levels” (p. 300). The scatter diagram shows that 
children from families with a higher socioeconomic status had lower levels of lead 
in their blood. Of course, this is a correlational result. Thus, it does not necessarily 
mean that family socioeconomic status directly influences the amount of lead in chil-
dren’s blood. It is possible that some other factor may explain this association or even 
that the amount of lead in the blood influenced socioeconomic status. The researchers 
acknowledged this latter notion in the discussion section of their paper: “In addition, 
perhaps heightened blood lead in children (and their parents) affects cognitive func-
tioning and thereby social and economic selection (failure to reach or keep expected 
social position) or drift (movement from higher to lower social class) occurs” (p. 302).
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Correlation coefficients are very commonly reported in research articles, both 
in the text of articles and in tables. The result with which we started the chapter 
would be described as follows: there was a positive correlation 1r = .512 between 
excitement of activities done with partner and marital satisfaction. Usually, the sta-
tistical significance of the correlation will also be reported; in this example, it would 
be r = .51, p 6 .05.

Tables of correlations are common when several variables are involved. Usu-
ally, the table is set up so that each variable is listed down the left and also across the 
top. The correlation of each pair of variables is shown inside the table. This is called 
a correlation matrix.

Table 11-9 is a correlation matrix from a study by Gallup and colleagues (2010), 
who examined the association between temperature and various heat-regulating 
behaviors among budgerigars (a common kind of pet parakeet). The study was con-
ducted with 16 birds that were exposed to air temperatures varying from 73 �F to 
93 �F (a temperature range that these birds commonly experience in their natural 
habitat) over a period of 20 minutes in a controlled laboratory setting. The birds were 
video recorded during the study and their behaviors were coded by trained observers.

This example shows several features that are typical of the way correlation 
matrixes are laid out. First, notice that the correlation of a variable with itself is not 
given. In this example, a short line is put in instead; sometimes they are just left blank. 
Also notice that only the lower left triangle is filled in. This is because the upper right 
triangle would contain exactly the same information. (Sometimes the upper right tri-
angle is filled in and the lower left triangle is left blank.) For example, the correlation 

correlation matrix common way of 
reporting the correlation coefficients 
among several variables in a research 
article; table in which the variables are 
named on the top and along the side 
and the correlations among them are all 
shown.
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Figure 11-18 Children’s family socioeconomic status (Hollingshead Index) as a func-
tion of childhood lead levels.

Source: Gump, B. B., Reihman, J., Stewart, P., Lonky, E., Darvill, T., & Matthews, K. A. (2007). Blood 
lead (Pb) levels: A potential environmental mechanism explaining the relation between socioeconomic 
status and cardiovascular reactivity in children. Health Psychology, 26, 296–304. Published by the 
American Psychological Association. Reprinted with permission.
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Summary

 1. Two variables are correlated when they are associated in a clear pattern (for ex-
ample, when high scores on one consistently go with high scores on the other, 
and lows on one go with lows on the other).

 2. A scatter diagram shows the relation between two variables. The lowest to 
highest possible values of one variable (the one you are predicting from if one 
variable can be thought of as predicting the other variable) are marked on the 
horizontal axis. The lowest to highest possible values of the other variable are 
marked on the vertical axis. Each individual’s pair of scores is shown as a dot.

 3. When the dots in the scatter diagram generally follow a straight line, this is 
called a linear correlation. In a curvilinear correlation, the dots follow a line 
pattern other than a simple straight line. There is no correlation when the dots 
do not follow any kind of line. In a positive linear correlation, the line goes 
upward to the right (so that low scores go with lows, mediums with mediums, 
and highs with highs). In a negative linear correlation, the line goes downward 
to the right (so that low scores go with highs, mediums with mediums, and 
highs with lows). The strength of the correlation refers to the degree to which 
there is a clear pattern of relationship between the two variables.

 4. The correlation coefficient (r) gives the direction and strength of linear correla-
tion. It is the average of the cross-products of the Z scores. The correlation coef-
ficient is highly positive when there is a strong positive linear correlation. This 
is because positive Z scores are multiplied by positive, and negative Z scores by 

of temperature with stretching (which is .069) has to be the same as the correlation 
of stretching with temperature. Looking at this example, among other results, you 
can see that there is a large positive correlation between temperature and panting. 
Also, there is a small to moderate positive correlation between temperature and wing 
venting (holding the wings out from the body) and a moderate correlation between 
temperature and yawning. The asterisks—* and **—after some of the correlation 
coefficients tell you that those correlations are statistically significant. The note at the 
bottom of the table tells you the significance levels that go with the asterisks.

Table 11-9 Pearson Correlations Between Temperature and Recorded Behaviors

Variable Temperature Panting Stretching Wing venting Yawning

Temperature —

Panting .740** —

Stretching .069 –.059 —

Wing venting .214* .166 .182* —

Yawning .333** .365** .175 .312* —

Note: Yawning and stretching were measured as the number of yawns and stretches recorded for all four birds in a group during each 2-min interval; panting and wing venting were 
measured as the number of birds observed engaging in these behaviors during each trial.

* p 6 .05. ** p 6 .01.

Source: Gallup, A. C., Miller, M. L., & Clark, A. B. (2010). The direction and range of ambient temperature change influences yawning in budgerigars (Melopsittacus undulatus). Journal 
of Comparative Psychology, 124, 133–138. Published by the American Psychological Association. Reprinted with permission.

Learning Aids
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negative. The correlation coefficient is highly negative when there is a strong 
negative linear correlation. This is because positive Z scores are multiplied 
by negative and negative Z scores by positive. The coefficient is 0 when there 
is no linear correlation. This is because positive Z scores are sometimes multi-
plied by positive and sometimes by negative Z scores and negative Z scores are 
sometimes multiplied by negative and sometimes by positive. Thus, positive 
and negative cross-products cancel each other out.

 5. The sign 1+ or -2 of a correlation coefficient tells you the direction of the lin-
ear correlation between two variables. The actual value of the correlation coef-
ficient (ignoring the sign) tells you the strength of the linear correlation. The 
maximum positive value of r is +1. r = +1 when there is a perfect positive 
linear correlation. The maximum negative value of r is -1. r = -1 when there 
is a perfect negative linear correlation.

 6. The statistical significance of a correlation coefficient can be tested by chang-
ing the correlation coefficient into a t score and using cutoffs on a t distribution 
with degrees of freedom equal to the number of people in the study minus two. 
The t score for a correlation coefficient is the result of dividing the correla-
tion coefficient by the square root of what you get when you divide one minus 
the correlation coefficient squared by two less than the number of people in 
the study. The null hypothesis for hypothesis testing with a correlation coef-
ficient is that the true relation between the two variables in the population is no 
 correlation 1r = 02.

 7. The assumptions for the significance test of a correlation coefficient are that the 
population of each variable (and the relationship between them) follows a nor-
mal distribution, there is an equal distribution of each variable at each point of 
the other variable, the relationship between the two variables is linear, and the 
people (or cases) are independent from each other.

 8. Correlation does not tell you the direction of causation. If two variables, X and 
Y, are correlated, the correlation could be because X is causing Y, Y is causing 
X, or a third factor is causing both X and Y.

 9. Comparisons of the degree of linear correlation are considered most accurate in 
terms of the correlation coefficient squared 1r22, called the proportionate reduc-
tion in error or proportion of variance accounted for.

 10. A correlation coefficient will be lower (closer to 0) than the true correlation if it 
is based on scores from a group selected for study that is restricted in its range 
of scores (compared to people in general) or if the scores are based on unreli-
able measures.

 11. The direction and strength of a correlation can be drastically distorted by 
extreme combinations of scores called outliers.

 12. Spearman’s rho is a special type of correlation based on rank-order scores. It 
can be used in certain situations when the scatter diagram suggests a curvilin-
ear relationship between two variables. Spearman’s rho is less affected than the 
regular correlation by outliers, and it works correctly even if the original scores 
are not based on true equal-interval measurement.

 13. The correlation itself is a measure of effect size. Power and needed sample 
size for 80% power for a correlation coefficient can be determined using 
special power tables, a power software package, or an Internet power 
calculator.

 14. Studies suggest that psychologists tend to think of any particular correla-
tion coefficient as meaning more association than actually exists.  However, 
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small correlations may have practical importance and may also be impres-
sive in  demonstrating the importance of a relationship when a study shows 
that the  correlation holds even under what would seem to be unlikely 
conditions.

 15. Correlational results are usually presented in research articles either in the text 
with the value of r (and usually the significance level) or in a special table 
(a correlation matrix) showing the correlations among several variables.

Example Worked-Out Problems

Making a Scatter Diagram and Describing the General 
Pattern of Association
Based on the class size and average achievement test scores for five elementary 
schools in the following table, make a scatter diagram and describe in words the 
general pattern of association.

Elementary School Class Size Achievement Test Score

Main Street 25 80

Casat 14 98

Lakeland 33 50

Shady Grove 28 82

Jefferson 20 90

Answer
The steps in solving the problem follow; Figure 11-19 shows the scatter diagram 
with markers for each step.

 ❶ Draw the axes and decide which variable goes on which axis. It seems more 
reasonable to think of class size as predicting achievement test scores rather 
than the other way around. Thus, you can draw the axis with class size along the 
bottom. (However, the prediction was not explicitly stated in the problem; so 
the other direction of prediction is certainly possible. Thus, putting either vari-
able on either axis would be acceptable.)

Key Terms

correlation (p. 440)
scatter diagram (p. 441)
linear correlation (p. 444)
curvilinear correlation (p. 444)
no correlation (p. 446)
positive correlation (p. 446)

negative correlation (p. 446)
cross-product of Z scores (p. 451)
correlation coefficient (p. 453)
direction of causality (p. 462)
correlational research design  

(p. 464)

proportionate reduction in  
error (p. 465)

restriction in range (p. 465)
outliers (p. 468)
Spearman’s rho (p. 469)
correlation matrix (p. 474)
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 ❷ Determine the range of values to use for each variable and mark them 
on the axes. We will assume that the achievement test scores go from 0 to 
100. We don’t know the maximum class size; so we guessed 50. (The range 
of the variables was not given in the problem; thus any reasonable range 
would be acceptable as long as it includes the values of the scores in the 
actual study.)

 ❸ Mark a dot for each pair of scores. For example, to mark the dot for Main 
Street School, you go across to 25 and up to 80.

The general pattern is roughly linear. Its direction is negative (it goes down 
and to the right, with larger class sizes going with smaller achievement scores and 
vice versa). It is a quite large correlation, since the dots all fall fairly close to a 
straight line; it should be fairly close to -1. In words, it is a large, linear, negative 
correlation.

Figuring the Correlation Coefficient
Figure the correlation coefficient for the class size and achievement test in the pre-
ceding example.

Answer
The steps in solving the problem follow; the basic figuring is shown in Table 11-10 
with markers for each of the steps.

 ❶ Change all scores to Z scores. For example, the mean for the class size vari-
able is 24, and the standard deviation is 6.54. Thus, the Z score for the first class 
size, of 25, is 125 - 242>6.54 = .15.
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Figure 11-19 Scatter diagram for scores in Example Worked-Out Problem. ❶ Draw 
the axes and decide which variable goes on which axis. ❷ Determine the range of values to 
use for each variable and mark them on the axes. ❸ Mark a dot for each pair of scores.
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 ❷ Figure the cross-product of the Z scores for each person (in this case for 
each school). For example, for Main Street School, the cross-product is .15 
multiplied by 0, which is 0; for Casat School, is -1.53 multiple by 1.10, which 
equal -1.68.

 ❸ Add up the cross-products of the Z scores. The total is -4.52.
 ❹ Divide by the number of people in the study (in this case, the number of 

schools). The sum 1-4.522 divided by 5 is - .90; that is, r = - .90. In terms of 
the correlation coefficient formula, r = 1gZXZY2>N = -4.52>5 = - .90.  

Figuring the Significance of a Correlation  
Coefficient
Figure whether the correlation between class size and achievement test score in the 
preceding example is statistically significant (use the .05 level, two-tailed).

Answer
 ❶ Restate the question as a research hypothesis and a null hypothesis about 

the populations. There are two populations:

Population 1: Schools like those in this study.
Population 2: Schools for whom there is no correlation between the two 
variables.

   The null hypothesis is that the two populations have the same correla-
tion. The research hypothesis is that the two populations do not have the same 
correlation.

 ❷ Determine the characteristics of the comparison distribution. The comparison 
distribution is a t distribution with df = 3. (That is, df = N - 2 = 5 - 2 = 3.)

 ❸ Determine the cutoff sample score on the comparison distribution at which 
the null hypothesis should be rejected. The t table (Table A-2 in the Appen-
dix) shows that for a two-tailed test at the .05 level, with 3 degrees of freedom, 
the cutoff t scores are 3.182 and -3.182.

Table 11-10  Figuring the Correlation Coefficient Between Class Size and Achievement Test 

Score for the Example Worked-Out Problem

Class Size Achievement Test Score Cross-Products

School X ZX  ❶ Y ZY ❶ ZXZY  ❷

Main Street 25 .15 80 .00 .00

Casat 14 -1.53 98 1.10 -1.68

Lakeland 33 1.38 50 -1.84 -2.54

Shady Grove 28 .61 82 .12 .07

Jefferson 20 - .61 90 .61 - .37

g :    120 400 -4.52 ❸

M :     24 80 r = - .90 ❹

SD = 1214>5 = 6.54 11,328>5 = 16.30
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These problems involve figuring. Most real-life statistics problems are done with 
special statistical software. Even if you have such software, do these problems by 
hand to ingrain the method in your mind. To learn how to use a computer to solve 
statistics problems like those in this chapter, refer to the Using SPSS section at the 
end of this chapter.

All data are fictional unless an actual citation is given.

Set I (for Answers to Set I Problems, see pp. 697–699)
 1. For each of the following scatter diagrams, indicate whether the pattern is 

linear, curvilinear, or no correlation; if it is linear, indicate whether it is posi-
tive or negative and the approximate strength (large, moderate, small) of the 
correlation.

Practice Problems

 ❹ Determine your sample’s score on the comparison distribution. The correla-
tion in the study was - .90. Applying the formula to find the equivalent t, we get

t =
r

211 - r22>1N - 22 =
- .90

211 - 1- .90222>132 =
- .90

2.0633
= -3.58.

 ❺ Decide whether to reject the null hypothesis. The t score of -3.58 for our 
sample correlation is more extreme than a cutoff t score of -3.182. Thus, we 
can reject the null hypothesis and the research hypothesis is supported.

Outline for Writing Essays on the Logic and Figuring  
of a Correlation Coefficient
 1. If the question involves creating a scatter diagram, explain how and why you 

created the diagram to show the pattern of relationship between the two vari-
ables. Explain the meaning of the term correlation. Mention the type of correla-
tion (e.g., linear; positive or negative; small, moderate, or large) shown by the 
scatter diagram.

 2. Explain the idea that a correlation coefficient tells you the direction and strength 
of linear correlation between two variables.

 3. Outline and explain the steps for figuring the correlation coefficient. Be sure 
to mention that the first step involves changing the scores for each variable to  
Z scores. Describe how to figure the cross-products of the Z scores. Explain 
why the cross-products of the Z scores will tend to be positive if the correlation 
is positive and will tend to be negative if the correlation is negative. Mention that 
the correlation coefficient is figured by taking the mean of the cross-products of 
the Z scores so that it does not get higher just because there are more cases. 
Explain what the value of the correlation coefficient means in terms of the 
direction and strength of linear correlation.

 4. Be sure to discuss the direction and strength of correlation of your particular 
result. As needed for the specific question you are answering, discuss whether 
the correlation is statistically significant.

MyStatLab
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 2. A researcher studied the relation between psychotherapists’ degree of empathy 
and their patients’ satisfaction with therapy. As a pilot study, four patient–therapist 
pairs were studied. Here are the results:

(a)

(c)

(e)

(b)

(d)

(f)

Pair Number Therapist Empathy Patient Satisfaction

1 70 4

2 94 5

3 36 2

4 48 1

  (a) Make a scatter diagram of the scores; (b) describe in words the general 
pattern of correlation, if any; (c) figure the correlation coefficient; (d) figure 
whether the correlation is statistically significant (use the .05 significance level, 
two-tailed); (e) explain the logic of what you have done, writing as if you are 
speaking to someone who has never heard of correlation (but who does understand 

MyStatLab
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the mean, standard deviation, Z scores, and hypothesis testing); and (f) give 
three logically possible directions of causality, saying for each whether it is a 
reasonable direction in light of the variables involved (and why).

 3. An instructor asked five students how many hours they had studied for an exam. 
Here are the hours studied and the students’ grades:

Hours Studied Test Grade

0 52

10 95

6 83

8 71

6 64

  (a) Make a scatter diagram of the scores; (b) describe in words the general 
pattern of correlation, if any; (c) figure the correlation coefficient; (d) figure 
whether the correlation is statistically significant (use the .05 significance level, 
two-tailed); (e) explain the logic of what you have done, writing as if you are 
speaking to someone who has never heard of correlation (but who does under-
stand the mean, standard deviation, Z scores, and hypothesis testing); and (f) 
give three logically possible directions of causality, saying for each whether it 
is a reasonable direction in light of the variables involved (and why).

 4. In a study of people first getting acquainted with each other, researchers exam-
ined the amount of self-disclosure of one’s partner and one’s liking for one’s 
partner. Here are the results:

Partner’s Self-Disclosure Liking for Partner

8 7

7 9

10 6

3 7

1 4

  (a) Make a scatter diagram of the scores; (b) describe in words the general pat-
tern of correlation, if any; (c) figure the correlation coefficient; and (d) figure 
whether the correlation is statistically significant (use the .05 significance level, 
two-tailed).

 5. The following have been prepared so that data sets B through D are slightly 
modified versions of data set A. For each data set, (a) make a scatter diagram, 
(b) figure the correlation coefficient, and (c) figure whether the correlation is 
statistically significant (use the .05 significance level, two-tailed).

Data Set A Data Set B Data Set C Data Set D

X Y X Y X Y X Y

1 1 1 1 1 5 1 1

2 2 2 2 2 2 2 4

3 3 3 3 3 3 3 3

4 4 4 5 4 4 4 2

5 5 5 4 5 1 5 5

MyStatLab
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 6. For each of the following situations, indicate why the correlation coefficient 
might be a distorted estimate of the true correlation (and what kind of distortion 
you would expect):
(a) Scores on two questionnaire measures of personality are correlated.
(b) Comfort of living situation and happiness are correlated among a group of 

millionaires.
 7. What is the power of each of the following studies using a correlation coeffi-

cient and the .05 significance level?

Effect Size (r ) N Tails

(a) .10 50 2

(b) .30 100 1

(c) .50 30 2

(d) .30 40 1

(e) .10 100 2

 8. About how many participants are needed for 80% power in each of the following 
planned studies that will use a correlation coefficient and the .05 significance level?

Effect Size (r ) Tails

(a) .50 2

(b) .30 1

(c) .10 2

 9. Chapman et al. (1997) interviewed 68 pregnant inner city women and their 
male partners twice during their pregnancy, once between three and six months  
into the pregnancy and again between six and nine months into the pregnancy. 
Table 11-11 shows the correlations among several of their measures. (“Zero-
Order Correlations” means the same thing as ordinary correlations.) Most impor-
tant in this table are the correlations among women’s reports of their own stress, 
men’s reports of their partners’ stress, women’s perception of their partners’ 

Table 11-11 Zero-Order Correlations for Study Variables

Variable 1 2 3 4 5 6 7 8 9 10

 1. Women’s report of stress —

 2. Men’s report of women’s stress .17 —

 3. Partner Support 1 - .28* - .18 —

 4. Partner Support 2 - .27* - .18 .44*** —

 5. Depressed Mood 1 .23* .10 - .34** - .17 —

 6. Depressed Mood 2 .50*** .14 - .42*** - .41*** .55*** —

 7. Women’s age .06 .16 .04 - .24* - .35* - .09 —

 8. Women’s ethnicity - .19 - .09 - .16 - .14 .11 .13 - .02 —

 9. Women’s marital status - .18 .01 .12 .24* - .04 - .20 .05 - .34** —

10. Parity .19 .13 - .11 - .17 .10 .16 .26* .31* - .12 —

*p 6 .05, **p 6 .01, ***p 6 .001.

Source: Chapman, H. A., Hobfoll, S. E., & Ritter, C. (1997). Partners’ stress underestimations lead to women’s distress: A study of pregnant inner-city women. Journal of Personality 
and Social Psychology, 73, 418–425. Published by the American Psychological Association. Reprinted with permission.
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support at the first and at the second interviews, and women’s depression at the 
first and at the second interviews.

   Explain the results on these measures as if you were writing to a person who 
has never had a course in statistics. Specifically, (a) explain what is meant by a 
correlation coefficient using one of the correlations as an example; (b) study the 
table and then comment on the patterns of results in terms of which variables 
are relatively strongly correlated and which are not very strongly correlated; and  
(c) comment on the limitations of making conclusions about the direction of causal-
ity based on these data, using a specific correlation as an example (noting at least 
one plausible alternative causal direction and why that alternative is plausible).

Set II
 10. For each of the following scatter diagrams, indicate whether the pattern is linear, 

curvilinear, or no correlation; if it is linear, indicate whether it is positive or neg-
ative and the approximate strength (large, moderate, small) of the correlation.

(a)

(c)

(e)

(b)

(d)

(f)
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 11. Make up a scatter diagram with 10 dots for each of the following situations: 
(a) perfect positive linear correlation, (b) large but not perfect positive linear 
correlation, (c) small positive linear correlation, (d) large but not perfect nega-
tive linear correlation, (e) no correlation, (f) clear curvilinear correlation.

  Instructions for Problems 12 to 14. For problems 12 to 14, do the following: 
(a) Make a scatter diagram of the scores; (b) describe in words the general pattern 
of correlation, if any; (c) figure the correlation coefficient; (d) figure whether the 
correlation is statistically significant (use the .05 significance level, two-tailed); (e) 
explain the logic of what you have done, writing as if you are speaking to someone 
who has never heard of correlation (but who does understand the mean, standard 
deviation, Z scores, and hypothesis testing); and (f) give three logically possible 
directions of causality, indicating for each direction whether it is a reasonable 
explanation for the correlation in light of the variables involved (and why).

 12. (The instructions for this problem are shown after problem 11.) Four research 
participants take a test of manual dexterity (high scores mean better dexterity) 
and an anxiety test (high scores mean more anxiety). The scores are as follows.

Person Dexterity Anxiety

1 1 10

2 1 8

3 2 4

4 4 -2

 13. (The instructions for this problem are shown after problem 11.) Four young 
children were monitored closely over a period of several weeks to measure how 
much they watched violent television programs and their amount of violent 
behavior toward their playmates. The results were as follows:

Child’s Code Number
Weekly Viewing of  
Violent TV (hours)

Number of Violent or Aggressive 
Acts Toward Playmates

G3368 14 9

R8904 8 6

C9890 6 1

L8722 12 8

 14. (The instructions for this problem are shown after problem 11.) Five college 
students were asked about how important a goal it is to them to have a family 
and about how important a goal it is for them to be highly successful in their 
work. Each variable was measured on a scale from 0, not at all important goal 
to 10, very important goal.

Student Family Goal Work Goal

A 7 5

B 6 4

C 8 2

D 3 9

E 4 1

  Instructions for Problems 15 and 16. For problems 15 and 16, (a) make a 
scatter diagram of the scores; (b) describe in words the general pattern of cor-
relation, if any; (c) figure the correlation coefficient; and (d) figure whether the 
correlation is statistically significant (use the .05 significance level, two-tailed).
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 15. (The instructions for this problem are shown after problem 14.) The Louvre 
Museum in Paris is interested in the relation of the age of a painting to public 
interest in it. The number of people stopping to look at each of 10 randomly 
selected paintings is observed over a week. The results are as shown:

Approximate Age (Years) 
(M � 268.40; SD � 152.74)

Number of People Stopping to  
Look (M � 88.20; SD � 29.13)

Painting Title X ZX Y ZY

The Entombment 480 1.39 68 - .69

Mystic Marriage of St. Catherine 530 1.71 71 - .59

The Bathers 255 - .09 123 1.19

The Toilette 122 - .96 112 .82

Portrait of Castiglione 391 .80 48 -1.38

Charles I of England 370 .67 84 - .14

Crispin and Scapin 155 - .75 66 - .76

Nude in the Sun 130 - .91 148 2.05

The Balcony 137 - .86 71 - .59

The Circus 114 -1.01 91 .10

 16. (The instructions for this problem are shown after problem 14.) A developmen-
tal psychologist studying people in their eighties was interested in the relation 
between number of very close friends and overall health. The scores for six 
research participants follow.

Research Participant Number of Friends X Overall Health Y

A 2 41

B 4 72

C 0 37

D 3 84

E 2 52

F 1 49

 17. What is the power of each of the following studies using a correlation coeffi-
cient and the .05 significance level?

Effect Size (r ) N Tails

(a) .10 30 1

(b) .30 40 2

(c) .50 50 2

(d) .30 100 2

(e) .10 20 1

 18. About how many participants are needed for 80% power in each of the following 
planned studies that will use a correlation coefficient and the .05 significance level?

Effect Size (r ) Tails

(a) .10 1

(b) .30 2

(c) .50 1
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 19. As part of a larger study, Speed and Gangstead (1997) collected ratings and nomi-
nations on a number of characteristics for 66 fraternity men from their fellow 
fraternity members. The following paragraph is taken from their Results section:

. . . men’s romantic popularity significantly correlated with several characteris-
tics: best dressed 1r = .482, most physically attractive 1r = .472, most outgoing 
1r = .472, most self-confident 1r = .442, best trendsetters 1r = .382, funniest 
1r = .372, most satisfied 1r = .322, and most independent 1r = .282. Unexpect-
edly, however, men’s potential for financial success did not significantly correlate 
with romantic popularity 1r = .102. (p. 931)

   Explain these results as if you were writing to a person who has never had a 
course in statistics. Specifically, (a) explain what is meant by a correlation coef-
ficient using one of the correlations as an example; (b) explain in a general way 
what is meant by “significantly” and “not significantly,” referring to at least one 
specific example; and (c) speculate on the meaning of the pattern of results, tak-
ing into account the issue of direction of causality.

 20. Gable and Lutz (2000) studied 65 children, 3 to 10 years old, and their par-
ents. One of their results was “Parental control of child eating showed a neg-
ative association with children’s participation in extracurricular activities 1r = .34; p 6 .012” (p. 296). Another result was “Parents who held less appro-
priate beliefs about children’s nutrition reported that their children watched 
more hours of television per day 1r = .36; p 6 .012” (p. 296). Explain these 
results as if you were writing to a person who has never had a course in statis-
tics. Be sure to comment on possible directions of causality for each result.

 21. Table 11-12 is from a study by Baldwin and colleagues (2006) that examined 
the associations among feelings of shame, guilt, and self-efficacy in a sample of 
194 college students. Self-efficacy refers to people’s beliefs about their ability 
to be successful at various things they may try to do. (For example, the students 
indicated how much they agreed with statements such as, “When I make plans,  
I am certain I can make them work.”) Table 11-12 shows the correlations among 
the questionnaire measures of shame, guilt, general self-efficacy, social self-
efficacy, and total self-efficacy (general self-efficacy plus social self-efficacy).

   Explain the results as if you were writing to a person who has never had a 
course in statistics. Specifically, (a) explain what is meant by a correlation coef-
ficient using one of the correlations as an example; (b) study the table and then 
comment on the patterns of results in terms of which variables are relatively 
strongly correlated and which are not very strongly correlated; and (c) comment 
on the limitations of making conclusions about the direction of causality based 

Table 11-12 Correlations Among Shame, Guilt, and Self-Efficacy Subscales

1 2 3 4 5

1. Shame

2. Guilt  .34**

3. General Self-efficacy - .29** .12

4. Social Self-efficacy - .18* - .06 .47**

5. Total Self-efficacy - .29** .07 .94** .74**

*p 6 .01, **p 6 .001. For all correlations, n is between 184 and 190.

Source: Baldwin, K. M., Baldwin, J. R., & Ewald, T. (2006). The relationship among shame, guilt, and self-efficacy. American 
Journal of Psychotherapy, 60, 1–21. Copyright © 2006 by The Association for the Advancement of Psychotherapy. Reprinted 
by permission of the publisher.
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The  in the following steps indicates a mouse click. (We used SPSS version 19 for 
Windows to carry out these analyses. The steps and output may be slightly different 
for other versions of SPSS.)

In the following steps for the scatter diagram and correlation coefficient, we 
will use the example of the sleep and happy mood study. The scores for that study 
are shown in Table 11-1 on p. 442, the scatter diagram is shown in Figure 11-2 on 
p. 442, and the figuring for the correlation coefficient and its significance is shown 
in Table 11-3 on p. 455.

Creating a Scatter Diagram
 ❶ Enter the scores into SPSS. Enter the scores as shown in Figure 11-20.

Using SPSS

on these data, using a specific correlation as an example (noting at least one 
plausible alternative causal direction and why that alternative is plausible).

 22. Arbitrarily select eight people from your class whose name you know. Do each 
of the following: (a) Make a scatter diagram for the relation between the num-
ber of letters in each person’s first and last name; (b) figure the correlation coef-
ficient for the relation between the number of letters in each person’s first and 
last name; (c) figure whether the correlation is statistically significant (use the .05 
significance level, two-tailed); (d) describe the result in words; and (e) suggest a 
possible interpretation for your results.

Figure 11-20 SPSS data editor window for the fictional study of the relationship 
between hours slept last night and mood.

MyStatLab
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 ❷  Graphs.
 ❸  Legacy/Dialogs,  Scatter/Dot. A box will appear that allows you to select 

different types of scatter diagrams. You want the “Simple Scatter” diagram. 
This is selected as the default type of diagram; so you just need to  Define.

 ❹  the variable called “mood” and then  the arrow next to the box labeled 
“Y axis.” This tells SPSS that the scores for the “mood” variable should go on 
the vertical (or Y) axis of the scatter diagram.  the variable called “sleep” 
and then  the arrow next to the box labeled “X axis.” This tells SPSS that the 
scores for the “sleep” variable should go on the horizontal (or X) axis of the 
scatter diagram.

 ❺  OK. Your SPSS output window should look like Figure 11-21.

Finding the Correlation Coefficient
 ❶ Enter the scores into SPSS. Enter the scores as shown in Figure 11-20.
 ❷  Analyze.
 ❸  Correlate.
 ❹  Options. Check the box next to “Means and standard deviations”.  Con-

tinue. (Step ❹ is optional, but we strongly recommend that you request such 
descriptive statistics.)

Figure 11-21 An SPSS scatter diagram showing the relationship between hours slept 
last night and mood (fictional data).
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 ❺  Bivariate.
 ❻  on the variable called “mood” and then  the arrow next to the box labeled 

“Variables.”  on the variable called “sleep” and then  the arrow next to the 
box labeled “Variables.” This tells SPSS to figure the correlation between the 
“mood” and “sleep” variables. (If you wanted to find the correlation between 
each of several variables, you would put all of them into the “Variables” box.) 
Notice that by default SPSS carries out a Pearson correlation (the type of cor-
relation you have learned in this chapter), gives the significance level using a 
two-tailed test, and flags statistically significant correlations using the .05 sig-
nificance level. (Clicking the box next to “Spearman” requests Spearman’s rho, 
which is a special type of correlation we briefly discussed earlier in the chapter.)

 ❼  OK. Your SPSS output window should look like Figure 11-22.

   The first table shown in Figure 11-22 gives the mean and standard devia-
tion (to be precise, it gives the estimated population standard deviation, S) 

Figure 11-22 SPSS output window for the correlation between hours slept and mood 
(fictional data).
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 1. There is also a “computational” version of this formula that is mathematically 
equivalent and thus gives the same result:

r =
Ng1XY2 - 1gX21gY2

23NgX2 - 1gX22423NgY2 - 1gY224
  This formula is easier to use when computing by hand (or with a hand calcula-

tor) when you have a large number of people in the study, because you don’t 
have to first figure out all the deviation scores. However, researchers rarely 
use computational formulas like this any more because the actual figuring is 
done by a computer. As a student learning statistics, it is much better to use  
the definitional formula (11-1). This is because when solving problems using the  
definitional formula, you are strengthening your understanding of what the 
correlation coefficient means. In all examples in this chapter, we use the def-
initional formula and we urge you to use it in doing the chapter’s practice 
problems.

 2. As we noted in Chapter 3, statisticians usually use Greek letters for population 
parameters. The population parameter for a correlation is � (rho). However, for 
ease of learning (and to avoid potential confusion with a term we introduce 
later in the chapter), and following standard usage in psychology, we use the 
ordinary letter r for both the correlation you figure from a sample and the cor-
relation in a population.

Chapter Notes

for each of the variables. The second table shown in the output is a small 
correlation matrix (there are only two variables). (If you were interested in 
the correlations among more than two variables—which is often the case in 
psychology research—SPSS would produce a larger correlation matrix.) The 
correlation matrix shows the correlation coefficient (“Pearson Correlation”), 
the exact significance level of the correlation coefficient [“Sig. (2-tailed)”], 
and the number of people in the correlation analysis (“N”). Note that two of 
the cells of the correlation matrix show a correlation coefficient of exactly 1. 
You can ignore these cells; they simply show that each variable is perfectly 
correlated with itself. (In larger correlation matrixes all of the cells on the 
diagonal from the top left to the bottom right of the table will have a cor-
relation coefficient of 1.) You will also notice that the remaining two cells 
provide identical information. This is because the table shows the correla-
tions between sleep and mood and also between mood and sleep (which are, 
of course, identical correlations). So you can look at either one. (In a larger 
correlation matrix, you need only look either at all of the correlations above 
the diagonal that goes from top left to bottom right or at all of the correlations 
below that diagonal.) The correlation coefficient is .853 (which is usually 
rounded to two decimal places in research articles). The significance level 
of .031 is less than the usual .05 cutoff, which means that it is a statistically 
significant correlation. The asterisk (*) by the correlation of .853 also shows 
that it is statistically significant (at the .05 significance level, as shown by the 
note under the table).
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 3. More complete tables are provided in Cohen (1988, pp. 84–95).
 4. More complete tables are provided in Cohen (1988, pp. 101–102).
 5. To figure the correlation between getting a heart attack and taking aspirin, you 

would have to make the two variables into numbers. For example, you could 
make getting a heart attack equal 1 and not getting a heart attack equal 0; simi-
larly, you could make being in the aspirin group equal 1 and being in the control 
group equal 0. It would not matter which two numbers you used for the two val-
ues for each variable. Whichever two numbers you use, the result will come out 
the same after converting to Z scores. The only difference that the two numbers 
you use makes is that the value that gets the higher number determines whether 
the correlation will be positive or negative.
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Chapter 12
Prediction

In this chapter, building on what you learned in Chapter 11, we consider a major 
practical application of statistical methods: making predictions. Psychologists of 
various kinds are called on to make informed (and precise) guesses about such 

things as how well a particular job applicant is likely to perform if hired, how much a 
reading program is likely to help a particular third grader, how likely a particular patient 
is to commit suicide, or how likely a potential parolee is to commit a violent crime if 
released. Statistical prediction also plays a major part in helping research psychologists 
understand how various factors affect outcomes of interest. For example, what factors 
in people who marry predict whether they will be happy and together 10 years later; 
what are the factors in childhood that predict depression and anxiety in adulthood; what 
are the circumstances of learning something that predict good or poor memory for it 
years later; or what are the various kinds of support from friends and family that pre-
dict how quickly or poorly someone recovers from the death of a loved one? Finally, 
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learning the intricacies of statistical prediction deepens your insight into other statistical 
 topics and prepares you for central themes in more advanced statistics courses.

The main part of this chapter considers in some detail the logic and procedures 
for making predictions about one variable, such as predicting college grade point 
average (GPA), based on information about another variable, such as SAT scores. 
We then briefly introduce procedures for situations in which predictions about one 
variable, such as college GPA, are made based on information about two or more 
other variables, such as using both SAT scores and high school GPA. Finally, as an 
Advanced Topic, we discuss how to estimate the expected accuracy of the predic-
tions we make using these procedures.

As you learn these new topics, you will find that they are closely linked with the 
topic of correlation we considered in the last chapter. That is because if two variables are 
correlated it means that you can predict one from the other. So if sleep the night before is 
correlated with happiness the next day, this means that you should be able, to some extent, 
to predict how happy a person will be the next day from knowing how much sleep the 
person got the night before. But if two variables are not correlated, then knowing about 
one does not help you predict the other. So if shoe size and income have a zero correla-
tion, knowing a person’s shoe size does not allow you to predict anything about the per-
son’s income. As we proceed, we will be referring again to the connections of correlation 
with prediction. But for now let us turn to prediction before we come back to correlation.

Predictor (X ) and Criterion (Y ) Variables
One of the ways correlation and prediction look different is this: with correlation 
it did not matter much which variable was which. But with prediction we have to 
decide which variable is being predicted from and which variable is being predicted. 
The variable being predicted from is called the predictor variable. The variable 
being predicted is called the criterion variable. In formulas the predictor variable is 
usually labeled X, and the criterion variable is usually labeled Y. That is, X predicts 
Y. In the example we just considered, SAT scores would be the predictor variable or 
X, and college grades would be the criterion variable or Y (see Table 12-1).

Prediction Using Z Scores Versus Raw Scores
In the previous chapter, you learned that one of the key steps in calculating the cor-
relation coefficient was to change all of the raw scores to Z scores. It turns out that 
you can do prediction based on either Z scores or raw scores. In other words, you 
can use Z scores for a predictor variable to predict Z scores for a criterion variable, 
or you can use raw scores for a predictor variable to predict raw scores for a crite-
rion variable. In real research situations, it is more common to conduct the statistical 
analyses for prediction using raw scores, so that is what we focus on in this chapter.

The Linear Prediction Rule
Suppose we want to predict students’ GPA at a particular college from their SAT 
scores. We could go about predicting college GPA by ignoring the SAT scores and 
just predicting that everyone will have an average level of college GPA. But we 

predictor variable (usually X ) in 
prediction, variable that is used to 
predict scores of individuals on another 
variable.

criterion variable (usually Y ) in 
prediction, a variable that is predicted.

Table 12-1 Predictor and Criterion Variables

Variable Predicted from 

Predictor Variable

Variable Predicted to 

Criterion Variable

Symbol X Y

Example SAT scores College GPA
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would not be taking advantage of knowing the SAT scores. Another possibility 
would be to use the information we have about SAT and GPA from recent students 
at this college to set up a complicated set of rules about what GPA we predict for 
each possible SAT score. For example, suppose in the past few years that students 
who came to this college with an SAT of 580 had an average GPA at graduation of 
2.62; for students with an SAT of 590 the average GPA was 2.66; for students with 
an SAT of 600 the average GPA was 2.70; and so forth. We could then use these 
numbers to set up a rule that, for future students who come in with an SAT of 580, 
we would predict they would graduate with a GPA of 2.62; for those who come in 
with an SAT of 590, we would predict they would graduate with a GPA of 2.66; 
and so forth. This would be a pretty good rule and probably would make reasonably 
accurate predictions. However, the problem with this kind of rule is that it is quite 
complicated. Also because some SAT scores may have only a few students, it might 
not be that accurate for students with those SAT scores.

Ideally, we would like a prediction rule that is not only simpler than this kind 
of complicated rule but also does not depend on only a few cases for each predic-
tion. The solution that is favored by research psychologists is a rule of the form “to 
predict a person’s score on Y, start with some baseline number, which we will call a, 
then add to it the result of multiplying a special predictor value, which we will call 
b, by the person’s score on X.” For our SAT and GPA example, the rule might be 
“to predict a person’s graduating GPA, start with .3 and add the result of multiplying 
.004 by the person’s SAT score.” That is, the baseline number (a) would be .3 and 
the predictor value (b) is .004. Thus, if a person had an SAT of 600, we would pre-
dict the person would graduate with a GPA of 2.7. That is, the baseline number of 
.3 plus the result of multiplying the predictor value of .004 by 600 gives .3 plus 2.4, 
which equals 2.7. For a student with an SAT of 700, we would predict a graduating 
GPA of 3.1 [that is, .3 + 1.004 * 7002 = 3.1].

This is an example of a linear prediction rule (or linear prediction model). 
We will see in the next main section why it is called “linear.” For now it is enough 
just to note that “linear” here means the same thing as it did when we considered 
correlation in the last chapter: Lows go with lows and highs with highs (or, for a 
negative correlation, lows with highs and highs with lows). In our SAT score and 
college GPA example, a low score on the predictor variable (SAT score) predicts a 
low score on the criterion variable (college GPA), and a high score on the predictor 
variable predicts a high score on the criterion variable.

In a linear prediction rule the formal name for the baseline number or a is the 
regression constant or just constant. It has the name “constant” because it is a fixed 
value that you always use when making a prediction. Regression is another name 
statisticians use for prediction; that is why it is called the regression constant. The 
number you multiply by the person’s score on the predictor variable, b, is called 
the regression coefficient because a coefficient is a number you multiply by some-
thing. Later in the chapter, you will learn how to figure the values of a and b, and 
you will use them to draw a figure that shows the linear prediction rule, but for now 
we are focusing on the logic for making predictions about one variable (the criterion 
variable) based on information about another variable (the predictor variable).

All linear prediction rules have this formula:

 Yn = a + 1b21X2 (12-1)

In this formula, Yn is the person’s predicted score on the criterion variable; a is 
the regression constant, b is the regression coefficient, and X is the person’s score 
on the predictor variable. The symbol over the Y means “predicted value of ” and is 
called a hat (so, Yn is said “Y hat”).

linear prediction rule formula for 
making predictions; that is, formula for 
predicting a person’s score on a criterion 
variable based on the person’s score on 
one or more predictor variables.

regression constant (a) in a linear 
prediction rule, particular fixed number 
added into the prediction.

regression coefficient (b) number 
multiplied by a person’s score on a 
predictor variable as part of a linear 
prediction rule.

A person’s predicted score on 
the criterion variable equals the  
regression constant, plus 
the result of multiplying the 
regression coefficient by that 
person’s score on the predictor 
variable.
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An Example
In the example of using SAT scores to predict college GPA, the regression constant 
(a) was .3 and the regression coefficient (b) was .004. So, to predict a person’s GPA, 
you start with a score of .3 and add .004 multiplied by the SAT score. In terms of the 
linear prediction rule formula,

Yn = a + 1b21X2 = .3 + 1.00421X2
Or in terms of the variable names,

Predicted GPA = .3 + 1.00421SAT score2.
Applying this formula to predicting GPA from a SAT score of 700,

Predicted GPA = .3 + 1.004217002 = .3 + 2.80 = 3.10.

You may be interested to know that research studies have consistently shown 
that SAT scores (as well as high school GPA) predict students’ GPA in college (e.g., 
Schmitt et al., 2009). As you can imagine (and may know from personal experi-
ence), SAT scores are not the only factor that predict students’ college GPA.

Another Example
Recall the example from Chapter 11 in which we considered the relationship 
between the number of hours of sleep and happy mood the next day for six stu-
dents. In this example, hours of sleep is the predictor variable (X) and happy mood is 
the criterion variable (Y). The regression constant (a) in this example is -3 and the 
regression coefficient (b) is 1. (You will learn in a later section how to figure these 
values of a and b.) So, to predict a person’s mood level, you start with a score of -3 
and add 1 multiplied by the number of hours of sleep. In terms of the linear predic-
tion rule formula,

Yn = a + 1b21X2 = -3 + 1121X2
Or in terms of the variable names,

Predicted mood = -3 + 1121hours of sleep2.
Applying this formula to predicting mood after having 9 hours of sleep,

Predicted mood = -3 + 112192 = -3 + 9 = 6.

Table 12-2 shows the worked-out linear prediction rule formula for the pre-
dicted mood scores for scores on sleep ranging from 0 to 16 hours. An important 
thing to notice from Table 12-2 is that in actual prediction situations it is not a good 
idea to predict from scores on the predictor variable that are much higher or lower 
than those in the study you used to figure the original correlation. You can see in 
this example that when a person sleeps a very small number of hours, you predict 
negative scores on the mood scale, which is impossible (the scale goes from 0 to 
8); and when the person sleeps a great many hours, you predict scores on the mood 
scale that are higher than the limits of the scale. (In fact, it does not even make 
sense; sleeping 16 hours would probably not make you incredibly happy.) This is 
why a prediction rule should be used only for making predictions within the same 
range of scores for the predictor variable that were used to come up with the original 
correlation on which the prediction rule is based.
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How are you doing?

 1. Fill in the blanks: The variable being predicted from is called the  variable 
and the variable being predicted is called the  variable.

 2. What is the linear prediction rule in words?
 3. Write the formula for the linear prediction rule and define each of the symbols.
 4. In a particular prediction rule, a = -1.23 and b = 6.11. What is the predicted 

score on the criterion variable if the score on the predictor variable is (a) 2.00; 
(b) 4.87; (c) -1.92?

 5. Why should the linear prediction rule be used for making predictions only 
within the same range of scores in the group of people studied that was the 
basis for forming the particular prediction rule?

Answers

 1. The variable being predicted from is called the predictor variable and the 
variable being predicted is called the criterion variable.

 2. To predict a person’s score on a criterion variable (Y), start with a particu-
lar regression constant and add to it the result of multiplying the particular 
regression coefficient by the person’s score on the predictor variable (X).

 3. Formula for the linear prediction rule: Yn = a + 1b21X2. Yn is the predicted 
score on the criterion variable (Y); a is the regression constant; b is the regres-
sion coefficient; and X is the score on the predictor variable (X).

 4. Predicted scores: (a) Yn = a + 1b21X2 = -1.23 + 16.11212.002 = 10.99; 
(b) -1.23 + 16.11214.872 = 28.53; (c) -1.23 + 16.1121-1.922 = -12.96.

 5. Using scores outside the range for the predictor variable may give unrealistic 
(or even impossible) predicted scores for the criterion variable.

Table 12-2  Using the Linear Prediction Rule Formula for the Fictional 

Sleep and Mood Example for 0 to 16 Hours of Sleep

Linear prediction rule: Yn � a � 1b 2 1X 2
Predicted mood � �3 � 11 2 1hours of sleep 2

0 hours sleep -3 = -3 + 112102
1 hours sleep -2 = -3 + 112112
2 hours sleep -1 = -3 + 112122
3 hours sleep 0 = -3 + 112132
4 hours sleep 1 = -3 + 112142
5 hours sleep 2 = -3 + 112152
6 hours sleep 3 = -3 + 112162
7 hours sleep 4 = -3 + 112172
8 hours sleep 5 = -3 + 112182
9 hours sleep 6 = -3 + 112192

10 hours sleep 7 = -3 + 1121102
11 hours sleep 8 = -3 + 1121112
12 hours sleep 9 = -3 + 1121122
13 hours sleep 10 = -3 + 1121132
14 hours sleep 11 = -3 + 1121142
15 hours sleep 12 = -3 + 1121152
16 hours sleep 13 = -3 + 1121162
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The Regression Line
You can visualize a linear prediction rule as a line on a graph in which the horizontal 
axis is for values of the predictor variable (X) and the vertical axis is for predicted 
scores for the criterion variable 1Yn2. (The graph is set up like the scatter diagrams 
you learned to make in Chapter 11.) The line is called a regression line and shows 
the relation between values of the predictor variable and the predicted values of the 
criterion variable.

Figure 12-1 shows the regression line for the SAT scores (predictor variable) 
and college GPA (criterion variable) example. By following the regression line, you 
can find the GPA score that is predicted from any particular SAT score. The dot-
ted lines show the prediction for having an SAT score of 700. From the figure, the 
predicted GPA score for an SAT score of 700 is a little more than 3.0, which is 
consistent with the precise predicted value of 3.1 we found earlier when using the 
linear prediction rule formula. So, as you can see, the regression line acts as a visual 
display of the linear prediction rule formula.

The regression line for the hours slept last night (predictor variable) and happy 
mood (criterion variable) example is shown in Figure 12-2. The dotted lines show 
that having 9 hours of sleep gives a predicted happy mood score of 6, which is the 
same value we found when using the linear prediction rule formula.

Slope of the Regression Line
The steepness of the angle of the regression line, called its slope, is the amount the 
line moves up for every unit it moves across. In the example in Figure 12-1, the line 
moves up .004 on the GPA scale for every additional point on the SAT. In fact, the 
slope of the line is exactly b, the regression coefficient. (We don’t usually think of 
SAT scores increasing by as little as 1 point—say, from 600 to 601. So instead of 
thinking about a 1-point increase in SAT giving a .004-point increase in GPA, it 
may be easier to think in terms of a 100-point increase in SAT giving a .4-point 
increase in GPA.)

regression line line on a graph such as 
a scatter diagram showing the predicted 
value of the criterion variable for each 
value of the predictor variable; visual 
display of the linear prediction rule.

slope steepness of the angle of a 
regression line in a graph of the relation 
of scores on a predictor variable and 
predicted scores on a criterion variable; 
number of units the line goes up for 
every unit it goes across.
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Figure 12-1 Regression line for the SAT scores and college GPA example, showing 
predicted college GPA for a person with an SAT score of 700 (fictional data).
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For the hours of sleep and happy mood example shown in Figure 12-2, the 
value of the regression coefficient, b, is 1. So, the line moves up 1 on the happy 
mood scale for every additional hour of sleep.

The Intercept of the Regression Line
The point at which the regression line crosses (or “intercepts”) the vertical axis is 
called the intercept (or sometimes the Y intercept). (This assumes you have drawn 
the vertical axis so it is at the 0 point on the horizontal axis.) The intercept is the 
predicted score on the criterion variable 1Yn2 when the score on the predictor variable 
(X) is 0. It turns out that the intercept is the same as the regression constant. This 
works because the regression constant is the number you always add in—a kind 
of baseline number, the number you start with. And it is reasonable that the best 
baseline number would be the number you predict from a score of 0 on the predictor 
variable. In Figure 12-1, the line crosses the vertical axis at .3. That is, when a per-
son has an SAT score of 0, they are predicted to have a college GPA of .3. In fact, 
the intercept of the line is exactly a, the regression constant. Another way of think-
ing of this is in terms of the linear prediction rule formula, Yn = a + 1b21X2. If X is 
0, then whatever the value of b, when you multiply it by X you get 0. Thus, if b mul-
tiplied by X comes out to 0, all that is left of the prediction formula is Yn = a + 0. 
That is, if X is 0, then Yn = a.

For the hours of sleep and happy mood example, the regression constant, a, was 
-3. If you were to extend the regression line in Figure 12-2, it would cross the verti-
cal axis at -3.

How to Draw the Regression Line
The first steps are setting up the axes and labels of your graph—the same steps that 
you learned in Chapter 11 for setting up a scatter diagram. The regression line is a 
straight line and thus shows a linear prediction. Thus, to draw the regression line, 

intercept the point where the 
regression line crosses the vertical axis; 
the regression constant (a).
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Figure 12-2 Regression line for the hours of sleep and happy mood example, show-
ing predicted happy mood for a person who slept 9 hours (fictional data).
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you only have to figure the location of any two points and draw the line that passes 
through them. Overall, there are four steps:

 ❶ Draw and label the axes for a scatter diagram. Remember to put the predic-
tor variable on the horizontal axis.

 ❷ Figure the predicted value on the criterion variable for a low value of the 
predictor variable and mark the point on the graph. You make the predic-
tion using the linear prediction rule you learned earlier: Yn = a + 1b21X2.

 ❸ Do the same thing again, but for a high value on the predictor variable. It 
is best to pick a value of the predictor variable (X) that is much higher than you 
used in Step ❷. This is because it will make the dots fairly far apart, so that your 
drawing will be more accurate.

 ❹ Draw a line that passes through the two marks. This is the regression line.

An Example of Drawing the Regression Line
Here is how you would draw the regression line for the SAT scores and college 
GPA example. (The steps are shown in Figure 12-3.)

 ❶ Draw and label the axes for a scatter diagram. Note that we labeled the 
Y axis “Predicted” college GPA, as the regression line shows the relationship 
between actual scores of the predictor variable (X) and predicted scores of 
the criterion variable 1Yn2.

 ❷ Figure the predicted value on the criterion variable for a low value of the 
predictor variable and mark the point on the graph. Recall from earlier 
that the linear prediction rule formula for predicting college GPA from an SAT 
score is Yn = .3 + 1.00421X2. So, for an SAT score of 200 (a low SAT score), 
the predicted college GPA is .3 + 1.004212002, which is 1.1. Thus, you mark 
this point 1X = 200, Yn = 1.12 on the graph, as shown in Figure 12-3.

T I P  F O R  S U C C E S S
To help you remember which 
variable goes on which axis, you can 
use the mnemonic “what’s known 
forms a stable basis for what’s 
predicted or envisioned up high.”
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Figure 12-3 Steps in drawing a regression line for the SAT scores and college GPA 
example. ❶ Draw and label the axes, ❷ mark a point for a low value of the predictor variable 
and its predicted value on the criterion variable, ❸ mark a point for a high value of the predic-
tor variable and its predicted value on the criterion variable, and ❹ draw the regression line.
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 ❸ Do the same thing again, but for a high value on the predictor variable. We 
saw earlier that if a person has an SAT score of 700 (a high SAT score), we pre-
dict a college GPA of 3.1 [that is, .3 + 1.004217002 = 3.1]. Thus, you mark 
this point 1X = 700, Yn = 3.12 on the graph, as shown in Figure 12-3.

 ❹ Draw a line that passes through the two marks. The line is shown in 
Figure 12-3.

Another Example of Drawing the Regression Line
Here is how you would draw the regression line for the hours of sleep and happy 
mood example. (The steps are shown in Figure 12-4.)

 ❶ Draw and label the axes for a scatter diagram.
 ❷ Figure the predicted value on the criterion variable for a low value of the 

predictor variable and mark the point on the graph. Recall that the linear 
prediction rule for predicting happy mood from the number of hours of sleep 
is Yn = -3 + 1121X2. So, for 3 hours of sleep (a low amount of sleep), the 
predicted happy mood is -3 + 112132, which is 0. Thus, you mark this point 1X = 3, Yn = 02 on the graph, as shown in Figure 12-4.

 ❸ Do the same thing again, but for a high value on the predictor variable. If a 
person has 10 hours of sleep (a large amount of sleep), we predict a happy mood 
of 7 [that is, -3 + 1121102 = 7]. Thus you mark this point 1X = 10, Yn = 72 
on the graph, as shown in Figure 12-4.

  Draw a line that passes through the two marks. The line is shown in 
Figure 12-4.
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Figure 12-4 Steps in drawing a regression line for the hours of sleep and happy 
mood example. ❶ Draw and label the axes, ❷ mark a point for a low value of the predictor 
variable and its predicted value on the criterion variable, ❸ mark a point for a high value 
of the predictor variable and its predicted value on the criterion variable, and ❹ draw the 
regression line.

T I P  F O R  S U C C E S S
You can check the accuracy of 
your line by finding any third point. 
It should also fall on the line.
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Finding the Best Linear Prediction Rule
In any given situation, how do we find the right linear prediction rule, the correct 
numbers for the regression constant, a, and the regression coefficient, b? Whether 
we think of it as a rule in words, a formula, or a regression line on a graph, we still 
have to know these two numbers. Figure 12-6 shows the scatter diagram for the six 
students in the hours of sleep and happy mood example. Four different regression 

How are you doing?

 1. What does the regression line show?
 2. What is the relationship between the regression line and the linear prediction 

rule?
 3. (a) What is the slope of the regression line? (b) What is it equivalent to in the 

linear prediction rule?
 4. (a) What is the intercept of the regression line? (b) What is it equivalent to in 

the linear prediction rule?
 5. Draw the regression line for X and Yn where a = 4 and b = 1.33 (put values 

from 0 to 12 on the X axis and values of 0 to 20 on the Y axis.)

Answers

 1. The regression line shows the relationship between the predictor variable (X) 
and predicted values of the criterion variable 1Yn2.

 2. The regression line is a visual display of the linear prediction rule.
 3. (a) The slope of the regression line is the amount the line goes up for every 

one unit it moves across. (b) In the linear prediction rule, it is equivalent to b, 
the regression coefficient.

 4. (a) The intercept of the regression line is the point at which the regression line 
crosses the vertical axis (assuming the vertical axis is at 0 on the horizon-
tal axis). (b) In the linear prediction rule, it is equivalent to a, the regression 
constant.

 5. See Figure 12-5.

20

18

16

14

12

10

8

6

4

2

0

Y

1 2 3 4 5 6 7 8 9 10

X

0 11 12

^

Figure 12-5 Regression line for “How are you doing?” question 5.
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lines (each showing a different linear prediction rule) are shown in the figure. In the 
figure, the dots show the actual scores of the six students, and the lines show differ-
ent prediction rules for predicting happy mood from hours of sleep. So the closer 
a line comes to matching the actual results (the dots), the better the job it does as a 
prediction rule. In reality, there is only one best linear prediction rule, but for learn-
ing purposes, imagine you have four rules to pick from. Which rule in Figure 12-6 
will do the best job of predicting happy mood scores from the number of hours 
slept?

Suppose we used Rule 1 as our linear prediction rule. This would be a rule 
Yn = 8 - 1.1821X2. For example, if we used this rule to make a prediction for a 
person who had 6 hours of sleep, we would predict a happy mood of 6.92 [that is, 
8 - 1.182162 = 6.92], which would be way off from the actual scores of the two 
people in the study who slept for 6 hours (one of whom had a mood score of 2, the 
other a 3). In fact, you can see from the line that most of the predictions based on 
Rule 1 would be way off from the actual happy mood scores. Rule 2 is a predic-
tion rule of Yn = 4 + 1021X2, which more simply is Yn = 4. (Since the mean of the 
Y values in this example is 4, this rule involves always predicting the mean of Y.) If 
we used this rule we would make a reasonable prediction for a person with 6 hours 
of sleep: we would predict a happy mood of 4, which would be pretty close to the 
true scores. But using this prediction rule would not do so well if we were predicting 
for a person with 5 hours of sleep or 8 hours of sleep. Overall, Rule 3 does a good 
job of predicting actual happy mood scores (it is quite close to most of the dots), but 
Rule 4 does an even better job.

Table 12-3 summarizes how well each of the four rules predicts the actual 
happy mood scores of the six students in this example. The table shows the hours 
slept (X), the actual happy mood score (Y), and the predicted happy mood score 1Yn2 for each student using each of the four prediction rules. The table shows that 
Rules 3 and 4 have predicted values of the happy mood criterion variable 1Yn2 that 
are much closer to the actual values of the criterion variable (Y) than is the case for 
Rules 1 and 2.
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Figure 12-6 Actual scores from six students (shown as dots) and four prediction rules 
(shown as regression lines) for predicting happy mood from hours of sleep (fictional data).
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sum of the squared errors sum of 
the squared differences between each 
predicted score and actual score on the 
criterion variable.

The Least Squared Error Principle
One way to come up with a prediction rule is by eyeballing and trial and error. 
Using such a method we might come up with Rule 3 or 4 in Figure 12-6 or a similar 
rule (each of which would be a lot better than Rule 1 or Rule 2). However, what we 
really need is some method of coming up with the precise, very best linear predic-
tion rule (that is, the best regression line); and this method should not be subjective 
or based on eyeballing (where different researchers may decide on different lines). 
Remember, we are trying to find the one best rule; we considered four rules for the 
mood and sleep example in Figure 12-6 to show the logic of linear prediction rules.

Coming up with the best prediction rule means we first have to decide on what 
we mean by “best.” In terms of a regression line, we basically mean the line that 
comes closest to the true scores on the criterion variable, that makes predictions that 
are as little off from the true scores as possible. The difference between a prediction 
rule’s predicted score on the criterion variable and a person’s actual score on the 
criterion variable is called error.

We, of course, want as little error as possible over the whole range of scores 
we would predict, so what we want is the smallest sum of errors. But there is one 
more problem here. Sometimes the errors will be positive (the rule will predict too 
low), and sometimes they will be negative (the rule will predict too high). The posi-
tive and negative errors will cancel each other out. So, to avoid this problem, we 
use squared errors. That is, we take each amount of error and square it (multiply 
it by itself), then we add up the squared errors. (This is the same solution we used 
in a similar situation in Chapter 2 when figuring the variance and standard devia-
tion.) Using squared errors also has various other statistical advantages over alterna-
tive approaches. For example, this approach penalizes large errors more than small 
errors; this approach also makes it easier to do more advanced computations.

Thus, to evaluate how good a prediction rule is, we figure the sum of the 
squared errors that we would make using that rule. Table 12-4 gives the sum 
of squared errors for each of the four prediction rules shown in Figure 12-6 and 
Table 12-3. To avoid making Table 12-4 too complex, we show only the actual fig-
uring of the sum of squared errors for Rule 1 and Rule 4. The scores in each “Error” 
column show the result of subtracting the predicted score on the criterion variable 1Yn2 using the rule from the actual score on the criterion variable (Y) for each of the 
six students in the example 1error = Y - Yn2. We then squared each error score for 

error in prediction, the difference 
between a person’s predicted score on 
the criterion variable and the person’s 
actual score on the criterion variable.

Table 12-3  Comparing Actual and Predicted Happy Mood Scores for Six Students Using Four Linear Prediction Rules (shown as Rules 1, 

2, 3, and 4 in Figure 12-6)

Happy Mood

Hours Slept Actual Mood

Rule 1  
Predicted Mood 

Yn � 8 � 1 .18 2 1X 2

Rule 2  
Predicted Mood 
Yn � 4 � 10 2 1X 2

Rule 3  
Predicted Mood 

Yn � �2.5 � 11 2 1X 2

Rule 4  
Predicted Mood 

Yn � �3 � 11 2 1X 2

X Y Yn Yn Yn Yn

5 2 7.10 4.00 2.50 2.00

6 2 6.92 4.00 3.50 3.00

6 3 6.92 4.00 3.50 3.00

7 4 6.74 4.00 4.50 4.00

8 7 6.56 4.00 5.50 5.00

10 6 6.20 4.00 7.50 7.00
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each rule. The sum of these squared error scores was 73.33 for Rule 1 and 6.00 for 
Rule 4. We repeated this process for Rules 2 and 3. Overall, the results for the sum 
of squared errors for Rules 1, 2, 3, and 4 were 73.33, 22.00, 7.50, and 6.00, respec-
tively. Because the goal is to come up with a linear prediction rule—values for a and 
b in the formula Yn = a + 1b21X2—that creates the smallest sum of squared errors, 
we would in this case pick Rule 4.

In picking this linear prediction rule, we have used what statisticians call the 
least squares criterion. That is, we found the regression line that gave the lowest 
sum of squared errors between the actual scores on the criterion variable (Y) and the 
predicted scores on the criterion variable 1Yn2. In the next section, you learn how to 
find the values of a and b for the linear prediction rule that gives the smallest sum of 
squared errors possible.

Finding a and b for the Least Squares 
Linear Prediction Rule
There are straightforward formulas for figuring the values of a (the regression con-
stant) and b (the regression coefficient) that will give the linear prediction rule with the 
smallest possible sum of squared errors. These formulas give you the linear prediction 
rule guaranteed to produce less squared error than any other possible prediction rule.

Here are the formulas:

 b =
g31X - MX21Y - MY24

SSX
 (12-2)

In this formula, b is the regression coefficient. X - MX is the deviation score 
for each person on the X (predictor) variable and Y - MY  is the deviation score 
for each person on the Y (criterion) variable; 1X - MX21Y - MY2 is the product 
of deviation scores for each person; and g31X - MX21Y - MY24 is the sum of 

Table 12-4  The Sum of Squared Errors for Rules 1, 2, 3, and 4 (from Figure 12-6 and Table 12-3), Showing the Figuring for Rule 1 

and Rule 4

Rule 1 Rule 4

Hours Slept Actual Mood

Rule 1  
Predicted Mood  

Yn � 8 � 1 .18 2 1X 2 Rule 1 Error
Rule 1  

Squared Error

Rule 4  
Predicted Mood 

Yn � �3 � 11 2 1X 2
Rule 4  
Error

Rule 4  
Squared Error

X Y Yn 1Y - Yn2 1Y - Yn22 Yn 1Y - Yn2 1Y - Yn22
5 2 7.10 -5.10 26.01 2.00 .00 .00

6 2 6.92 -4.92 24.21 3.00 -1.00 1.00

6 3 6.92 -3.92 15.37 3.00 .00 .00

7 4 6.74 -2.74  7.51 4.00 .00 .00

8 7 6.56   .44   .19 5.00 2.00 4.00

10 6 6.20  - .20   .04 7.00 -1.00 1.00

g = 73.33 g = 6.00

Rule 1 sum of squared errors = 73.33

Rule 2 sum of squared errors = 22.00

Rule 3 sum of squared errors = 7.50

Rule 4 sum of squared errors = 6.00

T I P  F O R  S U C C E S S
Remember, the regression line 
is a visual display of the linear 
prediction rule.

The regression coefficient is 
the sum, over all the people 
in the study, of the product of 
each person’s two deviation 
scores, divided by the sum of 
everyone’s squared deviation 
scores on the predictor 
variable.
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the products of deviation scores over all the people in the study. SSX is the sum of 
squared deviations for the X variable.

 a = MY - 1b21MX2 (12-3)

Notice that you need to know the value of b in order to figure the value of a. So you 
first use formula (12-2) to find the value of b and then use formula (12-3) to figure 
the value of a.

Here are the steps for figuring the regression coefficient, b:

 ❶ Change the scores for each variable to deviation scores. Figure the mean of 
each variable. Then subtract each variable’s mean from each of its scores.

 ❷ Figure the product of the deviation scores for each pair of scores. That is, 
for each pair of scores, multiply the deviation score on one variable by the devi-
ation score on the other variable.

 ❸ Add up all the products of the deviation scores.
 ❹ Square each deviation score for the predictor variable (X).
 ❺ Add up the squared deviation scores for the predictor variable (X).
 ➏ Divide the sum of the products of deviation scores from Step ❸ by the sum 

of squared deviations for the predictor variable (X) from Step ❺. This gives 
the regression coefficient, b.

Here are the steps for figuring the regression constant, a:

 ❶ Multiply the regression coefficient, b, by the mean of the X variable.
 ❷ Subtract the result of Step ❶ from the mean of the Y variable. This gives the 

regression constant, a.

Earlier in the chapter, we told you that the regression coefficient, b, for the 
hours of sleep and mood example was 1, and the regression constant, a, was -3. 
Now let’s see how we figured those values. The figuring for the regression coef-
ficient, b, is shown in Table 12-5. Using the steps,

 ❶ Change the scores for each variable to deviation scores. Figure the mean of 
each variable. Then subtract each variable’s mean from each of its scores. The 
deviation scores are shown in the X - MX and Y - MY columns in Table 12-5.

 ❷ Figure the product of the deviation scores for each pair of scores. That is, 
for each pair of scores, multiply the deviation score on one variable by the devi-
ation score on the other variable.

 ❸ Add up all the products of the deviation scores. Adding up all the products 
of the deviation scores, as shown in the final column of Table 12-5, gives a 
sum of 16.

 ❹ Square each deviation score for the predictor variable (X).
 ❺ Add up the squared deviation scores for the predictor variable (X). As 

shown in the 1X - MX22 column of Table 12-5, the sum of squared deviations 
for the sleep variable is 16.

 ❻ Divide the sum of the products of deviation scores from Step ❸ by the sum 
of squared deviations for the predictor variable (X) from Step ❺. Dividing 
16 by 16 gives a result of 1. This is the regression coefficient. In terms of the 
formula,

b =
g31X - MX21Y - MY24

SSX
=

16

16
= 1

The regression constant is 
the mean of the criterion 
variable minus the result of 
multiplying the regression 
coefficient by the mean of the 
predictor variable.
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The figuring for the regression constant, a, is also shown in Table 12-5. Using 
the steps,

 ❶ Multiply the regression coefficient, b, by the mean of the X variable. We 
just figured the value of b to be 1, and 1 multiplied by 7 (the mean of X) gives 7.

 ❷ Subtract the result of Step ❶ from the mean of the Y variable. Subtracting 
7 (the result of Step ❶) from 4 (the mean of Y) gives -3. This is the regression 
constant, a. In terms of the formula,

a = MY - 1b21MX2 = 4 - 112172 = -3.

So, for the sleep and happy mood example, the (least squares) linear prediction 
rule for predicting mood from hours of sleep—using our formula Yn = a + 1b21X2—
is Yn = -3 + 1121X2. As we showed earlier in the chapter (see Table 12-2), you 
can enter values for X (hours of sleep) into this formula to give predicted values of 
happy mood.

Table 12-5  Figuring the Regression Coefficient (b), Regression Constant (a), and the Linear 

Prediction Rule for Predicting Happy Mood from Hours of Sleep (Fictional Data)

Number of Hours Slept (X ) Happy Mood (Y )

Deviation ❶
Deviation  

Squared ❹ Deviation ❶
Products of ❷ 

Deviation Scores

X X � MX 1X � MX 2
2 Y Y � MY 1X � MX 2 1Y � MY 2

5 -2 4 2 -2 4

7   0 0 4   0 0

8   1 1 7   3 3

6 -1 1 2 -2 2

6 -1 1 3 -1 1

10   3 9 6   2 6

g = 42 g = SSX = 16 g = 24 g = 16

M = 7 ❺ M = 4             ❸
❻

b =
g31X - MX21Y - MY24

SSX
=

16
16

= 1

a = MY - 1b21MX2 = 4 - 112172 = 4 - 7 = -3

Linear prediction rule: Using formula Yn = a + 1b21X2,Yn = -3 + 1121X2
Note: The circled numbers refer to the steps for figuring the regression coefficient, b.

How are you doing?

 1. What is the least squared error principle?
 2. Give three advantages of using squared errors, as opposed to unsquared 

errors, when figuring the best linear prediction rule.
 3. (a) Write the formula for the regression coefficient, b, and define each of the 

symbols. (b) Write the formula for the regression constant, a, and define each 
of the symbols.

 4. (a) Find the linear prediction rule for predicting Y scores from X scores based on 
the following numbers. (b) Figure the sum of the squared errors when using the 
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Answers

 1. The least squared error principle is the principle that the best prediction rule is 
the rule that gives the lowest sum of squared errors between the actual scores 
on the criterion variable and the predicted scores on the criterion variable.

linear prediction rule from part (a) to predict the scores for the four people in this 
study. (c) Repeat part (b), this time using the prediction rule Yn = 9 - 1.721X2. 
(d) Why must your answer to (b) be lower than your answer to (c)?

X Y

4 6

6 8

7 3

3 7

Table 12-6 Figuring the Linear Prediction Rule for “How Are You Doing?” Question 4

X Y

Deviation ❶
Deviation  

Squared ❹ Deviation ❶
Products of ❷ 

Deviation Scores

X X � MX 1X � MX 2
2 Y Y � MY 1X � M X 2 1Y � MY 2

4 -1 1 6   0   0

6   1 1 8   2   2

7   2 4 3 -3 -6

3 -2 4 7   1 -2

g = 20 g = SSX = 10 g = 24 g = -6

M = 5 ❺ M = 6 ❸
❻

b =
g [1X - MX21Y - MY2]

SSX
=

-6
10

= - .6

a = MY - 1b21MX2 = 6 - 1- .62152 = 6 + 3 = 9

Linear prediction rule: Using formula Yn = a + 1b21X 2,Yn = 9 - 1.621X 2
Note: The circled numbers refer to the steps for figuring the regression coefficient, b.

Table 12-7 Figuring the Sums of Squared Errors for “How Are You Doing?” Questions 4b and 4c

Prediction Rule from Part (a) Prediction Rule from Part (c)

Yn = 9 � 1 .6 2 1X 2 Error Squared Error Yn � 9 � 1 .7 2 1X 2 Error Squared Error

X Y Yn 1Y - Yn2 1Y - Yn 22 Yn 1Y - Yn 2 1Y - Yn 22
4 6 6.6 - .6 .36 6.2 - .2 .04

6 8 5.4 2.6 6.76 4.8 3.2 10.24

7 3 4.8 -1.8 3.24 4.1 -1.1 1.21

3 7 7.2 - .2 .04 6.9 .1 .01

g = 10.40 g = 11.50
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Issues in Prediction
In this section, you will learn about two issues in prediction: the standardized regres-
sion coefficient, and hypothesis testing and prediction.1

The Standardized Regression Coefficient
The linear prediction rule you have learned provides a useful and practical way 
of making predictions on a criterion variable from scores on a predictor variable. 
Recall from the hours of sleep and happy mood example that the prediction rule for 
predicting mood from sleep was: Yn = -3 + 1121X2. Now, imagine that another 
group of researchers carry out the same study and find the prediction rule to be 
Yn = -3 + 1221X2. In this new study, the regression coefficient (of 2) is much 
larger than the regression coefficient (of 1) in the original study. Recall that the 
regression coefficient tells you the slope of the regression line. That is, the regres-
sion coefficient is the predicted amount of increase in units for the criterion variable 
when the predictor variable increases by one unit. So the original study shows a 
1-unit increase in sleep is associated with a 1-unit increase in mood. The new study, 
however, shows a 1-unit increase in sleep is associated with a 2-unit increase in 
mood. With this in mind, you might conclude that the larger regression coefficient 
in the new study shows that sleep has a much stronger effect on mood.

At this point, however, we should note one important difference between the 
two studies of sleep and happy mood. In the original study, happy mood was mea-
sured on a scale going from 0 to 8. However, the researchers in the new study used 
a scale of 0 to 20. Thus, with the first study, a 1-hour increase in sleep predicts a 
1-point increase in mood on a scale from 0 to 8, but in the second study a 1-hour 
increase in sleep predicts a 2-point increase in mood but on a scale of 0 to 20. Thus, 
the second study might actually have found a slightly smaller effect of sleep!

Researchers in psychology quite often use slightly different measures or the 
same measure with a different scale (1 to 5 versus 10 to 100, for example) for the 

 2. Unlike unsquared errors, squared errors do not cancel each other out. Using 
squared errors penalizes large errors more than small errors; they also make 
it easier to do more advanced computations.

 3. (a) The formula for the regression coefficient: b =
g31X - MX21Y - MY24

SSX
. b is 

  the regression coefficient; � is the symbol for sum of—add up all the scores 
that follow (in this formula, you add up all the products of deviation scores that 
follow); X - MX is the deviation score for each person on the predictor (X) 
variable; Y - MY is the deviation score for each person on the criterion (Y)
variable; SSX is the sum of squared deviations for the predictor variable.

  (b) a = MY - 1b21MX2. a is the regression constant; MY  is the mean of 
the criterion variable; b is the regression coefficient; MX is the mean of the 
predictor variable.

 4. (a) The figuring is shown in Table 12-6. The linear prediction rule is 
Yn = 9 - 1.621X2. (b) As shown in Table 12-7, the sum of squared errors 
is 10.40. (c) As shown in Table 12-7, the sum of squared errors is 11.50.  
(d) The linear prediction rule figured in part (a) is the rule that gives the small-
est sum of squared errors; so the sum of squared errors for any other rule will 
be larger than this sum.
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same variable. This can make it hard to compare the linear prediction rule for the 
same type of effect (such as the effect of sleep on happy mood) across studies. This 
is because the scale used for the predictor and criterion variables will affect the 
value of b (the regression coefficient) in the linear prediction rule. (The value of a, 
the regression constant, will also be affected by the scales used. But researchers in 
psychology are usually more interested in the actual value of b than a.)

Does this type of problem seem familiar to you? Recall from Chapter 3 that you 
learned how to change a raw score into a Z score, which is a score on a scale of stan-
dard deviation units. For example, a Z score of 1.23 is a score that is 1.23 standard 
deviation units above the mean of the scores, and a Z score of - .62 is .62 standard 
deviation units below the mean. This allowed you to compare the score on one vari-
able relative to the score on another variable, even when the two variables used dif-
ferent scales. In the case of the regression coefficient in this chapter, we need a type 
of regression coefficient that can be compared across studies (that may have used 
different scales for the same variable).

It turns out that, just as there was a formula for changing a raw score to a  
Z score, there is a formula for changing a regression coefficient into what is known 
as a standardized regression coefficient. A standardized regression coefficient, 
which is referred to using the Greek symbol � (beta), shows the predicted amount 
of change in standard deviation units of the criterion variable if the value of the 
predicted variable increases by one standard deviation. For example, a standardized 
regression coefficient of .63 would mean for every increase of 1 standard deviation 
on X, we predict an increase of .63 standard deviations on Y. The formula for the 
standardized regression coefficient 1�2 is
 � = 1b22SSX

2SSY

 (12-4)

This formula has the effect of changing the regular (unstandardized) regression 
coefficient (b), the size of which is related to the specific scales for the predictor and 
criterion variables, to a standardized regression coefficient 1�2 that shows the rela-
tionship between the predictor and criterion variables in terms of standard deviation 
units.

An Example
For the sleep and mood example shown in Table 12-5, SSX = 16. Table 12-5 doesn’t  
show the value of SSY, but we can figure it by squaring each score in the Y - MY 
column and summing the resulting values. Thus, SSY = 02 + 1-222 + 1322 +1-222 + 1-122 + 22 = 0 + 4 + 9 + 4 + 1 + 4 = 22. The value of b was 1; so 
the standardized regression coefficient for the sleep and mood example is

� = 1b22SSX

2SSY

= 112216

222
= 112 4

4.69
= .85.

This means that for every standard deviation increase in sleep, the predicted level 
of mood increases by .85 standard deviations. You could then compare this value 
of � = .85 to the standardized regression coefficient 1�2 from other studies, such 
as the study we described earlier that used a 0 to 20 mood scale instead of the 0 to 8 
mood in the original study.

Later in the chapter, we will discuss when researchers describe their results in 
terms of the regular (unstandardized) regression coefficient (b) and when they report 
the standardized regression coefficient 1�2.

standardized regression coefficient 
(�) regression coefficient in standard 
deviation units. It shows the predicted 
amount of change in standard deviation 
units of the criterion variable if the value 
of the predictor variable increases by one 
standard deviation.

T I P  F O R  S U C C E S S
The � (beta), which is the 
standardized regression 
coefficient, is entirely separate 
from the beta you learned in 
Chapter 6. In that chapter, 
beta referred to the probability 
of making a Type II error—the 
probability of not getting a 
significant result when the 
research hypothesis is true. Also, 
note that the use of the term � 
for the standardized regression 
coefficient is an exception to the 
rule that Greek letters refer to 
population parameters.

The standardized regression 
coefficient is equal to the 
regular, unstandardized 
regression coefficient 
multiplied by the result of 
dividing the square root of 
the sum of squared deviations 
for the predictor variable by 
the square root of the sum 
of squared deviations for the 
criterion variable.
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The Standardized Regression Coefficient 1�2 
and the Correlation Coefficient (r)
In the examples we have used so far in this chapter, in which scores on a criterion 
variable are predicted based on scores from one predictor variable, the standardized 
regression coefficient 1�2 has the same value as the correlation coefficient (r) between 
the two variables. So, the � of .85 for the sleep and mood example is the same as the 
r of .85 between sleep and mood we figured in Chapter 11 (see Table 11-3). However, in 
formula (12-4), we gave a more general method for figuring a standardized regression 
coefficient, because the standardized regression coefficient is not the same as the corre-
lation coefficient when scores on a criterion variable are predicted based on scores from 
more than one predictor variable (a situation we examine in the next main section).

Hypothesis Testing and Prediction
In Chapter 11, you learned that hypothesis testing with a correlation coefficient 
meant examining whether the coefficient was significantly different than 0 (no cor-
relation). You learned how to use a t test to determine whether a correlation coef-
ficient was statistically significant. Since the standardized regression coefficient is 
the same as the correlation coefficient (when predicting a criterion variable from 
one predictor variable), the t test for the correlation between the two variables also 
acts as the t test for the prediction of the criterion variable from the predictor vari-
able. The standardized regression coefficient is just another way of presenting the 
regular regression coefficient; so the t test for the correlation applies to both types 
of regression coefficients. In terms of prediction, the hypothesis test for a regres-
sion coefficient (for both b and �) tests whether the regression coefficient is signifi-
cantly different from 0. A regression coefficient of 0 means that knowing a person’s 
score on the predictor variable does not give you any useful information for predict-
ing that person’s score on the criterion variable. However, if the hypothesis testing 
result shows that the regression coefficient is significantly different from 0, then 
knowing a person’s score on the predictor variable gives you useful information for 
predicting a person’s score on the criterion variable.

T I P  F O R  S U C C E S S
If you did not read the section on 
the significance test of a correlation 
coefficient in Chapter 11, you 
should skip this section on 
hypothesis testing and  
prediction.

How are you doing?

 1. What does a standardized regression coefficient show?
 2. (a) Write the formula for the standardized regression coefficient, �, and define 

each of the symbols. (b) Figure the value of � when b = -1.21, SSX = 2.57, 
and SSY = 7.21.

 3. When predicting scores on a criterion variable from scores on one predictor 
variable, the standardized regression coefficient has the same value as what 
other statistic?

 4. How is hypothesis testing carried out with a regression coefficient?

Answers

 1. A standardized regression coefficient shows how much of a standard devia-
tion the predicted value of the criterion variable changes when the predictor 
variable changes by one standard deviation.

 2. (a) The formula for the standardized regression coefficient is � = 1b22SSX

2SSY

. 
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Multiple Regression
So far, we have predicted a person’s score on a criterion variable using the person’s 
score on a single predictor variable. That is, each example so far was for bivariate 
prediction (or bivariate regression)—bivariate means two variables—and the pre-
diction rules we used were bivariate prediction rules.

Suppose you could use more than one predictor variable. For example, in pre-
dicting happy mood, all you had to work with was the number of hours slept the 
night before. Suppose you also knew how well the person had slept and how many 
dreams the person had had. With this added information, you might be able to make 
a much more accurate prediction of mood.

The association between a criterion variable and two or more predictor vari-
ables is called multiple correlation.2 Making predictions in this situation is called 
multiple regression.

We explore these topics only briefly because the details are beyond the level 
of an introductory book. However, multiple regression and multiple correlation are 
very frequently used in research articles in psychology, especially in fields like clin-
ical, developmental, personality, and social psychology. So it is valuable for you to 
have a general understanding of them. (We build on your general understanding of 
multiple regression in Chapter 15.)

Multiple Regression Prediction Rules
A multiple regression linear prediction rule with three predictor variables goes 
like this:

 Yn = a + 1b121X12 + 1b221X22 + 1b321X32 (12-5)

In this formula, Yn is the predicted score on the criterion variable; a is the regres-
sion constant; b1, b2, and b3 are the regression coefficients for the first, second, 
and third predictor variables, respectively; and X1, X2, and X3 are the person’s 
scores on the first, second, and third predictor variables, respectively. Notice that 
there is one regression constant and each predictor variable has its own regression 
coefficient.

bivariate prediction prediction of 
scores on one variable based on scores of 
one other variable. Also called bivariate 
regression.

multiple correlation correlation of 
a criterion variable with two or more 
predictor variables.

multiple regression procedure for 
predicting scores on a criterion variable 
from scores on two or more predictor 
variables.

  � is the standardized regression coefficient; b is the regular, unstandardized 
regression coefficient; SSX is the sum of squared deviations for the predic-
tor variable (X); and SSY  is the sum of squared deviations for the criterion 
 variable (Y).

  (b) � = 1b22SSX

2SSY

= 1-1.21222.57

27.21
= - .72.

 3. The standardized regression coefficient has the same value as r, the correla-
tion coefficient between the two variables.

 4. When predicting a criterion variable based on scores on one predictor vari-
able, the hypothesis test for a regression coefficient is the same as the 
hypothesis test for the correlation between the two variables. The test uses a 
t statistic and tests whether the regression coefficient is significantly different 
from 0. A statistically significant regression coefficient means that knowing a 
person’s score on the predictor variable provides useful information for pre-
dicting a person’s score on the criterion variable.

A person’s predicted score 
on the criterion variable is the 
regression constant, plus the 
regression coefficient for 
the first predictor variable 
multiplied by the person’s 
score on the first predictor 
variable, plus the regression 
coefficient for the second 
predictor variable multiplied 
by the person’s score on the 
second predictor variable, 
plus the regression coefficient 
for the third predictor 
variable multiplied by the 
person’s score on the third 
predictor variable.
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For example, in the sleep and mood study, a multiple regression linear predic-
tion rule for predicting mood with three predictor variables might be as follows:

 Predicted mood = -3.78 + 1.8721hours of sleep2 + 1.3321how well slept2
 + 1.2021number of dreams2

Suppose a particular person had slept 7 hours the night before, rated how well slept 
as a 3, and had 1 dream. Their predicted mood would be

 Predicted mood = -3.78 + 1.872172 + 1.332132 + 1.202112
 = -3.78 + 6.09 + .99 + .20 = 3.50

An Important Difference Between Multiple  
Regression and Bivariate Prediction
There is one particularly important difference between multiple regression and 
bivariate prediction. In ordinary bivariate prediction the standardized regression 
coefficient is the same as the correlation coefficient. But, as we noted earlier, the 
standardized regression coefficient 1�2 for each predictor variable in multiple 
regression is not the same as the ordinary correlation coefficient (r) of that predictor 
with the criterion variable.

Usually, a � will be closer to 0 than r. The reason is that part of what makes any 
one predictor successful in predicting the criterion will usually overlap with what 
makes the other predictors successful in predicting the criterion variable. In multiple 
regression, both the standardized and the regular regression coefficients are about 
the unique, distinctive contribution of the variable, excluding any overlap with other 
predictor variables.

Consider the sleep and mood example. When we were predicting mood using 
just the number of hours slept, � was the same as the correlation coefficient of .85. 
Now, with multiple regression, the � for number of hours slept turns out to be .74. It 
is less because part of what makes number of hours slept predict mood overlaps with 
what makes sleeping well and number of dreams predict mood. (In this fictional 
example, people who sleep more hours usually sleep well and have more dreams.)

In multiple regression, the correlation between the criterion variable and all the 
predictor variables taken together is called the multiple correlation coefficient and 
is symbolized as R. However, because of the usual overlap among predictor vari-
ables, the multiple correlation is usually smaller than the sum of the individual rs of 
each predictor with the criterion variable. The squared multiple correlation, r2 gives 
the proportionate reduction in error or proportion of variance accounted for in the 
criterion variable by all the predictor variables taken together. For example, an R 
of .40 gives an r2 of .16, which means that the predictor variables together account 
for 16% 1.40 * .40 = .16, which is the same as 16%) of the variation in the scores 
in the criterion variable. R2 is a measure of the effect size for multiple regression. 
Cohen’s (1988) conventions for R2 for multiple regression are .02, a small effect 
size; .13, a medium effect size; and .26, a large effect size.

In multiple regression, there are a number of possible hypothesis tests. First, you 
can test the significance of the multiple correlation (and the squared multiple cor-
relation) using a procedure in which the null hypothesis is that in the population the 
multiple correlation is 0. This tests whether the variables as a whole are associated 
with the criterion variable. You can also test the significance of each individual pre-
dictor variable using a t test in a similar manner for hypothesis testing with bivari-
ate prediction. Each test shows whether the regression coefficient for that variable is  

multiple correlation coefficient 
(R) in multiple regression, the 
correlation between the criterion variable 
and all the predictor variables taken 
together.
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significantly different from 0. As with bivariate prediction, a significant regression 
coefficient for a predictor variable means that knowing a person’s score on that 
predictor variable gives you useful information for predicting a person’s score on 
the criterion variable. However, here the focus is on whether this predictor variable 
adds more than 0 to the prediction over and above what the other predictor variables 
already predict. Finally, there is also a hypothesis test for whether the regression con-
stant is significantly different from 0. However, researchers in psychology typically 
do not pay much attention to this test, because the actual value of the regression con-
stant (and whether it is different from 0) is usually not of great importance in many 
areas of research.

Assumptions of Prediction
The assumptions of the significance test for prediction are similar to the assump-
tions for the significance test of a correlation coefficient: there is an equal distribu-
tion of each variable at each point of the other variable; the relationship between the 
variables is linear; and the people (or cases) are independent. Another assumption is 
that the error scores (that is, the difference between the prediction rule’s predicted 
scores on the criterion variable and people’s actual scores on the criterion variable) 
are normally distributed. Also, for the type of prediction that we focus on in this 
chapter, we assume that both the predictor and the criterion variable are equal-interval 
numeric variables. (It is possible to use other types of predictor and criterion vari-
ables in prediction; you will likely learn about such types of prediction if you take 
more advanced statistics classes.)

Limitations of Prediction
All of the limitations for correlation we discussed in Chapter 11 apply to prediction. 
The procedures we have considered in this chapter are inaccurate if the correlation 
is curvilinear, the group studied is restricted in range, the measures are unreliable, 
or there are outliers. That is, in each of these situations the regression coefficients 
(whether bivariate or multiple) are smaller than they should be to reflect the true 
association of the predictor variables with the criterion variable. Nor do these pre-
diction procedures by themselves tell you anything about the direction of causal-
ity. Even in published articles, researchers sometimes overlook these limitations 
when considering complex regression results. We will not go in to detail, but prior 
to doing prediction (and correlation) analyses, researchers often check to see if any 
of the preceding limitations are relevant in their research situation. For example, a 
scatter diagram can help to identify outliers. The researcher can then conduct the 
analysis two ways. In one analysis, the outliers are included in the figuring; and in 
a separate analysis, the outliers are excluded from the figuring. By doing this, the 
researcher can see how the outliers influence the overall results.

How are you doing?

 1. What is multiple regression?
 2. Write the multiple regression linear prediction rule with two predictors and 

define each of the symbols.
 3. In a multiple regression linear prediction rule, the regression constant is 2.19, 

the regression coefficient for the first variable is -3.16, and the regression 
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coefficient for the second variable is .99. What is the predicted score on the 
criterion variable for (a) a person with a score of .40 on the first predictor vari-
able and a score of 10.50 on the second predictor variable, and (b) a person 
with a score of .15 on the first predictor variable and a score of 5.50 on the 
second predictor variable?

 4. In multiple regression, why are the standardized regression coefficients for 
each predictor variable often smaller than the ordinary correlation coefficient 
of that predictor variable with the criterion variable?

 5. What are the different hypothesis tests for multiple regression?
 6. What are the effect size conventions for multiple regression?
 7. What are the assumptions of the significance test for prediction?
 8. List four conditions that may lead to regression procedures being inaccurate.

Answers

 1. Multiple regression is the procedure for predicting a criterion variable from a 
prediction rule that includes more than one predictor variable.

 2. The multiple regression linear prediction rule is Yn = a + 1b121X12 + 1b221 X22. 
Yn is the predicted score on the criterion variable; a is the regression constant; 
b1 is the regression coefficient for the first predictor variable; X1 is the per-
son’s score on the first predictor variable; b2 is the regression coefficient for 
the second predictor variable; and X2 is the person’s score on the second 
predictor variable.

 3. Predicted scores on the criterion variable:
(a) Yn = 2.19 - 13.1621.402 + 1.992110.502 = 2.19 - 1.26 + 10.40 = 11.33.
(b) Yn = 2.19 - 13.1621.152 + 1.99215.502 = 2.19 - .47 + 5.45 = 7.17.

 4. In multiple regression, a predictor variable’s association with the criterion 
variable usually overlaps with the other predictor variables’ association with 
the criterion variable. Thus, the unique association of a predictor variable with 
the criterion variable (as shown by the standardized regression coefficient) is 
usually smaller than the ordinary correlation of the predictor variable with the 
criterion variable.

 5. There is a hypothesis test to test the significance of the multiple correlation. 
Also, a hypothesis test can be carried out for each predictor variable to test 
whether its regression coefficient is significantly different from 0. Finally, 
there is a hypothesis test to test whether the regression constant is signifi-
cantly different from 0.

 6. The effect size conventions for multiple regression are .02, a small effect size; 
.13, a medium effect size; and .26, a large effect size.

 7. The assumptions of the significance test for prediction are: there is an equal 
distribution of each variable at each point of the other variable; the relation-
ship between the variables is linear; the people (or cases) are independent; 
and the error scores follow a normal distribution.

 8. Four conditions that may lead to regression procedures being inaccurate: 
(i) restriction in range, (ii) curvilinear associations, (iii) unreliable measurement, 
and (iv) outliers.
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Controversy: Unstandardized and Standardized 
Regression Coefficients; Comparing Predictors
There is some debate in the psychological research literature about whether research 
studies should present their results in terms of unstandardized regression coefficients 
(bs), standardized regression coefficients 1�s2, or both types of coefficients. Some 
researchers recommend listing only regular unstandardized regression coefficients 
when the study is purely applied, only standardized regression coefficients when the 
study is purely theoretical, and both the regular and standardized regression coeffi-
cients in all other cases. Although this appears to be a straightforward solution to the 
issue, researchers do not always agree as to when a study is purely applied or purely 
theoretical. This issue is further complicated by the fact that standardized regression 
coefficients can be less than consistent across different samples because they are influ-
enced by the range (and variance) of the scores in the samples, while unstandardized 
regression coefficients are not so influenced. Overall, we generally recommend that, 
unless there is a good reason not to do so, you present the results of your own research 
studies in terms of both unstandardized and standardized regression coefficients.

Related to these issues, recall from earlier in the chapter that we introduced the 
standardized regression coefficient as a useful way to compare a regression coef-
ficient from one study with a regression coefficient from another study. Similarly, 
when comparing the size of the regression coefficients for each of several predictor 
variables in a multiple regression, you should compare the standardized regression 
coefficients (the �s), as opposed to the regular unstandardized regression coeffi-
cients (the bs). This is because a larger value of b for one predictor variable com-
pared to another predictor variable may simply reflect the different scales for each 
variable (0 to 10 versus 0 to 100, for example).

However, even assuming we want to focus on standardized values for some 
purposes, there is an ongoing controversy in multiple regression about how to judge 
the relative importance of each predictor variable in predicting the criterion variable. 
The question is whether (i) you should use the standardized regression coefficients 
(the �s) of the predictor variables from the overall regression equation, or (ii) you 
should instead use the bivariate correlation coefficients (the rs) of each predictor 
variable with the criterion variable. Both are standardized in that they adjust for the 
variation in the variables used, and in bivariate regression they are the same thing. 
But in multiple regression, as we noted, they are not the same thing. Specifically, a 
regression coefficient tells you the unique contribution of the predictor variable to 
the prediction, over and above all the other predictors. When predicting by itself, 
without considering the other predictors (that is, using its ordinary correlation, r, 
with the criterion variable), a predictor variable may seem to have a quite different 
importance relative to the other predictor variables.

For example, if there are three predictors, the standardized regression coeffi-
cients (the �s) could be .2, .3, and .4. But in that particular study, the rs for these 
three predictors might be .6, .4, and .5. Thus, if you looked at the �s, you would 
think the third predictor was most important; but if you looked at the rs, you would 
think the first predictor was the most important.

Many approaches to this problem have been considered over the years, but all 
are controversial. What most experts recommend is to use all the information you 
have; consider both the rs and the �s, keeping in mind the difference in what they 
tell you. The r tells you the overall association of the predictor variable with the 
criterion variable. The � tells you the unique association of this predictor variable, 
over and above the other predictor variables, with the criterion variable.
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In addition to these and other controversies relating to the statistical aspects, 
there has been an ongoing controversy for many years about the superiority of statis-
tical prediction over more intuitive, humanistic, or clinical approaches. This issue is 
addressed in Box 12-1.

More than fifty years ago, Paul Meehl (1954) wrote an 
unsettling little book called Clinical vs. Statistical Pre-
diction. He argued that when experts such as clinical 
psychologists (or business managers, economic forecast-
ers, engineers, or doctors, among others) use the kinds of 
unspecified internal cognitive processes that are usually 
called “trained intuitions,” they are not very accurate. 
On the average their decisions are no better than those 
anybody could make by using very simple, straightfor-
ward prediction formulas. For example, in psychiatric 
diagnosing, a supposedly well-trained clinician’s inter-
view and diagnosis are less useful than a mere rule such 
as “if the person has been admitted to the hospital twice 
before, is over 50, and appears suicidal, then . . .”—the 
kind of rule generated by using a multiple regression 
model.

In the first decade after Meehl questioned the accu-
racy of experts, considerable efforts were made to dis-
prove him. But on the whole, Meehl’s discovery has held 
up. He noted this himself 30 years later in an article enti-
tled “Causes and Effects of My Disturbing Little Book” 
(Meehl, 1986). Looking specifically at predictions in 
clinical psychology, a recent meta-analysis of nearly a 
hundred research studies (Ægisdóttir et al., 2006) contin-
ues to support his basic conclusion, with some caveats. 
It is important that clinicians be allowed to follow a cli-
ent model-building process, in which clinicians act like 
scientists, forming a hypothesis about a patient based 
on statistical information and then applying it to see if 
it holds up (Strohmer & Arm, 2006). Perhaps with this 
client the hypothesis needs revising because new facts 
have come to light, making other research more relevant. 
Then the clinician hears some other new aspect that 
requires the hypothesis to be revised again, on the basis 
of research on this aspect, and so on. What is important 
is that this scientific model-building process replace 
jumping to the wrong conclusion, which could happen 
either with intuition or a formula.

Further, this issue tends to become polarized between 
“therapy-as-an-art” and “formulas-beat-clinicians.” In 
fact, “Although the statistical method is almost always 

the equal of the clinical method and is often better,  
the improvement is not overwhelming” (Ægisdóttir et al.,  
2006, p. 367). It amounts in study after study to be about 
a 13% increase in accuracy. Formulas, therefore, seem 
most important when making a mistake is especially 
dangerous. That is in fact how formulas have been most 
often used so far—to predict suicide, violence, and 
recidivism.

Remember, this is an issue of prediction, and statisti-
cal methods often cannot do all that well at predicting 
violence or suicide either. Their main advantage is con-
sistency, like a gambler with a system.

Naturally, the focus has turned to how cognition 
operates, why it is flawed, and what, if anything, can 
be done to improve it. The flaws are mainly that people 
make illusory correlations (see Chapter 11, Box 11-2). 
Or they are overconfident; they do not keep a record of 
their successes and failures to see whether they are in 
fact accurate, but instead put too much weight on their 
remembered successes and forget their failures. Also, 
overconfidence comes in part from lack of feedback; cli-
nicians may make hundreds of diagnoses without learn-
ing whether they were correct. Finally, human memory 
and cognition may not have the capacity to handle the 
information and operations required to make certain 
complex decisions. And that capacity varies. Some peo-
ple have a high “need for cognition,” the desire to think 
about things. Those with a low need are less consistent 
and accurate (Ruscio, 2000).

A great deal of research has addressed how to “de-
bias” human decisions. People can be shown when they 
must rely on their intuition—for example, when there is 
not enough time to apply a formula or when simple aver-
aging will suffice. At other times they need to under-
stand that a formula is more accurate—for example, 
when rules are complicated.

There is also considerable work on decision aids, 
such as computer programs with built-in decision rules 
supplied by experts. Sometimes, more intuitive or sub-
jective information can be added at the last minute by 
experts knowledgeable about the particular situation 

BOX 12-1 Clinical Versus Statistical Prediction
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Prediction in Research Articles
It is rare for bivariate linear prediction rules to be reported in psychology research 
articles; usually, simple correlations are reported. Sometimes, however, you will see 
regression lines from bivariate predictions. This is usually done when there is more 
than one group and the researcher wants to illustrate the difference in the linear pre-
diction rule between the two groups.

For example, consider an experiment Oettingen and her colleagues (2001) 
conducted with German university students. This experiment focused on the stu-
dents’ thoughts about the possibility of studying abroad. First, the students were 
asked about how much they expected to succeed (that is, how likely it was that they 
would study abroad). In the next part of the study, participants were divided into 
one of three groups. Participants in the positive fantasy group were instructed to 
spend some time thinking about specific positive aspects of studying abroad; those 
in the negative reality group, were instructed to spend some time thinking about 
specific obstacles that stand in the way of studying abroad; and those in the contrast 
group were instructed to spend some time thinking about both positive possibilities 
and negative realities. Afterward, participants answered questions about how disap-
pointed they would be if they were never able to study abroad.

Figure 12-7 (from Oettingen et al., 2001) shows a regression line for each of 
the three experimental groups. Each regression line shows how much expectation of 
success predicts anticipated disappointment. The major result is shown in the solid 
blue line: For students in the contrast group (those who thought about both the posi-
tive possibilities and realistic obstacles), the greater their initial expectations of suc-
cess, the more disappointed they would be if they were not able to study abroad.

The researchers see the pattern for the contrast group as what would be 
expected: that people are most disappointed when they expect to succeed and least 
disappointed when they don’t. But either having positive fantasies or dwelling on 
negative obstacles interferes with this normal process; so level of disappointment is 
much less related to expectations of success.

Multiple regression results are common in research articles and are often 
reported in tables. Usually, the table lays out the regression coefficient for each 
predictor variable, which can be either the regular unstandardized (b), standardized 1�2, or both, along with the overall R or R2 in a note at the bottom of the table. The 
table may also give the correlation coefficient (r) for each predictor variable with 
the criterion variable. This is helpful, because it lets you compare the unique associ-
ation of each predictor to the criterion variable (what the regression coefficient tells 
you) with the overall association (what the correlation coefficient tells you) (Kashy 
et al., 2009). As we saw in Chapter 11 with correlation tables, regression tables also 

(Holzworth, 1996; Whitecotton, 1996). What cannot be 
allowed with any decision aid is that it be abandoned 
when someone has a hunch they can do better without 
the aid.

The use of decision support systems is on the rise. For 
example, expert chess players have developed aids that 
can sometimes outwit their own creators, merely by being 
thoroughly consistent. Thus, some chess players have 
become comfortable using decision support systems to 

keep themselves on track during a game. And as health 
care is forced to become more cost conscious, it may have 
to use impartial decision aids about who receives what 
treatment. And the public may benefit. For example, a 
decision aid for helping doctors who are not dermatolo-
gists decide if something might be skin cancer and require 
referral to a specialist was found to decrease errors by 
64% (Gerbert et al., 1999). Another decision aid reduced 
serious medication errors by 55% (Bates et al., 1998).
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usually give the statistical significance for the various statistics reported. Finally, 
many tables will provide a variety of other statistics that go beyond what we have 
covered. But if you understand the basics, you should be able to make good sense of 
the key information in such tables.

Consider an example from a study (Hahlweg et al., 2001) of a treatment method 
for agoraphobia, a condition that affects about 4% of the population and involves 
unpredictable panic attacks in public places such as crowded restaurants, buses, 
or movie theaters. Table 12-8 (from Hahlweg et al., 2001) shows the correlation 

Table 12-8  Multiple Regression Analysis Predicting Average Intragroup Effect 

Size at Postassessment

Independent Variable r �

BDI .30*** .30***

Age - .21*** - .20**

No. of sessions .12* .08

Duration of disorder - .13* - .02

Note: R = .36; R2 = .13. BDI = Beck Depression Inventory.

*p 6 .05. **p 6 .01. ***p 6 .000.

Source: Hahlweg, K., Fiegenbaum, W., Frank, M., Schroeder, B., & von Witzleben, I. (2001). Short- and long-term effectiveness 
of an empirically supported treatment of agoraphobia. Journal of Consulting and Clinical Psychology, 69, 375–382. Published 
by the American Psychological Association. Reprinted with permission.
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Figure 12-7 Regression lines depicting the link of expectation of success to antici-
pated disappointment as a function of self-regulatory thought.

Source: Oettingen, G., Schnetter, K., and Pak, H. (2001). Self-regulation of goal setting: Turning 
free fantasies about the future into binding goals. Journal of Personality and Social Psychology, 80, 
736–753. Published by the American Psychological Association. Reprinted with permission.
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coefficients (rs) and standardized regression coefficients 1�s2 for four variables 
predicting the effectiveness of the treatment. (The actual criterion variable is labeled 
“Average Intragroup Effect Size at Postassessment.” The article explains that this is 
each patient’s change from before to after treatment, averaged across several mea-
sures of mental health.)

Looking at the � column, you can see that the standardized regression coef-
ficients were very small for number of sessions attended and the duration of the 
disorder. At the same time, age and BDI (a measure of depression at the start of 
treatment) were much more important unique predictors of the outcome of treatment. 
Notice from the asterisks and the note at the bottom of the table that the regression 
coefficients for the number of sessions and duration of disorder were not statistically 
significant, whereas the coefficients for BDI and age were significant. Also notice 
(from the bottom of the table) that the overall correlation of the four predictors with 
treatment outcome had an R of .36 and an R2 of .13. This is a moderate overall rela-
tionship, but not substantial; that is, only 13% of the overall variation in treatment 
outcome was predicted by these four variables. Notice also the r column. For BDI 
and for age, the �s and rs are about the same. Note, however, that number of ses-
sions and durations have larger rs than �s. This suggests that these two variables 
have considerable overlap with each other or other variables in the prediction rule, 
so that their unique contribution to predicting treatment outcome is rather small.

Advanced Topic: Error and Proportionate 
Reduction in Error
How accurate are the predictions you make using regression? Normally, you predict 
the future; so there is no way to know how accurate you are in advance. However, you 
can estimate your likely accuracy. What you do is figure how accurate your prediction 
rule would have been if you had used it to make “predictions” for the scores you used 
to figure the linear regression rule (and correlation coefficient) in the first place. We 
did this earlier in the chapter when we figured the sum of squared errors for the linear 
prediction rule for the sleep and mood example. The linear prediction rule for this 
example was Yn = -3 + 1121X2. This rule was shown as regression line “Rule 4” in 
Figure 12-6. The figuring of the squared error for the rule is shown in Table 12-4.

Proportionate Reduction in Error
Now, how is knowing the squared errors useful? The most common way to think 
about the accuracy of a prediction rule is to compare the amount of squared error 
using your prediction rule to the amount of squared error you would have without 
the prediction rule.

First, you figure the amount of squared error using the prediction rule. Next, 
you figure the squared error you would make predicting without the prediction rule. 
Finally, you compare the two amounts of squared error.

The squared error using the prediction rule is the sum of the squared errors. 
That is, you just add up the squared errors of the individuals in the study. In the sleep 
and mood example, this is the sum of the last column in Table 12-4, which is 6.00. 
The sum of squared errors is abbreviated as SSError. In our example, SSError = 6.00.

How do you figure the amount of squared error predicting without the predic-
tion rule? If you cannot use the prediction rule, the most accurate prediction for any-
one will be the criterion variable’s mean. In our example, suppose you knew nothing 
about how much a person slept the night before. Your best strategy for any student 

SSError (sum of the squared errors) 
sum of the squared differences between 
each score on the criterion variable and 
its predicted score.
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would be to predict that the student will have the mean score on happy mood. That 
is, your best strategy would be to predict a mood score of 4. (Earlier in the chapter 
we called this particular rule of predicting 4 for each person “Rule 2” and showed 
the regression line for it in Figure 12-6.) Consider another example. Suppose you 
wanted to predict a person’s college GPA, but you had no information about any 
predictor variables. Your best bet here is to predict that the person will have the 
mean college GPA for students at that college.

Thus, predictions without a prediction rule involve predicting the mean. This 
tells you that the amount of squared error when predicting without a rule is the 
amount of squared error when predicting each score to be the mean. Error in gen-
eral is the actual score on the criterion variable minus the predicted score on the cri-
terion variable. When the predicted score is the mean, error is the actual score minus 
the mean. Squared error is the square of this number. The sum of these squared 
errors is the total squared error when predicting from the mean; we call this 
number SSTotal. (What we are now calling SSTotal is the same as what we called SS 
in Chapter 2 when figuring the variance, and is also the same as what we call SSY 
in this chapter and Chapter 11. In Chapter 2, we defined SS as the sum of squared 
deviations from the mean. A deviation from the mean is the score minus the mean. 
This is exactly the same as the error that results when our prediction is the mean.)

The value of a prediction rule is how much less error you make using the pre-
diction rule 1SSError) compared to using the mean 1SSTotal). With a good prediction 
rule, SSError should be much smaller than SSTotal.

The key comparison is the proportionate reduction in error: The reduction in 
error 1SSTotal - SSError2, divided by the total amount that could be reduced 1SSTotal). 
In terms of a formula,

 Proportionate reduction in error =
SSTotal - SSError

SSTotal
 (12-6)

To put this another way, using the mean to predict is not a very precise method 
because it leaves a lot of error. So now you are seeing how much better you can 
do—how much the proportion of the squared error you would make using the mean 
is reduced by using the prediction rule.

Suppose a prediction rule is no improvement over predicting from the mean. In 
this situation, SSError equals SSTotal (SSError can never be worse than SSTotal). The pre-
diction rule has reduced zero error 1SSTotal - SSError = 02, and it has reduced 0% of 
the total error 10>SSTotal = 02.

Now suppose a prediction rule gives perfect predictions with no error whatso-
ever. The prediction rule has reduced the error by 100%. (In terms of the equation, 
if SSError = 0, then the numerator will be SSTotal - 0, or SSTotal; dividing SSTotal by 
SSTotal gives 1, or 100%.)

In most actual situations, the proportionate reduction in error will be some-
where between 0% and 100%.

Steps for Figuring the Proportionate  
Reduction in Error
 ❶ Figure the sum of squared errors using the mean to predict. Take each score 

minus the mean, square it, and add these up. This gives SSTotal.
 ❷ Figure the sum of squared errors using the prediction rule. Take each score 

minus the predicted score for this person, square it, and add these up. This gives 
SSError.

total squared error when predicting 
from the mean (SSTotal) sum of 
squared differences of each score on 
the criterion variable from the predicted 
score when predicting from the mean.

The proportionate reduction 
in error is the sum of squared 
error when predicting from 
the mean minus the sum of 
squared error when predicting 
from the bivariate prediction 
rule, all divided by the 
sum of squared error when 
predicting from the mean.
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 ❸ Figure the reduction in squared error. This is the sum of squared errors using 
the mean to predict (from Step ❶) minus the sum of squared errors using the 
prediction rule (from Step ❷).

 ❹ Figure the proportionate reduction in squared error. This is the reduction in 
squared error (from Step ❸) divided by the total squared error when using the 
mean to predict (from Step ❶).

An Example
Table 12-9 shows the actual scores, predicted scores, errors, squared errors, sums of 
squared errors, and proportionate reduction in error for the sleep and mood example. 
Using the steps,

 ❶ Figure the sum of squared errors using the mean to predict. Take each score 
minus the mean, square it, and add these up. From Table 12-9, SSTotal = 22. (Note 
that this is the same as SSY we figured for happy mood in the last chapter and again 
in this one as part of the figuring for the standardized regression coefficient.)

 ❷ Figure the sum of squared errors using the prediction rule. Take each score 
on the criterion variable (Y ) minus the predicted score on the criterion variable 1Yn) for this person, square it, and add these up. From Table 12-9, SSError = 6.00.

 ❸ Figure the reduction in squared error. This is the sum of squared errors using 
the mean to predict (from Step ❶) minus the sum of squared errors using the 
prediction rule (from Step ❷). Reduction in squared error = 22 - 6 = 16.

 ❹ Figure the proportionate reduction in squared error. This is the reduction in 
squared error (from Step ❸) divided by the total squared error when using the mean 
to predict (from Step ❶). Proportionate reduction in squared error = 16 > 22 = .73.

Thus, when predicting happy mood from sleep the night before, the prediction 
rule, based on the scores from our group of 6 students, provides a 73% reduction in 
error over using the mean to predict.

Proportionate Reduction in Error as r2

The proportionate reduction in error turns out to equal the correlation coefficient 
squared. That is,

 Proportionate reduction in error = r2 (12-7)

Table 12-9 Figuring Proportionate Reduction in Error for the Fictional Sleep and Mood Example

Predicted Mood Using Mean ❶ Predicted Mood Using Prediction Rule ❷

Hours Slept Actual Mood Mean Mood Error Error2 Predicted Mood Error Error2

X Y M (Y - M ) (Y - M )2 Yn (Y - Yn ) (Y - Yn )2

5 2 4 -2 4 2.00 .00 .00

6 2 4 -2 4 3.00 -1.00 1.00

6 3 4 -1 1 3.00 .00 .00

7 4 4 0 0 4.00 .00 .00

8 7 4 3 9 5.00 2.00 4.00

10 6 4 2 4 7.00 -1.00 1.00

❸

g = SS Total = 22 g = SSError = 6.00

Proportionate reduction in error =
SS Total - SS Error

SS Total
=

22 - 6
22

=
16
22

= .73 ❹

The proportionate reduction in 
error is equal to the correlation 
coefficient squared.
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Because of this equivalence, r2 is typically used as the symbol for the proportionate 
reduction in error with bivariate prediction. (As we noted earlier in the chapter, R2 is 
the symbol for the proportionate reduction in error for multiple regression.)

For example, in the sleep and mood study, the correlation coefficient was .85, 
and .85 squared is .72. That is, r2 = .72. Notice that, within rounding error, this 
number (.72) is the same as we just figured (.73) by finding predicted scores, errors, 
squared errors, sums of squared errors, and proportionate reduction in squared error.

We figured the proportionate reduction in error so laboriously in this example 
only to help you understand this important concept. However, in an actual research 
situation, you would use the simpler procedure of squaring the correlation coeffi-
cient. (Also note that this works in reverse also. If you know the proportionate reduc-
tion in error, you can find the correlation coefficient by taking the square root of the 
proportionate reduction in error. Since a square root can be positive or negative, look 
at the pattern of numbers to determine if the correlation is positive or negative.)

How are you doing?

 1. Explain in words how you figure (a) the sum of squared error predicting from 
the mean, and (b) the sum of squared error using the prediction rule.

 2. Write the formula for figuring the proportionate reduction in error and define 
each of its symbols in words.

 3. Explain why the procedure for figuring the proportionate reduction in error 
tells you about the accuracy of the prediction rule.

 4. The following scores and predicted scores are for four people on a particular 
criterion variable using a prediction rule based on the scores from these four 
people. Figure the proportionate reduction in error and correlation coefficient.

Score Predicted Score

Y Yn

6 5.7

4 4.3

2 2.9

8 7.1

Answers

 1. (a) You figure the sum of squared error predicting from the mean by taking 
each criterion variable score (Y) minus the mean of the criterion variable scores 
1MY2, squaring this difference, then summing up all these squared differences.

  (b) You figure the sum of squared error using the prediction rule by tak-
ing each criterion variable score (Y) minus what you would predict for that 
person’s criterion variable score using the prediction rule 1Yn2, squaring this 
difference, then summing up all these squared differences.

 2. Proportionate reduction in error = 1SSTotal - SSError2>SSTotal.  SSTotal  is  the 
sum, over all participants, of the squared difference between each person’s 
criterion variable score and the criterion variable mean; SSError is the sum, 
over all participants, of the squared difference between each person’s crite-
rion variable score and that person’s predicted criterion variable score.

 3. The procedure for figuring the proportionate reduction in error tells you about 
the accuracy of the prediction rule because it tells you the proportion of 
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Summary

 1. Prediction (or regression) involves making predictions about scores on a crite-
rion variable based on scores on a predictor variable.

 2. The linear prediction rule for predicting scores on a criterion variable from 
scores on a predictor variable is Yn = a + 1b21X2, where Yn is the predicted 
score on the criterion variable, a is the regression constant, b is the regression 
coefficient, and X is the score on the predictor variable.

 3. A regression line, which is drawn in the same kind of graph as a scatter diagram, 
shows the predicted criterion variable value 1Yn2 for each value of the predictor vari-
able (X). The slope of this line equals b; a is where this line crosses the vertical axis 
(the intercept). A regression line is a visual display of a linear prediction rule.

 4. The best linear prediction rule is the rule that gives the lowest sum of squared 
errors between the actual scores on the criterion variable and the predicted 
scores on the criterion variable. There are formulas for figuring the regression 
constant (a) and the regression coefficient (b) that will give the linear prediction 
rule with the smallest sum of squared errors.

 5. A standardized regression coefficient 1�2 shows how much of a standard devia-
tion the predicted value of the criterion variable changes when the predictor 
variable changes by one standard deviation. The standardized regression coef-
ficient can be figured from the regular regression coefficient and the sum of 
squared deviations for the predictor and criterion variables. When predicting 
scores on the criterion variable from scores on one other variable (bivariate pre-
diction), the standardized regression coefficient 1�2 is the same as the correla-
tion coefficient (r) between the two variables.

 6. In bivariate prediction, the hypothesis test for a regression coefficient is the 
same as the hypothesis test for the correlation between the two variables.

Learning Aids

total error (the error you would make if just predicting from the mean) you 
are reducing by using the prediction rule (where your error is based on pre-
dicting from the prediction rule). That is, the larger proportion of total error 
you reduce, the more accurate your prediction rule will be. Perfect prediction 
would be 100% reduction.

 4. 

  Proportionate reduction in error = 1SSTotal - SSError2>SSTotal = 120 - 1.802>20 =
18.20 >  20 = .91. r = 2r2 = 1.91 = .95. (It is a positive correlation, as low 
scores go with lows and highs with highs.)

Score Mean Error Error2 Predicted Score Error Error2

Y M 1Y - M2 1Y - M22 Yn 1Y - Yn2 (Y - Yn22
6 5 1 1 5.7 .3 .09

4 5 -1 1 4.3 - .3 .09

2 5 -3 9 2.9 - .9 .81

8 5 3 9 7.1 .9 .81

g = SS Total = 20 g = SS Error = 1.80



 Prediction 525

 7. In multiple regression, a criterion variable is predicted from two or more pre-
dictor variables. In a multiple regression linear prediction rule, there is a regres-
sion constant, the score for each predictor variable is multiplied by its own 
regression coefficient, and the results are added up to make the prediction. Each 
regression coefficient tells you the unique relation of the predictor to the crite-
rion variable in the context of the other predictor variables. The multiple cor-
relation coefficient (R) is the overall degree of association between the criterion 
variable and the predictor variables taken together. R2 is the overall proportion-
ate reduction in error for multiple regression.

 8. The measure of effect size for multiple regression is R2. The assumptions for 
the significance test for prediction are as follows: there is an equal distribution 
of each variable at each point of the other variable; the relationship between the 
variables is linear; the people (or cases) are independent; and the error scores fol-
low a normal distribution. Bivariate prediction and multiple regression have the 
same limitations as ordinary correlation. In addition, in multiple regression there 
is ambiguity in interpreting the relative importance of the predictor variables.

 9. Bivariate prediction results are rarely described directly in research articles, 
but regression lines are sometimes shown when prediction rules for more than 
one group are being compared. Multiple regressions are commonly reported in 
articles, often in a table that includes the regression coefficients and overall pro-
portionate reduction in error 1R22.

 10. ADVANCED TOPIC: The proportionate reduction in error, an indicator of the 
accuracy of a prediction rule, is figured by applying the prediction rule to the 
scores on which the prediction rule was based. The sum of squared error when 
using the prediction rule 1SSError2 is the sum of the squared differences be-
tween each actual score and the predicted score for that individual; the sum of 
squared error total 1SSTotal2 is the sum of the squared differences between each 
actual score and the mean; the proportionate reduction in error is the reduction 
in squared error gained by using the prediction rule 1SSTotal - SSError2 divided 
by the squared error when predicting from the mean 1SSTotal). The proportion-
ate reduction in error (or proportion of variance accounted for) in bivariate  
prediction equals the correlation coefficient squared 1r22.

Key Terms

predictor variable (X) (p. 494)
criterion variable (Y) (p. 494)
linear prediction rule (p. 495)
regression constant (a) (p. 495)
regression coefficient (b) (p. 495)
regression line (p. 498)
slope (p. 498)

intercept (p. 499)
error (p. 504)
sum of the squared errors (p. 504)
standardized regression  

coefficient 1�2 (p. 510)
bivariate prediction (p. 512)
multiple correlation (p. 512)

multiple regression (p. 512)
multiple correlation coefficient 

(R) (p. 513)
SSError (sum of the squared 

errors) (p. 520)
total squared error when predicting 

from the mean 1SSTotal) (p. 521)

Example Worked-Out Problems

The following bivariate problems are based on the following data set. (This is the 
same data for the example worked-out problems in Chapter 11.) In this study, the 
researchers want to predict achievement test score from class size.
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Elementary School Class Size Achievement Test Score

Main Street 25 80

Casat 14 98

Lakeland 33 50

Shady Grove 28 82

Jefferson 20 90

M 24 80

r = - .90   

Using the Linear Prediction Rule
If the regression constant for predicting achievement test scores from class size is 
134 and the regression coefficient is -2.25 (you will figure these values for your-
self in a later example worked-out problem), what is the predicted achievement test 
score for a school with a class size of (a) 23, and (b) 14?

Answer
Using the linear prediction rule Yn = a + 1b21X2, Yn = 134 - 12.2521X2.
(a)  If class size is 23, then the predicted achievement test score = 134 - 12.252 1232 = 82.25.
(b) Predicted achievement test score = 134 - 12.2521142 = 102.50.

Drawing a Regression Line
Draw the regression line for predicting achievement test scores from class size.

Answer
The result of each step is shown in Figure 12-8.

 ❶ Draw and label the axes for a scatter diagram.
 ❷ Figure the predicted value on the criterion variable for a low value on the 

predictor variable, and mark the point on the graph. From the answer to the 
previous problem, the predicted achievement test score for a school with a class 
size of 14 is 102.50. Thus, you mark the point 1X = 14, Yn = 102.502.

 ❸ Do the same thing again, but for a high value on the predictor variable. For 
a class size of 30, the predicted achievement test score is 134 - 12.2521302, 
which is 66.50. Thus, you mark the point 1X = 30, Yn = 66.502.

 ❹ Draw a line that passes through the two marks.

Finding the Values of a and b
Earlier we told you that the regression constant (a) for predicting achievement test 
scores from class size was 134 and the regression coefficient (b) was -2.25. Carry 
out the figuring for a and b to make sure these are the correct values.

Answer
The figuring for a and b is shown in Table 12-10.
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Figure 12-8 Steps in drawing a regression line for the class size and achievement 
test score Example Worked-Out Problem. ❶ Draw and label the axes, ❷ mark a point for a 
low value of the predictor variable and its predicted value on the criterion variable, ❸ mark 
a point for a high value of the predictor variable and its predicted value on the criterion vari-
able, and ❹ draw the regression line.

Table 12-10 Figuring the Values of a and b for the Example Worked-Out Problem

Class Size (X) Achievement Test Score (Y)

Deviation ❶ Deviation Squared ❹ Deviation ❶
Products of ❷ 

Deviation Scores

X X � MX 1X � MX 2
2 Y Y � MY 1X � MX 2 1Y � MY 2

25 1 1 80 0 0

14 -10 100 98 18 -180

33 9 81 50 -30 -270

28 4 16 82 2 8

20 -4 16 90 10 -40

g = 120  g = SSX = 214 g = 400 g = -482

M = 24 ❺ M = 80 ❸

❻

b =
g31X - MX21Y - MY24

SSX
=

-482
214

= -2.25

a = MY - 1b21MX2 = 80 - 1-2.2521242 = 134

Note: The circled numbers refer to the steps for figuring the regression coefficient, b.
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  Here are the steps for figuring the regression coefficient, b:

 ❶ Change the scores for each variable to deviation scores. Figure the mean of 
each variable. Then subtract each variable’s mean from each of its scores.

 ❷ Figure the product of the deviation scores for each pair of scores. That is, 
for each pair of scores, multiply the deviation score on one variable by the devi-
ation score on the other variable.

 ❸ Add up all the products of the deviation scores. This gives a total of -482.
 ❹ Square each deviation score for the predictor variable (X).
 ❺ Add up the squared deviation scores for the predictor variable (X). This 

gives a total of 214.
 ❻ Divide the sum of the products of deviation scores from Step ❸ by the sum 

of squared deviations for the predictor variable (X) from Step ❺. This gives 
the regression coefficient, b. Dividing -482 by 214 gives a b of -2.25.

  Here are the steps for figuring the regression constant, a:

 ❶ Multiply the regression coefficient, b, by the mean of the X variable. Multi-
plying -2.25 by 24 gives -54.

 ❷ Subtract the result of Step ❶ from the mean of the Y variable. This gives the 
regression constant, a. Subtracting -54 from 80 gives 80 -  1-542, which is 134.

   So the value of b is -2.25 and the value of a is 134.

Figuring the Standardized Regression Coefficient
Figure the standardized regression for predicting achievement test scores from  
class size.

Answer
The formula for a standardized regression coefficient is

� = 1b22SSX

2SSY

.

From Table 12-10, SSX is 214. Table 12-10 doesn’t show the value of SSY, but 
we can figure it by squaring each score in the Y - MY  column and summing the 
resulting values. Thus, SSY = 02 + 182 + 1-3022 + 22 + 102 = 1328. The value 
of b was -2.25; so the standardized regression coefficient for predicting achieve-
ment test scores from class size is

� = 1b22SSX

2SSY

= 1-2.252 2214

21328
= 1-2.25214.63

36.44
= - .90.

Multiple Regression Predictions
A (fictional) psychologist studied the talkativeness of children in families with a 
mother, father, and one grandparent. The psychologist found that the child’s talk-
ativeness score depended on the quality of the child’s relationship with each of these 
people. The multiple regression linear prediction rule was as follows:

Child>s predicted talkativeness = 2.13 + 11.3221mother2 + 11.2121father2
+ 11.4121grandparent2.
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Predict a child’s talkativeness score who had scores for relationship quality of 4 
with mother, 5 with father, and 3 with grandparent.

Answer
 Child>s predicted talkativeness = 2.13 + 11.3221mother2 + 11.2121father2

+ 11.4121grandparent2.
 = 2.13 + 11.322142 + 11.212152

+ 11.412132 = 17.69.

Advanced Topic: Figuring the Proportionate  
Reduction in Error
Using the method of finding SSTotal and SSError, find the proportionate reduction in 
error for predicting achievement test scores from class size.

Answer
We first need to find the predicted achievement score for each school using the lin-
ear prediction rule. The rule in this example is Yn = 134 - 12.2521X2. So, for the 
first school, Main Street, Yn = 134 - 12.2521252 = 77.75. Repeating this process 
for the other schools gives predicted achievement test scores of: Casat, 102.50; 
Lakeland, 59.75; Shady Grove, 71.00; Jefferson, 89.00.

The figuring for the proportionate reduction of error is shown in Table 12-11, 
and the steps follow.

 ❶ Figure the sum of squared error using the mean to predict. Take each score 
minus the mean, square it, and add these up. From Table 12-11, SSTotal = 1328.

 ❷ Figure the sum of squared errors using the prediction rule. Take each score 
minus the predicted score for this person, square it, and add these up. From 
Table 12-11, SSError = 242.37.

 ❸ Figure the reduction in squared error. This is the sum of squared errors using 
the mean to predict (from Step ❶) minus the sum of squared errors using the 
prediction rule (from Step ❷). Reduction in squared error = 1328 - 242.37 =
1085.63.

Table 12-11 Figuring Proportionate Reduction in Error for the Example Worked-Out Problem

Predicted Test Score ❶
Using Mean

Predicted Test Score ❷
Using Prediction Rule

Class  
Size

Actual  
Test Score

Mean  
Test  

Score Error Error2
Predicted  
Test Score Error Error2

X Y M (Y - M ) (Y - M )2 Yn (Y - Yn ) (Y - Yn )2

25 80 80 0 0 77.75 2.25 5.06

14 98 80 18 324 102.50 -4.50 20.25

33 50 80 -30 900 59.75 -9.75 95.06

28 82 80 2 4 71.00 11.00 121.00

20 90 80 10 100 89.00 1.00 1.00

➌
g = SSTotal = 1328

➍

g = SSError = 242.37

 Proportionate reduction in error =
SSTotal - SSError

SSTotal
=

1328 - 242.37
1328

=
1085.63

1328
= .82. 
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 ❹ Figure the proportionate reduction in squared error. This is the reduc-
tion in squared error (from Step ❸) divided by the total squared error when 
using the mean to predict (from Step ❶). Proportionate reduction in squared 
error = 1085.63 > 1328 = .82. You can interpret this in terms of 82% of the 
variation in test scores being accounted for by class size.

Outline for Writing Essays on the Logic and Figuring  
of Bivariate Prediction
 1. Explain the meaning of the term prediction as it is used in the context of statis-

tics. Be sure to mention and explain key terms such as predictor variable and 
criterion variable.

 2. Explain the concept of the linear prediction rule, including its formula. As part 
of this explanation, be sure to emphasize the meaning of the regression coef-
ficient and regression constant.

 3. Explain how the linear prediction rule can be shown as a line on a graph, called 
a regression line. Be sure to describe how to draw the regression line and what 
it shows.

 4. Explain how the regression coefficient and regression constant are each related 
to the regression line.

 5. Explain the idea of the best linear prediction rule in terms of the notion of least 
squared error.

 6. Explain the meaning of the standardized regression coefficient, why it is useful, 
and how it is figured.

 7. In the context of these explanations, describe the meaning of the numeric results 
of the particular question you are answering.

T I P  F O R  S U C C E S S
The square root of the 
proportionate reduction in error 
should equal the correlation. In 
this problem, 2.82 = - .91 (it 
is a negative correlation in this 
example, because low scores go 
with high scores and highs with 
lows), which is consistent (allowing 
for rounding error) with the 
correlation we began with of - .90.

These problems involve figuring. Most real-life statistics problems are done with 
special statistical software. Even if you have such software, do these problems by 
hand to ingrain the method in your mind. To learn how to use a computer to solve 
statistics problems like those in this chapter, refer to the Using SPSS section at the 
end of this chapter.

All data are fictional unless an actual citation is given.

Set I (for Answers to Set I Problems, see pp. 699–702)
 1. A sports psychologist working with hockey players has found that players’ 

knowledge of physiology predicts the number of injuries received over the sub-
sequent year. The regression constant in the linear prediction rule for predicting 
injuries from knowledge of physiology is 10.30 and the regression coefficient is 
- .70. (a) Indicate the predictor variable, and (b) the criterion variable. (c) Write 
the linear prediction rule for this example. Indicate the predicted number of 
injuries for athletes whose scores on the physiology test are (d) 0, (e) 1, (f) 2,  
(g) 5, and (h) 6.

 2. A professor has found that scores on the midterm exam in her classes predict 
scores on the final exam. The regression constant in the linear prediction  

Practice Problems

MyStatLab

MyStatLab
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rule for predicting final exam scores from midterm exam scores is 40 and 
the regression coefficient is .5. (a) Indicate the predictor variable, and  
(b) the criterion variable. (c) Write the linear prediction rule for this example.  
Figure the predicted final exam scores for each of eight students whose 
scores on the midterm were (d) 30, (e) 40, (f) 50, (g) 60, (h) 70, (i) 80, (j) 90, 
and (k) 100.

 3. For each of the following, (a) through (d), determine the linear prediction rule 
for predicting criterion variable Y from predictor variable X. Then (e) make a 
single graph (with values from 0 to 10 on both axes) showing all the regression 
lines, labeling each by its letter. (Be sure to make your graph large enough so 
that the lines are clearly separate.)

 Regression Constant a Regression Coefficient b

(a) 1.5 .8

(b) 10.0 - .4

(c) 2.0 .2

(d) 9.5 - .8

 4. Problem 3 in Chapter 11 was about an instructor who asked five students how 
many hours they had studied for an exam. The number of hours studied and 
their grades, along with the means, are shown here. (a) Determine the linear 
prediction rule for predicting test grade from hours studied, and (b) draw the 
regression line. Use the linear prediction rule to figure the predicted test grade 
of students who studied for each of the following number of hours: (c) 3, (d) 5, 
and (e) 7. (f) Determine the standardized regression coefficient, and (g) explain 
what you have done in all the previous parts of this question to someone who 
understands the mean and deviation scores but does not know any more about 
statistics. (h) Add the dots for the pairs of scores for the five students to your 
figure from part (b) and also add a regression line for the linear prediction rule 
Yn = 60 + 15.0021X2. (i) Which regression line does a better job of coming 
close to the dots in your figure for part (h), and why? (j) Figure the sum of 
squared errors for your linear prediction rule from part (a) and for the prediction 
rule Yn = 60 + 15.0021X2. (k) ADVANCED TOPIC: Find the proportionate 
reduction in error (using SSError and SSTotal).

 Hours Studied Test Grade

 0 52

 10 95

 6 83

 8 71

 6 64

M 6 73

 5. Repeat problem 4, doing parts (a) through (f), but this time predicting hours 
studied from test grade, and using values of 70, 75, and 80 for parts (c), (d), and 
(e), respectively.

 6. Problem 2 in Chapter 11 described a pilot study of the relation between psycho-
therapists’ degree of empathy and their patients’ satisfaction with therapy. Four 
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patient–therapist pairs were studied. The results are presented here, including 
the means.

Pair Number Therapist Empathy Patient Satisfaction

1 70 4

2 94 5

3 36 2

4 48 1

M 62 3

  (a) Determine the linear prediction rule for predicting satisfaction from empa-
thy, and (b) draw the regression line. Use the linear prediction rule to figure the 
predicted satisfaction of patients whose therapist had the following amount of 
empathy: (c) 50, (d) 64, and (e) 80. (f) Determine the standardized regression 
coefficient, and (g) explain what you have done in all the previous parts of this 
question to someone who understands the mean and deviation scores but does 
not know any more about statistics. (h) ADVANCED TOPIC: Find the propor-
tionate reduction in error (using SSError and SSTotal).

 7. Repeat problem 6, doing parts (a) through (f), but this time predicting empathy from 
satisfaction, and using values of 3, 2, and 1 for parts (c), (d), and (e), respectively.

 8. Repeat problem 6, doing parts (a) through (f), but this time adding an additional 
pair of scores, with a therapist empathy value of 95 and a patient satisfaction 
value of 1 (this pair of scores can be thought of as an outlier). (g) Discuss how 
the results from problem 6 compare with the results of this problem.

 9. For each of the following, (a) through (d), determine the multiple linear predic-
tion rule for predicting criterion variable Y from predictor variables X1, X2, and 
X3. Then (e) figure the predicted score on the criterion variable for part (a) for a 
person with scores on the predictor variables of X1 = 2, X2 = 5, and X3 = 9.

 
Regression  
Constant

Regression 
Coefficient

Regression  
Coefficient

Regression 
Coefficient

 a b1 b2 b3

(a) 1.5 .8 - .3 9.99

(b) 10.0 - .4 11.0 -8.62

(c) 2.0 .2 6.13 2.12

(d) 9.5 - .8 21.23 1.02

 10. In the Oettingen and colleagues (2001) study described earlier (in the “Prediction 
in Research Articles” section), in addition to studying anticipated disappoint-
ment, the researchers conducted an experiment focusing on number of plans 
and on taking responsibility. Their results are shown in Figure 12-9. Explain the 
meaning of each graph to a person who has never had a course in statistics.

 11. Mize and Petit (1997) were interested in the impact of a mother’s style of helping 
her child understand social interactions on the child’s social life. These research-
ers arranged for 43 volunteer mothers and their 3- to 5-year-old children to be 
videotaped in three separate sessions. In the key session, the mothers and children 
were shown videotapes of other children behaving in hostile or rejecting ways 
with each other; then the mothers discussed the tapes with their children. Later, 
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the psychologists rated each mother for “social coaching”—such as how well the 
mothers helped the children understand what they had seen and suggested more 
positive ways to handle the situation. Tapes of the mothers and children playing 
together were rated for the mothers’ “responsive style”—warmth and attunement 
to the children. Finally, in the last session, tapes of the children solving a puzzle 
were rated for the mothers’ “nonsocial teaching”—how well they helped the chil-
dren develop problem-solving skills. In another part of the study, the researchers 
had all the children answer questions about how much they liked the other chil-
dren. Using this information, they were able to come up with an overall measure 
of how much each child was liked, which they called “peer acceptance.”

   The researchers hypothesized that the extent to which a mother was good 
at social coaching would predict her child’s peer acceptance. They also hypoth-
esized that the relation of a mother’s social coaching to peer acceptance would 
hold up even in a multiple regression equation (prediction rule) that included 
nonsocial coaching and would also hold up in a regression equation that included 
responsive style. (That is, including the other predictors in the model would still 
leave a substantial unique association of social coaching with peer acceptance.)

   The Peer Acceptance section of Table 12-12 shows their results. Equation 1 
shows the results of the multiple regression analysis in which nonsocial teaching 
and social coaching are included as predictors of peer acceptance. Equation 2 shows 
the results of a separate multiple regression analysis in which responsive style 
and social coaching are included as predictors of peer acceptance. (In each case, 
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Figure 12-9 Regression lines depicting the link of expectation of success to formulat-
ing plans (left) and to taking responsibility (right) as a function of self-regulatory thought.

Source: Oettingen, G., Schnetter, K., & Pak, H. (2001). Self-regulations of goal setting: Turning free 
fantasies about the future into binding goals. Journal of Personality and Social Psychology, 80, 
736–753. Published by the American Psychological Association. Reprinted with permission.
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standardized regression coefficients are shown, not regular regression coefficients.) 
Explain the meaning of the peer acceptance results as if you were writing to a person 
who understands bivariate prediction, but does not understand multiple regression. 
(You can ignore the column for sr1, the semipartial correlation. All the information 
you need to interpret this table is included in the r, R2, and beta columns.)

Set II
 12. A personnel psychologist studying adjustment to the job of new employees 

found that employees’ amount of education (in number of years) predicts rat-
ings by job supervisors two months later. The regression constant in the linear 
prediction rule for predicting job ratings from education is 0.5 and the regres-
sion coefficient is .40. (a) Indicate the predictor variable, and (b) the criterion 
variable. (c) Write the linear prediction rule for this example. Indicate the pre-
dicted job rating for employees with each of the following amount of education 
(in years): (d) 8, (e) 10, (f) 17, (g) 19, and (h) 21.

 13. A clinical psychologist has found that scores on a new depression scale predict satis-
faction with psychotherapy. The regression constant in the linear prediction rule for 
predicting satisfaction from the depression score is 12 and the regression coefficient 
is –.4. (a) Indicate the predictor variable and (b) the criterion variable. (c) Write the 
linear prediction rule for this example. Indicate the predicted satisfaction for people 
with each of the following depression scores: (d) 8, (e) 6, (f) 5, (g) 3, and (h) 0.

 14. For each of the following, (a) through (d), determine the linear prediction rule 
for predicting criterion variable Y from predictor variable X. Then (e) make a 
single graph (with values from 0 to 100 on both axes) showing all the regres-
sion lines, labeling each by its letter. (Be sure to make your graph large enough 
so that the lines are clearly separate.)

 Regression Constant a Regression Coefficient b

(a) 89.0 - .8

(b) 5.0 .7

(c) 50.0 .1

(d) 20.0 .4

Table 12-12 Simultaneous Regression Analyses Predicting Teacher-Rated Social Skills, Aggression, and Peer Acceptance in Study 1

Criteria

Peer Acceptance Social Skills Aggression

Predictor Variables r R2 sr1 Beta r R2 sr1 Beta r R2 sr1 Beta

Equation 1:

Nonsocial teaching .21* .10 .10 .15 .05 .06 - .35* - .23 - .24

Social coaching .36* .14* .30 .32 .31* .10 .28 .29 - .41*** .22** - .32 - .33*

Equation 2:

Responsive style .34* .26 .27 .25 .18 .18 - .26 - .16 - .17

Social coaching .36* .19* .28 .29 .31* .13 .25 .26 - .41*** .20* - .36 - .37*

Note: sr1 = semipartial correlation; n = 38.

*p 6 .10; **p 6 .05; ***p 6 .01.

Source: Mize, J., & Pettit, G. S. (1997). Mothers’ social coaching, mother-child relationship style, and children’s peer competence: Is the medium the message? 
Child Development, 68, 312–332. Copyright © 1997 by the Society for Research in Child Development, Inc. Reprinted by permission of Blackwell Publishers Ltd.
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 15. In problem 12 of Chapter 11, four individuals were given a test of manual 
dexterity (high scores mean better dexterity) and an anxiety test (high scores 
mean more anxiety). The results are presented here, including the means.

Person Dexterity Anxiety

1 1 10

2 1 8

3 2 4

4 4 -2

M 2 5

  (a) Determine the linear prediction rule for predicting anxiety from dexterity, 
and (b) draw the regression line. Use the linear prediction rule to figure the pre-
dicted anxiety of people with dexterity scores as follows: (c) 1, (d) 2, and (e) 3. 
(f) Determine the standardized regression coefficient, and (g) explain what you 
have done in all the previous parts of this question to someone who understands  
the mean and deviation scores but does not know any more about statistics.  
(h) ADVANCED TOPIC: Find the proportionate reduction in error (using SSError 
and SSTotal).

 16. Repeat problem 15, doing parts (a) through (f), but this time predicting 
dexterity from anxiety, and using values of 0, 4, and 7 for parts (c), (d), and (e), 
respectively.

 17. Repeat problem 15, doing parts (a) through (f), but this time adding an addi-
tional pair of scores, with a dexterity value of 4 and an value of 10 (this pair of 
scores can be thought of as an outlier). (g) Discuss how the results from prob-
lem 15 compare with the results of this problem.

 18. Problem 13 from Chapter 11 was about the amount of violent television 
watched and the amount of violent behavior toward their playmates for four 
young children. The results are presented here, including the means.

Child’s Code  
Number

Weekly Viewing  
of Violent TV (hours)

Number of Violent  
or Aggressive Acts  
Toward Playmates

G3368 14 9

R8904 8 6

C9890 6 1

L8722 12 8

M 10 6

  (a) Determine the linear prediction rule for predicting violent acts from watch-
ing violent television, and (b) draw the regression line. Use the linear predic-
tion rule to figure the predicted number of violent acts for children watching 
the following number of hours of violent television: (c) 7, (d) 9, and (e) 11. 
(f) Determine the standardized regression coefficient, and (g) explain what 
you have done in all the previous parts of this question to someone who under-
stands the mean and deviation scores but does not know any more about sta-
tistics. (h) Add the dots for the pairs of scores for the four children to your 
figure from part (b) and also add a regression line for the linear prediction 
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rule Yn = -2 + 1.2021X2. (i) Figure the sum of squared errors for your linear 
prediction rule from part (a) and for the prediction rule Yn = -2 + 1.2021X2. 
(j) Explain why the sum of squared errors for your linear prediction rule from 
(a) must be lower than the sum of squared errors for any other linear prediction 
rule. (k) ADVANCED TOPIC: Find the proportionate reduction in error (using 
SSError and SSTotal).

 19. Repeat problem 18, doing parts (a) through (f), but this time predicting the 
number of hours of watching violent television from violent acts, and using 
values of 2, 5, and 7 for parts (c), (d), and (e), respectively.

 20. For each of the following, (a) through (d), determine the multiple linear predic-
tion rule for predicting criterion variable Y from predictor variables X1, X2, and 
X3. Then (e) figure the predicted score on the criterion variable for part (a) for a 
person with scores on the predictor variables of X1 = 12, X2 = 8, and X3 = 1.

 
Regression 
Constant

Regression 
Coefficient

Regression 
Coefficient

Regression 
Coefficient

 a b1 b2 b3

(a) 3.8 4.1 .9 7.1

(b) 11.2 .9 2.5 3.9

(c) .8 .1 1.0 1.5

(d) -3.1 .8 12.4 4.3

 21. Nezlek and colleagues (1997) had participants first write self-descriptions and 
then exchange them with four other students also taking part in the study. Then 
the students privately ranked the other students on how much they would like 
to work with them on the next task. One group of participants were then told 
that they had been selected to work on the next task with the rest of the group; 
this was the inclusion condition. The remaining participants were told that they 
had not been chosen to work with the others and would work alone—the exclu-
sion condition. At this point, participants were asked about how accepted they  
felt. Earlier, at the start of the study, they had completed a self-esteem scale. 
Figure 12-10 shows regression lines for the two experimental groups. Explain 
what these two lines mean to a person who understands correlation but knows 
nothing about prediction.

 22. Social psychologists studying criminal justice issues have long been interested 
in what influences people’s attitudes about punishment of criminal offenders. 
Graham and her colleagues (1997) took advantage of the very public trial of 
U.S. football star O. J. Simpson to test some basic issues in this area. In the 
first few days after Simpson was accused of having murdered his ex-wife, the 
researchers asked people a series of questions about the case. The researchers 
were mainly interested in the responses of the 177 individuals who believed 
Simpson was probably guilty, particularly their belief about retribution—how 
much they agreed or disagreed with the statement, “The punishment should 
make O. J. suffer as he made others suffer.” The researchers were interested in 
a number of possible influences on this belief. These included “control” (how 
much control they believed Simpson had over his actions at the time of the 
crime), “responsibility” (how much they believed he was responsible for the 
crime), “anger” they felt toward him, “sympathy” they felt for him, “stability” 
(how much they believed his actions represented a stable versus temporary way 
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of behaving), and “expectancy” (if they thought he would commit such a crime 
again). Graham and her colleagues reported

. . . Table [12-13] reveals partial support for our hypotheses. As expected, the 
strongest predictors of the retributive goal of making Simpson suffer were in-
ferences about responsibility and the moral emotions of anger and sympathy.  
[S]tability and expectancy . . . were relatively weak [predictors]. (p. 337)

   Explain these results as if you were writing to a person who understands 
bivariate prediction but does not understand multiple regression. (Refer only to 
the retribution part of the table. You may ignore the t column, which is about 
the statistical significance of the results.)
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Figure 12-10 Effects of inclusion/exclusion and traits self-esteem on perceived 
acceptance.

Source: Nezlek, J. B., Kowalski, R. M., Leary, M. R., Blevins, T., & Holgate, S. (1997). Personality 
moderators of reactions to interpersonal rejection: Depression and trait self-esteem. Personality and 
Social Psychology Bulletin, 23, 1235–1244. Copyright © 1997 by Sage Publications, Ltd. Reprinted by 
permission of Sage Publications, Thousands Oaks, London, and New Delhi.

Table 12-13 Multiple Regressions Predicting Punishment Goals from the Attributional Variables, Study 1

Punishment Goal

Retribution Rehabilitation Protection Deterrence

Predictors � t � t � t � t

Control - .05 61 - .05 61 - .03 61 .15 1.90

Responsibility .17 2.07* - .00 61 - .04 61 .19 2.15*

Anger .30 4.04*** .11 1.54 - .03 61 - .04 61

Sympathy - .30 -3.68*** .39 5.18*** - .07 61 - .13 -1.54

Stability - .01 61 - .34 -4.85*** - .19 2.33* .04 61

Expectancy - .10 -1.33 - .06 61 - .27 3.36*** .08 1.04

R2 .27 .37 .17 .18

Note: � = standardized regression coefficient.

*p 6 .05; ***p 6 .001.

Source: Graham, S., Weiner, B., & Zucker, G. S. (1997). An attributional analysis of punishment goals and public reactions to O. J. Simpson. Personality and Social Psychology Bulletin, 
23, 331–346. Copyright © 1997 by the Society for Personality and Social Psychology, Inc. Reprinted by permission of Sage Publications, Inc.
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 23. Think of something that you would like to be able to predict and what predic-
tor variable would be useful in predicting it. (This should be different from any 
example given in class, included in the textbook, or used for a previous problem. 
Also, both variables should be measured on a numeric scale.) (a) Write a linear 
prediction rule, noting the name of the predictor variable and the name of the cri-
terion variable. (b) Estimate numbers for the regression constant and the regres-
sion coefficient that you think make some sense based on what you know about 
the things you are making predictions about. Finally, explain why you picked  
(c) the regression constant and (d) the regression coefficient size you did.

 24. Think of something that you would like to be able to predict and what two or more 
predictor variables would be useful in predicting it. (This should be different from 
any example given in class, included in the textbook, or used in a previous problem. 
All variables should be measured on numeric scales.) (a) Write a linear prediction 
rule, noting the name of the predictor variables and the name of the criterion variable. 
(b) Estimate numbers for the regression constant and for the regression coefficients 
for each predictor variable that you think make some sense based on what you know 
about the things you are making predictions about. Finally, explain why you picked 
(c) the regression constant, and (d) the regression coefficient sizes you did.

 25. Ask five other students of the same gender as yourself (each from different 
families) to give you their own height and also their mother’s height. Deter-
mine the linear prediction rule for predicting a person’s height from his or her 
mother’s height, and make a graph showing the regression line. Finally, based 
on your prediction rule, predict the height of a person of your gender whose 
mother’s height is (a) 5 feet, (b) 5 feet 6 inches, and (c) 6 feet. (Note: Either 
convert inches to decimals of feet or do the whole problem using inches.)

The  in the following steps indicates a mouse click. (We used SPSS version 19 for 
Windows to carry out these analyses. The steps and output may be slightly different 
for other versions of SPSS.)

In the following steps for figuring the bivariate linear prediction rule, we use 
the example of the sleep and happy mood study. The scores and figuring of the 
regression constant (a) and the regression coefficient (b) for that study are shown in 
Table 12-5 on p. 507.

Figuring the Bivariate Linear Prediction Rule
 ❶ Enter the scores into SPSS. Enter the scores as shown in Figure 12-11 (which is 

the same as Figure 11-20 in Chapter 11).
 ❷  Analyze.
 ❸  Regression.  Linear. This tells SPSS that you are figuring a linear predic-

tion rule, as opposed to any one of a number of other types of prediction rules.
 ❹  the variable called “mood” and then  the arrow next to the box labeled 

“Dependent.” This tells SPSS that the “mood” variable is the criterion variable 
(which is also called the dependent variable in prediction, because it “depends” 
on the predictor variable’s score).  the variable called “sleep” and then  the 
arrow next to the box labeled “Independent(s).” This tells SPSS that the “sleep” 
variable is the predictor variable (which is also called the independent variable 

Using SPSS
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in prediction). (If you were figuring a multiple regression, you would put all of 
the predictor variables in the “Independent(s)” box.)

 ❺  Statistics,  Descriptives,  Continue. This requests useful descriptive 
information on the variables (such as the mean and estimated population stan-
dard deviation) and also gives the correlation between the variables. (Step ❺ is 
optional, but we strongly recommend requesting descriptive statistics for any 
hypothesis-testing situation.)

 ❻  OK. Your SPSS output window should look like Figure 12-12.

SPSS provides six tables in the output. (It provides four tables if you do not  
select “Descriptives,” as shown in Step ❺ above.) The first two tables show descrip-
tive statistics and a correlation matrix. The third table shows which variable was the 
predictor variable (“variable entered”) and which was the criterion variable (“depen-
dent variable”). Always check to see that you used the correct variables. These first 
three tables are not shown in Figure 12-12. The fourth table (labeled “Model Sum-
mary”) gives the correlation coefficient (“R”) between the two variables and the pro-
portionate reduction in error (“R square” or R2), which we discussed in the Advanced 
Topic section of this chapter. Also, recall that R2 (shown as “R square” in the SPSS 
output) is the measure of effect size for prediction. (With bivariate prediction, SPSS 
uses R and R2 for what we refer to as r and r2 in the chapter. Following the usual way 
of doing this in psychology, we used lower case r and r2 with bivariate regression, 
and capital R and R2 with multiple correlation and the proportionate reduction in 
error for multiple regression. But SPSS just uses capitals for both.) You can ignore 

Figure 12-11 SPSS data editor window for the fictional study of the relationship 
between hours slept last night and mood.
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the final two columns of the “Model Summary” table. You can also ignore the table 
in the output labeled “ANOVA.” (However, if you read the Advanced Topic section 
in this chapter on error and proportionate reduction in error, note that SSError is shown 
as the “Sums of Squares” for “Residual” in the second column and the SSTotal is the 
“Sums of Squares Total” shown in the same column. The “Regression” in the “Sums 
of Squares” column shows the difference between SSTotal and SSError.)

The final table (labeled “Coefficients”) gives the information for the linear pre-
diction rule. This is what you want to focus on. The first row of the table gives the 
regression constant, which in this case is -3.000. (It also gives some other statistics 
related to the constant, such as a t test of whether the constant is significantly dif-
ferent from 0.) So, using the terminology from this chapter, a = -3.00. The regres-
sion coefficients are shown in the second row of the table. (In a multiple regression, 
there would a row of regression coefficients for each predictor variable.) The value 

Figure 12-12 SPSS output window for the bivariate prediction rule predicting mood 
from hours slept last night (fictional data).
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of 1.000 in the “B” column (“B” is the same as b you learned in this chapter) is the 
regular, unstandardized regression coefficient. So, using the terminology from this 
chapter, b = 1.000. We now have the necessary information—a and b—for the lin-
ear prediction rule. Thus, the linear prediction rule is Predicted mood = -3 + 112 
(hours of sleep). The table also shows the standardized regression coefficient, which 
is .853. The final two columns for the “sleep” row give the statistical test of whether 
each regression coefficient is significantly different from 0. The significance level 
of .031 is less than our usual .05 cutoff, which means that the number of hours slept 
is a statistically significant predictor of mood the next day. Notice that the t value of 
3.226 for the sleep predictor variable is consistent (within rounding error) with the  
t (of 3.21) we figured for this example in the previous chapter.

Chapter Notes

 1. Psychologists often call the kind of prediction in this chapter regression. Regres-
sion means, literally, going back or returning. The term regression is used here 
because, for any individual, the predicted score on the criterion variable is closer 
to the mean of the criterion variable compared to the distance from the person’s 
predictor variable score to the mean of the predictor variable. This would be true 
in all cases except for a perfect correlation between the two variables. So you can 
think of this in terms of the predicted value of the criterion variable regressing, or 
going back, toward the mean of the criterion variable.

 2. There are also procedures that allow you to use more than one criterion vari-
able. For example, you might want to know how good a predictor hours slept is 
for both mood and alertness. Procedures involving more than one criterion vari-
able are called “multivariate statistics” and are quite advanced. We introduce 
you to some examples in Chapter 15.
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Chapter 13
Chi-Square Tests

The procedures you learned in Chapters 7 through 12 (t tests, analysis of 
variance, correlation, and prediction) are very versatile, but there are 
certain research situations in which these methods cannot be used. One 

such situation is hypothesis testing for variables whose values are categories, 
such as a person’s region of the country, religious preference, or hair color. 
The t test, analysis of variance, correlation, and prediction all required that the 
measured variable or variables have scores that are quantitative, such as a rat-
ing on a 7-point scale or number of dreams during a week. This chapter focuses 
on chi-square tests, which are used when the scores are on a nominal variable 
(that is, a variable with values that are categories). (Chi is the Greek letter �; 
it is pronounced ki, rhyming with high.) Therefore, the scores that you will 
encounter in this chapter represent frequencies: that is, how many people or 
observations fall into different categories. The chi-square test was originally 
developed by Karl Pearson (see Box 13-1) and is sometimes called the Pearson 
chi-square.

chi-square tests hypothesis-testing 
procedures used when the variables of 
interest are nominal variables.

T I P  F O R  S U C C E S S
This chapter assumes you have 
a solid command of hypothesis 
testing. We also recommend that 
you review the Chapter 1 material 
on kinds of variables before 
reading this chapter.
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An Example
Black, Marola, Littman, Chrisler, and Neace (2009) were interested in the extent to 
which cereal boxes are likely to show male as opposed to female characters. Previ-
ous research has shown that male characters outnumber female characters in various 
forms of media targeted toward children, including books, video games, and televi-
sion. The researchers noted that “cereal boxes . . . depict a plethora of characters 
used to market the products to both children and adults” and that “. . . these boxes 
are on the kitchen table each morning as people eat their breakfast, and may be more 
prevalent in households than some other forms of media that have been studied pre-
viously. As such, the gender of the characters and manner in which they are depicted 

Karl Pearson, sometimes 
hailed as the founder of the 
science of statistics, was 
born in 1857. Both his vir-
tues and vices are revealed 
in what he reported to his 
colleague Julia Bell as his 
earliest memory: he was sit-
ting in his highchair, sucking 
his thumb, when he was told 
to stop or his thumb would 

wither away. Pearson silently thought, “I can’t see that 
the thumb I suck is any smaller than the other. I wonder 
if she could be lying to me.” Here we see Pearson’s faith 
in himself and in observational evidence, as well as his 
rejection of authority. We also see his tendency to doubt 
the character of people with whom he disagreed.

Pearson studied mathematics at Cambridge. Soon 
after he arrived, he requested to be excused from com-
pulsory chapel. As soon as his request was granted, how-
ever, he appeared in chapel. The dean summoned him 
for an explanation, and Pearson declared that he had 
asked to be excused not from chapel “but from compul-
sory chapel.”

After graduation, Pearson studied in Germany, 
becoming a socialist and a self-described “free-thinker.” 
Returning to England, he changed his name from Carl 
to Karl (in honor of Karl Marx) and wrote an attack on 
Christianity under a pen name. In 1885 he founded a 
Men and Women’s Club to promote equality between 
the sexes. In 1892 he published a book titled, The Gram-
mar of Science, that subsequently influenced Albert 
Einstein’s theories of relativity.

Most of Pearson’s research from 1893 to 1901 
focused on the laws of heredity, but he needed better 
statistical methods, leading to his most famous contri-
bution, the chi-square test. Pearson also invented the 
method of computing correlation used today and coined 
the terms histogram, skew, and spurious correlation. 
When he felt that biology journals failed to appreciate 
his work, he founded the famous journal Biometrika.

Unfortunately, Pearson was a great fan of eugenics, 
and his work was later used by the Nazis as justification 
for their treatment of the Jews. Toward the end of his 
life, however, he fought back, writing a paper using clear 
logic and data on Jews and Gentiles from all over the 
world to demonstrate that the Nazis’ ideas were sheer 
nonsense.

Indeed, throughout his life, Pearson’s strong opinions 
created a long list of enemies, especially as other, younger 
statisticians passed him by, while he refused to publish 
their work in Biometrika. William S. Gosset (Box 7-1) 
was one of his friends. Sir Ronald Fisher (Box 9-1) was 
one of Pearson’s worst enemies. The kindly Gosset was 
always trying to smooth matters between them. In 1933, 
Pearson finally retired, and Fisher, of all persons, took 
over his chair, the Galton Professorship of Eugenics at 
University College in London. In 1936, the two entered 
into their bitterest argument yet; Pearson died the same 
year.

For more information about Pearson, see http://en.
wikipedia.org/wiki/Karl_Pearson and http://www. 
human-nature.com/nibbs/03/kpearson.html.

Sources: Peters (1987); Salsburg (2001); Stigler (1986); 
Tankard (1984); Wright (2009).

BOX 13-1  Karl Pearson, Inventor of Chi-Square 
and Center of Controversy

Topham/The Image Works

http://en.wikipedia.org/wiki/Karl_Pearson
http://en.wikipedia.org/wiki/Karl_Pearson
http://www.human-nature.com/nibbs/03/kpearson.html
http://www.human-nature.com/nibbs/03/kpearson.html


544 Chapter 13

on cereal boxes may contribute to people’s gender schemas” (pp. 882–883). In 
order to test their hypothesis that male characters would appear more often than 
female characters on cereal boxes, the researchers assigned student research assis-
tants the task of coding the gender of the characters on every cereal box in a large 
grocery superstore in the northeastern United States. The researchers described the 
coding process as follows: “[F]or gender, coders relied on cues such as clothing 
(e.g., skirts), hairstyle (e.g., pony tails with ribbons), facial features (e.g., mustache), 
and name (e.g., Tony the Tiger)” (p. 885). Of the 1,386 characters on cereal boxes 
whose gender could be determined, 996 were male and 390 were female (in percent-
age terms, 72% male and 28% female).

Suppose the characters were equally likely to be male or female. If that were 
the case, then about 693 (half of the 1,386) characters should have been male and 
another 693 should have been female. This information is laid out in the “Observed 
Frequency” and “Expected Frequency” columns of Table 13-1. The Observed Fre-
quency column shows the breakdown of character genders actually observed. The 
Expected Frequency column shows the breakdown you would expect if the gen-
ders had been exactly equally likely. (Note that it won’t always be the case that 
you expect an equal breakdown across the categories. In some situations, the 
expected frequency for each category may be based on theory, or on a breakdown 
from another study or circumstance. We will consider some examples of this kind 
shortly.)

Clearly, there is a discrepancy between what was actually observed and the 
breakdown you would expect if male and female characters were equally likely. The 
question is this: Should you assume that this discrepancy is no more than what we 
would expect just by chance for a sample of this size? Suppose that characters on 
all cereal boxes (that is, the entire population of cereal boxes, not just the sample 
the students saw at that supermarket) are equally likely to be male or female. In that 
case, you would still not expect a perfectly equal gender split for the sample of cereal 
boxes examined from any single store. But if the breakdown in the sample of cereal 
boxes is a long way from equal, you would doubt that the gender split in the full 
population of cereal boxes really is equal. In other words, we are in a hypothesis-
testing situation, much like the ones we have been considering all along—but with a 
big difference, too.

In the situations in previous chapters, the scores have all been numerical values 
on some dimension, such as a score on a standard achievement test, length of time in 
a relationship, an employer’s rating of an employee’s job effectiveness on a 9-point 
scale, and so forth; often we figured means of these numbers. By contrast, the 
gender of characters on cereal boxes is an example of what in Chapter 1 we called a 
nominal variable (or a categorical variable). A nominal variable is one in which the 
information is the number of people or observations in each category. Therefore, the 

Table 13-1  Observed and Expected Frequencies for the Gender of Characters on Cereal 

Boxes (Data from Black et al., 2009)

Gender

Observed  
Frequency  

(O )

Expected  
Frequency  

(E )
Difference  
1O � E 2

Difference  
Squared 
1O � E 22

Difference Squared  
Weighted by Expected Frequency  

1O � E 22,E

Male 996 693   303 91,809 132.48

Female 390 693 -303 91,809 132.48
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numbers associated with nominal variables are frequencies (and not means at all);  
the frequency tells you how many people or observations fall into each category of 
the variable. We use the term nominal variables because the different categories 
or levels of the variable have names instead of numbers. Hypothesis testing with 
nominal variables uses chi-square tests.

The Chi-Square Statistic and the Chi-Square  
Test for Goodness of Fit
The basic idea of any chi-square test is that you compare how well an observed 
breakdown of people over various categories fits some expected breakdown. (In the 
example we just considered, we are comparing how well the observed breakdown 
of genders of characters on cereal boxes compares to the expected breakdown, if the 
null hypothesis were true, of an equal, 50-50, breakdown.) In this chapter you will 
learn about two types of chi-square tests: First, you will learn about the chi-square 
test for goodness of fit, which is a chi-square test involving levels of a single nomi-
nal variable. Later in the chapter, you will learn about the chi-square test for inde-
pendence, which is used when there are two nominal variables, each with several 
categories.

More specifically, again in terms of the example of characters on cereal boxes—
in which there is a single nominal variable with two categories (male and female)—
you are comparing the observed breakdown of 996 and 390 to the expected 
breakdown of about 693 for each gender. A breakdown of numbers expected in each 
category is actually a frequency distribution, as you learned in Chapter 1. Thus, a 
chi-square test is more formally described as comparing an observed frequency 
distribution to an expected frequency distribution. Here is the key idea: What this 
hypothesis testing involves is first figuring a number for the amount of mismatch 
between the observed frequencies and the expected frequencies, and then see-
ing whether that number indicates a greater mismatch than you would expect by 
chance. This gives an idea as to how the chi-square test for goodness of fit came to 
have that name: the test shows how well an observed frequency distribution fits an 
expected (or predicted) frequency distribution.

Let’s start with how you would come up with that mismatch number for the 
observed versus expected frequencies. The mismatch between observed and expected 
for any one category is just the observed frequency minus the expected frequency. 
For example, consider again the Black and colleagues (2009) study. For male char-
acters, the observed frequency of 996 is 303 more than the expected frequency of 
693. For female characters, the difference is -303 (that is, 390 - 693 = -303). 
These differences are shown in the Difference column of Table 13-1.

You do not use these differences directly. One reason is that some differences 
are positive and some are negative. Thus, they would cancel each other out. To 
get around this, you square each difference. (This is the same strategy we used in 
Chapter 2 to deal with difference scores in figuring the variance.) In our example, 
the squared difference for male characters is 303 squared, or 91,809. For female 
characters it is -303 squared, which is also 91,809. These squared differences are 
shown in the Difference Squared column of Table 13-1.

However, we need to consider that a particular numerical amount of difference 
between observed and expected has a different importance according to the size of 
the expected frequency. For example, a difference of 8 people between observed 
and expected is a much bigger mismatch if the expected frequency is 10 than if the 
expected frequency is 1,000. If the expected frequency is 10, a difference of 8 would 

chi-square test for goodness 
of fit hypothesis-testing procedure 
that examines how well an observed 
frequency distribution of a nominal 
variable fits some expected pattern of 
frequencies.

chi-square test for independence 
hypothesis-testing procedure that 
examines whether the distribution of 
frequencies over the categories of one 
nominal variable is unrelated to the 
distribution of frequencies over the 
categories of a second nominal variable.

observed frequency in a chi-square 
test, number of individuals actually 
found in the study to be in a category 
or cell.

expected frequency in a chi-square 
test, number of people in a category  
or cell expected if the null hypothesis 
were true.

T I P  F O R  S U C C E S S
Note that in situations when you 
have more than two categories, 
the squared differences will usually 
not be the same for all of the 
categories.
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mean that the observed frequency was 18 or 2, frequencies that are dramatically 
different from 10. But if the expected frequency is 1,000, a difference of 8 is only 
a slight mismatch. This would mean that the observed frequency was 1,008 or 992, 
frequencies that are only slightly different from 1,000.

How can you adjust the mismatch (the squared difference) between observed 
and expected for a particular category? What you need to do is adjust, or weight, the 
mismatch to take into account the expected frequency for that category. You can do 
this by dividing your squared difference for a category by the expected frequency 
for that category. Thus, if the expected frequency for a particular category is 10, 
you divide the squared difference by 10. If the expected frequency for the category 
is 1,000, you divide the squared difference by 1,000. In this way, you weight each 
squared difference by the expected frequency. This weighting puts the squared dif-
ference onto a more appropriate scale of comparison.

Let’s return to our example. For male characters, you would weight the mis-
match by dividing the squared difference of 91,809 by 693, giving 132.48. For 
female characters, dividing 91,809 by 693 again results in 132.48. These adjusted 
mismatches (squared differences weighted by expected frequencies) are shown in 
the right-most column of Table 13-1.

What remains is to get an overall number for the mismatch between observed 
and expected frequencies. This final step is done by adding up the mismatch for all 
the categories. That is, you take the result of the squared difference divided by the 
expected frequency for the first category, add the result of the squared difference 
divided by the expected frequency for the second category, and so on. In the Black 
et al. (2009) example, there are only two categories, so this would be 132.48 plus 
132.48, for a total of 264.96. This final number (the sum of the weighted squared dif-
ferences) is an overall indication of the amount of mismatch between the expected 
and observed. It is called the chi-square statistic. (Remember, the chi-square statis-
tic is basically a fancy way of measuring the mismatch between what you observe 
and what would be expected.) In terms of a formula,

 �2 = a

1O - E22
E

 (13-1)

In this formula, �2 is the chi-square statistic. �  is the summation sign, tell-
ing you to sum over all the different categories. O is the observed frequency for a 
category (the number of people or observations actually found in that category in 
the study). E is the expected frequency for a category. (In the Black et al. [2009] 
example, it is based on what we would expect if there were equal numbers in each 
category.)

Applying the formula to the Black et al. (2009) example,

�2 =a

1O - E22
E

=
1996 - 69322

693
+
1390 - 69322

693
= 264.96

Steps for Figuring the Chi-Square Statistic
Here is a summary of what we’ve said so far in terms of steps:

 ●A Determine the actual, observed frequencies in each category.
 ●B Determine the expected frequencies in each category.
 ●C In each category, take observed minus expected frequencies.
 ●D Square each of these differences.
 ●E Divide each squared difference by the expected frequency for its category.
 ●F Add up the results of Step ●E  for all the categories.

chi-square statistic 1�22 statistic that 
reflects the overall lack of fit between 
the expected and observed frequencies; 
sum, over all the categories or cells, of 
the squared difference between observed 
and expected frequencies divided by the 
expected frequency.

T I P  F O R  S U C C E S S
Notice in the chi-square formula 
that, for each category, you first 
divide the squared difference 
between observed and expected 
frequencies by the expected 
frequency, and then you sum 
the resulting values for all the 
categories. This is a slightly 
different procedure than you are 
used to from previous chapters 
(in which you often first summed 
a series of squared values in the 
numerator and then divided by a 
denominator value), so be sure to 
follow the formula carefully.

Chi-square is the sum, over 
all the categories, of the 
squared difference between 
observed and expected 
frequencies, divided by the 
expected frequency.
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The Chi-Square Distribution
Now we turn to the question of whether the chi-square statistic you have figured is 
a bigger mismatch than you would expect by chance. To answer that, you need to 
know how likely it is to get chi-square statistics of various sizes by chance. As long 
as you have a reasonable number of people in the study, the distribution of the chi-
square statistic that would arise by chance follows quite closely a known mathemati-
cal distribution—the chi-square distribution.

The exact shape of the chi-square distribution depends on the degrees of free-
dom. For a chi-square test, the degrees of freedom are the number of categories 
that are free to vary, given the totals. In the example of the gender of characters 
on cereal boxes, there are two categories (male and female). If you know the total 
number of cereal boxes and you know the number in any one category, you could 
figure out the number in the second category—so only one category is free to 
vary. That is, in a study like this one (which uses a chi-square test for goodness 
of fit), if there are two categories, there is one degree of freedom. In terms of a 
formula,

 df = NCategories - 1 (13-2)

Chi-square distributions for several different degrees of freedom are shown 
in Figure 13-1. Notice that the distributions are all skewed to the right. This is 
because the chi-square statistic cannot be less than 0 but can have very high val-
ues. (Chi-square must be positive because it is figured by adding a group of frac-
tions in each of which the numerator and denominator both have to be positive. 
The numerator has to be positive because it is squared. The denominator has to 
be positive because the number of people expected in a given category can’t be 
a negative number; you can’t expect less than no one! So if you figure a chi-
square and it comes out to be a negative value, you’ve made an arithmetic mistake 
somewhere.)

The Chi-Square Table
What matters most about the chi-square distribution for hypothesis testing is  
the cutoff for a chi-square to be extreme enough to reject the null hypothesis.  
A chi-square table gives the cutoff chi-squares for different significance levels and 
various degrees of freedom. Table 13-2 shows a portion of a chi-square table like 
the one in the Appendix (Table A-4). For our example, where there is one degree 
of freedom, the table shows that the cutoff chi-square for the .05 level is 3.841.  

chi-square distribution 
mathematically defined curve used as 
the comparison distribution in chi-square 
tests; distribution of the chi-square 
statistic.

chi-square table table of cutoff 
scores on the chi-square distribution 
for various degrees of freedom and 
significance levels.

Table 13-2 Portion of a 

Chi-Square Table (with Cutoff Value 

Highlighted for the Black et al. 

Example)

Significance Level

df .10 .05 .01

1 2.706  3.841  6.635

2 4.605  5.992  9.211

3 6.252  7.815 11.345

4 7.780  9.488 13.277

5 9.237 11.071 15.087

Note: Full table is Table A-4 in the Appendix.

The degrees of freedom 
for the chi-square test for 
goodness of fit are the 
number of categories minus 1.

0
1 3 5 7 9 11 13

0
1 3 5 7 9 11 13

0
1 3 5 7 9 11 13 15

0
1 3 5 7 9 11 13 15 17 19

Chi-Square

df = 1

Chi-Square

df = 2

Chi-Square

df = 4

Chi-Square

df = 8

Figure 13-1 Examples of chi-square distributions for different degrees of freedom.
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(Of course, as with other hypothesis testing procedures, when you carry out a chi-
square using a statistics program like SPSS, you will be given an exact probability 
level, which you then check to see if it is less than the cutoff you set for the study, 
such as .05 or .01.)

In the Black et al. (2009) example, we figured a chi-square of 264.96. This is 
clearly larger than the chi-square cutoff for this example (using the .05 significance 
level) of 3.841 (see Figure 13-2). Thus, the researchers rejected the null hypothesis. 
That is, they rejected as too unlikely that the mismatch they observed (between the 
observed and expected frequencies) could have come about if the entire population 
of characters on cereal boxes had an equal number of male and female characters. 
It seemed more reasonable to conclude that there truly were different proportions of 
male and female characters on cereal boxes.

Steps of Hypothesis Testing
Let us review the chi-square test for goodness of fit using the same example, but this 
time systematically following the standard steps of hypothesis testing. In the process 
we also consider some fine points.

 ❶ Restate the question as a research hypothesis and a null hypothesis about 
the populations. There are two populations:

Population 1: Characters on cereal boxes like those in the study.
Population 2: Characters on cereal boxes who are equally likely to be male and female.

The research hypothesis is that the distribution of observations over categories 
in the two populations is different; the null hypothesis is that they are the same.

 ❷ Determine the characteristics of the comparison distribution. The com-
parison distribution here is a chi-square distribution with 1 degree of freedom. 
(Once you know the total, and the number in one category, there is only one 
category number still free to vary.)

 ➌ Determine the cutoff on the comparison distribution at which the null 
hypothesis should be rejected. You do this by looking up the cutoff on the chi-
square table for your significance level and the study’s degrees of freedom. In 

1 3 5 7 9 11 13 15 17

264.96
Sample’s Chi-Square

5%

Figure 13-2 For the Black et al. (2009) example, the chi-square distribution 1df = 12 
showing the cutoff for rejecting the null hypothesis at the .05 level and the sample’s chi-
square (note that the sample’s chi-square would, in reality, be located even further to the 
right).

T I P  F O R  S U C C E S S
Remember that Population 2 is 
the population in which the null 
hypothesis is true. This study 
focuses on the proportion of male 
and female characters on cereal 
boxes, and the comparison is to a 
null hypothesis in which characters 
on cereal boxes are equally likely 
to be male or female.

T I P  F O R  S U C C E S S
It is important not to be confused 
by the terminology here. The 
comparison distribution is the 
distribution to which we compare 
the number that summarizes the 
whole pattern of the result. With a 
t test, this number is the t score, 
and we use a t distribution. With 
an analysis of variance, it is the F 
ratio and we use an F distribution. 
Accordingly, with a chi-square 
test, our comparison distribution 
is a distribution of the chi-square 
statistic. This can be confusing 
because when preparing to use 
the chi-square distribution, we 
compare a distribution of observed 
frequencies to a distribution 
of expected frequencies. Yet 
the distribution of expected 
frequencies is not a comparison 
distribution in the sense that 
we use this term in Step ❷ of 
hypothesis testing.
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the present example, we used the .05 significance level, and we determined in 
Step ❷ that there was 1 degree of freedom. Based on the chi-square table, this 
gives a cutoff chi-square of 3.841.

 ❹ Determine your sample’s score on the comparison distribution. Your sam-
ple’s score is the chi-square figured from the sample. In other words, this is 
where you do all the figuring.
●A Determine the actual, observed frequencies in each category. These are 

shown in the first column of Table 13-1.
●B Determine the expected frequencies in each category. We figured these 

each to be 693 based on a null hypothesis of expecting an equal distribution 
of the 1,386 characters.

●C In each category, take observed minus expected frequencies. These are 
shown in the third column of Table 13-1.

●D Square each of these differences. These are shown in the fourth column of 
Table 13-1.

●E Divide each squared difference by the expected frequency for its cate-
gory. These are shown in the fifth column of Table 13-1.

●F Add up the results of Step ●E  for all the categories. The result we figured ear-
lier (264.96) is the chi-square statistic for the sample. It is shown in Figure 13-2.

 ❺ Decide whether to reject the null hypothesis. The chi-square cutoff to reject 
the null hypothesis (from Step ❸) is 3.841 and the chi-square of the sample 
(from Step ❹) is 264.96. Thus, you can reject the null hypothesis. The research 
hypothesis that the two populations are different is supported. That is, consis-
tent with their hypothesis, Black et al. (2009) could conclude that the characters 
on cereal boxes are more likely to be male than female. Now take a look at the 
cereal boxes you have at home and see if there are more male than female char-
acters on the boxes. Be sure to look at all of the characters on both the front and 
back of the box!

Another Example
A fictional research team of clinical psychologists want to test a theory that mental 
health is affected by the level of a certain mineral in the diet, called “mineral Q.” 
The research team has located a region of the United States where mineral Q is 
found in very high concentrations in the soil. As a result, it is in the water people 
drink and in locally grown food. The researchers carry out a survey of older people 
who have lived in this area their whole life, focusing on mental health disorders. Of 
the 1,000 people surveyed, 138 had at some point in their life experienced an anxi-
ety disorder, 99 had suffered from alcohol or drug abuse, 123 from a mood disorder 
(such as major chronic depression), and 111 from an impulse-control disorder (such 
as attention deficit hyperactivity disorder); 529 had never experienced any of these 
problems. (In this example, we ignore the problem of what happens when a person 
had more than one of these problems.)

The psychologists then compared their results to what would be expected based 
on large surveys of the U.S. public in general. In these surveys, 14.6% of adults at 
some point in their lives suffer from an anxiety disorder, 8.0% from alcohol or drug 
abuse, 11.0% from a mood disorder, and 12.8% from an impulse-control disorder; 
53.6% do not experience any of these conditions (based on Kessler et al., 2005). 
If their sample of 1,000 is not different from the general U.S. population, 14.6%  
of them (146) should have had anxiety disorders, 8.0% of them (80) should 
have suffered from alcohol or drug abuse, and so forth. The question the clinical 
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 psychologists posed is, “On the basis of the sample we have studied, can we con-
clude that the rates of various mental health problems among people in this region 
are different from those of the general U.S. population?”

Table 13-3 shows the observed and expected frequencies and the figuring for 
the chi-square test.

 ❶ Restate the question as a research hypothesis and a null hypothesis about 
the populations. There are two populations:

Population 1: People in the U.S. region with a high level of mineral Q.
Population 2: People in the U.S. population in general.

  The research hypothesis is that the distribution of numbers of people over the 
five mental health categories is different in the two populations; the null hy-
pothesis is that it is the same.

 ❷ Determine the characteristics of the comparison distribution. The compari-
son distribution is a chi-square distribution with 4 degrees of freedom (that is, 
df = NCategories - 1 = 5 - 1 = 4). See Figure 13-3.

 ❸ Determine the cutoff sample score on the comparison distribution at which 
the null hypothesis should be rejected. We will use the standard 5% signifi-
cance level and we have just seen that there are 4 degrees of freedom. Thus, 
Table 13-2 (or Table A-4 in the Appendix) shows that the clinical psychologists 
need a chi-square of at least 9.488 to reject the null hypothesis. This is shown in 
Figure 13-3.

 ❹ Determine your sample’s score on the comparison distribution. The chi-
square figuring is shown in Table 13-3.
●A Determine the actual, observed frequencies in each category. These are 

shown in the first column of Table 13-3.
●B Determine the expected frequencies in each category. These are figured 

by multiplying the expected percentage by the total number. For example, 

T I P  F O R  S U C C E S S
Note in this example that the 
expected frequencies are figured 
based on what would be expected 
in the U.S. population. This is 
quite different from the situation 
we considered before where 
the expected frequencies were 
based on an even division. Thus, 
Population 2 in this example is 
people in the U.S. population in 
general, since that is the population 
that is being used to determine the 
expected frequencies.

Table 13-3  Observed and Expected Frequencies and the Chi-Square Goodness of Fit 

Test for Types of Mental Health Disorders in a U.S. Region High in Mineral Q 

Compared to the General U.S. Population (Fictional Data)

Condition Observed ●A Expected ●B 

Anxiety disorder 138 146 114.6% * 1,0002
Alcohol or drug abuse  99  80 18.0% * 1,0002
Mood disorder 123 110 111.0% * 1,0002
Impulse-control disorder 111 128 112.8% * 1,0002
None of these conditions 529 536 153.6% * 1,0002

Degrees of freedom = NCategories - 1 = 5 - 1 = 4 ❷
Chi-square needed, df = 4, .05 level: 9.488 ❸

 �2 = a

10 - E22
E

=
1138 - 14622

146
+
199 - 8022

80
+
1123 - 11022

110
+
1111 - 12822

128
+
1529 - 53622

536
 ●C 

 =
-82

146
+

192

80
+

132

110
+

-172

128
+

-72

536
 ●D 

 = 0.44 + 4.51 + 1.54 + 2.26 + 0.09 ●E 

 = 8.84 ●F 

Decision: Do not reject the null hypothesis.❺

0
1 3 5 7 9 11 13

5%

Figure 13-3 For the mineral 
Q example, the chi-square distribu-
tion 1df = 42 showing the cutoff 
for rejecting the null hypothesis 
at the .05 level and the sample’s 
chi-square.
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with 14.6% expected to have anxiety disorders, the actual expected number 
to have anxiety disorders is 146 (that is, 14.6% of 1000). All of the expected 
frequencies are shown in Table 13-3.

●C In each category, take observed minus expected frequencies. The result 
of these subtractions are shown in the numerators of the second formula line 
on Table 13-3.

●D Square each of these differences. The results of these squarings are shown 
in the numerators of the third formula line on Table 13-3.

●E Divide each squared difference by the expected frequency for its cate-
gory. The result of these divisions are shown in the fourth formula line on 
Table 13-3.

●F Add up the results of Step ●E  for all the categories. The sum comes out to 
8.84. The addition is shown on Table 13-3; the location on the chi-square 
distribution is shown in Figure 13-3.

 ❺ Decide whether to reject the null hypothesis. The sample’s chi-square (from 
Step ❸) of 8.84 is less extreme than the cutoff (from Step ❹) of 9.488. The 
 researchers cannot reject the null hypothesis; the study is inconclusive. (Hav-
ing failed to reject the null hypothesis with such a large sample, it is reason-
able to suppose that, if there is any difference between the populations, it is 
quite small.)

How are you doing?

 1. In what situation do you use a chi-square test for goodness of fit?
 2. List the steps for figuring the chi-square statistic, and explain the logic behind 

each step.
 3. Write the formula for the chi-square statistic and define each of the symbols.
 4. (a) What is a chi-square distribution? (b) What is its shape? (c) Why does it 

have that shape?
 5. (a) Use the steps of hypothesis testing to carry out a chi-square test for good-

ness of fit (using the .05 significance level) for a sample in which one category 
has 15 people, the other category has 35 people, and the first category is 
expected to have 60% of people and the second category is expected to 
have 40% of people. (b) Sketch the distribution involved.

Answers

 1. You use a chi-square test for goodness of fit when you want to test whether 
a sample’s distribution of people across categories represents a population 
that is significantly different from a population with a particular expected dis-
tribution of people across categories.

 2. ●A   Determine the actual, observed frequencies in each category. This is 
the key information for the sample studied.

   ●B   Determine the expected frequencies in each category. Having these 
numbers makes it possible to make a direct comparison of what is 
expected to the observed frequencies.

  ●C   In each category, take observed minus expected frequencies. This is 
the direct comparison of the distribution for the sample versus the distribu-
tion representing the expected population.

  ●D   Square each of these differences. This gets rid of the direction of the dif-
ference (since the interest is only in how much difference there is).
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  ●E   Divide each squared difference by the expected frequency for its cat-

egory. This adjusts the degree of difference for the absolute size of the 
expected frequencies.

  ●F   Add up the results of Step ●E  for all the categories. This gives you a sta-
tistic for the overall degree of discrepancy.

 3. Formula for the chi-square statistic: �2 = g
1O - E22

E
.

  �2 is the chi-square statistic; g  tells you to sum over all the different catego-
ries; O is the observed frequency for a category; E is the expected frequency 
for a category.

 4. (a) A chi-square distribution: for any particular number of categories, the dis-
tribution you would expect if you figured a very large number of chi-square 
statistics for samples from a population in which the distribution of people 
over categories is the expected distribution.

  (b) A chi-square distribution is skewed to the right.
  (c) It has this shape because a chi-square statistic can’t be less than 0 (since 

the numerator, a squared score, has to be positive, and its denominator, an 
expected number of individuals, also has to be positive), but there is no limit 
to how large it can be.

 5. (a) ❶  Restate the question as a research hypothesis and a null hypoth-

esis about the populations. There are two populations:

Population 1: People like those in the sample.
Population 2: People in general who have a distribution of 60% in the 
first category and 40% in the second category.

The research hypothesis is that the distribution of numbers of people 
over categories in the population is not 60% in the first category and 
40% in the second category; the null hypothesis is that the distribution 
is 60% in the first category and 40% in the second category.

  ❷  Determine the characteristics of the comparison distribution. The 
comparison distribution is a chi-square distribution with 1 degree of 
freedom (that is, df = NCategories - 1 = 2 - 1 = 1).

  ❸  Determine the cutoff sample score on the comparison distribution 

at which the null hypothesis should be rejected. At the .05 level with 
df = 1, cutoff is 3.841.

  ❹  Determine your sample’s score on the comparison distribution.

 ●A   Determine the actual, observed frequencies in each category. As 
given in the problem, these are 15 and 35.

 ●B   Determine the expected frequencies in each category. With 50 
people total and expecting a 60% to 40% breakdown, the expected 
frequencies are 30 and 20.

 ●C   In each category, take observed minus expected frequencies. 
These come out to –15 (that is, 15 - 30 = -15) and 15 (that is, 
35 - 20 = 15).

 ●D   Square each of these differences. Both come out to 225 (that is, 
-152 = 225 and 152 = 225).

 ●E   Divide each squared difference by the expected frequency for 

its category. For the first category, this comes out to 7.5 (that is, 
225>30 = 7.5). For the second category, this comes out to 11.25 
(that is, 225>20 = 11.25).
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The Chi-Square Test for Independence
So far, we have looked at the distribution of one nominal variable with several catego-
ries, such as the gender breakdown of characters on cereal boxes. In fact, this kind of 
situation is fairly rare in research. We began with an example of this kind mainly as 
a stepping-stone to a more common actual research situation, to which we now turn.

The most common use of chi-square is one in which there are two nominal 
variables, each with several categories. Hypothesis testing in this kind of situa-
tion is called a chi-square test for independence. (You will learn shortly why it has 
this name.) For example, in addition to being interested in the gender breakdown 
of characters on cereal boxes, Black et al. (2009) were also interested in the age 
distribution of the characters (in terms of whether they were children or adults). 
In this case, we have two nominal variables. The gender of the characters (that is, 
male versus female) is the first nominal variable. The age of the characters (that 
is, child versus adult) is the second nominal variable. Based on previous research, 
Black et al. hypothesized that male characters would be more likely to be displayed 
as adults than female characters. Table 13-4 shows the results. Notice the two nomi-
nal variables: gender (with two levels) and age (with two levels). For this part of 
their study, the researchers focused on 222 characters for which the student research 
assistants carried out detailed coding of both gender and age.

Contingency Tables
Table 13-4 is a contingency table, a table in which the distributions of two nominal 
variables are set up so that you have the frequencies of their combinations as well as 
the totals. Thus, in Table 13-4, the 125 in the Male/Adult combination is how many 
of the male characters were adults.

contingency table two-dimensional 
chart showing frequencies in each 
combination of categories of two 
nominal variables.

1 3 5 7 9 11 13 15 17 19

18.75
Sample’s Chi-Square

5%

Figure 13-4 For “How 
are you doing?” question 5, the  
chi-square distribution 1df = 12
showing the cutoff for rejecting the 
null hypothesis at the .05 level and 
the sample’s chi-square.

 ●F   Add up the results of Step ●E  for all the categories. 7.5 +  
11.25 = 18.75.

❺ Decide whether to reject the null hypothesis. The sample’s chi-
square of 18.75 is more extreme than the cutoff of 3.841. Reject the 
null hypothesis; people like those in the sample are different from the 
expected 60% to 40% breakdown.

(b) See Figure 13-4.
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Table 13-4 is a 2 * 2 contingency table because it has two levels of one 
variable crossed with two levels of the other. It is also possible to have larger contin-
gency tables, such as a 4 * 7 or a 6 * 18 table. Smaller tables, such as 2 * 2 and 
3 * 2 contingency tables, are especially common.

Independence
The question in this example is whether there is any relation between the gender 
of the characters and whether they are children or adults. If there is no relation, 
the proportion of child and adult characters is the same among male characters and 
female characters. Or to put it the other way, if there is no relation, the proportion of 
male and female characters is the same for child and adult characters. However you 
describe it, the situation of no relation between the variables in a contingency table 
is called independence.1

Sample and Population
In the survey results in the example, the proportions of child and adult characters 
vary for male and female characters. For male characters, 18.3% are child characters 
and 81.7% are adult characters. However, among female characters, 43.5% are child 
characters and 56.5% are adult characters. Thus, as hypothesized by the research-
ers, more of the male characters are adults than are the female characters. Still, the 
sample is only of 222 characters. Thus, it is possible that in the larger population of 
cereal boxes, the age of characters is independent of the characters’ being male or 
female. The big question is whether the lack of independence in the sample is large 
enough to reject the null hypothesis of independence in the population. That is, you 
need to do a chi-square test.

Determining Expected Frequencies
One thing that is new in a chi-square test for independence is that you now have 
to figure differences between observed and expected for each combination of 
 categories—that is, for each cell of the contingency table. (When there was only one 
nominal variable, you figured these differences just for each category of that single 
nominal variable.) Table 13-5 is the contingency table for the example of characters 
on cereal boxes with the expected frequency shown (in parentheses) for each cell.

The key idea to keep in mind when figuring expected frequencies in a contin-
gency table is that “expected” is based on the two variables being independent. If 
they are independent, then the proportions up and down the cells of each column 
should be the same. In the example, overall, there are 26.1% child characters and 
73.9% adult characters; thus, if a character’s gender is independent of being a child 

independence situation of no 
relationship between two variables; 
term usually used regarding two 
nominal variables in a chi-square test 
for independence.

cell in chi-square, the particular 
combination of categories for two 
variables in a contingency table.

T I P  F O R  S U C C E S S
A contingency table is similar to 
the tables in factorial analysis of 
variance that you learned about in 
Chapter 10 where each cell had 
a mean of the scores of several 
people. However, in a contingency 
table, the number in each cell is not 
a mean, but rather the number of 
people or observations that have a 
particular combination of categories.

Table 13-4  Contingency Table of Observed Frequencies 

of Gender and Age of Characters on Cereal 

Boxes (Data from Black et al., 2009)

Gender

Male Female Total

Ag
e

Child  28 30  58 (26.1%)

Adult 125 39 164 (73.9%)

Total 153 69 222 (100%)
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T I P  F O R  S U C C E S S
Always ensure that you have 
the same number of expected 
frequencies as observed 
frequencies. For example, with 
a 2 * 2 contingency table, there 
will be four observed frequencies 
and four corresponding expected 
frequencies. In Table 13-5, we 
have put in the expected frequency 
(in parentheses) next to each 
observed frequency.

Table 13-5  Contingency Table of Observed (and Expected) 

Frequencies of Gender and Age of Characters 

on Cereal Boxes (Data from Black et al., 2009)

Gender

Male Female Total

Ag
e

Child  28 (39.9)a 30 (18.0)  58 (26.1%)

Adult 125 (113.1) 39 (51.0) 164 (73.9%)

Total 153 69 222 (100%)

a Expected frequencies are in parentheses.

or adult character, this 26.1–73.9% split should hold for each column (male and 
female). First, the 26.1–73.9% overall split should hold for the male characters. This 
would make an expected frequency in the male cell for child characters of 26.1% of 
153 (the total number of male characters), which comes out to 39.9. (Don’t worry 
that 39.9 isn’t a whole number; even though you can’t have 0.9 of a character, it 
makes sense because it’s an expected, or theoretical, value.) The expected frequency 
for the male characters that are adults is 113.1 (that is, 73.9% of 153 is 113.1). The 
same principle holds for the column of female characters: The 69 female characters 
should have a 26.1–73.9% split, giving an expected frequency of 18.0 child characters 
(that is, 26.1% of 69 is 18.0) and 51.0 adult characters (that is, 73.9% of 69 is 51.0).

Summarizing what we have said in terms of steps,

 ●i Find each row’s percentage of the total.
 ●ii For each cell, multiply its row’s percentage by its column’s total.

Applying these steps to the top left cell (child characters who are male),

 ●i Find each row’s percentage of the total. The 58 characters in the child row is 
26.1% of the overall total of 222 (that is, 58>222 = .261, which is 26.1%).

 ●ii For each cell, multiply its row’s percentage by its column’s total. The col-
umn total for the male characters is 153; 26.1% of 153 comes out to 39.9 (that 
is, .261 * 153 = 39.9).

These steps can also be stated as a formula,

 E = aR

N
b1C2 (13-3)

In this formula, E is the expected frequency for a particular cell. R is the number 
of people observed in this cell’s row, and N is the number of people total (thus, 
R divided by N is the proportion of the total number of people that are in that row). 
C is the number of people observed in this cell’s column. (Thus, for any given col-
umn, taking the result of R divided by N—the proportion in that row—and multiplying 
by C, the number in that column, gives you the number you would expect for that 
row to be in that column.)

Applying the formula to the same top left cell,

E = aR

N
b1C2 = a 58

222
b11532 = 1.261)11532 = 39.9

Looking at the entire Table 13-5, notice that in each column (as well as over-
all) the expected frequencies add up to the same totals as the observed frequencies. 

T I P  F O R  S U C C E S S
Be sure to check that you 
are selecting the correct row 
percentage and column total for 
each cell. Selecting the wrong 
value is a common mistake when 
figuring chi-square.

A cell’s expected frequency 
is the number in its row 
divided by the total, 
multiplied by the number in 
its column.

T I P  F O R  S U C C E S S
As a check on your arithmetic, 
it is a good idea to make sure 
that the expected and observed 
frequencies add up to the same 
row and column totals.
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(This is as it should be because the expected frequencies are just a different way of 
dividing up the column total.) For example, in the first column (male characters), the 
expected frequencies of 39.9 and 113.1 add up to 153, just as the observed frequen-
cies in that column of 28 and 125 do. Similarly, in the top row (child characters), 
the expected frequencies of 39.9 and 18 add up to 57.9, the same total (allowing for 
rounding error) as for the observed frequencies of 28 and 30. And the total of the 
four observed frequencies 128 + 30 + 125 + 39 = 2222 is the same as the total 
of the four expected frequencies 139.9 + 18.0 + 113.1 + 51.0 = 2222.

Figuring Chi-Square
You figure chi-square the same way as in the chi-square test for goodness of fit, 
except that you now figure the weighted squared difference for each cell and add 
these up. Here is how it works for our example:

 �2 = g
1O - E22

E
=
128 - 39.922

39.9
+
130 - 1822

18

 +
1125 - 113.122

113.1
+
139 - 5122

51

 = 3.55 + 8 + 1.25 + 2.82 = 15.62.

Degrees of Freedom
A contingency table with many cells may have relatively few degrees of freedom. In 
our example, there are 4 cells but only 1 degree of freedom. (Recall that the degrees 
of freedom are the number of categories free to vary once the totals are known.) 
With a chi-square test for independence, the number of categories is the number of 
cells; the totals include the row and column totals—and if you know the row and 
column totals, you have a lot of information.

Consider our example of the gender and age of characters on cereal boxes. Sup-
pose you know the first cell frequency across the top, for example, and all the row 
and column totals. You could then figure all the other cell frequencies just by sub-
traction. Table 13-6 shows the contingency table for this example with just the row 
and column totals and this one cell frequency. Let’s start with the Child/Female 
cell. There is a total of 58 child characters, and the other child cell (the Child/Male 
cell) has 28 in it. Thus, only 30 remain for the Child/Female cell. Now consider the 
two adult character cells. You know the frequencies for all child character cells and 
the column totals for male and female characters. Thus, each cell frequency for the 
adult characters is its column’s total minus the child characters in that column. For 

Table 13-6  Contingency Table Showing Marginal and One 

Cell’s Observed Frequencies to Illustrate Figuring 

Degrees of Freedom (Data from Black et al., 2009)

Gender

Male Female Total

Ag
e

Child 28   —  58 (26.1%)

Adult  —   — 164 (73.9%)

Total 153   69 222 (100%)
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example, there are 153 male characters, and 28 of those are child characters. Thus, 
the remaining 125 must be adult characters.

What you can see in all this is that with knowledge of only one of the cells, 
you could figure out the frequencies in each of the other cells. Thus, although there 
are four cells, there is only 1 degree of freedom—only one cell whose frequency is 
really free to vary once we have all the row and column totals. However, rather than 
having to think all this out each time, there is a shortcut. In a chi-square test for inde-
pendence, the degrees of freedom are the number of columns minus 1 multiplied by 
the number of rows minus 1. Put as a formula,

 df = 1NColumns - 121NRows - 12 (13-4)

NColumns is the number of columns and NRows is the number of rows.
Using this formula for our example,

df = 1NColumns - 121NRows - 12 = 12 - 1212 - 12 = 112112 = 1.

Hypothesis Testing
With 1 degree of freedom, Table 13-2 (or Table A-4) shows that the chi-square 
you need for significance at the .05 level is 3.841. The chi-square of 15.62 for our 
example is larger than this cutoff. Thus, you can reject the null hypothesis that the 
two variables are independent in the population.

Steps of Hypothesis Testing
Now let’s go through the example again, this time following the steps of hypothesis 
testing.

 ❶ Restate the question as a research hypothesis and a null hypothesis about 
the populations. There are two populations:

Population 1: Characters on cereal boxes like those in the study.
Population 2: Characters on cereal boxes for which the age distribution of the 
characters is independent of the gender of the characters.

  The null hypothesis is that the two populations are the same—that, in gen-
eral, the proportion of characters that are children and adults is the same for 
male characters and female characters. The research hypothesis is that the 
two populations are different, that for characters on cereal boxes, the propor-
tion of characters that are children and adults is different for male and female 
characters.

   Put another way, the null hypothesis is that the two variables are indepen-
dent (they are unrelated to each other). The research hypothesis is that they are 
not independent (that they are related to each other).

 ❷ Determine the characteristics of the comparison distribution. The compari-
son distribution is a chi-square distribution with 1 degree of freedom (the num-
ber of columns minus 1 multiplied by the number of rows minus 1).

 ❸ Determine the cutoff sample score on the comparison distribution at which 
the null hypothesis should be rejected. You use the same table as for any 
chi-square test. In the example, setting a .05 significance level with 1 degree of 
freedom, you need a chi-square of 3.841.

 ❹ Determine your sample’s score on the comparison distribution.
●A Determine the actual, observed frequencies in each cell. These are the 

results of the survey, as given in Table 13-4.

The degrees of freedom 
for the chi-square test 
for independence are the 
number of columns minus 1 
multiplied by the number of 
rows minus 1.

T I P  F O R  S U C C E S S
As in the previous examples in 
this chapter (and throughout this 
book), Population 2 is a population 
in which the null hypothesis is true. 
So if Population 1 and 2 are the 
same, the null hypothesis is also 
true of Population 1.
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●B Determine the expected frequencies in each cell. These are shown in 
Table 13-5. For example, for the bottom right cell (Adult/Female cell):
 ●i Find each row’s percentage of the total. The 164 characters in the adult 

row are 73.9% of the overall total of 222 (that is, 164>222 = 73.9%).
 ●ii For each cell, multiply its row’s percentage by its column’s total. The 

column total for female characters is 69; 73.9% of 69 comes out to 51.0 
(that is, .739 * 69 = 51.0).

●C In each cell, take observed minus expected frequencies. For example, for 
the Adult/Female cell, this comes out to -12 (that is, 39 - 51 = -12).

●D Square each of these differences. For example, for the Adult/Female cell, 
this comes out to 144 (that is, -122 = 144).

●E Divide each squared difference by the expected frequency for its cell. 
For example, for the Adult/Female cell, this comes out to 2.82 (that is, 
144>51 = 2.82).

●F Add up the results of Step ●E  for all the cells. As we saw, this came out 
to 15.62.

 ❺ Decide whether to reject the null hypothesis. The chi-square needed to reject 
the null hypothesis is 3.841 and the chi-square for our sample is 15.62 (see  
Figure 13-5). Thus, you can reject the null hypothesis. The research hypothesis 
that the two variables are not independent in the population is supported. That 
is, the proportion of characters that are children or adults is different for male 
and female characters.

A Second Example
Riehl (1994) studied the college experience of students who were the first genera-
tion in their family to attend college. These students were compared to other stu-
dents who were not the first generation in their family to go to college. (All students 
in the study were from Indiana University.) One of the variables Riehl measured 
was whether or not students dropped out during their first semester.

Table 13-7 shows the results along with the expected frequencies (shown in 
parentheses). Below the contingency table is the figuring for the chi-square test for 
independence.

 ❶ Restate the question as a null hypothesis and a research hypothesis about 
the populations. There are two populations:

Population 1: Students like those surveyed.
Population 2: Students whose dropping out or staying in college their first se-
mester is independent of whether or not they are the first generation in their 
family to go to college.

The null hypothesis is that the two populations are the same—that, in gen-
eral, whether or not students drop out of college is independent of whether or 
not they are the first generation in their family to go to college. The research 
hypothesis is that the populations are not the same. In other words, the research 
hypothesis is that students like those surveyed are different from the hypotheti-
cal population in which dropping out is unrelated to whether or not you are first 
generation.

 ❷ Determine the characteristics of the comparison distribution. This is a 
chi-square distribution with 1 degree of freedom.

 ❸ Determine the cutoff sample score on the comparison distribution at which 
the null hypothesis should be rejected. Using the .01 level and 1 degree of 

1 3 5 7 9 11 13 15 17

15.62
Sample’s Chi-Square

5%

Figure 13-5 For the Black 
et al. (2009) example of the age and 
gender of characters on cereal boxes, 
the chi-square distribution 1df = 12
showing the cutoff for rejecting the 
null hypothesis at the .05 level and 
the sample’s chi-square.
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freedom. Table A-4 shows that you need a chi-square for significance is 6.635. 
This is shown in Figure 13-6.

 ❹ Determine your sample’s score on the comparison distribution.
●A Determine the actual, observed frequencies in each cell. These are the 

results of the survey, as given in Table 13-7.
●B Determine the expected frequencies in each cell. These are shown in 

parentheses in Table 13-7.
For example, for the top left cell (“First Generation/Dropped Out” cell),

 ●i Find each row’s percentage of the total. The “Dropped Out” row’s 162 
is 7.9% of the overall total of 2,045 (that is, 162>2,045 = 7.9%).

 ●ii For each cell, multiply its row’s percentage by its column’s total. The 
column total for the “First Generation” students is 730; 7.9% of 730 comes 
out to 57.7 (that is, .079 * 730 = 57.7).

●C In each cell, take observed minus expected frequencies. These are shown 
in Table 13-7. For example, for the “First Generation/Dropped Out” cell, this 
comes out to 15.3 (that is, 73 - 57.7 = 15.3).

●D Square each of these differences. These are also shown in Table 13-7. For 
example, for the “First Generation/Dropped Out” cell, this comes out to 
234.1 (that is, 15.32 = 234.1).

●E Divide each squared difference by the expected frequency for its cell. Once 
again, these are shown in Table 13-7. For example, for the “First Generation/
Dropped Out” cell, this comes out to 4.06 (that is, 234.1>57.7 = 4.06).

●F Add up the results of Step ●E  for all the cells. As shown in Table 13-7, 
this comes out to 6.73. Its location on the chi-square distribution is shown in 
Figure 13-6.

 ❺ Decide whether to reject the null hypothesis. Your chi-square of 6.73 is 
larger than the cutoff of 6.635. Thus, you can reject the null hypothesis. That 

Table 13-7  Results and Figuring of the Chi-Square Test for Independence Comparing Whether 

First-Generation College Students Differ from Others in First Semester Dropouts

Generation to Go to College

 First  Other   Total

Dropped Out 73 (57.7)  89 (103.9)     162 (7.9%)

Did Not Drop Out 657 (672.3) 1,226 (1,211.1)    1,883 (92.1%)

Total 730 1,315    2,045

df = 1NColumns - 121NRows - 12 = 12 - 1212 - 12 = 112112 = 1. ❷

Chi-square needed, df = 1, .01 level: 6.635. ❸

�2 = g
1O - E22

E
=
173 - 57.722

57.7
+
189 - 103.922

103.9
+
1657 - 672.322

672.3
+
11,226 - 1,211.122

1,211.1

=
15.32

57.7
+

-14.92

103.9
+

-15.32

672.3
+

14.92

1,211.1

 =
234.1
57.7

+
222

103.9
+

234.1
672.3

+
222

1,211.1

 = 4.06 + 2.14 + .35 + .18

= 6.73. ●F

Decision: Reject the null hypothesis. ❺

Notes: 1. With a 2 * 2 analysis, the differences and squared differences (numerators) are the same for all four cells. In this 
example, the cells are a little different due to rounding error. 2. Data from Riehl (1994). The exact chi-square (6.73) is slightly 
different from that reported in the article (7.2), due to rounding error.

0
1 3 5 7 9

6.73
Sample’s Chi-Square

1%

Figure 13-6 For the exam-
ple from Riehl (1994), chi-square 
distribution 1df = 12 showing the 
cutoff for rejecting the null hypoth-
esis at the .01 level and the sample’s 
chi-square.
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is, judging from a sample of 2,045 Indiana University students, first generation 
students are somewhat more likely to drop out during their first semester than 
are other students. (Remember, of course, that there could be many reasons for 
this result.)

   The results of Riehl’s (1994) study have been replicated in many other 
universities. For example, a recent study of this issue among college students 
across the United States also found that first generation students were more 
likely to drop out of college than other students (Chen, 2005).

How are you doing?

 1. (a) In what situation do you use a chi-square test for independence? (b) How 
is this different from the situation in which you would use a chi-square test for 
goodness of fit?

 2. (a) List the steps for figuring the expected frequencies in a contingency table. 
(b) Write the formula for expected frequencies in a contingency table and 
define each of its symbols.

 3. (a) Write the formula for figuring degrees of freedom in a chi-square test for 
independence and define each of its symbols. (b) Explain the logic behind 
this formula.

 4. Carry out a chi-square test for independence for the following observed 
scores (using the .10 significance level). (a) Use the steps of hypothesis test-
ing, and (b) sketch the distribution involved.

Nominal Variable A

Category 1 Category 2

Nominal Variable B

Category 1 10 10

Category 2 50 10

Category 3 10 10

Answers

 1. (a) You use a chi-square test for independence when you know the number of 
people in each of the various combinations of levels of two nominal variables. 
(b) The focus is on the independence of two nominal variables, whereas in a 
chi-square test for goodness of fit the focus is on the distribution of people 
over categories of a single nominal variable.

 2. (a) ●i  Find each row’s percentage of the total.

       ●ii  For each cell, multiply its row’s percentage by its column’s total.

(b) E = aR
N
b1C2.

 E is the expected frequency for a particular cell, R is the number of people 
observed in this cell’s row, N is the total number of people, and C is the 
number of people observed in this cell’s column.

 3. (a) df = 1NColumns - 121NRows - 12.
 df are the degrees of freedom, NColumns is the number of columns, and NRows 

is the number of rows.
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 (b) df are the number of cell totals free to vary given you know the column and 
row totals. If you know the totals in all the columns but one (and you know the row 
totals), you can figure the total in the cells in the remaining column by subtraction. 
Similarly, if you know the total in all the rows but one (and you know the column 
totals), you can figure the total in the cells in the remaining row by subtraction.

 4. (a) Chi-square test for independence:
❶ Restate the question as a null hypothesis and a research hypothesis 

about the populations. There are two populations:

Population 1: People like those studied.
Population 2: People whose being in a particular category of Nominal 
Variable A is independent of their being in a particular category of Nomi-
nal Variable B.

 The null hypothesis is that the two populations are the same; the research 
hypothesis is that the populations are not the same.

❷ Determine the characteristics of the comparison distribution. 
This is a chi-square distribution with 2 degrees of freedom. That is,  
df = 1NColumns - 121NRows - 12 = 12 - 1213 - 12 = 2.

❸ Determine the cutoff sample score on the comparison distribution at 

which the null hypothesis should be rejected. From Table A-4 (in the 
Appendix), for the .10 level and 2 degrees of freedom, the needed chi-
square is 4.605.

❹ Determine your sample’s score on the comparison distribution.

●A   Determine the actual, observed frequencies in each cell. These are 
shown in the contingency table for the problem.

●B  Determine the expected frequencies in each cell.

●i   Find each row’s percentage of the total. For the top row 
20>100 = 20%; for the second row, 60>100 = 60%; for the third 
row, 20>100 = 20%.

●ii   For each cell, multiply its row’s percentage by its column’s 

total. For the top left cell, 20% * 70 = 14; for the top right cell, 
20% * 30 = 6; for the middle left cell, 60% * 70 = 42; for 
the middle right cell, 60% * 30 = 18; for the bottom left cell, 
20% * 70 = 14; for the bottom right cell, 20% * 30 = 6.

●C   In each cell, take observed minus expected frequencies. For the 
six cells, 10 - 14 = -4; 10 - 6 = 4; 50 - 42 = 8; 10 - 18 = -8; 10 -
14 = -4; 10 - 6 = 4.

●D   Square each of these differences. The squared differences are 16, 
16, 64, 64, 16, 16.

●E   Divide each squared difference by the expected frequency for 

its cell. These come out to 16>14 = 1.14; 16>6 = 2.67; 64>42 =
1.52; 64>18 = 3.56; 16>14 = 1.14; 16>6 = 2.67.

●F   Add up the results of Step ●E  for all the cells. 1.14 + 2.67 + 1.52 +
3.56 + 1.14 + 2.67 = 12.70.

❺ Decide whether to reject the null hypothesis. The sample’s chi square 
of 12.70 is larger than the cutoff of 4.605. Thus, you can reject the null 
hypothesis: which category people are in on Nominal Variable A is not 
independent of which category they are in on Nominal Variable B.
(b) See Figure 13-7. 
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Assumptions for Chi-Square Tests
The chi-square tests of goodness of fit and for independence do not require the 
usual assumptions of normal population variances and such. There is, however, 
one key assumption: each score must not have any special relation to any other 
scores. This means that you can’t use these chi-square tests if the scores are 
based on the same people being tested more than once. Consider a study in which 
20 people are tested to see if the distribution of their preferred brand of yogurt 
changed from before to after a recent nutritional campaign. The results of this 
study could not be tested with the usual chi-square, because the distributions of 
yogurt choice before and after are from the same people. You may also hear about 
a rule that, for the results of a chi-square test to be valid, none of the expected fre-
quencies should be less than 5. However, these days most statisticians no longer 
hold to this idea. We have more to say about this issue in the Controversy section 
later in this chapter.

Effect Size and Power for Chi-Square Tests  
for Independence
Effect Size
In chi-square tests for independence, you can use your sample’s chi-square 
to figure a number that shows the degree of association of the two nominal 
variables.

With a 2 * 2 contingency table, the measure of association is called the 
phi coefficient 1�2.

Here is the formula:

 � = A
�2

N
 (13-5)

The phi coefficient has a minimum of 0 and a maximum of 1, and it can be 
considered like a correlation coefficient (see Chapter 11).2 Cohen’s (1988) con-
ventions for the phi coefficient are that .10 is a small effect size, .30 is a medium 
effect size, and .50 is a large effect size (the same as for an ordinary correlation 
coefficient).

phi coefficient 1�2 effect-size measure 
for a chi-square test for independence 
with a 2 * 2 contingency table; square 
root of division of chi-square statistic 
by N.

The phi coefficient (effect 
size for a chi-square test for 
independence for a 2 * 2 
contingency table) is the 
square root of the result of 
dividing the sample’s chi-
square by the total number of 
people in the sample.

0
1 3 5 7 9 11 13

12.70 =
Sample’s Chi-Square

10%

Figure 13-7 For “How are you doing?” 
question 4, chi-square distribution 1df = 22 
showing the cutoff for rejecting the null 
hypothesis at the .10 level and the sample’s 
chi-square.
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For example, in the Riehl (1994) study of first generation college students, the 
sample’s chi-square was 6.73 and there were 2,045 people in the study. Thus,

� = A
�2

N
= A

6.73

2,045
= 2.00329 = .06.

This is a very small effect size. The fact that the chi-square of 6.73 was  
significant in this study tells you that the greater likelihood of first generation stu-
dents dropping out that you saw in the sample is probably not due to the particular 
people that were randomly recruited to be in this sample. You can thus have some 
confidence that there is a pattern of this kind in the population. But the small phi 
coefficient tells you that this population tendency may not be a very important factor 
in practice.

You only use phi when you have a 2 * 2 situation. Cramer’s phi is an exten-
sion of the ordinary phi coefficient that you can use for contingency tables larger 
than 2 * 2 (Cramer’s phi is also known as Cramer’s V and is sometimes written �C 
or VC). You figure Cramer’s phi the same way as the ordinary phi coefficient, except 
that instead of dividing by N, you divide by N times the degrees of freedom of the 
smaller side of the table. Stated as a formula,

 Cramer>s � = A
�2

1N21dfSmaller2 (13-6)

In this formula, dfSmaller is the degrees of freedom for the smaller side of the contin-
gency table.

For question 4 of the “How are you doing?” section you just completed, the 
sample’s chi-square was 12.70, and the total number of people was 100. There was 
one degree of freedom for the smaller side of the table (the columns in this exam-
ple). Cramer’s phi is the square root of what you get when you divide 12.70 by 100 
multiplied by 1. This comes out to .13. In terms of the formula,

Cramer>s � = A
�2

1N21dfSmaller2 = A
12.70

1100)112 = .13.

Cohen’s conventions for effect size for Cramer’s phi depend on the degrees of 
freedom for the smaller side of the table. Table 13-8 shows Cohen’s (1988) effect 
size conventions for Cramer’s phi for tables in which the smallest side of the table is 
2, 3, and 4. Notice that when the smallest side of the table is 2, there is one degree of 
freedom. Thus, the effect sizes given in the table for this situation are the same as for 
the ordinary phi coefficient.

Based on the table, for question 4 of the “How are you doing?” section, there 
is an approximately small effect size (.13), a small amount of relationship between 
nominal variable A and nominal variable B.

Cramer’s phi (Cramer’s �) measure 
of effect size for a chi-square test for 
independence with a contingency table 
that is larger than 2 * 2. Also known 
as Cramer’s V and sometimes written 
as �C or VC.

Cramer’s phi coefficient 
(effect size for a chi-square 
test for independence) is the 
square root of the result of 
dividing the sample’s chi-
square by the product of the 
total number of people in 
the sample multiplied by the 
degrees of freedom for the 
smaller side of the table.

Table 13-8  Cohen’s Conventions for Cramer’s Phi

Smallest Side of 
 Contingency Table

Effect Size

Small Medium Large

21dfSmaller = 12  .10 .30 .50

31dfSmaller = 22  .07 .21 .35

41dfSmaller = 32  .06 .17 .29
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Power
Table 13-9 shows the approximate power at the .05 significance level for small, 
medium, and large effect sizes and total sample sizes of 25, 50, 100, and 200. Power 
is given for tables with 1, 2, 3, and 4 degrees of freedom.3

Consider the power of a planned 2 * 4 study 1df = 32 of 50 people with 
an expected medium effect size (Cramer’s � = .30). The researchers will use 
the .05 level. From Table 13-9 you can find this study would have a power of 
.40. That is, if the research hypothesis is true, and there is a true medium effect 
size, there is about a 40% chance that the study will come out significant. Notice 
from this table two things about power for a chi-square test for independence. 
First, like all other hypothesis-testing situations, the more participants there are 
in the study, the more power there will be. Second, the more degrees of freedom 
there are (the more different categories that are crossed with each other), the less 
power there is. Thus, for maximum power, you want as many participants as pos-
sible with as simple a contingency table (that is, as few categories in each direc-
tion) as possible.

Needed Sample Size
Table 13-10 gives the approximate total number of participants needed for  
80% power with small, medium, and large effect sizes at the .05 significance 
level for chi-square tests for independence of 2, 3, 4, and 5 degrees of freedom.4 
Suppose you are planning a study with a 3 * 3 1df = 42 contingency table. You 
expect a large effect size and will use the .05 significance level. According to the 

Table 13-9  Approximate Power for the Chi-Square Test for Independence 

for Testing Hypotheses at the .05 Significance Level

Effect Size

Total df Total N Small Medium Large

1  25 .08 .32 .70

 50 .11 .56 .94

100 .17 .85 *

200 .29 .99 *

2  25 .07 .25 .60

 50 .09 .46 .90

100 .13 .77 *

200 .23 .97 *

3  25 .07 .21 .54

 50 .08 .40 .86

100 .12 .71 .99

200 .19 .96 *

4  25 .06 .19 .50

 50 .08 .36 .82

100 .11 .66 .99

200 .17 .94 *

* Nearly 1.
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table, you would only need 48 participants. Again, the same principle holds that 
we emphasized earlier regarding the degrees of freedom when figuring power. In 
this case, it means that the more degrees of freedom there are (that is, the more 
categories in each variable being crossed), the more participants you need for the 
same amount of power.

Table 13-10  Approximate Total Number of Participants Needed for 

80% Power for the Chi-Square Test for Independence for 

Testing Hypotheses at the .05 Significance Level

Effect Size

Total df Small Medium Large

1   785  87      26

2   964 107      39

3 1,090 121      44

4 1,194 133      48

How are you doing?

 1. What are the assumptions for chi-square tests?
 2. (a) What is the measure of effect size for a 2 * 2 chi-square test for indepen-

dence? (b) Write the formula for this measure of effect size and define each of 
the symbols. (c) What are Cohen’s conventions for small, medium, and large 
effect sizes? (d) Figure the effect size for a 2 * 2 chi-square test for indepen-
dence in which there are a total of 100 participants and the chi-square is 12.

 3. (a) What is the measure of effect size for a chi-square test for independence 
for a contingency table that is larger than 2 * 2? (b) Write the formula for this 
measure of effect size and define each of the symbols. (c) What is Cohen’s 
convention for a small effect size for a 4 * 6 contingency table? (d) Figure 
the effect size for a 4 * 6 chi-square test for independence in which there 
are a total of 200 participants and the chi-square is 20.

 4. What is the power of a planned 3 * 3 chi-square with 50 participants total 
and a predicted medium effect size?

 5. What are two factors that affect the power of a study using a chi-square test 
for independence?

 6. About how many participants do you need for 80% power in a planned 2 * 2 
study in which you predict a medium effect size and will be using the .05 sig-
nificance level?

Answers

 1. The only major assumption for chi-square tests is that the numbers in each 
cell or category are from separate persons.

 2. (a)  The measure of effect size for a 2 * 2 chi-square test for independence is 
the phi coefficient.

(b) The formula for the measure of effect size is � = A
�2

N
.



566 Chapter 13

Controversy: The Minimum Expected Frequency
Over a half century ago, Lewis and Burke (1949) published a landmark paper on the 
misuse of chi-square. They listed nine common errors that had appeared in published 
papers, giving many examples of each. With one exception, their work has held up 
very well through the years. The errors are still being made, and they are still seen 
as errors. (If you follow the procedures of this chapter, you won’t be making them!)

The one exception to this critical picture is the error that Lewis and Burke con-
sidered the most common weakness in the use of chi-square: expected frequencies 
that are too low. Now, it seems that low expected numbers in cells may not be such a 
big problem after all. Lewis and Burke, like most statistics textbook authors of their 
time, held that every cell of a contingency table (and every category of a goodness 
of fit test) should have a reasonable-sized expected frequency. They recommended 
a minimum of 10, with 5 as the bottom limit. Others recommended figures ranging 
from 1 to 20. Even Sir Ronald Fisher (1938) previously had his own suggestion, rec-
ommending 10 as his minimum. Still others recommended that the minimum should 
be some proportion of the total or that it depended on whether the expected frequen-
cies were equal or not. (Incidentally, notice that what was being debated were mini-
mum expected frequencies, not observed frequencies.)

Since 1949, when Lewis and Burke published their article, there has been some 
systematic research on just what the effects of low expected frequencies are. (These 
studies use Monte Carlo methods; see Chapter 8, Box 8-1; for an example of a study 
focusing on chi-square see Parshall & Kromrey, 1996). And what is the conclusion? 
As in most areas, the matter is still not completely settled. However, by the early 

 � is the phi coefficient (effect size for a chi-square test for independence 
with a 2 * 2 contingency table); �2 is the sample’s chi-square; and N is 
the number of participants in the study.

  (c)  Cohen’s conventions: .10 is a small effect size, .30 is a medium effect 
size, and .50 is a large effect size.

  (d) Effect size: � = A
12
100

= .35.

 3. (a) Effect size: Cramer’s phi.

(b) Formula: Cramer’s � = A
�2

1N21dfSmaller2
 Cramer’s � is Cramer’s phi coefficient (effect size for a chi-square test 

for independence); �2 is the sample’s chi-square; N is the number of par-
ticipants in the study total; and dfSmaller is the degrees of freedom for the 
smaller side of the contingency table.

(c) Cohen’s convention: .06.
(d) Effect size: 220>12002132 = .18.

 4. Power: .36.
 5. Two factors that affect the power of a study using a chi-square test for inde-

pendence: number of participants and degrees of freedom. (Another factor 
we did not discuss here, but which also affects power for chi-square as it 
does for any significance test, is the significance level chosen.)

 6. Number of participants needed: 87.
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1980s, a major review of the research on the topic (Delucchi, 1983) and still the 
definitive word drew two main conclusions:

 1. “As a general rule, the chi-square statistic may be properly used in cases 
where the expected values are much lower than previously considered permissi-
ble” (p. 168). Even expected frequencies as low as 1 per cell may be acceptable 
in terms of Type I error, provided that there are a reasonable number of indi-
viduals overall. The most important principle seems to be that there should be at 
least five times as many individuals as there are cells. For example, a cell with a 
very low expected frequency would be acceptable in a 2 * 2 contingency table 
if there were at least 20 participants in the study overall.5

 2. However, Delucchi cited one researcher as concluding that, even though 
using chi-square with small expected frequencies may be acceptable (in  
the sense of not giving too many Type I errors in the long run), it may still 
not be a wise approach. This is because the chance of getting a significant  
result, even if your research hypothesis is true, may be quite slim. That is, 
with small expected frequencies, power is very low. Thus, you run the risk 
of Type II errors instead. (There are also more advanced, alternative meth-
ods that can be used when sample sizes are very small, which is probably 
the ideal approach in such cases; for a recent discussion of the issues, see 
 Ruxton & Neuhäuser, 2010).

Chi-Square Tests in Research Articles
In research articles, chi-square tests for goodness of fit usually include the frequen-
cies in each category or cell, as well as the degrees of freedom, number of par-
ticipants, the sample’s chi-square, and significance level. For example, Black et al. 
(2009) reported their finding for the gender of characters on cereal boxes as follows: 
“[A] chi-square goodness-of-fit test was conducted on the total number of characters 
whose gender could be determined 1n = 1,3862. Seventy-two percent 1n = 9962 
were male characters and 28% 1n = 3902 were female characters, which represents 
a significant disparity, �2 112 = 264.96, p 6 .001” (p. 886).

Here is another example of a chi-square test for goodness of fit. Sandra Mori-
arty and Shu-Ling Everett (1994) had graduate students go to 55 different homes 
and observe people watching television for 45-minute sessions. In one part of their 
results, they compared the number of people they observed who fell into one of four 
distinct categories:

Flipping [very rapid channel changing], the category dominated by the most active 
type of behavior, occurred most frequently in 33% of the sessions 1n = 182. The 
grazing category [periods of browsing through channels] dominated 24% of the ses-
sions 1n = 132, and 22% were found to be in each of the continuous and stretch 
viewing categories 1n = 122. These differences were not statistically significant 
1�2 = 1.79, df = 3, p 7 .052. (p. 349)

Published reports of chi-square tests for independence provide the same basic 
chi-square information. For example, Durkin and Barber (2002) studied the rela-
tionship between playing computer games and positive development (such as being 
close to one’s family, involved in activities, having positive mental health, and low 
disobedience to parents) among 16-year-old high school students in Michigan. As 
part of the study, the researchers tested whether male and female students differed 
in how often they played computer games. Students indicated how often they played 
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 1. Chi-square tests are used for hypothesis tests with nominal variables. A sam-
ple’s chi-square statistic 1�22 shows the amount of mismatch between expected 
and observed frequencies over several categories. It is figured by finding, for 
each category or combination of categories, the difference between observed 
frequency and expected frequency, squaring this difference (eliminating posi-
tive and negative signs), and dividing by the expected frequency (making the 
squared differences more proportionate to the numbers involved). The results 
are then added up for all the categories or combinations of categories. The dis-
tribution of the chi-square statistic is known and the cutoffs can be looked up in 
standard chi-square tables.

Summary

computer games with a 7-point scale, from never (1) to daily (7). Here is how the 
researchers reported their results:

The participants were categorized into three groups based on their frequency of play: 
“None” included participants who did not use computers at all, as well as those who 
used computers, but never for computer games; “Low” included participants who 
checked 2, 3, 4, or 5 for frequency of computer use to play computer games; and “High”  
included participants who checked 6 or 7 for frequency of computer game play. A 
chi-square test [for independence] indicated that males and females were not evenly 
distributed across these three categories 3�212, N = 10432 = 62.39, p 6 .0014. 
Girls were overrepresented among the nonusers, with a majority never playing com-
puter games (50.6%), compared to 29.4% of boys who never played. Boys were more 
than twice as likely (23.8%) as girls (9.9%) to be in the high use group. A substantial 
number of both girls (39.4%) and boys (46.8%) were in the low use group. (p. 381)

You may be interested to read the researchers’ conclusions from the overall 
study: “No evidence was obtained of negative outcomes among game players. On 
several measures—including . . . [all of the positive development outcomes men-
tioned earlier]—game players scored more favorably than did peers who never 
played computer games. It is concluded that computer games can be a positive fea-
ture of a healthy adolescence” (Durkin & Barber, 2002, p. 373).

Durkin and Barber (2002) do not give the effect size for their significant result. 
However, you can figure it out from the chi-square, number of participants, and 
design of the study (2 * 3 in this example). Using the formula,

� = 2�2>31N21dfSmaller24 = 262.3931104321124 = 2.060 = .24.

This suggests that there is something close to a moderate effect size.
Black et al. (2009) reported the result of their chi-square test for independence of 

the association between the gender and age of characters on cereal boxes as follows: 
“The . . . hypothesis was that male characters would be more likely than female charac-
ters to be displayed as . . . adults. . . . A chi-square [analysis] tested the extent to which 
gender was associated with . . . age. . . . [F]emale characters were more likely than 
male characters to be depicted as children. . . , and male characters were more likely 
than female characters to be depicted as adults 3�2112 = 15.62, p 6 .0014” (p. 886).

Learning Aids
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chi-square tests (p. 542)
chi-square test for goodness  

of fit (p. 545)
chi-square test for independence  

(p. 545)

observed frequency (p. 545)
expected frequency (p. 545)
chi-square statistic 1�22 (p. 546)
chi-square distribution (p. 547)
chi-square table (p. 547)

contingency table (p. 553)
independence (p. 554)
cell (p. 554)
phi coefficient 1�2 (p. 562)
Cramer’s phi (Cramer’s �) (p. 563)

Key Terms

 2. The chi-square test for goodness of fit is used to test hypotheses about whether 
a distribution of frequencies over two or more categories of a single nominal 
variable matches an expected distribution. (These expected frequencies are 
based, for example, on theory or on a distribution in another study or circum-
stance). In this test, the expected frequencies are given in advance or are based 
on some expected percentages (such as equal percentages in all groups). The 
degrees of freedom are the number of categories minus 1.

 3. The chi-square test for independence is used to test hypotheses about the rela-
tion between two nominal variables—that is, about whether the breakdown 
over the categories of one variable has the same proportional pattern in each of 
the categories of the other variable. The frequencies are set up in a contingency 
table in which the two variables are crossed and the numbers in each combina-
tion are placed in each of the resulting cells. The frequency expected for a cell 
if the two variables are independent is the percentage of all the people in that 
cell’s row multiplied by the total number of people in that cell’s column. The 
degrees of freedom for the chi-square test for independence are the number of 
columns minus 1 multiplied by the number of rows minus 1.

 4. Chi-square tests make no assumptions about normal distributions of their variables, 
but they do require that no individual be counted in more than one category or cell.

 5. The estimated effect size for a chi-square test for independence (that is, the 
degree of association) for a 2 * 2 contingency table is the phi coefficient; for 
larger tables, Cramer’s phi. Phi is the square root of the result of dividing your 
sample’s chi-square by the number of persons. Cramer’s phi is the square root 
of the result of dividing your sample’s chi-square by the product of the number 
of persons multiplied by the degrees of freedom in the smaller side of the con-
tingency table. These coefficients range from 0 to 1.

 6. The minimum acceptable frequency for a category or cell has been a subject of 
controversy. Currently, the best advice is that even very small expected frequen-
cies do not seriously increase the chance of a Type I error, provided that there 
are at least five times as many individuals as categories (or cells). However, low 
expected frequencies seriously reduce power and should be avoided if possible.

 7. Chi-square tests are reported in research articles using a standard format. For 
example, �213, N = 1962 = 9.22,  p 6 .05.

Chi-Square Test for Goodness of Fit
The expected distribution (from previous years) on an exam roughly follows a nor-
mal curve in which the highest scoring 2.5% of the students get As; the next high-
est scoring 14%, Bs; the next 67%, Cs; the next 14%, Ds; and the lowest 2.5%, Fs.  

Example Worked-Out Problems
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A class takes a test using a new grading system and 10 get As, 34 get Bs, 140 get Cs, 
10 get Ds, and 6 get Fs. Can you conclude that the new system produces a different 
distribution of grades (using the .01 level)? (a) Use the steps of hypothesis testing, 
and (b) make a sketch of the distribution involved.

Answers
 (a) Table 13-11 shows the observed and expected frequencies and the figuring for 

the chi-square test.

 ❶ Restate the question as a research hypothesis and a null hypothesis 
about the populations. There are two populations:

Population 1: Students like those graded with the new system.
Population 2: Students like those graded with the old system.

The research hypothesis is that the populations are different; the null 
 hypothesis is that the populations are the same.

 ❷ Determine the characteristics of the comparison distribution. The com-
parison distribution is a chi-square distribution with 4 degrees of freedom 1df = NCategories - 1 = 5 - 1 = 42.

 ❸ Determine the cutoff sample score on the comparison distribution at 
which the null hypothesis should be rejected. Using the .01 level and 
df = 4, Table A-4 (in the Appendix) shows a needed chi-square of 13.277.

 ❹ Determine your sample’s score on the comparison distribution. As 
shown in Table 13-11, this comes out to 18.33.

 ❺ Decide whether to reject the null hypothesis. The sample’s chi-square of 
18.33 is more extreme than the needed chi-square of 13.277. Thus, you can reject  
the null hypothesis and conclude that the populations are different; the new  
grading system produces a different distribution of grades than the previous one.

 (b) Figure 13-8 shows the distribution.

Table 13-11 Figuring for Chi-Square Test for Goodness of Fit Example Worked-Out Problem

Grade Observed ●A    Expected ●B 

A 10   5 12.5% * 2002
B 34  28 114.0% * 2002
C 140 134 167.0% * 2002
D 10  28 114.0% * 2002
F 6   5 12.5% * 2002

Degrees of freedom = NCategories - 1 = 5 - 1 = 4 ❷
Chi@square needed, df = 4, .01 level: 13.277 ❸

 �2 = g
1O - E22

E
=
110 - 522

5
+
134 - 2822

28
+
1140 - 13422

134
+
110 - 2822

28
+
16 - 522

5

 =
52

5
+

62

28
+

62

134
+

-182

28
+

12

5
 

 =
25
5

+
36
28

+
36
134

+
324
28

+
1
5

 

 = 5 + 1.29 + .27 + 11.57 + .20 = 18.33. 

Decision: Reject the null hypothesis. ❺

●C

●D

●F

●E
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18.33 =
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Figure 13-8 For the chi-square test for goodness of fit Example Worked-Out Prob-
lem, chi-square distribution 1df = 42 showing the cutoff for rejecting the null hypothesis at 
the .01 level and the sample’s chi-square.

Chi-Square Test for Independence
Janice Steil and Jennifer Hay (1997) conducted a survey of professionals (lawyers, 
doctors, bankers, and the like) regarding the people they compare themselves to 
when they think about their job situation (salary, benefits, responsibility, status, and 
so on). One question of special interest was how much professionals compare them-
selves to people of their own sex, the opposite sex, or both. Here are the results:

 Participant Gender

 Men Women

Comparison   

Same sex 29 17

Opposite sex  4 14

Both sexes 26 28

Can the researchers conclude that the gender of who people compare themselves to 
is different depending on their own gender (using the .05 level)? (a) Use the steps of 
hypothesis testing, and (b) make a sketch of the distribution involved.

Answers
 (a) Table 13-12 shows the figuring for the chi-square test.

 ❶  Restate the question as a null hypothesis and a research hypothesis 
about the populations. There are two populations:

 Population 1: Professionals like those surveyed.
 Population 2: Professionals for whom own sex is independent of the sex of 

those to whom they compare their job situations.

 The null hypothesis is that the two populations are the same—that, in gen-
eral, professional men and women do not differ in the sex of those to whom 
they compare their job situations. The research hypothesis is that the popula-
tions are not the same, that professionals like those surveyed are unlike the 
hypothetical population in which men and women do not differ in the sex of 
those to whom they compare their job situations.

 ❷  Determine the characteristics of the comparison distribution. This is a 
chi-square distribution with 2 degrees of freedom.

 ❸  Determine the cutoff sample score on the comparison distribution at 
which the null hypothesis should be rejected. Using the .05 level and 
2 degrees of freedom, the needed chi-square for significance is 5.992.
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Table 13-12 Figuring for Chi-Square Test for Independence Example Worked-Out Problem

Participant Gender

    Men  
  ●A 

 Women  
     ●B

  Total

Co
m

pa
ris

on

Same sex 29 (23) 17 (23)  46 (39.0%)

Opposite sex  4 (9) 14 (9)  18 (15.3%)

Both sexes 26 (27) 28 (27)  54 (45.8%)

Total 59 59 118

df = 1NColumns - 121NRows - 12 = 12 - 1213 - 12 = 112122 = 2. ❷

Chi-square needed, df = 2, .05 level: 5.992. ❸

 �2 = �
1O - E22

E
=
129 - 2322

23
+
117 - 2322

23
+
14 - 922

9
+
114 - 922

9
+
126 - 2722

27
+
128 - 2722

27

 =
62

23
+

-62

23
+

-52

9
+

52

9
+

-12

27
 +

12

27
  

 =
36
23

+
36
23

+
25
9

+
25
9

+
1

27
+

1
27

 

 = 1.57 + 1.57 + 2.78 + 2.78 + .04 + .04 = 8.78. 

Decision: Reject the null hypothesis. ❺

Note: Data from Steil and Hay (1997). The chi-square computed here (8.78) is slightly different from that reported in their 
 article (8.76) due to rounding error.

●C

●E
●F

 ❹  Determine your sample’s score on the comparison distribution. As shown 
in Table 13-12, this comes out to 8.78.

 ❺  Decide whether to reject the null hypothesis. The chi square of 8.78 is 
larger than the cutoff of 5.992; thus you can reject the null hypothesis: The 
gender of the people with whom professionals compare their job situations is 
likely to be different for men and women.

(b) Figure 13-9 shows the distribution.

Effect Size for a 2 � 2 Chi-Square Test for Independence
Figure the effect size for a study with 85 participants and a chi-square of 14.41.

Answer
� = 2�2>N = 214.41>85 = 2.170 = .41.

Effect Size for a Chi-Square Test for Independence  
with a Contingency Table Greater Than 2 � 2
Figure the effect size for the example shown in Table 13-12.

Answer

Cramer>s � = 2�2>1N21dfSmaller2 = 28.78>11182112 = 2.074 = .27.

0
1 3 5 7 9

8.78 =
Sample’s Chi-Square

5%

Figure 13-9 For the chi-
square test for independence Example 
Worked-Out Problem, chi-square dis-
tribution 1df = 22 showing the cutoff 
for rejecting the null hypo thesis at the 
.05 level and the sample’s chi-square.
Source: Data from Steil & Hay, 1997.

●D
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These problems involve figuring. Most real-life statistics problems are done  
with special statistical software. Even if you have such software, do these problems 
by hand to ingrain the method in your mind. To learn how to use a computer to solve 

Practice Problems

Outline for Writing Essays for a Chi-Square  
Test for Goodness of Fit
 1. Explain that chi-square tests are used for hypothesis testing with nominal vari-

ables. The chi-square test for goodness of fit is used to test hypotheses about 
whether a distribution of frequencies over two or more categories of a single 
nominal variable matches an expected distribution. Be sure to explain the mean-
ing of the research hypothesis and the null hypothesis in this situation.

 2. Describe the core logic of hypothesis testing in this situation. Be sure to men-
tion that the hypothesis testing involves comparing observed frequencies (that 
is, frequencies found in the actual study) with expected frequencies (that is, 
frequencies that you would expect based on a particular theory or the results of 
previous research studies). The size of the discrepancy between the observed 
and expected frequencies determines whether the null hypothesis can be 
rejected.

 3. Explain that the comparison distribution in this situation is a chi-square distri-
bution. Be sure to mention that the shape of the chi-square distribution depends 
on the number of degrees of freedom. Describe how to determine the degrees of 
freedom and the cutoff chi-square value.

 4. Describe how to figure the chi-square value for the sample. The key idea is to 
get a single number that indicates the overall discrepancy between what was 
found in the study and what would be expected based on some null hypothesis 
idea (such as the groups all being equal). To get this number you figure, for 
each group, the difference between the observed frequency and the expected 
frequency, square it (because otherwise the sign of the differences would cancel 
each other out when you added them up), and divide the squared difference by 
the expected frequency (to adjust for the size of the numbers involved). You 
then add up all of the adjusted squared differences to get an overall number. 
(This should all be explained using the numbers in the study as an example.)

 5. Explain how and why the scores from Steps ❸ and ❹ of the hypothesis-testing 
process are compared. Explain the meaning of the result of this comparison 
with regard to the specific research and null hypotheses being tested.

Outline for Writing Essays for a Chi-Square Test  
for Independence
Follow the preceding general outline for the chi-square test for goodness of fit,  
noting that the chi-square test for independence is used to test hypotheses about the 
relation between two nominal variables. Using the actual numbers in your study as 
examples, be sure also to explain the concept of independence and how and why 
you figure the expected frequency for each cell (in terms of the cells in each column 
having the same proportions of the column total as the cell’s row total is a proportion 
of the overall total).
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statistics problems like those in this chapter, refer to the Using SPSS section at the 
end of this chapter.

All data are fictional unless an actual citation is given.

Set I (for Answers to Set I Problems, see pp. 702–704)
 1. Carry out a chi-square test for goodness of fit for each of the following studies 

(use the .05 level for each):

(a) Category Expected Observed

 A 20% 19

 B 20% 11

 C 40% 10

 D 10%  5

 E 10%  5

(b) Category Expected Observed

 I 30% 100

 II 50% 100

 III 20% 100

(c) Category Number in the Past Observed

 1 100  38

 2 300 124

 3  50  22

 4  50  16

 2. Carry out a chi-square test for goodness of fit for each of the following studies 
(use the .01 level for each). In each situation, the observed numbers are shown; 
the expected numbers are equal across categories.
(a) Category A, 10; Category B, 10; Category C, 10; Category D, 10; Category 

E, 60.
(b) Category A, 5; Category B, 5; Category C, 5; Category D, 5; Category 

E, 30.
(c) Category A, 10; Category B, 10; Category C, 10; Category D, 10; Category 

E, 160.
 3. A director of a small psychotherapy clinic is wondering whether there is any 

difference in the use of the clinic during different seasons of the year. Last year, 
there were 28 new clients in the winter, 33 in the spring, 16 in the summer, and 
51 in the fall. On the basis of last year’s data, should the director conclude that 
season makes a difference? (Use the .05 level.) (a) Carry out the five steps of 
hypothesis testing for a chi-square test for goodness of fit. (b) Make a sketch of 
the distribution involved. (c) Explain your answer to a person who has never 
taken a course in statistics.

 4. Folwell and others (1997) interviewed a group of adults, aged 54 and older, 
about their relationships with their siblings. One question they asked was 
whether there had been a change in emotional closeness over the years. They 
found that 43 of the respondents “perceived changes of emotional closeness in 
their sibling relationships . . . [and] 14 did not report a change in closeness in 
their sibling relationships” (p. 846). They also tested whether this difference 
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was greater than you would expect by chance (which would be a 50-50 split). 
“A chi-square analysis revealed that respondents perceive changes in closeness 
in their sibling relationships 1�2 = 14.75, df = 1, � = .052” (p. 846).
(a) Figure the chi-square yourself (your results should be the same, within 
rounding error). (b) Explain this result to a person who has never had a course in 
statistics.

 5. Carry out a chi-square test for independence for each of the following contingency 
tables (use the .01 level). Also, figure the effect size for each contingency table.

(a) 10 16  (b) 100 106  (c) 100 160  

 16 10   106 100   160 100  

            

(d) 10 16 10 (e) 10 16 16 (f) 10 16 10

 16 10 10  16 10 16  16 10 16

 6. A developmental psychologist is interested in whether children of three differ-
ent ages (5, 8, and 11 years) differ in their liking for a certain kind of music. 
The psychologist studies 200 children at a local elementary school. The results 
are shown in the table below. Is there a significant relationship between these 
two variables? (Use the .05 level.) (a) Carry out the steps of hypothesis testing, 
(b) make a sketch of the distribution, (c) figure the effect size, and (d) explain 
your answer to (a) to a person who has never taken a course in statistics.

  

 Age of Child (Years)

 5 8 11

Li
ki

ng
 fo

r 
th

is
 k

in
d 

 
of

 m
us

ic Yes 42 62 26

No 18 38 14

 7. A political psychologist is interested in whether the community a person lives in is 
related to that person’s opinion on an upcoming water conservation ballot initiative. 
The psychologist surveys 90 people by phone with the following results. Is opinion 
related to community at the .05 level? (a) Carry out the steps of hypothesis test-
ing, (b) make a sketch of the distribution, (c) figure the effect size, and (d) explain  
your answer to part (a) to a person who has never taken a course in statistics.

 Community A Community B Community C

For 12 6  3

Against 18 3 15

No opinion 12 9 12

 8. Figure the effect size for the following studies:

 N Chi-Square Design

(a) 100 16 2 * 2

(b) 100 16 2 * 5

(c) 100 16 3 * 3

(d) 100  8 2 * 2

(e) 200 16 2 * 2
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 9. What is the power of the following planned studies using a chi-square test for 
independence with p 6 .05?

 Predicted Effect Size Design N

(a) Small 2 * 2 25

(b) Medium 2 * 2 25

(c) Small 2 * 2 50

(d) Small 2 * 3 25

(e) Small 3 * 3 25

(f) Small 2 * 5 25

 10. About how many participants do you need for 80% power in each of the 
following planned studies using a chi-square test for independence with 
p 6 .05?

 Predicted Effect Size Design

(a) Medium 2 * 2

(b) Large 2 * 2

(c) Medium 2 * 5

(d) Medium 3 * 3

(e) Large 2 * 3

 11. Lydon and his associates (1997) conducted a study that compared long-distance 
to local dating relationships. The researchers first administered questionnaires 
to a group of students one month prior to their leaving home to begin their 
first semester at McGill University (Time 1). Some of these students had dating 
partners who lived in the McGill area; others had dating partners who lived a 
long way from McGill. The researchers contacted the participants again late in 
the fall semester, asking them about the current status of their original dating 
relationships (Time 2). Here is how they reported their results:

Of the 69 participants . . . 55 were involved in long-distance relationships, and 
14 were in local relationships (dating partner living within 200 km of them). 
Consistent with our predictions, 12 of the 14 local relationships were still intact 
at Time 2 (86%), whereas only 28 of the 55 long-distance relationships were 
still intact (51%), �211, N = 692 = 5.55, p 6 .02. (p. 108)

(a) Figure the chi-square yourself (your results should be the same, within 
rounding error). (b) Figure the effect size. (c) Explain this result to a person 
who has never had a course in statistics.

 12. Wilfley and colleagues (2001), in a study of binge eating disorder, compared 
37 women getting treatment in a clinic to a control group of 108 otherwise 
similar women from the general community. However, before beginning 
their analysis, they needed to check that the two groups were in fact not dif-
ferent in important ways. For example, they reported the following: “Equiva-
lent proportions of women in the clinic 1N = 32, 87%2 and the community 1N = 89, 82%2 samples were obese .  .  . �211, N = 1452 = 0.33, p = .56” 
(p. 385).

(a) Figure the chi-square yourself (your results should be the same, within 
rounding error). (b) Figure the effect size. (c) Explain this result to a person 
who has never had a course in statistics.
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Set II
 13. Carry out a chi-square test for goodness of fit for each of the following studies 

(use the .01 level for each):

(a) Category Expected Observed

 1  2%   5

 2 14%  15

 3 34%  90

 4 34% 120

 5 14%  50

 6  2%  20

(b) Category
Proportion  
Expected Observed

 A 1/3 10

 B 1/6 10

 C 1/2 10

 14. Carry out a chi-square test for goodness of fit for each of the following studies 
(use the .05 level for each). In each situation, the observed numbers are shown; 
the expected numbers are equal across categories.
(a) Category I, 20; Category II, 20; Category III, 60.
(b) Category I, 20; Category II, 20; Category III, 20; Category IV, 60.
(c) Category I, 20; Category II, 20; Category III, 20; Category IV, 20; Category 

V, 60.
 15. A researcher wants to be sure that the sample in her study is not unrepresenta-

tive of the distribution of ethnic groups in her community. Her sample includes 
300 whites, 80 African Americans, 100 Latinos, 40 Asians, and 80 others. 
In her community, according to census records, there are 48% whites, 12% 
African Americans, 18% Latinos, 9% Asians, and 13% others. Is her sample 
unrepresentative of the population in her community? (Use the .05 level.)  
(a) Carry out the steps of hypothesis testing. (b) Make a sketch of the distri-
bution involved. (c) Explain your answer to a person who has never taken a 
course in statistics. (This problem is a chi-square for a single nominal variable; 
it is not a chi-square test for independence and does not involve any contin-
gency tables.)

 16. Stasser and colleagues (1989) conducted a study involving discussions of 
three different “candidates,” which were described to participants in a way the 
researchers intended to make the candidates equally attractive. Thus, before 
analyzing their main results, they wanted to first test whether the three can-
didates were in fact seen as equally attractive. Of the 531 participants in their 
study, 197 initially preferred Candidate A; 120, Candidate B, and 214, Candi-
date C. The researchers described the following analysis:

The relative frequencies of prediscussion preferences  .  .  .  suggested that 
we were not entirely successful in constructing equally attractive candi-
dates. . . . [T]he hypothesis of equal popularity can be confidently rejected, 
�212, N = 5312 = 28.35, p 6 .001. (p. 71)

MyStatLab
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(a) Figure the chi-square yourself (your results should be the same, within 
rounding error). (b) Explain this result to a person who has never had a course 
in statistics.

 17. Carry out a chi-square test for independence for each of the following 
contingency tables (use the .05 level). Also, figure the effect size for each con-
tingency table.

(a)  0 18   (b) 0 0 18

 18  0    9 9  0

(c) 0 0 9 9 (d) 20 40

 9 9 0 0   0 40

 18. Carry out a chi-square test for independence for each of the following contin-
gency tables (use the .05 level). Also, figure the effect size for each contingency 
table.

(a) 8  8  (b) 8  8  (c) 8  8  

 8 16   8 32   8 48  

            

(d) 8 8  8 (e) 8 8  8 (f) 8 8  8

 8 8  8  8 8  8  8 8  8

 8 8 16  8 8 32  8 8 48

 19. The following results are of a survey of a sample of people buying ballet tickets, 
laid out according to the type of seat they purchased and how regularly they attend. 
Is there a significant relation? (Use the .05 level.) (a) Carry out the steps of hypoth-
esis testing, (b) make a sketch of the distribution, (c) figure the effect size, and (d) 
explain your answer to part (a) to a person who has never taken a course in statistics.

  Attendance

  Regular Occasional

Se
at

in
g 

 
Ca

te
go

ry Orchestra 20 80

First balcony 20 20

Second balcony 40 80

 20. A comparative psychologist tests rats, chimpanzees, and humans on a particular 
learning task. The following table shows the numbers of each species that were 
and were not able to learn the task. Is there a relation between species and abil-
ity to learn this task (use the .01 level)? (a) Carry out the steps of hypothesis 
testing. (b) Make a sketch of the distribution. (c) Explain your answer to a per-
son who has never taken a course in statistics.

  Species

  Rat Chimpanzee Human

Learned Task 
Yes  2  4 14

No 28 16  6
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 21. Figure the effect size for the following studies:

 N Chi-Square Design

(a)  40 10 2 * 2

(b) 400 10 2 * 2

(c)  40 10 4 * 4

(d) 400 10 4 * 4

(e)  40 20 2 * 2

 22. What is the power of the following planned studies, using a chi-square test for 
independence with p 6 .05?

 Predicted Effect Size Design N

(a) Medium 2 * 2 100

(b) Medium 2 * 3 100

(c) Large 2 * 2 100

(d) Medium 2 * 2 200

(e) Medium 2 * 3  50

(f) Small 3 * 3  25

 23. About how many participants do you need for 80% power in each of the 
following planned studies, using a chi-square test for independence with 
p 6 .05?

 Predicted Effect Size Design

(a) Small 2 * 2

(b) Medium 2 * 2

(c) Large 2 * 2

(d) Small 3 * 3

(e) Medium 3 * 3

(f) Large 3 * 3

 24. Everett and colleagues (1997) mailed a survey to a random sample of physi-
cians. Half were offered $1 if they would return the questionnaire (this was 
the experimental group); the other half served as a control group. The point of 
the study was to see if even a small incentive would increase the return rate for 
physician surveys. The researchers report their results as follows:

Of the 300 surveys mailed to the experimental group, 39 were undeliverable, 2 were 
returned uncompleted, and 164 were returned completed. Thus, the response rate for 
the experimental group was 63% 1164>3300 - 394 = .632. Of the 300 surveys 
mailed to the control group, 40 were undeliverable, and 118 were returned completed. 
Thus, the response rate for the control group was 45% 1118>3300 - 404 = .452. 
A chi-square test comparing the response rates for the experimental and control 
groups found the $1 incentive had a statistically significantly improved response 
rate over the control group 3�211, N = 5212 = 16.0, p 6 .0014.

  (a) Figure the chi-square yourself (your results should be the same, within 
rounding error). (b) Figure the effect size. (c) Explain the results to (a) and (b) 
to a person who has never had a course in statistics.
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 25. Irving and Berel (2001) compared the effects of four kinds of programs (three 
actual programs and a control group) designed to make women more skepti-
cal of media portrayals of female body image. After completing each program, 
the 110 participants were given stamped, addressed postcards that they could 
mail to a media activism organization (“About Face”) if they so chose. Here are 
some of their results:

. . . [P]ostcards were sent by approximately twice as many of the participants 
in the video-only condition (i.e., 36%) than in the internally oriented condition 
(19% of participants returned postcards) and the externally oriented condition 
(15% returned postcards). Only 5% of those in the no-intervention control group 
sent postcards to “About Face.” Group differences in the rate of return were sig-
nificant, �213, N = 1102 = 8.79, p 6 .05, suggesting that the intervention had 
a differential impact on intentions to engage in media activism. (p. 109)

  (a) Figure the chi-square yourself (your results should be the same, within 
rounding error). (b) Figure the effect size. (c) Explain the results to a person 
who has never had a course in statistics.

The  in the following steps indicates a mouse click. (We used SPSS version 19 for 
Windows to carry out these analyses. The steps and output may be slightly different 
for other versions of SPSS.)

It is easier to learn the SPSS steps for chi-square tests using actual numbers. As 
an example, imagine you are a student in a class of 20 students and want to deter-
mine whether the students in the class are split equally among first- and second-year 
students (the class is not open to students in other year groups). We will use a chi-
square test for goodness of fit to answer this question. Each student’s year in college 
is shown in the first column of Figure 13-10.

Chi-Square Test for Goodness of Fit

 ❶ Enter the scores into SPSS. As shown in Figure 13-10, the score for each person 
is listed in a separate row. We labeled the variable “year.” (For now, you can 
ignore the “campus_y1n0” variable.)

 ❷  Analyze.
 ❸  Nonparametric Tests,  Legacy Dialogs,  Chi-Square.
 ❹  on the variable called “year” and then  the arrow next to the box labeled 

“Test Variable List.” This tells SPSS that the chi-square test for goodness 
of fit should be carried out on the scores for the nominal variable called 
“year.” Notice in the “Expected Values” box that the option “All categories 
equal” is selected by default. This means that SPSS will carry out the chi-
square to compare the observed frequency distribution in your sample with 
an expected frequency distribution based on an equal spread of scores across 
the categories. If you wish to use a different expected frequency distribution, 
select the “Values” option and enter the appropriate expected values.

 ❺  OK. Your SPSS output window should look like Figure 13-11.

The first table in the SPSS output gives the observed frequencies, the  
expected frequencies, and the difference between the observed and expected 

Using SPSS

T I P  F O R  S U C C E S S
In the examples in this chapter, 
we typically started with category 
or cell totals, but in order to use 
SPSS to carry out chi-square tests, 
you need to enter the full data for 
the study into SPSS (for example, 
see Figure 13-10).
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frequencies (in the “Residual” column). The second table gives the value of chi-
square, the degrees of freedom, and the exact significance level. The significance 
level of .025 (for the chi-square value of 5.00) is less than our .05 cutoff, which 
means that you can reject the null hypothesis. Thus, you can conclude that the stu-
dents in the class are not split equally among first- and second-year students.

Chi-Square Test for Independence
Using the same example as for the chi-square test for goodness of fit, let’s suppose 
you are interested in whether the distribution of first- and second-year students in 
the class is different for students who live on campus versus those who do not live 
on campus. To answer this question (which involves two nominal variables), we 
will use a chi-square test for independence.

Figure 13-10 SPSS data editor window for a fictional study examining the distribu-
tion of first- and second-year college students for a particular class and whether the students 
live on campus.
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 ❶ Enter the scores into SPSS. As shown in Figure 13-10, the score for each person 
is listed in a separate row. We labeled the variables “year” and “campus_y1n0.” 
(We assigned students who live on campus a value of “1” and students who 
don’t live on campus a value of “0”.)

 ❷  Analyze.
 ➌  Descriptive Statistics,  Crosstabs.
 ❹  on the variable called “campus_y1n0” and then  the arrow next to the box 

labeled “Row(s).”  on the variable called “year” and then  the arrow next 
to the box labeled “Column(s).” (It doesn’t matter which variable is assigned to 
rows and which is assigned to columns; the result will be the same.)

Figure 13-11 SPSS output window for a chi-square test for goodness of fit for a fictional 
study examining the distribution of first- and second-year college students for a particular class.
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 ❺  Statistics.  the box labeled Chi-square (this checks the box).  the box 
labeled Phi and Cramer’s V (this checks the box).  Continue.

 ❻  Cells.  the box labeled Expected (this checks the box).  Continue. This 
step requests the expected frequencies to be included in the output. (Although 
this step is optional, we recommend that you always do it, as it reinforces the 
logic of the chi-square test.)

 ❼  OK. Your SPSS output window should look like Figure 13-12.

Figure 13-12 SPSS output window for a chi-square test for independence for a  
fictional study examining the distribution of first- and second-year college students for  
a particular class and whether the students live on campus.
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 1. Independence is typically used to talk about a lack of relation between two 
nominal variables. However, if you have studied Chapter 11, it may be helpful 
to think of independence as roughly the same as the situation of no correlation 1r = 02.

 2. Phi is actually identical to the correlation coefficient. Suppose you were to take 
the two variables in a 2 * 2 contingency table and arbitrarily make one of the 
values of each equal to 1 and the other equal to 2 (you could use any two differ-
ent numbers). And suppose you then figured a correlation coefficient between 
the two variables. The result would be exactly the same as the phi coefficient. 
(Whether it was a positive or negative correlation, however, would depend on 
which categories in each variable got the higher number.)

 3. Cohen (1988, pp. 228–248) gives more detailed tables. However, Cohen’s 
tables are based on an effect size called w, which is equivalent to phi but not to 
Cramer’s phi. He provides a helpful conversion table of Cramer’s phi to w on 
page 222. There are also power calculators available on the Internet and power 
can be calculated using SPSS.

 4. More detailed tables are provided in Cohen (1988, pp. 253–267). When using 
these tables, see Chapter Note 3. Also, Dunlap and Myers (1997) have shown 
that with a 2 * 2 table, the approximate number of participants needed for 80% 
to 90% power is 8>�2. There are also power calculators available on the Inter-
net, and power can be calculated using SPSS.

 5. Suppose you have a table larger than 2 * 2 with a category or cell that has an 
extremely small expected frequency (or even a moderately small expected fre-
quency if the number of participants is also small). One solution is to combine 
related categories to increase the expected frequency and reduce the total num-
ber of cells. But this is a solution of last resort if you are making the adjustment 
based on the results of the experiment. The problem is that you are then taking 
advantage of knowing the outcome. The best solution is to add more people to 
the study. If this is not feasible, an alternative procedure, called Fisher’s exact 
test, is sometimes possible. It is described in some intermediate statistics texts.

Chapter Notes

The first table in the SPSS output (which is not shown in Figure 13-12) gives 
the number of individuals in the analysis. The second table (labeled “campus_y1n0 * 
year Crosstabulation”) gives the contingency table of observed and expected values 
for the two nominal variables (“campus_y1n0” and “year”). The third table (labeled 
“Chi-Square Tests”) shows the actual result of the chi-square test for independence, 
as well as the results of other tests. The results of the chi-square test for indepen-
dence are provided in the first row (labeled “Pearson Chi-Square”), which shows 
the chi-square value, the degrees of freedom, and the exact significance level. The 
significance level of .035 (for the chi-square value of 4.444) is smaller than our .05 
cutoff. Thus, you can reject the null hypothesis and conclude that the distribution of 
first- and second-year students in the class is different according to whether students 
live on campus. The final table (labeled “Symmetric Measures”) shows the effect 
size measures, namely the phi coefficient (labeled “Phi” in the table) and Cramer’s � 
(labeled “Cramer’s V” in the table). The phi coefficient of .471 (you can ignore the 
fact that the phi coefficient is a negative value) tells you that there is a large relation-
ship between the year of students in the class and whether students live on campus.
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Chapter 14
Strategies When Population Distributions  
Are Not Normal

Data Transformations and Rank-Order Tests

This chapter examines some strategies researchers use for hypothesis testing 
when the assumptions of normal population distributions and equal variances 
are clearly violated. (These assumptions are part of most ordinary hypothesis-

testing procedures, such as the t test, analysis of variance, and the significance tests 
for correlation and prediction.) First, we briefly review the role of assumptions in 
the standard hypothesis-testing procedures. Then we examine two approaches psy-
chology researchers use when assumptions have not been met: data transformations 
and rank-order tests.
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Assumptions in the Standard  
Hypothesis-Testing Procedures
As you saw in previous chapters, you have to meet certain conditions (the assump-
tions) to get accurate results with a t test, analysis of variance, or the significance 
tests for correlation and prediction (regression). In these hypothesis-testing proce-
dures, you treat the scores from a study as if they came from some larger, though 
unknown, populations. One assumption you have to make is that the populations 
involved follow a normal curve. The other main assumption you have to make is 
that the populations have equal variances.

You also learned in previous chapters that you get fairly accurate results when a 
study suggests that the populations even very roughly meet the assumptions of follow-
ing a normal curve and having equal variances. Our concern here, however, is about 
the situation where it is clear that the populations are nowhere near normal or nowhere 
near having equal variances. In such situations, if you use the ordinary t test, analysis of 
variance, or the significance test for correlation or prediction, you can get quite incor-
rect results. For example, you could do all the figuring correctly and decide to reject the 
null hypothesis based on your results. Yet, if your populations do not meet the standard 
assumptions, this result could be wrong—wrong in the sense that instead of there actu-
ally being only a 5% chance of getting your results if the null hypothesis is true, in fact 
there might be a 15% or 20% chance! (It could also be 1% or 2%. The problem is that the 
usual cutoff can be a long way from accurate, and you don’t know in which direction.)

Remember: assumptions are about populations, not about samples. It is quite 
possible for a sample not to follow a normal curve even though it comes from a 
population that does follow a normal curve. Figure 14-1 shows histograms for sev-
eral samples, each taken randomly from a population that follows a normal curve. 
(Notice that the smaller the sample is, the harder it is to see that it came from a 
normal population.) Of course, it is quite possible for nonnormal populations to 
produce any of these samples as well. Unfortunately, the sample is usually all you 
have to go on when doing a study. One thing researchers do is to make a histogram  
for the sample; if it is not drastically different from normal, the researchers assume 
that the population it came from is roughly normal. (Also see the Using SPSS section  
at the end of this chapter.) When considering normality, most psychology researchers 
consider a distribution innocent until proven guilty. (The same principle applies to 
equal variances. For example, in a t test, the two samples could have quite different 
variances and yet come from populations with quite equal variances. Thus, here too 
we focus on the situation in which the samples are so very different in their variance 
that it seems unlikely they could come from populations with the same variance.)

One common situation where you doubt the assumption that the population fol-
lows a normal distribution is when there is a ceiling or floor effect (see Chapter 1). 
Another common situation that raises such doubts is when the sample has outliers, 
extreme scores at one or both ends of the sample distribution. Figure 14-2 shows 
some examples of samples with outliers. (Outliers also greatly affect variances; so an 
outlier in a sample can also lead to quite misleading conclusions about whether the 
populations have equal variances.) Outliers are a big problem in the statistical meth-
ods we ordinarily use because these methods ultimately rely on squared deviations 
from the mean. Because it is so far from the mean, an outlier has a huge influence 
when you square its deviation from the mean. What this means is that a single outlier, 
if it is extreme enough, can drastically distort the results of a study (as you saw in 
the correlation example in Chapter 11). An outlier can cause a statistical test to give 
a significant result even when all the other scores would not. In other cases, an out-
lier can make a result not significant that would be significant without the outlier. In 



 Strategies When Population Distributions Are Not Normal  587

3

2

1

0 −2.0 −1.5 −1.0 −.5 0 .5 1.0 1.5 2.0

12

8

4

0 −2.0 −1.5 −1.0 −.5 0 .5 1.0 1.5 2.0

4

3

2

1

0
−2.0 −1.5 −1.0 −.5 0 .5 1.0 1.5 2.0

 

8

4

0 −2.0 −1.5 −1.0 −.5 0 .5 1.0 1.5 2.0

3

2

1

0 −2.0 −1.5 −1.0 −.5 0 .5 1.0 1.5 2.0

N = 10, M = −.18, SD = 1.11

N = 30, M = .27, SD = .87

N = 10, M = .22, SD = .88

N = 50, M = 0, SD = 1.06

N = 10, M = .04, SD = 1.13

Figure 14-1 Histograms for several random samples, each drawn from a normal 
population with � = 0 and � = 1.

certain areas of psychology research, it is common for researchers to remove extreme 
outliers from statistical tests to avoid such problems. For example, in studies that 
measure reaction time, it is common to omit responses that are faster than would be 
possible (so that the participant might be just hitting the key without waiting for what 
he or she was supposed to be responding to) or much slower than normal (as when a 
participant has stopped paying attention to the task for a little while). In such situa-
tions, an important issue is that the decision whether to remove the outliers should be 
made before conducting the statistical test. It is also important that researchers clearly 
explain how they handled any outliers when reporting the results of a study.

How are you doing?

 1. What are the two main assumptions for t tests, the analysis of variance, and 
the significance tests for correlations and predictions (regression)?

 2. (a) How do you check to see if you have met the assumptions? (b) Why is this 
problematic?

 3. (a) What is an outlier? (b) Why are outliers likely to have an especially big dis-
torting effect in most statistical procedures?
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Data Transformations
One widely used procedure when the scores in the sample do not appear to come 
from a normal population is to change the scores! This is not done by fudging, 
although at first it may sound that way until we explain. The method is that the 
researcher applies some mathematical procedure to each score, such as taking its 
square root. The idea is to make a nonnormal distribution closer to normal. (Some-
times this can also make the variances of the different groups more similar.) This 
is called a data transformation. Once you have made a data transformation that 

Figure 14-2 Distributions with outliers at one or both ends.

Answers

 1. The two main assumptions are that the populations are normally distributed 
and have equal variances.

 2. (a) You look at the distributions of the samples. (b) The samples, especially 
if they are small, can have quite different shapes and variances from the 
populations.

 3. (a) An outlier is an extreme score. (b) Outliers are likely to have an especially 
big distorting effect in most statistical procedures because most procedures 
are based on squared deviations from the mean. Thus, the extremeness of an 
outlier is greatly multiplied when its deviation from the mean is squared.

data transformation mathematical 
procedure (such as taking the square 
root) used on each score in a sample, 
usually done to make the sample 
distribution closer to normal.
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makes the scores in the sample appear to meet the normality assumption (and if the 
other assumptions are met), you can then go ahead with a usual t test, analysis of 
variance or significance test of a correlation or regression. Data transformation has 
an important advantage over other procedures of coping with nonnormal populations: 
once you have made a data transformation, you can use familiar and sophisticated 
hypothesis-testing procedures.

Consider an example. Measures of reaction time, such as how long it takes 
a research participant to press a particular key when a light flashes, are usually 
skewed to the right (positively skewed, with a long tail to the right). There are 
many short (quick) responses, but usually a few quite long (slow) ones. It is 
unlikely that the reaction times shown in Figure 14-3 come from a population that 
follows a normal curve. The population of reaction-time scores itself is probably 
skewed.

However, suppose you take the square root of each reaction time. Most 
reaction times are affected only a little. A reaction time of 1 second stays 1; a 
reaction time of 1.5 seconds reduces to 1.22. However, very long reaction times, 
the ones that create the long tail to the right, are much reduced. For example, 
a reaction time of 9 seconds is reduced to 3, and a reaction time of 16 seconds 
(the person was really distracted and forgot about the task) reduces to 4. (Of 
course, if the reaction time is as long as 16 seconds when most are around 3 or 
4, we might also consider that an outlier!) Figure 14-4 shows the result of tak-
ing the square root of each score in the skewed distribution shown in Figure 14-3.  
After a square-root transformation, this distribution of scores seems much 
more likely to have come from a population with a normal distribution (of 
 transformed scores).

square-root transformation data 
transformation using the square root of 
each score.
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Figure 14-3 Skewed distribution of reaction times (fictional data).
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Legitimacy of Data Transformations
Do you feel that this is somehow cheating? It would be if you did this knowingly in 
some way to make the result more favorable to your predictions. However, in actual 
research practice, the first step after the data are collected and recorded (and checked 
for accuracy) is to see if the data suggest that the populations meet assumptions. If 
the scores in your sample suggest that the populations do not meet assumptions, you 
do data transformations. Hypothesis testing is done only after this checking and any 
transformations have been performed.

Remember that you must do any transformation for all the scores on that vari-
able, not just those in a particular group. Most important, no matter what transfor-
mation procedure you use, the order of the scores always stays the same. A person 
with an actual original score that is between the original scores of two other partici-
pating people, will still have a transformed score between those same two people’s 
transformed scores. (For example, consider a study in which four people have scores 
of 1, 2, 3, and 4; after a square root transformation, the same people have scores of 
1, 1.44, 1.67, and 2. As you can see, the highest person is still the highest, the second 
highest is still the second highest, and so on.)

The procedure may seem somehow to distort reality to fit the statistics. In some 
cases, this is a legitimate concern. Suppose you are looking at the difference in 
income between two groups of Australians. You probably do not care about how 
much the two groups differ in the square root of their income. What you care about 
is the difference in actual dollars.

On the other hand, consider a self-esteem questionnaire. Scores on the question-
naire do not have any absolute meaning. Higher scores mean greater self-esteem; lower 
scores, less self-esteem. However, each scale-point increase on the test is not necessarily 
related to an equal amount of increase in an individual’s self-esteem. It is just as likely 
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Figure 14-4 Distributions of scores from Figure 14-3 after square-root transformation.

T I P  F O R  S U C C E S S
For more information about 
data screening and checking 
assumptions, see Web Chapter W2, 
available at www.pearsonhighered.
com/aron (and also at www.
mystatlab.com for MyStatLab 
users).

www.pearsonhighered.com/aron
www.pearsonhighered.com/aron
www.mystatlab.com
www.mystatlab.com
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that the square root of each scale point’s increase is directly related to the person’s self-
esteem. Similarly, consider the example we used earlier of reaction time, measured in 
seconds. This would seem to have an absolute meaning: a second is a second. But even 
in this situation, the underlying variable, efficiency of processing of the nervous system, 
may not be directly related to the number of seconds. It is probably a complex operation 
that follows some unknown mathematical rule (though we would still expect that shorter 
times go with more efficient processing and longer times with less efficient processing).

In these examples, the underlying “yardstick” of the variable is not known. 
Thus, there is no reason to think that the transformed version is any less accurate 
a reflection of reality than the original version. And the transformed version may 
meet the normality assumption. Indeed, since most things in nature follow a normal 
curve, one could argue that the scores after being transformed to be closer to a nor-
mal curve are more likely to represent the true thing being measured.

Kinds of Data Transformations
There are several types of data transformations. We already have illustrated a square-
root transformation: instead of using each score, you use the square root of each 
score. We gave an example in Figures 14-3 and 14-4. The general effect is shown 
in Figure 14-5. As you can see, a distribution that is skewed to the right (positively 
skewed) becomes less skewed to the right after a square-root transformation. To put 
it numerically, moderate numbers become only slightly lower and high numbers 
become much lower. The result is that the right side is pulled in toward the middle.

There are many other kinds of transformations you will see in psychology 
research articles. The square root transformation is actually quite common. Another 
common transformation is called a log transformation, in which, instead of the square 
root, the researcher takes the logarithm of each score. A log transformation has the 
same type of effect as the square root transformation, but the effect is stronger. Thus, 
a log transformation is better for distributions that are very strongly skewed to the 
right. An inverse transformation corrects distributions with an even stronger skew 
to the right than a log transformation. (In an inverse transformation, the researcher 
changes each score to 1 divided by that score. For example, a score of 5 becomes .20; 
that is, 1 divided by 5 is .20.)

Note that all three of these common transformations—square root, log, or 
inverse—are designed for the situation in which the sample suggests the population 
is skewed to the right. This is the most common situation. However, sometimes a 
distribution is skewed to the left. If the distribution is skewed to the left, you can 
reflect all the scores; that is, subtract them all from some high number so that they 
are now all reversed. Then, using the square root, log, and inverse transformations 
will have the correct effect. However, you have to remember when looking at the 
final results that you have reversed the direction of scoring.

Before After

(a) (b)

Figure 14-5 Distributions skewed to the right before (a) and after (b) taking the square 
root of each score.
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We will not go into examples of all the kinds of transformations here. Just 
learning the square-root transformation will help you get the idea. The main thing to 
remember about other kinds of transformations is that they all use this same princi-
ple of taking each score and applying some arithmetic to it to make the set of scores 
come out more like a normal curve. And as we noted before, whatever transforma-
tion you use, a score that is between two other scores always stays between those 
two other scores.

An Example of a Data Transformation
Consider a fictional study in which the researchers compare the number of books 
read in the past year by four children who score high on a test of being highly sensi-
tive compared to four children who score low on the test of being highly sensitive. 
(The general idea of being a highly sensitive person is described in Aron [1996, 
2002], Aron & Aron [1997], and Aron et al. [2012]. One of our examples in Chapter 
10 was based on this concept as well.) Based on theory, the researcher predicts that 
highly sensitive children will read more books. Table 14-1 shows the results.

Ordinarily, in a study comparing two independent groups, you would use a t test 
for independent means. Yet the t test for independent means is like all of the proce-
dures you have learned for hypothesis testing (except chi-square): It requires that the 
parent populations of scores for each group be normally distributed. In this study, 
however, the distribution of the sample is strongly skewed to the right; the scores 
tend to bunch up at the left, leaving a long tail to the right. It thus seems likely that 
the population of scores of number of books read (for both sensitive and nonsensitive 
children) is also skewed to the right. This shape for the population distribution also 
seems reasonable in light of what is being measured. A child cannot read fewer than 
zero books, but once a child starts reading, it is easy to read a lot of books in a year.

Also note that the estimated population variances based on the two samples are 
dramatically different, 95.58 versus 584.25. This is another reason you would not 
want to go ahead with an ordinary t test.

However, suppose you do a square-root transformation on the scores (Table 
14-2). Now both samples are much more like a normal curve; they have their middle 
scores bunched up in the middle (for example, for the Yes group, 6.00 and 6.71) 
and the more extreme (high and low) scores spread out a little from the mean (4.12 
and 8.66). Also, the transformation seems reasonable in terms of the meaning of the 
numbers. The number of books read is meant as a measure of interest in things liter-
ary. Thus, the difference between 0 and 1 book is a much greater difference than the 
difference between 20 and 21 books.

Table 14-3 shows the t test analysis using the transformed scores.

Table 14-2  Square-Root Transformation of 

the Scores in Table 14-1

Highly Sensitive

No Yes

X !X X !X

0 0.00 17 4.12

3 1.73 36 6.00

10 3.16 45 6.71

22 4.69 75 8.66

Table 14-1 Results of a 

Study Comparing Highly Sensitive and 

Not Highly Sensitive Children on the 

Number of Books Read in the Past Year  

(Fictional Data)

Highly Sensitive

No Yes

0 17

3 36

10 45

22 75

g : 35 173

M = 8.75  43.25

S 2 = 95.58 584.25
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How are you doing?

 1. What is a data transformation?
 2. Why is it done?
 3. When is this legitimate?
 4. Consider the following distribution of scores: 4, 16, 25, 25, 25, 36, 64. (a) Are 

these scores roughly normally distributed? (b) Why? (c) Carry out a square-root 
transformation for these scores (that is, list the square-root transformed scores). 
(d) Are the square-root transformed scores roughly normally distributed? (e) Why?

Answers

 1. A data transformation is when each score is changed following some rule 
(such as take the square root, log, or inverse).

 2. It is done to make the distribution more like a normal curve (or to make vari-
ances closer to equal across groups).

 3. It is legitimate when it is done to all the scores, it is not done to make the 
results come out to fit the researcher’s predictions, and the underlying mean-
ing of the distance between scores is arbitrary.

 4. (a) The scores are not roughly normally distributed. (b) They are skewed to 
the right. (c) Square-root transformation: 2, 4, 5, 5, 5, 6, 8. (d) The square-root 
transformed scores are roughly normally distributed. (e) The middle scores 
are bunched in the middle and the extremes spread out evenly on both sides.

Rank-Order Tests
Another way of coping with nonnormal distributions is to transform the scores to ranks. 
Suppose you have a sample with scores of 4, 8, 12, and 64. This would be a rather 
surprising sample if the population was really normal. A rank-order transformation 
would change the scores to 1, 2, 3, and 4; the 1 referring to the lowest number in 

rank-order transformation changing 
a set of scores to ranks (for example, 
so that the lowest score is rank 1, the 
second lowest rank 2, and so forth).

Table 14-3  Figuring for a t Test for Independent Means Using Square-Root Transformed 

Scores for the Study of Books Read by Highly Sensitive Versus Not Highly 

Sensitive Children (Fictional Data)

t needed for .05 significance level, df = 14 - 12 + 14 - 12 = 6, one-tailed = -1.943.

Highly Sensitive

No Yes

0.00  4.12

1.73  6.00

3.16  6.71

4.69  8.66

�: 9.58 25.49
M =  9.58>4 = 2.40 25.49>4 = 6.37
S2 = 12.03>3 = 4.01 10.56>3 = 3.52

S2
Pooled = 3.77

S2
M =  3.77>4 = .94  3.77>4 = .94

S2
Difference = .94 + .94 = 1.88

SDifference = 21.88 = 1.37
t = 12.40 - 6.372>1.37 = -2.90

Decision: Reject the null hypothesis.
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the group, the 2 to the second lowest and so forth. A complication with a rank-order 
transformation occurs when you have two or more scores that are tied. The usual 
solution to ties is to give them each the average rank. For example, the scores 12, 81, 
81, 107, and 154 would be ranked 1, 2.5, 2.5, 4, and 5.

Changing ordinary scores to ranks is a kind of data transformation. But unlike 
square-root transformations, with a rank-order transformation you aren’t trying to 
get a normal distribution. The distribution you get from a rank-order transformation 
is rectangular, with equal numbers of scores (one) at each value. Ranks have the 
effect of spreading the scores out evenly.

There are special hypothesis-testing procedures, called rank-order tests, that 
make use of rank-ordered scores. They also have two other common names. You can 
transform scores from a population with any shaped distribution into ranks. Thus, 
these tests are sometimes called distribution-free tests. Also, the shape of distribu-
tions of rank-order scores are known exactly (they will be rectangular) rather than 
estimated. Thus, rank-order tests do not require estimating any parameters (popula-
tion values). For example, there is no need to estimate a population variance, because 
you can determine exactly what it will be if you know that ranks are involved. Hence, 
hypothesis-testing procedures based on ranks are also called nonparametric tests.

The t test, analysis of variance, and the usual significance tests for correlation 
and prediction (regression) are examples of parametric tests.1

Rank-order tests also have the advantage that you can use them when the actual 
scores in the study are themselves ranks—for example, a study comparing the class 
standing of two types of graduates. Also, sometimes the exact numeric values of the mea-
sure used in a study are questionable. For example, a researcher intends the measure to 
be numeric in the usual sense, with a 7 being as much above a 5 as a 12 is above a 10 (the  
researcher intends this to be equal-interval measurement; see Chapter 1). However, in 
reality the researcher is sure only that the numbers are correctly ordered, with 7 higher 
than 5, 10 higher than 7, and so forth. In this case, the researcher might want to use rank- 
order measurement so as not to assume too much about the quality of the measurement.

The issue is actually somewhat controversial. Consider, for example, a scale 
marked 1 = strongly disagree, 2 = slightly disagree, 3 = slightly agree, and 4 =  
strongly agree. Are the underlying meanings of the numbers spread evenly across 
a numeric scale? It is clear that the results are meaningful as rank-order informa-
tion; certainly, 2 shows more agreement than 1, 3 more than 2, and 4 more than 3. 
Hence, some researchers argue that in most cases you should not assume that you 
have equal-interval measurements. Instead, they argue that you should convert your 
scores to ranks and use a rank-order significance test. Other researchers argue that 
even with true rank-order measurement, parametric statistical tests do a reasonably 
accurate job and that changing all the scores to ranks can lose valuable information 
(how far or near scores are spread from each other). The issue remains unresolved.

Overview of Rank-Order Tests
Table 14-4 shows the name of the rank-order test that you would substitute for some 
of the parametric hypothesis-testing procedures you have learned. (Full procedures 
for using such tests are given in intermediate statistics texts; we describe the SPSS 
procedures for most of these at the end of the chapter.) For example, in a situation 
with three groups where you meet the assumptions, you would do a one-way analy-
sis of variance. But if you don’t meet the assumptions, you could use instead the 
rank-order version of the analysis of variance, the Kruskal-Wallis H test.2

Next, we will describe how such tests are done in a general way, including an 
example. However, we do not actually provide all of the needed information (such 

rank-order test hypothesis-testing 
procedure that uses rank-ordered scores.

distribution-free test hypothesis 
testing procedure making no 
assumptions about the shape 
of populations. Also called a 
nonparametric test.

nonparametric test hypothesis testing 
procedure making no assumptions about 
population parameters. Also called a 
distribution-free test.

parametric test ordinary hypothesis-
testing procedure, such as a t test or 
an analysis of variance, that requires 
assumptions about the shape or other 
parameters (such as the variance) of the 
populations.
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as the tables) for you to carry them out in practice. We introduce you to these tech-
niques because you may see them used in articles you read and because their logic 
is the foundation of an alternative procedure that we do teach you to use (shortly). 
This alternative procedure does roughly the same thing as these rank-order tests and 
is closer to what you have already learned.

Basic Logic of Rank-Order Tests
Consider a study with an experimental group and a control group. (The situation 
in which you would use a t test for independent means if all the assumptions were 
met.) If you wanted to use a rank-order test, you would first transform all the scores 
into ranks, ranking all of them from lowest to highest, regardless of whether a score 
was in the experimental or the control group. If the two groups were scores ran-
domly taken from a single population, there should be about equal amounts of high 
ranks and low ranks in each group. (That is, if the null hypothesis is true, the ranks 
in the two groups should not differ much.) Because the distribution of ranks can 
be worked out exactly, statisticians can figure the exact probability of getting any 
particular division of ranks into two groups if in fact the two groups were randomly 
taken from identical distributions.

The way this actually works is that the researcher changes all the scores to 
ranks, adds up the total of the ranks in the group with the lower scores, and then 
compares this total to a cutoff from a special table of significance cutoffs for totals 
of ranks in this kind of situation. (Also, as with ordinary parametric tests, the major 
nonparametric tests can be done with SPSS or other statistical software programs.)

An Example of a Rank-Order Test
Table 14-5 shows the transformation to ranks and the figuring for the Wilcoxon 
rank-sum test for the kind of situation we have just described, using the books read 
by highly sensitive versus not highly sensitive children example. The logic is a little 
different from what you are used to; so be patient until we explain it.

Notice that we first set the significance cutoff, as you would in any hypothesis-
testing procedure. (This cutoff is based on a table you don’t have but is available in 
most intermediate statistics texts and on the Internet.) The next step is to rank all the 
scores from lowest to highest, then add up the ranks in the group you expect to have 
the smaller total. You then compare the smaller total to the cutoff. If this smaller total 
is less than or equal to the cutoff, you reject the null hypothesis. In the example, the 
sum of the ranks for the smaller total was actually equal to the cutoff; so the null 
hypothesis was rejected.

We used the Wilcoxon rank-sum test, though we could have used the Mann-
Whitney U test. It gives an exactly mathematically equivalent final result and is based 
on the same logic. It differs only in the computational details when doing it by hand.

Table 14-4 Major Rank-Order Tests Corresponding to Major Parametric Tests

Ordinary Parametric Test Corresponding Rank-Order Test

t test for dependent means Wilcoxon signed-rank test

t test for independent means Wilcoxon rank-sum test or Mann-Whitney U test

Analysis of variance Kruskal-Wallis H test

Pearson correlation (r ) Spearman’s rho

T I P  F O R  S U C C E S S
When changing ordinary scores to 
ranks, all of the scores are ranked 
from lowest to highest, regardless 
of what group a score is in (for 
example, experimental or control).



596 Chapter 14

The Null Hypothesis in a Rank-Order Test
The null hypothesis in a rank-order test is not quite the same as in an ordinary para-
metric test. A parametric test such as the t test compares the means of the two groups; 
its null hypothesis is that the two populations have the same mean. The equivalent to 
the mean in a rank-order test is the middle rank (the median of the nonranked scores). 
Thus, we think of a rank-order test as comparing the medians of the two groups; its 
null hypothesis is that the two populations have the same median.

Using Parametric Tests with Rank-Transformed Data
Two statisticians (Conover & Iman, 1981) have shown, instead of using the spe-
cial procedures for rank-order tests, you get approximately the same results if you 
first transform the data into ranks and then just use the usual t test or analysis of 
variance procedures. (This also works for the significance tests for correlation and 
regression.)

The result of this shortcut (using a parametric test with scores transformed into 
ranks) will not be quite as accurate as either the ordinary parametric test or the rank-
order test. It will not be quite as accurate because you are violating the assumption 
of normal population distributions. As we noted earlier, when you are using ranks, 
the population distribution is in fact rectangular (there are equal numbers—one—of 
each rank). Using this shortcut will also not be quite as accurate as the rank-order 
test. This is because the parametric test uses the t or F distribution instead of the spe-
cial tables that rank-order tests use, which are based on exact probabilities of getting 
certain divisions of ranks. However, it turns out that, in practice, using an ordinary 
parametric test with ranks gives a result that is quite close to the true, accurate result 
you would get using the technically proper procedure.3 Table 14-6 shows the figur-
ing for an ordinary t test for independent means for the fictional sensitive children 
data, using each child’s rank instead of the child’s actual number of books read. 
Again we get a significant result. (In practice, carrying out an ordinary procedure 
like a t test with scores that have been transformed to ranks is least accurate with a 
very small sample like this. However, we used the small sample to keep the example 
simple.)

Table 14-5  Figuring for a Wilcoxon Rank-Sum Test for the Study of Books Read by Highly 

Sensitive Versus Not Highly Sensitive Children (Fictional Data)

Cutoff for significance: Maximum sum of ranks in the not highly sensitive group for significance at the .05 level, 
one-tailed (from a standard table) = 11.

Highly Sensitive

No Yes

X Rank X Rank

 0 1 17 4

 3 2 36 6

10 3 45 7

22 5 75 8

�: 11

Comparison to cutoff: Sum of ranks of group predicted to have lower scores, 11, equals but does not exceed 
cutoff for significance.

Decision: Reject the null hypothesis.
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As shown in Table 14-4, Spearman’s rho is a nonparametric equivalent of the 
Pearson correlation. Spearman’s rho can be used when the assumptions for a Pearson 
correlation are not met, with certain kinds of curvilinear associations, or when the 
original scores are on a rank-ordered scale. Recall from Chapter 11 that Spearman’s 
rho is a type of correlation coefficient that is figured by changing the scores into 
ranks (separately for each variable) and then carrying out the usual figuring for the 
Pearson correlation coefficient (r). So, in this case, the nonparametric test is actually 
figured by changing the scores to ranks and then using the equivalent parametric test.

Comparison of Methods
We have considered two methods of carrying out hypothesis tests when samples 
appear to come from nonnormal populations: data transformation and rank-order 
tests. How do you decide which to use?

Advantages and Disadvantages
Data transformations have the advantage of allowing you to use the familiar para-
metric techniques on the transformed scores. But transformations will not always 
work. For example, in an analysis of variance, there may not be any reasonable 
transformation that makes the scores normal or have equal variances in all groups. 
Also, as we discussed earlier, in some important situations, transformations may 
distort the scores in ways that lose the original meaning.

You can use rank-order methods regardless of the shape of the distributions of the 
original scores. Rank-order tests are, of course, especially appropriate when the origi-
nal scores are ranks. They are also especially useful when the scores do not clearly 
follow a simple numeric pattern (such as equal-interval), which some psychologists 
think is a common situation. Further, the logic of rank-order methods is simple and 

Table 14-6  Figuring for a t Test for Independent Means Using Ranks Instead of Raw Scores 

for the Study of Books Read by Highly Sensitive Versus Not Highly Sensitive 

Children (Fictional Data)

t needed for .05 significance level, df = 14 - 12 + 14 - 12 = 6, one-tailed = -1.943

Highly Sensitive

No Yes

1 4

2 6

3 7

5  8

� 11 25

M =   11>4 = 2.75  25>4 = 6.25
S2 = 8.75>3 = 2.92 8.75>3 = 2.92

S2
Pooled = 2.92

S2
M = 2.92>4 = .73 2.92>4 = .73

S2
Difference = .73 + .73 = 1.46

SDifference = 21.46 = 1.21

t = 12.75 - 6.252>1.21 = -2.89

Decision: Reject the null hypothesis.
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direct, requiring no elaborate construction of hypothetical distributions or estimated 
parameters.

However, rank-order methods are not as familiar to readers of research, and 
rank-order methods have not been developed for many complex situations. Another 
problem is that the simple logic of rank-order tests breaks down if there are many 
ties in ranks. Finally, like data transformation methods, rank-order methods distort 
the original data, losing information. For example, in the same sample, a difference 
between 6.1 and 6.2 could be one rank, but the difference between 3.4 and 5.8 might 
also be one rank.4

Relative Risk of Type I and Type II Errors
How accurate are the various methods in terms of the 5% significance level really 
meaning that there is a 5% chance of incorrectly rejecting the null hypothesis (a 
Type I error)? And how do the different methods affect power?

When the assumptions for parametric tests are met, the parametric tests are as 
good as or better than any of the alternatives. This is true for protection against both 
Type I and Type II errors. This would be expected, because these are the conditions 
for which the parametric tests were designed.

However, when the assumptions for a parametric test are not met, the relative 
advantages of the possible alternative procedures we have considered (data transfor-
mations and rank-order tests) are not at all clear. In fact, the relative merits of the 
various procedures are topics of lively controversy, with many articles appearing in 
statistics-oriented journals every year.

How are you doing?

 1. (a) What is a rank-order transformation? (b) Why is it done? (c) What is a rank-
order test?

 2. Transform the following scores to ranks: 5, 18, 3, 9, 2.
 3. (a) If you wanted to use a standard rank-order test instead of a t test for inde-

pendent means, what procedure would you use? (b) What are the steps of 
doing such a test? (c) What is the underlying logic?

 4. (a) What happens if you change your scores to ranks and then figure an ordi-
nary parametric test using the ranks? (b) Why will this not be quite accurate, 
even assuming that the transformation to ranks is appropriate? (c) Why will this 
result not be quite as accurate as using the standard rank-order test? (d) What 
are the advantages of using this procedure over a standard rank-order test?

 5. If conditions are not met for a parametric test (a) what are the advantages 
and (b) disadvantages of data-transformation over rank-order tests, and what 
are the (c) advantages and (d) disadvantages of rank-order tests over data 
transformation?

Answers

 1. (a) A rank-order transformation is changing each score to its rank order (from 
lowest to highest) among all the scores.
(b) It is done to make the distribution a standard shape or because the true 
nature of the measurement may be rank-order.
(c) A rank-order test is a special type of significance testing procedure 
designed for use with rank-ordered scores.



 Strategies When Population Distributions Are Not Normal  599

Controversy: Computer-Intensive Methods
In recent years, thanks to the availability of more powerful computers and soft-
ware, a whole new set of hypothesis-testing methods has become more practical, 
so much so that some researchers argue that they should completely replace all the 
standard methods of hypothesis testing! The general name for these new procedures 
is  computer-intensive methods. The main specific techniques are randomization 
tests and bootstrap tests. In brief, bootstrap tests allow you to create multiple esti-
mates of a sample statistic (such as a mean difference score or a correlation coeffi-
cient) by creating a large number of randomly selected samples from your data and 
seeing how consistent the sample statistic is across all of the estimates. Randomiza-
tion tests differ in several important ways from bootstrap tests, but their general 
logic is similar enough that we can give you the basic idea of computer-intensive 
methods by focusing in detail on randomization tests. (Randomization tests are also 
a little easier to understand than bootstrap tests when you are new to this.)

Suppose that you have two groups of scores, one for an experimental group and 
one for a control group. Suppose also that the means of the two groups differ by some 

computer-intensive methods 
statistical methods, including 
hypothesis-testing procedures, involving 
large numbers of repeated computations.

randomization tests hypothesis-
testing procedures (usually a computer-
intensive method) that consider every 
possible reorganization of the data in the 
sample to determine if the organization 
of the actual sample data was unlikely to 
occur by chance.

bootstrap tests hypothesis-testing 
procedures (a computer-intensive 
method) that allow you to create 
multiple estimates of a sample statistic 
(such as a mean difference score or 
a correlation coefficient) by creating 
a large number of randomly selected 
samples from your data and seeing how 
consistent the sample statistic is across 
all of the estimates.

 2. Rank-order transformation: 5 = 3, 18 = 5, 3 = 2, 9 = 4, and 2 = 1. (That is, 
the ranks are 3, 5, 2, 4, and 1.)

 3. (a) You could use the Wilcoxon rank-sum test or Mann-Whitney U test.
(b) Set the significance cutoff (based on a table) for the maximum sum of 
ranks for the group predicted to have the lower scores, change all scores to 
ranks (ignoring what group they are in), add up the ranks in the group pre-
dicted to have the lower scores, and then compare that total to the cutoff.
(c) The shape and details of a distribution of ranks are known; so statisticians 
can prepare tables based on figuring from exact probabilities of what is the 
maximum sum of ranks you would get any particular percentage of the time 
(such as 5%) if the null hypothesis was true.

 4. (a) If you change your scores to ranks, and then figure an ordinary paramet-
ric test using the ranks, you get fairly similar results to doing the standard 
nonparametric test.
(b) The population distribution will be rectangular and not normal (an 
assumption for the t test).
(c) The rank-order test is based on knowing for sure the shape of the popula-
tion distribution and using exact probabilities on that basis; with an ordinary  
t test or analysis of variance, usually at best the populations are only approxi-
mately normal and have only approximately equal variances.
(d) It is simpler when using a computer and you can do it with almost any 
statistical test (and there are not special rank-order tests for all the situations 
for which there are parametric tests).

 5. (a) You can use the familiar parametric methods, and the transformation may 
come closer to the true meaning of the underlying measurement.
(b) They will not always work and may distort the underlying meaning of the 
measurement.
(c) They can be used regardless of the distribution, rank-order may better 
reflect the true meaning of the measurement, and rank-order tests are very 
accurate.
(d) They are often unfamiliar and have not been developed for many complex 
methods; also, ties in ranks (which are common) distort the accuracy of these 
tests.
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amount. Now consider what happens if all these scores were mixed up, ignoring which 
group they came from. If you figure the difference between the means of these two 
randomly set up groups, what is the chance that this whole process would result in a 
mean difference as big as the one found in the original, proper grouping of the scores?

If the mean difference between the original groupings is quite small, it is likely that 
you could get that big a mean difference through chance groupings. But if the mean differ-
ence for the original groupings is quite large, creating chance groupings would not often 
produce a difference as large. If chance groupings would produce a result as big as the orig-
inal groupings less than 5% of the time, we would feel confident that the original groupings 
were different from what you would expect by chance. Thus, the approach of comparing 
an actual grouping to chance groupings of scores is a way of doing a significance test.

When you do a randomization test for this kind of situation, the computer actually 
sets up every single possible division of the scores into two groups of these sizes. Then 
it counts how many of these possible organizations have a difference as extreme as (or 
more extreme than) the actual observed differences between your two groups. If fewer 
than 5% of the possible organizations have differences this extreme, your result is 
significant. You can reject the null hypothesis that the two groups could have been this 
different by a chance division. (This logic is like that used for working out the prob-
abilities for rank-order tests, but in this case scores are not first converted to ranks.)

Table 14-7 shows what a computer would do for a randomization test for the example 
fictional two-group study of number of books read. Basically, what the table shows is the 
worked-out difference between means for every one of the 70 possible combinations of 

Needed to reject the null hypothesis:  This mean difference must be in top 5% of mean differences. With 70 mean differences, it must be among the three high-
est differences.

All Possible Divisions (70) of the Ei ght Scores into Two Groups of Four Each:

Actual
No Yes No Yes No Yes No Yes No Yes No Yes No Yes
 0 17  0 22  0 22  0 22  0 22  0 10  0 10
 3 36  3 36  3 17  3 17  3 17  3 36  3 17
10 45 10 45 10 45 10 36 10 36 22 45 22 45
22 75 17 75 36 75 45 75 75 45 17 75 36 75

MYes - MNo 34.5 37 27.5 23  8 31 21.5
No Yes No Yes No Yes No Yes No Yes No Yes No Yes
 0 10  0 10  0 10  0 10  0 10  0 10  0 10
 3 17  3 17  3 22  3 22  3 22  3 22  3 22
22 36 22 36 17 45 17 36 17 36 36 17 36 17
45 75 75 45 36 75 45 75 75 45 45 75 75 45

MYes - MNo 17  2 24 19.5 4.5 10 -5

Table 14-7  Randomization Test Computations for the Study Comparing Highly Sensitive and Not Highly Sensitive Children on the Number 

of Books Read in the Past Year (Fictional Data)

Actual Results:

 Highly Sensitive

No Yes

 0  17
 3  36
10  45
22  75

� 35 173

M =     8.75 43.25

Actual difference = MYes - MNo = 34.5

(continued)
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Table 14-7 (continued )

No Yes No Yes No Yes No Yes No Yes No Yes No Yes
 0 10  0  3  0  3  0  3  0  3  0  3  0  3
 3 22 10 36 10 17 10 17 10 17 10 22 10 22
45 17 22 45 22 45 22 36 22 36 17 45 17 36
75 36 17 75 36 75 45 75 75 45 36 75 45 75

MYes - MNo -9.5 27.5 18 13.5 -1.5 20.5 16
No Yes No Yes No Yes No Yes No Yes No Yes No Yes
 0  3  0  3  0  3  0  3  0  3  0  3  0  3
10 22 10 22 10 22 10 22 22 10 22 10 22 10
17 36 36 17 36 17 45 17 17 45 17 36 17 36
75 45 45 75 75 45 75 36 36 75 45 75 75 45

MYes - MNo 1 6.5 -8.5 -13 14.5 10 -5
No Yes No Yes No Yes No Yes No Yes No Yes No Yes

0 3 0 3 0 3 0 3 0 3 0 3 0 3
22 10 22 10 22 10 17 10 17 10 17 10 36 10
36 17 36 17 45 17 36 22 36 22 45 22 45 22
45 75 75 45 75 36 45 75 75 45 75 36 75 17

MYes - MNo .5 -14.5 -19 3 -12 -16.5 -26
No Yes No Yes No Yes No Yes No Yes No Yes No Yes
17 0 22 0 22 0 22 0 22 0 10 0 10 0
3 3 36 3 17 3 17 3 17 3 36 3 17 3

10 10 45 10 45 10 36 10 36 10 45 22 45 22
22 22 75 17 75 36 75 45 45 75 75 17 75 36

MYes - MNo -34.5 -37 -27.5 -23 -8 -31 -21.5
No Yes No Yes No Yes No Yes No Yes No Yes No Yes
10 0 10 0 10 0 10 0 10 0 10 0 10 0
17 3 17 3 22 3 22 3 22 3 22 3 22 3
36 22 36 22 45 17 36 17 36 17 17 36 17 36
75 45 45 75 75 36 75 45 45 75 75 45 45 75

MYes - MNo -17 -2 -24 -19.5 -4.5 -10 5
No Yes No Yes No Yes No Yes No Yes No Yes No Yes
10 0 3 0 3 0 3 0 3 0 3 0 3 0
22 3 36 10 17 10 17 10 17 10 22 10 22 10
17 45 45 22 45 22 36 22 36 22 45 17 36 17
36 75 75 17 75 36 75 45 45 75 75 36 75 45

MYes - MNo 9.5 -27.5 -18 -13.5 1.5 -20.5 -16
No Yes No Yes No Yes No Yes No Yes No Yes No Yes

3 0 3 0 3 0 3 0 3 0 3 0 3 0
22 10 22 10 22 10 22 10 10 22 10 22 10 22
36 17 17 36 17 36 17 45 45 17 36 17 36 17
45 75 75 45 45 75 36 75 75 36 75 45 45 75

MYes - MNo -1 -6.5 8.5 13 -14.5 -10 5
No Yes No Yes No Yes No Yes No Yes No Yes No Yes

3 0 3 0 3 0 3 0 3 0 3 0 3 0
10 22 10 22 10 22 10 17 10 17 10 17 10 36
17 36 17 36 17 45 22 36 22 36 22 45 22 45
75 45 45 75 36 75 75 45 45 75 36 75 17 75

MYes - MNo - .5 14.5 19 -3 12 16.5 26

Seventy Differences Ordered From Lowest (Most Negative) to Highest:

-37, -34.5, -32, -27.5, -27.5, -26, -24, -23, -21.5, -20.5, -19.5, -19, -18, -17, -16.5, -16, -14.5, -14.5, -13.5, -13, -12, -10, -10,
-9.5, -8.5, -8, -6.5, -5, -5, -4.5, -3, -2, -1.5, -1, - .5, .5, 1, 1.5, 2, 3, 4.5, 5, 5, 6.5, 8, 8.5, 9.5, 10, 10, 12, 13, 13.5, 14.5, 14.5, 16, 16.5, 17, 18, 19, 
19.5, 20.5, 21.5, 23, 24, 26, 27.5, 27.5, 31, 34.5, 37

Decision: Actual mean difference is among the three highest. Reject the null hypothesis.
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eight scores into two groups of four scores each. Thus, for the actual two groups, the dif-
ference is 34.5; but for other ways of dividing up the eight scores, the difference in means 
can be as low as -37 and as high as +37. What is shown on the bottom, however, is that 
our particular result is one of the two highest of the 70, putting it in the top 5%. Thus, 
using this method, the researcher can conclude there is a significant difference—and do 
so without having made any assumptions whatsoever about population distributions!

Our example used a very small sample. Even so, there were 70 possible ways of 
dividing the scores into two equal groups. With larger (and more realistic) sample sizes, 
the number of different ways of dividing up the scores into groups quickly becomes 
unmanageable, even for most modern personal computers. For example, a comparison 
between two groups of seven participants each has 3,432 possible divisions; a comparison 
of 10 participants per group has 184,756. With 20 per group, there are 155,120,000! In 
practice, many computers cannot currently handle true randomization tests, especially for 
complex analysis situations, with the size of samples common in psychology research. 
(However, as personal computers become increasingly powerful, we expect that before 
long they will be able to handle even quite complex kinds of randomization tests.)

To deal with this problem, statisticians have developed what are called approxi-
mate randomization tests. The computer randomly selects a large number of pos-
sible divisions of the sample—perhaps 1,000. The results using these randomly 
selected divisions are then considered representative of what you would find if 
you actually used every possible division. (This is similar to a Monte Carlo study, 
which we described in Chapter 8, Box 8-1. And how does something as orderly as a 
computer come up with so many random numbers? See Box 14-1.)

To be random, numbers must be selected with equal 
odds. That is, the odds of each number’s appearance 
have to be totally independent of the odds of the numbers 
appearing before and after it. One of the many impor-
tant uses of random numbers is in computer-intensive 
statistical methods, as discussed in this chapter. They 
are also essential to Monte Carlo studies (see Chapter 8, 
Box 8-1), which are used to test the effect of violating 
normality and other assumptions of parametric statistical 
tests—one way for psychologists to know whether they 
need to use the methods described in this chapter. But 
random numbers in themselves are an interesting topic.

The first random number table was created in 1927. 
Before that, mechanical methods such as shuffling devices 
were used. Remember William S. (“Student”) Gosset 
(Chapter 7, Box 7-1)? To obtain his random numbers, he 
shuffled and drew from a deck of 3,000 cards. Then, in 1927, 
Karl Pearson encouraged L. H. C. Tippett to publish a table. 
Tippett found drawing numbered cards from a bag “unsatis-
factory”; so he selected digits from the 1925 census report. 
Later, in 1938, R. A. Fisher and Frank Yates published a list 
based on logarithms. At about the same time, a number of 
methods of checking for randomness were also introduced.

Later, more sophisticated physical solutions became 
common. Flashing a beam of light at irregular intervals 

onto a sectioned rotating disk was one. Another used the 
radiation of radioactive substances. It recorded the num-
ber of particles detected during a certain time span; if 
the number was odd, it set a counter to 1, and if even, to 
0, and then generated lists of numbers from groupings 
of these binary digits. A third system employed an elec-
tronic valve that made noise that could be amplified; the 
fluctuating output values were random.

All of these physical methods were a nuisance: they 
required storing the numbers if they were to be repro-
duced or reused, and all this apparatus was hard to 
maintain. So computers are now often used to create 
“pseudorandom numbers,” using some special equa-
tion, such as squaring large numbers and taking a central 
group of the resulting digits. But these numbers are in 
some subtle sense not random, but predictable because of 
the very fact that there was an intention in the equation’s 
design: to create randomness (quite a paradox). There is 
also the problem of whether equations will “degenerate” 
and begin to repeat sequences. Finally, no matter how 
the list is generated, there is controversy about the con-
sequences of the repeated use of the same table.

The whole topic of how difficult it is to create some-
thing free of order or intelligence seems to say something. 
What that is, we will leave for you to decide.

BOX 14-1 Where Do Random Numbers Come From?
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Computer-intensive methods, such as approximate randomization tests, do not 
require either of the two main assumptions of ordinary parametric tests. Further, 
like rank-order tests, they have a direct logic of their own that is very appealing, 
bypassing the whole process of estimated population distributions, distributions of 
means, and so forth. Computer-intensive methods are also extremely flexible. You 
can use them in almost any situation imaginable in which hypothesis testing could 
be applied. Thus, you can use them to analyze the results of a study when no test 
currently exists, parametric or otherwise.

The main disadvantage of the computer-intensive methods is that they are 
relatively new; so the details and relative advantages of various approaches 
have not been well worked out. Further, because they are new, in most cases 
the standard computer statistical packages include them in only a few special-
ized situations. But the number and importance of such situations is growing 
rapidly. For example, computer-intensive methods are increasingly the method 
of choice for handling the “too many t tests” problem in brain imaging studies, 
as discussed in Chapter 8. Another increasingly common use of such methods 
is for tests of mediation, a widely used advanced method in many areas of psy-
chology that we consider briefly in Chapter 15. Computer-intensive methods 
are only beginning to appear in published articles, but their use is likely to 
increase rapidly.

Data Transformations and Rank-Order Tests  
in Research Articles
The use of the procedures we have described in this chapter seems to wax and wane 
in popularity in different areas of psychology. In some fields, during certain years, 
you may see many studies using data transformations and never see a rank-order 
test. In other areas, during the same years, you may see just the reverse.

Data transformations are usually mentioned in the Methods or Results section 
of a research article. For example, Sugerman and Carey (2007) studied the relation-
ship between students’ alcohol intake and their use of strategies to control drinking. 
(Examples of strategies they studied were spacing drinks over time and alternating 
alcoholic and nonalcoholic beverages when drinking.) Prior to presenting the main 
results, the researchers noted:

Summary statistics were generated to evaluate the distributions of variables and  
to identify problems with skew that might require transformations. To correct for  
non normality due to positive skew, we square-root transformed the following vari-
ables: average drinks per week, average BAC [blood alcohol content], and heaviest 
BAC. (p. 341)

Lynch and colleagues (2010) conducted a study of physical activity, sedentary 
behaviors, serum insulin levels, and obesity among women who had been diagnosed 
with breast cancer. As part of their Methods section, the researchers reported that:

Skewness in moderate-to-vigorous intensity activity was corrected using natural  
logarithm transformation . . . . Additional exploratory analyses considered the  
relationships between sedentary time and physical activity with serum insulin levels 
among the 35 breast cancer survivors for whom these data were available. The loga-
rithmic transformation of insulin was used to normalize the right skewed distribution 
of these data. (p. 285)

Here is an example of rank-order tests reported by Schwitzgebel and colleagues 
(2006). These researchers studied factors associated with how often people report 
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dreaming in color. The participants in the study were 300 high school and university 
students in a central part of Eastern China. The students answered the question “Do 
you see colors in your dreams?” using response options of never, rarely, occasionally, 
frequently, and very frequently. The researchers noted at the start of the Results section 
of the article that “The data were treated as ranked and nonparametric” (p. 38). They 
went on to state:

Respondents with a principally urban childhood . . . reported significantly more  
colored dreaming (median occasionally) than respondents raised in rural areas 
(median rarely) (Mann-Whitney, one-tailed, p 6 .0001), and age of first regular 
exposure to colored TV and movies . . . was negatively correlated with report of colors 
in dreams (Spearman’s rank correlation = .26, p 6 .001). (p. 40)

How often do you see colors in your dreams? Here is how a sample of 124 college 
students in Southern California answered that question: never, 4.7%; rarely, 14.3%; 
occasionally, 24.4%; frequently, 27.8%; very frequently, 28.7% (Schwitzgebel,  
2003).

 1. The t test, analysis of variance, and the significance tests for correlation and 
prediction (regression) are all parametric tests that assume that populations fol-
low a normal curve and have equal variances. When samples suggest that the 
populations are very far from normal (as when they are highly skewed or have 
outliers) or have different variances, using the ordinary procedures gives incor-
rect results.

 2. One approach when the populations appear to be violating these assumptions is 
to transform the scores, such as taking the square root of each score so that the 
distribution of the transformed scores appears to represent a normally distributed 
population. Other common transformations for skewed distributions are taking 
the log or inverse of each score. You can then use the ordinary hypothesis- 
testing procedures.

 3. Another approach is to rank all of the scores in a study. Special rank-order tests 
(sometimes called nonparametric or distribution-free tests) use basic principles 
of probability to determine the chance of the ranks being unevenly distributed 
across groups. However, in many situations, using the rank-transformed scores 
in an ordinary parametric test gives a good approximation.

 4. Data transformations allow you to use the familiar parametric techniques but 
cannot always be used and may distort the meaning of the scores. You can use 
rank-order methods in almost any situation, they are especially appropriate with 
rank or similar data, and they have a straightforward conceptual foundation. 
But rank-order methods are not widely familiar and they have not been devel-
oped for many complex data analysis situations. As with other data transforma-
tions, information may be lost or meaning distorted.

 5. A randomization test is an example of a computer-intensive method that con-
siders every possible rearrangement of the scores from a study to figure the 
probability that the actual arrangement (for example, the difference in means 
between the actual two groupings of scores) arose by chance. Computer-intensive 

Summary

Learning Aids
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The following problems are based on the following scores from a study with three groups:

Group A Group B Group C

15 21 18

 4 16 19

12 49 11

14 17 22

Square-Root Transformation
Carry out a square-root transformation.

Answer

Group A Group B Group C

3.87 4.58 4.24

2.00 4.00 4.36

3.46 7.00 3.32

3.74 4.12 4.69

Rank-Order Transformation
Carry out a rank-order transformation.

Answer

Group A Group B Group C

5 10  8

1  6  9

3 12  2

4  7 11

Example Worked-Out Problems

methods have been proposed as an alternative to both parametric and nonpara-
metric methods. They are widely applicable, sometimes to situations for which 
no other method exists. Also, they have an appealing direct logic. But they are 
unfamiliar to many researchers; being new, their possible limitations are not 
well worked out, and they can be difficult to set up, because they are not pro-
vided on standard computer statistical software programs.

 6. Research articles usually describe data transformations as part of the Methods 
or Results section. Rank-order methods are described much like any other kind 
of hypothesis test.

data transformation (p. 588)
square-root transformation (p. 589)
rank-order transformation (p. 593)
rank-order test (p. 594)

distribution-free test (p. 594)
nonparametric test (p. 594)
parametric test (p. 594)
computer-intensive methods (p. 599)

randomization test (p. 599)
bootstrap test (p. 599)

Key Terms
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Practice Problems

These problems involve figuring. Most real-life statistics problems are done with  
special statistical software. Even if you have such software, do these problems by 
hand to ingrain the method in your mind. To learn how to use a computer to solve sta-
tistics problems like those in this chapter, refer to the Using SPSS section at the end of  
this chapter.

All data are fictional unless an actual citation is given.

Set I (for Answers to Set I Problems, see pp. 704–705)
 1. For each of the following sample distributions, say whether it suggests that the 

population distribution is probably not normal, and why.
(a) 41, 52, 74, 107, 617
(b) 221, 228, 241, 503, 511, 521
(c) .2, .3, .5, .6, .7, .9, .11
(d) -6, -5, -3, 10
(e) 11, 20, 32, 41, 49, 62

 2. For each of the following distributions, make a square-root transformation:
(a) 16, 4, 9, 25, 36
(b) 35, 14.3, 13, 12.9, 18

 3. For the distribution of the following 30 scores, (a) make a grouped frequen-
cies histogram of the scores as they are (intervals 0-4.9, 5-9.9, 10-14.9, etc.); 
(b) carry out a square-root transformation; and (c) make a grouped histogram of 
the transformed scores (0- .9, 1-1.9, etc.):

9, 28, 4, 16, 0, 7, 25, 1, 4, 10, 4, 2, 1, 9, 16, 11, 12, 1, 18, 2, 5, 10, 3, 17, 6,

4, 2, 23, 21, 20

 4. A researcher compares the typical family size in 10 cultures, 5 from Language 
Group A and 5 from Language Group B. The figures for the Group A cultures 
are 1.2, 2.5, 4.3, 3.8, and 7.2. The figures for the Group B cultures are 2.1, 9.2, 
5.7, 6.7, and 4.8. Based on these 10 cultures, does typical family size differ 
in cultures with different language groups? Use the .05 level. (a) Carry out a  
t test for independent means using the actual scores. (b) Carry out a square-root 
transformation (to keep things simple, round off the transformed scores to one 
decimal place). (c) Carry out a t test for independent means using the trans-
formed scores. (d) Explain what you have done and why to someone who is 
familiar with the t test for independent means but not with data transformation.

 5. A researcher is studying the effect of sleep deprivation on recall. Six partici-
pants are each tested twice on a recall task, once on a day when well rested 
(they had plenty of sleep the night before) and once when sleep deprived (they 
have had no sleep for 48 hours). Here are the recall scores:

Participant Well Rested Sleep Deprived

A 16  5

B 18  2

C 10 10

D  7  3

E 20 16

F 10  9
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Does sleep deprivation affect recall? (Use the .05 significance level.)  
(a) Carry out a t test for dependent means using the actual scores. (b) Carry out a 
square-root transformation of the difference scores (to keep things simple, round 
off the transformed scores to one decimal place). (c) Carry out a t test for depen-
dent means using the transformed difference scores. (d) Explain what you have 
done and why to someone who is familiar with the t test for dependent means but 
not with data transformation.

 6. A researcher randomly assigns participants to watch one of three kinds of films: 
one that tends to make people sad, one that tends to make people angry, and one 
that tends to make people exuberant. The participants are then asked to rate a 
series of photos of individuals on how honest they appear. The ratings for the 
sad-film group were 201, 523, and 614; the ratings for the angry-film group 
were 136, 340, and 301; and the ratings for the exuberant-film group were 838, 
911, and 1,007. (a) Carry out an analysis of variance using the actual scores 
(use p 6 .01). (b) Carry out a square-root transformation of the scores (to keep 
things simple, round off the transformed scores to one decimal place). (c) Carry 
out an analysis of variance using the transformed scores. (d) Explain what you 
have done and why to someone who is familiar with analysis of variance but 
not with data transformation.

 7. Miller (1997) conducted a study of commitment to a romantic relationship and 
how much attention a person pays to attractive alternatives. In this study, par-
ticipants were shown a set of slides of attractive individuals. At the start of the 
results section, Miller notes, “The self-reports on the Attentiveness to Alter-
native Index and the time spent actually inspecting the attractive opposite-sex 
slides . . . were positively skewed, so logarithmic transformations of the data 
were performed” (p. 760). Explain what is being described here (and why it is 
being done) to a person who understands ordinary parametric statistics but has 
never heard of data transformations.

 8. Prior to reporting the results for the latency ms scores (reaction time scores in 
milliseconds) on each trial, Teachman and colleagues (2001) reported the fol-
lowing: “. . .  trial latency data were reciprocally transformed (1,000/latency in 
ms)” (p. 230). Explain what is being described here (and why it is being done) 
to a person who understands ordinary parametric statistics but has never heard 
of data transformations.

 9. Make a rank-order transformation for the scores in problems (a) 2a and (b) 2b.
 10. For the distribution of 30 scores given in problem 3, (a) carry out a rank-order 

transformation and (b) make a grouped frequency histogram of the ranked 
scores (0-4.9, 5-9.9, etc.).

 11. For the data in problems (a) 4, (b) 5, and (c) 6, carry out the appropriate test 
using the original scores (if you have not done so already), carry out a rank-
transformation of the scores, carry out the appropriate statistical test (t test or 
analysis of variance) using the rank-transformed scores, and explain what you 
have done and why to someone who is familiar with the ordinary parametric 
procedures but not with rank-order transformations or rank-order tests.

 12. Ford and colleagues (1997) were interested in the relation of certain personality 
factors to treatment for post-traumatic stress disorder (a psychological condition 
resulting from a traumatic event such as might be experienced during war or as 
a result of a violent attack). The personality factor of interest to the research-
ers was based on a modern version of Freudian psychoanalytic theory called 
“object relations.” This refers to the psychological impact of our earliest rela-
tionships, mainly with our parents (the “objects” of these early relationships). 
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The researchers based their measure of object relations on a clinical interview 
focusing on such things as the ability to invest in a close relationship and the 
ability to see others in a complex way (e.g., not seeing a person as all good or 
all bad). In reporting their results, they abbreviated the object relations clinical 
interview measure as “OR-C.” The distribution of scores on the OR-C was not 
normal (it was bimodal).

One of their analyses focused on the relation of object relations to whether 
a person stays in treatment to completion or terminates prematurely. They 
reported their results as follows:

Six of the 74 participants prematurely terminated. . . . The six premature termina-
tors did not differ from the rest of the sample on any demographic or pretest 
variable. . . . They did differ statistically significantly from completers on OR-C 
ratings, scoring lower as tested by the nonparametric Mann-Whitney U Test 
1Z = -3.43, p 6 .0012. (p. 554)

Explain the general idea of what these researchers are doing (and why they 
didn’t use an ordinary t test) to a person who is familiar with the t test but not 
with rank-order tests.

Set II
 13. For each of the following sample distributions, say (a) whether it suggests that 

the population distribution is probably not normal, and (b) why.
(a) 281, 283, 287, 289, 291, 300, 302
(b) 1, 4, 6, 6, 7, 7, 9, 13
(c) 7, 104, 104, 104, 1,245, 1,247, 1,248, 1,251
(d) 68, 74, 76, 1,938
(e) 407.2, 407.5, 407.6, 407.9

 14. For each of the following distributions, make a square-root transformation:
(a) 100, 1, 64, 81, 121
(b) 45, 30, 17.4, 16.8, 47

 15. For the distribution of the following 20 scores, (a) make a histogram of the 
scores as they are, (b) carry out a square-root transformation, and (c) make a 
histogram of the transformed scores:

2, 207, 894, 107, 11, 79, 112, 938, 791, 3, 13, 89, 1,004, 92, 1,016, 107,

87, 91, 870, 921

 16. A study compared students’ number of close friends during their first and sec-
ond years in college. Here are the numbers of friends for five students tested.

Participant First Year Second Year

1  2  2

2  4  6

3 14 15

4  3 15

5  5  6

Does the number of close friends increase from first to second year of col-
lege? (Use the .05 significance level.) (a) Carry out a t test for dependent means 
using the actual scores. (b) Carry out a square-root transformation of the dif-
ference scores (to keep things simple, round off the transformed scores to one 
decimal place). (c) Carry out a t test for dependent means using the transformed 
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difference scores. (d) Explain what you have done and why to someone who is 
familiar with the t test for dependent means but not with data transformations.

 17. A study compares performance on a novel task for people who do the task either 
alone, in the presence of a stranger, or in the presence of a friend. The scores 
for the participants in the alone condition are 1, 1, and 0; the scores of the par-
ticipants in the stranger condition are 2, 6, and 1; and the scores for those in the 
friend condition are 3, 9, and 10. (a) Carry out an analysis of variance using 
the actual scores 1p 6 .052. (b) Carry out a square-root transformation of the 
scores (to keep things simple, round off the transformed scores to one decimal 
place). (c) Carry out an analysis of variance using the transformed difference 
scores. (d) Explain what you have done and why to someone who is familiar 
with analysis of variance but not with data transformation.

 18. A researcher conducted an experiment organized around a televised major 
address by the U.S. president. Immediately after the address, three participants 
were randomly assigned to listen to the commentaries provided by the television 
network’s political commentators. The other three were assigned to spend the 
same time with the television off, reflecting quietly about the speech. Participants 
in both groups then completed a questionnaire that assessed how much of the 
content of the speech they remembered accurately. The group that heard the com-
mentators had scores of 4, 0, and 1. The group that reflected quietly had scores 
of 9, 3, and 8. Did hearing the commentary affect memory? Use the .05 level, 
one-tailed, predicting higher scores for the reflected-quietly group. (a) Carry out 
a t test for independent means using the actual scores. (b) Carry out a square-root 
transformation (to keep things simple, round off the transformed scores to one 
decimal place). (c) Carry out a t test for independent means using the transformed 
scores. (d) Explain what you have done and why to someone who is familiar with 
the t test for independent means but not with data transformation.

 19. Carey and colleagues (1997) developed a program designed to enhance motivation 
for avoiding HIV infection risks. They then studied its effectiveness with a group of 
economically disadvantaged urban women who were randomly assigned to receive 
either the program or a control condition. All the women were measured before,  
3 weeks after, and 12 weeks after the experimental group participated in the program. 
One of the measures in the study was sexual communication, such as the extent to 
which the women reported they had talked with their partners about safer sex and 
getting tested for HIV. Prior to describing their analyses on this variable, Carey and 
colleagues noted the following: “The communication scores were positively skewed 
at all three occasions; log10 1x + 12 transformations provided the best correction 
toward normality and were used in subsequent analyses” (p. 536). Explain what is 
being described here (and why it is being done) to a person who understands ordi-
nary parametric statistics but has never heard of data transformations.

 20. Connors and colleagues (1997) conducted a study focusing on the client-
therapist alliance in alcoholism treatment. Prior to reporting the results of their 
study, they commented as follows:

Variables such as percentage of days abstinent and drinks per day often depart 
from normality because of skewness and floor-ceiling effects. In response, the 
percentage of days abstinent variable was subjected to an arcsine transforma-
tion, and the drinks per drinking day variable was subjected to a square-root 
transformation, in each case to improve the distribution. (p. 592)

Explain what is being described here (and why it is being done) to a  
person who understands ordinary parametric statistics but has never heard of 
data transformations.
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The  in the following steps indicates a mouse click. (We used SPSS version 19 for 
Windows to carry out these analyses. The steps and output may be slightly different 
for other versions of SPSS.)

Checking for Normal Distributions
It is a good idea to check to see if each variable and each group in a study comes 
from a population with a normal distribution. In this case, the key thing to consider 
is the skewness of the distribution. As you learned in Chapter 1, skewness means a 

Using SPSS

 21. Martinez (2000) studied the link between homicide rates and immigrant status 
among Latinos in the United States. However, prior to presenting the results, 
Martinez noted, “. . . the dependent variables indicated skewed distributions. 
Thus, all Latino homicide types . . . were logarithmically transformed into natu-
ral logs.” Explain what is being described here (and why it is being done) to a 
person who understands ordinary parametric statistics but has never heard of 
data transformations.

 22. Make a rank-order transformation for the scores in problems (a) 14a and (b) 14b.
 23. For the distribution of 20 scores given in problem 15, (a) carry out a rank-order 

transformation and (b) make a histogram of the ranked scores.
 24. For the data in problems (a) 17 and (b) 18, carry out the appropriate test using 

original scores (if you have not done so already), carry out a rank-transformation 
of the scores, carry out the appropriate statistical test (t test or analysis of vari-
ance) using the rank-transformed scores, and explain what you have done and 
why to someone who is familiar with the normal parametric procedures but not 
with rank-order transformations or rank-order tests.

 25. June and colleagues (1990) surveyed black students at a Midwestern U.S. uni-
versity about problems in their use of college services. Surveys were conducted 
of about 250 students each time, at the end of the spring quarter over five dif-
ferent years. The researchers ranked the nine main problem areas for each of 
the years. One of their analyses then proceeded as follows: “A major question 
of interest was whether the ranking of most serious problems and use of ser-
vices varied by years. Thus, a Kruskal-Wallis one-way analysis of variance 
(ANOVA) was performed on the rankings but was not significant. . . .” (p. 180). 
Explain why the researchers used the Kruskal-Wallis test instead of an ordinary 
analysis of variance and what conclusions can be drawn from this result.

 26. As part of a larger study, Betsch and colleagues (2001) manipulated the attention 
to information presented in TV ads and then gave participants questions about the 
content of the ads as a check on the success of their manipulation. They reported:

Participants who were instructed to attend to the ads answered 51.5% . . . of the 
questions correctly. In the other condition, only 41.1% of questions were an-
swered correctly. This difference is significant according to the Mann-Whitney 
U test, U1842 = 2317.0, p 6 .01. This shows that the attention manipulation 
was effective. (p. 248)

Explain the general idea of what these researchers are doing (and why they 
didn’t use an ordinary t test) to a person who is familiar with the t test but not 
with rank-order tests.
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distribution is not normal because it is lopsided with a long tail on one side. First, 
have SPSS figure each variable’s numerical skewness value. We will use the exam-
ple of the square-root transformation of the scores from the study comparing highly 
sensitive and not highly sensitive children on the number of books read in the past 
year (see Tables 14-1 and 14-2 on p. 592). Since we have scores for two groups of 
students (highly sensitive and not highly sensitive) on the books variable, we will 
test for skewness in the book scores separately for each group.

 ❶ Enter the scores into SPSS. As shown in Figure 14-6, the score for each child 
is shown in the “books” column. The scores in the “sensitive” column show 
whether the child was not highly sensitive (a score of 0) or highly sensitive  
(a score of 1). Although the sensitive scores aren’t needed at this point, they are 
important for figuring a t test for independent means on the transformed scores 
(see Table 14-3).

 ❷  Data.  Split File.  the circle next to “Organize output by group”. 
 the “sensitive” variable and  the arrow next to the box labeled “Groups 

Based on.”  OK. This tells SPSS to produce separate skewness statistics 
(which you will request in Steps ❸ through ❻) for the two “sensitive” groups.

 ❸  Analyze.  Descriptive Statistics,  Descriptives. This will bring up a 
“Descriptives” window.

 ❹  on the variable called “books” and then  the arrow next to the box labeled 
“Variable(s)”.

Figure 14-6 SPSS data editor window for the fictional study comparing highly 
sensitive and not highly sensitive children on the number of books read in the past year.
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 ❺  Options.  the box next to “Skewness” (this checks the box).  Continue.
 ❻  OK. Your SPSS output window will look like Figure 14-7. SPSS gives one 

table of results for children with a value of 0 for the sensitive variable and a 
separate table for those with a value of 1 for the sensitive variable. In each 
table, the skewness statistic is shown in the second to last column of the table. 
A widely used informal rule is that a skewness statistic of greater than +1 or 
less than -1 indicates that a group or variable is highly skewed. In such cases, it 
is also a good idea to get a visual sense of the degree of skew. The best way to 
do this is to compare a histogram of the variable to the normal curve. Here are 
the SPSS steps to request such a diagram:

 ❶  Graphs.  Legacy Dialogs.  Histogram.
 ❷  on the variable called “books” and then  the arrow next to the box labeled 

“Variable.”
 ➌  the box next to “Display normal curve” (this checks the box).
 ❹  OK. There will be two histograms (each with a normal curve on top of the 

histogram) in your SPSS output window. Figure 14-8 shows the first of these 
two histograms. There are scores for only four students shown in this first his-
togram (we used a small sample size in this example earlier in the chapter for 

Figure 14-7 SPSS output window for the skewness of the “books” variable in a 
fictional study comparing highly sensitive and not highly sensitive children on the number of 
books read in the past year.
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learning purposes). However, the distribution shows some evidence of being 
skewed to the right, which suggests that the scores for the “books” variable do 
not come from a normal population. (In reality, you would conduct such a study 
with a larger sample, which would make it easier for you to examine the poten-
tial nonnormal distribution of the “books” scores.)

   If you are now going to continue with the following SPSS examples  
below, you will need to turn off the “Split File” instruction that you gave to 
SPSS during Step ❷ of requesting the skewness statistic. Here is how to do 
that:  Data.  Split File.  the circle next to “Analyze all cases, do not create 
groups”.  OK.

Figure 14-8 SPSS output window for a histogram and normal curve of the books 
variable in a fictional study comparing highly sensitive and not highly sensitive children on 
the number of books read in the past year.
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Data Transformations
We will again use the example of the square-root transformation of the scores from 
the study comparing highly sensitive and not highly sensitive children on the num-
ber of books read in the past year (see Tables 14-1 and 14-2).

 ❶ Enter the scores into SPSS, as shown in Figure 14-6. Although the sensitive 
scores aren’t needed for the data transformation, they are important for figur-
ing a t test for independent means on the transformed scores (see Table 14-3). 
(A score of 0 in the “sensitive” column indicates that a child was not highly sensitive; 
and a score of 1 in the “sensitive” column indicates that a child was highly sensitive.)

 ❷  Transform.
 ❸  Compute Variable. This will bring up a “Compute Variable” window.
 ❹ Name the new variable (which will be the square root of the scores for the 

“books” variable) by typing “squareroot_books” in the “Target Variable” box. 
(You could give any name to the new variable, but it is best to give it a name 
that describes how it was figured.)

 ❺ Type “sqrt(books)” in the “Numeric Expression” box. This tells SPSS to take the 
square root of each score and create a new variable with those transformed scores.

 ❻  OK.

Your SPSS data editor window should now look like Figure 14-9. You can 
now use the “squareroot_books” scores in a t test for independent means to 

Figure 14-9 SPSS data editor window for the fictional study comparing highly 
sensitive and not highly sensitive children on the number of books read in the past year, 
including the scores for the books variable after a square root transformation.

T I P  F O R  S U C C E S S
For extra practice with SPSS, 
follow the steps for using SPSS 
to figure a t test for independent 
means (see Chapter 8’s Using 
SPSS section) for the transformed 
books scores. Check that your 
output for the t test is the same as 
that shown in Figure 14-10.
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Figure 14-10 SPSS output window for a t test for independent means for the 
square-root transformed book scores from the fictional study comparing highly sensitive and 
not highly sensitive children on the number of books read in the past year.

compare the scores of not highly sensitive and highly sensitive children. In  
Figure 14-10 we show the SPSS output of such a t test for independent means. The 
results of this t test are the same (within rounding error) as the results shown in 
Table 14-3 on p. 593.

Rank-Order Tests
We will use the example of the Wilcoxon rank-sum test for the scores from the 
study comparing the highly sensitive and not highly sensitive children on the num-
ber of books read in the past year (see Table 14-5 on p. 596).

 ❶ Enter the scores into SPSS as shown in Figure 14-6. (A score of 0 in the “sensi-
tive” column indicates that a child was not highly sensitive; and a score of 1 in 
the “sensitive” column indicates that a child was highly sensitive.)

 ❷  Analyze.
 ➌  Nonparametric tests.
 ❹  Legacy Dialogs.  2 Independent Samples.
 ❺  on the variable called “books” and then  the arrow next to the box labeled 

“Test Variable List.” This tells SPSS that the rank-order test should be carried 
out on the scores for the “books” variable.

 ❻  the variable called “sensitive” and then  the arrow next to the box labeled 
“Grouping Variable.” This tells SPSS that the variable called “sensitive” shows 
which person is in which group.  Define Groups. You now tell SPSS the val-
ues you used to label each group. Put “0” in the Group 1 box and put “1” in the 
Group 2 box.  Continue.

 ❼  OK. Your SPSS output window should look like Figure 14-11.

You will notice that the heading under “NPar Tests” (which stands for  
nonparametric tests) is “Mann-Whitney Test.” As we mentioned earlier in the 
chapter, the Mann-Whitney U test and the Wilcoxon rank-sum test differ in their 
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computations but give mathematically equivalent final results. (As you will see in 
the second table in the SPSS output, the significance level is the same for Mann-
Whitney and  Wilcoxon rank-sum tests.) The first table in the SPSS output (labeled 
“Ranks”) provides information about the two variables. The first column gives the 
levels of the “sensitive” grouping variable (0 and 1, which indicate the not highly 
sensitive and highly sensitive groups, respectively.) The second, third, and fourth 
columns give, respectively, the number of individuals (N), mean rank, and sum of 
ranks for each group.

The second table in the SPSS output (labeled “Test Statistics”) shows the actual 
results of the nonparametric rank-ordered tests. We will focus here on the results 
for the Wilcoxon rank-sum test (but the overall significance level and conclusion 
is the same, regardless of which test result you consider). Notice that the value of 

Figure 14-11 SPSS output window for a Wilcoxon rank-sum test for the fictional 
study comparing highly sensitive and not highly sensitive children on the number of books 
read in the past year.
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 1. Chi-square, like the rank-order tests, is considered a nonparametric test, but it 
is distribution-free only in the sense that no assumptions are made about the 
shape of the population distributions. However, the terms distribution-free and 
nonparametric are typically used interchangeably; the subtleties of differences 
between them are a matter of ongoing debate among statisticians.

 2. There is one widely used nonparametric test, besides chi-square tests, that is not 
based on rank-order scores at all. This is called the sign test, which is used in 
place of a t test for dependent means. You create your set of difference scores, 
then you just add up the number of difference scores that are positive. If there is 
no average difference in the sample, about half the difference scores should be 
positive and half negative. Suppose your number of positives are a lot more or a 
lot less than half. This result would argue against a null hypothesis that the true 
population of differences scores has an average difference of zero. Intermedi-
ate statistics texts usually have a table to look up the significance cutoffs for a 
sign test. The sign test is also available and easy to carry out as one of the SPSS 
nonparametric procedures.

 3. If you want to be very accurate, for a t test or one-way analysis of variance, you 
can convert your result to what is called an L statistic and look it up on a chi-square 
table (Puri & Sen, 1985). The L statistic for a t test is [(N - 1)t2]>[t2 + (N - 2)], 
and you use a chi-square distribution with df = 1. The L statistic for a one way 
analysis of variance is [(N - 1)(dfBetween)F]>[(dfBetween)F + dfWithin], and you 
use a chi-square distribution with df = dfBetween. The L for the significance of a 
correlation is just 1N - 12r 2 and you use the chi-square table for df = 1. It is 
especially important to use the L statistic when using rank-transformed scores 
for more advanced parametric procedures, such as factorial analysis of variance 
(Chapter 10), multiple regression (Chapter 12), and those procedures discussed 
in Chapter 15. Thomas and colleagues (1999) give fully worked-out examples.

 4. Another traditional advantage of rank-order tests has been that, except for the 
labor of changing the scores to ranks, the actual figuring (when done by hand) 
for most of these procedures is very simple compared to that of parametric tests. 
However, nowadays, with computers, it is just as easy to figure either kind of 
procedure. With some standard statistical computer packages, there is actually 
less trouble involved in figuring the parametric test.

Chapter Notes

11.000 is the same as the sum of the ranks for the not highly sensitive group, as 
shown in Table 14-5. The exact significance level of .043 for this result [shown in 
the “Asymp. Sig. (2-tailed)” row] is for a two-tailed test. In this example, we were 
using a one-tailed test; so this two-tailed significance of .043 represents a one-tailed 
significance of .043/2, which is .0215. This significance level of .0215 is less than 
our .05 cutoff for this example, which means that you can reject the null hypothesis 
and the research hypothesis is supported.
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Chapter 15
The General Linear Model and Making  
Sense of Advanced Statistical Procedures  
in Research Articles

Welcome to this final chapter. We will begin with a way to understand 
the big picture of what you have learned so far in this book, introduc-
ing what is called the general linear model, a fundamental idea in statis-

tics that is the hidden common foundation of just about all the statistical methods  
psychologists use. On the basis of this big picture and general integration, the main 
part of the chapter turns to a view of what lies ahead for you as you study more of 
the research at the basis of all psychology. Here we show you how to make sense 
in a general way of the advanced statistical procedures that are fairly widely used 
in psychology. Most research you will read as a psychology student uses one or more 
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of the statistical procedures you have learned in this book. However, very often you 
will run into procedures that you will not learn to do yourself until you take more 
advanced statistics courses. Fortunately, most of these advanced procedures are 
direct extensions of what you have learned in this book. At the least, after reading 
this chapter, you should be able to make sense of the general idea of just about any 
statistical analysis in a research article.

The advanced techniques you will learn about first are partial correlation, reli-
ability, multilevel modeling, factor analysis, and causal modeling. These are essen-
tially elaborations of what you learned in Chapters 11 and 12 on correlation and 
prediction. Later in this chapter you will learn about advanced statistical techniques 
that focus on differences among groups. These are essentially elaborations of what 
you learned in Chapters 9 and 10 on the analysis of variance. These procedures 
include the analysis of covariance, multivariate analysis of variance, and multivari-
ate analysis of covariance. Finally, we consider what to do when you read a research 
article that uses a statistical technique you have never heard about.

The General Linear Model
More than 90% of the studies published in a typical year in the major social psy-
chology journals use t tests, analysis of variance, correlation, or multiple regression 
(Reis & Stiller, 1992). This figure probably applies about equally well to all areas 
of psychology. By now you may have noticed many similarities among these four 
methods and the other statistical techniques that you have learned in this book. In 
fact, the techniques are even more closely related than you might have realized: 
many of them are simply mathematically equivalent variations of each other, and 
most of them can be derived from the same general formula. This is because there is 
a central logic behind all these methods based on a general formula that mathemati-
cal statisticians call the general linear model.

So let’s focus on the Big Four (t tests, analysis of variance, correlation, and 
multiple regression), which are all special cases of the general linear model and 
therefore systematically related. Perhaps in the process, many of your intuitions 
about what you’ve learned will emerge into the light.

To put it all briefly, the most general technique is multiple regression (Chapter 12), 
of which bivariate correlation and prediction (Chapters 11 and 12) are special cases. 
At the same time, the analysis of variance (Chapters 9 and 10) is also a special case 
of multiple regression. Finally, the t test (Chapters 7 and 8) can be derived directly 
from either bivariate correlation/prediction or the analysis of variance. Figure 15-1 
shows these relationships.

general linear model general formula 
that is the basis of most of the statistical 
methods covered in this text; describes 
a score as the sum of a constant, the 
weighted influence of several variables, 
and error.

T I P  F O R  S U C C E S S
We provide a fuller introduction 
to the general linear model in 
Web Chapter W4, available at 
www.pearsonhighered.com/aron 
(and also at www.mystatlab.com 
for MyStatLab users). The Web 
Chapter also uses the general 
linear model as a platform for a 
broad review of the entire book.

General

Bivariate
prediction/
correlation

Multiple regression

Analysis of
variance

t testSpecialized

Figure 15-1 The relationships among the four major statistical techniques.

www.pearsonhighered.com/aron
www.mystatlab.com
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When we say that one procedure is a special case of another, we mean that it 
can be derived from the formula for the other. Thus, when using the more specialized 
procedures, you get the same result as if you had used the more general procedure. To 
put this in more concrete terms, if you were going to a desert island to do psychology 
research and could take only one computer program with you to do statistical tests, 
you would want to choose multiple regression. With that one program, you could 
accomplish all of what is done by more specialized programs for bivariate correlation, 
t tests, and analyses of variance. (To give a concrete example, if you were to do a one-
way analysis of variance for just two groups, you would get the same result—in terms 
of statistical significance—as doing a t test for independent means for the two groups.)

One way of expressing the general linear model is as a mathematical rela-
tion between a criterion variable and one or more predictor variables. The general  
linear model is very closely related to multiple regression. As a reminder, here is 
the multiple regression linear prediction rule (shown for three predictor variables) 
you learned in Chapter 12: Yn = a + 1b121X12 + 1b221X22 + 1b321X32. In this for-
mula, Yn is the predicted score on the criterion variable; a is the regression constant; 
b1, b2, and b3 are the regression coefficients for the first, second, and third predictor 
variables, respectively; and X1, X2, and X3 are the person’s scores on the first, sec-
ond, and third predictor variables, respectively.

The principle of the general linear model is that any person’s score on a particu-
lar criterion variable is the sum of several influences:

 1. Some fixed influence that is the same for all individuals, such as the nature of 
the testing procedure.

 2. Influences of variables you have measured on which people vary, such as 
amount of sleep the night before, how well one slept, and number of dreams.

 3. Other influences that vary among individuals but are not or cannot be measured—
this is what makes error.

Influence 1 corresponds to the regression constant (a) in the multiple regres-
sion linear prediction rule. Influence 2 corresponds to all of the b and X pairs—1b121X12, 1b221X22, and so forth—in a multiple regression linear prediction rule. 
Influence 3 is about the errors in prediction. (If there were a perfect, 1.00, multiple 
correlation, there would be no error and thus no Influence 3.) Thus, the general lin-
ear model can be stated in symbols as follows:

 Y = a + 1b121X 12 + 1b221X 22 + 1b321X 32 + g +  e (15-1)

In this formula, Y is a person’s actual score on some criterion variable; a is the fixed 
influence that applies to all individuals (Influence 1); b1 is the degree of influence of 
the first predictor variable (Influence 2) (it is the regression coefficient, which you 
then multiply by the person’s score on the first predictor variable, X1); b2, b3, and so 
forth are the influences of predictor variables 2, 3, and so forth (these are also part 
of Influence 2). Again, e is the error, the sum of all other influences (Influence 3) 
on the person’s score on Y. That is, e is what is left over after everything else has 
been taken into account in making the prediction. The formula for the general linear 
model is also summarized in Table 15-1.

Notice that this formula is nearly identical to that for multiple regression, with 
two exceptions. First, instead of having the predicted Y value 1Yn2 on the left, you 
have the actual value of Y. Second, it includes an error term (e). This is because 
the formula is for the actual value of Y and because a and b values ordinarily don’t 
predict perfectly. The error term (e) is added to account for the discrepancy from a 
perfect prediction of Y.

A person’s actual score on 
the criterion variable is the 
regression constant, plus the 
regression coefficient for 
the first predictor variable 
multiplied by the person’s 
score on the first predictor 
variable, plus the regression 
coefficient for the second 
predictor multiplied by the 
person’s score on the second 
predictor variable, plus the 
regression coefficient for 
the third predictor variable 
multiplied by the person’s 
score on the third predictor 
variable, plus any additional 
regression coefficients 
multiplied by any additional 
scores on predictor variables, 
plus error.
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Thus, the general linear model is a statement of the influences that make up an 
individual’s score on a particular variable. It is called a linear model because if you 
graphed the relationship between the criterion and predictor variables, the pattern 
would be a straight line (just as the regression line is a straight line in regression). 
That is, the relationship would be constant in the sense of not being curvilinear. In 
mathematical terms, the equation is said to be linear because there are no squared 
(or higher power) terms.1

You learned in Chapter 12 that multiple regression (and bivariate prediction) 
uses a least-squares criterion. This means that the a (regression constant) and b 
(regression coefficient) values of the multiple regression linear prediction rule for 
a particular criterion variable are figured in such a way as to create the smallest 
amount of squared error. Since multiple regression is virtually the same as the gen-
eral linear model, you may not be surprised to learn that the general linear model is 
also based on a least-squares criterion.

How the Big Four Are Special Cases  
of the General Linear Model
We noted earlier that the main methods you have learned in this book are each a 
“special case” of the general linear model, in the sense that the formula for each can 
be derived from the general linear method formula (see Figure 15-1). We also just 
saw that multiple regression is basically the same thing as the general linear model. 
Thus, in practice, what we mean by “special case” for bivariate prediction and cor-
relation, t test, and analysis of variance is that these procedures can all be done using 
multiple regression.

How is bivariate prediction a special case of multiple regression? Bivariate pre-
diction is just the situation of multiple regression in which there is only one predic-
tor variable. We saw in Chapter 12 that regression and correlation are basically the 
same thing (how much X predicts Y is exactly the same as how much X and Y are 
correlated). Thus, because bivariate prediction is a special case of multiple regres-
sion, so is bivariate correlation.

In a quite similar way, as we noted briefly earlier, the t test is a special case 
of the analysis of variance. An analysis of variance with two groups gives you 
exactly the same significance level as a t test comparing those two groups. This is 
because the underlying mathematics are the same. That is, if you start with the for-
mulas for an analysis of variance with just two groups, with some algebra you can 
turn this into the formulas for the t test.

What often seems particularly obscure is how the analysis of variance or the  
t test can be a special case of regression. After all, the analysis of variance and the 
t test are about differences between groups; regression is about predicting a criterion 

Table 15-1 Summary of the General Linear Model

Verbal Description Formula Symbol

Person’s actual score on the criterion variable Y

Some fixed influence a

Influences of the measured variables 1b121X12, 1b221X22, 1b321X32c
Other influences that have not been measured (error) e

Formula for the general linear model: Y = a + 1b121X12 + 1b221X22 + 1b321X32 + g
+ e
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variable from a predictor variable. To get the basic idea, let us consider how the  
t test is similar to bivariate prediction (regression). The t test compares two groups 
of scores on a measured variable. The measured variable is like a criterion variable 
in bivariate prediction (you want to know the effect on it). The distinction between 
the two groups in a t test is like the predictor variable in bivariate prediction. So 
you can think of a t test as being about whether there is any association between 
the variable that divides the group (for example, being in an experimental versus 
a control group) and the measured variable. The trick in understanding how this 
logic works is this: for the t test, you have to think of which group a person is in as 
a variable itself. We might call this variable group, and we could give one value on 
this variable to everyone in one of the groups (say, give a score of 1 on this group 
variable to everyone in the experimental group) and a different value to everyone 
in the other group (say, give a score of 2 on this group variable to everyone in 
the control group). We can now run a bivariate regression predicting the measured 
variable from the group variable. The significance of this regression will be exactly 
the same as the significance of the t test. The logic is that saying two groups are 
different on some measured variable is the same as saying that which group a per-
son is in predicts the person’s score on the measured variable. The exact equiva-
lence of the two methods works because the underlying mathematics are the same. 
That is, if you start with the formulas for bivariate prediction, with some algebra 
you can turn them into the formulas for the t test. We have summarized the relation 
between bivariate prediction (regression) and the t test in Table 15-2.

In Web Chapter W4 (available at www.pearsonhighered.com/aron and also 
at www.mystatlab.com for MyStatLab users), we go into the logic of the various 
“special case” ideas in some detail, including illustrating these ideas with concrete 
examples that highlight the practical links among the figuring of the different pro-
cedures (and also including an explanation of just how analysis of variance is a spe-
cial case of multiple regression). Studying this Web Chapter will much deepen your 
understanding of what you have learned in this book. It will also provide a quite 
thorough review of the main ideas.

Table 15-2 Relation Between Bivariate Prediction (Regression) and t Test

Bivariate Prediction t Test

Variable 1 Predictor variable Variable that divides the groups

Variable 2 Criterion variable Measured variable

Relation tested High scores on predictor go with high scores 
on criterion

Those in one group on the variable 
that divides the group have higher 
scores on the measured variable.

How are you doing?

 1. (a) What does it mean for a procedure to be a “special case” of another 
procedure? (b) Describe which procedures are special cases of which.

 2. Write the formula for the general linear model and define each of the symbols.
 3. How is the general linear model different from multiple regression? (b) Why?
 4. How is the t test a special case of analysis of variance?
 5. How is the t test a special case of bivariate prediction?

www.pearsonhighered.com/aron
www.mystatlab.com
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Answers

 1. (a) The special case can be mathematically derived from the other procedure; 
it is mathematically identical except that it applies in a more limited set of 
situations.

 (b) t test is a special case of analysis of variance and of bivariate correlation; 
analyses of variance and bivariate correlation (and bivariate prediction) are 
special cases of multiple regression.

 2. Formula for the general linear model: Y = a + 1b121X12 + 1b221X22 +1b321X32 +
g

+ e; Y is a person’s actual score on some criterion vari-
able; a is the fixed influence that applies to all individuals; b1, b2, and b3 are 
the degrees of influence of the first, second, and third predictor variables, 
respectively; X1, X2, and X3 are the person’s scores on the first, second, and 
third predictor variables, respectively; “. . . ” is for any additional influences 
and scores on predictor variables (b4, X4, and so on); and e is the error, the 
sum of all other influences on the person’s score on Y.

 3. (a) The general linear model is for the actual (not the predicted) score on the 
criterion variable, and it includes a term for error. (b) To predict the actual 
score, you have to take into account that there will be error.

 4. Analysis of variance focuses on the difference among two or more groups on 
a measured variable. The t test focuses on the difference between two groups 
on a measured variable. For a situation with two groups, the significance level 
from a t test is exactly the same as for the analysis of variance. Also, you can 
derive the t test formulas from the analysis of variance formulas.

 5. You can turn into a variable the group that a person is in (giving people in 
one group one score, and those in the other group a different score). Then 
you can use prediction (the regression formula) to predict the measured vari-
able from this group variable. Being able to predict a person’s score on a 
variable from which group they are in is the same thing as the two groups 
having different means on the variable. The significance you get for prediction 
is exactly the same as for the t test. This is because you can derive the t test 
formulas from the prediction formulas.

One of the most widely used advanced statistics books 
is Using Multivariate Statistics, now in its sixth edition, 
by Barbara Tabachnick and Linda Fidell (2012), two 
experimental psychologists at California State Univer-
sity at Northridge. These two met at a faculty luncheon 
soon after Tabachnick was hired. Fidell recalls that she 
had just finished a course on French and one on matrix 
algebra, for the pleasure of learning them (“I was very 
serious at the time”). She was wondering what to tackle 

next when Tabachnick suggested that Fidell join her in 
taking a belly dancing course. Fidell thought, “Some-
thing frivolous for a change.” Little did she know.

Thus, their collaboration began. After the lessons, 
they had long discussions about statistics. In particu-
lar, the two found that they shared a fascination—and 
consternation—with the latest statistics made possible 
through all the new statistical packages for computers. 
The problem was making sense of the results.

BOX 15-1 Two Women Make a Point About Gender and Statistics
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Partial Correlation
Partial correlation is widely used in personality, social, developmental, clinical, 
and various applied areas of psychology. Partial correlation is the amount of asso-
ciation between two variables, over and above the influence of one or more other 
variables. Suppose a researcher wants to know how the stress people experience in 
married life is related to how long they have been married. However, the researcher 
realizes that part of what might make marital stress and marriage length go together 
is whether couples have children. Having children or not could make stress and 
length go together, because those married longer are more likely to have children 
and having children may create marital stress. Thus, simply figuring the correlation 
between marital stress and marriage length would be misleading. The researcher 
wants to know what the relation between stress and marriage length would be if 
everyone had the same number of children. Or, to put it another way, the researcher 
wants somehow to subtract out the influence of number of children from the relation 
between marital stress and length.

In this example, the researcher would figure a partial correlation between mari-
tal stress and length of marriage, partialing out the number of children. Partialing 
out a variable is also called holding constant, controlling for, or adjusting for the 
variable held constant (such as number of children). These terms (partialing out, 
holding constant, etc.) all mean the same thing and are used interchangeably. The 

partial correlation the amount of 
association between two variables, over 
and above the influence of one or more 
other variables.

partialing out removing the influence 
of a variable from the association 
between other variables.

Fidell described it this way:

I had this enormous data set to analyze, and out came lots 
of pretty numbers in nice neat little columns, but I was 
not sure what all of it meant, or even whether my data 
had violated any critical assumptions. I knew there were 
some, but I didn’t know anything about them. That was 
in 1975. I had been trained at the University of Michigan; 
I knew statistics up through the analysis of variance. But 
none of us were taught the multivariate analysis of vari-
ance at that time. Then along came these statistical pack-
ages to do it. But how to comprehend them?

Both Fidell and Tabachnick had gone out and learned 
on their own, taking the necessary courses, reading, and 
asking others who knew the programs better, trying out 
what would happen if they did this with the data, what 
would happen if they did that. Now the two women 
asked each other, “Why must this be so hard? Were oth-
ers reinventing this same wheel at the very same time?” 
They decided to put their wheel into a book.

“And so began years of conflict-free collabora-
tion,” reports Fidell. (That is something to compare to 
the feuds recounted in other boxes in this book.) The 
authors had no trouble finding a publisher, and the book, 
now in its sixth edition (Tabachnick & Fidell, 2012),  
has sold “nicely.” (This despite the fact that their  

preferred titles—Fatima and Scheherazade’s Multivari-
ate Statistics Book: A Thousand and One Variables; The 
Fuzzy Pink Statistics Book; Weight Loss Through Mul-
tivariate Statistics—were overruled by the publisher. 
However, if you looked closely at the first edition’s 
cover, you saw a belly dancer buried in the design.)

Fidell emphasizes that both she and Tabachnick 
consider themselves data analysts and teachers, not sta-
tistics developers or theorists; they have not invented 
methods, merely popularized them by making them 
more accessible. But they can name dozens of women 
who have risen to the fore as theoretical statisticians. 
In Fidell’s opinion, statistics is a field in which women 
seem particularly to excel and feel comfortable. In 
teaching new students, the math-shy ones in particular, 
she finds that once she can “get them to relax,” they 
often find that they thoroughly enjoy statistics. She tells 
them, “I intend to win you over. And if you will give me 
half a chance, I will do it.”

Whatever the reason, statistics is a branch of math-
ematics that, according to Fidell, women often come to 
find “perfectly logical, perfectly reasonable—and then, 
with time, something they can truly enjoy.” That should 
be good news to many of you.

Source: Personal interview with Linda Fidell.

T I P  F O R  S U C C E S S
In this chapter, you learn the basics 
of several advanced statistical 
procedures. Before applying any 
of these to your own research, 
we recommend that you take 
more advanced statistics courses. 
Indeed, until you have fully 
mastered any advanced method 
you use (including fine points like 
additional assumptions that are 
often involved), you should also 
consult with someone (such as a 
faculty mentor) who really knows 
the ins and outs of carrying out and 
interpreting the procedure.
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actual statistic for partial correlation is called the partial correlation coefficient. 
Like an ordinary correlation coefficient, it goes from -1 to +1. Just remember that, 
unlike an ordinary correlation, one or more variables is being controlled for.

Here is another way to understand partial correlations. In the marriage example, 
you could figure the ordinary correlation between stress and marriage length using 
only people who have no children, then figure an ordinary correlation between stress 
and marriage length for only those with one child, and so on. Each of these correla-
tions, by itself, is not affected by differences in the number of children (because the 
people included in any one of these correlations all have the same number of chil-
dren). You could then figure a kind of average of these various correlations, each of 
which is not affected by number of children. This average of these correlations is the 
partial correlation. It is literally a correlation that holds constant the number of chil-
dren. (The figuring for a partial correlation is fairly straightforward, and you do not 
actually have to figure all these individual correlations and average them. However, 
the result amounts to doing this.)

Here is an example from an actual study. Joiner and colleagues (2005) intro-
duced their study as follows:

Past suicidal behavior is related to future suicidal behavior. But is the relation mean-
ingful (i.e., nonspurious), perhaps even causal, or is it fully accounted for by a set  
of third variables, such as enduring predispositions or various clinical conditions 
(e.g., mood disorders)? A full understanding of suicidal behavior hinges on this  
question. (p. 291)

The participants were 297 young adults who took part in a study testing the 
effectiveness of a treatment for suicidal individuals. Here is part of the results sec-
tion of the research article:

Controlling for age, gender, marital status, and ethnicity, family history of suicide, 
depression, bipolar disorder, and alcohol abuse, personal history of legal troubles 
as an adult and as a juvenile, current and past diagnoses of depression and bipo-
lar disorder, and scores on indices of depression hopelessness, and problem-solving 
difficulties, borderline personality symptoms, drug dependence symptoms, alcohol 
dependence symptoms, and negative life events, the correlation between lifetime his-
tory of suicide attempts and . . . suicide scores [current suicidal symptoms] went from 
.24 to .20 1ps 6 .052. (p. 294)

This study is an example of how researchers often use partial correlation to help 
sort out alternative explanations for the relations among variables. In this example, 
the correlation between past suicide attempts and current suicidal symptoms held 
up, even after controlling for many other variables that might explain the correla-
tion. This result is reflected in the title of the research study: “Four Studies on How 
Past and Current Suicidality Relate Even When ‘Everything But the Kitchen Sink’ 
Is Covaried.” As another example, if a correlation between marital stress and marital 
length holds up, even after controlling for the number of children, an alternative 
explanation about children is made unlikely.

Reliability
The kinds of measures used in psychology research, such as questionnaires, system-
atic observation of behavior, physiological changes, and the like, are rarely perfectly 
consistent or stable over time. (We discussed this briefly in Chapter 11.) The degree 
of consistency or stability of a measure is called its reliability. Roughly speaking, 

partial correlation coefficient 
measure of the degree of correlation 
between two variables, over and above 
the influence of one or more other 
variables.

reliability degree of consistency or 
stability of a measure.
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the reliability of a measure is how much you would get the same result if you were 
to give the same measure again to the same person under the same circumstances. 
You will very often see reliability statistics in psychology research articles.

One way to assess a measure’s reliability is to use the measure with the same 
group of people twice. The correlation between the two testings is called test-retest 
reliability. However, this approach often is not practical or appropriate. For exam-
ple, you can’t use this approach if taking a test once would influence the second tak-
ing (such as with an intelligence test).

For many measures, such as most questionnaires, you can also assess their reli-
ability by correlating the average of the answers to half the questions with the aver-
age of the answers to the other half. For example, you could correlate the average 
score on all the odd-numbered questions with the average score on all the even-
numbered questions. If the person is answering consistently, this should be a high 
correlation. This is called split-half reliability.

A problem with the split-half method is deciding which way to split the halves. 
Using odd-versus-even items makes sense in most situations, but by chance it could 
give too low or too high a correlation. Fortunately, there is a more general solution. 
You can divide the measure into halves in all possible ways and figure the correla-
tion using each division, then average all these split-half correlations. A statistic 
called Cronbach’s alpha 1�2, the most widely used measure of reliability, gives you 
what amounts to this average. Cronbach’s alpha also can be thought of as telling you 
the overall internal consistency of the measure, how much high responses go with 
highs and lows with lows over all the items in the measure. Thus, Cronbach’s alpha 
is a measure of what is called the internal consistency reliability of a measure: the 
extent to which the items of a measure assess a common characteristic. In general, 
in psychology, a good measure should have a Cronbach’s alpha of at least .60 and 
preferably closer to .90.

Finally, in some research, the main measures are observations of behavior or 
coding of material written or spoken by participants. In these situations, there are 
often two or more raters of each participant’s behavior or material, so that reliability 
is the similarity of the ratings between raters. This is called interrater reliability. (It 
is also called interjudge reliability, interrater agreement, or interjudge agreement.)

Reliabilities are nearly always discussed when a research article is mainly about 
the creation of a new measure. For example, Valk and colleagues (2001) developed 
a measure of disability in elderly nursing home residents. The test, which is filled 
out by staff about residents, initially included 26 items that assessed seven domains 
of functioning, such as Mobility (sample item, “Is the resident able to walk?”) and 
Alertness (sample item, “Does the resident react if somebody speaks to him/her?”). 
They tested out their measure with 115 poorly functioning residents of Dutch nurs-
ing homes, with an average age of 81.5. For 111 of the residents, ratings were made 
by two different raters. All residents were assessed a second time a week later. Here 
is the reliability discussion from their results section:

. . . Cronbach’s alpha[s] . . . were obtained on each of the scales (lowest: Perception 
0.54; highest: Mobility, 0.93). Table [15-3] presents the mean scores, SD, median, 
and Cronbach’s alpha of the domains. The test-retest reliability was good to excel-
lent; see Table [15-4]. Correlation coefficients [across the two testings for each scale] 
ranged from 0.63 to 0.94. Interrater reliability for the scales Cognition, Incontinence,  
Mobility, and ADL was high (0.79 to 0.93), and moderate for Resistance to  
Nursing Assistance (0.51). Perception showed very low interrater reliability 0.33  
(see Table [15-5]). (p. 188)

test-retest reliability one index of a 
measure’s reliability, obtained by giving 
the test to a group of people twice; 
correlation between scores from the two 
testings.

split-half reliability one index of 
a measure’s reliability, based on a 
correlation of the scores of items from 
two halves of the test.

Cronbach’s alpha 1�2 widely used 
measure of a test’s internal consistency 
reliability that reflects the average of the 
split-half correlations from all possible 
splits into halves of the items on the test.

internal consistency reliability 
extent to which the items of a measure 
assess a common characteristic; usually 
measured using Cronbach’s alpha.

interrater reliability similarity of 
ratings by two or more raters of each 
participant’s behavior or spoken or 
written material.
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Looking at the tables, you can see, for example, that Alertness, with six items, 
has a Cronbach’s alpha of .84, a test-retest reliability (labeled “Reproducibility of 
the Questionnaire: After One Week”) of .85, and an interrater reliability of .71.2 
Thus, this scale has good reliability. On the other hand, consider Perception, which 
had two items. Here the reliabilities were .54, .76, and .33. Thus, the researchers 
dropped this domain (and its two items) from the scale, making the final scale 24 
items assessing six domains. Incidentally, you may have noticed from the notes at 
the bottom of the tables that the test-retest and interrater reliability were figured 
using the Spearman correlation. This is the rank-order correlation method we dis-
cussed in Chapter 11. Valk and colleagues used this kind of correlation because the 
items used rank-order measurement. Ordinarily, however, these kinds of reliabilities 
are figured using ordinary correlation coefficients. (You may also see other meth-
ods, particularly for interrater reliability. For example, where a scale is categorical, 
such as a certain behavior being either present or absent, you may see a method 
called Cohen’s kappa, also measured on a scale from 0 to 1.)

Multilevel Modeling
Regression (and correlation), whether bivariate or multiple, is about situations in 
which the individuals are not grouped in any particular way. However, the situation 
is more complicated when the participants in a study are grouped in some way. For 
example, suppose you are interested in how much the number of hours one spends 
studying for a statistics final exam predicts one’s score on the exam. And suppose 
you have surveyed students in a dozen different statistics classes about their time 
studying for the final and found out the final exam score for each student. The prob-
lem is that things could be quite different in different courses. For example, in one 
course, the final exam might be the only test in the course; so, to get a good score, 
you would need to do many, many hours of studying. But in another course, there 
might have been many small tests and the final is not even cumulative but only on 
the last part of the course. In that class, many fewer hours of studying might lead to 
a good score. Also, different instructors might score the test more strictly or more 
leniently and might have very different difficulties of tests. Thus, if you were to run 
a regression using all the students and ignoring what class they were in, you might 
get a very misleading result. Too much mixing of apples and oranges.

An alternative solution would be to carry out the regression separately for  
each of the dozen courses (in each course, find the regression coefficient for hours 

Table 15-3 Domains: Means, Standard Deviations, Cronbach’s Alpha, and Range

Scale n Items Mean Median SD Cronbach’s Alpha Range

Incontinence 112 4 70.1 81.2 32.5 .88 0–8

Mobility 112 3 48.6 40 35.8 .93 0–10

Resistance 111 1 53.1 66.6 41.0 — 0–3

Alertness 111 6 30.8 27.7 22.0 .84 0–18

Cognition 112 7 69.3 72.7 28.9 .78 0–11

ADL 96 3 75.9 87.5 31.4 .90 0–8

Perception 88 2 .30 0 0.65 .54 0–4

Source: Valk, M., Post, M. W. M., Cools, H. J. M., & Shrijvers, G. A. J. P. (2001). Measuring disability in nursing home residents; 
Validity and reliability of a newly developed instrument. Journal of Gerontology: Psychological Sciences, 56B, 187–191. 
Copyright © The Gerontological Society of America. Reproduced by permission of the publisher.

Table 15-4 Reproducibility 

of the Questionnaire: After One Week

Scale Correlation

Cognition 0.89

Mobility 0.94

ADL 0.90

Alertness 0.85

Incontinence 0.89

Resistance 0.63

Perception 0.76

Note: Spearman correlation coefficients, p 6 .001.
Source: Valk, M., Post, M. W. M., Cools, H. J. M., & 
Shrijvers, G. A. J. P. (2001). Measuring disability 
in nursing home residents: Validity and reliability 
of a newly developed instrument. Journal of 
Gerontology: Psychological Sciences, 56B, 
187–191. Copyright © The Gerontological 
Society of America. Reproduced by permission 
of the publisher.

Table 15-5 Interrater 

Reliability of the Questionnaire

Scale Correlation

Cognition 0.79

Mobility 0.93

ADL 0.80

Alertness 0.71

Incontinence 0.88

Resistance 0.51

Perception 0.33

Note: Spearman correlation coefficients, p 6 .001.
Source: Valk, M., Post, M. W. M., Cools, H. J. M., & 
Shrijvers, G. A. J. P. (2001). Measuring disability 
in nursing home residents: Validity and reliability 
of a newly developed instrument. Journal of 
Gerontology: Psychological Sciences, 56B, 
187–191. Copyright © The Gerontological 
Society of America. Reproduced by permission 
of the publisher.
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studying predicting exam score), then average the regression coefficients across the 
different courses. This method would be much more accurate. (What you are doing 
here is like a partial correlation in which you are correlating the two lower-level vari-
ables, partialing out which group they are in.) In fact, with this method, you could 
even go further. You could see whether something like the experience of the teacher 
predicted test scores. Thus, you could run a regression analysis across the 12 class-
rooms to see if instructors’ experience predicted average test scores in their classes. 
(That is, you would do a regression for the 12 classrooms with teacher experience as 
the predictor variable and each course’s average test score as the criterion variable.)

The kind of analysis we just described is called multilevel modeling. The 
multiple levels in this case are a lower level (or micro-level or level 1), which is 
the individual students, and an upper level (or macro level or level 2), which is the 
course. Thus, the lower-level variables in the preceding example are study time and 
final test score. These lower-level variables are the variables for the people within 
each grouping. In this example there is also an upper-level variable, teacher experi-
ence. Upper-level variables are ones that are about each grouping as a whole (in this 
example, each course had many students, but just one instructor per course).

What used to be the standard procedure for a multilevel modeling situation 
(a research situation in which people are grouped in some way that could affect 
the pattern of scores) was what we described above: First, figure a regression in 
each grouping, then average the results across the groupings. Second, if there are 
upper-level variables (group level variables, like instructor’s experience), do a fur-
ther regression at the grouping level in which you predict from the upper-level vari-
able, the average of each group’s score on the criterion variable. This specific fairly 
straightforward analysis procedure (called slopes as outcomes), which used to be 
standard, has been replaced today by more sophisticated methods.

The more sophisticated methods take all the information at once, at all levels, 
and figure a slightly more accurate result. Even more important in practice than the 
added accuracy, these more recent sophisticated methods are also able to handle more 
complex research situations. Indeed, the existence of these new methods, along with 
the availability of user-friendly programs to carry them out, has led to a huge number 
of studies in recent years that could be analyzed only with multilevel modeling.

These new methods are widely used and have various names. The most common 
name is probably hierarchical linear modeling (HLM), after a widely used mul-
tilevel modeling computer program. Another common name is random coefficients 
modeling (a term having to do with technical aspects of how this procedure works).

These newer methods also use many special terms and symbols. However, you 
can understand the basic idea of the results of most studies using multilevel model-
ing by thinking about them using the logic of the old-fashioned, standard approach. 
That is, to make sense of a lower-level result using these more sophisticated meth-
ods, just think in terms of doing a regression analysis in each group and averaging 
those results across the groups. To make sense of a result involving an upper-level 
variable, think in terms of doing a regression using the upper-level variable to pre-
dict the average score in each grouping on the criterion variable.

Here is an example. Hutchison and Gibler (2007) used multilevel modeling to 
examine questions about political tolerance based on a worldwide survey of 17,977 
respondents across 33 countries. Specifically, they were interested in whether vari-
ous factors predicted political tolerance. In this survey, to measure political toler-
ance, the survey would “first ask respondents to select their least-liked group from 
a list of unpopular groups, and then ask . . . whether the respondent thinks the group 
should be allowed to publicly demonstrate [or] hold political office” (p. 133). There 
were two kinds of factors the researchers thought might predict tolerance. One kind 

multilevel modeling advanced type 
of regression analysis that handles a 
research situation in which people are 
grouped in some way that could affect 
the pattern of scores.

lower-level variable in multilevel 
modeling, a variable that is about people 
within each grouping.

upper-level variable in multilevel 
modeling, a variable that is about the 
grouping as a whole.

hierarchical linear modeling (HLM) 
sophisticated type of multilevel modeling 
that handles a research situation in which 
people are grouped in some way that 
could affect the pattern of scores.
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of factor was the individual respondent’s values and attitudes. Notice that both the 
criterion variable (political tolerance) and these predictor variables (individuals’ 
values and attitudes) are lower-level variables, measured at the individual level. The 
researchers were also interested, however, in the influence of the situation in differ-
ent countries, such as whether a country was currently involved in various kinds of 
international disputes. The country-level variables are upper-level variables. That is, 
in this study, individuals are grouped by country, and country would clearly seem to 
matter in relation to the things being studied.

With regard to the lower-level predictors, Hutchison and Gibler (2007) wrote 
that “the results of our multilevel political tolerance models . . . [show that] individual- 
level predictors [of] . . . democratic ideals, free speech priority, democratic activism, 
and education are all strongly and positively associated with political tolerance, while 
conformity and age both tend to decrease tolerant responses” (p. 136). They then 
go on to report that they next “add the macrolevel [upper-level] component . . . to 
estimate the effects of external threat on political tolerance” (p. 136). They then 
report “a strong, negative relationship between disputes over territory and political 
tolerance . . . and no significant relationship with nonterritorial disputes” (p. 136). In 
other words, people living in countries facing threats about borders are much more 
intolerant than those in other countries. However, those living in countries facing 
other kinds of international disputes are not particularly more likely to be politically 
intolerant.3

Factor Analysis
Suppose you have measured a group of people on a large number of variables. (For 
example, you might have done a survey with questions about many different atti-
tudes.) You use factor analysis to tell you which variables tend to clump together—
which ones tend to be correlated with each other and not with other variables. Each 
such clump (group of variables) is called a factor. The correlation of an individual 
variable with a factor is called that variable’s factor loading on that factor. Vari-
ables have loadings on each factor but usually have high loadings on only one. Fac-
tor loadings range from -1, a perfect negative correlation with the factor, through 
0, no relation to the factor, to +1, a perfect positive correlation with the factor. 
Normally, psychology researchers consider a variable to contribute meaningfully to 
a factor only if it has a loading at least above .30 (or below - .30).

The factor analysis is done by computer based on a fairly complex set of formu-
las that begin with the correlations among all the variables and end up with a set of 
factor loadings. (It also provides other information, including how much each fac-
tor accounts for of the total amount of variation among the variables.) There are, in 
fact, several somewhat different approaches to factor analysis. Thus, the researcher 
has some leeway and can select from a variety of methods, each of which may give 
slightly different results.

However, the most subjective part of the process is the name the researcher gives 
to a factor. When reading about a factor analysis in a research article, think closely 
about the name the researcher gives to each factor. Does the name of a factor really do 
a good job of describing what the variables have in common that make up the factor?

Here is an example of a factor analysis from organizational psychology. Koslowsky 
and colleagues (2001) gave 232 nurses in Israeli hospitals the following instructions:

Think about a time when you were being supervised in doing some task. Suppose 
your supervisor asked you to do your job somewhat differently and, though you were 
initially reluctant, you did exactly what you were asked.
 On the following pages there are a number of reasons why you might have done 
so. . . . Decide how likely it would be that you complied for this reason. (p. 461)

factor analysis statistical procedure 
applied in situations where many 
variables are measured and that 
identifies groups of variables that tend 
to be correlated with each other and not 
with other variables.

factor in factor analysis, group of 
variables that tend to correlate with each 
other and not with other variables.

factor loading in factor analysis, 
correlation of a variable with a factor.
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The nurses responded on a 7-point scale from 1, “definitely not a reason,” to 7,  
“definitely a reason,” to items relating to 11 power sources, such as coercion or 
providing information. As part of their study, the researchers carried out a factor 
analysis of the 11 power sources. They reported the following results: “The analy-
sis yielded a two-factor solution [see Table 15-6]. The first factor, which explained 
41.9 percent of the variance, included seven power sources [see Table 15-6]. . . . The 
second factor, which explained 15.5 percent of the variance, included four power 
bases [see Table 15-6]” (pp. 465–466).

For example, Impersonal Coercion was included in the first factor because it 
had a high loading (.81) on this factor, but only a small loading 1- .172 on the sec-
ond factor. Expertise, on the other hand, was included in the second factor because 
it had a high loading on this factor (.78) but only a small loading (.16) on the first 
factor. Notice, however, that some items were not so clearly part of one factor or the 
other, such as Legitimate Position, which had a loading of .53 on the first factor and 
.45 on the second. This makes sense, since having a legitimate right to use power 
is somewhere between the harshness of such things as coercion and the softness 
of persuading by providing information. Also notice that the names the research-
ers chose to give to the factors seem reasonable in light of the variables included 
in them, though it is always possible that other researchers might see the variables 
in each factor as having a different overall meaning. Finally, notice that at the bot-
tom of the table they also give the internal consistency (alpha), by which they mean 
Cronbach’s alpha for the items in each factor (that is, the ones with high loadings on 
a factor) if you were to think of them as a scale. (In fact, based on this factor analy-
sis, the researchers went on to use the items in the two factors as two scales, which 
they then related to other variables such as the nurse’s job satisfaction.)

Table 15-6 Factor Analysis Loadings for the Eleven Power Sources

Loadings

Power Sources by Factor Factor 1 Factor 2

Harsh power bases

Impersonal coercion 0.81 -0.17

Impersonal reward 0.80 0.05

Personal reward 0.78 0.31

Legitimate reciprocity 0.71 0.26

Personal coercion 0.66 0.32

Legitimate equity 0.61 0.17

Legitimate position 0.53 0.45

Soft power tactics

Expertise 0.16 0.78

Information -0.17 0.76

Reference 0.34 0.70

Legitimate dependence 0.36 0.56

Explained variance (%) 41.9 15.5

Internal consistency (alpha) 0.85 0.79

Source: Koslowsky, M., Schwarzwald, J., & Ashuri, S. (2001). On the relationship between subordinates’ compliance to 
power sources and organizational attitudes. Applied Psychology: An International Review, 50, 455–476. Copyright © 2001 
by Blackwell Publishing. Reprinted by permission of Blackwell Publishers Journals.
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How are you doing?

 1. (a) What is partial correlation? (b) What does it mean if a partial correlation is 
less than the original correlation? (c) What does it mean if a partial correlation 
is about the same as the original correlation? (d) How can partial correlation 
help sort out direction of causality in a correlational study?

 2. (a) What is the reliability of a measure? (b), (c), and (d) List and define 
three kinds of reliability. (e) How does Cronbach’s alpha relate to split-half 
reliability?

 3. In the Valk and colleagues (2001) example of reliability (see Tables 15-3, 15-4, 
and 15-5), (a) indicate which is the most reliable scale, and (b), (c), and  
(d) give its reliabilities.

 4. Under what conditions would you use multilevel modeling?
 5. An organizational psychologist conducts a study of sales people in 38 

department stores (with about 150 salespeople per store and with the 
stores varying from “big box” discount stores to exclusive high-end stores). 
The researcher plans to conduct a multilevel modeling analysis to find out 
whether length of time working at a store predicts job satisfaction, and also 
whether people working at stores with more prestige are more satisfied.  
(a) What are the lower-level variables? (b) What is the upper-level variable?  
(c) and (d) Describe the two steps you would use to carry out the analysis 
using the old-fashioned standard method.

 6. (a) When do you use a factor analysis? (b) What information does it give you? 
(c) What is a factor? (d) What is a factor loading? (e) What is the most subjec-
tive part of factor analysis?

 7. In the Koslowsky and colleagues (2001) example of factor analysis (see 
Table 15-6), what are personal reward’s loadings on each factor?

Answers

 1. (a) Partial correlation is the correlation of two variables controlling for one or 
more other variables. (b) When a partial correlation is less than the original cor-
relation, the one or more variables controlled for account for some of the asso-
ciation between the original two variables. (c) When a partial correlation is about 
the same as the original correlation, the variable, or variables, controlled for do 
not account for the association between the original two variables. (d) A partial 
correlation helps test whether the correlation might be due to one or more other 
variables causing the association between the original two variables.

 2. (a) The reliability of a measure refers to its consistency and stability. (b) Test-
retest reliability, which is how much the measure gives the same results when 
taken twice by the same people. (c) Internal consistency reliability, which is 
how much the different parts of the measure give similar results. (d) Inter-
rater reliability, which is how much different raters give the same results.  
(e) Cronbach’s alpha is like the average of the correlations between all  
possible pairs of halves of the measure.

 3. (a) Mobility; (b) internal consistency reliability (Cronbach’s alpha) = .93; (c) test-
retest reliability (Spearman’s correlation coefficient) = .94; (d) interrater reli-
ability (Spearman’s correlation coefficient) = .93.

 4. You would use multilevel modeling when the scores of people tested are 
grouped in some way that would affect results.
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Causal Modeling
As with factor analysis, you use causal modeling when you have measured people 
on a number of variables. Unlike factor analysis, the goal of causal modeling is to 
test whether the pattern of correlations among the variables in a sample fits with 
some specific theory about which variables are causing which.

Causal modeling methods are widely used in psychology. We first intro-
duce the older (but still common) method of path analysis, often called ordinary 
path analysis. We then describe a specific type of path analysis called mediational 
analysis. Finally, we describe an elaborate method of causal modeling, called 
structural equation modeling (which is also a kind of path analysis).

Path Analysis
In path analysis, you make a diagram with arrows connecting the variables. Each 
arrow, or path, shows what the researcher predicts to be the cause-and-effect connec-
tions between variables. Then, based on the correlations of these variables in a sam-
ple and the path diagram predicted by the researcher, you can figure path coefficients 
for each path. The path coefficient is like a standardized regression coefficient 1�2 in 
multiple regression. In fact, if the path diagram is a correct description of the causal 
relationship among the variables, the path coefficient tells you how much of a standard 
deviation change on the variable at the end of the arrow is produced by a one standard 
deviation change in the predictor variable at the start of the arrow. (Also note that a path 
coefficient is like a partial correlation in that it is figured so that it partials out the influ-
ence of any other variables that have arrows to the variable at the end of the same arrow.)

Here is an example. Williamson and her colleagues (2001) studied 98 wives 
and 44 husbands who were caring for an elderly spouse living at home who was 
impaired in some way, such as with Alzheimer’s disease. The research was test-
ing a theory about what causes and what averts potentially harmful behavior by the 
caregiver toward the partner. Figure 15-2 shows their predicted pattern of cause-
and-effect relationships (along with the path coefficients figured from their results) 
among these different variables. For example, the arrows in the path diagram tell 
you that Caregiver Age is predicted to affect ADL (activities of daily living), which 

path analysis method of analyzing the 
correlations among a group of variables 
in terms of a predicted pattern of causal 
relations; usually the predicted pattern is 
diagrammed as a pattern of arrows from 
causes to effects.

path an arrow in a path analysis or 
structural equation model that shows 
what the researcher predicts to be the 
cause-and-effect connections between 
variables.

path coefficient degree of relation 
associated with an arrow in a path 
analysis (including in structural equation 
modeling); same as a standardized 
regression coefficient from a multiple 
regression prediction rule in which the 
variable at the end of the arrow is  
the criterion variable and the variable 
at the start of the arrow is the predictor, 
along with all the other variables that have 
arrows leading to that criterion variable.

 5. (a) The lower-level variables are length of time working in the store and job 
satisfaction. (b) The upper-level variable is the prestige of the store. (c) Figure 
a regression, among the employees at each store, in which you predict job 
satisfaction from length of time working in the store, then average the regres-
sion coefficients. (d) Figure a regression, across the 38 stores, predicting a 
store’s average level of job satisfaction from the store’s prestige.

 6. (a) You use a factor analysis when you have many measures of a group of 
people. (b) Factor analysis tells you the groupings of variables that are highly 
correlated with each other but not very correlated with variables in other 
groupings. (c) A factor is one of these groupings. (d) Factor loading is the 
correlation of a variable with a factor. (e) The most subjective part of factor 
analysis is deciding what to name a factor based on the variables with high 
loadings on it.

 7. The personal rewards loadings are .78 on the first factor and .31 on the sec-
ond factor.
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in turn is not predicted to affect any other variables in the model (that is, there are no 
arrows from ADL to other variables). However, Caregiver Age is also predicted to 
affect the degree of Care Recipient Dementia, which is one of the predicted causes 
of Current Relationship Rewards, which in turn is predicted to affect Potentially 
Harmful Behavior in two ways: (1) indirectly through Caregiver Depression—high 
levels of rewards leading to less depression, which then reduces the likelihood of 
Potentially Harmful Behavior—and (2) directly, with high levels of rewards directly 
reducing the likelihood of Potentially Harmful Behavior. This path diagram lays out 
predictions based on a rich and complex theory.

Based on the correlations among these variables in their sample of caregivers, the 
path coefficients show the direction and degree of the predicted effects. The asterisks 
show the level of significance for a path. As is often done in ordinary path analyses, 
the researchers actually tested other possible paths, but included in the diagram only 
paths that were significant. (Thus, all paths in the model have at least one asterisk.)

Mediational Analysis
As you will see shortly, path analysis as we have just described it (“ordinary path analy-
sis”) has largely given way to a more elaborate version, called structural equation mod-
eling. However, there is one contemporary application of ordinary path analysis that 
is very widely used in psychology, mediational analysis. Mediational analysis is a 

mediational analysis particular type 
of path analysis that tests whether a 
presumed causal relationship between 
two variables is due to some particular 
intervening variable (called a mediator 
variable).

Caregiver
Education
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Care
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Relationship
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Care
Recipient
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Current
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Rewards

Caregiver Depression

Potentially Harmful Behavior

Figure 15-2 Significant pathways emerging in path analyses predicting potentially 
harmful caregiver behavior. ADL = activities of daily living.

*p 6 .05, **p 6 .01, ***p 6 .001.

Source: Williamson, G. M., Shaffer, D. R., & The Family Relationships in Late Life Project (2001). 
Relationships quality and potentially harmful behaviors by spousal caregivers: How we were then, how 
we are now. Psychology and Aging, 16, 217–226. Published by the American Psychological Association, 
Reprinted with permission.
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procedure that you use to examine whether a presumed causal relationship between two 
variables, say, X and Y, is due to some particular intervening variable, which we will call 
M. (M stands for mediator variable, which is another name for an intervening variable, 
a variable that explains the presumed causal relationship between two other variables.)

For example, imagine that a researcher shows that, when a woman is reminded of 
being a woman when taking a math test, she does worse and that this is because being 
reminded of being a woman when taking a math test makes her aware of the stereo-
type that women do worse in math (and thus she gets tense and does poorly). In this 
example, we are considering being reminded one is a woman as X (the cause), perfor-
mance on the math test as Y (the effect), and salience of the stereotype that women do 
poorly in math as M (the mediator, variable). Figure 15-3 shows this predicted pattern 
as a path analysis. That is, the logic is that M is part of a causal path from X to Y, it 
“mediates” the effect of X on Y. In scientific research it is extremely important to iden-
tify underlying causes; so mediational analysis has become very widely used.

The four most common statistical techniques were cre-
ated by four Englishmen born within 68 years of each 
other, three of whom worked in the vicinity of London. 
(The fourth, Gosset, stuck at his brewery in Dublin, nev-
ertheless visited London to study and kept in good touch 
with all that was happening in that city.) Clearly, their 
closeness and communication were important for creat-
ing the “critical mass” of minds sometimes associated 
with a golden age of discovery.

As is often the case with important discoveries, each 
man faced difficult practical problems or “anomalies” 
that pushed him to the solution at which he arrived—none 
simply set out to invent a statistical method in itself. Gal-
ton (Chapter 11, Box 11-1) was interested in the charac-
teristics of parents and children, and Pearson (Chapter 13,
Box 13-1) in measuring the fit between a set of observa-
tions and a theoretical curve. Gosset’s (Chapter 7, Box 7-1) 
problem was small samples caused by the economics of 
the brewery industry, and Fisher (Chapter 9, Box 9-1) 

was studying the effects of manure on potatoes. (Age was 
not a factor—the age when these four made their major 
contributions ranged from 31 to 66.)

There were also three important social factors specific 
to this “golden age of statistics.” First, there was biomet-
rics, which was attempting to test the theory of evolution 
mathematically. Biometrics had its influence through  
Galton’s reading of Darwin and Galton’s subsequent influ-
ence on Pearson. Second, this period saw the beginning 
of mass hiring by industry and agriculture of university 
graduates with advanced mathematical training. Third, 
since the time of Newton, Cambridge University had been 
a special, centralized source of brilliant mathematicians 
for England. They could spread out through British indus-
try and still, through their common alma mater, remain  
in contact with students and with each other and be  
conversant with the most recent breakthroughs.

Sources: Tankard (1984); Wright (2009).

BOX 15-2 The Golden Age of Statistics: Four Guys Around London

Sir Francis Galton  
(Corbis/Bettmann)

Sir Ronald Fisher  
(Courtesy of the Library of  
Congress)

Karl Pearson  
(Topham/The Image Works)

William S. Gosset  
(The Granger Collection)
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Mediational analysis was introduced to most psychologists over 25 years ago in 
a famous paper by Robert Baron and David Kenny (1986). In that paper they spelled 
out four steps for establishing mediation:

 Step 1: Show that X significantly predicts Y. If X does not predict Y, then it is unlikely 
X is a cause of Y. Thus, there would be no causal relationship to mediate.

Step 2: Show that X significantly predicts M. If X does not predict M, then it is un-
likely X is a cause of M. Thus, M could not be part of a causal path from X to Y.

Step 3: Show that M predicts Y in the context of a multiple regression in which X is 
also included as a predictor. It is important that M predicts Y, or M cannot be 
part of a causal path from X to Y. It is important to include X as a predictor so 
we can be sure that the association of M and Y is not due to their being both 
caused by X (but not causing each other).

Step 4: Show that, when M is included as a predictor of Y (along with X), X no longer 
predicts Y. That is, there is no unique prediction of X to Y when M is taken into 
account; the original significant prediction drops to nonsignificance when M 
is included. Such a result is said to be consistent with M “fully mediating” the 
effect of X on Y. Whether or not there is significant mediation can be tested 
with a procedure called Sobel’s test. If the original significant prediction by X 
remains significant, but is weaker (as shown by a drop in its standardized re-
gression coefficient) when M is included as a predictor of Y, this result is usu-
ally described as M “partially mediating” the effect of X on Y. This means that 
M explains some, but not all, of the effect of X on Y. (Some researchers are 
also beginning to use computer-intensive methods [see Chapter 14], such as 
bootstrapping, to test the statistical significance of mediation [MacKinnon  
et al., 2007]. There are also exceptions to the Baron and Kenny rules, in which 
there can be mediation without meeting all four conditions. For a wonderful 
discussion of mediation and its methods and exceptions, see David Kenny’s 
Web site: http://davidakenny.net/cm/mediate.htm.)

Here is an example. Fraley and Aron (2004) conducted an experiment in which 
pairs of strangers met under conditions in which they were doing something either 
humorous or not very humorous and found that those in the humor condition felt 
much closer to their partners afterward. Fraley and Aron, however, also wanted to 
show that this result was mediated in part by the humor distracting people from 
the discomfort of the initial meeting of a stranger. Thus they included a measure of 
distraction from discomfort in their study and conducted a mediational analysis. It 
is typical in mediation analysis for a research article to describe the analysis logic in 
some detail. Here is what Fraley and Aron wrote:

The tests of . . . the mediation hypotheses . . . followed the logic outlined by Baron 
and Kenny (1986). That is, first we tested for whether the preconditions for media-
tion were satisfied: (a) that the overall effect of the distal cause (humor of the interac-
tion) on the dependent [criterion] variable (closeness) was significant and (b) that 
the overall effect of the distal cause (humor) on the hypothesized mediator was sig-
nificant. Next we tested the mediation by examining a regression equation predicting  
the dependent [criterion] variable (closeness) from both the distal cause (humor) and the 

Being reminded
one is a woman

X

Salience of women's
poor math stereotype

M

Performance on
the math test

Y

Figure 15-3 Path analysis diagram showing a hypothesized mediational relationship 
(variable M mediating the effect of variable X on variable Y).

http://davidakenny.net/cm/mediate.htm
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mediator. In this analysis, partial mediation was considered as supported if (c) the me-
diator maintained a significant unique link with the dependent variable (closeness) but (d) 
the unique effect of the distal cause (humor) on the dependent variable (closeness) was  
reduced. Finally (e), the mediation should be significant using Sobel’s test. (2004, p. 70)

Here is how they described their results:

The basic effect is . . . mediated by distraction from the discomfort of the initial 
encounter. This hypothesis was supported. As shown in Figure [15-4] (compare 
model a to model c), including this variable in the regression equation reduced 
the beta for the experimental manipulation’s effect on closeness from .34 to .09; 
Z = 2.52, p 6 .01. (2004, pp. 70–71)

Note that figures of mediational analysis, such as Figure 15-4, show the variables in 
a triangle arrangement in order to show the change in the relationship between the X 
and Y variables after taking into account the M (mediator) variable. On a conceptual 
level, however, these figures show the same type of relationship as the mediational 
path analysis shown in Figure 15-3.

Structural Equation Modeling
Structural equation modeling is a special elaboration of ordinary path analysis. 
It also involves a path diagram with arrows between variables and path coeffi-
cients for each arrow. However, structural equation modeling has several important 
advantages over the older path analysis method. One major advantage is that struc-
tural equation modeling gives you an overall measure of the fit, called a fit index, 
between the theory (as described by the path diagram) and the correlations among 
the scores in your sample. There are several different fit indexes, but for most, a fit 

structural equation modeling 
sophisticated version of path analysis 
that includes paths with latent, 
unmeasured, theoretical variables  
and that also permits a kind of significance 
test and provides measures of the overall 
fit of the data to the hypothesized causal 
pattern.

fit index in structural equation 
modeling, measure of how well the 
pattern of correlations in a sample 
corresponds to the correlations that would 
be expected based on the hypothesized 
pattern of causes and effects among those 
variables; usually ranges from 0 to 1, with 
1 being a perfect fit.

.09

Humor
Condition

(a)

.34**
Closeness

Humor
Condition

(c) Closeness

Distraction
From Discomfort

.38** .66**

Figure 15-4 Results supporting hypothesized mediations of effect of a shared humor-
ous experience on closeness. Shown are path diagrams with standardized path coefficients 
for (a) the model for the overall (unmediated) effect of a humor condition on closeness, fol-
lowed by models including hypothesized mediators of . . . (c) distraction from discomfort. . . .  
Mediation is supported . . . by the significant paths to and from the mediator and also by the 
reduction to nonsignificance of the humor-closeness association . . . as compared to the unme-
diated model a. (Sobel tests supporting this interpretation are given in the text.)

Note: **p 6 .01.
Source: Fraley, B., & Aron, A. (2004). The effect of a shared humorous experience on closeness in 
initial encounters. Personal Relationships, 11, 61–78. Copyright © 2004 by Blackwell Publishing. 
Reprinted by permission of Blackwell Publishers Journals.
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of .90 or higher is considered a good fit. (The maximum is usually 1.00.) A widely 
used fit index that works a little differently is usually referred to by its abbreviation, 
RMSEA (root mean square error of approximation). The smaller the RMSEA, the 
better the fit. Fits below .05 are considered to be very good; below about .10, good. 
(Even though the RMSEA numbers are similar to those for significance tests, with 
smaller being better and .05 a typical cutoff, this is really only a coincidence.)

In structural equation modeling, you can also do a kind of significance test of 
the fit, using a special version of the chi-square statistic. We say a “kind of signifi-
cance test” because the null hypothesis is that the theory fits. Thus, a significant chi-
square result tells you that the theory does not fit. In other words, a researcher trying 
to demonstrate a theory hopes for a nonsignificant result in this significance test!

A second major advantage of structural equation modeling over ordinary path 
analysis is that it uses what are called latent variables. A latent variable is not actually 
measured, but stands for a true variable that you would like to measure but can only 
approximate with real-life measures. For example, a latent variable might be social 
class, which the researcher tries to approximate with several measured variables, such 
as level of income, years of education, prestige of occupation, and size of one’s home. 
No one of these measured variables by itself is a very good stand-in for social class.

In structural equation modeling, the mathematics is set up so that a latent vari-
able is a combination of the measured variables, combined in such a way as to use 
only what they have in common with each other. What they have in common is the 
true score, the underlying variable they are all getting at parts of. (A latent variable 
is actually like a factor in factor analysis, in that the factor is not directly measured 
itself, but it represents a combination of several variables that make it up.)

In a structural equation modeling path diagram, the variables that are measured 
are usually shown in boxes and the latent variables, in circles or ovals. This is shown 
in Figure 15-5. Notice in the figure that the arrows from the latent variables (shown 
in circles) go to the measured variables (shown in boxes). The idea is that the latent 
variable is the underlying cause of the measured variables, the measured variables 
being the best we can do to get at the true latent variable.

Also notice that all of the other arrows between variables are between latent 
variables. Structural equation modeling usually works in this way: the measured 

RMSEA widely used fit index in 
structural equation modeling; low values 
indicate a good fit.

latent variable in structural equation 
modeling, unmeasured variable assumed 
to be the underlying cause of several 
variables actually measured in the study.

Figure 15-5 A structural equation model path diagram.



638 Chapter 15

variables are used to make up latent variables, and the main focus of the analysis is 
on the causal relations (the paths) between the latent variables. (Notice, finally, the 
short arrows that seem to come from nowhere. These show that there is also error—
other unmeasured causes—affecting the variable. These error or disturbance arrows 
are sometimes left out in published articles to keep the figure simple.)

An Example of Structural Equation Modeling
This example is from a study by Senecal and her colleagues (2001). They explain that

The purpose of the present study was to propose and test a model of work-family 
conflict. . . . The model posits that positive interpersonal factors both at work (i.e., 
one’s employer) and at home (e.g., one’s spouse) influence work and family motiva-
tion. Moreover, the model proposes that low levels of self-determined family and 
work motivation both contributed to family alienation, which in turn influences the 
experience of work–family conflict. Finally, work–family conflict leads to feelings 
of emotional exhaustion. (p. 176)

The researchers measured the various variables in this model in a sample of 786 
French Canadians who were all working at least part-time, were living with a rela-
tionship partner, and had at least one child.

Figure 15-6 shows the diagram of their model and the path coefficients. Notice that 
each latent variable (shown in ovals) has two to four measured variables associated with 
it. For example, Feeling Valued by One’s Partner has three indicators (labeled V1, V2, 
and V3). The most important path coefficients are those between the latent variables. 
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Figure 15-6 Results of the hypothesized model.

Source: Senecal, C., Vallerand, R. J., & Guay, F. (2001). Antecedents and outcomes of work-family 
conflict: Toward a motivational model. Personality and Social Psychology Bulletin, 27, 176–186. 
Copyright © 2001 by Sage Publications, Ltd. Reprinted by permission of Sage Publications, Thousand 
Oaks, London, and New Delhi.
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For example, Feeling Valued by One’s Partner has a substantial path coefficient of .47  
leading to Motivation Toward Family Activities. This means that, if the path model cor-
rectly shows the patterns of causality, a 1 standard deviation increase in Feeling Valued 
causes .47 of a standard deviation increase in Motivation Toward Family Activities.

Having laid out the model and figured the path coefficients, the authors then 
tested the fit of the correlations in their sample to the overall model: “The adequacy 
of the model was assessed by structural equation modeling . . .” (p. 181). In addition 
to looking at specific path coefficients, Senecal and colleagues (2001) considered 
the overall fit of their model, noting that all hypothesized paths had significant coef-
ficients in the predicted direction and “the CFI = .94 and the NNFI = .93 [two fit 
indexes] were acceptable” (p. 182).

Some Limitations of Causal Modeling
It is important to realize how little magic there is behind these wonderful methods. 
They still rely entirely on a researcher’s deep thinking. All the predicted paths in a 
path analysis diagram can be significant and a structural equation model can have 
an excellent fit, and yet it is still quite possible that other patterns of causality could 
work equally well or better.

Alternatives could have arrows that go in the opposite direction or make differ-
ent connections, or the pattern could include additional variables not in the original 
diagram. Any kind of causal modeling shows at best that the correlations in the sam-
ple are consistent with the theory. The same correlations could also be consistent 
with quite different theories. Ideally, a researcher tries out reasonable alternative 
theories and finds that the correlations in the sample do not fit them well. Neverthe-
less, there can always be alternative theories the researcher did not think of to try.

In addition, causal modeling and all of the other techniques we have considered 
so far rely basically on correlations. Thus, they are all subject to the cautions we 
emphasized in Chapters 11 and 12. The most important caution is the one we just 
considered: correlation does not demonstrate direction of causality. Further, these 
techniques take only linear relationships directly into account. Finally, results are 
distorted (usually toward smaller path coefficients) if there is a restriction in range.

So don’t be bowled over by the mathematical sophistication of a technique such 
as structural equation modeling. It is useful—sometimes wonderfully useful—but 
if you haven’t used random assignment to groups, the direction of cause and effect 
cannot be determined beyond a reasonable doubt. If the underlying relationships 
are curvilinear, or if other limitations apply, such as restriction in range, the more 
sophisticated procedures are generally even more likely to give misleading results 
than simple bivariate correlations.

How are you doing?

 1. What is the purpose of causal modeling?
 2. (a) What is a path diagram? (b) What is a path? (c) What is a path coefficient? 

(d) In an ordinary path analysis, how do you evaluate whether there is a good 
fit of the model to the correlations in the sample?

 3. (a) What is mediational analysis? (b) List the four steps for establishing medi-
ation. (c) Explain the difference between a relationship that is fully mediated 
and one that is partially mediated.

 4. (a) What is a fit index? (b) What is considered a good fit on most fit indexes? 
(c) What is considered a very good fit on the RMSEA?
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 5. (a) What is a latent variable? (b) What is its relation to measured variables? 
(c) What is the usual direction of causality between a latent variable and its 
associated measured variables? (d) Why?

 6. (a) What is the meaning of a significance test of the overall fit in a structural 
equation model? (b) How is this different from an ordinary significance test?

 7. What are two major limitations of structural equation modeling?

Answers

 1. The purpose of causal modeling is to test whether the correlations in a sam-
ple are consistent with a predicted pattern of cause and effect among those 
variables (and also to figure the size of the relations among the variables 
given the predicted pattern and the correlations).

 2. (a) A path diagram is a drawing of the predicted causal relationships among 
variables, showing causality as arrows from cause to effect. (b) A path is a 
predicted causal relation between two variables, shown as an arrow from the 
predicted cause to the predicted effect. (c) The path coefficient is the size of 
the causal influence figured based on the correlations among the variables 
in the sample and assuming the predicted relations in the path diagram are 
correct. Assuming the pattern of the path diagram is correct, it tells you the 
fraction of a standard deviation change in the effect variable produced by a  
1 standard deviation change in the causal variable. (d) You check whether the 
path coefficients are all in the predicted direction and significant.

 3. (a) Mediational analysis is a procedure that tests whether a presumed causal 
relationship between two variables is due to some intervening (or mediating) 
variable. (b) Step 1: Show that variable X significantly predicts variable Y. Step 2:
Show that X significantly predicts variable M. Step 3: Show that M predicts Y in 
the context of a multiple regression in which X is also included as a predictor. 
Step 4: Show that, when M is included, along with X, as a predictor of Y, X no 
longer predicts Y. (c) The relationship between variable X and Y is fully mediated 
if a mediator variable M explains all of the effect of X on Y. The relationship is 
partially mediated if M explains some, but not all, of the effect of X on Y.

 4. (a) A fit index is a number that tells you how well the predicted pattern of 
cause and effect in the path diagram is consistent with the correlations in the 
sample. (b) A good fit on most fit indexes is .90 or higher. (c) A very good fit 
on the RMSEA is below .05.

 5. (a) A latent variable is a variable that is not directly measured, but that stands 
for the true value of the concept the variable is about. (b) A latent variable 
represents what a group of measured variables have in common. (c) The 
usual direction of causality between a latent variable and its associated mea-
sured variables is from latent variable to measured variables. (d) The underly-
ing latent variable is the cause of the observed, measured variables.

 6. (a) The significance test for the overall fit in a structural equation model is a 
test of the null hypothesis that the correlations in the sample are consistent 
with the predicted model shown in the path diagram. (b) A significant result 
means there is a bad fit.

 7. First, no matter how good the fit, you can never know if there might be some 
other model that would fit equally well. Second, it is based on correlations 
and thus has all their limitations (such as not giving conclusive support for a 
particular direction of causality, being based entirely on linear relationships 
and being distorted by restriction in range).
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Procedures That Compare Groups
So far in this chapter, we have looked at statistical procedures about associations 
among variables, essentially fancy elaborations of correlation and regression. Now 
we turn to procedures that focus on differences among group means, essentially 
fancy elaborations of the analysis of variance (Chapters 9 and 10).

In such procedures, there are two main kinds of variables. One is the kind that 
divides the groups from each other, such as experimental versus control group in 
a t test or the different groups in an analysis of variance (such as the Chapters 9 
and 10 criminal record study example, which compared participants in the Criminal 
Record group, the Clean Record group, and the No Information group). A variable 
like this, especially when which group a person is in is based on the researcher’s 
having randomly assigned participants to conditions, is called an independent 
variable. In a two-way factorial analysis of variance, there are actually two indepen-
dent variables—for example, sensitivity (not high versus high) and test difficulty (easy 
versus hard) in the Aron and colleagues (2005) study we considered in Chapter 10.

The other kind of variable in a study that compares groups is the variable that is 
measured. In the criminal record example (from Chapter 9), it was ratings of inno-
cence; in the Aron and colleagues (2005) study, it was individuals’ reported level of 
negative mood. A variable like this, which is measured and represents the effect of 
the experimental procedure, is called a dependent variable. It is dependent in the 
sense that any participant’s score on this variable depends on what happens in the 
experiment.

Note that an independent variable in a t test or analysis of variance is like a 
predictor variable in regression, and a dependent variable in a t test or analysis of 
variance is like the criterion variable in regression. Often, in fact, when discussing 
regression results, even in formal research articles, researchers use the independent 
and dependent variable terminology instead of the predictor and criterion variable 
terminology. But it is rare for researchers doing a t test or analysis of variance to use 
the predictor and criterion variable terminology.

We did not need to introduce these terms (independent and dependent vari-
ables) before because the situations we considered were relatively straightforward. 
However, it would be difficult to understand the remaining procedures covered in 
this chapter without knowing about the difference between them.

Analysis of Covariance (ANCOVA)
One of the most widely used elaborations of the analysis of variance is the analysis 
of covariance (ANCOVA). In this procedure, you do an ordinary analysis of vari-
ance, but one which adjusts the dependent variable for the effect of unwanted addi-
tional variables. The analysis of covariance does for the analysis of variance what 
partial correlation does for ordinary correlation. Each of the variables controlled for 
(or “partialed out” or “held constant”) is called a covariate. The rest of the results 
are interpreted like any other analysis of variance, with one main exception: when 
reporting results, instead of giving the means of each group, the researcher may give 
the adjusted means, the means of each group after adjusting (partialing out) the 
effect of the covariates.

Here is an example. Aron and colleagues (2000) had married couples come to 
their laboratory and participate in what they thought was an evaluation session in 
which they completed some questionnaires about the quality of their relationship, 
participated in a task together where they thought they were being observed for how 
they worked together during the task, and then completed some more questionnaires 

independent variable variable 
considered to be a cause, such as what 
group a person is in for a t test or 
analysis of variance.

dependent variable variable 
considered to be an effect; usually a 
measured variable.

analysis of covariance (ANCOVA) 
analysis of variance that controls for 
the effect of one or more additional 
variables.

covariate variable controlled for in an 
analysis of covariance.

adjusted mean mean of a group after 
adjusting for (partialing out) the effect of 
a covariate in analysis of covariance.
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about their relationship. Actually, the first set of questionnaires was a pretest, the 
second set a posttest, and the task was experimentally manipulated so that some 
couples were randomly assigned to do a task together that was novel and physiologi-
cally arousing: they were tied together at the wrist and ankles and then had to push 
a foam cylinder back and forth across a 30-foot gym mat, including going over a 
3-foot barrier in the middle, without using their hands or teeth, trying to beat a time 
limit. Other couples were randomly assigned to do a more mundane task; they sim-
ply went back and forth across the mat.

Based on a theoretical model, the researchers predicted that “shared participa-
tion in the novel-arousing activities, compared with shared participation in mundane 
activities, increases experienced relationship quality” (p. 279). They then went on to 
describe their statistical analysis and results:

To test this hypothesis, we conducted an analysis of covariance (ANCOVA) compar-
ing the two experimental groups on couple average posttest experienced relationship 
quality with couple average pretest relationship quality (and relationship length) as 
a covariate. . . . [The hypothesis] was clearly supported, F11, 242 = 6.07, p 6 .05, 
partial r [a measure of effect size] = .45. The adjusted means on the posttest expe-
rienced relationship quality index . . . were .30 for the novel-arousing-activity group 
and - .35 for the mundane-activity group. (pp. 279–280)

Notice that there were two covariates. First, the researchers wanted to look at 
change; so they compared posttest scores but adjusted them for pretest scores by 
making pretest scores a covariate. In addition, they wanted to be sure their results 
were not affected by differences in length of relationship; so they made length of 
relationship a second covariate. These are, in fact, the two main situations in which 
researchers use analysis of covariance. One is when they want to study change and 
they make the pretest measure a covariate. The other is when there are nuisance 
variables whose influence they want to hold constant. (The practical implication 
of this research, which has now been found in several independent studies [e.g.,  
Graham, 2008; Tsapelas et al., 2009], is that couples who have been together awhile 
can keep their relationship lively by regularly doing things together that are chal-
lenging and novel.)

Multivariate Analysis of Variance (MANOVA) and 
Multivariate Analysis of Covariance (MANCOVA)
In all of the procedures discussed so far in this book, there has been only one depen-
dent variable. There may have been two or more independent variables, as in the 
factorial analysis of variance, but there has been only one dependent variable.

In this section we introduce multivariate statistics, which are procedures that 
can have more than one dependent variable. We will focus on the two most widely 
used multivariate procedures, multivariate versions of the analysis of variance and 
covariance.4

Multivariate analysis of variance (MANOVA) is an analysis of variance 
in which there is more than one dependent variable. Usually, the dependent vari-
ables are different measures of approximately the same thing, such as three dif-
ferent political involvement scales or two different reading ability tests. Suppose 
you study three groups and measure each participant on four dependent variables. 
The MANOVA would give an overall F and significance level for the difference 
among the three groups, in terms of how much they differ on the combination of 
the four dependent variables. The overall F is figured differently from an ordinary 

multivariate statistics statistical 
procedures involving more than one 
dependent variable.

multivariate analysis of variance 
(MANOVA) analysis of variance with 
more than one dependent variable.



 The General Linear Model and Making Sense of Advanced Statistical Procedures in Research Articles   643

analysis of variance. In fact, there are several slightly different ways of figuring 
it, but the most common method is based on what is called Wilks’ lambda, though 
you may also see other methods mentioned in computer outputs and research arti-
cles. However, it is still an F and it is interpreted in the same basic way; signifi-
cance means you can reject the null hypothesis of no difference among groups in 
the population.

When you do find an overall significant difference among groups with 
MANOVA, this says that the groups differ on the combination of dependent vari-
ables. You then would want to know whether the groups differ on any or all of 
the dependent variables considered individually. Thus, you usually follow up a 
MANOVA with an ordinary analysis of variance for each of the dependent vari-
ables. These individual analyses of variance are called univariate analyses of vari-
ance (as opposed to the overall multivariate analysis), because each has only one 
dependent variable.

An Example
Frydenberg and colleagues (2003) studied differences in how Australian, Colombian, 
German, and Palestinian adolescents cope with their problems. The researchers 
looked at three types of coping: “productive coping,” which involves focusing on 
the problem; “nonproductive coping,” which involves avoiding the problem; and 
“reference to others,” in which a person asks other people for help. They described 
their results as follows:

To consider the influence of Nationality on coping style, a MANOVA was com-
pleted using the 3 coping styles as dependent variables and Nationality as the inde-
pendent variable. . . . The results show a significant multivariate effect for Nationality 
1F19, 16922 = 47.99; p 6 .0012. (p. 63)

Having identified an overall difference in coping style among the adolescents from 
the different countries, the researchers then wanted to sort out effects on specific 
dependent variables. The results of the follow-up univariate ANOVAs indicated 
that: “All univariate tests were significant” (p. 63). For example, in one analysis, the 
researchers reported that “. . . Palestinians used this [productive coping] style more 
than did other students. Australian and Colombian subjects, while not differing in 
their mean use of this style, used it more than German subjects” (p. 63).

Multivariate Analysis of Covariance
An analysis of covariance in which there is more than one dependent variable is called 
a multivariate analysis of covariance (MANCOVA). The difference between it and 
an ordinary analysis of covariance is just like the difference between a MANOVA and 
an ordinary analysis of variance. Also, you can think of a MANCOVA as a MANOVA 
with covariates (variables adjusted for).

Overview of Statistical Techniques
Table 15-7 lays out the various procedures considered in this chapter, along with 
the other parametric procedures covered throughout the book. Just to prove to your-
self how much you have learned, you might cover the right-hand column and play 
“Name That Statistic.”

multivariate analysis of covariance 
(MANCOVA) analysis of covariance 
with more than one dependent variable.
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Table 15-7 Major Statistical Techniques

Association  
or  

Difference

Number of  
Independent or  

Predictor Variables

Number of  
Dependent or  

Criterion Variables

Any  
Variables  

Controlled?
Name of  
Technique

Association 1 1 No Bivariate correlation/
regression

Association Any number 1 No Multiple regression

Association Any number (and scores 
grouped in some way)

1 May be Multilevel modeling

Association 1 1 Yes Partial correlation

Association Many, not differentiated No Reliability coefficients, 
Factor analysis

Association Many, with specified causal patterns Path analysis, Structural 
equation modeling

Difference 1 1 No One-way ANOVA, t test

Difference Any number 1 No Factorial ANOVA

Difference Any number 1 Yes ANCOVA

Difference Any number Any number No MANOVA

Difference Any number Any number Yes MANCOVA

How are you doing?

 1. In a t test or analysis of variance, (a) what is the independent variable, and 
(b) what is the dependent variable? (c) How do independent and dependent 
variables match up with criterion and predictor variables?

 2. (a) What is an analysis of covariance? (b) How is it like partial correlation? 
(c) What is a covariate? (d) What are the two most common types of covariates?

 3. How are multivariate statistics unlike all of the procedures covered previously 
in this book?

 4. (a) What is multivariate analysis of variance, and how does it differ from 
an ordinary analysis of variance? (b) After finding a significant effect in a 
MANOVA, what is the usual next step? (c) What is multivariate analysis of 
covariance, and how does it differ from an ordinary analysis of covariance?

 5. What method would you use if you had more than one independent variable, 
only one dependent variable, and one or more covariates?

Answers

 1. (a) The independent variable is the variable that divides the groups. (b) The 
dependent variable is the variable that is measured. (c) The independent vari-
able is like the predictor variable; the dependent variable is like the criterion 
variable.

 2. (a) An analysis of covariance is an analysis of variance that controls for (or 
adjusts for or partials out) one or more variables. (b) An analysis of covariance 
is like partial correlation in that it finds results after controlling for another 
variable. (c) A covariate is the variable that is controlled for (or adjusted for 
or partialed out). (d) The two most common types of covariates are variables 
measured at pretest and nuisance variables that add unwanted variation to 
the analysis.

 3. Multivariate statistics can have more than one dependent variable.
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Controversy: Should Statistics Be Controversial?
Most statistics books, this one included, teach you statistical methods in a fairly 
cut-and-dried way, almost as if imparting absolute truth. But we have also tried 
to mess up this tidy picture with our discussions of controversies. Usually, this 
is thought to confuse students. (Although, when you learned other fields of  
psychology, your understanding was built, we hope, from the presentation of  
controversy: this person’s research demonstrated one thing, but this other person’s 
study showed a flaw, while that one’s student showed that this was an exception, 
and so forth.) So, in this last section on controversy, we are going to try to mess 
things up even more!

In Box 15-3, we describe the historical development of today’s statistics out of 
a hybrid of two views, known as the Fisher and the Neyman-Pearson approaches. 
This wedding was supposed to end the feud as to which was the better method, but 
in fact, although most psychologists are content with this hybrid, others, such as 
Gigerenzer and his associates (Gigerenzer & Murray, 1987; Gigerenzer et al., 1989; 
Sedlmeier & Gigerenzer, 1989), are not at all content. Neither are Jacob Cohen 
(1990) and Robert Rosenthal (e.g., Rosnow & Rosenthal, 1989), two psychologists 
very well-known for their contributions to statistical techniques and whose work on 
topics such as power, effect size, the null hypothesis, meta-analysis, and other topics 
we have mentioned throughout the book.

Gigerenzer and Murray (1987) argue that the viewpoints of Fisher and of Pearson 
and Neyman—which to these early statisticians themselves were always funda-
mentally contradictory—have been misunderstood and misused as a result of being 
blended. The marriage was entirely one of convenience, with little thought given 
to long-term effects. Gigerenzer and Murray regard the hybrid as the result of so 
many of the first statistics textbooks having been written under the influence of the 
dogmatic and persuasive Sir Ronald Fisher (recall Box 9-1). But then, after World 
War II, the Pearson-Neyman view became known and had to be integrated without 
admitting that the original texts could have been wrong. (The desire was to present 
psychology as a science, having as its basis a unified, mechanical, flawless method 
of decision making.)

The result of all of this, Gigerenzer and Murray claim, is a neglect of contro-
versy and of alternative approaches, and statistics textbooks “filled with conceptual 
confusion, ambiguity, and errors” (p. 23). Further, they argue that these dominant 
statistical methods, which were originally only tools, are now shaping the way  
psychologists view human cognition and perception itself (recall Box 10-1).

More generally, the current hot debates about significance tests, including the 
renewed interest in Bayesian methods, we considered in Chapters 4, 5, and 6 are 
part of this larger trend of reopening the long-buried controversies.

 4. (a) A multivariate analysis of variance is an analysis of variance with more than 
one dependent variable. (b) After finding a significant effect in a MANOVA, 
you carry out a series of univariate analyses of variance, that is, individual 
analyses of variance for each dependent variable. (c) A multivariate analysis 
of covariance is an analysis of covariance with more than one dependent 
variable.

 5. If you had more than one independent variable, only one dependent variable, 
and one or more covariates, you would use analysis of covariance.
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Let’s take a final look at the history of statistical methods  
in psychology, adding some tidbits of interest. We told 
you in Box 9-1 that Sir Ronald Fisher more or less 
invented the experimental method as it is now employed; 
that he was a difficult man to get along with; and that 
Fisher and another great British statistician, Karl Pearson, 
were particular enemies.

Well, Pearson had a son, Egon, who worked at his 
father’s Galton Laboratory at University College, London. 
In 1925, the young Egon formed a lasting friendship 
with Jerzy Neyman, a youthful lecturer at the University 
of Warsaw who had just arrived at the Galton Labora-
tory. In the next years, the two worked very closely.

In 1933, Karl Pearson retired. Ironically, Fisher was 
given Pearson’s old position as head of the department 
of eugenics, originally founded by Galton. And because 
of the feud between Fisher and the senior Pearson, a new 
department of statistics was created to smooth the retir-
ing bird’s feathers, to be headed by Pearson’s son, Egon.

As hard as Pearson and his friend Neyman claim 
to have tried to avoid the continuation of the old feud 
between Sir Ronald and the senior Pearson, it was soon 
as bitter as ever. The work of Neyman and the younger 
Pearson was actually more supportive of Fisher’s ideas 
than of Pearson Senior’s, but their extensions of Fisher’s 
approaches, intended to be friendly, infuriated the 
cranky Sir Ronald.

There is more of interest about Neyman. He immi-
grated to the United States when Hitler invaded Poland,  
starting the statistics program at the University of  
California, Berkeley, where he remained until his death 
in 1981. He is especially remembered for his bringing 
David Blackwell, an African-American statistician, out 
of obscurity, because he had been unable to get a job due 
to his race. Neyman was also remembered for his after-
noon department teas, ending with a toast to the “ladies,” 
referring to the many women present, whose careers he 
also encouraged, leading to many prominent women 
statisticians.

Until Fisher died in 1962, however, Neyman was 
under constant attack from Fisher. Fisher had rejected 
what is called Bayesian theory, a whole approach to sta-
tistics, which holds the position that scientific research 
is conducted to adjust preexisting beliefs in the light  
of new evidence as it is collected (see Chapter 4 con-
troversy section). Fisher held that research is carried out 
mainly by objectively disproving the null hypothesis, 

not by testing prior probabilities arrived at subjectively. 
Fisher was exceptionally dogmatic about his ideas, refer-
ring to his approach as “absolutely rigorous” and the 
only case of “unequivocal inference.” Fisher had a great 
mind, wrote a huge amount, and became very influential 
throughout the world.

Pearson and Neyman also rejected Bayesian theory, 
but they proposed the method of testing two oppos-
ing hypotheses rather than just the null hypothesis. As 
a result of this innovation, there would be two types of 
errors. Type I errors would be when the null hypothesis 
is rejected even though it is true (and they called its prob-
ability alpha, or the level of significance—does all this 
sound familiar?). Type II errors would be when the null 
hypothesis was not rejected even though it is false (and 
the probability of that error was beta—again familiar?). 
Which type of error you preferred to minimize depended 
on the impact of each on your purposes, because  
Neyman and Pearson were frequently thinking in terms 
of applied research. Fisher never talked about any 
hypothesis but the null and therefore never considered 
Type II errors.

Now you can see what happened: statistics today is a 
hybrid of Fisher’s ideas, with Pearson’s and Neyman’s 
added when they could no longer be ignored. It was a 
wedding none of them would have probably approved of, 
for both camps eventually came to see their approaches 
as fundamentally in opposition. Fisher compared Neyman 
and Pearson to the stereotype of the Soviets of his day in 
their determination to reduce science to technology “in 
the comprehensive organized effort of a five-year plan 
for the nation” and remarked sarcastically after Neyman  
gave a talk before the Royal Statistical Society in  
London that Neyman should have chosen a topic “on 
which he could speak with authority.” Neyman, for his 
part, stated that Fisher’s methods of testing were in a 
“mathematically specifiable sense worse than useless.” 
Ah, how rational.

As we have noted throughout these boxes, statistics 
is, for better and for worse, a product of human intellect 
and human passions operating together (ideally, for the 
sake of science, though the latter to a lesser extent). The 
results have not always been perfect, but they can be far 
more interesting than they might seem on the surface.

Sources: Peters (1987); Salsburg (2001); Stigler (1986); 
Tankard (1984).

BOX 15-3 The Forced Partnership of Fisher and Pearson
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As a last word on all this, we must say that the majority of psychologists and 
statisticians are fairly comfortable with the methods found in today’s textbooks. 
Time and careful thinking will tell whether this majority ought to be so complacent. 
But no one is going to figure it out for us. We will have to do it together. Therefore, 
we truly hope that, once you master the methods in this book, you will have the 
confidence to look further and not be content to continue applying these methods in 
a mindless, rote way 20 years from now. If you become a psychologist who either 
reads research or does it, then whatever else your interests, you must also be a good 
citizen within the larger discipline. Keep up at least a little with developments in 
methods of data analysis, accepting and even demanding change when it is war-
ranted. After all, if our tools become dated, what hope is there for our findings?

How to Read Results Using Unfamiliar  
Statistical Techniques
Based on this chapter and what you have learned throughout this book, you should 
be well prepared to read and understand, at least in a general way, the results in most 
psychology research articles. However, you will still now and then come up against 
new techniques (and sometimes unfamiliar names for old techniques). This happens 
even to seasoned researchers. So what do you do when you run into something you 
have never heard of before?

First, don’t panic! Usually, you can figure out the basic idea. Ask yourself if the 
technique may be related to one that you already know. Imagine you read the results 
section of a research article and the researchers state that they conducted a logistic 
regression (a technique that you have not learned about in this book). It is a good 
starting point if you assume that this technique, because it has the word “regression” 
in it, is probably somewhat similar to the kind of regression that you are famil-
iar with. By reading the rest of the results section and the others sections of the  
article, it may be possible for you to get a good sense of what kind of analysis the 
researchers used.

Almost always there will be a p level, and it should be clear just what pattern of 
results is being considered significant or not. In addition, there will usually be some 
indication of the degree of association or the size of the difference. If the statistic 
is about the association among some variables, it is probably stronger as the result 
gets closer to 1 and weaker as the result gets closer to 0. You should not expect to 
understand every word in a situation like this, but do try to grasp as much as you can 
about the meaning of the result.

Suppose you really can’t figure out anything about a statistical technique used 
in a research article. In that situation, you can try to look up the procedure in a sta-
tistics book. Intermediate and advanced textbooks are sometimes a good bet, but we 
have to warn you that trying to make sense of an intermediate or advanced statistics 
text on your own can be difficult. Many such texts are heavily mathematically ori-
ented. Even a quite accessible textbook will use its own set of symbols. Thus, it can 
be hard to make sense of a description of a particular method without having read 
the whole book. Perhaps a better solution in this situation is to ask for help from 
a professor or graduate student. If you know the basics as you have learned them 
in this book, you should be able to understand the essentials of their explanations. 
Table 15-8 summarizes the various approaches you can use when you come across 
results that use unfamiliar statistical techniques.

If you are often coming upon statistics you don’t understand, the best solution 
is to take more statistics courses. Usually, the next course after this one would be 

T I P  F O R  S U C C E S S
You might also try doing a search 
on the Internet for information 
about an unfamiliar statistical 
technique. However, as with 
textbooks, you may encounter 
difficulties with symbols and 
complex descriptions.

T I P  F O R  S U C C E S S
When faced with an unfamiliar 
statistical technique, focus on what 
you can understand about the 
technique. This may allow you to 
get the general idea of the result.
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 1. The general linear model is a statement of the influences that make up an 
individual’s score on a particular variable. The general linear model states that 
the value of a variable for any individual is the sum of a constant, plus the 
weighted influence of each of several other variables, plus error. Bivariate and 
multiple correlation and regression (and associated significance tests), the t test, 
and the analysis of variance are all special cases of the general linear model.

 2. Partial correlation is the correlation between two variables while holding one or 
more other variables constant.

 3. Reliability coefficients tell you how much scores on a test are internally consis-
tent (usually with Cronbach’s alpha), consistent over time (test-retest reliabil-
ity), or give comparable scores from different raters (interrater reliability).

 4. Multilevel modeling is used when scores are grouped in some way that matters for 
the scores, so that scores within each grouping are lower-level variables, scores 
for the grouping as a whole are upper-level variables. A traditional method for 
studying the relation between lower-level variables is to do a regression in each 
grouping and average the results; a next step might be to see if an upper-level 

Summary

an intermediate course that focuses mainly on analysis of variance and may go into 
multiple regression to some extent. You will find such a course particularly useful 
if you are planning to go to graduate school in psychology, where statistics will be 
a crucial tool in all the research you do. It will help prepare you for graduate school. 
Also, a strong performance in such a course is extremely impressive to those evalu-
ating applications to the top graduate programs. (It is also our experience that you 
are especially likely to enjoy the other students you meet in such a course. Those 
who take the intermediate statistics course in psychology are not all whizzes at sta-
tistics, but they are almost always highly motivated, bright students who will share 
your goals.) In fact, some people find statistics so fascinating that they choose to 
make a career of it. You might too!

More generally, new statistical methods are being invented constantly. Psychol-
ogists all encounter unfamiliar numbers and symbols in the research articles they 
read. They puzzle them out, and so will you. We say that with confidence because 
you have arrived, safe and knowledgeable, at the back pages of this book. You have 
mastered a thorough introduction to a complex topic. That should give you complete 
confidence that, with a little time and attention, you can understand anything further 
in statistics. Congratulations on your accomplishment.

Table 15-8 Approaches for Reading Results Using Unfamiliar Statistical Techniques

• Don’t panic

• Focus on what you can understand about the technique

• Look to see if the technique may be related to one that you already know

• Look for a p level to see if the results are statistically significant

• Look for a statistic that may show the degree of association or size of difference

• Look up the technique on the Internet or in an intermediate or advanced textbook

• Ask for help from a professor or graduate student

Learning Aids
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general linear model (p. 619)
partial correlation (p. 624)
partialing out (p. 624)
partial correlation coefficient  

(p. 625)
reliability (p. 625)
test-retest reliability (p. 626)
split-half reliability (p. 626)
Cronbach’s alpha (�) (p. 626)
internal consistency reliability (p. 626)
interrater reliability (p. 626)
multilevel modeling (p. 628)
lower-level variable (p. 628)

upper-level variable (p. 628)
hierarchical linear modeling 

(HLM) (p. 628)
factor analysis (p. 629)
factor (p. 629)
factor loading (p. 629)
path analysis (p. 632)
path (p. 632)
path coefficient (p. 632)
mediational analysis (p. 633)
structural equation modeling  

(p. 636)
fit index (p. 636)

RMSEA (p. 637)
latent variable (p. 637)
independent variable (p. 641)
dependent variable (p. 641)
analysis of covariance (ANCOVA)  

(p. 641)
covariate (p. 641)
adjusted mean (p. 641)
multivariate statistics (p. 642)
multivariate analysis of variance 

(MANOVA) (p. 642)
multivariate analysis of covariance 

(MANCOVA) (p. 643)

Key Terms

variable predicts average group scores on a lower-level variable. More sophisti-
cated statistical methods are actually used today in practice, such as hierarchical 
linear modeling (HLM).

 5. Factor analysis identifies groupings of variables, called factors, that correlate 
maximally with each other and minimally with other variables. A factor loading 
is the correlation of a variable with a factor.

 6. Causal modeling analysis examines whether the correlations among several 
variables in a sample are consistent with a systematic, hypothesized pattern of 
causal relationships among them. Path analysis describes these relationships with 
arrows, each pointing from cause to effect. Each arrow has a path coefficient 
indicating the influence of the theorized causal variable on the theorized effect 
variable. Mediational analysis is a type of path analysis that tests whether a pre-
sumed casual relationship between two variables is due to some intervening (or 
mediating) variable. Structural equation modeling is an advanced version of path 
analysis that includes latent, unmeasured variables (each of which represents the 
common elements of several measured variables). It also provides measures of 
the overall fit of the hypothesized causal pattern to the correlations in the sample.

 7. In a t test, analysis of variance, and other procedures that compare groups, vari-
ables that divide the groups and are considered the cause are called indepen-
dent variables; variables that are measured and considered the effect are called 
dependent variables.

 8. The analysis of covariance (ANCOVA) is an analysis of variance that controls 
for one or more variables (called covariates). The multivariate analysis of vari-
ance (MANOVA) is an analysis of variance that has more than one dependent 
variable. The multivariate analysis of covariance (MANCOVA) is an analysis 
of covariance that has more than one dependent variable.

 9. In recent years psychologists have begun to reexamine the basics of the statis-
tics they use, opening up the possibility of controversy about what had been in 
the past often taken as incontrovertible.

 10. It is often possible to get the main idea of an unfamiliar statistical procedure by 
keeping several things in mind. First, the procedure probably tells you about 
association among variables or differences among groups. Second, p values tell 
you about the significance of that association or difference. Finally, you will 
probably be given some numbers from which you can get a sense of the degree 
of association or amount of difference.
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Table 15-9  Partial Correlations (Controlling for Appearance of Physical Maturity) of Dating 

and Self-Concept at Age 16

Self-Concept/Self-Worth
Overinvolvement  

with Dating
Level of Dating  

Experience
Quality of Romantic  

Relationship

Scholastic competence -0.10 0.08 -0.03

Social acceptance 0.04 0.24** 0.29**

Physical appearance 0.06 0.24** 0.11

Job competence -0.12 0.12 0.07

Romantic appeal 0.10 0.35*** 0.36***

Behavioral conduct -0.33*** -0.17* -0.04

Close friendship 0.00 0.09 0.09

Global self-worth -0.11 0.05 0.18*

N ranged from 125 (when examining quality of romantic relationships) to 166.

*p 6 0.05, **p 6 0.01, ***p 6 0.001.
Source: Zimmer-Gembeck, M. J., Siebenbruner, J., & Collins, A. W. (2001). Diverse aspects of dating: Associations with 
psychosocial functioning from early to middle adolescence. Journal of Adolescence, 24, 313–336. Copyright © 2001 with 
permission of Elsevier.

For the problems below that ask you to explain results, you need to explain only the 
general meaning of the results, using only the same level of detail as used when the 
procedures were described in the chapter. You do not need to describe the logic of 
the statistical procedures covered here in the way that you have been doing in previ-
ous chapters.

All studies for which we do not give an actual citation are fictional.

Set I (for Answers to Set I Problems, see pp. 705–707)
 1. Zimmer-Gembeck and colleagues (2001) studied dating practices in a sample 

of 16-year-olds in Minneapolis. As part of their study they examined the re-
lation of dating involvement, experience, and quality with various aspects of 
self-concept and self-worth (that is, how positively the 16-year-olds rated them-
selves on such things as scholastic competence, social acceptance, and so on). 
However, the researchers were concerned that the correlations among these 
variables would be inappropriately influenced by differences in the appear-
ance of physical maturity (how old the person looks). Thus, their results, shown  
in Table 15-9, provide correlations “controlling for appearance of physical  
maturity” (p. 327).

Explain this method and the pattern of a few example results to a person 
who is familiar with correlation and multiple regression but is unfamiliar with 
partial correlation.

 2. Boyd and Gullone (1997) studied anxiety and depression in a sample of 
783 adolescents attending schools in and around Melbourne, Australia. To 
measure anxiety, they used the Revised Children’s Manifest Anxiety Scale 
(RCMAS). The RCMAS measures a number of different domains of anxiety 
(such as physiological anxiety and anxiety related to social concerns). In dis-
cussing the measure in their methods section, they note the following: “Alpha 

Practice Problems



 The General Linear Model and Making Sense of Advanced Statistical Procedures in Research Articles   651

coefficient reliability estimates of internal consistency for the RCMAS range 
from .42 to .87” (p. 192). Explain these results to someone who is familiar  
with correlation but is unfamiliar with reliability or the statistics associated 
with it.

 3. Ryan and colleagues (1998) conducted a study to examine whether sixth-
grade students’ tendency to avoid seeking help in the classroom was related 
to student and classroom characteristics. The participants were 516 students 
from 63 different math classrooms. In describing their results, the researchers 
noted: “We used hierarchical linear modeling (HLM) to examine our research  
questions. . . . Our questions were hierarchical, in that we were interested in 
both student-level characteristics and classroom-level characteristics that were 
related to avoidance of help seeking” (p. 530). One of the student-level charac-
teristics that the researchers examined was academic self-efficacy, which refers 
to students’ beliefs about their ability to complete their schoolwork success-
fully. One of the classroom-level characteristics examined was teachers’ rat-
ings of their role in students’ social and emotional well-being. The researchers 
summarized the results of their study as follows: “This study extended previous 
examinations of help seeking by including individual- and classroom-level pre-
dictors. By using multilevel analysis techniques, we found that avoidance of 
help seeking is related to both individual characteristics of students and charac-
teristics of the classroom” (p. 532).

Explain these results to someone who is familiar with regression (predic-
tion), but has not heard of multilevel modeling.

 4. Fawzi and colleagues (1997) studied whether the usual way of thinking about 
posttraumatic stress disorder (PTSD), as described in the fourth edition of the 
standard Diagnostic and Statistical Manual of Mental Disorders (DSM-IV), 
applies to Vietnamese refugees in the United States. As part of their study, 74 
refugees were interviewed (in their native language) regarding various PTSD 
symptoms and the traumatic events they had experienced, such as torture.  
As expected, the number of PTSD symptoms correlated with the number of 
traumatic events. In a further analysis of the pattern of symptoms (which symp-
toms go together with which), they conducted a factor analysis that resulted in 
four factors.

In correspondence with the DSM-IV, the first three factors represented dimen-
sions of arousal, avoidance, and reexperiencing, respectively (see Table [15-10]). 
However, in contrast to the DSM-IV defined subcategories where avoidance 
represents one dimension of symptomatology, avoidance appeared to be sep-
arated into two factors in this sample. The second factor reflected avoidance 
associated with general withdrawal or numbing of responsiveness, with high 
factor loadings for “unable to feel emotions” and “less interest in daily activi-
ties.” The fourth factor reflected avoidance of stimuli related to the traumatic 
event(s). (p. 104)

Explain these results to a person who is familiar with correlation but is 
unfamiliar with factor analysis.

 5. MacKinnon-Lewis and her colleagues (1997) were interested in predictors of 
social acceptance by peers of 8- to 10-year-old boys. The main predictors they 
used were the child’s rating of parental acceptance and rejection, peers’ rat-
ings of acceptance and aggression, and conflict with siblings as observed in a 
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laboratory interaction. They tried several different possible causal models, and 
concluded that the best was what they called Model 1.

The standardized path coefficients of Model 1 are presented in Figure [15-7], 
which shows that siblings whose mothers were perceived and observed to be 
more rejecting were observed and reported to be more aggressive with one an-
other than were siblings whose mothers were less rejecting. Moreover, boys 
who experienced more aggressive sibling interactions were more likely to be 
nominated by their peers as being aggressive and were less accepted by their 
peers. Although fathering failed to evince a direct influence on sibling aggres-
sion, an indirect effect was evidence as a result of the fact that less accepting 
fathering was related to more rejecting mothering. (p. 1027)

Explain the method they used, illustrating it with some sample results, to a 
person who is familiar with multiple regression and partial correlation in a gen-
eral way but not with path analysis.

 6. Recall from Chapter 11 the study by Aron and colleagues (2000, Study 1) 
in which 113 married people completed a newspaper survey about their  

Table 15-10  Factor Loading for Principal Components Analysis (Factor Analysis) of 

PTSD-IV Symptoms for 74 Vietnamese Refugees

Symptom Dimension Factor Loading

Arousal

Recurrent nightmares .79

Difficulty concentrating .78

Feeling irritable/outburst of anger .77

Inability to remember parts of the most traumatic events .74

Trouble sleeping .73

Avoiding activities that remind you of traumatic events .70

Feeling jumpy, easily startled .67

% Variance explained 44%

Avoidance/withdrawal

Unable to feel emotions .79

Less interest in daily activities .70

Feeling detached or withdrawn .65

Feeling jumpy, easily startled .51

Feeling as if you don’t have a future .51

% Variance explained 24%

Reexperiencing

Recurrent thoughts/memories of most terrifying events .83

Feeling as though the event is happening again .83

Sudden emotional or physical reaction when reminded of most traumatic events .57

% Variance explained 22%

Avoidance of stimuli related to trauma event(s)

Avoiding thoughts or feeling associated with traumatic events .71

% Variance explained 11%

Source: Fawzi, M. C. S., Pham, T., Lin, L., Nguyen, T. V., Ngo, D., Murphy, E., & Mollica, R. F. (1997). The validity of posttraumatic 
stress disorder among Vietnameses refugees. Journal of Traumatic Stress, 10, 101–108. Copyright © 1997 by the International 
society for Traumatic Stress Studies. Reprinted by permission of Blackwell Publishers Ltd.
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relationships. The study participants completed a series of measures, including 
a single question regarding how exciting the things are that they do with their 
partner, a measure about their relationship quality, and a measure of boredom 
with the relationship. Aron and colleagues tested a mediational relationship that 
is outlined in the two study hypotheses. “Hypothesis 1: Shared participation in 
novel-arousing activities is associated with higher levels of experienced rela-
tionship quality. Hypothesis 2: This association is mediated by the extent to 
which the relationship is perceived as boring (versus exciting)” (p. 275). Here is 
how they reported the results of the study:

Regarding Hypothesis 1, as predicted, there was a strong positive association 
between responses to the exciting activities question and experienced relation-
ship quality (r = .51, p 6 .001) c. Hypothesis 2 was that this association 
would be mediated by boredom with the relationship. The results clearly sup-
port this hypothesis. As shown in Figure 15-8, the beta of .51 between excit-
ing activities and experienced relationship quality became nonsignificant and 
dropped to a beta of .10 (ns) when boredom with the relationship was included 
in the model. At the same time, boredom with the relationship, which correlated 
- .56 with exciting activities and - .79 with quality, retained a significant beta of 
- .74 1p 6 .0012 with quality when the exciting activities variable was included 
in the model. (p. 276)

Explain the method they used, and the actual results of the analysis, to a 
person who understands correlation and prediction but has never heard of medi-
ational analysis.

 7. Aron and colleagues (1998) studied experiences of unreciprocated love, lov-
ing someone who does not love you. One of their predictions focused on the 
intensity of the experience (how much you think about it, how much it disrupts 
your life). The researchers hypothesized that intensity would be predicted by 
desirability (how much the lover thought a relationship with the beloved would 
be wonderful), probability (how much the beloved had led the lover to believe 

Figure 15-7 Path model of associations among parenting variables, sibling aggression, 
peer aggression, and social acceptance. Standardized path coefficients are given.
**p 6 .01, ***p 6 .001.
Source: MacKinnon-Lewis, C., Starnes, R., Volling, B., & Johnson, S. (2001). Perceptions of parenting 
as predictors of boys’ sibling and peer relations. Developmental Psychology, 22, 1024–1031. Published 
by the American Psychological Association. Reprinted with permission.
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a relationship might develop), and desirability of the state (how much the lover 
thought it was desirable to be in love, even though it was not reciprocated). 
Aron and colleagues carried out a structural equation model analysis testing this 
model. The results are shown in Figure 15-9.

(a) Explain the pattern of results. (b) Using this diagram as an example, 
explain the general principles of interpreting a path diagram (including the limi-
tations) to a person who understands multiple regression in a general way but 
who is unfamiliar with path diagrams or structural equation modeling.

 8. In each of the following studies, which variable is the independent variable and 
which is the dependent variable?
(a) A study comparing a group given two different kinds of medication on their 

level of anxiety.
(b) A study looking at heart rate change while watching one of three kinds of 

movies (horror movie, love story, or comedy).
(c) A study of number of touches between two infants playing in the same 

room, comparing when their mothers are present versus when their mothers 
are not present.

 9. Roeser and colleagues (2001) conducted a cross-cultural study of self-esteem 
comparing adolescents from the United States and the Netherlands. In their arti-
cle they had a section labeled “Covariates” in which they note, “A measure of 
social desirability was included in each analysis because prior research has shown 
that self-report measures of mental health often elicit socially desirable response 
patterns” (p. 120). (That is, social desirability was a kind of nuisance variable 

.10

Novel/Arousing
Activities

(a)

.51***
Relationship

Quality

Novel/Arousing
Activities

(b) Relationship
Quality

Relationship
Boredom

–.56*** –.74***

Figure 15-8 Results for the test of Hypothesis 2 based on newspaper survey 
data (Study 1: N = 112). The path diagrams show mediation by reported relationship bore-
dom of the association between novel-arousing activities (reported participation in “exciting” 
activities) and experienced relationship quality (scores on the Dyadic Satisfaction subscale of 
Spanier’s, 1976, Dyadic Adjustment Scale). Path coefficients shown are standardized regres-
sion coefficients.

***p 6 .001.
Source: Aron, A., Norman, C. C., Aron, E. N., McKenna, C., & Heyman, R. E. (2000). Couples’ shared 
participation in novel and arousing activities and experienced relationship quality. Journal of Personality 
and Social Psychology, 78, 273–284.

MyStatLab
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they were concerned would disturb their pattern of results.) They then reported a 
series of analyses of covariance. Here is one of their results: “ANCOVA results 
for the CBCL [a measure of emotional/behavioral problems] . . . revealed only 
one significant effect: After covarying out the effect of social desirability . . . , 
American adolescents reported significantly more externalizing problems than 
their Dutch peers, F11, 1362 = 9.80, p 6 .01, Eta squared = .07” (p. 123). 
Explain what is being done, using this result as an example, to someone who is 
familiar with ordinary analysis of variance and with partial correlation but who 
is not familiar with the analysis of covariance.

 10. Gire (1997) studied the preferred methods of resolving conflicts, compar-
ing people in individualistic versus collectivistic cultures. Participants were 
90 Nigerians (Nigeria was considered an example of a relatively collectivist 
society) and 95 Canadians (Canada was considered an example of a relatively 
individualistic society). All participants answered questions about how much 
they preferred each of five methods of resolving conflicts. Half the participants 
in each country answered the questions regarding an interpersonal conflict 
(a conflict between two neighbors) and half regarding an intergroup conflict 
(between two groups of neighbors). This created a two-way factorial design: the 
two independent variables were culture (Nigeria versus Canada) and the type  
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Figure 15-9 Latent variable model based on a three-factor framework of motivation 
in unreciprocated love that was fitted to data for 743 participants who reported experiencing 
unreciprocated love.

Note: Bentler-Bonnett normed fixed index 1NFI2 = .90; nonnormed fit index 1NNFI2 = .92; average 
standardized residuals = .04; �211292 = 430.88; p 6 .01. All parameter estimates shown were sig-
nificantly different from 0, at least at the .05 level. The key result is that each of the major causal paths 
to intensity, from desirability, probability, and desirability of the state, were positive and significant, 
confirming the hypothesis that each of these variables independently predicts intensity.
Source: Aron, A., Aron, E. N., & Allen, J. (1998). Motivations for unreciprocated love. Personality and 
Social Psychology Bulletin, 24, 787–796. Copyright © 1998 by Sage Publications, Ltd. Reprinted by 
permission of Sage Publications, Thousands Oaks, London, and New Delhi.
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of conflict interaction (interpersonal versus intergroup). The five dependent 
variables were five measures of conflict resolution preferences.

These data were analyzed by using the multivariate analysis of variance 
(MANOVA) procedure. The 2-way MANOVA yielded a significant main ef-
fect of culture F15, 1732 = 6.37,  p 6 .001. An examination of the univariate 
analyses and the means suggests that Nigerians preferred negotiation to a 
greater extent than Canadians, while the reverse was the case on arbitration, as 
predicted. There was also a significant culture by type of conflict interaction, 
F15, 1732 = 3.84, p 6 .002. The univariate analyses and the means, presented in 
Table [15-11], reveal that significant differences occurred on three procedures— 
threats, acceptance of the situation, and arbitration. (p. 41)

Explain these results to someone who understands factorial analysis of 
variance but is not familiar with multivariate analysis of variance.

 11. For each of the following studies, what would be the most appropriate statistical 
technique?
(a) A study in which the researcher has a complex theory of the pattern of cause 

and effect among several variables.
(b) A study of the association between two variables.
(c) A study of whether a questionnaire scale is consistent internally (that is, that 

the items correlate with each other) and consistent over time in giving the 
same result.

(d) A two-way factorial design with three dependent measures.
(e) A study in which the association between elementary school class size and 

student satisfaction is examined across 10 different schools.
(f) A study in which a researcher measures 16 variables and wants to  

explore whether there are any simpler groupings of variables underlying 
these 16.

(g) A study in which an experimental group and a control group are being com-
pared on a single dependent variable.

(h) A study comparing five groups of individuals on a single dependent 
variable.

Table 15-11 Method Preferences as a Function of Culture and Type of Conflict

Nigerians Canadians

Method IP IG IP IG

Threats* 2.09 1.50 1.35 1.61

Accept the situation* 2.72 3.16 3.43 2.71

Negotiation 6.07 6.11 5.56 5.64

Mediation 4.70 4.77 4.87 5.13

Arbitration* 3.05 4.90 5.20 5.42

Note: One asterisk (*) indicates that the means of the culture by type of conflict interaction on a given method was 
significant at p 6 .05 level. The larger the number, the higher the preference for the method. IP = Interpersonal Conflict; 
IG = Intergroup Conflict.
Source: Gire, J. T. (1997). The varying effect of individualism-collectivism on reference for methods of conflict resolution. 
Canadian Journal of Behavioral Science, 29, 38–43. Copyright © 1997 by the Canadian Psychological Association. Reprinted 
with permission.
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Set II
 12. Frank and her colleagues (1997) studied adolescents’ depressive concerns and 

their relation with their parents. These researchers focused on two aspects of 
depressive concerns, a self-critical preoccupation and an interpersonal preoc-
cupation. They also focused on two aspects of what they called “separation-
individuation conflict” with parents, how much the adolescents perceived their 
parents as constraining them (exerting strong control over their behaviors) and 
how insecure the adolescents felt about their parents. The researchers reported 
their analysis and results as follows:

We then correlated the mother and father versions of the Perceived Constraint 
and Insecurity scales with scores for self-critical and interpersonal concerns.  
Bivariate and partial correlational analyses are summarized in Table [15-12].  
Partial analyses controlled for one aspect of separation-individuation conflict . . .  
and each type of depressive concern. (p. 211)

Explain this method and illustrate your answer by focusing on some ex-
ample results to a person who is familiar with correlation and, in a general way, 
with ordinary multiple regression but is unfamiliar with partial correlation.

 13. Schmader and colleagues (2001), as part of a study of students’ beliefs about 
ethnic injustice in a university setting, describe one of their key measures as 
follows: “Beliefs about systemic ethnic injustice were assessed with four items 1� = .692” (p. 101). (Here is an example item: “Differences in status between 
ethnic groups are the result of injustice” [p. 101].) Explain the meaning  
of “� = .69” to someone familiar with correlation but not with reliability or 
Cronbach’s alpha.

 14. McClelland and colleagues (2007) studied the association between behavioral 
regulation and academic achievement in a sample of 310 preschool children 
from 54 different classrooms. Behavioral regulation refers to basic skills in 
regulating behavior, such as paying attention and following instructions. The 
researchers noted that: “To account for the nesting of children in classrooms, we 
used Hierarchical Linear Modeling to . . . investigate the associations between 

Table 15-12  Bivariate and Partial Correlations Showing Relations Between the Constraint 

and Insecurity Scales and Self-Critical and Interpersonal Preoccupations

Bivariate r Partial r

Scale Interpersonal Self-Critical Interpersonal Self-Critical

Constraint

Fathers .12 .23*** .00 .18**

Mothers .08 .23*** - .12* .14**

Insecurity

Fathers .24*** .13 .20* .02

Mothers .33*** .12* .29*** - .07

Note: Partial correlation analyses assessing relations between constraint (or insecurity) and depressive concerns control for 
insecurity (or constraint) as well as adolescent depression.

*p 6 .05. **p 6 .01. ***p 6 .001.

Source: Frank, S. J., Poorman, M. O., Van Egeren, L. A., & Fields, D. T. (1997). Perceived relationships with parents among 
adolescent impatients with depressive preoccupations and depressed mood. Journal of Clinical Child Psychology, 26, 205–215. 
Copyright © 1997 by Lawrence Erlbaum Associates, Inc. Reprinted with permission.
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behavioral regulation and achievement” (p. 953). Explain, to a person who is 
familiar with regression but not with multilevel modeling, why the researchers 
used multilevel modeling instead of regular regression to analyze the study results.

 15. Crick and colleagues (1997) developed a teachers’ rating measure of “relational 
aggression” in preschoolers. Ordinary, overt aggression harms others directly, 
but “relational aggression harms others through damage to their peer relation-
ships (e.g., using social exclusion or rumor spreading as a form of retaliation)” 
(p. 579). As part of this study, they first administered a 23-item teacher rating 
scale of preschoolers’ social behavior. They described the key analysis of this 
measure as follows:

A . . . factor analysis . . . was first conducted to assess whether . . . relational ag-
gression would emerge as a separate factor independent of overt aggression. The 
analysis yielded the four predicted factors, relational aggression, overt aggres-
sion, prosocial behavior, and depressed affect. (p. 582)

Table 15-13 shows the factor loadings. Explain their results to a person 
who is familiar with correlation but is unfamiliar with factor analysis.

Table 15-13 Factor Loadings for the Teacher Measure of Social Behavior (PSBS-T)

Item
Relational  

Aggression
Overt  

Aggression
Prosocial  
Behavior

Depressed  
Affect

Tells a peer that he or she won’t play with that 
peer or be that peer’s friend unless he or she does 
what this child asks

 
 

.84

Tells others not to play with or be a peer’s friend .83

When mad at a peer, this child keeps that peer from  
being in the play group

 
.81

Tells a peer that they won’t be invited to their birthday 
party unless he or she does what the child wants

 
.88

Tries to get others to dislike a peer .89

Verbally threatens to keep a peer out of the play group 
if the peer doesn’t do what the child asks

 
.85

Kicks or hits others .81

Verbally threatens to hit or beat up other children .75

Ruins other peer’s things when he or she is upset .82

Pushes or shoves other children .72

Hurts other children by pinching them .83

Verbally threatens to physically harm a peer in order to get 
what they want

 
.81

Is good at sharing and taking turns .76

Is helpful to peers .83

Is kind to peers .62

Says or does nice things for other kids .75

Doesn’t have much fun .90

Looks sad .87

Doesn’t smile much .82

Note: All cross-loadings were less than .40. PSBS@T = Preschool Social Behavior Scale—Teacher Form.
Source: Crick, N. R., Casas, J. F., & Mosher, M. (1997). Relational and overt aggression in preschool. Developmental Psychology, 33, 579–588. Published by the American 
Psychological Association. Reprinted with permission.
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 16. Penedo and colleagues (2003) conducted a study looking at the relationship 
among optimism, perceived stress management skills, and positive mood in a 
sample of 46 men who underwent surgery for prostate cancer. They conducted 
a mediational analysis “to determine whether the relationship between opti-
mism and positive mood was explained through perceived stress management 
skills” (p. 221). The researchers carried out their mediational analysis using the 
four-step Baron and Kenny (1986) approach you learned in this chapter. The 
results of the mediational analysis supported the hypothesized mediational rela-
tionship and showed full mediation. Explain to a person who understands corre-
lation and prediction what variables Penedo and colleagues used in each of the 
four steps of their mediation analysis and, given that full mediation was found, 
describe the results they found for each step.

 17. Kwan and her colleagues (1997) predicted that the relation of self-esteem and 
social harmony to life satisfaction would be different in different cultures. In 
more communal cultures, such as many Asian cultures, social harmony would 
matter more. However, in more individualistic cultures, such as most North 
American and European cultures, self-esteem would matter more. As part of the 
focus on cultural differences, the researchers also measured independent self-
construal (how much a person emphasizes personal development and achieve-
ment) and interdependent self-construal (how much a person emphasizes 
getting along and fitting in with others). The participants in the study were 389 
college students from the United States and Hong Kong. Figure 15-10 shows 
their basic results. Note that Kwan and colleagues give two path coefficients for 
each path: the ones not in parentheses are for the Hong Kong sample; those in 
parentheses are for the U.S. sample.

(a) Explain the pattern of results. (b) Using this diagram as an example, 
explain the general principles of interpreting a path diagram (including any lim-
itations) to a person who understands multiple regression in a general way but 
is unfamiliar with path diagrams or structural equation modeling.

 18. DeGarmo and Forgatch (1997) studied the social support divorced mothers 
received from their closest confidant. The researchers measured a number of 
variables and then examined the predicted relationships among the variables 
using structural equation modeling. Figure 15-11 shows the results.

(a) Explain the pattern of results. (b) Using this diagram as an example, 
explain the general principles of interpreting a path diagram (including any lim-
itations) to a person who understands multiple regression in a general way but 
is unfamiliar with path diagrams or structural equation modeling.

 19. In each of the following studies, indicate which variable is the independent 
variable and which is the dependent variable:
(a) A study of speed of performance on a complex task, in which one group 

does the task at night and the other in the morning.
(b) A study comparing college women and men on their attitudes toward 

psychotherapy.
(c) A study of voting preferences of people from three different provinces in 

Canada.
 20. Thompson and colleagues (2001) conducted a study of the “Mozart effect”—that 

listening to music written by Mozart improves performance on tasks involving 
spatial abilities. In their initial analysis, the researchers found that participants did 
better on a paper-folding task after listening to a Mozart sonata than after an equiv-
alent period of silence or after listening to a piece by another classical composer 
(an Albioni adagio). However, they then repeated their analyses, but this time

MyStatLab
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. . . a series of analyses of covariance . . . tested whether the Mozart effect would 
remain in evidence when individual differences in enjoyment, arousal, and  
mood were statistically controlled. For each analysis . . . the covariate repre-
sented the scores on one of [these] measures. Although the Mozart effect re-
mained significant when . . . mood scores were partialed out, F11, 102 = 12.93, 
p 6 .05, it was no longer reliable when enjoyment ratings, . . . arousal scores, or 
subjective mood-arousal ratings were held constant. (p. 250)

Explain what is being done, using this result as an example, to someone 
who is familiar with ordinary analysis of variance, but who is not familiar with 
the analysis of covariance.

 21. This question refers to another part of the study by DeGarmo and Forgatch 
(1997), described in problem 18. These researchers studied a group of divorced 
mothers, focusing on the support they received from their closest confidant. That 
confidant was sometimes a close friend, sometimes a family member, and some-
times a cohabiting partner. In the study, both the mothers and the confidants 
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Figure 15-10 The final Self-Construal Scale model, N = 194 for the Hong Kong 
sample; N = 194 for the U.S. sample. Ellipses (ovals) represent latent constructs, boxes rep-
resent indicators, arrows pointing from latent constructs to indicators depict factor loadings, 
and arrows relating latent constructs represent path coefficients. Standardized path coeffi-
cients are shown; factor loadings and measurement errors are omitted for clarity. Numbers 
inside parentheses are coefficients for the U.S. sample; numbers outside parentheses are coef-
ficients for the Hong Kong sample. All these coefficients were significant at p 6 .05 or less.

Source: Kwan, V. S., Bond, M. A., & Singelis, T. M. (1997). Pancultural explanations for life satisfac-
tion: Adding relationship harmony to self-esteem. Journal of Personality and Social Psychology, 73, 
1038–1051. Published by the American Psychological Association. Reprinted with permission.
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were interviewed on various measures; they were also videoed interacting in 
a special laboratory task, and the interaction was systematically coded by the 
researchers. These various approaches created quite a few measures of the rela-
tionship between the mother and her closest confidant, including three measures 
of confidant support, four measures of confidant negativity, and four measures 
of the intimacy of their relationship.

One aspect of the study focused on how the relationship with the confidant 
differed for confidants who were friends, family members, or cohabiting part-
ners. DeGarmo and Forgatch described the analysis as follows:

Multivariate and univariate analyses of variance were conducted on the indica-
tors of support, negativity, and intimacy for close friends, family members, and 
cohabiting partners. The mean values, tests of differences, and significant con-
trasts are displayed in Table [15-14].

Significant differences were found among relationship types in the multi-
variate analysis of variance (MANOVA) on the indicators, F120, 2542 = 4.10, 
p 6 .001. (p. 340)
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Figure 15-11 Support process model with mother, confidant, and relationship 
characteristics, controlling for repartnering with a man and for change in maternal distress.

T3 = Time 3; Conf = Confidant. �2167, N = 1382 = 84.82,  p = .07; comparative fit index = .962: 
*p 6 .05.

Source: DeGarmo, D. S., & Forgatch, M. S. (1997). Determinants of observed confidant support for 
divorced mothers. Journal of Personality and Social Psychology, 72, 336–345. Published by the 
American Psychological Association. Reprinted with permission.
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Degarmo and Forgatch then discussed the results of the univariate analy-
ses of variance. For example, they noted that the “analysis of variance showed 
a pattern in which partners were observed to provide less support” (p. 340). 
Explain these results to a person familiar with analysis of variance but not with 
MANOVA.

 22. In a recent issue of a journal in an area of psychology that especially interests 
you, find an article that uses one of the statistical procedures described in this 
chapter. Write a brief summary of the study, and explain the result of the sta-
tistical procedure. With your answer, include a photocopy or printout of the 
article, marking clearly the part that reports the statistics you describe.

 23. In a recent issue of a journal in an area of psychology that especially interests 
you, find an article that uses a statistical procedure not covered anywhere in 
this book. Write a brief summary of the study you found, and do your best 
to explain the result of the statistical procedure. With your answer, include a 
photocopy or printout of the article, marking clearly the part that reports the 
statistics you describe.

Table 15-14 Means and Standard Deviations for Construct Indicators by Confidant Relationship Types

Friend (1) Family (2) Partner (3)

Construct Indicator M SD M SD M SD F(2, 135)
Significant 
Contrasts

Observed confidant support

Interpersonal 3.34 .67 3.35 .63 2.92 .65 5.93** 1,2 7 3

Likeability 3.39 .86 3.24 .94 2.68 1.21 6.58** 1,2 7 3

Emotional 1.04 .36  .96 .37  .69 .35 12.17*** 1,2 7 3

Confidant negativity

Self-report, irritability 1.91 .84 1.70 .70 2.25 .65 5.27** 3 7 2

Intimacy-report irritability 1.36 .50 1.33 .35 1.48 .40 1.65

Depressed mood 1.06 .32  .93 .36  .95 .34 2.02

Relationship intimacy

Mother-report intimacy 3.18 .73 3.19 .75 3.65 .58 5.94** 3 7 1,2

Confidant-report intimacy 3.05 .78 3.29 .69 3.48 .64 4.62** 3 7 1

Mother-report complexity 1.91 .84 2.29 .74 2.87 .33 22.52*** 3 7 1,2

Confidant-report complexity 2.01 .74 2.19 .75 2.73 .55 13.36*** 3 7 1,2

Note: ns = 65, 33, and 40 for the friend, family, and partner relationship types, respectively.

**p 6 .01. ***p 6 .001.

Source: DeGarmo, D. S., & Forgatch, M. S. (1997). Determinants of observed confidant support for divorced mothers. Journal of Personality and Social Psychology, 72, 336–345. 
Published by the American Psychological Association. Reprinted with permission.

The  in the following steps indicates a mouse click. (We used SPSS version 19 
for Windows to carry out these analyses. The steps and output may be slightly dif-
ferent for other versions of SPSS.) You will learn how to use SPSS to carry out 
three of the procedures you learned about in this chapter: partial correlation, internal 
consistency reliability, and ANCOVA. Among the procedures covered in this chap-
ter, these are the ones that are most straightforward to carry out in SPSS without 
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significant additional understanding. Nevertheless, given that you have learned only 
the most basic aspects of even these three procedures, you should be very cautious in 
drawing conclusions from your analyses. We also recommend that you seek advice 
from someone with experience conducting such procedures (such as a faculty mentor), 
as there may well be fine points you are not aware of that need to be taken into account.

Finding the Partial Correlation Coefficient
As usual, it is easiest to follow the steps using an example. So we will use the sleep 
and mood example from Chapter 11. In that study, a researcher asked six students 
how many hours of sleep they had last night and how happy they felt right now (from 
0, not at all happy, to 8, extremely happy). The correlation between sleep and mood 
was statistically significant, with r = .853, p = .031 (see Figure 11-22, p. 490). This 
tells you that there is an association between the amount of sleep people have and the 
level of happiness they report the next day (such that more sleep is linked with greater 
happiness and less sleep with less happiness). While it is entirely plausible that hav-
ing less sleep makes people unhappy the next day, it is also possible that some other  
variable—such as general anxiety level—may affect both the amount of sleep a per-
son gets and the level of happiness. So imagine that the researcher also asked students 
to rate how anxious they had been feeling in the last week (from 0, not at all anxious, 
to 5, extremely anxious). You can use a partial correlation coefficient to test whether 
the correlation between sleep and mood remains after partialing out (or controlling 
for) people’s level of anxiety. The (fictional) scores for the three variables—sleep, 
mood, and anxiety—are shown in the SPSS data editor window in Figure 15-12.

 ❶ Enter the scores into SPSS. Enter the scores as shown in Figure 15-12.
 ❷  Analyze.
 ❸  Correlate.
 ❹  Partial.

Figure 15-12 SPSS data editor window for the fictional study of the relationship 
between hours slept last night and mood, including anxiety variable.
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 ❺  on the variable called “mood” and then  the arrow next to the box labeled 
“Variables.”  on the variable called “sleep” and then  the arrow next to the 
box labeled “Variables.” This tells SPSS to figure the correlation between the 
“mood” and “sleep” variables. (If you wanted to find the correlation between 
each of several variables, you would put all of them into the “Variables” box.)

 ❻  on the variable called “anxiety” and then  the arrow next to the box labeled 
“Controlling for.” This tells SPSS to control for (or partial out) the “anxiety” vari-
able when figuring the association between the “mood” and “sleep” variables.

 ❼  Options.  the box labeled “Means and standard deviations”.  Continue. 
(Although this step is optional, we strongly recommend that you always request 
these additional statistics for a partial correlation.)

 ❽  OK. Your SPSS output window should look like Figure 15-13. The first table 
gives the mean and standard deviation for each variable. The second table gives 
the actual result of the partial correlation analysis. As you can see, the partial 
correlation between mood and sleep (after controlling for anxiety) is r = .151, 
with p = .808. The p value is greater than our usual .05 cutoff. Thus, the partial 
correlation coefficient is not statistically significant. This tells you that mood is 
not associated with the amount of sleep the previous night, after controlling  
for level of anxiety. The partial correlation coefficient is not statistically  

Figure 15-13 SPSS output window for the fictional study of the relationship between 
hours slept last night and mood, controlling for anxiety.
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significant. Recall that without controlling for anxiety, the correlation between 
mood and sleep was r = .853, p = .031. So, in this example, the previously 
significant and strong correlation between mood and sleep becomes nonsignifi-
cant and considerably smaller after controlling for anxiety.

Figuring Internal Consistency Reliability
Internal consistency reliability is a measure of the extent to which the items of a 
measure assess a common characteristic. Imagine that you ask 10 people to complete 
a 6-item measure of their optimistic beliefs. Each item uses a 5-point response scale, 
from 1 = disagree a lot, to 5 = agree a lot. Example items include: “In uncertain 
times, I usually expect the best” and “I’m always optimistic about my future.” (These 
are actual items from a widely used measure of optimism; Scheier et al., 1994.)

 ❶ Enter the scores into SPSS. Enter the scores as shown in Figure 15-14. We 
labeled the six items “optimism1,” “optimism2,” and so on. As usual, each row 
of the SPSS data editor window shows the responses of a single person.

 ❷  Analyze.
 ❸  Scale.  Reliability Analysis. This will open up a Reliability Analysis window.
 ❹  on the variable called “optimism1” and  the arrow next to the box labeled 

“Items.” Repeat this process for the remaining five items. (Notice that by 
default the term Alpha is shown in the “Model” box in the bottom left corner 
of the Reliability Analysis window. This tells SPSS to figure Cronbach’s alpha 
measure of internal consistency reliability that you learned in this chapter.)

 ❺  Statistics. Under the “Descriptives for” heading,  the box labeled “Item”. 
 Continue. (Although this step is optional, we strongly recommend that you 

always request these additional statistics when figuring internal consistency 
reliability.)

Figure 15-14 SPSS data editor window for a fictional study of 10 people’s responses 
to a 6-item measure of optimistic beliefs.
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 ❻  OK. Your SPSS output window should look like Figure 15-15. The first table 
in the output summarizes the number of people (or “cases”) included in the 
analysis (this table is not shown in Figure 15-15). The second table shows the 
Cronbach’s alpha value and the number of items that were included in the anal-
ysis. The Cronbach’s alpha value of .915 tells you that the 6-item measure of 
optimistic beliefs has excellent internal consistency reliability. (Recall that the 
general rule is a good measure should have a Cronbach’s alpha of at least .60, 
and ideally closer to .90.) The third table gives the descriptive statistics for each 
item included in the reliability analysis.

Figuring an Analysis of Covariance (ANCOVA)
Let us consider the analysis of variance example from Chapter 9, in which 15 in-
dividuals rated the guilt of a defendant (on a scale from 1 = completely sure of 
innocence to 10 = completely sure of guilt) after being randomly assigned to one 
of three groups that were given different information about the defendant’s previous 
criminal record. Specifically, one group was told that the defendant had a crimi-
nal record, one group was told that the defendant had a clean criminal record, and 
the third group received no information about the defendant’s criminal record. 
The results of the analysis of variance are shown in Figure 9-11 on p. 373. The 

Figure 15-15 SPSS output window for the internal consistency reliability of a 6-item 
measure of optimistic beliefs that was completed by a sample of 10 people (fictional study).
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results showed that the ratings of guilt were not the same across the three groups 1F = 4.063, p = .0452. These results suggest that the information a person receives 
about a defendant’s criminal record has an effect on that person’s rating of the guilt 
of the defendant. However, it is also possible that the results were affected by some 
unmeasured factor. For example, people vary in the degree to which they generally 
see other people as being suspicious. Differences in this belief across study partici-
pants in the different groups might account for the study results. So, imagine that the 
15 study participants also completed a measure of their tendency to see people as 
being suspicious (ideally measured prior to the experimental manipulation), using a 
scale from 1 = no suspicious beliefs to 7 � strong suspicious beliefs. We can carry 
out an ANCOVA to test whether the group differences in ratings of guilt remain  
after controlling for participant’s general tendency to hold suspicious beliefs.

 ❶ Enter the scores into SPSS. The scores are shown in Figure 15-16. In the first 
column (labeled “group”), we used the number 1 to indicate that a person is 

Figure 15-16 SPSS data editor window for an analysis of covariance (ANCOVA) for 
the criminal record example, in which 15 individuals indicated their general level of suspi-
cious beliefs and also rated the guilt of a defendant after being randomly assigned to one of 
three groups that were given different information about the defendant’s criminal record.
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in the Criminal Record group, the number 2 to indicate a person in the Clean 
Record group, and the number 3 to indicate a person in the No Information 
group. The second column (labeled “guilt”) shows each participant’s rating as 
to the guilt of the defendant. The third column (labeled “suspicious”) shows 
each participant’s tendency to hold suspicious beliefs.

 ❷  Analyze.
 ❸  General Linear Model.  Univariate. This will open up a Univariate 

window.
 ❹  the variable called “guilt” and then  the arrow next to the box labeled 

“Dependent Variable”. This tells SPSS that the ANCOVA should be carried out 
on the scores for the “guilt” variable.

 ❺  on the variable called “group” and then  the arrow next to the box labeled 
“Fixed Factor(s).” This tells SPSS that the variable called “group” shows which 
person is in which group.

 ❻  on the variable called “suspicious” and then  the arrow next to the box 
labeled “Covariate(s).” This tells SPSS that the variable called “suspicious” 
should be controlled for (or partialed out) in the analysis of variance (ANOVA). 
This is what makes this particular analysis an ANCOVA (analysis of covari-
ance), since you have a covariate in the analysis.

 ❼  Options. This will open a Univariate: Options window.  the box labeled 
“Descriptive statistics” (this checks the box). This tells SPSS to provide 
descriptive statistics (such as the mean) for each group.  on the variable called 
“group” and  the arrow next to the box labeled “Display means for group.” 
This tells SPSS to provide the adjusted mean of each group.  Continue. 
(Although this step is optional, we strongly recommend that you always request 
these additional statistics for an ANCOVA.)

 ❽  OK. Your output should look like Figure 15-17. The first table in the out-
put (which is not shown in Figure 15-17) tells you the number of people 
who were in each group (5 in our example). The second table shows you the 
mean and standard deviation for the “guilt” dependent variable for each of 
the three groups in the study. The third table shows you the actual result of 
the ANCOVA. The first column in the table lists the types of population vari-
ance estimates. The most important estimate for our purposes is the one for 
the “group” variable. Looking across the row for the “group” variable, you can 
see that it had an F ratio of 2.667 with a significance level of p = .114. Since 
the significance level is higher than our usual .05 cutoff, the result is not sta-
tistically significant. This tells you that participants’ ratings of the defendant’s 
guilt did not differ according to which Criminal Record group they were in, 
after controlling for participants’ general suspiciousness beliefs. The final table 
shows the adjusted means for the guilt dependent variable for each of the three 
groups in the study. These are the means for each group for the guilt variable, 
after controlling for (or partialing out) the “suspicious” variable. SPSS refers 
to these adjusted means as marginal means. The adjusted means are shown in 
the “Means” column of the table. The adjusted means are 6.631, 5.288, and 
5.081. Notice that these adjusted means are closer together than the unadjusted 
means, which were 8.000, 4.000, and 5.000 (as shown in the second table in 
the output). This shows you that controlling for the suspicious variable in the 
ANCOVA made the group means on the guilt variable closer together than they 
were when the suspicious variable was not controlled for.



 The General Linear Model and Making Sense of Advanced Statistical Procedures in Research Articles   669

Figure 15-17 SPSS output window for an analysis of covariance (ANCOVA) for the 
criminal record example, in which 15 individuals indicated their general level of suspicious 
beliefs and also rated the guilt of a defendant after being randomly assigned to one of three 
groups that were given different information about the defendant’s criminal record.
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 1. There are clever ways of sneaking squared and higher power terms into linear 
model procedures. For example, you could create a new, transformed variable 
in which each score was squared. This transformed variable could then be used 
in a linear model equation as an ordinary variable. Thus, no squared term would 
actually appear in the equation. It turns out that this little trick can be extraordi-
narily valuable. For example, you can use this kind of procedure to handle cur-
vilinear relationships with statistical methods designed for linear relationships 
(Cohen et al., 2003; Darlington, 1990).

 2. Under most conditions, for any particular measure, the different reliability 
indexes give roughly similar results as they do here. However, there are also 
important cases where they do not (see McCrae et al., 2011).

 3. Another approach to multilevel modeling applies the same principle to  
what amounts to a repeated measures or within-subject situation. These are situ-
ations in which each individual is tested many times on the same variables. For 
example, people might record their stress level and their marital conflicts every 
night for 2 weeks. Then you would want to know if, on those days when stress 
level is high, is the person on that day more prone to have marital conflicts? To 
analyze this, you would, in effect want to do a regression, for each individual, 
with the predictor variable being a day’s stress level and the criterion variable 
being the amount of marital conflict that day. To get the overall result you would 
average, across all the individuals, the regression coefficients you had figured 
for each individual. As an additional analysis, you might want to see if those 
individuals with more education might have fewer conflicts overall (that is, 
whether they have lower average conflict levels averaged across the 2 weeks). In 
this example, the grouping variable is the individual! The lower level is days and 
the lower-level variables are daily level of stress and daily marital conflicts. The 
upper-level variable would be each individual’s level of education.

 4. There are also multivariate versions of correlation and regression in which there 
is more than one criterion variable, such as canonical correlation. But these are 
not widely used. Also, in addition to multivariate analysis of variance and cova-
riance, multilevel modeling, factor analysis, and structural equation modeling, 
which are widely used, are technically considered multivariate procedures.

Chapter Notes
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Appendix: Tables     

.00 0.00 50.00 .30 11.79 38.21

.01 0.40 49.60 .31 12.17 37.83

.02 0.80 49.20 .32 12.55 37.45

.03 1.20 48.80 .33 12.93 37.07

.04 1.60 48.40 .34 13.31 36.69

.05 1.99 48.01 .35 13.68 36.32

.06 2.39 47.61 .36 14.06 35.94

.07 2.79 47.21 .37 14.43 35.57

.08 3.19 46.81 .38 14.80 35.20

.09 3.59 46.41 .39 15.17 34.83

.10 3.98 46.02 .40 15.54 34.46

.11 4.38 45.62 .41 15.91 34.09

.12 4.78 45.22 .42 16.28 33.72

.13 5.17 44.83 .43 16.64 33.36

.14 5.57 44.43 .44 17.00 33.00

.15 5.96 44.04 .45 17.36 32.64

.16 6.36 43.64 .46 17.72 32.28

.17 6.75 43.25 .47 18.08 31.92

.18 7.14 42.86 .48 18.44 31.56

.19 7.53 42.47 .49 18.79 31.21

.20 7.93 42.07 .50 19.15 30.85

.21 8.32 41.68 .51 19.50 30.50

.22 8.71 41.29 .52 19.85 30.15

.23 9.10 40.90 .53 20.19 29.81

.24 9.48 40.52 .54 20.54 29.46

.25 9.87 40.13 .55 20.88 29.12

.26 10.26 39.74 .56 21.23 28.77

.27 10.64 39.36 .57 21.57 28.43

.28 11.03 38.97 .58 21.90 28.10

.29 11.41 38.59 .59 22.24 27.76
(continued )

Table A–1  Normal Curve Areas: Percentage of the Normal Curve Between the Mean and the 

Z Scores Shown and Percentage of Scores in the Tail for the Z Scores Shown

mean Z

   
mean Z mean Z

   
mean Z

Z % Mean to Z % in Tail Z % Mean to Z % in Tail



672 Appendix

Table A–1 (continued )

mean Z

   
mean Z mean Z

   
mean Z

Z % Mean to Z % in Tail Z % Mean to Z % in Tail

 .60 22.57 27.43 1.03 34.85 15.15

 .61 22.91 27.09 1.04 35.08 14.92

 .62 23.24 26.76 1.05 35.31 14.69

 .63 23.57 26.43 1.06 35.54 14.46

 .64 23.89 26.11 1.07 35.77 14.23

 .65 24.22 25.78 1.08 35.99 14.01

 .66 24.54 25.46 1.09 36.21 13.79

 .67 24.86 25.14 1.10 36.43 13.57

 .68 25.17 24.83 1.11 36.65 13.35

 .69 25.49 24.51 1.12 36.86 13.14

 .70 25.80 24.20 1.13 37.08 12.92

 .71 26.11 23.89 1.14 37.29 12.71

 .72 26.42 23.58 1.15 37.49 12.51

 .73 26.73 23.27 1.16 37.70 12.30

 .74 27.04 22.96 1.17 37.90 12.10

 .75 27.34 22.66 1.18 38.10 11.90

 .76 27.64 22.36 1.19 38.30 11.70

 .77 27.94 22.06 1.20 38.49 11.51

 .78 28.23 21.77 1.21 38.69 11.31

 .79 28.52 21.48 1.22 38.88 11.12

 .80 28.81 21.19 1.23 39.07 10.93

 .81 29.10 20.90 1.24 39.25 10.75

 .82 29.39 20.61 1.25 39.44 10.56

 .83 29.67 20.33 1.26 39.62 10.38

 .84 29.95 20.05 1.27 39.80 10.20

 .85 30.23 19.77 1.28 39.97 10.03

 .86 30.51 19.49 1.29 40.15 9.85

 .87 30.78 19.22 1.30 40.32 9.68

 .88 31.06 18.94 1.31 40.49 9.51

 .89 31.33 18.67 1.32 40.66 9.34

 .90 31.59 18.41 1.33 40.82 9.18

 .91 31.86 18.14 1.34 40.99 9.01

 .92 32.12 17.88 1.35 41.15 8.85

 .93 32.38 17.62 1.36 41.31 8.69

 .94 32.64 17.36 1.37 41.47 8.53

 .95 32.89 17.11 1.38 41.62 8.38

 .96 33.15 16.85 1.39 41.77 8.23

 .97 33.40 16.60 1.40 41.92 8.08

 .98 33.65 16.35 1.41 42.07 7.93

 .99 33.89 16.11 1.42 42.22 7.78

1.00 34.13 15.87 1.43 42.36 7.64

1.01 34.38 15.62 1.44 42.51 7.49

1.02 34.61 15.39 1.45 42.65 7.35
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Table A–1 (continued )

mean Z

   
mean Z mean Z

   
mean Z

Z % Mean to Z % in Tail Z % Mean to Z % in Tail

1.46 42.79 7.21 1.88 46.99 3.01

1.47 42.92 7.08 1.89 47.06 2.94

1.48 43.06 6.94 1.90 47.13 2.87

1.49 43.19 6.81 1.91 47.19 2.81

1.50 43.32 6.68 1.92 47.26 2.74

1.51 43.45 6.55 1.93 47.32 2.68

1.52 43.57 6.43 1.94 47.38 2.62

1.53 43.70 6.30 1.95 47.44 2.56

1.54 43.82 6.18 1.96 47.50 2.50

1.55 43.94 6.06 1.97 47.56 2.44

1.56 44.06 5.94 1.98 47.61 2.39

1.57 44.18 5.82 1.99 47.67 2.33

1.58 44.29 5.71 2.00 47.72 2.28

1.59 44.41 5.59 2.01 47.78 2.22

1.60 44.52 5.48 2.02 47.83 2.17

1.61 44.63 5.37 2.03 47.88 2.12

1.62 44.74 5.26 2.04 47.93 2.07

1.63 44.84 5.16 2.05 47.98 2.02

1.64 44.95 5.05 2.06 48.03 1.97

1.65 45.05 4.95 2.07 48.08 1.92

1.66 45.15 4.85 2.08 48.12 1.88

1.67 45.25 4.75 2.09 48.17 1.83

1.68 45.35 4.65 2.10 48.21 1.79

1.69 45.45 4.55 2.11 48.26 1.74

1.70 45.54 4.46 2.12 48.30 1.70

1.71 45.64 4.36 2.13 48.34 1.66

1.72 45.73 4.27 2.14 48.38 1.62

1.73 45.82 4.18 2.15 48.42 1.58

1.74 45.91 4.09 2.16 48.46 1.54

1.75 45.99 4.01 2.17 48.50 1.50

1.76 46.08 3.92 2.18 48.54 1.46

1.77 46.16 3.84 2.19 48.57 1.43

1.78 46.25 3.75 2.20 48.61 1.39

1.79 46.33 3.67 2.21 48.64 1.36

1.80 46.41 3.59 2.22 48.68 1.32

1.81 46.49 3.51 2.23 48.71 1.29

1.82 46.56 3.44 2.24 48.75 1.25

1.83 46.64 3.36 2.25 48.78 1.22

1.84 46.71 3.29 2.26 48.81 1.19

1.85 46.78 3.22 2.27 48.84 1.16

1.86 46.86 3.14 2.28 48.87 1.13

1.87 46.93 3.07 2.29 48.90 1.10
(continued )
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Table A–1 (continued )

mean Z

   
mean Z mean Z

   
mean Z

Z % Mean to Z % in Tail Z % Mean to Z % in Tail

2.30 48.93 1.07 2.67 49.62 .38

2.31 48.96 1.04 2.68 49.63 .37

2.32 48.98 1.02 2.69 49.64 .36

2.33 49.01 .99 2.70 49.65 .35

2.34 49.04 .96 2.71 49.66 .34

2.35 49.06 .94 2.72 49.67 .33

2.36 49.09 .91 2.73 49.68 .32

2.37 49.11 .89 2.74 49.69 .31

2.38 49.13 .87 2.75 49.70 .30

2.39 49.16 .84 2.76 49.71 .29

2.40 49.18 .82 2.77 49.72 .28

2.41 49.20 .80 2.78 49.73 .27

2.42 49.22 .78 2.79 49.74 .26

2.43 49.25 .75 2.80 49.74 .26

2.44 49.27 .73 2.81 49.75 .25

2.45 49.29 .71 2.82 49.76 .24

2.46 49.31 .69 2.83 49.77 .23

2.47 49.32 .68 2.84 49.77 .23

2.48 49.34 .66 2.85 49.78 .22

2.49 49.36 .64 2.86 49.79 .21

2.50 49.38 .62 2.87 49.79 .21

2.51 49.40 .60 2.88 49.80 .20

2.52 49.41 .59 2.89 49.81 .19

2.53 49.43 .57 2.90 49.81 .19

2.54 49.45 .55 2.91 49.82 .18

2.55 49.46 .54 2.92 49.82 .18

2.56 49.48 .52 2.93 49.83 .17

2.57 49.49 .51 2.94 49.84 .16

2.58 49.51 .49 2.95 49.84 .16

2.59 49.52 .48 2.96 49.85 .15

2.60 49.53 .47 2.97 49.85 .15

2.61 49.55 .45 2.98 49.86 .14

2.62 49.56 .44 2.99 49.86 .14

2.63 49.57 .43 3.00 49.87 .13

2.64 49.59 .41 3.50 49.98 .02

2.65 49.60 .40 4.00 50.00 .00

2.66 49.61 .39 4.50 50.00 .00 



Table A–2 Cutoff Scores for the t Distribution

One-Tailed Tests Two-Tailed Tests

or

df .10 .05 .01 .10 .05 .01

 1 3.078 6.314 31.821 6.314 12.706 63.657

 2 1.886 2.920 6.965 2.920 4.303 9.925

 3 1.638 2.353 4.541 2.353 3.182 5.841

 4 1.533 2.132 3.747 2.132 2.776 4.604

 5 1.476 2.015 3.365 2.015 2.571 4.032

 6 1.440 1.943 3.143 1.943 2.447 3.708

 7 1.415 1.895 2.998 1.895 2.365 3.500

 8 1.397 1.860 2.897 1.860 2.306 3.356

 9 1.383 1.833 2.822 1.833 2.262 3.250

 10 1.372 1.813 2.764 1.813 2.228 3.170

 11 1.364 1.796 2.718 1.796 2.201 3.106

 12 1.356 1.783 2.681 1.783 2.179 3.055

 13 1.350 1.771 2.651 1.771 2.161 3.013

 14 1.345 1.762 2.625 1.762 2.145 2.977

 15 1.341 1.753 2.603 1.753 2.132 2.947

 16 1.337 1.746 2.584 1.746 2.120 2.921

 17 1.334 1.740 2.567 1.740 2.110 2.898

 18 1.331 1.734 2.553 1.734 2.101 2.879

 19 1.328 1.729 2.540 1.729 2.093 2.861

 20 1.326 1.725 2.528 1.725 2.086 2.846

 21 1.323 1.721 2.518 1.721 2.080 2.832

 22 1.321 1.717 2.509 1.717 2.074 2.819

 23 1.320 1.714 2.500 1.714 2.069 2.808

 24 1.318 1.711 2.492 1.711 2.064 2.797

 25 1.317 1.708 2.485 1.708 2.060 2.788

 26 1.315 1.706 2.479 1.706 2.056 2.779

 27 1.314 1.704 2.473 1.704 2.052 2.771

 28 1.313 1.701 2.467 1.701 2.049 2.764

 29 1.312 1.699 2.462 1.699 2.045 2.757

 30 1.311 1.698 2.458 1.698 2.043 2.750

 35 1.306 1.690 2.438 1.690 2.030 2.724

 40 1.303 1.684 2.424 1.684 2.021 2.705

 45 1.301 1.680 2.412 1.680 2.014 2.690

 50 1.299 1.676 2.404 1.676 2.009 2.678

 55 1.297 1.673 2.396 1.673 2.004 2.668

 60 1.296 1.671 2.390 1.671 2.001 2.661

 65 1.295 1.669 2.385 1.669 1.997 2.654

 70 1.294 1.667 2.381 1.667 1.995 2.648

 75 1.293 1.666 2.377 1.666 1.992 2.643

 80 1.292 1.664 2.374 1.664 1.990 2.639

 85 1.292 1.663 2.371 1.663 1.989 2.635

 90 1.291 1.662 2.369 1.662 1.987 2.632

 95 1.291 1.661 2.366 1.661 1.986 2.629

100 1.290 1.660 2.364 1.660 1.984 2.626

� 1.282 1.645 2.327 1.645 1.960 2.576
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Table A–3 Cutoff Scores for the F Distribution

Denomi- 
nator  
df

Signi- 
ficance  
Level

Numerator Degrees of Freedom

1 2 3 4 5 6

 1 .01 4,052 5,000 5,404 5,625 5,764 5,859

.05 162 200 216 225 230 234

.10 39.9 49.5 53.6 55.8 57.2 58.2

 2 .01 98.50 99.00 99.17 99.25 99.30 99.33

.05 18.51 19.00 19.17 19.25 19.30 19.33

.10 8.53 9.00 9.16 9.24 9.29 9.33

 3 .01 34.12 30.82 29.46 28.71 28.24 27.91

.05 10.13 9.55 9.28 9.12 9.01 8.94

.10 5.54 5.46 5.39 5.34 5.31 5.28

 4 .01 21.20 18.00 16.70 15.98 15.52 15.21

.05 7.71 6.95 6.59 6.39 6.26 6.16

.10 4.55 4.33 4.19 4.11 4.05 4.01

 5 .01 16.26 13.27 12.06 11.39 10.97 10.67

.05 6.61 5.79 5.41 5.19 5.05 4.95

.10 4.06 3.78 3.62 3.52 3.45 3.41

 6 .01 13.75 10.93 9.78 9.15 8.75 8.47

.05 5.99 5.14 4.76 4.53 4.39 4.28

.10 3.78 3.46 3.29 3.18 3.11 3.06

 7 .01 12.25 9.55 8.45 7.85 7.46 7.19

.05 5.59 4.74 4.35 4.12 3.97 3.87

.10 3.59 3.26 3.08 2.96 2.88 2.83

 8 .01 11.26 8.65 7.59 7.01 6.63 6.37

.05 5.32 4.46 4.07 3.84 3.69 3.58

.10 3.46 3.11 2.92 2.81 2.73 2.67

 9 .01 10.56 8.02 6.99 6.42 6.06 5.80

.05 5.12 4.26 3.86 3.63 3.48 3.37

.10 3.36 3.01 2.81 2.69 2.61 2.55

10 .01 10.05 7.56 6.55 6.00 5.64 5.39

.05 4.97 4.10 3.71 3.48 3.33 3.22

.10 3.29 2.93 2.73 2.61 2.52 2.46

11 .01 9.65 7.21 6.22 5.67 5.32 5.07

.05 4.85 3.98 3.59 3.36 3.20 3.10

.10 3.23 2.86 2.66 2.54 2.45 2.39

12 .01 9.33 6.93 5.95 5.41 5.07 4.82

.05 4.75 3.89 3.49 3.26 3.11 3.00

.10 3.18 2.81 2.61 2.48 2.40 2.33

13 .01 9.07 6.70 5.74 5.21 4.86 4.62

.05 4.67 3.81 3.41 3.18 3.03 2.92

.10 3.14 2.76 2.56 2.43 2.35 2.28

14 .01 8.86 6.52 5.56 5.04 4.70 4.46

.05 4.60 3.74 3.34 3.11 2.96 2.85

.10 3.10 2.73 2.52 2.40 2.31 2.24
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15 .01 8.68 6.36 5.42 4.89 4.56 4.32

.05 4.54 3.68 3.29 3.06 2.90 2.79

.10 3.07 2.70 2.49 2.36 2.27 2.21

16 .01 8.53 6.23 5.29 4.77 4.44 4.20

.05 4.49 3.63 3.24 3.01 2.85 2.74

.10 3.05 2.67 2.46 2.33 2.24 2.18

17 .01 8.40 6.11 5.19 4.67 4.34 4.10

.05 4.45 3.59 3.20 2.97 2.81 2.70

.10 3.03 2.65 2.44 2.31 2.22 2.15

18 .01 8.29 6.01 5.09 4.58 4.25 4.02

.05 4.41 3.56 3.16 2.93 2.77 2.66

.10 3.01 2.62 2.42 2.29 2.20 2.13

19 .01 8.19 5.93 5.01 4.50 4.17 3.94

.05 4.38 3.52 3.13 2.90 2.74 2.63

.10 2.99 2.61 2.40 2.27 2.18 2.11

20 .01 8.10 5.85 4.94 4.43 4.10 3.87

.05 4.35 3.49 3.10 2.87 2.71 2.60

.10 2.98 2.59 2.38 2.25 2.16 2.09

21 .01 8.02 5.78 4.88 4.37 4.04 3.81

.05 4.33 3.47 3.07 2.84 2.69 2.57

.10 2.96 2.58 2.37 2.23 2.14 2.08

22 .01 7.95 5.72 4.82 4.31 3.99 3.76

.05 4.30 3.44 3.05 2.82 2.66 2.55

.10 2.95 2.56 2.35 2.22 2.13 2.06

23 .01 7.88 5.66 4.77 4.26 3.94 3.71

.05 4.28 3.42 3.03 2.80 2.64 2.53

.10 2.94 2.55 2.34 2.21 2.12 2.05

24 .01 7.82 5.61 4.72 4.22 3.90 3.67

.05 4.26 3.40 3.01 2.78 2.62 2.51

.10 2.93 2.54 2.33 2.20 2.10 2.04

25 .01 7.77 5.57 4.68 4.18 3.86 3.63

.05 4.24 3.39 2.99 2.76 2.60 2.49

.10 2.92 2.53 2.32 2.19 2.09 2.03

26 .01 7.72 5.53 4.64 4.14 3.82 3.59

.05 4.23 3.37 2.98 2.74 2.59 2.48

.10 2.91 2.52 2.31 2.18 2.08 2.01

27 .01 7.68 5.49 4.60 4.11 3.79 3.56

.05 4.21 3.36 2.96 2.73 2.57 2.46

.10 2.90 2.51 2.30 2.17 2.07 2.01

28 .01 7.64 5.45 4.57 4.08 3.75 3.53

.05 4.20 3.34 2.95 2.72 2.56 2.45

.10 2.89 2.50 2.29 2.16 2.07 2.00
(continued )

Table A–3 (continued )

Denomi- 
nator  
df

Signi- 
ficance  
Level

Numerator Degrees of Freedom

1 2 3 4 5 6
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29 .01 7.60 5.42 4.54 4.05 3.73 3.50

.05 4.18 3.33 2.94 2.70 2.55 2.43

.10 2.89 2.50 2.28 2.15 2.06 1.99

30 .01 7.56 5.39 4.51 4.02 3.70 3.47

.05 4.17 3.32 2.92 2.69 2.53 2.42

.10 2.88 2.49 2.28 2.14 2.05 1.98

35 .01 7.42 5.27 4.40 3.91 3.59 3.37

.05 4.12 3.27 2.88 2.64 2.49 2.37

.10 2.86 2.46 2.25 2.11 2.02 1.95

40 .01 7.32 5.18 4.31 3.83 3.51 3.29

.05 4.09 3.23 2.84 2.61 2.45 2.34

.10 2.84 2.44 2.23 2.09 2.00 1.93

45 .01 7.23 5.11 4.25 3.77 3.46 3.23

.05 4.06 3.21 2.81 2.58 2.42 2.31

.10 2.82 2.43 2.21 2.08 1.98 1.91

50 .01 7.17 5.06 4.20 3.72 3.41 3.19

.05 4.04 3.18 2.79 2.56 2.40 2.29

.10 2.81 2.41 2.20 2.06 1.97 1.90

55 .01 7.12 5.01 4.16 3.68 3.37 3.15

.05 4.02 3.17 2.77 2.54 2.38 2.27

.10 2.80 2.40 2.19 2.05 1.96 1.89

60 .01 7.08 4.98 4.13 3.65 3.34 3.12

.05 4.00 3.15 2.76 2.53 2.37 2.26

.10 2.79 2.39 2.18 2.04 1.95 1.88

65 .01 7.04 4.95 4.10 3.62 3.31 3.09

.05 3.99 3.14 2.75 2.51 2.36 2.24

.10 2.79 2.39 2.17 2.03 1.94 1.87

70 .01 7.01 4.92 4.08 3.60 3.29 3.07

.05 3.98 3.13 2.74 2.50 2.35 2.23

.10 2.78 2.38 2.16 2.03 1.93 1.86

75 .01 6.99 4.90 4.06 3.58 3.27 3.05

.05 3.97 3.12 2.73 2.49 2.34 2.22

.10 2.77 2.38 2.16 2.02 1.93 1.86

80 .01 6.96 4.88 4.04 3.56 3.26 3.04

.05 3.96 3.11 2.72 2.49 2.33 2.22

.10 2.77 2.37 2.15 2.02 1.92 1.85

85 .01 6.94 4.86 4.02 3.55 3.24 3.02

.05 3.95 3.10 2.71 2.48 2.32 2.21

.10 2.77 2.37 2.15 2.01 1.92 1.85

90 .01 6.93 4.85 4.01 3.54 3.23 3.01

.05 3.95 3.10 2.71 2.47 2.32 2.20

.10 2.76 2.36 2.15 2.01 1.91 1.84

Table A–3 (continued )

Denomi- 
nator  
df

Signi- 
ficance  
Level

Numerator Degrees of Freedom

1 2 3 4 5 6
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 95 .01 6.91 4.84 4.00 3.52 3.22 3.00

.05 3.94 3.09 2.70 2.47 2.31 2.20

.10 2.76 2.36 2.14 2.01 1.91 1.84

100 .01 6.90 4.82 3.98 3.51 3.21 2.99

.05 3.94 3.09 2.70 2.46 2.31 2.19

.10 2.76 2.36 2.14 2.00 1.91 1.83

� .01 6.64 4.61 3.78 3.32 3.02 2.80

.05 3.84 3.00 2.61 2.37 2.22 2.10

.10 2.71 2.30 2.08 1.95 1.85 1.78

Table A–4 Cutoff Scores for the Chi-Square Distribution

Significance Level

df .10 .05 .01

 1 2.706 3.841 6.635

 2 4.605 5.992 9.211

 3 6.252 7.815 11.345

 4 7.780 9.488 13.277

 5 9.237 11.071 15.087

 6 10.645 12.592 16.812

 7 12.017 14.067 18.475

 8 13.362 15.507 20.090

 9 14.684 16.919 21.666

10 15.987 18.307 23.209

Table A–5  Index to Power Tables and Tables Giving Number of Participants 

Needed for 80% Power

Hypothesis-Testing Procedure Chapter Power Table
Number of  

Participants Table

t test for dependent means 7 p. 253 p. 253

t test for independent means 8 p. 294 p. 295

One-way analysis of variance 9 p. 347 p. 347

Two-way analysis of variance 10 p. 415 p. 416

Correlation coefficient (r ) 11 p. 471 p. 471

Chi-square test for independence 13 p. 564 p. 565

Table A–3 (continued )

Denomi- 
nator  
df

Signi- 
ficance  
Level

Numerator Degrees of Freedom

1 2 3 4 5 6
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Answers to Set I Practice Problems

Chapter 1
 1. (a) Satisfaction with the vocational counselor; (b) 1, 2, 3, or 

4; (c) 3.
 2. (a) Nominal (or categorical); (b) numeric (or quantitative)— 

more precisely, equal interval; (c) numeric (or quantitative)— 
more precisely, rank order (or ordinal).

 3. (a) Frequency table:

Number of Children Frequency Percent

0 4 20

1 5 25

2 7 35

3 2 10

4 1  5

5 0  0

6 1  5

(b) Histogram:
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(c) Unimodal, skewed to the right.
 4. (a) Frequency table:

Hours Frequency Percent Hours Frequency Percent

0 1 2 10 5 10

1 1 2 11 3 6

2 2 4 12 1 2

3 4 8 13 2 4

4 3 6 14 0 0

5 2 4 15 1 2

6 4 8 16 0 0

7 11 22 17 0 0

8 5 10 18 1 2

9 4 8

(b) Histogram is based on the preceding frequency table. 
See answer to question 3b for an example.
(c) Approximately unimodal, slightly skewed to the right.

 5. (a) Frequency table:

Score Frequency Percent Score Frequency Percent

50 1 4 74 1 4

51 0 0 75 2 8

52 0 0 76 2 8

53 0 0 77 0 0

54 0 0 78 0 0

55 0 0 79 0 0

56 0 0 80 1 4

57 0 0 81 1 4

58 0 0 82 0 0

59 1 4 83 2 8

60 0 0 84 0 0

61 0 0 85 1 4

62 0 0 86 0 0

63 0 0 87 1 4

64 2 8 88 0 0

65 0 0 89 0 0

66 0 0 90 0 0

67 1 4 91 1 4

68 2 8 92 1 4

69 1 4 93 0 0

70 1 4 94 0 0

71 1 4 95 0 0

72 0 0 96 1 4

73 1 4

(b) Based on the preceding frequency table. See answer to 
question 3b for an example.
(c) Grouped frequency table:

Interval Frequency Percent

50–59 2  8

60–69 6 24

70–79 8 32

80–89 6 24

90–99 3 12
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 10. (a) This is called a frequency table because it lays out how 
frequently (how many times) each category occurs for nine 
different categories. A frequency table makes the pattern of 
numbers easy to see. For example, of the 90 college stu-
dents in the study, 19 gave bad news about Relationship 
with family (the first category). The table also gives the 
percentages. For example, 19 students is 19/90 of the total, 
or 21.1 percent.
(b) The most bad news is given in four of the nine catego-
ries: Relationship with family, Relationship with actual/
potential girlfriend/boyfriend, Relationship with friends, 
and Health of family member/friend. All of these categories 
had to do with family members or friends and most with 
relationships, and there were few cases in the other catego-
ries (which had little directly to do with family or friends).

Chapter 2
 1. (a) M = 1gX2>N = 261>9 = 29; (b) 28; (c) g1X - M22 =132 - 2922 + 128 - 2922 + 124 - 2922 + 128 - 2922 +128 - 2922 + 131 - 2922 + 135 - 2922 + 129 - 2922 +126 - 2922 = 86; (d) SD2 = 3g1X - M224>N = 86>9 = 9.56; 
  (e) SD = 2SD2 = 29.56 = 3.09.
 2. (a) 4; (b) 4; (c) 26; (d) 3.25; (e) 1.80.
 3. (a) 4.3125; (b) 4.5550; (c) 10.7637; (d) 2.6909; (e) 1.6404.
 4. The average temperature, in the sense of adding up the 10 

temperatures and dividing by 10, was 5 degrees Celsius. 
This is the mean. However, if you line up the temperatures 
from lowest to highest, the middle two numbers are 5 and 6.  
The middle number in a distribution is called the median. 
In a situation like this, when you have two middle numbers, 
the median is the mean of those two numbers. Therefore, the 
median temperature is 5.5 degrees. The specific temperature 
that came up most often is the mode; the mode is 6 degrees.

As for the variation (the amount of variability), one 
approach is the variance—the average of each tempera-
ture’s squared deviation from the mean temperature, which 
is 7.0. You get a more direct sense of how much a group 
of numbers vary among themselves if you take the square 
root of the variance, which gives the standard deviation; the 
square root of 7.0 is 2.65. This means, roughly, that on an 
average day the temperature differs by 2.65 degrees from 
the average of 5 degrees.

 5. (a) .4000; (b) .1446; (c) similar to question 4.
 6. The mean, mode, and median for a normal curve are all 

located at the same midpoint of the curve (this is also the 
highest point in the distribution). The mode is the high-
est point in the distribution, which for a normal curve falls 
exactly at the midpoint of the distribution. This midpoint is 
the median value, since half of the scores in the distribution 
are below that point and half are above that point. The mean 
also falls at the same point because the normal curve is sym-
metrical about the midpoint, and every score in the left hand 
side of the curve has a matching score on the right hand side.

 7. The mean is the ordinary arithmetic average: add up the 
total number of anxiety attacks and divide by the number 
of people. The mean number of anxiety attacks over a two-
week period was 6.84. The SD (standard deviation), roughly 
speaking, is the average amount that the number of anxi-
ety attacks are spread out from their average—in this case, 
by 3.18 attacks. This is quite a lot of spread. To be more 

(d) Based on frequency table in (c) above. See answer to 
question 3b for an example.
(e) Unimodal, approximately symmetrical (slightly skewed 
to the left).

 6. (a) Similar to question 5a.
(b) Grouped frequency table:

Interval Frequency Percent

20–29 7 20.6

30–39 7 20.6

40–49 5 14.7

50–59 0  0.0

60–69 5 14.7

70–79 0  0.0

80–89 10 29.4

(c) Histogram:
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(d) Roughly rectangular.
 7. (a) Bimodal; (b) approximately normal (or unimodal or 

symmetrical); (c) multimodal.
 8. (a) Any distribution that is symmetrical (that is, the pattern 

of frequencies on the left and right side of the distribution 
are mirror images of each other); (b) any distribution in 
which all values have approximately the same frequency; 
(c) any distribution in which the scores are piled up on the 
left side of the distribution and are spread out on the right 
side of the distribution.

 9.  (a) A distribution is the way a group of numbers is spread 
out over the possible values the numbers can have. You  
can describe such a distribution with a graph, called a  
histogram—a kind of bar graph with one bar for each pos-
sible value with one unit of height for each time its particu-
lar value occurs. In a histogram, a symmetrical distribution 
has a symmetrical shape (the right and left halves are  
mirror images). A unimodal distribution is one in which 
this graph has a single high point, with the other values 
gradually decreasing around it.
(b) A negatively skewed unimodal distribution has a single 
high point, is not symmetrical, and its tail—the long, low 
side—extends to the left (where the negative scores go on 
the graph).
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measure, in nature and in psychology, tend approximately 
to follow the particular pattern shown in the figure shown 
here, called a “normal curve.” In a normal curve, most 
of the scores are near the middle, with fewer numbers of 
scores at each extreme. Because the normal curve is math-
ematically defined, the precise proportion of scores in any 
particular section of it can be calculated, and these have  
been listed in special tables. (Then explain mean and stan-
dard deviation as in answers to Chapter 2 problems, and  
Z scores as in question 3.) The normal curve table tells the 
percentage of score in the normal curve between the mean 
and any particular Z score, and the percentage of scores in 
the tail beyond it for any Z score.

50 60

Top 5%

70
66.4

The coordination test scores are known to follow a 
normal curve. Thus, you can look up in the table the Z score 
for the point on the normal curve at which 5% of the scores 
are in the tail. This is a Z score of 1.64 (actually, there is not 
an exact point on the table for 5% in the tail; so I could have 
used either 1.64 or 1.65). With a standard deviation of 10, 
a Z score of 1.64 is 16.4 points above the mean; adding that 
to the mean of 50 makes the score needed to be in the top 
5% turn out to 66.4.

 11. A sample is a group of people studied that represents the 
entire group to which the results are intended to apply, 
called the population. (In this example, the population is 
adults in Milwaukee.) You study a sample because it would 
be impractical or impossible to test the entire population. 
One way of ensuring that the sample is not systematically 
unrepresentative is to select the sample randomly. This does 
not mean haphazardly. For example, just taking adults who 
are easily available to test would be haphazard sampling. 
But this would not be a good method because whatever fac-
tors make them easily available—such as living in a nearby 
town—might make them unrepresentative of the population 
as a whole. By using randomly selected telephone numbers 
to select the sample, the researchers are trying to produce a 
sample that is representative of the whole population.

 12. (a) 10/50: p = 10>50 = .2; (b) .4; (c) 110 + 202>50 = .6; 
(d) .6; (e) 1. (f) The probability of a particular thing happen-
ing is usually defined as the number of possible ways the 
thing could happen (the number of possible successful out-
comes) divided by the number of possible ways things like 
this could happen (the number of all possible outcomes). 
For part (a) there are 10 different drug/alcohol people you 
might pick out of a total of 50 people you are picking from. 
Thus, the probability is 10>50 = .2. The same principle 
applies for parts (b) through (e).

Chapter 4
 1. (a) Hypothesis-testing procedure: the logical, statistical pro-

cedure for determining the likelihood of your study having 

precise, you figure the standard deviation by taking each 
person’s number of anxiety attacks and subtracting 6.84 
from it and squaring this difference; the standard deviation 
is the square root of the average of these differences.

 8. Like the answer to question 7, focusing on means of 5.02, 
5.11, 32.27, and 31.36 and on standard deviations of 2.16, 
2.08, 20.36, and 21.08.

Chapter 3
 1. (a) Z = 1X - M2>SD = 191 - 792>12 = 1; (b) - .92; (c) 2.
 2. (a) If IQ = 107, Z = 1X - M2>SD = 1107 - 1002>15 =

.47; X = 1Z21SD2 + M = 1.4721412 + 231 = 250. (We 
rounded off to a whole number because the actual score on 
the test is the number of items correct, which cannot be a 
fraction.) (b) Z = -1.13; X = 185; (c) Z = 0; X = 231.

 3. Wife: Z = 1X - M2>SD = 163 - 602>6 = .5. Husband: 
Z = 159 - 552>4 = 1. The husband has adjusted better in 
relation to other divorced men than the wife has adjusted in 
relation to other divorced women.

For wives, a score of 63 is 3 points better than the aver-
age of 60 for divorced women in general. (The mean in the 
problem is the ordinary average—the sum of the scores 
divided by the number of scores.) There is, of course, some 
variation in scores among divorced women. The approximate 
average amount that women’s scores differ from the average 
is 6 points; this is the SD (standard deviation) referred to in 
the problem. (SD is only approximately the average amount 
scores differ from the mean. To be precise, SD is the square 
root of the average of the square of the difference of each 
score from the mean.) Thus, this divorced woman’s score of 
63 (which is 3 points above the mean of 60) is only half as 
far as above the mean of wives’ scores. This gives her what 
is called a Z score of +.5, which gives her location on a scale 
that compares her score to that of divorced women in gen-
eral. Using the same logic, the husband’s divorce adjustment 
is as much above the mean as the average amount that men 
differ from the mean; that is, he has a Z score of +1. What 
this all means is that both have adjusted better than average 
for their gender, but the husband has adjusted better in rela-
tion to other divorced men than the wife has adjusted in rela-
tion to other divorced women.

 4. (a) 50%; (b) 16%; (c) 98%; (d) 84%; (e) 50%; (f) 84%; 
(g) 2%; (h) 16%.

 5. (a) 50; (b) 45; (c) 40; (d) 35; (e) 30.
 6. (a) From the normal curve table, 43.32% (.4332) have Z 

scores between the mean and 1.5. By definition, 50% have 
Z scores below the mean. Thus, the total percentage below 
1.5 is 50% + 43.32% = 93.32%; (b) 6.68%; (c) 6.68%; 
(d) 93.32%; (e) 1.79%; (f) 98.21%; (g) 32.64%; (h) 3.75%; 
(i) 4.65%.

 7. (a) Z = 116 - 152>5 = .2; from the normal curve table, 
percentage in the tail for a Z score of .2 = 42.07%; 
(b) 34.46%; (c) 27.43%; (d) 72.57%; (e) 42.07%.

 8. (a) Top 40% means 40% in the tail; the nearest Z score 
from the normal curve table for 40% in the tail is .25; a 
Z score of .25 equals a raw score of 1.252152 + 15 = 16.25; 
(b) 17.6; (c) 19.2.

 9. (a) 21.90%; (b) 22.24%; (c) 42.79%; (d) 44.06%; (e) 
21.90%.

 10. (a) Needed Z = 1.64; this corresponds to a raw score of 11.6421102 + 50 = 66.4. (b) The scores for many things you 
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 6. (a) ❶ Restate the question as a research hypothesis and 
a null hypothesis about the populations. There are two 
populations of interest:
Population 1: Students who are prevented from using their 
sense of smell.
Population 2: Students in general.

The research hypothesis is that students prevented from  
using their sense of smell (Population 1) will do worse on 
the taste task than students in general (Population 2). The 
null hypothesis is that students prevented from using their 
sense of smell (Population 1) will not do worse on the taste 
task than students in general (Population 2).
❷ Determine the characteristics of the comparison dis-
tribution. The comparison distribution will be the same as 
Population 2. As stated in the problem, � = 14 and � = 4. 
We assume it follows a normal curve.
❸ Determine the cutoff sample score on the compari-
son distribution at which the null hypothesis should be 
rejected. For a one-tailed test at the .05 level, the cutoff is 
-1.64. (The cutoff is a negative value, because the research 
hypothesis is that Population 1 will do worse on the task 
than Population 2—that is, Population 1 will have a lower 
score on the task than Population 2.)
❹ Determine your sample’s score on the comparison 
distribution. The sample’s score was 5. Z = 15 - 142>4 =
-2.25.
❺ Decide whether to reject the null hypothesis. A Z 
score of -2.25 is more extreme than the cutoff of -1.64. 
Thus, you can reject the null hypothesis. The research hy-
pothesis is supported—not having a sense of smell makes 
for fewer correct identifications.
(b) In brief, you solve this problem by considering the likeli-
hood that being without a sense of smell makes no differ-
ence. If the sense of smell made no difference, the probability 
of the student studied getting any particular number correct 
is simply the probability of students in general getting  
any particular number correct. We know the distribution 
of the number correct that students get in general. Thus, 
you can figure that probability. It turns out that it would 
be fairly unlikely to get only five correct; so the researcher 
concludes that not having the sense of smell does make a 
difference.

To go into the details a bit, the key issue is determin-
ing these probabilities. We assumed that the number cor-
rect for the students in general follows a normal curve—a 
specific bell-shaped mathematical pattern in which most of 
the scores are in the middle and there are fewer scores as 
the number correct gets higher or lower. There are tables 
showing exactly what proportions are more extreme than 
any particular Z score on the normal curve.

When considering what to conclude from a study, 
researchers often use a convention that, if a result could 
have happened by chance less than 5% of the time under a 
particular scenario, the scenario will be considered unlikely. 
The normal curve tables show that the top 5% of the normal 
curve begins with a Z score of 1.64. The normal curve is 
completely symmetrical; thus, the bottom 5% includes all 
Z scores below -1.64. Therefore, the researcher would 
probably set the following rule: the scenario in which being 
without the sense of smell makes no difference will be 
rejected as unlikely if the number correct (converted to a  

gotten a particular pattern of results if the null hypothesis 
is true. (b) .05 Significance level: the situation in hypoth-
esis testing in which you decide to reject the null hypothesis 
because the probability of getting your particular results 
if the null hypothesis were true is less than 5%. (c) Two-
tailed test: a procedure used in hypothesis testing when 
the research hypothesis does not specify a particular direc-
tion of difference; it tests for extreme results that are either 
higher or lower than would be expected if the null hypoth-
esis were true.

 2. It is possible that the research hypothesis is correct but the 
result in the particular sample was not extreme enough to 
be able to reject the null hypothesis.

 3. i. (a) Population 1: Canadian children of librarians; 
Population 2: All Canadian children. (b) Population 1 
children have a higher average reading ability than Pop-
ulation 2 children. (c) Population 1’s average reading 
ability is not higher than Population 2’s. (d) One-tailed, 
because the question is whether they “score higher”; 
only one direction of difference is of interest.

  ii. (a) Population 1: People who live in a particular city; 
Population 2: All people who live in the region. (b) 
Populations 1 and 2 have different mean incomes.  
(c) Populations 1 and 2 have the same mean income. 
(d) Two-tailed, because the question is whether the 
income of the people in the city is “different” from 
those in the region as a whole; a difference in either 
direction would be of interest.

  iii. (a) Population 1: People who have experienced an 
earthquake; Population 2: People in general. (b) Popu-
lations 1 and 2 have different mean levels of self- 
confidence. (c) Populations 1 and 2 have the same mean 
level of self-confidence. (d) Two-tailed, because the 
question specifies “more or less”; a difference in either 
direction would be of interest.

 4. 

Study Cutoff

Z Score on 
Comparison  
Distribution Decision

A +1.64 2 Reject null hypothesis

B {1.96 2 Reject null hypothesis

C +2.33 2 Inconclusive

D {2.58 2 Inconclusive

E +1.64 1 Inconclusive

 5. 

Study Cutoff

Z Score on 
Comparison  
Distribution Decision

A +1.64 1 Inconclusive

B {2.58 4 Reject null hypothesis

C {2.58 3 Reject null hypothesis

D {2.58 2.5 Inconclusive

E -1.64 -2 Reject null hypothesis



684 Answers to Set I Practice Problems

 3. (a) �2 = 202 = 400; �2
M = �2>N = 400>2 = 200; �M =

  2�2
M = 2200 = 14.14; (b) 11.55; (c) 10; (d) 6.67.

 4. (a) The best estimate of the population mean is the sam-
ple mean of 100. From question 2a, the standard deviation 
of the distribution of means 1�M2 is 7.07. For the 95% 
confidence limits, the Z scores you want are -1.96 and 
+1.96.  Lower limit = 1-1.96217.072 + 100 = 86.14; 
upper limit = 11.96217.072 + 100 = 113.86; (b) 88.69, 
111.31; (c) 90.2, 109.8; (d) 93.47, 106.53.

 5. (a) The best estimate of the population mean is the sample 
mean of 10. From question 3a, the standard deviation of 
the distribution of means 1�M2 is 14.14. For the 99% con-
fidence limits, the Z scores you want are -2.58 and +2.58. 
Lower limit = 1-2.582114.142 + 10 = -26.48; upper 
limit = 12.582114.142 + 10 = 46.48; (b) -19.80, 39.80; 
(c) -15.80, 35.80; (d) -7.21, 27.21.

 6. (a) ❶ Restate the question as a research hypothesis and 
a null hypothesis about the populations. There are two 
populations of interest:
Population 1: People given the experimental treatment.
Population 2: People in general (who do not get the experi-
mental treatment).

The research hypothesis is that the population given 
the experimental treatment (Population 1) has a differ-
ent mean score than people in general (Population 2). The 
null hypothesis is that Population 1’s mean is the same as 
 Population 2’s.
❷ Determine the characteristics of the comparison 
distribution. Comparison distribution is a distribution 
of means of samples of 10 taken from the distribution of 
Population 2. �M = � = 40; �2

M = �2>N = 62>10 = 3.6;
�M = 2�2

M = 23.6 = 1.90. Because the population is 
normal, the distribution of means is normal.
❸ Determine the cutoff sample score on the compari-
son distribution at which the null hypothesis should be 
rejected. For a two-tailed test at the .05 level, the cutoffs 
are -1.96 and 1.96.
❹ Determine your sample’s score on the comparison 
distribution. Z = 144 - 402>1.90 = 2.11.
❺ Decide whether to reject the null hypothesis. 2.11 is 
more extreme than 1.96. Thus, you can reject the null hy-
pothesis. The research hypothesis is supported; those who 
receive the experimental treatment score differently from 
the general population. The distributions involved are 
shown on the next page.
(b) Hypothesis-testing steps similar to part (a). �M = 6;
Z = 148 - 402>6 = 1.33; do not reject null hypothesis; 
study is inconclusive as to whether those who receive the 
experimental treatment are different from those in the gen-
eral population. (c) For part (a), 95% confidence interval: 
Lower limit = 1-1.96211.92 + 44 = 40.28; upper limit =11.96211.92 + 44 = 47.72. For part (b), 95% confidence 
interval: 36.24 to 59.76.

 7. Hypothesis-testing steps and drawing similar to question 6. 
(a) �M = .8; Z = 182 - 812>.8 = 1.25; do not reject null 
hypothesis. (b) �M = 2.53; Z = 184 - 812>2.53 = 1.19; 
do not reject null hypothesis. (c) For part (a), 99% confi-
dence interval: 79.94 to 84.06. For part (b), 99% confidence 
interval: 77.47 to 90.53.

Z score using the mean and standard deviation for students 
in general) is less than -1.64.

The actual number correct for the student who could 
not use the sense of smell was 5. The normal curve for stu-
dents in general had a mean of 14 and a standard deviation 
of 4. Getting 5 correct is 9 below the mean of 14; in terms 
of standard deviations of 4 each, it is 9/4 below the mean. 
A Z score of -2.25 is more extreme than -1.64. Thus, the 
researcher concludes that the scenario in which being with-
out smell has no effect is unlikely. This is shown in what I 
have drawn here:

−2 0−1 1 2

Z Score−2.25

 7. Cutoff (.01 level, one-tailed) = -2.33; Z score on compar-
ison distribution for patient studied = 1.20; the experiment 
is inconclusive. Hypothesis testing steps, explanation, and 
sketch are similar to those of question 6.

 8. Cutoff (.05 level, two-tailed) = {1.96; Z score on com-
parison distribution for the police chief studied = .81; the 
experiment is inconclusive. Hypothesis testing steps, expla-
nation, and sketch similar to question 6.

 9. The two Ms (5.7 and 4.8) and the p 6 .05 are crucial. M 
stands for mean, the average of the scores in a particular 
group. The average number of times per day the high nar-
cissism participants looked in the mirrors was 5.7, while the 
average for the low narcissism participants was only 4.8. The 
p 6 .05 tells us that this difference is statistically significant 
at the .05 level. This means that, if a person’s level of nar-
cissism made no difference in how often the person looked 
in the mirror, the chances of getting two groups of partici-
pants who were this different on looking in the mirror just 
by chance would be 5%. Hence, you can reject that possibil-
ity as unlikely and conclude that the level of narcissism does 
make a difference in how often people look in the mirror.

 10. Similar to question 9.

Chapter 5
 1. The standard deviation of the distribution of means is gen-

erally smaller than the standard deviation of the distribu-
tion of the population of individuals because there is less 
variation among means of samples of more than one score 
than there are among individual scores. This is because 
the likelihood of two extreme scores in the same direction 
randomly ending up in the same sample is less than the 
probability of each of those extreme scores being chosen 
individually.

 2. (a) �2 = 102 = 100; �2
M = �2>N = 100>2 = 50; �M =

  2�2
M = 250 = 7.07; (b) 5.77; (c) 5; (d) 3.33.
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the distribution of means, making it clearly more extreme than  
the cutoff. Thus, you can reject the null hypothesis and  
conclude that the results support the hypothesis that elderly 
women who take part in the special program have lower reac-
tion times.
(d) 99% confidence interval: 1.24 to 1.76. The confidence 
interval is an estimate (based on your sample’s mean and 
the standard deviation of the distribution of means) of the 
range of values that is likely to include the true population 
mean for the group studied (Population 1: in this example, 
women who receive the special reaction-time program). 
A 99% confidence interval is the range of values you are 
99% confident include the true population mean. The lower 
limit of this interval is the mean of the lowest distribution 
of means that would have a 99% chance of including this 
sample mean; its upper limit is the mean of the highest dis-
tribution of means that would have a 99% chance of includ-
ing this sample mean.

To figure the confidence interval, you first consider 
that the best single estimate of the mean of Population 1 is 
the sample’s mean (in this case, 1.5). You then assume that 
the standard deviation of the distribution of means for this 
population is the same as for the known population (which 
we figured earlier to be .1). Based on this information, if 
the true population mean was 1.5, 99% of the time, sample 
means would fall between a Z score of -2.58 (the point on 
the normal curve that includes 49.5% of the scores below 
the mean) and +2.58. In our example, these Z scores cor-
respond to raw scores of 1.24 and 1.76.

It turns out that the values figured in this way are the 
limits of the confidence interval. Why? Suppose the true 
population mean was 1.24. In this case, there would be a 
.5% chance of getting a mean as large as or larger than 1.5. 
(That is, with a mean of 1.24 and a standard deviation of 
.1, 1.5 is exactly 2.58 standard deviations above the mean, 
which is the point that corresponds to the cutoff for the top 
.5% of this curve.) Similarly, if the true population mean 
was 1.76, there would only be a .5% chance of getting a 
mean lower than 1.5.

 9. (a) and (b) Hypothesis-testing steps and drawing similar to 
question 6. �M = .2; Z = 15.9 - 5.52>.2 = 2; reject the 
null hypothesis. (c) Similar to question 8c, plus an explana-
tion of material from previous chapter on hypothesis test-
ing, normal curve, means, and standard deviations. (d) 95% 
confidence interval: 5.51 to 6.29.

 10. The error bars are the lines that go above and below the top 
of each bar. The error bars show, for each particular group, 
the standard deviation of the distribution of means for peo-
ple like those in this group. (Then explain a distribution of 
means as in question 8c.)

 11. Similar to question 8d.

Chapter 6
 1. Alpha is the probability of rejecting the null hypothesis 

when the null hypothesis is actually true (that is, alpha is 
the probability of making a Type I error). Beta is the prob-
ability of failing to reject the null hypothesis when in fact 
the null hypothesis is false (that is, beta is the probability of 
making a Type II error).

 8. (a) and (b) Hypothesis-testing steps and drawing similar to 
question 6. �M = .1; Z = 11.5 - 1.82>.1 = -3; reject the 
null hypothesis.

  (c) This is a standard hypothesis-testing problem, with 
one exception. You can’t compare directly the reaction 
times for the group of 25 women tested to a distribution 
of reaction times for individual women. The probability of 
a group of scores having an extreme mean just by chance 
is much less than the probability of any single individual 
having an extreme score just by chance. (When taking a 
group of scores at random, any extreme individual scores 
are likely to be balanced out by less extreme or oppositely 
extreme scores.) Thus, you need to compare the mean of 
the group of 25 reaction times to a distribution of what 
would happen if you were to take many random groups  
of 25 reaction time scores and find the mean of each  
group of 25 scores.

Such a distribution of many means of samples has 
the same mean as the original distribution of individual 
scores (there is no reason for it to be higher or lower). How-
ever, it is a narrower curve. This is because the chances of 
extremes are less. In fact, its variance will be exactly the 
variance of the original distribution of individuals divided 
by the number of scores in each sample. In this example, 
this makes a distribution of means with a mean of 1.8 and a 
standard deviation of .1 (that is, .1 is the square root of the 
result of .52 divided by 25). This will be a normal distribu-
tion because a distribution of many means from a normally 
distributed population is also normal.

The cutoff for significance, using the .01 level and 
a one-tailed test, is -2.33. The mean reaction time of 
the group of 25 women who received the special pro-
gram, 1.5, was 3 standard deviations below the mean of  

4028 34 46 52

40 41.9

6 (a)

40 46

6 (b)

52
4844
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 5. A small positive effect size is .20; Predicted �1 = �2 +1d21�2 = 15 + 1.202122 = 15.4; (b) 14; (c) 16.6; (d) 15.7; 
(e) 12.

 6. 

Z Needed for 
Significance  �M

Score for  
Significance

(a) 1.64 .4 90.66

(b) 1.64 .4 90.66

(c) 1.64 .2 90.33

(d) 1.64 1.0 91.64

(e) 2.33 .4 90.93

(f) 1.96 .4 90.78

Z for Significance on the 
Predicted Population Beta Power

Effect  
Size

(a) 190.66 - 912>.4 =  - .85 .20 .80 .25

(b) 190.66 - 922>.4 = -3.35 6 .01 7 .99 .50

(c) 190.33 - 912>.2 = -3.35 6 .01 7 .99 .50

(d) 191.64 - 912>1 =   .64 .74 .26 .25

(e) 190.93 - 912>.4 =  - .18 .43 .57 .25

(f) 190.78 - 912>.4 =  - .55 .29 .71 .25

Drawing of overlapping distributions for part (a) follows.

 2. (a) 

Real Situation

Null  
Hypothesis  

True

Research  
Hypothesis  

True

Co
nc

lu
si

on
 fr

om
  

Hy
po

th
es

is
 T

es
tin

g

Research 
Hypothesis 
Supported  
(Reject null)

Type I Error
Decide more recess 

time improves 

behavior, but it 

really doesn't

Correct Decision
Decide more  

recess time  

improves behavior,  

and it really does

Study Inconclusive  
(Do not reject null)

Correct Decision
Decide effect of 

recess time on 

behavior is not 

shown in this study; 

actually more 

recess time doesn't 

improve behavior

Type II Error
Decide effect of  

recess time on  

behavior is not  

shown in this  

study; actually  

more recess time  

improves behavior

(b) and (c) Answers are similar to those of question 2a.
 3. (a) d = 1�1 - �22>� = 119 - 252>12 = - .50, medium; 

(b) -.25. small; (c) 0, no effect; (d) .42, medium; (e) .83, large.
 4. (a) d = 1�1 - �22>� = 150 - 502>5 = 0, no effect; (b) 

.40, medium; (c) .80, large; (d) 1.20, large; (e) -.60, medium.

89.2 89.6 90 90.4 90.8Raw Scores:

μ

89.2 89.6 90 90.4 90.8 91.2Raw Scores:

Research hypothesis
situation, based
on Population 1

Null hypothesis situation
(comparison distribution),
based on Population 2

power

alpha

90.66
−3 −2 −1 0 +1 +2Z Scores:

90.66
−2 −1 0 +1 +2 +3Z Scores:

1.64

−.85

μ

91.2

beta
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their study had a high level of power (about 90%) for 
detecting both large and medium-sized effects. Given this 
high level of power, the researchers were able to conclude 
that the most likely reason for the nonsignificant study 
results is that the research hypothesis is in fact false. As 
the researchers noted, with such a high level of power, it is 
very unlikely that the results of the study would be nonsig-
nificant if there were in fact a medium-sized or large effect 
in the population. Since smaller effect sizes are associated 
with lower power, the researchers were careful not to rule 
out the possibility that there is in fact a small effect in the 
population (which may not have been detected in the study 
due to the lower power for identifying a small effect size).

 9. (a) Increases power; (b) decreases power; (c) increases 
power; (d) decreases power; (e) decreases power.

 10. (i) When planning an experiment, to permit changes of 
various kinds (or even abandon the project) if power is too 
low (or possibly to make the study less costly, for example 
by reducing the number of participants, if power is higher 
than reasonably needed). (ii) After a study is done that had 
nonsignificant results, to evaluate whether the result should 
be attributed to the null hypothesis being true (in the high-
power situation) or to inadequate power so that it is still 
reasonable to think that future research might have a chance 
of being significant. (Also, in the case of a significant result 
with a large sample, if power is very high, this suggests that 
a small effect size is possible, so that, although the result is 
significant, it may not be very important.)

 11. (a) ❶ �M = 2; ❷ significance cutoff: Z = 1.64; raw =
50 + 11.642122 = 53.28; ❸ corresponding Z on predicted 
distribution = 153.28 - 552>2 = - .86; ❹ from Z table, 
power = .81, beta = .19.

  (b)

 7. (a) Not affected; (b) possibly of small importance; (c) 
regarding situation (a), the significance tells you the prob-
ability of getting your results if the null hypothesis is 
true; sample size is already taken into account in figuring 
the significance. Regarding situation (b), it is possible to 
get a significant result with a large sample even when the 
actual practical effect is slight, such as when the mean of 
your sample (which is your best estimate of the mean of 
the population that gets the experimental treatment) is only 
slightly higher than the mean of the known population. This 
is possible because significance is based on the difference 
between the mean of your sample and the known popula-
tion mean divided by the standard deviation of the distri-
bution of means. If the sample size is very large, then the 
standard deviation of the distribution of means is very small 
(because it is figured by taking the square root of the result 
of dividing the population variance by the sample size). 
Thus, even a small difference between the means when 
divided by a very small denominator can give a large over-
all result, making the study significant.

 8. Power is the chance of rejecting the null hypothesis if the 
research hypothesis is true. In other words, the power of a 
study represents the likelihood that you will get a statisti-
cally significant result in your study, if in fact the research 
hypothesis is true. Ideally, a study should have power of 
80% or more. If a study has low power and does not get 
a statistically significant result, the result of the study is 
entirely inconclusive. This is because it is not clear whether 
the nonsignificant result is due to the low power of the 
study or because the research hypothesis is in fact false.

Effect size can be thought of as the degree to which 
populations do not overlap. The larger the effect size is, the 
greater the power will be. As noted by Aron and colleagues, 

46 48 50 52 54Raw Scores:

μ

46 48 50 52 54 56Raw Scores:

Research hypothesis
situation, based
on Population 1

Null hypothesis situation
(comparison distribution),
based on Population 2

power

alpha

53.28
−3 −2 −1 0 +1 +2Z Scores:

53.28
−2 −1 0 +1 +2 +3Z Scores:

1.64

−.86

μ

56 58
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  (b) 

Comparison
distribution

(t)

Population
(normal)

30

28.83 30 31.1727.66

28

Sample

32.34

(c) Similar to question 5c, except, instead of difference 
scores, actual scores are used here, and the expected popu-
lation mean is the 30 minutes that the sheriff had promised 
to do better than the current sheriff.

 3. (a) and (b) Hypothesis testing steps and sketch similar 
to questions 2a and b; t needed = -2.776, 2.776; t =  1M - �2>SM = 146 - 402>2.3 = 2.61; do not reject the 
null hypothesis. (c) Similar to question 5c, except, instead 
of difference scores, actual scores are used here, and the 
expected population mean is the 40 questions that people 
usually get correct.

 4. (a) t needed 1df = 19, p 6 .05, one-tailed) = 1.729; S2
M =  

S2>N = 8.29>20 = .415; SM = 2S2
M = 2.415 = .64; t =  1M - �2>SM = 11.7 - 02>.64 = 2.66; reject null hypothesis.

(b) t needed = -1.984, 1.984; S2
M = S2>N = 414.53>164 =  

2.53; SM = 2S2
M = 22.53 = 1.59; t = 12.3 - 02>1.59 =  

1.45; do not reject null hypothesis.
(c) t needed = -2.625; S2

M = S2>N = 4>15 = .27; SM =  
2S2

M = 2.27 = .52; t = -4.23; reject null hypothesis.
 5.  (a) ❶ Restate the question as a research hypothesis and 

a null hypothesis about the populations. There are two 
populations of interest:
Population 1: Cities like those who participated in the 
 antilittering program.
Population 2: Cities that do not change in the amount of 
litter over a one-year period.

The research hypothesis is that Population 1 has a 
greater mean decrease in litter than Population 2. The null 
hypothesis is that Population 1 doesn’t have a greater mean 
decrease in litter than Population 2.
❷ Determine the characteristics of the comparison dis-
tribution. Population 2: shape = assumed normal; � = 0; 
the estimated population variance is S2 = 3g1X - M224> 
df = 1502>14 - 12 = 16.67. Distribution of means: shape 
=  t1df = 32; mean of the distribution of means of difference 
scores = 0; variance of the distribution of means of differ-
ence scores is S2

M = S2>N = 16.67>4 = 4.17; standard 
deviation of the distribution of means of difference scores is 
SM = 2S2

M = 24.17 = 2.04.

   (c) Power is the chance of rejecting the null hypothesis if 
the research hypothesis is true. To find power, you first 
need the standard deviation of the comparison distribution 
(2 here) and the cutoff to reject the null hypothesis in raw 
score terms (this is a one-tailed test at the .05 level; so it 
is a Z of 1.64, which for this distribution’s mean and stan-
dard deviation is 53.28). You also have to be able to assume 
that the distributions of both the known population (Popula-
tion 2) and the distribution for the population based on the 
research hypothesis (Population 1) follow a normal curve 
and have the same variance. Then comes the power figuring. 
The researcher hypothesizes that the mean of the popula-
tion of artists (Population 1) is 55. The distribution of means 
from this population would be normal with mean = 55 and 
�M = 2. We already figured that any mean above 53.28 will 
be significant in terms of the comparison distribution. But a 
score of 53.28 has a Z score of only - .86 on the distribution 
of means based on the researcher’s hypothesis. Using the 
normal curve table, 81% is above - .86. Assuming that the 
research’s predictions are correct, there is an 81% chance 
that a sample of 36 artists will produce a result high enough 
to reject the null hypothesis. That is, power is 81%.

 12. (a) ❶ predicted �1 = �2 + 1d)1�2 = 11 + (.802142 =
14.2. ❷ �M = .89; significance cutoff: Z = 2.58; raw 
=  11 + 12.5821.892 = 13.3; ❸ corresponding Z on pre-
dicted distribution = 113.3 - 14.22>.89 = -1.01; ❹ from 
Z table, power = .84, beta = .16. (b) and (c) are similar 
to questions 11b and c, with an additional explanation of 
effect size.

Chapter 7
 1. (a) t needed 1df = 63, p 6 .05, one-tailed) = -1.671; 
  S2

M = S2>N = 9>64 = .141. SM = 2S2
M = 2.141 = .38; 

t = 1M - �2>SM = 111 - 12.402>.38 = -3.68; reject null 
hypothesis. (b) t needed = -2.690, 2.690; SM = 2.55; t =
1.32; do not reject null hypothesis. (c) t needed = 2.364;
SM = .13; t = 3.15; reject null hypothesis.

 2. (a) ❶ Restate the question as a research hypothesis and 
a null hypothesis about the populations. There are two 
populations of interest:
Population 1: Response times under the new sheriff.
Population 2: Response times under the old sheriff.

The research hypothesis is that the two populations are differ-
ent. The null hypothesis is that the two populations are the same.
❷ Determine the characteristics of the comparison dis-
tribution. Population 2: shape = assumed normal; � = 30; 
The estimated population variance is S2 = 3g1X - M224>df
=  11242>110 - 12 = 13.78. Distribution of means: shape =  
t1df = 92; mean of the distribution of means = 30; variance 
of the distribution of means is S2

M = S2>N = 13.78>10 =  
1.378; standard deviation of the distribution of means is 
SM = 2S2

M = 21.378 = 1.17.
❸ Determine the cutoff sample score on the compari-
son distribution at which the null hypothesis should be 
rejected. t needed 1df = 9, p 6 .05, one-tailed) = -1.833.
❹ Determine your sample’s score on the comparison distri-
bution. M = 1gX2>N = 280>10 = 28; t = 1M - �2>SM 
=  128 - 302>1.17 = -1.71.
❺ Decide whether to reject the null hypothesis. -1.71 
is not more extreme than -1.833; do not reject the null 
hypothesis.
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I estimated it from the information in the sample of four cit-
ies. If the sample cities were just a chance drawn from the 
hypothetical distribution of no change, the variance of these 
cities should reflect the variance of this distribution (which 
would be the distribution they come from). However, the 
variance figured from a particular group (sample) from a 
larger population will in general be slightly smaller than the 
true population’s variance. Thus, I had to modify the vari-
ance formula to take this into account: instead of dividing 
the sum of the squared deviations by the number of scores, 
I divided it by the degrees of freedom, which is the number 
of scores minus 1—in this case, 3. (This adjustment exactly 
accounts for the tendency of the variance in the sample to 
underestimate the true population variance.) As shown in 
the calculations in the steps of hypothesis testing, this gave 
an estimated population variance 1S22 of 16.67.

I was interested not in individual cities but in a group 
of four. Thus, what I really needed to know was the charac-
teristics of a distribution of means of samples of four taken 
from this hypothetical population of individual city change 
scores. Such a distribution of means will have the same mean 
of 0 (since there is no reason to expect the means of such 
groups of four drawn randomly to be systematically higher or 
lower than 0). However, such a distribution will have a much 
smaller variance (because the average of a group of four 
scores is a lot less likely to be extreme than any individual 
score). Fortunately, it is known (and can be proved mathemat-
ically) that the variance of a distribution of means is the vari-
ance of the distribution of individuals divided by the number 
of individuals in each sample. In our example, this works out 
to 16.67 divided by 4, which is 4.17. The standard deviation 
of this distribution is thus the square root of 4.17, or 2.04.

It also turns out that if we assume that the hypothetical 
population of individual cities’ change scores is normally 
distributed (and we have no reason to think otherwise), the 
distribution of means of samples from that distribution can 
be thought of as having a precise known shape, called a  
t distribution (which has slightly thicker tails than a normal 
curve). Thus, I looked in a table for a t distribution for the 
situation in which there are 3 degrees of freedom used to 
estimate the population variance. The table shows that there 
is less than a 1% chance of getting a score that is -4.541 
standard deviations from the mean of this distribution.

The mean change score for the sample of four cities 
was -5, which is 2.45 (that is, -5>2.04) standard deviations 
below the mean of 0 change on this distribution of means 
of change scores. This is not as extreme as -4.541. Thus, 
there is more than a 1% chance that these results could 
have come from a hypothetical distribution with no change. 
Therefore, the researcher would not rule out that possibil-
ity, and the study would be considered inconclusive.

 6. (a), (b), and (c). Hypothesis-testing steps, sketch, and expla-
nation similar to question 5. t needed = -2.776, 2.776; 
t = 1M - �2>SM = 1- .014 - 02>.005 = -2.8; reject 
the null hypothesis. (Note: This result is very close to the 
cutoff level; if you round off slightly, your result might not 
be significant. This is one of those rare situations in which 
different ways of rounding can produce different results.)

 7. (a) d = 1�1 - �22>� = 120 - 02>32 = .63, medium ef-
fect size; (b) .50, medium; (c) .25, small; (d) .20, small.

 8. From Table 7-11: (a) .22; (b) .71; (c) .86; (d) .77; (e) .99.
 9. From Table 7-12: (a) 33; (b) 12; (c) 156.

❸ Determine the cutoff sample score on the compari-
son distribution at which the null hypothesis should be 
rejected. t needed 1df = 3, p 6 .01, one-tailed) =  -4.541.
❹ Determine your sample’s score on the comparison dis-
tribution. Change scores = -7, -6, 1, -8; M = -20>4 =  
-5; t = 1M - �2>SM = 1-5 - 02>2.04 = -2.45.
❺ Decide whether to reject the null hypothesis. -2.45 
(from Step ❹) is not more extreme than the cutoff of 
-4.541 (from Step ❸); do not reject the null hypothesis.
(b)

Comparison
distribution
(t, df = 3)

Population
of individual

difference scores
μ = 0

S2 = 16.67

0

−2.04 0 +2.04

−9

Difference scores
(actual sample)

−8 −7 −6 −5 −4 −3 −2 −1 0 1 2

(c) The first thing I did was to simplify things by convert-
ing the numbers to difference scores—postprogram (2012) 
litter minus preprogram (2011) litter for each city. Then I 
found the mean of these difference scores, which was -5. 
That is, there is an average decrease of five pounds of litter 
per block per day.

The next step was to see whether this result, found in 
these four cities, indicates some real difference more gen-
erally due to being in this program. The alternative is the 
possibility that this much change could have happened 
in four randomly selected cities just by chance even if in 
general the program has no real effect. That is, we imagine 
that the average change for cities in general is actually 0, 
and maybe this study just happened to pick four cities that 
would have decreased this much anyway.

I then considered just how much a group of four cit-
ies would have to change before I could conclude that 
they have changed too much to chalk it up to chance. This 
required figuring out the characteristics of this imagined 
population of cities in which, on the average, there is no 
change. An average of no change is the same as saying it 
has a mean of 0 change. Since I didn’t know the variance 
of this hypothetical distribution of cities that don’t change, 
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=  .174. SDifference = .417; t = 1M1 - M22>SDifference = 112 -
11.12>.417 = 2.16. Conclusion: Reject the null hypothesis. 
The difference is significant.

  (b) S2
Pooled = 2.67; SDifference = .45; t = 2.00; do not reject 

the null hypothesis. (c) S2
Pooled = 2.60; SDifference = .417;

t = 2.16; reject the null hypothesis.
 4. (a) ❶ Restate the question as a research hypothesis and 

a null hypothesis about the populations. There are two 
populations of interest:
Population 1: People who get their news from TV.
Population 2: People who get their news from the Internet.

The research hypothesis is that the two populations 
have different means. The null hypothesis is that the two 
populations have the same mean.
❷ Determine the characteristics of the comparison 
distribution. S2

Pooled = 160>802142 + 120>802162 = 4.5; 
mean of the comparison distribution (distribution of difference 
between means) = 0; SDifference = .54; Shape = t1df = 802.
➌ Determine the cutoff sample score on the compari-
son distribution at which the null hypothesis should 
be rejected. t needed 1df = 80, p 6 .01, two-tailed) 
=  -2.639, 2.639.
❹ Determine your sample’s score on the comparison 
distribution. t = 124 - 262>.54 = -3.70.
❺ Decide whether to reject the null hypothesis. -3.70 is 
more extreme than -2.639; reject the null hypothesis; the 
prediction is supported by the experiment.
(b) 

 10. Similar to question 5c, except focusing on this study and 
the simpler situation involving just a single sample; you 
also do not need to explain the basic logic of hypothesis 
testing (only what is added when you have an unknown 
population variance).

 11. Similar to questions 5b and 5c, except the explanation 
should focus on this study; also, material on mean, standard 
deviation, and variance should be added, as in the answers 
to Chapter 2 problems.

 12. (a) Anxiety:  S2
M = S2>N = 1.852>100 = .0342; SM =2S2

M =
  2.0342 = .185; t = 1.50>.185 = 8.11. Depression: SM =

.423; t = 7.28; Introversion: SM = .222; t = -1.04; Neu-
roticism: SM = .421; t = 2.11.
(b) Similar to question 5c, except focusing on this study; 
also, material on mean, standard deviation, and variance 
should be added, as in the answers to Chapter 2 problems.

Chapter 8
 1. (a) Independent; (b) dependent; (c) dependent.
 2. (a) S2

Pooled = 1df1>dfTotal21S2
12 + 1df2>dfTotal21S2

22 = 119>382112 + 119>382122 = 1.5;S2
M1

= S2
Pooled>N1 = 1.5>20 = .075; 

S2
M2

= .075; S2
Difference = S2

M1
+ S2

M2
= .075 + .075 = .15; 

SDifference = .39. (b) .35; (c) .32; (d) .27; (e) .35.
 3. (a) t needed 1df = 58, p 6 .05, two-tailed) = -2.004, 2.004;
  S2

Pooled = 1df1>dfTotal21S2
12 + 1df2>dfTotal21S2

22 = 129>58212.42 + 129>58212.82 = 2.6; S2
M1

= S2
Pooled>N1 = 2.6>30 =

  .087; S2
M2

= .087; S2
Difference = S2

M1
+ S2

M2
= .087 + .087

Populations

(SPooled = 4.5)

Television Internet

Distributions of means

S2 = 4 S2 = 6

24 26

Samples

Distribution of differences
between means
(comparison distribution)

−3.70
0

SM = .27

(SM = .074)

SM = .46

(SM = .214)

SDifference = .54

2

2 2
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because the result was not significant even using the ordi-
nary procedure, it would probably not be significant using a 
modified procedure.)

 6. (a), (b), and (c). Hypothesis-testing steps, sketch, and expla-
nation similar to question 4. t needed = 1.943; S2

Pooled =14>6216.72 + 12>62112.332 = 8.58; S2
Difference = 2.86 + 1.72

=  4.58; SDifference = 2.14; t = 15.33 - 5.22>2.14 = .06. Do 
not reject the null hypothesis; the experiment is inconclu-
sive as to whether older children do better.

 7. (a) Estimated d = 1M1 - M22>SPooled = 124 - 262>24.5 =  
- .94; (b) –1.05; (c) .04. (d) Effect size represents the 
degree to which two populations do not overlap. The less 
that two populations overlap, the larger the effect size will 
be. In  psychology, we often want to know not just whether 
a result is significant, but how big the effect is; effect size 
provides a measure of how big the effect is. Effect size for 
the t test for independent means is the difference between 
the population means divided by the standard deviation 
of the population of individuals. However, you do not know 
the population means; so you estimate them using the sam-
ple means. You also do not know the standard deviation of 
the population of individuals; so you estimate it by using 
the pooled estimate of the population standard deviation. 
So, in part (a), the effect size was the difference between 
the sample means (24 minus 26, which gives -2), divided 
by the pooled estimate of the population standard deviation 
(which was the square root of 4.5, or 2.12). This gave an 
estimated effect size of - .94, which is a large effect size 
according to Cohen’s effect size conventions for the t test 
for independent means.

 8. From Table 8-5: (a) .19; (b) nearly 1; (c) .72; (d) .97.
 9. (a) Harmonic mean = 21N121N22>1N1 + N22 = 1221321572>13 + 572 = 5.7; from Table 8-5 approximate power = .11; 

(b) harmonic  mean = 16.7, power = .15; (c) harmonic 
mean = 26.7, power = .19; (d) harmonic mean = 30,
power = .19.

 10. (a) Estimated d = 1M1 - M22>SPooled = 1107 - 1492>84 =
- .50, medium effect size; needed N (from Table 8-6) 
=  50 per group, 100 total. (b) Estimated d = .20; needed 
N = 393 per group, 786 total. (c) Estimated d = .80; 
needed N = 20 per group, 40 total. (d) Estimated d =  - .80; 
needed N = 26 per group, 52 total.

 11. Along with the following, include a full explanation of all 
terms and concepts as in question 4c and answers to pre-
vious chapters’ explanation problems. (a) and (b) This 
study shows that using a conventional .05 significance 
level,  German children who receive low levels of support—
whether from their mother, father, or classmates—showed 
lower levels of self-worth. Further, the effect sizes were 
fairly large (.78 and .69) with regard to support from mother 
or father; however, the effect size was only small to moder-
ate (.35) with regard to support from classmates. This would 
seem to imply that support from parents is more important 
than support from classmates in terms of a child’s feeling of 
self-worth. The power of the study for a large effect size is 
.98. (This assumes there were about equal numbers of chil-
dren in the high and low support groups, that the test is two-
tailed, and uses the figure for 50 in each group.) The power 
for a medium effect size is .70. Because we already know 
that the results are significant and we know the effect sizes, 
the power calculations are not very important.

(c) In this situation, I am testing whether the two samples 
come from identical populations. I have two estimates of 
those identical populations, one from each sample. Thus, 
to get the most accurate overall estimate of the population 
variance, I can average the two estimates of the popula-
tion variance. To give more weight to the estimate based 
on the larger degrees of freedom, I figure a weighted aver-
age, multiplying each estimate by its proportion of the total 
degrees of freedom and adding up the results. This pooled 
estimate of the population variance comes out to 4.5.

Because I was interested not in individual scores but 
in the difference between the mean of a group of 61 and the 
mean of another group of 21, I needed to figure out what 
would be the characteristics of a distribution of differences 
between means of groups of 61 and 21 that are randomly 
taken from the two identical populations whose variance I 
just estimated. This required two steps. First, I figured the 
characteristics of the distribution of means in the usual way 
for the population associated with each sample, but using 
my pooled estimate for the variance of each population of 
individuals. This came out to .074 for the TV group and 
.214 for the Internet group. The second step is directly 
about the distribution of differences between means. It is 
like a distribution you would get if you took a mean from 
the distribution of means for the TV group, took one from the 
distribution of means for the Internet group, and figured 
their difference. After doing this many times, the distribu-
tion of these differences would make up a new distribution, 
called a distribution of differences between means. Because 
we are assuming (if Internet versus TV made no difference) 
that the two original populations have the same means, on 
average, the difference between a mean taken from the TV 
group and a mean taken from the Internet group should 
come out to 0 (because sometimes one will be bigger and 
sometimes the other, but in the long run these random 
fluctuations should balance out). The variance of this dis-
tribution of differences between means is affected by the 
variation in both distributions of means; in fact, it is just the 
sum of the two. Thus, its variance is .074 plus .214, or .288. 
Its square root, the standard deviation of the distribution of 
differences between means, is .54.

Because this whole process is based on estimated 
variances, the distribution of means is a t distribution with 
degrees of freedom equal to the total number of degrees of 
freedom that went into the two estimates; thus df = 80. 
Looking this up on the t table for .01 two-tailed gives a cut-
off needed of -2.639 and 2.639. The t for my sample is the 
difference between the two groups divided by the standard 
deviation of the distribution of differences between means: 124 - 262>.54 = -3.70. This is more extreme than the 
cutoff; so I can reject the null hypothesis.

 5. (a), (b), and (c). Hypothesis-testing steps, sketch, and exp-
lanation similar to question 4 [except part (c) also needs 
to include basic material as in answers to previous chapters’  
problems].  t needed = -2.262, 2.262; S2

Pooled = 15>9215.62
+  14>92119.32 = 11.69; S2

Difference = 1.95 + 2.34 = 4.29;
SDifference = 2.07; t = 16 - 9.62>2.07 = -1.74.  Do not 
reject the null hypothesis; the experiment is inconclusive 
as to whether including the child’s name makes a differ-
ence. (Note: The scores in this problem seem to violate 
the assumption of equal population variances. However, 
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Group 3

X - GM X - M M - GM
X Dev Dev 2 Dev Dev 2 Dev Dev 2

4 -2 4 0 0 -2 4

4 -2 4 0 0 -2 4

3 -3 9 -1 1 -2 4

5 -1  1 1 1 -2 4

g  16 18 2 16

 3. (a) ❶ Restate the question as a research hypothesis and 
a null hypothesis about the populations. There are three 
populations of interest:
Population 1: Patients with affective disorders.
Population 2: Patients with cognitive disorders.
Population 3: Patients with drug-related conditions.

The research hypothesis is that the three population 
means differ. The null hypothesis is that the three popula-
tions have the same mean.
❷ Determine the characteristics of the comparison dis-
tribution. F distribution with 2 and 9 degrees of freedom.
❸ Determine the cutoff sample score on the compari-
son distribution at which the null hypothesis should be 
rejected. 5% level, F1df = 2, 92 needed = 4.26.
❹ Determine your sample’s score on the comparison 
distribution. S2

Between = 15.332142 = 21.32;  S2
Within =1.67 + 3.33 + 2.672>3 = 2.22; F = 21.32>2.22 =  9.60.

❺ Decide whether to reject the null hypothesis. F from 
Step ❹ (9.60) is more extreme than cutoff F from Step ❸ 
(4.26); reject the null hypothesis.

 12. Similar to question 4c, focusing on the results of this  
study.

Chapter 9
 1. (a) F needed 1df = 2, 27; p 6 .052 = 3.36; S2

M = 3g1M -
GM224>dfBetween2 = 317.4 - 722 + 16.8 - 722 + 16.8 -
7224>2 = .12;  S2

Between = 1S2
M21n2 = 1.1221102 = 1.2; 

S2
Within = 1S2

1 + S2
2 +

g
+ S2

Last2>NGroups = 1.82 + .90 +
.802>3 = .84; F = 1.2>.84 = 1.43; do not reject the null 
hypothesis. 

  (b) F needed 1df = 3, 96; p 6 .052 = 2.70 (actually using 
df = 3, 95); S2

M = 164.67; S2
Between = 1164.6721252 =

4116.75; S2
Within = 736.5; F = 5.59;  reject  the null 

hypothesis.
 2. (a) F needed 1df = 2, 9; p 6 .012 = 8.02; Group 1: M = 8,

S2 = .67; Group 2: M = 6, S2 = .67; Group 3: M = 4, S2 =
.67; S2

Between = 142142 = 16; S2
Within = .67; F = 16>.67 =

23.88; reject the null hypothesis. 
  (b) F needed 1df = 2, 9; p 6 .012 = 8.02; Group 1:  M = 8,

S2 = 21.33; Group 2: M = 6, S2 = 21.33; Group 3:  M = 4,
S2 = 21.33; S2

Between = 142142 = 16; S2
Within = 21.33; F =

16>21.33 = .75; do not reject the null hypothesis. 
  (c) For part (a), R2 = 1S2

Between21dfBetween2>31S2
Between2

  1dfBetween2 + 1S2
Within21dfWithin24= 1162122>31162122 + 1.672

  1924 = .84.  For  par t  (b) ,  R2 = 1S2
Between21dfBetween2>

  31S2
Between21dfBetween2 + 1S2

Within21dfWithin24 = 1162122>
  31162122 + 121.3321924 = .14.

  (d)

Group 1

X - GM X - M M - GM
 X Dev Dev 2 Dev Dev 2 Dev Dev 2

8 2 4 0 0 2 4

8 2 4 0 0 2 4

7 1 1 -1 1 2 4

9 3  9 1  1 2  4

g  32 18 2 16

M = 32>4 = 8.

Group 2

X - GM X - M M - GM
X Dev Dev 2 Dev Dev 2 Dev Dev 2

6 0 0 0 0 0 0

6 0 0 0 0 0 0

5 -1 1 -1 1 0 0

7 1 1 1 1 0 0

g  24 2 2 0

M = 24>4 = 6.

Analysis of variance table:

Source SS df MS F

Between 32 2 16 23.88

Within 6 9 .67

Total 38 11

Conclusion: Reject the null hypothesis

Overall analysis:

M = 16>4 = 4.

GM = 132 + 24 + 162>12 = 72>12 = 6.

SS Total = 18 + 2 + 18 = 38.

SS Within = 2 + 2 + 2 = 6.

SS Between = 16 + 0 + 16 = 32.
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distribution of means of samples taken from that population. If 
the null hypothesis were true, the means of our three samples 
would all be from identical populations, which is the same as 
if they were all from the same population. Thus, the amount of 
variation among our three means should reflect the variation in 
the distribution of means that they can be thought of as coming 
from. As a result, I can use these three means (6, 10, and 10) 
to estimate the variance in this distribution of means. Using the 
usual formula for estimating a population variance, I get 5.33.

However, what we want is the variance of a distribu-
tion of individuals. So the question is, what would be the 
distribution of individuals that would produce a distribution 
of means (of four scores each) with a variance of 5.33? To 
find the distribution of means from a distribution of indi-
viduals, you divide the variance of the distribution of in-
dividuals by the size of the samples. In this case, you want 
to do the reverse. Thus, you multiply the variance of the 
distribution of means by the size of the samples to get the 
variance of the distribution of individuals. This comes out 
to 5.33 times 4, or 21.32. This is called the between-groups 
estimate of the population variance.

If the null hypothesis is true, the within-groups and  
between-groups estimates of the population variance should  

  (b) 

2 4 6 8 10 12 14 2 4 6 8 10 12 14 2 4 6 8 10 12 14

Affective Disorders Cognitive Disorders Drug-Related Conditions

F(2, 9) Distribution

0 1 2 3 4 5 6
F ratio

9.6 = F Obtained
from Sample

Population distributions are assumed to be normal and to have the same variance. They have either
the same means (null hypothesis is true) or different means (research hypothesis is true).

F distribution of ratios comparing
variances of this number of groups with
their respective number of scores
(adjusted—i.e., as degrees of freedom)

5% of Area

Distributions of samples

7 8 9

(c) R2 = 1S2
Between21dfBetween2>31S2

Between21dfBetween2  +1S2
Within21dfWithin24 = 121.32)122>3121.322122 + 12.2221924

=  .68.
(d) The null hypothesis is that the three groups are from pop-
ulations of length-of-stay scores with equal means (and, as 
with a t test, we must be able to assume that they have equal 
variances). If this null hypothesis is true, then you can esti-
mate the variance of these equal populations in two ways:
(i) You can estimate from the variation within each of the 
three groups and then average them. (This is just what you 
would do in a t test for independent means, except now you 
are averaging three variances instead of just two. Also in 
a t test you would weight these variances according to the 
degrees of freedom they contribute to the overall estimate. 
However, because all three groups have equal numbers, you 
can simply average them—in effect weighting them equally.) 
In this example, the three variance estimates were .67, 3.33, 
and 2.67, which gave a pooled estimate of 2.22. This is called 
the within-groups estimate of the population variance.
(ii) You can estimate the variance using the three means. If 
we assume the null hypothesis is true, the means of the three 
groups are based on samples taken from identical popula-
tions. Each of these identical populations will have an identical 
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of 1 (the number of df in figuring the between-groups esti-
mate). Thus, I could reject the null hypothesis. Following 
the same procedure for the second planned contrast gave an 
F of 0, which of course was not significant.

 4. (a), (b), (c), and (d). Hypothesis-testing steps, sketch of dis-
tributions, effect size, and explanation similar to question 3 
[except (d) needs to include material similar to explanations 
from earlier chapters’ practice problems]. F needed 1df = 2,
147; p 6 .052 = 3.09 1actually using df = 2, 1002; S2

Between
=  1.0921502= 4.5; S2

Within = 15.2 + 5.8 + 4.82>3 = 5.27;
F = .85; do not reject the null hypothesis. R2 = 14.52122>314.52122 + 15.272114724 = .01.

 5. (a), (b), (c), and (d). Hypothesis-testing steps, sketch of dis-
tributions, effect size, and explanation similar to question 3 
[except (d) needs to include material similar to explana-
tions from earlier chapters’ practice problems]. F needed 1df = 3, 28; p 6 .012 = 4.57; S2

Between = 11552182 = 1240; 
  S2

Within = 13.52 + 4.62 + 3.82 + 4.922>4 = 17.97; F = 69.0; 
reject the null hypothesis. R2 = 112402132>3112402132 +117.97212824 = .88. 

  (e) Bonferroni corrected significance level = .05>5 = .01; 
F needed 1df = 1, 28; p 6 .012 = 7.64; S2

Between (for two 
means) = 14.52182 = 36, S2

Within (from overall analysis) 
=  17.97, F = 36>17.97 = 2.00, do not reject the null 
hypo thesis. 

  (f) S2
Between= 1364.52182 = 2916, F = 2916>17.97 = 162.27, 

reject the null hypothesis. 
  (g) S2

Between = 182182 = 64, F = 64>17.97 = 3.56, do not 
reject the null hypothesis. 

  (h) S2
Between = 12882182 = 2304, F = 2304>17.97= 128.21, 

reject the null hypothesis. 
  (i) S2

Between = 1264.52182 = 2116, F = 2116>17.97= 117.75, 
reject the null hypothesis. 

  (j) (Explanation of planned contrasts similar to question 
3d.) Bonferroni correction is done to take into account that,  
when testing many contrasts, the chance of any one of them 
coming out significant is greater than the supposed sig-
nificance level. This is corrected by using for each contrast  
a significance level based on dividing the overall signifi-
cance level by the number of contrasts. In this problem with 
five contrasts and an overall significance level of .05, each 
of the five contrasts is tested at the .05>5 = .01 level of 
significance.

 6. (a) .05>2 = .025; (b) .0125; (c) .0033; (d) .002.
 7. (a) Overall study’s dfBetween = 5 - 1 = 4; dfWithin = 9 + 9

+  9 + 9 + 9 = 45. Scheffé corrected F = 17.21>4 = 4.30. 
Overall study’s .05 cutoff F1df = 4, 452 is 2.58. Thus, 
even with the Scheffé correction, this comparison is signifi-
cant. (b) Scheffé corrected F = 17.21>5 = 3.44. Overall 
study’s .05 cutoff F (df = 5, 54, actually using df = 5, 50 
from the table) is 2.40, significant comparison. (c) Scheffé 
corrected F = 17.21>4 = 4.30. Overall study’s .05 cutoff 
F1df = 4, 952 is 2.47, significant comparison. (d) Scheffé 
corrected F = 17.21>4 = 4.30. Overall study’s .01 cutoff 
F1df = 4, 452 is 3.77, significant comparison.

 8. From Table 9-9: (a) .09; (b) .12; (c) .10; (d) .38.
 9. From Table 9-10: (a) 322; (b) 21; (c) 274; (d) 52.
 10. Similar to question 3d (and also including material from 

Chapter 8), but focusing on this study’s results.
 11. Similar to questions 3d and 3g (and including material from 

previous chapters) but focusing on this study’s results.

be about the same because they are estimates of essentially the 
same population. Thus, the ratio of the between-groups esti-
mate divided by the within-groups estimate should be about 1.

However, suppose the null hypothesis is false and the 
three populations from which these groups come have dif-
ferent means. In that situation, the estimate based on the 
variation among the group means will be bigger than the one 
based on the variation within the groups. The reason it will 
be bigger is as follows. If the null hypothesis is true, the only 
reason that the means of our groups vary is because of the 
variance inside of each of the three identical distributions of 
means. But if the null hypothesis is false, each of those distri-
butions of means also has a different mean. Thus, the varia-
tion in our means is due to both the variation inside of each 
of these now not identical distributions of means, and also to 
the differences in the means of these distributions of means. 
Thus, there is an additional source of variation in the means 
of our groups. If you estimate the variance of the popula-
tion using these three means, it will be larger than if the null 
hypothesis were true. On the other hand, the within-groups 
variance is not affected by whether the three groups have dif-
ferent means, because it considers variation only within each 
of the groups. The within-groups variance thus does not get 
any bigger if the null hypothesis is false. Therefore, when the 
null hypothesis is false, the ratio of the between-groups vari-
ance to the within-groups variance will be more than 1.

The ratio of the between-groups estimate to the within-
groups estimate is called an F ratio. In this example, our F 
ratio is 21.32 to 2.22; 21.32>2.22 = 9.60.

Statisticians have made tables of what happens when 
you figure F ratios based on the situation in which you 
randomly take a group of four scores from each of three 
identical populations. This is the situation in which the null 
hypothesis is true. Looking at these tables, it turns out that 
there is less than a 5% chance of getting an F ratio larger 
than 4.26. Because our actual F ratio is bigger than this, we 
can reject the null hypothesis.
(e) F needed 1df = 1, 9; p 6 .052 = 5.12; S2

Between 1for two
means2 = 18)142 = 32; S2

Within 1from overall analysis2 =
2.22; F = 32>2.22 = 14.41; reject the null hypothesis.
(f) S2

Between = 102142 = 0; F = 0>2.22 = 0; do not reject 
the null hypothesis.
(g) In a study with more than two groups, researchers often 
make predictions for differences between specific pairs of 
groups; these are called planned contrasts. To test a planned 
contrast, you do a special analysis of variance in which the 
between-groups estimate is based on just the two groups 
being compared, but the within-groups estimate uses the 
information from all groups in the overall analysis of vari-
ance. (The variation in all populations is assumed to be the 
same, so this method lets you take advantage of the infor-
mation in all the groups when figuring the within-groups 
population variance estimate.) Thus, for the first planned 
contrast (Affective versus Drug-Related Conditions), I fig-
ured the between-groups estimate using the estimated vari-
ance of the distribution of means based on means of these 
two groups (6 and 10, which came out to S2

M = 8) and then 
multiplied this by the number in each group (4). The result 
was 32. Dividing this by the overall within-groups estimate 
I’d figured earlier in the problem, which was 2.22, gave an 
F ratio of 14.41. This was bigger than the needed F for df 
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  (c) Main effects for class and age, interaction effect;  
(d) income is greater in general for upper-class and for 
older individuals, but the combination of older and upper 
class has a higher income than would be expected just from 
the effects of either variable alone.

   ii.  (a) and (b) Graphs of the same kind as in part (i) (a) 
and (b); (c) no main effects, interaction effect; (d) nei-
ther type of college nor type of major, by itself, pre-
dicts grades, but there is a clear pattern if one considers 
the combinations: grades are highest for community 
college arts majors and for liberal arts college science 
majors.

  iii.  (a) and (b) Graphs of the same kind as in part (i) (a) and 
(b); (c) both main effects significant; no interaction; 
(d) females miss fewer days per month than males; 
those who exercise miss fewer days per month than 
controls. Each combination misses the number of days 
you would expect knowing their level of each variable 
separately.

 2.   i.  (a) and (b) Graphs of the same kind as in question 1 (i) 
(a) and (b); (c) main effect for relationship and an inter-
action; (d) conversations are longer with friends, but the 
difference is much greater for personal than for nonper-
sonal topics.

   ii.  (a) and (b) Graphs of the same kind as in question 1 
(i) (a) and (b); (c) main effect for city and cost, plus an 
interaction; (d) restaurant quality is different in differ-
ent cities, with New York highest and Chicago lowest. 
Restaurant quality is different in different price ranges, 
with expensive the best and inexpensive the least. The 
two factors do not simply combine, however, because 
price makes more difference in New York than in other 
cities.

  iii.  (a) and (b) Graphs of the same kind as in question 1 
(i) (a) and (b); (c) main effects for brand and type and 
an interaction; (d) flavor is rated on the average more 
positively for regular than decaf, and brands Z and X are 
rated more favorably than Y. However, there is an inter-
action in which there is no difference between regular 
and decaf for brand Z, but for brands Z and Y, regular is 
rated 2 points higher.

 3. Example answers.

 12. (a) Acceptance, emotional extremes, jealousy; (b) emotional  
extremes, jealousy, obsessive preoccupation, sexual attrac-
tion, desire for union, desire for reciprocation, love at first 
sight; (c) happiness, friendship, trust, fear of closeness, 
emotional extremes, jealousy; (d) emotional extremes, jeal-
ousy. (e) After conducting an overall analysis of variance 
among more than two groups, researchers often go on to 
conduct an exploratory analysis comparing each pair of 
groups; these are called post hoc (after the fact) compari-
sons. The problem is that, with many comparisons, it is pos-
sible that some will be significant just by chance more often 
than the supposed significance level of, say, 5%. When 
doing post hoc tests, special procedures have been devel-
oped to protect against this problem so that the researcher 
can be confident that any difference found will be truly no 
more likely to have occurred by, say, 5% (if that is the sig-
nificance level chosen) if the null hypothesis is true. The 
Scheffé test is an example of this kind of procedure.

Chapter 10
 1.   i. (a) and (b)

Class
 Lower
 Upper

100

90

80

70

60

50

40

30

20

10

Young

20
25

35

100

In
co

m
e

Old
Age

Age
 Young
 Old

100

90

80

70

60

50

40

30

20

10

Lower

20

35

25

100

In
co

m
e

Upper
Class

Sport

Co
nd

iti
on (a) Baseball Football Basketball

With motivational program 10 5 6 7

Without motivational program 10 5 6 7

10 5 6

Co
nd

iti
on (b) Baseball Football Basketball

With motivational program 6 6 6 6

Without motivational program 10 10 10 10

8 8 8

Co
nd

iti
on (c) Baseball Football Basketball

With motivational program 6 7 8 7

Without motivational program 8 9 10 9

7 8 9
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 (b) 

 4. As expected, participants with extreme stereotypes about 
PR agents being extroverted, compared to participants 
with only moderate stereotypes of this kind, described PR 
agents as more extroverted. This result was statistically 
significant, meaning that you can be reasonably confident 
that the pattern of the result applies not just to the particular 
people studied, but to people like those studied in general. 
(More precisely, the researchers were able to conclude that, 
if there was no average difference in the general population 
between extreme and moderate stereotype people, there is 
less than a .0001 chance that this experiment could have 
produced a result that strong.) In addition, and most impor-
tant, this tendency was surprisingly much stronger for par-
ticipants who were given a description of a particular PR 
agent who was highly introverted. This result was also sta-
tistically significant. (In this case, the chance was less than 
5% of getting a result this strong if in the general popula-
tion there was no average tendency of this kind.)

On average, those exposed to the extreme introvert 
tended to give higher ratings of extroversion. This result was 
of “marginal” statistical significance, meaning that it was on 
the borderline of being too unlikely to have come up if there 
were no true average difference in the population. More 
important, this result is not very interesting because, as you 
can see from the graph, it is entirely due to the extreme ste-
reotype participants; if anything, the moderate stereotype 
participants showed an opposite pattern of effect.

 5. Similar to question 4.
 6. F needed for each effect in (a), (b), and (c) 1df = 1,

8, p 6 .052 = 5.32. Graphs as the same kind as in ques-
tion 1 (i) (a) or (b).

 (a) 

Co
nd

iti
on (d) Baseball Football Basketball

With motivational program 6 7 8 7

Without motivational program 10 9 8 9

8 8 8

Co
nd

iti
on (e) Baseball Football Basketball

With motivational program 6 7 8 7

Without motivational program 6 8 10 8

6 7.5 9

Source SS df MS F

Group 0 1 0 0 Do not reject null.

Condition 0 1 0 0 Do not reject null.

Interaction 12 1 12 35.29 Reject null.

Within cells 2.68 8 .34

Experimental Condition

A B Overall

Group
1 .67 2.67 1.67

2 2.67 .67 1.67

Overall 1.67 1.67

Experimental Condition

A B Overall

Group
1 .67 .67 .67

2 2.67 2.67 2.67

Overall 1.67 1.67

Source SS df MS F

Group 12 1 12 35.29 Reject null.

Condition 0 1 0 0 Do not reject null.

Interaction 0 1 0 0 Do not reject null.

Within cells 2.68 8 .34

Experimental Condition

 A B Overall

Group
1 .67 2.67 1.67

2 .67 2.67 1.67

Overall .67 2.67

 (c) 

Source SS df MS F

Group 0 1 0 0 Do not reject null.

Condition 12 1 12 35.29 Reject null.

Interaction 0 1 0 0 Do not reject null.

Within cells 2.68 8 .34

 7. (a) F needed for main effect for Diagnosis 1df = 1, 6) =  
5.99; for main effect for Therapy and interaction 1df =  
2, 62 = 5.14.

Source SS df MS F

Therapy   8 2 4 1.33 Do not reject null.

Diagnosis 108 1 108 36 Reject null.

Interaction   0 2 0 0 Do not reject null.

Within cells  18 6 3

(b) Means:

A B C

I  4 2 3 3

II 10 8 9 9

 7 5 6

(c) Similar to question 1 (i) (a).
(d) There is a significant difference in effectiveness 
between the two diagnostic categories: therapy is more 
effective for those with Diagnosis II. However, there is no 
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R2
Group = .82, R2

Interaction = 0; (c) R2
Condition = .82, 

  R2
Group = 0, R2

Interaction = 0; (d) R2
Therapy = .31, 

  R2
Diagnosis = .86, R2

Interaction = 0; (e) R2
Likability = 0, 

  R2
Nervousness = 0, R2

Interaction = .80.
 10. From Table 10-15: (a) .19; (b) .29; (c) .26; (d) .21; (e) .78.
 11. From Table 10-16: (a) 197; (b) 197; (c) 33; (d) 132; (e) 162; 

(f) 162.

Chapter 11
 1. (a) Curvilinear; (b) linear, positive, large; (c) linear, nega-

tive, large; (d) linear, positive, large; (e) linear, positive, 
small to moderate; (f) no correlation.

 2. (a) 
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(b) Positive linear correlation—as therapist empathy goes 
up, so does patient satisfaction.
(c) Therapist empathy M = 62, SD = 22.14; patient satis-
faction M = 3, SD = 1.58.

Therapist 
Empathy (X) Patient Satisfaction (Y )

Cross-Product  
of Z Scores

Raw ZX Raw ZY ZXZY

70 .36 4 .63  .23

94 1.45 5 1.27 1.84

36 -1.17 2 - .63  .74

48 - .63 1 -1.27  .80

g = 3.61

r = 3.61>4 = .90

(d) Comparison distribution is a t distribution with df =  
N - 2 = 4 - 2 = 2. The t tables (Table A-2 in the Appen-
dix) shows that for a two-tailed test at the .05 level, with 
2 degrees of freedom, the cutoff t scores are 4.303 and 
–4.303. Using the formula t = r>211 - r 22>1N - 22 =  
.90>21.192>122 = 2.92. This t value is not more extreme 
than the cutoffs; do not reject the null hypothesis.
(e) The first thing I did was make a graph, called a scat-
ter diagram, putting one variable on each axis; I then put 
a dot where each person’s pair of scores goes on that 
graph. This gives a picture of the pattern of relationship 

significant difference among types of therapy, and the types 
of therapy are not significantly differentially effective for 
the different diagnostic types.

 8. (a) F needed for each effect 1df = 1, 82 = 5.32.

Source SS df MS F

Likability  0 1 0 0 Do not reject null.

Nervousness  0 1 0 0 Do not reject null.

Interaction 48 1 48 32 Reject null.

Within cells 12 8 1.5

(b) Means

Likeable Not Likeable

Nervous 7 3 5

Not Nervous 3 7 5

5 5

(c) Similar to question 1 (i) (a).
(d) These results indicate that there is a significant inter-
action between nervousness and likability: The defen-
dant who is likeable is more likely to be rated innocent 
if he is nervous; but the defendant who is not likeable 
is more likely to be rated innocent if he is not nervous. 
There was no overall significant effect for likeable or not 
or for nervous or not, though with the very small sam-
ple sizes involved, failures to reject the null hypothesis 
should not be taken as evidence that such an effect does 
not exist.

The figuring of the significance is like a one-way 
analysis of variance using the structural model approach. 
The within-groups sum of squares and degrees of freedom 
are figured in the usual way, considering each cell as its 
own group. However, the between-groups deviations from 
the mean are divided into three parts: one is the variation 
between likability versus not (based on each participant’s 
liking versus not-liking group’s mean minus the grand 
mean); another is the variation between nervous versus not. 
The degrees of freedom for each is the number of levels 
(2 in each case) minus 1.

However, following this procedure, some of the 
between-groups effect is left over—the variation between 
likability groups that is different according to which ner-
vousness group they are in. This is an example of what is 
called an interaction effect. You figure its mean squares 
based on the deviation of the score from the overall grand 
mean minus the other three deviations (the score minus its 
group’s mean from the grand mean). Its degrees of free-
dom are what are left over in the total between-groups 
degrees of freedom (with four subgroups, between-groups 
df = 3 minus 1 for likability and minus another 1 for 
nervousness).

 9. (a) R2
Columns = 1S2

Columns21dfColumns2> 
  31S2

Columns21dfColumns2 + 1S2
Within21dfWithin24; 

  R2
Condition = 102112>3102112 + 1.3421824 = 0, 

  R2
Group = 0, R2

Interaction = .82; (b) R2
Condition = 0, 
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future event (the score on the test) cause a previous event 
(hours studied); or (iii) a third factor, such as interest in the 
subject matter, could be causing the student to study more 
and also to do better on the test.

 4. (a) See question 2a for example scatter diagram. (b) Posi-
tive linear correlation: as self-disclosure goes up, so 
does liking for partner. (c) r = 2.33>5 = .47. (d) df =  
N - 2 = 5 - 2 = 3; cutoff t scores are 3.182 and -3.182; 
t = .92; do not reject the null hypothesis.

 5. Set A:

5
4
3
2
1
0

Y

1 2 3 4 5

X

X Y
Cross-Product  

of Z Scores

Raw ZX Raw ZY ZX ZY

1 -1.41 1 -1.41 2.0

2 - .71 2 - .71  .5

3 .00 3 .00  .0

4 .71 4 .71  .5

5 1.41 5 1.41 2.0

For X, M = 3, SD = 1.41 g = 5.0

For Y, M = 3, SD = 1.41 r = 5.0/5 = 1.00

  df = N - 2 = 5 - 2 = 3; cutoff t scores are 3.182 and 
-3.182; using the formula gives t = 1>0, which is unde-
fined (since you can’t divide a number by 0). However, 
any perfect correlation is statistically significant; so we can 
reject the null hypothesis and the research hypothesis is 
supported.
Set B: r = .90; t = 3.58; reject the null hypothesis; the 
research hypothesis is supported.
Set C: r = - .60; t = -1.30;  do not reject the null 
hypo thesis.
Set D: r = .60; t = 1.30; do not reject the null hypothesis.

 6. (a) The measures may have low reliability, thus reduc-
ing (attenuating) the possible correlation between them.  
(b) There is restriction in range: among millionaires, there 
may not be a very great range of comfort of living situa-
tion (they probably all have quite comfortable situations); 
so the correlation with any variable (including happiness) 
is limited.

 7. From Table 11-7: (a) .11; (b) .92; (c) .83; (d) .60;  
(e) .17.

 8. From Table 11-8: (a) 28; (b) 68; (c) 783.

between the two variables. In this example, high scores 
generally go with high scores and lows with lows. The 
scores are going together in a systematic pattern makes 
this a correlation; that highs go with highs and lows 
with lows makes this correlation positive; that dots fall 
roughly near a straight line makes this positive correla-
tion linear.

Next, I figured the correlation coefficient, a number 
describing the degree of linear correlation (in a positive 
correlation, how consistently highs go with highs and 
lows with lows). To do this, I changed all the scores to 
Z scores because Z scores tell you how much a score is 
low or high relative to the other scores in its distribution. 
You figure the correlation coefficient by multiplying 
each person’s two Z score by each other, totaling up these 
products, and then averaging this total over the number of 
people. This will be a high number if highs go with highs 
and lows with lows, because with Z scores, highs are 
 always positive and positive times positive is positive, 
and with Z scores, lows are always negative and negative 
times negative becomes positives too. Correlation coef-
ficients can vary from -1 (a perfect negative correlation) 
to +1 (a perfect positive correlation). In this example, the 
correlation coefficient (r) of .90 indicates a large positive 
linear correlation between therapist empathy and patient 
satisfaction.

To test the statistical significance of a correlation 
 coefficient, you determine a t score for the correlation 
coefficient and compare that t score to a cutoff t value 
from a t table. The formula for finding the t score from 
the correlation coefficient involves dividing the correla-
tion coefficient by the square root of what you get when 
you divide 1 minus the correlation coefficient squared by 
2 less than the number of people in the study. The degrees 
of freedom for the t test are 2 less than the number of peo-
ple in the study. In this example, there were 2 degrees of 
freedom, which gave t cutoffs (from the t table) of 4.303 
and -4.303. The t value for the correlation coefficient was 
2.92, which was not more extreme than the cutoff values; 
so the null hypothesis (of no correlation between therapist 
empathy and patient satisfaction in the population) was 
not rejected.
(f) (i) If a therapist has more empathy, this causes the 
patient to feel more satisfied (empathy causes satisfaction); 
(ii) if a patient feels more satisfied, this causes the thera-
pist to feel more empathic toward the patient (satisfaction 
causes empathy); or (iii) some third factor, such as a good 
match of the patient’s problem with the therapist’s ability, 
causes patients to be more satisfied and therapists to be 
more empathic (third factor causes both satisfaction and 
empathy).

 3. (a) See question 2a for example scatter diagram. (b) Positive 
linear correlation: as hours studied go up, so do test grades. 
(c) r = 4.20>5 = .84. (d) df = N - 2 = 5 - 2 = 3; cut-
off t scores are 3.182 and -3.182; t = 2.69; do not reject 
the null hypothesis. (e) Like question 2e. (f) (i) Studying 
more causes improved test grades; (ii) getting a better test 
grade causes more hours studied; note that, although this is 
theoretically possible, in reality it is not possible to have a 
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  (e)
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 4. (a) Use the formula b = g31X - MX21Y - MY24>SSX. 
g31X -MX21Y - MY24 = 210 and SSX = 56. Thus, b =  
210>56 = 3.75. a = MY - 1b21MX2 = 73 - 13.752162 =  
50.50. Therefore, predicted test grade = 50.50 + 13.752 1hours studied2.

  (b) 
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(c) 50.50 + 13.752132 = 61.75; (d) 69.25; (e) 76.75; (f) � =  
1b212SSX>2SSY2. SSY = 1110. Therefore, � =13.752 
1256>211102 = .84.
(g) Prediction is a statistical procedure used to predict 
scores on one variable (called a criterion variable) from 
scores on another variable (called a predictor variable). You 
use a linear prediction rule to make predictions. The linear 

 9. (a) This table shows the degree of association among 
scores on several measures given to pregnant women and 
their partners. (Here continue with an explanation of the 
correlation coefficient like that in question 2e, except in 
this problem you also need to explain the mean, standard 
deviation, and Z scores, which you do in the same way 
as in answering the problems in Chapters 2 and 3.) For 
example, the correlation of .17 between women’s reports 
of stress and men’s reports of stress indicates that the 
association between these two measures is quite weak. 
That is, how much stress a woman is under is not highly 
related to how much stress her partner believes she is 
under. On the other hand, the correlation of .50 (near the 
middle of the first column of correlations) tells you that 
there is a much stronger association between a woman’s 
report of stress and her depressed mood in the second 
interview. That is, women who report being under stress 
are also likely to report being depressed; those reporting 
being under not much stress are likely to report not being 
very depressed.
(b) In general, the correlations shown in this table are 
strongest among the stress, support, and mood items; cor-
relations of these variables with demographics (age, eth-
nicity, etc.) were fairly weak. Partner support seemed to 
be strongly correlated with stress and mood, and depressed 
mood at the second testing was particularly related to the 
other variables.
(c) Just because two variables are correlated, even strongly 
correlated, does not mean that you can know the particu-
lar direction of causality that creates that association. For 
example, there is a strong negative correlation between 
partner support at time 1 and depressed mood at time 2. 
There are three logically possible directions of causal-
ity here: (1) support can be causing lower depression, 
(2) lower depression can be causing support, or (3) some  
third factor can be causing both. You can rule out the sec-
ond possibility, since something in the future (low depres-
sion) cannot cause the past (initial support). However, the 
other two possibilities remain. It is certainly plausible that 
having her partner’s support helps reduce depression, but 
it is also possible that a third factor is causing both. For 
example, consider level of income. Perhaps when a couple 
has more income, the partner has more time and energy 
to provide support and the greater comfort of living keeps 
depression down.

Chapter 12
 1. (a) Score on knowledge of physiology; (b) number of injuries; 

(c) linear prediction rule formula is Yn = a + 1b21X2, so 
predicted number of injuries = 10.30 - 1.702 (knowledge 
of physiology); (d) 10.30 - 1.702102 = 10.30; (e) 9.60; 
(f) 8.90; (g) 6.80; (h) 6.10.

 2. (a) Midterm exam score; (b) final exam score; (c) predicted 
final exam score = 40 + 1.52(midterm exam score); 
(d) 40 + 1.521302 = 55; (e) 60; (f) 65; (g) 70; (h) 75; (i) 80; 
(j) 85; (k) 90.

 3. (a) Yn = 1.5 + 1.821X2; (b) Yn = 10.0 - 1.4021X2; 
  (c) Yn = 2.0 + 1.221X2; (d) Yn = 9.5 - 1.821X2. 
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problem by figuring a standardized regression coefficient, 
which is referred to using the Greek symbol � (beta). The 
standardized regression coefficient shows the predicted 
amount of change in standard deviation units of the crite-
rion variable if the value of the predicted variable increases 
by one standard deviation. The standardized regression co-
efficient can be figured by multiplying the regression coef-
ficient by the result of dividing the square root of the sum of 
squared deviations for the predictor variable by the square 
root of the sum of squared deviations for the criterion vari-
able. The standardized regression coefficient of .84 in this 
example means that, for every standard deviation increase 
in hours studied, the predicted test grade increases by .84 of 
a standard deviation.

  (h) 
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Y = 60 + (5.00)(X)^

(i) The regression line figured in part (b) does a better job 
of coming close to the dots. The regression line from part 
(b) is a visual equivalent of the linear prediction rule figured 
in part (a). Since that linear prediction rule is the best linear 
prediction rule (in terms of giving the lowest sum of squared 
errors between actual scores on the criterion variable and 
the predicted scores on the criterion variable), the regression 
line equivalent of that rule is the line that does the best job of 

prediction rule says that, to predict a person’s score on a 
criterion variable (Y), start with a particular number (called 
a regression constant) and add to it the result of multiply-
ing a particular number (called a regression coefficient) by 
the person’s score on the predictor variable (X). The regres-
sion constant (which is labeled a) is a fixed value that you 
always add in to the prediction. The regression coefficient 
(which is labeled b) is called a coefficient because it is a 
number you multiply by something.

There are formulas for determining the values of a (the 
regression constant) and b (the regression coefficient) that 
give the best linear prediction rule. The best linear predic-
tion rule is the one that gives the lowest sum of squared  
errors between the actual scores on the criterion variable and 
the predicted scores on the criterion variable. The linear pre-
diction rule can be written as a formula: Yn = a + 1b21X2. Yn 
means the predicted value of Y, that is, the predicted value of 
the criterion variable (the variable you are trying to predict). 
In this example, the linear prediction rule was predicted 
test grade = 50.50 + 13.752(hours studied). The linear 
prediction rule can be shown as a line on a graph. This line  
is called a regression line. The regression line shows the  
relationship between values for the X variable and predicted 
values for the Y variable. You draw the regression line by 
using the linear prediction rule to predict the value of the 
Y for a low value of X and marking that point on a graph, 
then predicting the value of Y for a high value of X and 
marking that point on a graph, and then finally you draw a 
line through the two dots. The slope of the regression line 
is b (the regression coefficient). The regression coefficient 
is the predicted amount of increase in units for the crite-
rion variable when the predictor variable increases by one 
unit. So the regression coefficient of 3.75 in this example 
means that every one-hour increase in the number of hours 
studied gives a predicted increase of 3.75 points on the test 
grade. The point where the regression line crosses the verti-
cal axis—which is called the intercept—is a (the regression 
constant). In this example, the regression line crosses the ver-
tical axis at 50.50 (which is the value of a). I used the linear 
prediction rule to figure the predicted test grade of the stu-
dents who studied for different amounts of time.

The scale used for the predictor and criterion variables 
will affect the value of b (the regression coefficient) in the 
linear prediction rule. This can make it hard to compare 
linear prediction rules across studies. You can avoid this 

Rule: Yn � 50.50 � 13.752 1X 2 Rule: Yn � 60 � 15.002 1X 2

Hours 
Studied

Test  
Grade

Predicted  
Test Grade Error

Squared  
Error

Predicted  
Test Grade Error

Squared 
Error

X Y Yn 1Y � Yn 2 1Y � Yn 22 Yn 1Y � Yn 2 1Y � Yn 22

 0 52 50.5 1.5   2.25  60.0 -8.0  64.0

10 95 88.0 7.0  49.00 110.0 -15.0 225.0

 6 83 73.0 10.0 100.00  90.0 -7.0  49.0

 8 71 80.5 -9.5  90.25 100.0 -29.0 841.0

 6 64 73.0 -9.0   81.00  90.0 -26.0 676.0

g = 322.5 g = 1855.0
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and the patient satisfaction was a very low score (1). The 
best way to compare the relationship between therapist 
empathy and patient satisfaction in the original case (ques-
tion 6) and with the addition of the new person is to look 
at the standardized regression coefficients (�s2. In question 
6, the � was .84. This tells you that every increase of one 
standard deviation on therapist empathy is associated with a 
.84 standard deviation change in patient satisfaction. After 
adding the new person into the study, the � was .44. This 
tells you that every one standard deviation increase in ther-
apist empathy is associated with a .44 standard deviation 
in patient satisfaction. Thus, by adding this new person to 
the study, the overall association between therapist empa-
thy and patient satisfaction has become weaker. This makes 
sense because the patient we added to the study was quite 
different from the other patients. In question 6, there was a 
very strong tendency for high scores on therapist empathy 
to be associated with high sores on patient satisfaction (and 
low scores with low scores). The new patient we added in 
this question has a very high score on therapist empathy but 
a very low score on patient satisfaction. So the new patient 
can be thought of as an outlier, which in this case has the 
effect of making the association between therapist empathy 
and patient satisfaction less strong than it was without the 
outlier.

 9.  (a) Yn = a + 1b121X12 + 1b221X22 + 1b321X32 = 1.5 + 1.82 1X12 - 1.321X22 + 19.9921X32.
(b) Yn = 10.0 - 1.421X12 + 111.021X22 - 18.6221X32.
(c) Yn = 2.0 + 1.221X12 + 16.1321X22 + 12.1221X32.
(d) Yn = 9.5 - 1.821X12 + 121.2321X22 + 11.0221X32.

 10. First, explain prediction as in question 4g and correlation as 
in Chapter 11. The two graphs show regression lines sepa-
rately for each experimental group. The left graph shows 
that Expectation of Success provides little information to 
predict Number of Plans for either the Positive  Fantasy or 
Negative Reality group, but for the Contrast group, there 
is a fairly strong positive relation between Expectation 
of Success and Number of Plans. The right graph, which 
shows the regression lines for predicting Taking Responsi-
bility from Expectation of Success, indicates that there is a 
moderate negative relation for the Positive Fantasy group, 
a small negative relation for the Negative Reality group, 
and a strong positive relation for the Contrast group.

 11. In bivariate prediction, you are predicting scores on a 
single criterion variable from scores on a single predictor 
variable. In multiple regression, you are predicting scores 
on a single criterion variable from scores on two or more 
predictor variables. The Peer Acceptance part of the table 
actually shows the results of two multiple regression anal-
yses. In the first multiple regression analysis (Equation 1), 
the researchers predicted peer acceptance (the criterion 
variable) from scores on nonsocial teaching (one predictor 
variable) and scores on social coaching (a second predic-
tor variable). In the second multiple regression analysis 
(Equation 2), the researchers predicted peer acceptance 
(the criterion variable) from scores on responsive style 
(one predictor variable) and scores on social coaching (a 
second predictor variable). In the first multiple regression 
analysis, the standardized regression coefficients were .10 
and .32. These standardized regression coefficients can be 
interpreted in the same manner as in bivariate prediction. 

coming close (in squared units) to the actual scores (shown 
by the dots).
(j) Yn = 50.50 + 13.7521X2, the sum of squared errors us-
ing the prediction rule from (a) is 322.5. The sum of squared  
errors using the prediction rule Yn = 60 + 15.0021X2 is 1855.0.
(k) Proportionate reduction in error = 1SSTotal - SSError2> 
SSTotal. From (j) above, SSError = 322.5. SSTotal is the same 
as SSY, which from (c) above was 1110. So, proportionate 
reduction in error = 11110 - 322.52>1110 = .71.

 5. (a) Predicted hours studied = -7.87 + 1.1921test grade2;
(b) similar to question 4b; (c) 5.43; (d) 6.38; (e) 7.33; (f) � =  
1b212SSX>2SSY2 = 1.192121110>2562 = .85.

 6. (a) Use the formula b = g31X - MX21Y - MY24>SSX. 
g31X - MX21Y - MY24 = 126 and SSX = 1960. Thus, b =  
126>1960 = .06. a = MY - 1b21MX2 = 3 - 1.0621622 =  
- .72. Therefore, predicted satisfaction = - .72 + 1.062 1empathy2.
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(c) - .72 + 1.0621502 = 2.28; (d) 3.12; (e) 4.08; (f) � =  

1b212SSX>2SSY2. Therefore, � = 1.062121960>2102 =
.84. (g) Similar to 4g above.
(h) Proportionate reduction in error = 1SSTotal - SSError2> 
SSTotal. Using the same procedure as in 4j above, SSError =  
1.94. SSTotal is the same as SSY, which from part (f) above 
was 10. So, proportionate reduction in error =  110 - 1.942> 
10 = .81.

 7. (a)Predicted empathy = 24.2 + 112.621satisfaction2;  (b) 
similar to question 6b; (c) 62.0; (d) 49.4; (e) 36.8; (f) � =

  1b212SSX>2SSY2 = 112.621210>219602 = .9.
 8. (a) Use the formula b = g31X - MX21Y - MY24>SSX =  

73.20>2831.20 = .03. a = MY - 1b21MX2 = 2.6 - 1.032 168.62 = .54. Therefore, predicted satisfaction = .54 +  1.032(empathy).
  (b) Figure like question 6b; (c) 2.04; (d) 2.46; (e) 2.94; (f) 
  � = 1.032122831.20>213.202 = .44. (g) In this ques-

tion, we added an extra person to the study. The therapist 
empathy value for that person was a very high score (95), 
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Population 2: Clients for whom season makes no differ-
ence to when they use the psychotherapy clinic.

The research hypothesis is that the distribution over 
 seasons of when clients use the psychotherapy clinic is 
different between the two populations. The null hypoth-
esis is that the distributions over seasons of when clients 
use the psychotherapy clinic is not different between the 
populations.
❷ Determine the characteristics of the comparison dis-
tribution. Chi-square distribution with 3 degrees of free-
dom 1df = 4 categories - 1 = 32.
❸ Determine the cutoff sample score on the compari-
son distribution at which the null hypothesis should be 
rejected. .05 level, df = 3: �2 needed = 7.815.
❹ Determine your sample’s score on the comparison 
distribution.

Season O Expected O � E 1O � E 22 1O � E 22,E

Winter  28 11>4211282 = 32 -4  16   .50

Spring  33 11>4211282 = 32 1   1   .03

Summer  16 11>4211282 = 32 -16 256  8.00

Fall  51 11>4211282 = 32 19 361 11.28

Total 128 128 0 �2 = 19.81

❺ Decide whether to reject the null hypothesis. 19.81 
is larger than 7.815; reject the null hypothesis; the research 
hypothesis is supported.
(b) 

5%

0 5 10 15 20

19.81= 
Obtained Chi-Square

(c) If the season makes no difference, you would expect 
about 25% of clients to use the psychotherapy clinic each 
season (for last year, 25% of 128 is 32). Are last year’s 
actual numbers in each season so discrepant from these 
expectations that you should conclude that in general the 
numbers of new clients are not equally distributed over the 
seasons? The chi-square statistic reflects the discrepancy 
between observed and expected results. For each category 
(such as the four seasons), you figure that discrepancy, 
square it, and divide by the expected number; then you  
add up the results. In the winter, 28 minus 32 is -4, 
squared is 16, divided by 32 is .50. Doing the same for the 

However, it is important to note that the regression coef-
ficients in multiple regression reflect what each predictor 
variable contributes to the prediction, over and above what 
the other predictor variables contribute. Thus, the ordinary 
correlations between each predictor variable and the cri-
terion variable can show a quite different pattern. The R2 
of .14 for the first regression is the proportionate reduc-
tion in error or proportion of variance accounted for. This 
means that the two predictor variables together accounted 
for 14% (that is, .14 *  100 = 14%) of the variation in 
peer acceptance scores. (The square root of the propor-
tionate reduction in error, .37, is the multiple correlation 
coefficient.)

Chapter 13
 1. (a) �2 needed 1df = 5 - 1 = 4, .05 level2 = 9.488.

Category O Expected O � E 1O � E 22 1O � E 22,E

A 19 1.221502 = 10 9  81 8.10

B 11 1.221502 = 10 1   1  .10

C 10 1.421502 = 20 -10 100 5.00

D  5 1.121502 =  5 0   0 0.00

E  5 1.121502 =  5 0   0 0.00

Total 50 50 0 �2 = 13.20

Conclusion: Reject the null hypothesis

(b) �2 needed = 5.992; �2 = 44.45, reject the null hypoth-
esis; (c) �2 needed = 7.815; �2 = 1.23, do not reject the 
null hypothesis.

 2. �2 needed for (a), (b), and (c): 1df = 5 - 1 = 4, 1%2 =  
13.277;

  (a) 

Category O Expected O � E 1O � E 22 1O � E 22,E

A 10 20 -10 100 5

B 10 20 -10 100 5

C 10 20 -10 100 5

D 10 20 -10 100 5

E 60 20 40 1600 80

Total 100 100 0 �2 = 100

Conclusion: Reject the null hypothesis

(b) �2 = 50, reject the null hypothesis; (c) �2 = 450,  reject 
the null hypothesis.

 3. (a) ❶ Restate the question as a research hypothesis and 
a null hypothesis about the populations. There are two 
populations of interest:
Population 1: Clients like those of this psychotherapy 
clinic.
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❸ Determine the cutoff sample score on the compari-
son distribution at which the null hypothesis should be 
rejected. .05 level, df = 2: �2 needed = 5.992.
❹ Determine your sample’s score on the comparison 
distribution.

Age of Child (years)

Li
ke

s 
Ty

pe
 o

f 
M

us
ic

5 8 11

Yes 42 (39) 62 (65) 26 (26) 130 (65%)

No 18 (21) 38 (35) 14 (14)  70 (35%)

60 100 40 200

�2 = 142 - 3922>39 + 162 - 6522>65 + 126 - 2622>26
+  118 - 2122>21 + 138 - 3522>35 + 114 - 1422>14 = 1.06.
❺ Decide whether to reject the null hypothesis. 1.06 is 
less extreme than 5.992; do not reject the null hypothesis; 
the study is inconclusive.
(b)

0
1 3 5 7 9 11 13

1.06 =
Obtained Chi-Square

5%

15 17

(c) Cramer’s � = 2�2>31N21dfSmaller24 =  

21.06>3120021124 = 2.0053 = .07.
(d) In this example, 65% of all children liked the particu-
lar kind of music. Thus, if age and liking of this kind of 
music are not related, 65% of the children in each age group 
should like this kind of music. For example, you would 
expect 39 of the 60 8-year-olds to like this music. Are the 
survey results so discrepant from these expectations that 
you should conclude that age is related to what kind of 
music children like?

The chi-square statistic reflects the discrepancy 
between observed and expected results. For each combina-
tion of the 2 * 3 arrangement, you figure that discrepancy 
between observed and expected, square it, and divide by 
the expected number; then you add up the results. In the 
yes-8-year-old combination, 42 minus 39 is 3, squared is 
9, divided by 39 is .23. Doing the same for the other five 
combinations and adding them all up gives 1.06. (Chi-
square uses squared discrepancies so that the result is not 
affected by the directions of the differences. It is divided by 
the expected number to adjust for the impact of relatively 
different numbers expected in the combinations.)

other three seasons and adding up the four gives a total chi-
square of 19.81. (Chi-square uses squared discrepancies so 
that the result is not affected by the directions of the dif-
ferences. You divide by the expected number to reduce the 
impact of the raw number of cases on the result.)

Statisticians have determined mathematically what 
would happen if you took an infinite number of samples 
from a population with a fixed proportion of cases in each 
category and figured chi-square for each sample. This dis-
tribution depends only on how many categories are free 
to take on different expected values. (The total number 
expected is the total number of cases; thus, if you know the 
expected for any three categories, you can just subtract to 
get the number expected for the fourth). A table of the chi-
square distribution when three categories are free to vary 
shows that there is only a 5% chance of getting a chi-square 
of 7.815 or greater. Because our chi-square is larger than 
this, the observed result differs from the expected more 
than you would reasonably expect by chance; the number 
of new clients, in the long run, is probably not equal over 
the four seasons.

 4. (a) You should get the same result within rounding error. 
(b) Similar to question 3c.

 5. For (a), (b), and (c): df = 1NColumns - 121NRows - 12 = 12 - 12 12 - 12 = 1; �2 needed = 6.635.
  (a) 

10 (13) 16 (13) 26 (50%)

16 (13) 10 (13) 26 (50%)

26 26 52

  �2 = 110 - 1322>13 + 116 - 1322>13 + 116 - 1322>13 +  110 - 1322>13 = 2.76. Do not reject the null hypothesis: 
  effect size, � = 2�2>N = 22.76>52 = 20.53 = .23.

(b) �2 = .36, do not reject the null hypothesis; effect size, 
� = .03.
(c) �2 = 27.68, reject the null hypothesis; effect size, � = .23. 
For (d), (e), and (f): df = 1NColumns - 121NRows - 12 =  13 - 1212 - 12 = 2; �2 needed = 9.211.
(d) �2 = 2.76, do not reject the null hypothesis; effect size, 
Cramer’s � = 2�2>31N21dfSmaller24 = 22.76>317221124 
=  2.0383 = .20.
(e) �2 = 2.76, do not reject the null hypothesis; effect size, 
Cramer’s � = .18.
(f) �2 = 3.71, do not reject the null hypothesis; effect size, 
Cramer’s � = .22.

 6. (a) ❶ Restate the question as a research hypothesis and 
a null hypothesis about the populations. There are two 
populations of interest:
Population 1: Children like those surveyed.
Population 2: Children for whom age is independent of 
whether or not they like this kind of music.

The research hypothesis is that the two populations are 
different. The null hypothesis is that the two populations 
are the same.
❷ Determine the characteristics of the comparison distri-
bution. Chi-square distribution with two degrees of freedom. 
df = 1NColumns - 121NRows - 12 = 13 - 1212 - 12 = 2.
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Chapter 14
 1. The following are probably not normal: (a) skewed to the 

right; (b) bimodal; (d) skewed to the right; (e) approxi-
mately rectangular.

 2. (a) 4, 2, 3, 5, 6; (b) 5.92, 3.78, 3.61, 3.59, 4.24.
 3. (a) 

12

10

8

6

4

2

2.5 7.5 12.5 17.5 22.5 27.50

(b)  3, 5.3, 2, 4, 0, 2.6, 5, 1, 2, 3.2, 2, 1.4, 1, 3, 4, 3.3, 3.5, 1, 
4.2, 1.4, 2.2, 3.2, 1.7, 4.1, 2.4, 2, 1.4, 4.8, 4.6, 4.5.

(c) 

10

8

6

4

2

.5 1.5 2.5 3.5 4.5 5.50

 4. (a) t needed 1df = 8, p 6 .05, two-tailed) =  -2.306, 2.306; 
Group A: M = 3.8, S2 = 5.06; Group B: M = 5.7, 
S2 = 6.76; S2

Pooled = 5.91; SDifference = 1.54; t = -1.23; 
do not reject the null hypothesis.
(b) Group A: 1.1, 1.6, 2.1, 1.9, 2.7; Group B: 1.4, 3.0, 2.4, 
2.6, 2.2.
(c) t needed = -2.306, 2.306; Group A: M = 1.88, 
S2 = .35; Group B: M = 2.32, S2 = .35; S2

Pooled = .35; 
SDifference = .37; t = -1.19; do not reject the null 
hypothesis.
(d) It would not have been correct to carry out a t test on the 
numbers as they were (without transforming them). This is 
because the distributions of the samples were very skewed 
for both language groups. Thus, it seemed likely that the 
population distributions were also seriously skewed. That 
would clearly violate the assumption for a t test that the 
underlying population distributions are normal. Thus, I 
took the square root of each score. This had the advantage 
of making the sample distributions much closer to normal. 
This suggests that the population distributions of square 
roots of family sizes are probably nearly normally distrib-
uted. I realize that taking the square root of each family size 
distorts its straightforward meaning, but the impact for the 
individuals in the family of each additional child is prob-
ably not equal. That is, going from no children to 1 child 
has a huge impact. Going from 1 to 2 has less impact, and 
going from 7 to 8 probably makes much less difference for 
the family.

In any case, having taken the square root of each score, 
I then carried out an ordinary t test for independent means 

The rest is similar to question 3c, except for the fol-
lowing about degrees of freedom. For each age group, if 
you know the totals and the figure for children who like 
this kind of music, you can figure the number who do not 
by subtraction. And of the three age groups, if you know 
the total and any two of them, you can figure the third by 
subtraction. So only two combinations are “free to vary.”

 7. (a) ❶ Restate the question as a research hypothesis and 
a null hypothesis about the populations. There are two 
populations of interest:
Population 1: People like those surveyed.
Population 2: People for whom the community they live 
in is independent of their opinion on the upcoming ballot 
initiative.

The research hypothesis is that the two populations are 
different (the community people live in is not independent 
of their opinion on the upcoming ballot initiative). The null 
hypothesis is that the two populations are the same (the 
community people live in is independent of their opinion 
on the upcoming ballot imitative).
❷ Determine the characteristics of the comparison distri-
bution. Chi-square distribution with four degrees of freedom. 
df = 1NColumns - 121NRows - 12 = 13 - 1213 - 12 = 4.
❸ Determine the cutoff sample score on the comparison 
distribution at which the null hypothesis should be rejected. 
.05 level, df = 4: �2 needed = 9.488.
❹ Determine your sample’s score on the comparison 
distribution.  �2 = 112 - 9.822>9.8 + 16 - 4.222>4.2 
+  13 - 722>7 + 118 - 16.822>16.8 + 13 - 7.222>7.2 
+  115 - 1222>12 + 112 - 15.422>15.4 + 19 - 6.622>6.6 
+  112 - 1122>11 = .49 + .77 + 2.29 + .09 + 2.45 
+  .75 + .75 + .87 + .09 = 8.55.
❺ Decide whether to reject the null hypothesis. �2 in 
Step ❹ (8.55) is less extreme than Step ❸ cutoff (9.488). 
Therefore, do not reject the null hypothesis; the study is 
inconclusive.
(b) Similar to question 6b.
(c) Cramer’s � = 238.55>19021224 = 238.55>1804 =  
2.05 = .22.
(d) Similar to question 6d but focusing on this study’s 
results.

 8. (a) � = 2�2>N = 216>100 = .40;

(b) Cramer’s � = 2�2>31N21dfSmaller24 =
216>3110021124 = .40;
(c) Cramer’s � = .28;
(d) � = .28;
(e) � = .28.

 9. From Table 13-9: (a) .08; (b) .32; (c) .11; (d) .07; (e) .06; 
(f) .06.

 10. From Table 13-10: (a) 87; (b) 26; (c) 133; (d) 133; (e) 39.
 11. (a) You should get the same results within rounding error.

(b) � = 2�2>N = 25.55>69 = .28.
(c) Similar to question 6d but focusing on this study’s 
results.

 12. (a) You should get the same results within rounding error.
(b) � = 2�2>N = 2.33>145 = .05.
(c) Similar to question 6d but focusing on this study’s 
results.
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among all the scores. This makes the distribution roughly 
rectangular. Some statisticians recommend that if the 
assumptions are questionable for an ordinary parametric 
test, you change the scores to ranks first and then proceed, 
and that gives more accurate results. There are special pro-
cedures you can use for a t test for independent means with 
ranks. But the figuring is mathematically equivalent to what 
you do with an ordinary t test with ranks. The difference is 
that the rank-order procedure goes with special tables that 
are more accurate in this situation than the t table. However, 
statisticians have found that the results using an ordinary  
t table in this situation are usually a good approximation.
(b) Ranks: 5, 6, 1, 3.5, 3.5, 2; t = 1M - �2>SM = 13.5 - 02> 
.75 = 4.67; reject the null hypothesis.
(c) Ranks: 2, 5, 6; 1, 4, 3; 7, 8, 9; S2

Between = 22.32; 
S2

Within = 2.56; F = 8.72; reject the null hypothesis.
 12. Similar to questions 4d and 11a, but note that the research-

ers used one of the special rank-order tests.

Chapter 15
 1. “Controlling for” refers to partial correlation, a procedure 

based on multiple regression in which you figure the corre-
lation between two variables, subtracting out the influence 
of one or more other variables (the variables that are con-
trolled for). It amounts to figuring the correlation between 
your variables at each level of the controlled-for variable 
and then averaging these correlations.

For example, in this study, the moderately strong cor-
relation between romantic appeal and level of dating expe-
rience can’t be explained as both being due somehow to 
appearance of physical maturity, because appearance of 
physical maturity is controlled for.

 2. Boyd and Gullone are describing the reliability of the 
study’s measures. Reliability is how much a test measures 
something consistently. One method of assessing reliabil-
ity is to look at how one-half of the test correlates with the 
other half of the test, the idea being that the same person 
is taking two tests (the two halves of the test) at the same 
time under the same circumstances. A more general way to 
assess the reliability of a measure is to divide the measure 
into halves in all possible ways and figure the correlation 
between halves using each division; averaging all of these 
correlations gives a statistic called Cronbach’s alpha (which 
Boyd and Gullone refer to as an alpha coefficient). Cronbach’s 
alpha is a measure of the internal consistency reliability of 
a measure, which is the extent to which the items of a mea-
sure assess a common characteristic. An alpha of .60 or .70 
is usually considered a minimum adequate level of reliabil-
ity; that some of Boyd and Gullon’s measures had lower 
alphas means that some of the variables studied may not 
be giving very precise information and may not be doing a 
good job of assessing a common characteristic.

 3. In this study, the participants are students who are grouped 
into different classrooms. This grouping into classrooms 
means that you can not use a regular regression approach 
to test whether the tendency to avoid seeking help is related 
to various student and classroom characteristics. So the 
researchers used a technique called multilevel modeling 
instead of regular regression. This type of analysis takes 

using these transformed scores. As with the original t test, 
the result was inconclusive (the null hypothesis could not 
be rejected), but at least I could be confident that I had done 
the analysis correctly.

 5. (a) t  needed (df = 5, p 6 .05, two-tailed) = -2.571, 2.571; 
t = 1M - �2>SM = 16 - 02>2.54 = 2.36; do not reject 
the null hypothesis.
(b) 3.32, 4, 0, 2, 2, 1.
(c) t = 12.05 - 02>.6 = 3.42; reject the null hypothesis.
(d) Similar to question 4d.

 6. (a) F needed 1df = 2, 6; p 6 .012 = 10.93; Sad: M = 446, 
S2 = 47,089; Angry: M = 259, S2 = 11,727; Exuberant: 
M = 918.67, S2 = 7,184; S2

Between = 346,775.22; S2
Within =

22,000; F = 15.76; reject the null hypothesis.
(b) 14.2, 22.9, 24.8; 11.7, 18.4, 17.3; 28.9, 30.2, 31.7.
(c) M = 20.63, S2 = 31.94; M = 15.8, S2 = 12.91; M =  
30.27, S2 = 1.96; S2

Between = 162.82; S2
Within = 15.60; F =  

10.44; do not reject the null hypothesis.
(d) Similar to question 4d, except note that the square root 
transformation does not solve the problem of skew and 
that it also creates distributions very likely to violate the 
assumption of equal population variances.

 7. Miller wanted to examine the relationships among the 
variables he was studying, probably including various 
parametric hypothesis-testing techniques such as the t test, 
analysis of variance, or testing the significance of bivari-
ate or multiple correlation or regression results. Such pro-
cedures are based on the assumption that the distributions 
of the variables in the population follow a normal curve. 
However, Miller first checked the distributions of the vari-
ables he was studying and found that the scores on two key 
measures were skewed, suggesting that the population dis-
tributions for these variables probably violated the normal 
distribution assumption. (Rest of your answer similar to 
question 4d.)

 8. Similar to question 7.
 9. (a) 3, 1, 2, 4, 5; (b) 5, 3, 2, 1, 4.
 10. (a) 16.5, 30, 10.5, 22.5, 1, 15, 29, 3, 10.5, 18.5, 10.5, 6, 3, 

16.5, 22.5, 20, 21, 3, 25, 6, 13, 18.5, 8, 24, 14, 10.5, 6, 28, 
27, 26.

  (b)

6

5

4

3

2

1

2.5 7.5 12.5 17.5 22.5 27.50 32.5

 11. (a) Test using original scores in 4a above. Ranks: Group A, 
1, 3, 5, 4, 9; Group B, 2, 10, 7, 8, 6; Group A: M = 4.4, 
S2 = 8.8;  Group B: M = 6.6, S2 = 8.8; S2

Pooled = 8.8; 
SDifference = 1.88; t = -1.17; do not reject the null hypoth-
esis. Explanation: Similar to question 4d, except instead of 
explaining square root transformation, explain rank-order 
transformation. I changed each of the scores to its rank 



706 Answers to Set I Practice Problems

for example, father acceptance (after partialing out mother 
rejection) has little direct influence on sibling aggression, 
but mother rejection (after partialing out father acceptance) 
has a moderate effect on it. According to the rest of this 
model, sibling aggression has a moderate effect on aggres-
sion with peers, which in turn has a fairly large effect on 
aggression with peers, which in turn has a fairly large nega-
tive effect on social acceptance.

 6. (Explanation of path analysis as in question 6.) Aron and 
colleagues conducted a mediational analysis, which is a 
particular type of path analysis. Mediational analysis allows 
you to test whether a presumed causal relationship between 
two variables is due to some particular intervening variable 
(called a mediator variable). In this study, the researchers 
examined whether boredom with a relationship explained 
the association between participating in exciting activi-
ties and relationship quality in married couples. To test the 
mediation, the researchers first examined whether excit-
ing activities (the predictor variable) predicted relationship 
quality (the criterion variable). This prediction was signifi-
cant (standardized regression coefficient =  .51, p 6 .0012. 
They also examined whether exciting activities (the predic-
tor variable) predicted relationship boredom (the mediator 
variable). This prediction was significant (standardized 
regression coefficient =  - .56, p 6 .0012. Finally, Aron 
and colleagues examined whether exciting activities and 
relationship boredom predicted relationship quality in a 
multiple linear regression analysis. Consistent with media-
tion, relationship boredom predicted relationship quality 
(standardized regression coefficient =  .74, p 6 .001), and 
exciting activities no longer predicted relationship qual-
ity (standardized regression coefficient =  .10, ns2. So the 
results of the mediational analysis were consistent with the 
researchers’ mediation hypothesis that relationship bore-
dom explains the effect of engaging in exciting activities on 
relationship quality.

 7. (a) In the context of the proposed model, the key result 
is that all three hypothesized paths to intensity were sig-
nificant. However, you can also see that the path from 
desirability to intensity was strongest and the path from 
probability to intensity, though significant, was not very 
strong. This means that how intensely one feels unrequited 
love is very strongly predicted by how desirable one finds 
the beloved, moderately by how much one finds the state of 
being in love desirable, but only slightly by one’s belief that 
the other will eventually reciprocate.
(b) Structural equation modeling is a statistical technique 
in which you specify a pattern of causal links among vari-
ables, diagrammed with arrows connecting each cause to its 
effects. You can also specify that some variables measured 
in the study may actually be indicators of an underlying 
unmeasured latent variable. In this example, the researcher 
has specified paths from the three motivational factors to 
intensity. Further, each of the motivational factors and 
intensity (shown in ovals) are actually latent variables that 
are seen as the underlying causes of several measured vari-
ables (shown here as boxes; if there were not a shortage of 
space, each of these boxes would have a name for the spe-
cific questionnaire items it stands for).

A key statistical aspect of structural equation modeling 
involves using the correlations among variables to compute 

into account the fact that there are groupings of students in 
the study. In this example, characteristics of the individual 
students (such as their level of self-efficacy) are called 
lower-level variables. These lower-level variables are the 
variables for the students in each classroom. The classroom 
characteristics (such as teachers’ ratings of their role in stu-
dents’ social and emotional well-being) are called upper-
level variables. These upper-level variables are ones that 
are about each classroom as a whole (because everyone 
in that classroom has the same teacher). One way to think 
about this kind of analysis is to imagine that the researchers 
conducted a separate regression for each of the 63 different 
math classrooms. The predictor variables in each regres-
sion would be the student characteristics, and the criterion 
variable would be the students’ tendency to avoid seeking 
help. The researchers could then average the regression 
coefficients across the 63 regressions to get a sense of the 
overall association between student characteristics and their 
tendency to avoid seeking help. Then the researchers could 
conduct another set of regression for each of the 63 differ-
ent classrooms. In each of these regressions, the predictor 
variables would be the classroom-level variables, and the 
criterion variable would be the average of each group’s 
scores on the tendency to avoid seeking help measure. The 
researchers could then average the regression coefficients 
to give the overall association between the classroom level 
variables and students’ tendency to avoid seeking help. For-
tunately, these days researchers can use sophisticated meth-
ods that take all the information on all the levels at once 
and figure a slightly more accurate result. In this study, the 
researchers used such a method, called hierarchical linear 
modeling (HLM).

 4. You use a factor analysis to uncover the underlying pat-
tern among a large number of variables—to find out which 
variables group together in the sense of correlating with 
each other but not with other variables in other groupings. 
Fawzi and colleagues’ results suggest that the best underly-
ing pattern among the 16 PTSD symptom ratings has four 
groupings or factors (called “dimensions” in their table). 
The table shows the correlation, called “Factor Loadings,” 
of each individual variable with the grouping. (In this table, 
the researchers listed only each symptom’s factor loading 
on the factor on which it had the highest loading. Each vari-
able has a loading on each factor, but ordinarily has a high 
loading on only one factor, and it is thought of as being part 
of that factor.) The researchers note that the first three fac-
tors correspond to the three key aspects of PTSD as it is 
usually understood. Their fourth factor (which has only one 
item), however, suggested that there is an additional and 
somewhat separate aspect of avoidance that has not been 
considered in previous work as being a separate aspect.

 5. The procedure described here is path analysis, an elabora-
tion of ordinary multiple regression in which you make spe-
cific predictions about the pattern of causality among your 
variables (your casual model), usually including making a 
diagram showing the causality as arrows between boxes, 
as in the figure by MacKinnon-Lewis and colleagues. You 
then figure the regression coefficients (called “path coef-
ficients”). These researchers tried several possible models, 
and the figure shows the one that they decided was best (in 
terms of the strongest coefficients overall). In this model, 
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 10. MANOVA, or multivariate analysis of variance, is ordinary 
analysis of variance, except that it looks at the overall effect 
on more than one dependent variable. In this example, there 
were five measures of conflict resolution preference. The 
“significant main effect of culture” means that the two 
cultures differed significantly when considering the entire 
set of dependent variables at once. Similarly, the “signifi-
cant culture by type of conflict interaction” means that the 
effect of culture on the set of dependent variables varies 
according to the type of conflict. To understand which of 
the several conflict resolution variables were accounting for 
these overall effects, the researchers carried out univariate 
analyses, ordinary analyses of variance on one dependent 
variable at a time. The pattern of results was quite different 
according to the specific dependent variable considered.

 11. (a) Causal modeling (path analysis or structural equation 
modeling);
(b) bivariate correlation and regression;
(c) reliability statistics, such as Cronbach’s alpha and test-
retest reliability;
(d) multivariate analysis of variance, probably followed up 
by univariate analyses of variance;
(e) multilevel modeling;
(f) factor analysis;
(g) t test for independent means;
(h) one-way analysis of variance.

a “path coefficient” for each arrow. This tells the degree 
to which changes on the variable at the tail of the arrow 
are associated with changes in the variable at the head of 
the arrow (under conditions in which all other causes for 
that effect variable are partialed out). That is, the path coef-
ficient is a standardized regression coefficient (a beta) for 
the causal variable in a prediction model in which the effect 
variable is the criterion variable and all of the causal vari-
ables are predictor variables. For example, the path of .32  
from desirability to intensity means that partialing out 
probability and desires state, for each standard deviation 
of change in desirability, there would be .32 of a standard 
deviation of change in intensity.

 8. (a) Independent: the type of medication; dependent: level 
of anxiety.
(b) Independent: kind of movie; dependent: heart rate 
change.
(c) Independent: whether or not mother is present; depen-
dent: number of touches between the two infants.

 9. ANCOVA, or analysis of covariance, is analysis of vari-
ance in which one or more variables have been controlled 
for; ANCOVA is to ordinary ANOVA as a partial correla-
tion is to ordinary correlation. In this example, Roeser and 
colleagues are making the point that the country main effect 
in their factorial ANOVA holds up even after social desir-
ability is controlled for.
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Glossary

Numbers in parentheses refer to chapters in which the term is introduced 
or substantially discussed.

adjusted mean mean of a group after adjusting for (partialing out) the 
effect of a covariate in analysis of covariance. (15)

adjusting for same as partialing out. (15)
alpha 1�2 probability of making a Type I error; the probability of getting 

statistical significance if the null hypothesis is actually true; same as sig-
nificance level. (6) Also short for Cronbach’s alpha. (15)

analysis of covariance (ANCOVA) analysis of variance that controls 
for the effect of one or more additional variables. (15)

analysis of variance (ANOVA) hypothesis-testing procedure for stud-
ies with three or more groups. (9, 15)

analysis of variance table chart showing the major elements in figur-
ing an analysis of variance using the structural model approach. (9)

assumption condition, such as a population’s having a normal dis-
tribution, required for carrying out a particular hypothesis-testing 
 procedure; a part of the mathematical foundation for the accuracy of 
the tables used in determining cutoff values. (7)

beta 1�2 probability of making a Type II error. (6) Also, a standardized 
regression coefficient. (12)

between-groups estimate of the population variance 1S2
Between,

MSBetween2 estimate of the variance of the population of individuals 
based on the variation among the means of the groups studied. Also 
called mean squares between. (9)

between-groups (or numerator) degrees of freedom 1dfBetween2  
degrees of freedom used in the between-groups estimate of the 
population variance in an analysis of variance (the numerator of the  
F ratio); number of scores free to vary (number of means minus 1) in 
figuring the between-groups estimate of the population variance. (9)

biased estimate estimate of a population parameter that is likely sys-
tematically to overestimate or underestimate the true value of the pop-
ulation parameter. For example, SD2 would be a biased estimate of 
the population variance (it would systematically underestimate it). (7)

bimodal distribution frequency distribution with two approximately 
equal frequencies, each clearly larger than any of the others. (1)

bivariate prediction prediction of scores on one variable based on 
scores of one other variable. Also called bivariate regression. (12)

Bonferroni procedure multiple-comparison procedure in which the 
total alpha percentage is divided among the set of comparisons so that 
each is tested at a more stringent significance level. (9)

bootstrap test hypothesis-testing procedure (a computer-intensive 
method) that allows you to create multiple estimates of a sample sta-
tistic (such as a mean difference score or a correlation coefficient) 
by creating a large number of randomly selected samples from your 
data and seeing how consistent the sample statistic is across all of the 
estimates. (14)

categorical variable same as nominal variable. (1)
ceiling effect situation in which many scores pile up at the high end of 

a distribution (creating skewness to the left) because it is not possible 
to have a higher score. (1)

cell in a factorial research design, the particular combination of levels 
of the variables that divide the groups. (10) In a chi-square test for 

independence, the particular combination of categories for two vari-
ables in a contingency table. (13)

cell mean mean of a particular combination of levels of the variables 
that divide the groups in a factorial design in analysis of variance. (10)

central tendency typical or most representative value of a group of 
scores, such as the mean, median, or mode. (2)

chi-square distribution mathematically defined curve used as the com-
parison distribution in chi-square tests; distribution of the chi-square 
statistic. (13)

chi-square statistic 1�22 statistic that reflects the overall lack of fit 
between the expected and observed frequencies; sum, over all the 
categories or cells, of the squared difference between observed and 
expected frequencies divided by the expected frequency. (13)

chi-square table table of cutoff scores on the chi-square distribution for 
various degrees of freedom and significance levels. (13)

chi-square test for goodness of fit hypothesis-testing procedure that 
examines how well an observed frequency distribution of a single nomi-
nal variable fits some expected pattern of frequencies. (13)

chi-square test for independence hypothesis-testing procedure that 
examines whether the distribution of frequencies over the categories of 
one nominal variable are unrelated to (independent of) the distribution 
of frequencies over the categories of a second nominal variable. (13)

chi-square tests hypothesis-testing procedures used when the vari-
ables of interest are nominal variables. (13)

comparison distribution distribution used in hypothesis testing. It 
represents the population situation if the null hypothesis is true. It is 
the distribution to which you compare the score based on your sam-
ple’s results. It is made up of the same kinds of numbers as those 
of the sample’s results (such as sample means, differences between 
sample means, F ratios, or chi-squares). (4)

computational formula equation mathematically equivalent to the 
definitional formula. It is easier to use when figuring by hand but does 
not directly show the meaning of the procedure. (2)

computer-intensive methods statistical methods, including hypothesis-
testing procedures, involving large numbers of repeated computations. (14)

confidence interval (CI) roughly speaking, the range of scores (that is, 
the scores between an upper and lower value) that is likely to include 
the true population mean; more precisely, the range of possible popu-
lation means from which it is not highly unlikely that you could have 
obtained your sample mean. (5)

confidence limit upper or lower value of a confidence interval. (5)
contingency table two-dimensional chart showing frequencies in each 

combination of categories of two nominal variables, as in a chi-square 
test for independence. (13)

continuous variable variable for which, in theory, there are an infinite 
number of values between any two values. (1)

controlling for same as partialing out. (15)
conventional levels of significance 1 p * .05,  p * .012 levels of 

 significance (alpha levels) widely used in psychology. (4)
correlation association between scores on two or more variables. (11)
correlational research design any research design other than a true 

experiment. (11)
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effect size conventions standard rules about what to consider a small, 
medium, and large effect size, based on what is typical in psychology 
research; also known as Cohen’s conventions. (6)

effect size in studies involving means of one or two groups, measure of 
difference (lack of overlap) between populations; the usual standard-
ized effect size measure increases with greater differences between 
means and decreases with greater standard deviations in the popula-
tions, but it is not affected by sample size. There are also conventional 
effect size measures for other kinds of studies (correlations, analysis 
of variance and chi-square test situations); these describe the standard-
ized degree of association in the population. (6)

equal-interval variable variable in which the numbers stand for 
approximately equal amounts of what is being measured. (1)

error in prediction, the difference between a person’s predicted score 
on the criterion variable and the person’s actual score on the criterion 
variable. (12)

eta squared 1�22 common name for the R2 measure of effect size for 
the analysis of variance. Also called correlation ratio. (9)

expected frequency (E) in a chi-square test, number of people in a cat-
egory or cell expected if the null hypothesis were true. (13)

expected relative frequency in figuring probabilities, number of suc-
cessful outcomes divided by the number of total outcomes you would 
expect to get if you repeated an experiment a large number of times. (3)

factor in factor analysis, group of variables that tend to correlate with 
each other and not with other variables. (15)

factor analysis statistical procedure applied in situations where many 
variables are measured and that identifies groups of variables that tend 
to be correlated with each other and not with other variables. (15)

factorial analysis of variance analysis of variance for a factorial 
research design. (10)

factorial research design way of organizing a study in which the influ-
ence of two or more variables is studied at once by setting up the situa-
tion so that a different group of people are tested for each combination 
of the levels of the variables; for example, in a 2 * 2 factorial research 
design there would be four groups: those high on variable 1 and high 
on variable 2, those high on variable 1 but low on variable 2, those low 
on variable 1 but high on variable 2, and those low on variable 1 and 
low on variable 2. (10)

factor loading in factor analysis, correlation of a variable with a 
 factor. (15)

F distribution mathematically defined curve that is the comparison 
distribution used in an analysis of variance. (9)

fit index in structural equation modeling, measure of how well the pat-
tern of correlations in a sample corresponds to the correlations that 
would be expected based on the hypothesized pattern of causes and 
effects among those variables; usually ranges from 0 to 1, with 1 being 
a perfect fit. (15)

floor effect situation in which many scores pile up at the low end of a 
distribution (creating skewness to the right) because it is not possible 
to have any lower score. (1)

F ratio in analysis of variance, ratio of the between-groups population 
variance estimate to the within-groups population variance estimate. 
Also called simply F. (9)

frequency distribution pattern of frequencies over the various values; 
what a frequency table, histogram, or frequency polygon describes. (1)

frequency table ordered listing of number of individuals having each 
of the different values for a particular variable. (1)

F table table of cutoff scores on the F distribution. (9)
general linear model general formula that is the basis of most of the 

statistical methods covered in this text; describes a score as the sum of 
a constant, the weighted influence of several variables, and error. (15)

grand mean (GM) overall mean of all the scores, regardless of what group 
they are in; when group sizes are equal, mean of the group means. (9)

grouped frequency table frequency table in which the number of indi-
viduals (frequency) is given for each interval of values. (1)

grouping variable a variable that separates groups in analysis of 
 variance (and t tests); also see independent variable. (10)

correlation coefficient (r) measure of degree of linear correlation between 
two variables ranging from -1 (a perfect negative linear correlation) 
through 0 (no correlation) to +1 (a perfect positive correlation). (11)

correlation matrix common way of reporting the correlation coeffi-
cients among several variables in a research article; table in which the 
variables are named on the top and along the side and the correlations 
among them are all shown. (11)

covariate variable controlled for in an analysis of covariance. (15)
Cramer’s phi (Cramer’s �) measure of effect size for a chi-square test 

for independence used with a contingency table that is larger than 2 * 2. 
Also known as Cramer’s V and sometimes written as �C or VC. (13)

criterion variable (usually Y) in prediction, a variable that is pre-
dicted. (12)

Cronbach’s alpha 1�2 widely used measure of a test’s internal consis-
tency reliability that reflects the average of the split-half correlations 
from all possible splits into halves of the items on the test. (15)

cross-product of Z scores the result of multiplying a person’s Z score on 
one variable by the person’s Z score on another variable. (11)

curvilinear correlation relation between two variables that shows up 
on a scatter diagram as dots following a systematic pattern that is not 
a straight line. (11)

cutoff sample score in hypothesis testing, the point on the comparison 
distribution at which, if reached or exceeded by the sample score, you 
reject the null hypothesis. Also called critical value. (4)

data transformation mathematical procedure (such as taking the 
square root) used on each score in a sample, usually done to make the 
sample distribution closer to normal. (14)

decision error incorrect conclusion in hypothesis testing in relation to 
the real (but unknown) situation, such as deciding the null hypothesis 
is false when it is really true. (6)

definitional formula equation for a statistical procedure directly show-
ing the meaning of the procedure. (2)

degrees of freedom (df ) number of scores free to vary when estimat-
ing a population parameter; usually part of a formula for making that 
estimate—for example, in the formula for estimating the population 
variance from a single sample, the degrees of freedom is the number 
of scores minus 1. (7)

dependent variable variable considered to be an effect; usually a mea-
sured variable. (15)

descriptive statistics procedures for summarizing a group of scores or 
otherwise making them more understandable. (1)

deviation score score minus the mean. (2)
dichotomizing dividing the scores for a variable into two groups. Also 

called median split. (10)
difference score difference between a person’s score on one testing and 

the same person’s score on another testing; often an after-score minus a 
before-score, in which case it is also called a change score. (7)

direction of causality path of causal effect; if X is thought to cause 
Y then the direction of causality is from X to Y. (11)

directional hypothesis research hypothesis predicting a particular 
direction of difference between populations—for example, a predic-
tion that one population has a higher mean than another population. (4)

discrete variable variable that has specific values (such as whole num-
bers) and that cannot have values between these specific values (such 
as fractional values). (1)

distribution of differences between means distribution of differences 
between means of pairs of samples such that, for each pair of means, 
one mean is from one population and the other mean is from a sec-
ond population; the comparison distribution in a t test for independent 
means. (8)

distribution of means distribution of means of samples of a given size 
from a population (also called a sampling distribution of the mean); 
comparison distribution when testing hypotheses involving a single 
sample of more than one individual. (5)

distribution-free test hypothesis-testing procedure making no 
assumptions about the shape of populations. Also called a nonpara-
metric test. (14)
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mean squares between 1MSBetween2 same as between-groups estimate 
of the population variance 1S2

Between2. (9)
mean squares within 1MSWithin2 same as within-groups estimate of the 

population variance 1S2
Within2. (9)

median middle score when all the scores in a distribution are arranged 
from lowest to highest. (2)

mediational analysis particular type of path analysis that tests whether 
a presumed causal relationship between two variables is due to some 
particular intervening variable (called a mediator variable). (15)

meta-analysis statistical method for combining effect sizes from 
 different studies. (6)

mode value with the greatest frequency in a distribution. (2)
multilevel modeling advanced type of regression analysis that handles 

a research situation in which people are grouped in some way that 
could affect the pattern of scores. (15)

multimodal distribution frequency distribution with two or more high 
frequencies separated by a lower frequency; a bimodal distribution is 
the special case of two high frequencies. (1)

multiple correlation correlation of a criterion variable with two or 
more predictor variables. (12)

multiple correlation coefficient (R) in multiple regression, the cor-
relation between the criterion variable and all the predictor variables 
taken together. It is a measure of degree of multiple correlation; 
positive square root of the proportionate reduction in error 1R22 in a 
 multiple regression analysis. (12)

multiple regression procedure for predicting scores on a criterion vari-
able from scores on two or more predictor variables. (12)

multivariate analysis of covariance (MANCOVA) analysis of cova-
riance with more than one dependent variable. (15)

multivariate analysis of variance (MANOVA) analysis of variance 
with more than one dependent variable. (15)

multivariate statistics statistical procedures involving more than one 
dependent variable. (15)

negative correlation relation between two variables in which high 
scores on one go with low scores on the other, mediums with mediums, 
and lows with highs; on a scatter diagram, the dots roughly follow a 
straight line sloping down and to the right; a correlation coefficient (r) 
less than 0. (11)

95% confidence interval confidence interval in which, roughly speak-
ing, there is a 95% chance that the population mean falls within this 
interval. (5)

99% confidence interval confidence interval in which, roughly speaking, 
there is a 99% chance that the population mean falls within this interval. (5)

no correlation no systematic relationship between two variables; also 
used for correlation coefficient (r) equal to 0. (11)

nominal variable variable with values that are categories (that is, they 
are names rather than numbers). Also called categorical variable. (1)

nondirectional hypothesis research hypothesis that does not predict a 
particular direction of difference between populations. (4)

nonparametric test hypothesis-testing procedure making no assump-
tions about population parameters. Also called a distribution-free test. (14)

normal curve specific, mathematically defined, bell-shaped frequency 
distribution that is symmetrical and unimodal; distributions observed 
in nature and in research commonly approximate it. (1, 3)

normal curve table table showing percentages of scores associated 
with the normal curve; the table usually includes percentages of scores 
between the mean and various numbers of standard deviations above 
the mean and percentages of scores more positive than various num-
bers of standard deviations above the mean. (3)

normal distribution frequency distribution that follows a normal curve. (3)
null hypothesis statement about a relation between populations that is 

the opposite of the research hypothesis; statement that in the popula-
tion there is no difference (or a difference opposite to that predicted) 
between populations; contrived statement set up to examine whether it 
can be rejected as part of hypothesis testing. (4)

numeric variable variable whose values are numbers (as opposed to a 
nominal variable); also called quantitative variable. (1)

observed frequency (O) in a chi-square test, number of  individuals 
actually found in the study to be in a category or cell. (13)

harmonic mean special average influenced disproportionately by 
smaller numbers; in a t test for independent means when the number 
of scores in the two groups differ, the harmonic mean is used as the 
equivalent of each group’s sample size when determining power. (8)

hierarchical linear modeling (HLM) sophisticated type of multi-
level modeling that handles a research situation in which people are 
grouped in some way that could affect the pattern of scores. (15)

histogram barlike graph of a frequency distribution in which the 
 values are plotted along the horizontal axis and the height of each bar 
is the frequency of that value; the bars are usually placed next to each 
other without spaces, giving the appearance of a city skyline. (1)

holding constant same as partialing out. (15)
hypothesis prediction, often based on informal observation, previous 

research, or theory, that is tested in a research study. (4)
hypothesis testing procedure for deciding whether the outcome of a 

study (results for a sample) supports a particular theory or practical 
innovation (which is thought to apply to a population). (4)

independence situation of no relationship between two variables; term 
usually used regarding two nominal variables in a chi-square test for 
independence. (13)

independent variable variable considered to be a cause, such as what 
group a person is in for a t test or analysis of variance. (15)

inferential statistics procedures for drawing conclusions based on the 
scores collected in a research study but going beyond them. (1)

interaction effect situation in a factorial analysis of variance in which 
a combination of variables has an effect that could not be predicted 
from the effects of the two variables individually; situation in which 
the effect of one grouping variable on the measured variable is differ-
ent across the levels of the other grouping variable. (10)

intercept the point where the regression line crosses the vertical axis; 
same as regression constant (a). (12)

internal consistency reliability extent to which the items of a measure 
assess a common characteristic; usually measured using Cronbach’s 
alpha. (15)

interrater reliability similarity of ratings by two or more raters of 
each participant’s behavior or spoken or written material. (15)

interval range of values in a grouped frequency table that are grouped 
together. (For example, if the interval size is 10, one of the intervals 
might be from 10 to 19.) (1)

kurtosis extent to which a frequency distribution deviates from a nor-
mal curve in terms of whether its curve in the middle is more peaked or 
flat than the normal curve. (1)

latent variable in structural equation modeling, unmeasured variable 
assumed to be the underlying cause of several variables actually mea-
sured in the study. (15)

levels of measurement types of underlying numerical information 
provided by a measure, such as equal-interval, rank-order, and nomi-
nal (categorical). (1)

linear correlation relation between two variables that shows up on a 
scatter diagram as the dots roughly following a straight line. (11)

linear prediction rule formula for making predictions; that is, formula 
for predicting a person’s score on a criterion variable based on the 
person’s score on one or more predictor variables; also called linear 
prediction model. (12)

long-run relative-frequency interpretation of probability  under-
standing of probability as the proportion of a particular outcome that 
you would get if the experiment were repeated many times. (3)

lower-level variable in multilevel modeling, a variable that is about 
people within each grouping. (15)

main effect difference between groups on one grouping variable in a 
factorial design in analysis of variance; result for a grouping variable, 
averaging across the levels of the other grouping variable(s). (10)

marginal mean in a factorial design in analysis of variance, mean score for 
all the participants at a particular level of one of the grouping variables. (10)

mean 1M, �2 arithmetic average of a group of scores; sum of the scores 
divided by the number of scores. (2)

mean of a distribution of means 1�M2 the mean of a distribution of 
means of samples of a given size from a population; it comes out to be 
the same as the mean of the population of individuals 1�2. (5)



 Glossary 711

proportion of variance accounted for 1R2 2 proportion of the total 
variation of scores from the grand mean that is accounted for by the 
variation between the means of the groups. (9)

quantitative variable same as numeric variable. (1)
randomization test hypothesis-testing procedure (usually a com-

puter-intensive method) that considers every possible reorganiza-
tion of the data in the sample to determine if the organization of the 
actual sample data were unlikely to occur by chance. (14)

random selection method for selecting a sample that uses truly random 
procedures (usually meaning that each person in the population has an 
equal chance of being selected); one procedure is for the researcher to 
begin with a complete list of all the people in the population and select 
a group of them to study using a table of random numbers. (3)

rank-order test hypothesis-testing procedure that uses rank-ordered 
scores. (14)

rank-order transformation changing a set of scores to ranks (for 
example, so that the lowest score is rank 1, the next highest rank 2, and 
so forth). (14)

rank-order variable numeric variable in which the values are ranks, such as 
class standing or place finished in a race. Also called ordinal variable. (1)

ratio scale equal-interval variable measured on a ratio scale if it has 
an absolute zero point (such as age or number of children), meaning 
that the value of zero on the variable indicates a complete absence of 
the variable. (1)

raw score ordinary score (or any number in a distribution before it has 
been made into a Z score, deviation score, or otherwise transformed). (3)

rectangular distribution frequency distribution in which all values 
have approximately the same frequency. (1)

regression coefficient (b) number multiplied by a person’s score on a 
predictor variable as part of a linear prediction rule. (12)

regression constant (a) in a linear prediction rule, particular fixed 
number added into the prediction; same as intercept. (12)

regression line line on a graph such as a scatter diagram showing the 
predicted value of the criterion variable for each value of the predictor 
variable; visual display of the linear prediction rule. (12)

reliability degree of consistency or stability of a measure. (15)
repeated measures analysis of variance analysis of variance for a 

repeated measures design in which each person is tested more than 
once so that the levels of the grouping variable(s) are different times 
or types of testing for the same people. (10)

repeated measures design research strategy in which each person 
is tested more than once; same as within-subjects design. (7)

research hypothesis statement in hypothesis testing about the pre-
dicted relation between populations. (4)

restriction in range situation in which you figure a correlation but 
only a limited range of the possible values on one of the variables is 
included in the sample studied. (11)

RMSEA (root mean square error of approximation) widely used fit 
index in structural equation modeling; low values indicate a good fit. (15)

robustness extent to which a particular hypothesis-testing procedure is 
reasonably accurate even when its assumptions are violated. (7)

sample scores of the particular group of people studied; usually consid-
ered to be representative of the scores in some larger population. (3)

sample statistic descriptive statistic, such as the mean or  standard devia-
tion, figured from the scores in a group of people  studied. (3)

scatter diagram graph showing the relationship between two numeric 
variables: the values of one variable (often the predictor variable) are 
along the horizontal axis and the values of the other variable (often the 
criterion variable) are along the vertical axis; each score is shown as a 
dot in this two-dimensional space. (11)

Scheffé test method of figuring the significance of post hoc comparisons 
that takes into account all possible comparisons that could be made. (9)

score particular person’s value on a variable. (1)
significance level same as alpha 1�2. (6)
skewed distribution distribution in which the scores pile up on one side 

of the middle and are spread out on the other side; distribution that is 
not symmetrical. (1)

slope steepness of the angle of a regression line in a graph of the 
 relation of scores on a predictor variable and predicted scores on a 

one-tailed test hypothesis-testing procedure for a directional hypoth-
esis; situation in which the region of the comparison distribution in 
which the null hypothesis would be rejected is all on one side (or tail) 
of the distribution. (4)

one-way analysis of variance analysis of variance in which there is 
only one grouping variable. (10)

outcome term used in discussing probability for the result of an experi-
ment (or almost any event, such as a coin coming up heads or it raining 
tomorrow). (3)

outlier score with an extreme value (very high or very low) in relation 
to the other scores in the distribution. (2, 11)

parametric test ordinary hypothesis-testing procedure, such as a t test 
or an analysis of variance, that requires assumptions about the shape 
or other parameters (such as the variance) of the populations. (14)

partial correlation the amount of association between two variables, 
over and above the influence of one or more other variables. (15)

partial correlation coefficient measure of the degree of correlation 
between two variables, over and above the influence of one or more 
other variables. (15)

partialing out removing the influence of a variable from the associa-
tion between other variables; same as holding constant, controlling 
for, and adjusting for. (15)

path an arrow in a path analysis or structural equation model that 
shows what the researcher predicts to be the cause-and-effect connec-
tions between variables. (15)

path analysis method of analyzing the correlations among a group of 
variables in terms of a predicted pattern of causal relations; usually the 
predicted pattern is diagrammed as a pattern of arrows from causes to 
effects. (15)

path coefficient degree of relation associated with an arrow in a path 
analysis (including in structural equation modeling); same as a regres-
sion coefficient from a multiple regression prediction rule in which the 
variable at the end of the arrow is the criterion variable and the variable 
at the start of the arrow is the predictor, along with all the other vari-
ables that have arrows leading to that criterion variable. (15)

phi coefficient 1�2 effect-size measure for a chi-square test for inde-
pendence with a 2 * 2 contingency table; square root of division of 
chi-square statistic by N. (13)

planned contrast comparison in which the particular means to be com-
pared were decided in advance. Also called planned comparison. (9)

pooled estimate of the population variance 1S2
Pooled2 in a t test for 

independent means, weighted average of the estimates of the popula-
tion variance from two samples (each estimate weighted by the pro-
portion consisting of its sample’s degrees of freedom divided by the 
total degrees of freedom for both samples). (8)

population entire group of people to which a researcher intends the 
results of a study to apply; larger group to which inferences are made 
on the basis of the particular set of people (sample)  studied. (3)

population parameter actual value of the mean, standard deviation, and 
so on, for the population; usually population parameters are not known, 
though often they are estimated based on information in samples; popu-
lation parameters are usually symbolized by Greek letters. (3)

positive correlation relation between two variables in which high 
scores on one go with high scores on the other, mediums with medi-
ums, and lows with lows; on a scatter diagram, the dots roughly follow 
a straight line sloping up and to the right; a correlation coefficient (r) 
greater than 0. (11)

post hoc comparisons multiple comparisons, not specified in advance; 
procedure conducted as part of an exploratory analysis after an analy-
sis of variance. (9)

power table table for a hypothesis-testing procedure showing the sta-
tistical power of studies with various effect sizes and sample sizes. (6)

predictor variable (usually X) in prediction, variable that is used to 
predict scores of individuals on another variable. (12)

probability (p) expected relative frequency of an outcome; the propor-
tion of successful outcomes to all outcomes. (3)

proportionate reduction in error 1r 22 measure of association between 
variables that is used when comparing associations. Also called pro-
portion of variance accounted for. (11)
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t table table of cutoff scores on the t distribution for various degrees of 
freedom, significance levels, and one- and two-tailed tests. (7)

t test hypothesis-testing procedure in which the population variance is 
unknown; it compares t scores from a sample to a comparison distri-
bution called a t distribution. (7)

t test for a single sample hypothesis-testing procedure in which a 
sample mean is being compared to a known population mean and the 
population variance is unknown. (7)

t test for dependent means hypothesis-testing procedure in which 
there are two scores for each person and the population variance 
is not known; it determines the significance of a hypothesis that is 
being tested using difference or change scores from a single group 
of people. (7)

t test for independent means hypothesis-testing procedure in which 
there are two separate groups of people tested and in which the popu-
lation variance is not known. (8)

two-tailed test hypothesis-testing procedure for a nondirectional 
hypothesis; the situation in which the region of the comparison dis-
tribution in which the null hypothesis would be rejected is divided 
between the two sides (tails) of the distribution. (4)

two-way analysis of variance analysis of variance for a two-way fac-
torial research design. (10)

two-way factorial research design factorial research design in analy-
sis of variance with two grouping variables. (10)

Type I error rejecting the null hypothesis when in fact it is true; get-
ting a statistically significant result when in fact the research hypoth-
esis is not true. (6)

Type II error failing to reject the null hypothesis when in fact it is 
false; failing to get a statistically significant result when in fact the 
research hypothesis is true. (6)

unbiased estimate of the population variance 1S2 2 estimate of the 
population variance, based on sample scores, which has been cor-
rected so that it is equally likely to overestimate or underestimate the 
true population variance; the correction used is dividing the sum of 
squared deviations by the sample size minus 1, instead of the usual 
procedure of dividing by the sample size directly. (7)

unimodal distribution frequency distribution with one value clearly 
having a larger frequency than any other. (1)

upper-level variable in multilevel modeling, a variable that is about 
the grouping as a whole. (15)

value possible number or category that a score can have. (1)
variable characteristic that can have different values. (1)
variance 1SD2, S2, �2, MS2 measure of how spread out a set of scores 

are; average of the squared deviations from the mean. (2)
variance of a distribution of differences between means 1S2

Difference2  
one of the numbers figured as part of a t test for independent means; 
it equals the sum of the variances of the distributions of means associ-
ated with each of the two samples. (8)

variance of a distribution of means 1S2
M, �2

M2 variance of the popula-
tion divided by the number of scores in each sample. (5)

weighted average average in which the scores being averaged do not 
have equal influence on the total, as in figuring the pooled variance 
estimate in a t test for independent means. (8)

within-groups (or denominator) degrees of freedom 1dfWithin2  
degrees of freedom used in the within-groups estimate of the popula-
tion variance in an analysis of variance, denominator of the F ratio; 
number of scores free to vary (number of scores in each group minus 1, 
summed over all the groups) in figuring the within-groups population 
variance estimate. (9)

within-groups estimate of the population variance 1S2
Within, 

MSWithin2 estimate of the variance of the population of individuals 
based on the variation among the scores in each of the actual groups 
studied. (9)

Z score number of standard deviations that a score is above (or below, 
if it is negative) the mean of its distribution; it is thus an ordinary 
score transformed so that it better describes the score’s location in a 
distribution. (3)

Z test hypothesis-testing procedure in which there is a single sample 
and the population variance is known. (5)

criterion variable; number of units the line goes up for every unit it 
goes across. (12)

Spearman’s rho the equivalent of a correlation coefficient for rank-
ordered scores. (11)

split-half reliability one index of a measure’s reliability, based on a 
correlation of the scores of items from two halves of the test. (15)

squared deviation score square of the difference between a score and 
the mean. (2)

square-root transformation data transformation using the square root of 
each score. (14)

standard deviation 1SD, S, �2 square root of the average of the 
squared deviations from the mean; the most common descriptive sta-
tistic for variation; approximately the average amount that scores in a 
distribution vary from the mean. (2)

standard deviation of a distribution of means 1�M, SM2 square root 
of the variance of a distribution of means; also called standard error 
of the mean (SEM) and standard error (SE). (5)

standard deviation of the distribution of differences between means 
1SDifference2 In a t test for independent means, square root of the vari-
ance of the distribution of differences between means. (8)

standard error (SE) same as standard deviation of a distribution of 
means; also called standard error of the mean (SEM). (5)

standard error of the mean (SEM) same as standard deviation of a 
distribution of means. Also called standard error (SE). (5)

standardized regression coefficient 1�2 regression coefficient in 
standard deviation units. It shows the predicted amount of change in 
standard deviation units of the criterion variable if the value of the 
predictor variable increases by one standard deviation. (12)

statistical power probability that a study will give a significant result 
if the research hypothesis is true. (6)

statistically significant conclusion that the results of a study would be 
unlikely if in fact the sample studied represents a population that is 
no different from the population in general; an outcome of hypothesis 
testing in which the null hypothesis is rejected. (4)

statistics branch of mathematics (and set of research tools used by psy-
chologists) that focuses on the organization, analysis, and interpreta-
tion of a group of numbers. (1)

structural equation modeling sophisticated version of path analysis 
that includes paths with latent, unmeasured, theoretical variables and 
that also permits a kind of significance test and provides measures of 
the overall fit of the data to the hypothesized causal pattern. (15)

structural model way of understanding the analysis of variance as a 
division of the deviation of each score from the overall mean into two 
parts: the variation in groups (its deviation from its group’s mean) and 
the variation between groups (its group’s mean’s deviation from the 
overall mean); an alternative (but mathematically equivalent) way of 
understanding the analysis of variance. (9)

subjective interpretation of probability way of understanding probability 
as the degree of one’s certainty that a particular outcome will occur. (3)

sum of squared deviations (SS) total of all the scores of each score’s 
squared difference from the mean; also called sum of squares. (2)

sum of squares (SS) same as sum of squared deviations. (2)
sum of the squared errors 1SSError2 sum of the squared differences 

between each predicted score and actual score on the criterion variable. (12)
symmetrical distribution distribution in which the pattern of frequen-

cies on the left and right side are mirror images of each other. (1)
t distribution mathematically defined curve that is the comparison dis-

tribution used in a t test. (7)
test-retest reliability one index of a measure’s reliability, obtained by giv-

ing the test to a group of people twice; correlation between scores from the 
two testings. (15)

theory set of principles that attempt to explain one or more facts, rela-
tionships, or events; psychologists often derive specific predictions 
from theories that are then tested in research studies. (4)

total squared error when predicting from the mean 1SSTotal2  sum 
of squared differences of each score on the criterion variable from the 
predicted score when predicting from the mean. (12)

t score on a t distribution, number of standard deviations from the 
mean (like a Z score, but on a t distribution). (7)
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Glossary of Symbols

NGroups Number of groups in the analysis of variance. (9, 10)
p Probability. (3)
r Correlation coefficient. (11)
r 2 Proportionate reduction in error (proportion of variance accounted 

for) in bivariate regression. (11)
R Multiple correlation coefficient. (12)
R2 Proportionate reduction in error (proportion of variance accounted 

for) in multiple regression and analysis of variance. (9, 10, 12, 15)
R2

Columns, R
2
Rows, R

2
Interaction Proportion of variance accounted for by 

columns, rows, interaction (measure of effect size in the factorial 
analysis of variance). (10)

S Unbiased estimate of the population standard deviation. (7)
S2 Unbiased estimate of the population variance. (7)
S2

1, S
2
2, and so on Unbiased estimate of the population variance based 

on scores in the first sample, second sample, and so on. (8–10)
S2

Between Between-groups estimate of the population variance. (9)
S2

Columns, S
2
Rows, S

2
Interaction Estimated population variance between groups 

for columns, rows, interaction (in factorial  analysis of variance). (10)
SDifference Standard deviation of the distribution of differences between 

means. (8)
S2

Difference Variance of the distribution of differences between means. (8)
SE Standard error (standard deviation of the distribution of means). (5)
SM Standard deviation of the distribution of means based on an esti-

mated population variance; same as standard error (SE). (7)
S2

M Variance of a distribution of means based on an estimated popu-
lation variance in a t test or as estimated from the variation among 
means of groups in the analysis of variance. (7, 9)

S2
M1

, S2
M2

, and so on Variance of the distribution of means based on a 
pooled population variance estimate, corresponding to the first sam-
ple, second sample, and so on. (8, 9)

SPooled Pooled estimate of the population standard deviation. (8)
S2

Pooled Pooled estimate of the population variance. (8)
S2

Within Within-groups estimate of the population variance. (9)
SD Standard deviation. (2)
SD2 Variance. (2)
SS Sum of squared deviations from the mean. (9)
SSBetween Sum of squared deviations (from the mean) between groups. (9)
SSColumns, SSRows, SSInteraction Sum of squared deviations (from the 

mean) between columns or rows or due to interaction (in the factorial 
analysis of variance). (10)

SSError In prediction, sum of squared error when predicting from the 
linear prediction rule. (12)

SSTotal Total sum of squared deviations from the mean (or from the 
grand mean, in the analysis of variance). (2, 9, 10)

SSWithin Sum of squared deviations (from the mean) within groups 
(or within cells). (9, 10)

t score Number of standard deviations from the mean on a t distribu-
tion. (7, 8, 11)

X Score on a particular variable; in prediction (regression), X is usually 
for the predictor variable. (1, 2, 11, 12)

X1, X2, and so on First predictor variable, second predictor variable, 
and so on. (12)

Y Score on a particular variable; in prediction (regression), Y is usually 
for the criterion variable. (11, 12)

Yn Predicted value of criterion variable Y. (12)
Z A score’s number of standard deviations from the mean. (3)

Numbers in parentheses refer to chapters in which the term is introduced 
or substantially discussed.

� Significance level, such as .05 or .01; probability of a Type I error in 
hypothesis testing. (6) Also Cronbach’s alpha, a measure of internal 
consistency reliability. (15)

� Probability of a Type II error in hypothesis testing. (6) Also a stan-
dardized regression coefficient. (12)

� Population mean. (3)
�M Mean of a distribution of means. (5)
� Population standard deviation. (3)
�M Standard deviation of a distribution of means. (5)
�2 Population variance. (3)
�2

M Variance of a distribution of means. (5)
	 Sum of; add up all the scores following. (2)
� Phi coefficient; effect size in chi-square analysis of a 2 * 2 contin-

gency table. (14)
�2 Chi-square statistic. (13)
a Regression constant. (12)
b Regression coefficient. (12)
d Effect size for studies involving one or two means. (6–8)
df Degrees of freedom. (7–13)
df1, df2, and so on Degrees of freedom for the first group, second 

group, and so on. (8–10)
dfBetween Between-groups (numerator) degrees of freedom in the analy-

sis of variance. (9)
dfColumns, dfRows, dfInteraction Degrees of freedom for columns, rows, 

and interaction (in the factorial analysis of variance). (10)
dfTotal Total degrees of freedom over all groups. (8–10)
dfWithin Within-groups (denominator) degrees of freedom in the analy-

sis of variance. (9)
F ratio In an analysis of variance, ratio of between-groups population 

variance estimate to within-groups population variance estimate. (9, 10)
GM Grand mean; mean of all scores in the analysis of variance. (9, 10)
M Mean. (2)
M1, M2, and so on Mean of the first group, second group, and so on. (8–10)
MColumn, MRow Mean of the scores in a particular column or a particu-

lar row (in the factorial analysis of variance). (10)
MSBetween Mean squares (mean of the squared deviations from the 

mean) between. (9)
MSColumns, MSRows, MSInteraction Mean squares (mean of the squared 

deviations from the mean) between for columns, rows, interaction (in 
the factorial analysis of variance). (10)

MSError Mean squares (mean of the squared deviations from the mean) 
error. (9)

MSWithin Mean squares (mean of the squared deviations from the 
mean) within. (9)

n Number of scores in each group in the analysis of variance. (9)
N Number of scores overall. (2)
N1, N2 and so on Number of scores in the first group, second group, 

and so on. (8–10)
NCategories Number of categories in a chi-square test for goodness of fit. 

(13)
NColumns, NRows Number of columns, number of rows (in a  factorial 

analysis of variance and in a contingency table in a chi-square test for 
independence). (10, 13)

NCells Number of cells in a factorial design. (10)
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in prediction, 520–24, 620–21
proportionate reduction in, 520–24
sampling, 149
standard error (SE), 144, 160–63
Type I and Type II, 178–80, 598

Error bars, 157–58
Estimation, 158–63, 185
Eta squared (�2), 346
Ethnicity, math performance and,  

54–56

restriction in range and, 465–66
sample size and, 470–71
significance of, 458–62
size of (what is “large”?), 472–73
Spearman’s rho and, 469
in SPSS, 489–91, 663–65
standardized regression coefficient  

and, 511
steps for figuring, 455

Correlation matrix, 474–75
Covariance, analysis of, 641–42, 644, 666–69
Covariates, 641–42
Cramer’s phi, 563
Criterion variables (Y), 494, 620–21, 

644
Critical values. See Cutoff sample scores
Cronbach’s alpha (�), 626–27
Cross-product of Z scores, 451
Cumulative frequencies, 7
Curvilinear correlations, 444–45

Spearman’s rho and, 469 
Cutoff sample scores, 112–14

for the chi-square distribution, 679
determining with two-tailed tests, 121–22
for the F distribution, 676–79
for the t distribution, 233–34, 675
t tables and, 233–34

D
d (effect size), 184
Darwin, Charles, 453
Data transformations, 588–93

advantages and disadvantages of, 597–98
definition of, 588
example of, 592–93
kinds of, 591–92
legitimacy of, 590–91
rank-order tests, 593–97
in research articles, 603–4
in SPSS, 614–17

Davies, K. M., 378
Da Vinci, Leonardo, 91
Decision aids, 517, 518
Decision errors, 177–90

in research articles, 212–14
Definitional formulas, 50
Degrees of freedom (df ), 230–31

between-groups, 330
chi-square test for independence and, 

556–57
in two-way analysis of variance, 405–6
within-groups, 330–31

Delaney, H. D., 399
Delucchi, K. L., 567
De Moivre, Abraham, 75
Denenberg, V. H., 214
Denominator degrees of freedom.  

See Within-groups degrees of freedom
Dependent variable, 641
Descriptive statistics, definition, 2
Deviation scores, 45, 451–52
Dewey, Thomas, 87
Dichotomizing, 398–400
Diener, E., 119
Difference scores, 240–41
Directional hypotheses, 120, 122
Direction of causality, 462–64

Cohen, Jacob, 128, 185, 186, 201, 293, 399, 
472, 563, 645

Comparison distributions, 112
distribution of means and, 140,  

148–49
sample mean’s score on, 234
t distribution, 231–33
in t test for independent means and, 276–83
in Z tests, 148–55

Computational formulas, 50
Computer-intensive methods, 599–603
Conditional probabilities, 98
Confidence intervals (CI), 158–63

controversy over, 164–65
definition of, 159
hypothesis testing and, 162–63
logic of, 161–62
95%, 160–63
99%, 160
in research articles, 165
significance tests vs., 164–65

Confidence limits, 159, 160–61
Constant. See Regression constant
Contingency tables, 553–54

phi coefficient and, 562–63
Continuous variables, 5
Conventional levels of significance, 114. 

See also Significance levels; Statistical 
significance

Correlation, 439–92
causality and, 462–64
coefficient, 451–58, 464–70
controversy over “large”, 472–73
curvilinear, 444–48, 468–69
definition of, 440
graphing, 441–43, 488–89
illusory, 466–67
interpreting, 464–70
linear, 444–48, 451–52
multiple, 512
negative, 446–48
no correlation, 445–46
partial, 624–25
patterns of, 444–49
positive, 446–48
in research articles, 473–75
in SPSS, 488–91
statistical procedures vs. research methods, 

463–64
strength of, 448

Correlational research design, 464
Correlation coefficients (r), 451–58, 464–70

assumptions for significance testing of, 
460–61

definition of, 453
effect size and power and, 470–71
examples of figuring, 456–58, 460
figuring linear correlation and, 451–52
formula for, 454–55
interpreting, 453–54, 464–70
measurement unreliability and, 466–68
multiple (R), 513
outliers and, 468
partial, 625, 663–65
proportionate reduction in error (r2), 

464–65, 522–23
regression coefficients vs., 516–17
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possible outcomes of, 180
prediction and, 511
process and steps for, 111–16
in research articles, 129–30, 156–58
significance levels and, 114
significance testing and, 125–28
statistical power and, 203–4, 207
steps in, 111–16
t tests for dependent means, 240–41
t tests for independent means in, 283–91
t tests, single sample, 227–40
two-way analysis of variance in, 393–95
Z test for, 148–55

I
Illusory correlation, 466–67
Independence

chi-square test for, 545, 553–62
definition of, 554

Independent variable, 641
Inferential statistics, 2–3, 68–107

normal curve and, 74–84
probability and, 89–94
samples and populations in, 84–89
Z scores and, 69–73

Insko, Chet, 156
Interaction effects, 379–80, 383–93

examples of, 384–87, 394
F ratios and, 395–96
identifying, 384–91
main effects and, 390–91
personality and, 394
recognizing and interpreting,  

383–93
Intercepts, 499
Internal consistency reliability, 626
Interrater reliability, 626
Intervals, 9, 20. See also Confidence intervals
Inverse transformations, 591

J
Jefferson, Thomas, 6
Jung, Carl, 54

K
Kenny, David, 635
Koslowsky, M., 629–30
Kruskal-Wallis H test, 594, 595
Kulik, J. A., 400–1
Kurtosis, 18–19

L
Lai, J.-S., 186
Lanarkshire milk experiment, 256
Laplace, Pierre, 75
Latane, Bibb, 52–53
Latent variable, 637
Least squared error principle, 504–9
Least squares criterion, 505, 621
Levels of measurement, 3–5
Lewis, D., 566
Linear contrasts. See Planned contrasts
Linear correlations, 444–45

figuring, 451–52
Linear prediction rule, 494–97

examples of, 496–97
finding the best, 502–4
in SPSS, 538–41

Frick, R. W., 210
Froman, R. D., 399

G
Gallup poll, 87
Galton, Francis, 95, 453, 634
Gaussian distribution. See Normal curves
Gauss, Karl Friedrich, 74, 75
Gender

math performance and, 54–56
statistics and, 54–56, 623–24

General linear model, 618–23
Gibler, D. M., 628–29
Gigerenzer, G., 645
Gilbert, Daniel, 119
Goodness of fit, chi-square test for,  

543–53, 580–81
Gosset, William S., 227, 228, 255, 543,  

602, 634
Grand mean (GM), 327
Graphs

bar, 20–21
frequency, 10–15
misleading, 19–21
scatter diagrams, 441–43, 488–89

Graziano, Bill, 53
Grouped frequency tables, 9–10, 20
Group/grouping variable, 380, 622
Groups, comparing, 641
Gump, B. B., 400–1, 473

H
Harmonic mean, 300
Hazan, Cindy, 316–17
Heart of Social Psychology, The (Aron, Aron), 

52
Hierarchical linear modeling (HLM), 628
Highly sensitive persons, 13
Histograms, 10–15

constructing, 14–15
definition of, 10
examples of, 11–12
frequency polygons from, 16
misleading, 19–21
in research articles, 22–23
in SPSS, 31–33

Husserl, E., 53
Hutchison, M. L., 628–29
Hypothesis, defined, 108
Hypothesis testing, 93, 108–76

analysis of variance in, 333–37
assumptions in, 586–88
chi-square tests in, 547–51, 557–60
comparison distribution in, 112
computer-intensive methods for, 599–603
confidence intervals and, 162–63
cutoff sample scores in, 112–14, 121–22
decision errors and, 177–80
definition of, 108
with distribution of means, 148–55
estimation, as alternative to, 158–63
examples of, 109–10, 111–19
logic of, 110–11, 116
with means of samples, 139–76
with nonnormal distributions, 585–617
null and research hypotheses in,  

111–12, 114–16, 127
one-tailed and two-tailed tests in, 120–24

Expected frequencies
chi-square test for independence and, 

543–44
definition of, 545
determining, 554–56
minimum, controversy on, 566–67

Expected relative frequency, 90

F
F distributions, 323–24, 329–30

cutoff scores for, 676–79
F ratios, 323

figuring, 329
interaction effects and, 395–96
in two-way analysis of variance, 393–95

F tables, 323–24, 330–31
Factor, definition of, 629
Factor analysis, 629–30, 644
Factorial analysis of variance, 377–438, 644

assumptions in, 396
dichotomizing variables in, 398–400
examples of, 378–84
factorial research design and, 377, 379–81
interaction effects and, 379–80,  

383–93, 395–96
logic of, 378–83
power and effect size in, 413–17
in research articles, 400–1
sample size in, 416–17
in SPSS, 433–38
terminology in, 380–81

Factorial research design, 377, 379–81
Factor loading, 629
Fermat, Pierre de, 91
Fidell, Linda, 623–24
Fisher, Ronald, 128, 323, 543, 566, 602,  

634, 646
Fit index, 636–37
Floor effect, 17, 586
Formulas, computational/definitional, 50
Fraley, B., 635–36
Frequency distributions, 16–19

bimodal, 16
comparison of types of, 16
definition of, 16
kurtotic, 18
multimodal, 16
normal, 18
rectangular, 16
skewed, 16–18
symmetrical, 16–17
t distributions, 231–33
unimodal, 16, 39

Frequency graphs
frequency polygons, 16, 17
histograms, 10–15
misleading, 19–21

Frequency polygons, 16, 17
misleading, 19–21

Frequency tables, 7–10
constructing, 7–8, 25
definition of, 7
examples of, 7–9
grouped, 9–10
for nominal variables, 8–9
in research articles, 22–23
in SPSS, 30–31
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Null hypothesis, 111–16, 127, 646
cutoff sample scores and, 112–14, 117–18, 

233–34
deciding whether to reject, 114–15, 118, 

234
definition of, 111
implications of rejecting or failing to reject, 

115–16, 127
population variance and, 318–24
in rank-order tests, 596
research hypothesis and, 111–12
t tables and, 233–34

Numerator degrees of freedom. See Between-
groups degrees of freedom

Numeric variables, 4, 398–400

O
Oakes, Michael, 472
Obama, Barack, 87
Observed frequency, 545
Oettingen, G., 518
Olthoff, R. K., 241, 243, 244, 257
Omnibus tests, 349–50
One-sample t tests. See t tests, single sample
One-tailed tests, 120

statistical power and, 203, 204, 206
when to use, 121

One-way analysis of variance, 371–75,  
380, 644

Orbach, I., 349
Ordinal variables, 4
Or rule, 97–98
Outcomes, 89, 180

independent, 98
mutually exclusive, 97–98

Outliers, 40, 468, 586–87
Owen, S. V., 399

P
Pacioli, Luca, 91
Parametric tests, 594, 595, 644

with rank-transformed data, 596–97
Type I and II errors with, 598

Partial correlation, 624–25, 644
Partial correlation coefficient, 625

in SPSS, 663–65
Partialing out, 624
Pascal, Blaise, 91
Path analysis, 632–33, 644
Path coefficient, 632
Pearson, Egon, 646
Pearson, Karl, 75, 453, 542–43, 602, 634, 646
Pearson chi-square. See Chi-square tests
Percentiles, 7
Phi coefficient ( ), 562–63
Planned comparisons. See Planned contrasts
Planned contrasts, 340–43

Bonferroni procedure and, 342
example of, 340–41
figuring, 340
omnibus tests vs., 349–50
in SPSS, 373–74

Polls, 87, 149
Pooled estimate of the population variance  

(S2
Pooled), 278–79

Population parameters, 88

mean and median vs., 40–43
in SPSS, 63
when used, 40, 43

Mody, M., 214
Monte Carlo methods, 292–93, 566, 602
Morehouse, E., 212
Morgenstern, M., 96–97
MSBetween, 328
MSWithin, 326–27
� (mean of a population), 88, 147
�M (mean of a distribution of means), 

143, 147
Multilevel modeling, 627–29, 644
Multimodal distributions, 16
Multiple correlation, 512
Multiple correlation coefficient (R), 513
Multiple regression, 512–14

bivariate prediction vs., 513–14
relationship of techniques to, 619–22

Multiplication rule, 98
Multivariate analysis of covariance 

(MANCOVA), 643
Multivariate analysis of variance (MANOVA), 

642–43
Murray, D. J., 645

N
N (number), 37
Neace, W. P., 543, 548, 583
Negative correlation, 446–48
Nelson, Todd, 155
Neuman-Keuls procedure, 344
Newton, Isaac, 75
New York Times, misleading graphs in, 20
Neyman, Jerzy, 646
No correlation, 445–46
Nominal variables, 4

chi-square tests and, 542, 545, 553
frequency tables for, 8
mode and, 40

Nondirectional hypotheses, 120, 122
Nonnormal population distributions, 585–617

comparison of methods, 597–98
computer-intensive methods, 599–603
data transformations, 588–93
rank-order tests, 593–97

Nonparametric statistics, 95
Nonparametric tests, 594
Nonrandom samples, 95–96
Normal curves, 18, 74–84

areas, 78, 671–74
commonness in nature, 74–75
controversies over, 94–95
definition of, 18, 74
discovery/invention of, 75
figuring percentages of scores using, 79–81, 

100–1
figuring Z scores and raw scores using, 

81–84
percentage of scores between mean and 

standard deviations in, 75–77
probability and, 92–93
in research articles, 96–97
tables of, 77–78, 671–74

Normal distribution, 74. See also Normal 
curves

in SPSS, 610–13

Littman, A. I., 543, 548, 583
Log transformations, 591
Long-run relative-frequency interpretation 

of probability, 90
LoSchiavo, Frank, 155
Lower-level variables, 628–29

M
MacCallum, R. C., 399
Main effects, 380

interaction effects and, 390–91
in two-way analysis of variance, 393–95

Mann-Whitney U test, 595
Marginal means, 381
Marginal significance, 155–56
Marola, J. A., 543, 548, 583
Math anxiety/performance, 12–13
Maxwell, S. E., 399
McLaughlin-Volpe, T., 8
Mean (M), 35–38, 43

adjusted, 641
cell, 380, 384
definition of, 35, 43
distribution of differences between, 276–83
distribution of means, 140–48
estimating, 158–63
examples of figuring, 37–38
formula for, 36–37
grand mean (GM), 327
harmonic, 300
hypothesis tests with, 139–76
marginal, 381
median and mode vs., 40–43
normal curves and, 42–43, 75–77
in research articles, 56–58
spread around (variability), 44–45
in SPSS, 63
steps in figuring, 38
tyranny of the, 53–54
when used, 43
of Z scores, 73

Mean of a population (�), 88, 158–60
Mean of the distribution of means (�M), 

142–43
figuring Z score of, 149–50

Measurement, 4–5
unreliability of, 466–68

Median, 40, 43
mean and mode vs., 40–43
in research articles, 56–58
in SPSS, 63
steps for finding, 40
when used, 43

Mediational analysis, 633–36
Mediator variable (M), 634
Meditation, effect sizes and, 187
Meehl, Paul, 517–18
Méré, Chevalier de, 91
Meta-analysis, 186–88
Micceri, T., 94–95
Michell, John, 6
Mikulincer, M., 334–37
Miller, R. S., 472
Mischel, Walter, 394
Misleading graphs, 19–21
Mode, 38–40, 43

definition of, 38, 43
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effect size in, 212–14
factorial analysis of variance in, 400–1
frequency tables in, 22–23
histograms in, 22–23
hypothesis tests in, 129–30, 156–58
normal curves in, 96–97
populations in, 96–97
prediction in, 518–20
probabilities in, 96–97
rank-order tests in, 603–4
samples in, 96–97
significance levels in, 129–30
standard errors in, 156–58
statistical power in, 212–14
t tests for independent means in, 298–99
t tests, single sample and dependent means 

in, 255–57
unfamiliar techniques in, 647–48
Z scores in, 96–97
Z tests in, 156–58

Research design
correlational, 464
factorial, 377, 379–81
repeated measures, 240, 254–55
three-way factorial, 381

Research hypothesis, 111–12
statistical power and, 189

Restriction in range, 465–66
Richardson, Deborah, 52
Riehl, R. J., 558
RMSEA (root mean square error of 

approximation), 637
Robustness, 251
Rosenthal, R., 156, 349–50, 472, 645
Rosnow, R. L., 156, 349–50, 472

S
S2

Between, 328
S2

Within, 326–27
Samples, 84–89

chi-square test and, 554
definition of, 84
distributions of, 147
examples of, 85–86
mean of, 147, 158
methods of sampling, 86–88
nonrandom, 95–96
populations vs., in psychology  

studies, 85
probability and, 93
random selection, 86–88
in research articles, 96–97
statistical terminology for, 88–89
surveys, polls, and “free samples”, 87

Sample size. See also specific testing 
procedures

figuring needed size, 199–202, 253
statistical power and, 197–202
unequal, 88

Sample statistics, 88
Sampling distributions. See Comparison 

distributions
Sampling error, 149
Sampling methods, 86–88
Scatter diagrams (scatterplots), 441–43

in SPSS, 488–89
Scheffé test, 344

Proportionate reduction in error, 520–24
figuring, 521–22
as r2, 464–65, 522–23

Proportion of variance accounted for (R2), 345, 
464–65

Proportions, exaggeration of, 20–21
Pseudorandom numbers, 602

Q
Quantitative variables, 4

R
Random (Brownian) motion, 292
Random coefficients modeling, 628
Randomization tests, 599–603
Random numbers, 602
Random selection, 86–88
Rank-order tests, 593–97

advantages and disadvantages of, 597–98
definition of, 594
examples of, 595–96
logic of, 595
null hypothesis in, 596
overview of, 594–95
in research articles, 603–4
in SPSS, 615–17

Rank-order transformation, 593
Rank-order variables, 4, 5
Ratio scales, 4
Raw scores

changing to Z scores, 71–73, 100
changing Z scores to, 71–73, 100
definition of, 70
effect size, 184
figuring from normal curve tables, 81–84

Rectangular distributions, 16
Regression. See also Prediction

multiple, 512–14
special cases of, 621–22

Regression coefficient (b), 495, 620, 621
finding for least squares linear prediction 

rule, 505–7
standardized (�), 509–11
standardized vs. unstandardized, 516–17

Regression constant (a), 495, 620, 621
finding for least squares linear prediction 

rule, 505–7
Regression lines, 498–502

drawing, 499–501
intercepts of, 499
slope of, 498–99

Reis, Harry, 52
Reliability, 625–27, 644

internal consistency, in SPSS, 665–66
of measurement, 466–68

Repeated measures analysis of variance, 397
Repeated measures designs, 240. See also 

t tests, for dependent means
advantages and disadvantages of, 254–55

Representative values, 34
Research articles

analysis of variance in, 350–51
central tendency and variability in, 56–58
chi-square tests in, 567–68
confidence intervals in, 165
correlation in, 473–75
data transformations in, 603–4
decision errors in, 212–14

Populations, 84–89
assumptions about, 586–88
biased estimates of, 229–30
chi-square test and, 554
definition of, 84
distribution of differences between means 

and, 147
distributions of, 147
estimating, 158–60, 318–24
examples of, 85–86
mean of (μ), 88, 158–60
nonnormal distributions of, 585–617
probability and, 93
in research articles, 96–97
samples vs. in psychology studies, 84
standard deviation of (�), 88, 147
statistical terminology for, 88–9
variance of (�2), 88, 229–30
variance of, between-groups estimates of, 

319–23, 327–29
variance of, pooled estimate of  

(S2
Pooled), 278–79

variance of, within-groups estimates of, 318, 
322–23, 326–27

Positive correlation, 446–48
Post hoc comparisons, 343–45, 374–75
Power. See Statistical power
Power tables, 192, 679
Prediction, 493–541

assumptions of, 514
bivariate, 512, 513–14
clinical vs. statistical, 517–18
comparing predictors, 516–17
general linear model and, 619–20, 621–22
hypothesis as, 108
hypothesis testing and, 511
issues in, 509–12
least squared error principle and, 504–9
limitations of, 514
linear prediction rule, 494–97, 502–4
multiple regression and, 512–14
proportionate reduction in error and, 520–24
regression coefficients and, 495–511, 

516–17
regression lines in, 498–502
in research articles, 518–20
in SPSS, 538–41

Predictor variables (X), 494, 622, 644
Prentice, D. A., 472
Probability (r), 89–94

addition rule and, 97–98
conditional, 98
definition of, 89
figuring, 90, 102–3
interpretations of, 89–90
multiplication rule and, 98
normal distribution and, 92–93
Pascal and, 91
range of, 91
in research articles, 96–97
rules, 92, 97–98
samples and populations and, 93
statistical significance and, 114
steps for finding, 90–91
symbols for, 91–92
Z scores and, 92–93

Procedural satisfaction, 400
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Statistics
branches of, 2
concepts and terminology, 3–6
controversy in, 645–47
definition of, 2
golden age of, 634
historical development of, 645–47
joy of, 52–53
techniques in, overview, 643
trivia on, 6
unfamiliar techniques, reading results using, 

647–48
Statistics anxiety, 12–13
Steele, C. M., 54–55
Stereotype threat, 54–55
St. Jean, Richard, 156
Structural equation modeling,  

636–39, 644
Structural model, 351–57

analysis of variance tables in, 355
example of, 353–55
principles of, 351–53
summary of procedures for, 356–57
in two-way analysis of variance, 402–3

Student’s t test. See t tests
Stumbling on Happiness (Gilbert), 119
Subjective interpretation of  

probability, 90
Sum of (�), 36
Sum of squared deviations (SS), 45, 47, 51, 

351–52
Sum of squares (SS), 47
Sum of the squared errors (SSError), 

504–5, 520–22
Surveys, 87
Symbols, statistical, 36–37
Symmetrical distributions, 16–17

T
t distributions, 231–33

cutoff scores for, 233–34, 675
t scores, 234, 281–82
t tables, 233–34
t tests, 226–74, 644

advantages and disadvantages of, 254–55
basic principle of, 229–30
bivariate prediction, relationship  

with, 622
comparison of types of, 296–97
definition of, 227
general linear model and, 619–20, 621–22
problem of too many, 297–98, 603
with rank-transformed data, 596–97

t tests, for dependent means, 240–41
advantages and disadvantages of, 254–55
assumptions of, 251
comparison with other tests, 248, 296–97
definition of, 240
difference scores and, 240–41
effect size and, 252–53
examples of, 241–48
for pairs of research participants, 248
power for, 252–53
in research articles, 255–57
sample size and, 253
in SPSS, 271–72
summary of steps for, 245

t tests for independent means in, 311–14
t tests, single sample, in, 270–71
variance and standard deviation in, 63–66

Squared deviation score, 45, 46
Square-root transformations, 589–90, 592
SS. See Sum of squared deviations
Standard deviation (SD), 46–50

of a population (�), 88, 147
computational and definitional formulas 

for, 50
definition of, 46
of the distribution of differences between 

means (SDifference), 280–81
of the distribution of means (�M), 144, 

147, 231
examples of figuring, 48–50
formula for, 46–48
normal curves and, 75–77
in research articles, 56–58, 157
in SPSS, 63–66
as SS/N, 47–48
steps in figuring, 46
of Z scores, 73

Standard error (SE), 144, 159–63
in research articles, 156–58

Standard error of the mean (SEM), 144
in research articles, 157

Standardized effect size, 184
Standardized regression coefficients (�), 

509–11, 516–17
Standard scores, 73. See also Z scores
Stangor, Charles, 156
Statistical mood, 54
Statistical power, 189–209

analysis of variance and, 346–47
chi-square tests and, 564
correlation coefficients and, 470
definition of, 189
determining, 192
determining from predicted effect sizes, 197
effect size and, 193–97, 204, 205–7, 210–12
in factorial analysis of variance, 415–16
figuring, 215–16
hypothesis testing procedures and, 203–4, 207
influences on, 193–204
interpreting study results and, 207–9
one- vs. two-tailed tests and, 203, 204, 206
planning studies and, 205–7
power tables, 192, 679
in research articles, 212–14
role when results not statistically significant, 

208, 209
sample size and, 197–202, 204,  

206, 209
significance level and, 202–204, 206, 

210–12
statistical vs. practical significance and, 

207–8, 210–12
t test for dependent means and, 252–53
t test for independent means and, 

293–94, 299–300
of typical psychology experiments, 201

Statistical significance, 114, 129–30, 177–225. 
See also Statistical power

effect size vs., 210–12
practical significance vs., 207–8
statistical power and, 202–4, 206

Scores, 3
change, 241
deviation, 45
difference, 240–41
outliers, 40
raw, 71–73, 81–84
standard, 73
t, 234, 281–82
Z, 69–73

SD. See Standard deviation
SD2. See Variance
Sedlmeier, P., 201
Senecal, C., 638
Shaver, Philip, 316–17
Shen, W., 201
Shreider, Y. A., 293
Sigma

� (sum of), 36
� (standard deviation of a population), 88, 

147
�M (standard deviation of a distribution of 

means), 144, 147
�2 (variance of a population), 88, 

147
�2

M (variance of the distribution of means), 
144, 147

Significance levels, 114
alpha (�), 179, 202–3
beta (�), 179, 509–11
conventional, 114
correlation coefficients and, 458–62
marginal, 155–56
in research articles, 129–30
statistically significant, 114
statistical power and, 202–3, 204, 206

Significance tests
confidence intervals vs., 164–65
controversy over, 125–28, 164–65
correlation coefficient and, 460–61

Simpson, Thomas, 75
Skewed distributions, 16–18

mean, mode, and median in, 52
Skinner, B. F., 53
Slope, 498–99

slopes as outcomes, 628
Snedecor, G., 323
Soproni, K., 256
Spearman, C., 469
Spearman’s rho, 469, 595, 597
Split-half reliability, 626
SPSS, 2

analysis of covariance in, 666–69
analysis of variance in, 371–75
bivariate linear prediction rule in, 538–41
chi-square tests in, 580–84
correlation coefficients in, 489–91
data transformations in, 614–17
factorial analysis of variance in, 433–38
frequency tables in, 30–31
histograms in, 31–33
mean, mode, and median in, 63
normal distributions in, 610–13
partial correlation coefficients in, 663–65
rank-order tests in, 615–17
reliability, internal consistency in, 665–66
scatter diagrams in, 488–89
t tests for dependent means in, 271–72
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in SPSS, 63–66
as SS/N, 47–48
steps in figuring, 45

Variance of a population (�2), 88, 
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Steps of Hypothesis Testing for Major Procedures

Z Test (Ch. 5)
t Test for a Single Sample 

(Ch. 7)
t Test for Dependent 

Means (Ch. 7)
t Test for Independent 

Means (Ch. 8)
One-Way Analysis of  

Variance (Ch. 9)

Restate the question 
as a research  
hypothesis and a null 
hypothesis about the 
populations.

Restate the question  
as a research  
hypothesis and a null 
hypothesis about the 
populations.

Restate the question 
as a research  
hypothesis and a null  
hypothesis about the  
populations.

Restate the question 
as a research  
hypothesis and a null  
hypothesis about the  
populations.

Restate the question  
as a research  
hypothesis and a null  
hypothesis about the  
populations.

Determine the 
characteristics of  
the comparison  
distribution. 
�M = �;

�2
M = �2>N;

�M = 2�2
M; 

approximately normal 
if population normal or 
N 7 30.

Determine the character-
istics of the comparison 
distribution. 
(a) The mean of the 
distribution of means is 
the same as the population 
mean. (b) Figure its 
standard deviation:

●A  S2 = SS>df

●B  S2
M = S2>N

●C  SM = 2S2
M

(c) t distribution, 
df = N - 1.

Determine the 
characteristics of the  
comparison  
distribution.  
(a) All based on difference 
scores. (b) Figure mean of 
the difference scores.  
(c) Assume the mean of 
the comparison distribution  
(the distribution of means  
of difference scores) is 0.  
(d) Figure its standard 
deviation:

●A  S2 = SS>df

●B  S2
M = S2>N

●C  SM = 2S2
M

(e) t distribution, 
df = N - 1.

Determine the characteristics 
of the comparison distribution.  
(a) The mean of the comparison 
distribution (the distribution of  
differences between means) will  
be 0. (b) Figure its standard deviation:

●A   For each population, 
S2 = SS>(N - 1)

●B   S2
Pooled = (df1>dfTotal)(S

2
1) +

(df2>dfTotal)(S
2
2); df1 = N1 - 1

and df2 = N2 - 1; dfTotal =
df1 + df2.

●C   S2
M1

= S2
Pooled>N1;

S2
M2

= S2
Pooled>N2

●D  S2
Difference = S2

M1
+ S2

M2

●E  SDifference = 2S2
Difference

(c) t distribution, degrees of
freedom = dfTotal = df1 + df2.

Determine the 
characteristics of the  
comparison  
distribution.  
(a) F distribution. 
(b) dfBetween = NGroups - 1. 
(c)  dfWithin = df1 + df2 +

c + dfLast.

Determine the cutoff 
sample score on the 
comparison distribu-
tion at which the null 
hypothesis should be 
rejected. Use normal 
curve table.

Determine the cutoff 
sample score on the  
comparison  
distribution at which  
the null hypothesis  
should be rejected. 
Use t table.

Determine the cutoff 
sample score on the  
comparison  
distribution at which  
the null hypothesis  
should be rejected. 
Use t table.

Determine the cutoff 
sample score on the  
comparison  
distribution at which  
the null hypothesis  
should be rejected. 
Use t table.

Determine the cutoff 
sample score on the  
comparison  
distribution at which  
the null hypothesis  
should be rejected. 
Use F table.

Determine your 
sample’s score on 
the comparison 
distribution. 

Z = (M - �M)>�M

Determine your 
sample’s score on  
the comparison  
distribution. 
t = (M - �)>SM

Determine your 
sample’s score on  
the comparison  
distribution. 

t = (M - �)>SM

Determine your 
sample’s score on  
the comparison  
distribution. 

t = (M1 - M2)>SDifference

Determine your 
sample’s score on  
the comparison  
distribution.  
(a) Figure S2

Between:

(i) Figure the mean of each 
group.

●A   S2
M = 3g (M - GM)24>

dfBetween

●B   S2
Between = (S2

M)(n)

(b)  Figure S2
Within

●A   For each group, S2 =3g (X - M)24>(n - 1) =
SS>df

●B     S2
Within = (S2

1 + S2
2 +

c + S2
Last)>NGroups

(c) F = S2
Between>S2

Within

Decide whether to 
reject the null  
hypothesis. Compare 
scores from Steps ❸ 
and ❹.

Decide whether to 
reject the null  
hypothesis. Compare 
scores from Steps ❸ 
and ❹.

Decide whether to 
reject the null  
hypothesis. Compare 
scores from Steps ❸ 
and ❹.

Decide whether to 
reject the null  
hypothesis. Compare 
scores from Steps ❸ 
and ❹.

Decide whether to 
reject the null  
hypothesis. Compare 
scores from Steps ❸ 
and ❹.

❶

❷

❸

❺

❹



ADVANCED TOPIC:  
One-Way Analysis of  
Variance—Structural  

Model Approach (Ch. 9)
Significance Test of a  

Correlation Coefficient (Ch. 11)
Chi-Square Test for  

Goodness of Fit (Ch. 13)
Chi-Square Test for  

Independence (Ch. 13)

Restate the question as a  
research hypothesis and  
a null hypothesis about  
the populations.

Restate the question as a  
research hypothesis and  
a null hypothesis about  
the populations.

Restate the question as a  
research hypothesis and  
a null hypothesis about  
the populations.

Restate the question as a  
research hypothesis and  
a null hypothesis about  
the populations.

Determine the characteristics 
of the comparison  
distribution.  
(a) F distribution. 
(b) dfBetween = NGroups - 1. 
(c)  dfWithin = df1 + df2 +

c + dfLast.

Determine the 
characteristics of the  
comparison distribution. 
t distribution, df = N - 2.

Determine the 
characteristics of the  
comparison distribution. 
Chi-square distribution,  
df = NCategories - 1.

Determine the 
characteristics of the  
comparison distribution. 
Chi-square distribution,  
df = (NColumns - 1)(NRows - 1).

Determine the cutoff sample 
score on the comparison  
distribution at which the null  
hypothesis should be rejected. 
Use F table.

Determine the cutoff sample 
score on the comparison  
distribution at which the null  
hypothesis should be rejected. 
Use t table.

Determine the cutoff sample 
score on the comparison  
distribution at which the null  
hypothesis should be rejected. 
Use chi-square table.

Determine the cutoff sample 
score on the comparison  
distribution at which the null  
hypothesis should be rejected. 
Use chi-square table.

Determine your sample’s 
score on the comparison  
distribution.

SSBetween = g (M - GM)2;

SSWithin = g (X - M)2;

MSBetween = SSBetween/dfBetween;

MSWithin = SSWithin>dfWithin;

F = MSBetween>MSWithin

Determine your sample’s 
score on the comparison 
distribution.

t = r>2(1 - r 2)>(N - 2)

Determine your sample’s 
score on the comparison  
distribution.

�2 = g3(O - E)2>E4
●A   Determine the actual, observed 

frequencies in each category.

●B   Determine the expected frequencies 
in each category.

●C   In each category, take observed 
minus expected frequencies.

●D   Square each of these differences.

●E   Divide each squared difference 
by the expected difference for its 
category.

●F   Add up the results of Step ●E  for all 
the categories.

Determine your sample’s 
score on the comparison  
distribution.

E = (R>N)(C);

�2 = g3(O - E)2>E4
●A   Determine the actual, 

observed frequencies in  
each cell.

●B   Determine the expected 
frequencies in each cell:
●i   Find each row’s 

percentage of the total.

●ii   For each cell, multiply 
its row’s percentage by  
its column’s total.

●C   In each cell, take observed 
minus expected frequencies.

●D   Square each of these 
differences.

●E   Divide each squared 
difference by the expected  
frequency for its cell.

●F   Add up the results of 
Step ●E  for all the cells.

Decide whether to reject 
the null hypothesis.
Compare scores from  
Steps ❸ and ❹.

Decide whether to reject 
the null hypothesis.
Compare scores from  
Steps ❸ and ❹.

Decide whether to reject 
the null hypothesis.
Compare scores from  
Steps ❸ and ❹.

Decide whether to reject 
the null hypothesis.
Compare scores from  
Steps ❸ and ❹.
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Chapter W1
Overview of the Logic and Language  
of Psychology Research

This chapter provides an overview of the logic and language of the research 
process in psychology. Statistical methods are tools used in the research 
 process. You will find the statistical procedures in Statistics for Psychology 

easier to understand if you appreciate the context in which they are used.
Usually, the purpose of a research study in psychology is to test a theory or the 

effectiveness of a practical application.1 The strongest research procedures lead to 
unambiguous conclusions that apply to a wide variety of other situations and people 
beyond the particular ones included in the study. Weak research designs, even if 
their results are consistent with your predictions, leave open many alternative in-
terpretations as to why those results were found or apply only to a narrow group of 
people or situations. (Sometimes, circumstances limit the sort of research procedure 
that is possible, yet the research may still seem worth pursuing, even if in a less than 
rigorous way. In fact, especially in the case of applied research, much of the most 
important work has been done by psychologists using, of necessity, less than perfect 
methods, but in very creative ways.)

Most psychologists think about the logic of research in terms of a kind of 
ideal approach. A real-life study is evaluated in terms of the ways it does and does  
not come close to this ideal. In this chapter, we first discuss this ideal, the “true  
experiment.” We then turn to four key areas in which studies do or do not come 
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close to it: equivalence of participants across experimental groups, equivalence of  
circumstances across experimental groups, generalizability, and adequacy of 
measurement.

The Traditionally Ideal Research Approach
The True Experiment
The true experiment is the standard against which all other methods are compared. 
Consider the hypothesis “Changing the level of X causes a change in the score 
on Y.” A true experiment systematically varies the level of X, keeping everything else 
the same, and looks at the effect on Y. For example, suppose you want to know whether 
flashing lights in a room affects people’s scores on a math test. X is whether or not 
there are flashing lights in the room, and Y is math test scores. In a true experiment, a 
group of students might each be tested in a room with flashing lights. Participants in 
another, initially identical group of students, would each be tested under conditions 
that are completely identical, except there are no flashing lights in the room. Thus, 
the only difference between the two groups is the level of X, the presence or absence 
of flashing lights in the room. If the students tested in the room with flashing lights 
have lower scores on the math test (Y), it must be due to the lighting. (If they have 
higher scores, then that effect would also have to be due to the flashing lights.)

Basic Terminology of the Experiment
A group in which the level of X is changed is usually called the experimental 
group. The comparison group in which X is kept at normal levels is called the con-
trol group. The individuals studied in the research are called participants.2 The 
variable that is systematically changed (X–for example, whether the lights flash or 
not) is called the independent variable (it is also called the variable that divides the 
groups) (see also Chapter 15). The procedure of systematically changing the inde-
pendent variable is sometimes called an experimental manipulation or manipulat-
ing the independent variable. The variable that is supposed to change as a result 
of the study (Y, if X is predicted to cause Y, for example, a score on the math test) 
is called the dependent variable (it is also called the measured variable) (see also 
Chapter 15). Participants are taken from the population—all the people on earth of 
the type being studied. The particular participants selected to be studied from that 
population are called the sample.

Imagine you have two identical cans of a soft drink and you want to test the 
hypothesis that heating a can of soft drink will make it explode. (Don’t try this at 
home!) To study this, you could put a match under one can (the experimental can) 
and not put a match under the other can (the control can). If the experimental can 
explodes and the control can does not, the hypothesis is confirmed. Each can is a 
participant, heating or not is the independent variable, whether a can explodes is the 
dependent variable, and these two cans are samples, respectively, of the populations 
of all soft drink cans that are and are not heated (see Figure W1-1).

Four Characteristics of the Ideal Research Design
There are four key characteristics of an ideal research design:

 1. The participants in the experimental and control groups are identical.
 2. The experimental and control groups are exposed to identical situations (except 

for the manipulation of the independent variable).

Experimental Control

Figure W1-1 An ideal ex-
periment: One of two identical soft 
drink cans is heated, and the re-
searcher observes to see if it will 
explode while the other does not 
explode.

Copyright © 2013 Pearson Education, Inc., Upper Saddle River, NJ 07458. All rights reserved.
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 3. The sample studied perfectly represents the intended population.
 4. The measurement of the dependent variable is completely accurate and appro-

priate for what it is supposed to be measuring.

The rest of this chapter examines the various ways that real-life research tries to 
come close to each of these ideal conditions.

Equivalence of Participants in Experimental  
and Control Groups
Ordinarily, the equivalence of participants in the experimental and control groups 
is the main issue in deciding how well a study can give unambiguous conclusions 
about what is causing what. Suppose the basic math ability of the participants sent 
to the room with flashing lights was different from those sent to the room without 
flashing lights. Whatever the difference in math scores you found between the two 
groups at the end of the study, it would be hard to know what that difference means. 
The difference could be due either (a) to the manipulation of the independent vari-
able (the presence or absence of flashing lights) or (b) to the initial differences in 
ability of the two groups. To avoid such ambiguous results, researchers aim for strict  
equivalence of the experimental and control groups. Five main strategies are 
 employed: random assignment to groups, matched-group designs, repeated  measures 
designs, correlational research designs, and single-subject research.

Random Assignment to Groups
The research procedure that in practice comes closest to creating two identical 
groups of participants is called random assignment to groups. For example, if 100 
people were available to be in the experiment, each person could be put in either the 
experimental group or the control group by flipping a coin. The two groups of 50 
created in this way are not identical, but at least there will be no systematic differ-
ence between them.

It is important to emphasize that “random” means using a strictly random pro-
cedure, not just haphazardly picking people to go into the two groups. Any haphaz-
ard procedure is likely to create unintended systematic differences. For example, 
suppose you choose one group from students attending a morning class and the oth-
ers from students attending an evening class. The two groups might differ because 
the kinds of people taking classes at these different times of day might differ. Or 
suppose one group are volunteers willing to participate in a self-esteem enhance-
ment program, and the control group is simply whoever is willing to take a self-
esteem test. The kinds of people in the experimental and control groups might be 
quite different.

Random assignment rules out initial systematic differences between groups. 
Any actual difference that exists after random assignment will be entirely due to 
random processes. Thus, if there are differences on the dependent variable after 
the experiment, they only can be due to either the manipulation of the independent 
variable or to the random assignment. True random processes follow the laws of  
probability. Thus, the hypothesis-testing procedures that are covered starting 
in Chapter 4 are able to check the probability of whether the difference found in  
a study could have been due to the random assignment. If the statistical analysis  
indicates that this is unlikely, the only reasonable remaining explanation is that 
the manipulation of the independent variable caused the difference. This is the 

Copyright © 2013 Pearson Education, Inc., Upper Saddle River, NJ 07458. All rights reserved.
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basic logic behind the analysis of results of experiments. And this is why random 
 assignment and statistical methods are so important in psychology research.

Matched-Group Designs
Sometimes random assignment to groups is not practical. For example, ethics would 
require that all students in a school district who need a certain reading program re-
ceive it; some cannot be randomly chosen to miss out. How can the program be 
shown to be the cause of improvements in the students? One widely used alternative 
research approach when random assignment can not be used is the matched-group 
research design. For example, you might compare an experimental group of stu-
dents who have been selected for the program in one school district to a control 
group of students in another district who also need the program but for whom it 
is not available. The control group could be matched to the experimental group in 
terms of age, social class, sex, reading problems, and so forth.

Matched-group designs are much better than having no control group at all. In 
fact, if both groups are tested before and after, the matched-group design can lead to 
fairly unambiguous results. This situation, called a matched-group pretest-posttest 
design, is an example of a quasi-experimental design. A quasi-experimental design 
is any approach that reasonably approximates a true experiment but does not use 
random assignment.

However, no matter how well-matched two groups are, and even when before-
and-after testing is used, a researcher can never know for certain that there is no 
systematic initial difference between the groups. Indeed, in most cases, if you have 
not used random assignment, you know that there is a systematic initial difference—
whatever it was that put people into one group or the other. (In the reading program 
example, the systematic difference might be that one group of students lives in a 
school district not well-funded enough to offer the reading program.)

Repeated Measures Designs
Another research approach is to create two identical groups by testing the same 
people twice. This is called a repeated measures research design (it is also called 
a within-subjects research design). The students in our example could be tested be-
fore and after the reading program. (See also Chapter 7.)

The simplest repeated measures design is a single-group pretest-posttest design. 
As the name implies, a single group of individuals is tested twice, once before and 
once after some experimental treatment. This kind of research design, however, is 
very weak in the sense that, if you found a change, there are many possible alterna-
tive explanations for it. Merely being tested the first time can change a participant, 
so that when tested again, the person is different—different due to the initial test-
ing, not due to the experimental treatment. And time itself produces change. More 
generally, in this kind of study, any change could be due to the reading program or 
to whatever else happened to the participants (besides the experimental treatment) 
during that time period. Or there could be preexisting trends for improvement, or the 
change could be due to general maturation and experience, or to people starting at 
a very low point that would naturally improve without the treatment, and so forth.

Because it is such a weak research design, the single-group pretest-posttest 
design is considered a preexperimental design. Research of this kind is often ex-
tremely important as a first stage in exploring a research area, but any conclusions 
from a study of this type are very tentative and should be followed up by a stronger 
research design (such as a quasi-experimental or true experimental design).



 Overview of the Logic and Language of Psychology Research  5
Aron, A., Coups, E. J., & Aron, E. N. (2013). Statistics for Psychology. Upper Saddle River, NJ: Pearson.

Copyright © 2013 Pearson Education, Inc., Upper Saddle River, NJ 07458. All rights reserved.

In a laboratory setting, however, a repeated measures design is often used in 
a way that makes it a true experiment. Consider again our interest in the effect of 
flashing lights in the room on performance on a math test. The researcher might  
test the same participant’s performance with flashing lights (the experimental con-
dition) and then test that person’s performance without flashing lights (the control 
condition). A problem with this approach, however, is that the participants could be 
more familiar with the test the second time, creating a practice effect or carry-over 
effect, or they could be tired out by the time they get to the second task, creating a 
fatigue effect.

To deal with problems of this kind, researchers use a procedure called coun-
terbalancing, in which half the participants are tested first in one condition and 
the other half first in the other condition. In this way, any practice, carry-over, fa-
tigue, or similar effects are balanced out over the two conditions. Ideally, you use 
counterbalancing so that the condition a participant experiences first is determined 
by random assignment. In this situation, the study becomes a true experiment. In-
deed, repeated measures designs with counterbalancing and random assignment are 
among the most powerful research methods psychologists use because they make 
groups so very equivalent (see Chapter 10 and Web Chapter W2).

Correlational Research Designs
A correlational research design tests whether there is an association between 
two variables as they exist in a group of people, without any attempt at experimental 
manipulation. Thus, a correlational approach to studying self-esteem and job satis-
faction might survey a group of workers on their self-esteem and their job satisfac-
tion. Then you would see whether those scoring high on self-esteem also tended 
to score high on job satisfaction. (You figure the degree to which there is an asso-
ciation using a statistical technique called a “correlation coefficient,” described in 
Chapter 11.)

The correlational approach is often the best that can be done under the circum-
stances and is widely used. But it is a fairly weak research design in that its results 
are open to many alternative explanations besides “X caused Y.” For example, sup-
pose you find that self-esteem and job satisfaction are associated in a correlational 
study. This could be due to high self-esteem causing high job satisfaction. But it 
could also be that high job satisfaction causes high self-esteem. The association be-
tween self-esteem and job satisfaction could even be due to other differences among 
the workers, such as age—perhaps being older causes workers to have both high 
self-esteem and high job satisfaction. (The various possible causal interpretations of 
the results of a correlational study are discussed in some detail in Chapter 11.) Thus, 
one advantage of a true experiment (when it is feasible) over a correlational study 
is that the true experiment manipulates the independent variable and then sees the 
 effect on the dependent variable, making it quite clear what causes what.

Researchers are well aware of the limits of correlational designs. When pos-
sible, they try to rule out some alternative explanations, mainly by using sophisti-
cated statistical procedures such as partial correlation (summarized in Chapter 15). 
Still, the correlational approach never produces results as clear as a true experiment 
or, in most cases, even as clear-cut as a quasi-experiment. However, often, the cor-
relational approach is the strongest method that is practical—for example, you can-
not randomly assign people to marry certain other types of people. Even when true 
experiments are possible, they may be very costly to conduct. Thus, researchers  
may not be willing or able to test an untried idea experimentally. In these situations, 
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correlational studies often provide a valuable first step in opening up a new area of 
research.

Single-Subject Research
Finally, some research studies involve an intense examination of a single group, or-
ganization, or individual, using the case study or participant observation approach. 
Such single-subject research is not considered experimental or even correlational. 
However, in clinical psychology and in some other behavioral and social science 
fields, such as education, sociology, and anthropology (and the sociological and an-
thropological approaches to organizational behavior, criminology, communication, 
and so forth), this kind of research is valuable because it gives a rich understanding 
of all the complexities of what is being studied rather than forcing attention on a few 
variables that may or may not be the most critical. In all areas of psychology, as well 
as other behavioral and social sciences, single-subject research is also considered 
useful as a precursor to other, more rigorous research approaches.

Single-subject research is also used in a highly systematic way by researchers  
in the behaviorist tradition developed by B. F. Skinner (see Chapter 2). A single 
 participant—whether an animal, like a rat or a pigeon, or a client in a behavior therapy 
program—is studied over time, with the researcher systematically manipulating the 
conditions that affect the participant and observing the changes that result. Statistics for 
testing this have been developed, but are not usually used; the pattern of results should 
be so clear that you don’t need statistics.

Summary of Research Designs
Table W1-1 summarizes the various research designs we have considered, noting 
their advantages and disadvantages as compared to the ideal of identical experimen-
tal and control groups.

Table W1-1 Major Research Designs and Their Advantages and Disadvantages

Design Advantages Disadvantages

True experiment (random  
assignment to conditions)

Ensures no systematic difference 
between conditions.

Can be impractical or unethical.

Matched-group (without  
random assignment)

Controls for obvious differences 
between conditions; may be most 
practical with intact groups.

Groups may differ systemati-
cally on variables on which they 
were not matched.

Matched-group pretest-posttest Controls fairly strongly for initial 
differences among participants;  
is often practical where random 
assignment is not.

Systematic differences between 
groups may influence impact; 
pretest measuring procedure 
can confound results.

Single-group pretest-posttest Provides some control; is often  
the only practical approach.

Impossible to know if change 
would have occurred without 
the experimental treatment.

Repeated measures true  
experiment (random assignment)

Ensures no systematic difference; 
minimizes random differences 
by making participants their own 
controls.

Practice or carry-over effects; 
procedure may be difficult to 
implement.

Correlational Is relatively easy to do with  
existing groups.

Difficult to determine direction 
of causality.

Single-subject Permits deep understanding of 
processes.

Difficult to generalize results.
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Equivalence of Circumstances for Experimental 
and Control Groups
The ideal study involves not only identical groups but also testing them under iden-
tical circumstances. In practice, it is quite difficult to test two groups under circum-
stances where the sole difference is the manipulation of the independent variable. 
In a chemistry laboratory such equivalence may be possible. But when conducting 
research with human beings, circumstances are never completely equivalent. One 
strategy designed to maximize equivalence is to use an isolated location, such as a 
cubicle in a research laboratory. This minimizes outside influences and interruptions 
that might make one session of the experiment different from another. A related ap-
proach is to standardize the situation as much as possible. For example, experiment-
ers typically try to follow a precise script in interacting with participants; or for even 
more equivalence, an entire study may be administered by computer.

There are, however, two special problems that plague much psychology 
 research—particularly applied research—with regard to equivalence of  circumstances: 
placebo or Hawthorne effects and experimenter effects.

Placebo and Hawthorne Effects
Placebo effects are the influence of a participant’s expectation or motivation to do 
well. Hawthorne effects are the influence of the attention the participant receives 
and of the participant’s reaction to being a participant (the term comes from a 1927 
study done at the Hawthorne Works plant of the Western Electric Company in  Cicero, 
 Illinois). For example, if one wing of a factory is trained in a new program and one 
wing is not, there are several differences between the situations the two groups are in. 
One wing uses the new way of operating resulting from the program, and the other 
wing does not—this is the manipulation of the independent variable. But another dif-
ference is that those in the wing getting the new program know they are getting a new 
program and may thus expect to get benefits (creating a placebo effect). Yet another 
is that one wing has received special attention and the other wing has not (creating 
a Hawthorne effect). These additional differences between groups (different expec-
tations and different attention received) greatly complicate the interpretation of the 
results.

How can researchers deal with these undesired differences in circumstances? 
The best solution is to conduct a study in which both groups receive some treatment 
that they believe should be helpful, however, only one group actually receives a 
treatment consisting of more than mere raised expectations and greater attention. 
For example, in medical research, both groups would receive pills that look and taste 
identical, but one group’s pills contain the active ingredient and the other group’s do 
not. No one in the experiment knows who is receiving the real drug. A drug that 
looks and tastes like the real thing but is actually inactive is called a placebo (Latin 
for “I shall please”).

In psychology, it is often impossible or unethical to set up a control group con-
dition where a person receives a treatment that is believed to be effective but in fact 
is not. A situation where it is feasible to use a true placebo control group and also 
in which the research personnel can be unaware of which participants are in which 
group is called a double-blind procedure.

Placebo and Hawthorne effects are the most common problems in drawing 
 unambiguous conclusions from results of applied research in many areas such as 
clinical, educational, and organizational psychology.
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Experimenter Effects
Experimenter effects, including experimenter bias, are the unintended influences 
of the researcher on the study. For example, consider a study that is testing the ef-
fects of a new type of psychotherapy. Suppose that the researcher is a therapist 
evaluating the mental health of the participants. In this case, it is quite possible that  
the therapist’s desire to see the study work creates an unconscious predisposition 
to see participants in the experimental group as having improved more. Even if an  
independent observer rates the two groups but knows who is in which group, a 
 desire for the experiment to come out a particular way may unintentionally influence 
the observer’s evaluations.

The preferred solution to this problem is called blind conditions of testing. This 
means that the experimenter, at the time of interacting with the participant, is not 
aware of whether the participant is in the experimental or control group. (We al-
ready considered above what is called double-blind testing, where neither researcher 
nor participant knows what condition they are in. There we were emphasizing the 
importance of the participant not being aware of who was in what condition; here we 
are emphasizing the importance of the experimenter not knowing who is in which 
condition at the time of testing.)

Representativeness of the Sample
The third requirement for an ideal study is that the particular sample of participants 
studied accurately represents the larger population to which the study is supposed 
to apply (see also Chapter 3). This representativeness is called generalizability or 
external validity. (Internal validity refers to the equivalence of the experimental and 
control groups and equivalence of circumstances.)

Participants in psychology research are often university students, and it is as-
sumed that what is discovered about them applies to the larger population of people in 
general. In a study of the effect of flashing lights on performance, the general pattern 
of results with students probably applies to most other human beings. However, in 
many other types of research, who the participants are is very important. For example, 
university students would probably not be suitable participants for studies of attitudes 
toward children—their experience does not commonly include parenthood. You can-
not study reading skills in suburban schools and generalize to students in all schools; 
you cannot study job satisfaction in the music industry and generalize to all industries.

Another problem involves how a study’s participants are recruited. For example, 
in a mail survey of knowledge about an issue, some individuals will return the ques-
tionnaire and some will not. Presumably there are systematic differences between 
those who do and do not—it is likely that those who do may know more about the 
issue being studied. Using only the questionnaires that are returned, the researcher 
may conclude that people are more knowledgeable about an issue than if the re-
searcher had been able to study the entire population. Similarly, people who respond 
to a telephone survey that includes land lines may be quite different from the larger 
population in which many people may have only cell phones. Random sampling is 
considered the optimal method for ensuring that a particular group of people studied 
is representative of the larger population to which results are intended to apply. Ran-
dom sampling means that researchers begin with a list of everyone in the population 
about which they want to generalize their results, such as a list of all psychotherapists 
in the nation, then use a random procedure (such as a computer-generated random 
list) to select a sample of psychotherapists to contact from this population. (The rea-
son is that it would be far too expensive to contact all of them.) This produces what 
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is called a probability sample because every member of the population being studied 
has an equal probability of being included in the study’s sample.

Do not confuse random sampling with random assignment to groups, which we 
discussed earlier. Both procedures use true random procedures. However, random 
sampling is a method of selecting the sample to study; random assignment to groups 
is a method of deciding which members of the sample will be in the experimental 
group and which in the control group.

Measurement
The fourth condition we noted for an ideal study is that the measures should be ac-
curate and appropriate. There are three main kinds of measures used in psychology 
research: self-report measures, such as questionnaires or interviews; observational 
or behavioral measures, such as rating scales of children’s play behavior, number of 
customers who enter a particular store, number of milliseconds to respond in a reaction 
time experiment, or number of times a rat presses a bar; and physiological measures, 
such as hormone levels, heart rate, or blood flow in a particular brain area. All three 
kinds of measurement are evaluated mainly in terms of their reliability and validity.

Reliability
The reliability of a measure is its accuracy or consistency. That is, when you  apply 
the same measure to the same thing, under identical circumstances, how similar  
are the results? In psychology research, the results are not necessarily similar at all. 
For example, the same person taking the same questionnaires on different days may 
get a quite different score. Sometimes, questions are worded poorly, so that a person 
may answer in one way at one time and in another way at another time. Or, people 
may simply mark some or all of their answers in the wrong place on one or more 
occasions. Self-report measures are not the only ones that can be unreliable. Obser-
vational measures may be unreliable because observers may disagree. Physiological 
measures are sometimes highly erratic from moment to moment.

There are three types of indicators of degree of reliability: (a) test-retest reli-
ability, in which the same group is tested twice; (b) internal consistency, in which, 
for example, scores on half the questions are compared to scores on the other half 
(Cronbach’s alpha, the most common approach to internal consistency, is described 
briefly in Chapter 15); and (c) interrater reliability, used for observational mea-
sures, which is the degree of agreement between observers. These kinds of reliability 
are summarized in Table W1-2.

Validity
The validity of a measure refers to whether it actually measures what it claims to 
measure. (The word validity is also applied to entire studies, as in internal valid-
ity and external validity, when it refers to the appropriateness and breadth of the  
conclusions that can be drawn from the results.)

Table W1-2 Types of Reliability

Test-retest reliability Correlation of tests administered to the same people on different occasions

Internal consistency Correlation among the items

Interrater reliability Correlation among different raters’ scores when rating the same group of 
people or objects
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A measure that is not reliable cannot be valid. An unreliable measure does not 
measure anything. But even if a measure is reliable (accurate and repeatable), it is 
not necessarily valid for measuring what it is intended to measure. For example, 
consider a marital satisfaction questionnaire with many items such as, “How likely 
are you to stay with your spouse over the next several years?” The questionnaire 
may turn out to be highly reliable (for example, people may answer all the questions 
on it quite consistently). But instead of measuring marital satisfaction, it might re-
ally be measuring commitment to the marriage. And respondents might be commit-
ted not because they are satisfied but because they have no alternative to married life 
or because they feel they are very unattractive and could only do worse if they left 
their partner.

Another reason that a test may not be valid, even if it is reliable, is that rather 
than measuring the intended variable, it is actually measuring a tendency for the 
respondents to try to make a good impression or to say yes or to answer with 
some other response bias. One way to address the problem of trying to make 
a good impression is to include a social desirability scale, sometimes called a 
lie scale. When a participant’s score on such a social desirability scale is high, the 
researcher may simply throw out that participant’s data. Alternatively, scores on 
a social desirability scale may be used in a statistical procedure, such as partial 
correlation or an analysis of covariance (both briefly described in Chapter 15), to 
adjust the person’s score on the regular part of the measure.

Validity of a measure is more difficult to assess than reliability. Several meth-
ods are used. Content validity results when the content of the measure appears to 
get at all the different aspects of the things being measured. Usually, this is deter-
mined by the judgment of the researcher or other experts.

There are, however, more systematic means of evaluating the validity of a 
measure. Determining criterion-related validity involves doing a special study 
in which the researcher compares scores on the measure to some other likely in-
dicator of the same variable. For example, a researcher might test the validity of 
a measure of mental health by comparing scores of people in a mental hospital 
to people from the general population. One type of criterion-related validity is a 
measure’s predictive validity—for example, whether scores on a job skills test 
taken when applying for a job predict effective performance on the job. Predic-
tive validity is used especially where a measure is designed for predictive pur-
poses, such as job or educational placement. Another type of criterion-related 
validity is concurrent validity. This refers to the procedure of comparing scores 
on one measure to those on another that directly measures the same thing—for 
example, a new, short intelligence test compared to an existing, longer intelli-
gence test.

You may also see the term construct validity, which is used in a variety of 
ways. Even textbooks on psychological measurement disagree about it. Some-
times construct validity includes criterion-related validity, and sometimes content 
validity. Probably the most common usage is that construct validity of a measure 
means that a study using this measure successfully showed an effect that was pre-
dicted by theory. Because the measure used was successful in producing the pre-
dicted result, it shows that the idea (or “construct”) behind that measure proved 
itself under the theory. The various ways of assessing validity are summarized in 
Table W1-3.
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Table W1-3 Major Types of Validity of a Measure

Content validity The content of the test appears to experts to accurately represent the full 
range of what the test claims to measure.

Criterion-related validity Scores on the test correlate with some other indicator of what the test is 
 supposed to measure.

Predictive validity The test score predicts scores on another variable that ought to be  predicted 
by the test, given what it is claimed to measure; a type of criterion-related 
validity.

Concurrent validity The test score correlates with another variable measured at the same time 
that is already known to be related to what the test is claimed to measure; 
a type of criterion-related validity.

Construct validity There is evidence that what the test measures corresponds to the underlying 
theoretical variable it is meant to assess.

Summary

 1. A true experiment systematically varies the level of one variable (for example, 
an independent variable, X) and looks at the effect on another variable (for 
example, a dependent variable, Y).

 2. In an ideal research design: (a) the participants in the experimental and  control 
groups are identical; (b) the experimental and control groups are exposed to 
identical situations; (c) the sample studied perfectly represents the intended 
population; and (d) the dependent variable is measured in a completely accurate 
and appropriate manner for what it is supposed to be measuring.

 3. There are several approaches available to researchers in order to maintain the 
equivalence of experimental and control groups, including: random assignment 
to groups; matched-group designs; repeated measures designs; correlational re-
search designs; and single-subject research. There are advantages and disadvan-
tages to each of these approaches.

 4. In practice, it can be quite difficult to test experimental and control groups 
under identical circumstances. The most common problems that can affect 
the equivalence of circumstances are placebo effects, Hawthorne effects, and  
experimenter effects.

 5. Random sampling is the best method for ensuring that a sample is representa-
tive of its population.

 6. The three types of measures that are used most often in psychology research are 
self-report, behavioral, and physiological measures.

 7. Researchers evaluate a measure in terms of its reliability and validity. A measure’s 
reliability is its accuracy or consistency. The most commonly examined types 
of reliability are test-retest reliability, internal consistency, and inter-rater  
reliability. A measure’s validity is how well it actually measures what it is 
 intended to measure. A measure has content validity if it gets at all the  different 

Learning Aids
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Chapter Notes

 1. Research is sometimes done for other purposes, such as to explore relationships 
among measures, to determine the incidence of some characteristic in the popu-
lation, or to develop a test or technique for use in other research. However, the 
basic logic of the usual kind of research (the focus of this Web chapter) shapes 
psychologists’ approaches to almost all systematic research.

 2. Traditionally psychologists used the term subject. However, in keeping with 
the contemporary practice, we use the word participant here and throughout 
the book except for specialized terms (like “within-subjects design”) that have 
become so standard they remain even in research articles where “participant” is 
used everywhere else.

aspects of what it is intended to measure. It has criterion-related validity  
if the measure correlates with another indicator of what it is intended to  
measure. Predictive validity and concurrent validity are two different types of 
criterion-related validity. A measure is often considered to have construct valid-
ity if there is evidence that what the test measures corresponds to the underlying 
theoretical variable it is meant to assess.
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Chapter W2

Applying Statistical Methods  
in Your Own Research Project

So you’re going to carry out your own research project! This chapter helps you use 
what you have learned in Statistics for Psychology to explore an idea in your own 
research. You have a fairly clear understanding of the major statistical methods 

used in psychology, and you can make sense of them when they are used in a research 
article. However, it will help you to have some additional points to apply this smoothly 
to your own research. In particular, in this Web chapter we consider the following topics:

 ❶ Designing your study (determining whether there is an appropriate statistical 
method and determining needed sample size)

 ❷ Conducting the study
 ❸ Entering the scores into the computer
 ❹ Checking for and dealing with missing scores (for example, where a participant 

did not answer all the questions on a personality test)
 ❺ Checking whether the scores on each variable meet the assumptions for the pro-

cedure you want to use (and what to do about it if they don’t)
 ❻ Carrying out the analyses
 ❼ Writing up your results

Designing Your Study: Selecting a Statistical Test 
Once you have a possible idea for a research question, the next step is to develop a 
specific research plan to address that question—one that does as good a job as possible 
of approximating the ideal research design in terms of equivalence of experimental 
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T I P  F O R  S U C C E S S
Before reading this chapter, you 
should have read as many of the 
previous chapters as possible. You 
should also have tackled the Using 
SPSS sections that are found at 
the ends of several chapters.
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and control groups, equivalence of circumstances, generalizability, and measurement 
(see Web Chapter W1).

Before starting out on a new study, experienced researchers plan what statisti-
cal method they will use when the study is done. Otherwise you may find there are 
no methods available or the ones that are available will be less than ideal for some 
reason. You also need to decide in advance what statistical test you will use in order 
to figure out how many participants you will need (sample size) and the statistical 
power of your planned study.

What Test to Use in the Usual Situation  
of Equal-Interval Measurement
In the most common research situation, your scores are measured on an approxi-
mately equal-interval scale (see Chapter 1 for a discussion of “levels of measure-
ment”). Figure W2-1 shows a decision tree for deciding on an appropriate statistical 
test in this standard situation. Answering the questions in the decision tree will guide 
you to the appropriate statistical test. (Figure W2-1 also assumes you have just one 
dependent or criterion measured variable; we’ll consider what to do when you have 
more than one at the end of this overall section on selecting an appropriate test.)

The first question in the decision tree is: Are you testing the difference between 
means or the association among variables? For example, consider a study compar-
ing the effect of different colors of printing on reading time. This study focuses on 
the mean reading time for each color; thus, this is a study comparing means of vari-
ables. On the other hand, consider a study looking at the relation of mother’s age to 
her oldest child’s school grades (or, to put this another way, whether mother’s age 
predicts her oldest child’s school grades). This study is about associations among 
variables.

Suppose your study focuses on differences between means. The next question 
is whether there are two means being compared (for example, if you were looking 
at red printing vs. black printing) or whether there are three or more means (for ex-
ample, if you were looking at differences among printing in red, black, green, and 

Different participants
t test for 

independent
means (Ch 8)

Same participants
t test for 

dependent
means (Ch 7)

Different participants
Analysis of
variance
(Ch 10)

Same participants
Repeated measures
analysis of variance

(Ch W3)

Two means
Different or same

participants in each group?

More than two
Different or same

participants in each group?

Two or more predictors
Multiple regression

(Chs 12 & W4)

One predictor
Correlation or bivariate

prediction (Chs 11 & 12)

Difference between group means
Two means or more than two?

Association among variables
One predictor or more than one?

Are you testing the difference between group means or the association among variables?

Figure W2-1 Decision tree for identifying statistical tests for studies with an equal-
interval dependent or criterion measured variable.
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blue). A t test is the appropriate test when there are two means being compared and 
an analysis of variance is the appropriate test with three or more means. Once you 
have decided on a t test or analysis of variance, you have to make another decision. 
You next must decide whether this is a between-subjects design or a within-subjects 
design (also called a repeated measures design). In a between-subjects design dif-
ferent people are in each group (for example, some participants will read a story in 
black printing and other participants will read the story in red printing). In a within-
subjects design the same people will be in each group (for example, each participant 
will read one story in black printing and another story in red printing).

What if your study focuses on associations or predictions? In that case, the 
next question is whether there is one variable being correlated with or predicting 
the other (for example, mother’s age predicting her oldest child’s school grades) or 
more than one variable being correlated with or predicting the other (for example, 
mother’s age and father’s age predicting oldest child’s school grades). You use 
correlation or bivariate prediction when there is one predictor variable. You use 
multiple regression when there are two or more predictor variables. Notice that in 
all these situations we are correlating with or predicting about a single variable. In 
the language of prediction (regression) there is only one criterion variable (in the 
example it is oldest child’s school grades). We will have more to say about this 
situation shortly.

The decision tree in Figure W2-1 leads you to the correct statistical test to use 
in each of these situations.

What Test to Use When Your Scores are Categories
Suppose you are testing a hypothesis with a variable whose scores are categories 
(that is, it is a nominal variable). Examples of categorical variables are which of 
several candidates a person most favors, or which major a student is taking. The 
standard chi-square tests for goodness of fit and for independence (see Chapter 13)  
cover most such situations. However, as noted in Chapter 13, you can only use 
these tests when each person is in a single category on any one nominal variable. 
So, for example, it would not be appropriate to use a chi-square test in an experi-
ment to examine the change in distribution of men’s and women’s preferred brand 
of shampoo from before to after viewing a video clip about hair maintenance (the 
problem arises because it is the same people tested twice). Also, if you have a 
three- or more-way contingency table, you need to use procedures that are quite 
advanced (such as log-linear chi-square) and in any case often can not answer very 
directly the questions you might pose. Thus, if you have designed a study with 
nominal variables and any one person can be in more than one category on a par-
ticular nominal variable, or you have more than a two-way table, we strongly urge 
you to find a way to re-design your study, perhaps by using a measure that is equal-
interval instead.

Incidentally, there is a trick you can use when your nominal variable has only 
two categories, such as male and female (or if you can combine categories so you 
end up with only two, as in whether various majors are arts or science). In this situ-
ation you can then give the two categories any two arbitrary numbers, such as 1 and 
2, and then treat the variable as an ordinary equal-interval variable so you can use 
t tests, correlation, and so on. But this does not work for more than two categories; 
also you should not use this method if the split between the two categories is quite 
extreme (say more than 80% in one of the groups).
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What Test to Use When You Have Rank-Order Scores
Suppose you are interested in carrying out hypothesis testing with scores for a rank-
order variable, such as place finished in a race or birth order in one’s family. With 
rank-order scores, you may want to use one of the special rank-order tests discussed 
briefly in Chapter 14. (You will likely learn more about such tests in intermediate 
statistics courses.) Most of these are available in SPSS (by selecting Analyze and then 
Nonparametric Tests). You can use Figure W2-1 to find what test you would use if 
you had equal interval scores, and then find the appropriate equivalent rank-order 
test using Table 14-4. However, as you learned in Chapter 14, in most cases you 
get reasonably accurate results if you just use the ordinary equal-interval statistical 
procedures, treating the ranks (1, 2, 3, etc.) as if they were equal-interval scores. If 
you want to be more accurate, you can use the ordinary tests with the adjustment 
 described in Chapter Note 3 of Chapter 14.

When You Have More than One Criterion  
or Dependent Measured Variable
Most psychology research studies have a single criterion or dependent measured 
variable, and the standard methods you learned in Chapters 1-14 (correlation, re-
gression, t test, etc.) are designed for such situations. However, you will sometimes 
want do to studies that use more than one such variable. For example, an experiment 
on the effect of color of printing on reading a story might measure both time to 
read the story and also comprehension of the story. Or a survey might look at how 
mother’s age predicts four criterion variables, her oldest child’s grades in elemen-
tary school, junior high school, high school, and college. We focus on three poten-
tial solutions for handling such research situations: method of separate analyses; 
method of averaging measures; and multivariate tests.

Method of Separate Analyses In studies like these, one solution is to use 
 separate ordinary tests for each variable. Thus, you might run one t test comparing 
the effects of different colors of printing on reading time and another t test comparing 
the effect of the different colors on reading comprehension. Similarly, you could 
conduct one regression analysis with mother’s age predicting her oldest child’s 
 elementary school grades, another with mother’s age predicting her oldest child’s 
junior high school grades, and so on. Keep in mind, however, the kinds of issues 
we discuss in Chapter 9 having to do with multiple comparisons. For example, if 
you have four different t tests you have a better than 5% chance that one of them, by 
chance, will come out significant at the .05 level. One solution to the problem is to 
use a Bonferroni procedure, as described in Chapter 9.

Method of Averaging Measures Another solution is to combine the several 
criterion or dependent measures into a single overall measure. (This is particularly 
appropriate if there are high correlations among the variables being combined.) For 
example, you could take the average of the four kinds of grades. However, in some 
situations, it is not so simple. Consider what would happen if you just did a simple 
average of each participant’s reading time and reading comprehension score. One 
problem is that shorter reading times are better, but higher comprehension scores  
are better. So, before averaging, you would need to reverse one of them. For  
example, if reading times go from 200 to 300 seconds, you can subtract each time 
from 300; then a high score would mean a better time and a low score would mean a 



 Applying Statistical Methods in Your Own Research Project  17
Aron, A., Coups, E. J., & Aron, E. N. (2013). Statistics for Psychology. Upper Saddle River, NJ: Pearson.

Copyright © 2013 Pearson Education, Inc., Upper Saddle River, NJ 07458. All rights reserved.

worse reading time. Another problem in this example is that the two variables might 
be on quite different scales—for example, reading time (after reversing) goes from 
0 to 100, comprehension scores might go from 1 to 7. Thus, if you combined them, 
the reading time would probably have a bigger influence on the mean. A solution to 
this problem is to convert all the scores on each scale to Z scores, then average the 
Z scores. (In the reading example, you would still have to reverse one of the mea-
sures before figuring the Z scores.) In this way, the different measures are put on the  
same scale.

Multivariate Tests Yet another approach would be to carry out an overall 
 analysis that considers all the criterion or dependent variables together. (The advan-
tage of such a procedure over just averaging is that it automatically gives optimal 
weights to each variable in the context of what you are specifically testing, instead 
of just evenly combining them.) Such procedures are called multivariate statistical 
tests, and we describe them briefly in Chapter 15. After reading that chapter you 
should be able to understand what such tests do and make some sense of the results  
you may read in a research article. You can learn more about multivariate statistical 
tests in more advanced statistics courses. So, until you take such courses, it is best  
to use the procedures you know, either doing separate tests for each variable or com-
bining the variables by averaging. (In fact, the general advice even to experienced 
researchers who are masters of advanced statistical methods, is to use the simplest 
methods available that are reasonably accurate. The idea is that, with simpler proce-
dures, results will be more understandable to readers, and also the researcher is less 
likely to make mistakes.)

Figuring Power and Needed Sample Size
As discussed in some detail in Chapter 6, a crucial issue when planning a study is 
deciding if there is sufficient statistical power. That is, power addresses the  question, 
if the research hypothesis is true, what is the probability this study will produce a 
significant result supporting it? To figure the statistical power of a planned study, 
first you need to decide what statistical test you will use. Then you have to make 
some estimate of the expected effect size. We discuss estimating effect size in  
 Chapter 6—you may have a rough idea of whether the effect will be small, medium, 
or large based on previous similar research or a minimum effect size that would 
be  important. If your study will use one of the major procedures we cover (t tests, 
 analysis of variance, chi-square tests, correlation and regression), there are power  
tables in each chapter. (Table A-5 in the Appendix is an index to these power tables.) 
If you are using a more advanced or unusual procedure that is not covered in the book, 
you may be able to find the power in Cohen’s (1988) book of tables or by using power 
statistical software or an Internet power calculator. If your planned study has too  
little power (say, less than 80%), our Table 6-5 suggests several ways you can alter 
the study to increase the power—such as by increasing the number of participants.

You can also start with an expected effect size and use one of the tables that tell 
you how many participants you need for 80% power. (Table A-5 includes an index 
to such tables.) It often turns out that the number you need is too large to be practi-
cal. This happens because participants can be hard to recruit, not everyone you try to 
recruit will actually qualify for your study, and if you need to test participants on more 
than one occasion, you are likely to lose some of them after the first testing. Thus, 
you may need to use one of the other methods listed in Table 6-5 to increase power or 
change the basic study itself. 
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Conducting the Study
From the point of view of the statistical analyses, there are three main things to keep 
in mind during the data gathering:

 1. When you set up the layout of the questionnaires or data recording sheets, con-
sider how easy it will be to type the scores into the computer (or if you are hav-
ing participants respond on the computer, by e-mail, or via the Internet, set up 
the program so that it is easy to move their responses to an SPSS file).

 2. Keep all of the questionnaires, data recording sheets, or participant files in a 
safe place (and if you have computer data, make copies right away).

 3. Make sure you have recorded everything important with each participant’s 
data—such as date and time of the study, experimental condition, and anything 
else that is not filled out by the participants. Now and then a student conducts a 
study and when it is done discovers that there is no record of which participant 
was in which experimental condition! It is also important to record anything 
unusual that happens with a participant.

Entering Scores Into the Computer
As for entering the scores into a computer, here are some suggestions for making the 
process as straightforward and accurate as possible. (This section assumes the data 
are not collected directly on the computer.)

Setting Up the Spreadsheet
With SPSS and most statistical programs, you type the scores into a spreadsheet, 
using one line per participant and one column per variable. Give some thought in 
advance as to how you will set this up. For example, arrange the columns for the 
variables in the same order as they are on the original questionnaires or data record-
ing sheets.

Variable Names
It is important to type at the top of each column the descriptive name for each vari-
able (rather than leave the variable named by the column number). Use a name that 
describes the particular variable—for example, “age” and “gender” are better than 
“variable1” or “question2.” Until a few years ago, SPSS limited variable names to 
a maximum of 8 characters. Recent versions of SPSS allow longer variable names, 
but we still recommend that you try not to use variable names that are longer than 
about 10–12 characters. (Otherwise it gets hard to read the names in the columns 
and the printouts of results are very lengthy.)

Sums and Codes 
To avoid work and errors, enter the scores directly and let the program do any 
needed combining figuring. For example, if you have a 10-item questionnaire, it is 
better to enter the person’s score on each item and let the program figure the total or 
average. Similarly, if the program needs number codes for a variable that was origi-
nally entered as words or letters, enter the words or letters—for example, “f” or “m” 
for gender, and then instruct the program to make an additional column with number 
codes it creates for these. That way you will make fewer mistakes, and you won’t 
forget later which number goes with which letter! Alternatively, you may want  
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to include number codes in your variable name. For example, the variable name 
“campus_y1n0” could be used to indicate that students who live on campus were 
coded as “1” and students who do not live on campus were coded as “0.”

Typing in the Scores
Have all material organized and at hand. If possible, type in all the data at once. 
Save often. Keep notes of any irregularities (for example, a participant who answers 
8 on a 1 to 7 scale) or any decisions you make (for example, that if a person marks 
between two scale points, you have decided you will always score it as the higher 
scale point). When you are done, be sure to save a copy of the data file in more than 
one location (for example, on the hard drive of your computer and on a flash drive—
but, of course, also be sure that any file that includes identifying information about 
participants is kept in a secure location).

Check Your Work
Accuracy is extremely important. If possible, have someone else double check the 
entries for at least a few of your participants.

Conducting Research Using Computerized  
and Internet Methods
Psychologists commonly conduct research studies that use computerized methods 
(such as examining reaction times to different stimuli presented on a computer 
monitor) or for which data are collected via the Internet. Just as with data entry of 
information from paper and pencil questionnaires, it is very important to thoroughly 
check that the data from a computerized or Internet study are being collected accu-
rately and that the way the results are recorded and will be available to you will be 
in a form you can easily interpret. Also, be sure that your output is labeled so that 
it has all the needed information about the time and date and any additional infor-
mation you need to tie the material on the computer to any other information that 
participants provided (for example, on paper questionnaires). If you are considering 
conducting a computerized or Internet study, be sure to consult some of the many 
helpful resources that are available (e.g., Fielding et al., 2008; Gaiser & Schreiner, 
2009; Gosling & Johnson, 2010; Reynolds et al., 2007).

Data Screening
Experienced researchers resist the urge to jump right into the analysis as soon as all 
the scores are entered. First, they “screen” the data for accuracy, missing values, 
and whether the assumptions for the planned statistical tests are met. That way, they 
don’t get excited (or depressed) about their conclusions, and then find later that their 
conclusions had no relation to the real results.

Checks for Accuracy 
Even after you have double checked your typing or program entries carefully, errors 
are still common. With so many numbers, it is just too easy to make mistakes (even 
big ones that drastically change results—such as holding down the 0 key too long 
so that you accidentally enter 100 instead of 10, or the program putting numbers 
into the wrong column). The most important additional check is based on a listing 
of each variable’s number of cases, mean, standard deviation, and maximum and 
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minimum score. (In SPSS, you can get such a listing by selecting Analyze, Descrip-
tive Statistics, Descriptives, then selecting all of your numeric variables and clicking 
OK.) If you have more than one grouping, such as an experimental and a control 
group, you may want to list the output for each group separately. (In SPSS, you 
can get separate outputs for each grouping by selecting Data, Split File, checking 
“Organize output by groups,” selecting the grouping variable, and clicking OK.)

Once you have this listing, for each variable you look at (a) the number of 
cases, to be sure that all or most of the participants have scores on the variable; (b) 
the maximum, to be sure that none of the scores are higher than is possible (such 
as a 700 on a scale that goes from 1 to 7); (c) the minimum, to be sure that none of 
the score are lower than possible (such as a minus value for number of children); 
and (d) the mean and standard deviation, to be sure they seem reasonable in light 
of other similar variables in your study and what you know about these measures. 
For example, consider a study in which you ask 70 people to rate their anxiety level 
on a scale from 1 (very low) to 10 (very high) after watching a frightening movie. 
Figure W2-2 shows the SPSS output for the descriptive statistics of the anxiety vari-
able (this output was obtained by selecting Analyze, Descriptive Statistics, Descrip-
tives). The output shows that anxiety scores were obtained from 68 of the 70 people. 
Thus, you should double check that two people did in fact not indicate their level of 
anxiety. The “maximum” column shows that the highest score was 100. This cannot 
be correct, as the scale went from 1 to 10. Even with the incorrect value of 100, the 
mean of 6.84 (rounding to two decimal places) seems plausible in the context of the 
study (ratings of anxiety from 1 to 10 after watching a frightening movie). However, 
hopefully you would question whether the standard deviation for a set of scores 
ranging from 1 to 10 could really be 11.70. Remember that, roughly speaking, the 
standard deviation represents the average amount that scores vary around the mean. 
Thus, it would not make sense for a set of scores ranging from 1 to 10 to vary by 
an average of 11.70 from the mean of the scores. After realizing that the score of 
100 cannot be correct, you go back to the relevant survey and notice that the correct 
score was 10. You then make the correction in the SPSS spreadsheet and repeat the 
descriptives analysis. Figure W2-3 shows the SPSS output. As you see, all of the 
descriptive statistics (including the maximum value and the standard deviation, both 
of which previously seemed problematic) now seem plausible.

If you have any nominal variables, you can do a similar check with a listing for 
each such variable of how many participants fall into each category. This is also a 

Figure W2-2 Descriptive statistics for the anxiety variable when one score was in-
correctly entered as 100 instead of 10.
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good idea for numeric variables that have only a few possible whole number values, 
such as a 1 to 5 scale or number of siblings. (In SPSS, you can get such a listing by 
selecting Analyze, Descriptive Statistics, Frequencies, and then selecting the desired 
variables and clicking OK.) For each variable, check whether the numbers in the 
 different categories seem reasonable.

Missing Values
Often, participants don’t answer every question on a questionnaire, observers miss 
a particular behavior, recording devices fail, there was a glitch in a program, or a 
participant’s results are lost. These kinds of situations create missing values. (When 
entering your data, it is usually best to leave the place blank where a missing value 
would go. If instead you put in some number like 999 or –1, it could end up being 
included in the figuring later!)

You can tell how many missing values you have from the number of cases for 
each variable in the variable listing you make for your accuracy check (as described 
in the previous subsection). It is also a good idea to look through the data spread-
sheet file on the computer or print it out (in SPSS, with the data on the screen, select 
File and then Print). You can then see whether any particular participants have most 
of the missing values or the missing values are spread among different participants.

In general, what you do about missing values depends on whether you think 
they are missing for some systematic reason or just haphazardly. For example, if the 
question is about a sensitive topic, those who don’t answer might be systematically 
different in relation to this topic from those who do. In such situations, you have two 
main choices: You can simply not do any analyses involving that variable, or you 
can go ahead with just those participants who answered on it, but keeping in mind 
that your results only apply to the kinds of people who are likely to answer such 
questions.

Suppose there are only a few missing values and the pattern seems more or less 
random. In this situation, a common procedure is to substitute, for each missing 
value, the average of everyone else’s score on that variable. (If you were merely 
to leave them missing, you might exclude any participant who had a missing value 
on any variable—something SPSS does automatically most of the time—sometimes 
resulting in losing most of your participants from the analysis.) In SPSS, you can 
substitute missing values by selecting Transform, Replace Missing Values, selecting 

Figure W2-3 Descriptive statistics for the anxiety variable when all of the scores 
were entered correctly.
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the appropriate variable, and clicking OK (the method that SPSS automatically uses 
here if you don’t select special options is to replace the missing values with the mean 
of all other participants who had scores for that variable). If the study has groups, 
you can substitute the value for the average of that group. If a person has a missing 
value on an item that is part of a multi-item measure (such as one item not answered 
on a 12-item anxiety questionnaire), you might substitute that person’s average on 
the items of the scale that he or she completed. When you are substituting missing 
values, it is a good idea to create a new variable (with its own column on the SPSS 
spreadsheet) that includes the substituted values, keeping the original variable as it 
was. That way you don’t lose track of exactly when you did and did not substitute.

Checking for Normal Distributions
Most statistical tests require that the variables be normally distributed in the popula-
tion (see Chapter 14). There are also additional assumptions in many procedures, 
such as equal population variances, which should be checked before carrying out a 
particular analysis. But we focus here on normality because it applies to nearly all 
parametric statistical tests.

Checking for Skewness  Skewness means a distribution is not normal because 
it is lopsided with a long tail on one side (see Chapter 1). Thus, as part of data 
screening, you check each variable for its degree of skewness. First, you figure 
each variable’s numerical skewness value; perfect normality is 0. (In SPSS, you 
can get skewness by selecting Analyze, Descriptive Statistics, Descriptives, Options, 
 checking “Skewness,” and then clicking Continue followed by OK.) Then, for any 
variable that has a very high or low skewness value—say more extreme than ;1— 
you make a histogram and look at it visually to see if it looks seriously skewed.  
(In SPSS, you make a histogram by selecting Graphs, Legacy Dialogs, Histogram.)

What to do About Seriously Skewed Distributions Presuming skewed 
 distributions are not caused by one or a few very extreme cases (see below), you can 
go ahead and use one of the strategies described in Chapter 14, such as transforming 
the scores or using a rank-order method.

Checking for Outliers (Extreme Scores) Most statistical tests still give accurate 
results as long as skewness is not too extreme. The main cause of extreme skewness 
are outliers, which are problematic for almost all statistical tests. You check for outli-
ers by looking for very high skewness values or for very long tails or separated scores 
in the histograms. Another method is to figure Z scores for your variables. (In SPSS, 
you can get Z scores by selecting Analyze, Descriptive Statistics, Descriptives, check-
ing “Save standardized values as variables,” and clicking OK. This gives each variable 
a new column showing the Z scores for that variable. These are not exactly the same as 
the Z scores we figured in Chapter 3 because they use the N – 1 formula when figur-
ing the standard deviation. But unless your sample is very small, they are very similar. 
And for data screening purposes, they are just fine.) Next, you can look down the col-
umns of Z scores for any scores that appear extreme. For example, unless you have a 
very large sample size, a Z score more than ;3 is almost surely an outlier.

What to do About Outliers If you find an outlier, look at the raw questionnaire 
or data record to be sure it is not a typing error. Next, consider whether there 
is something about the participant that might categorize him or her as  outside 



 Applying Statistical Methods in Your Own Research Project  23
Aron, A., Coups, E. J., & Aron, E. N. (2013). Statistics for Psychology. Upper Saddle River, NJ: Pearson.

Copyright © 2013 Pearson Education, Inc., Upper Saddle River, NJ 07458. All rights reserved.

of the population to which you want to apply your results. (For example, in a  
college-student sample, this person might be 45 years old when everyone else is age 
18 to 22.) In that situation, you can simply exclude the participant from the analysis. 
If the person really is part of what you consider the relevant population, one option 
is to use a rank-order test. Another common option is to recode the extreme score so 
that it is still the most extreme score, but just slightly higher than the next highest 
score. (For example, if this person’s reading time is 300 seconds and the next highest 
is 141 seconds, you could recode the person as 142.) Some researchers simply make 
it a practice to exclude participants whose scores are very extreme. Whatever solution 
you adopt, it is very important to include in your research report a description of what 
you did and why. (One huge advantage of screening data before analyzing results is 
that you are in a better position to make such decisions without having to worry that 
you are unconsciously biasing the outcome of the statistical test in your favor.)

Carrying out the Major Analyses
The most important advice here is, again, be sure you have thoroughly screened 
your data before you begin. Once you are ready, the next important step is to look 
at your data. Look at the means overall and by groups, at the histograms, at scatter 
diagrams, at patterns of correlations. Get to know your data.

Next, write out a systematic analysis plan—what analyses you are going to 
carry out and in what order—and follow it. (Ideally, you laid this out in advance 
when you designed the study.) Be sure that your plan focuses first and foremost on 
the hypotheses or research questions with which you began the study. Only then 
conduct the analyses.

When you look at each output, before looking at the results, be sure that the 
computer used the variables you intended, that it included all of the participants, and 
that it did the analysis you intended.

Once you have the major results, then it is a good idea to explore. But even 
here, it is wise to write out a list of the exploratory analyses you will do. Many of 
the most important discoveries in psychology came not from what was predicted in 
advance, but from unexpected findings in these explorations. Remember, however, 
that findings from exploration are more likely to be chance findings. It is like the 
problem of too many t tests (see Chapter 8); with many tests a few will come out 
significant just by chance. Thus, any findings from exploratory analyses need to be 
labeled as such when you write them up in your report and need to be taken as very 
tentative until they are replicated in a new study.

Writing Up Your Results 
When you come to write up the results of your research study, it will usually be in the 
form of a paper or report with the following main sections: Abstract, Introduction, 
 Methods, Results, Discussion. Some of your results actually go in the Methods sec-
tion. These include information on your participants (mean and standard deviations 
for age and any other relevant background variables, number of each gender, and so 
on) and any reliability analyses on your measures (see Chapter 15). The rest of your 
results go in the Results section. Usually, you begin with descriptive statistics—
means and standard deviations of your major variables. Then you describe each anal-
ysis in a systematic fashion, starting with those testing your hypotheses and research 
questions and then turning to exploratory analyses. For each analysis, clarify what 
hypothesis or research question or exploratory issue it is designed to test; describe  
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the analysis (what kind of analysis it is, such as a correlation or t test for indepen-
dent means, and what variables are involved); and give the results, including means, 
standard deviations, significance results (with degrees of freedom and p values), 
and effect sizes. Wherever it would make results clearer, use tables and graphs. You 
can find examples of how this is done in the “In Research Articles” sections of each 
chapter.

After the results section, a Discussion section usually summarizes the key con-
clusions, describes how your results bear on the larger issues the study was designed 
to address (that is, how is what we know about what you are studying different 
now than it was before you did the study and how this bears on previous research 
and theory), and notes the limitations of your study and anomalous results. Here, it 
is important not to get bogged down in explaining failures to get significance—be 
brief. And remember, a nonsignificant result means “inconclusive,” not “no differ-
ence” (unless you had very high power). Finally, consider the implications for future 
research. Above all, in the Discussion, it is important to stick to the big picture. 
You will learn more about writing up your results in research methods courses. 
We strongly recommend that you take one or more such courses. There are also 
many resources, such as style and writing guides, available to help you improve 
your  writing of research studies (e.g., American Psychological Association, 2009; 
 Landrum, 2012; Nicol & Paxman, 2010a; Nicol & Paxman, 2010b).

Summary

 1. Before conducting a research study, it is important to plan what statistical 
method(s) will be used to analyze the results.

 2. When scores are measured on an apparently equal-interval scale, you must first 
decide whether you are testing the difference between means or the association 
among variables. If the focus is on differences between means, you have to de-
termine whether you are comparing two means (in which case a t test is the ap-
propriate test) or three or more means (for which an analysis of variance is the 
appropriate test), and you must also decide whether you have a between-subjects 
or a within-subjects (repeated measures) design. If the focus is on the association 
among variables, you must decide whether there is one variable being correlated 
with or predicting another variable (in which case correlation or bivariate predic-
tion are appropriate tests) or more than one variable correlated with or predicting 
another variable (for which multiple regression is the appropriate test).

 3. Chi-square tests are used when your scores are categories, but they can only 
be used when each person is in a single category on any one nominal variable. 
Special rank-order tests (discussed briefly in Chapter 14) are used when your 
scores are measured on a rank-order scale.

 4. When you have scores on one or more criterion or dependent measured vari-
ables, you can handle this situation using one of three approaches: (a) conduct 
separate analyses for each criterion or dependent variable; (b) create a single 
measure by averaging the scores across the criterion or dependent variables; 
(c) use a multivariate test that considers all the criterion or dependent variables 
together.
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 5. It is important to estimate a study’s statistical power before carrying it out.
 6. There are a number of factors you should consider when entering the scores 

from your study into the computer, including setting up the spreadsheet carefully, 
using appropriate variable names, letting the computer do any summing or 
variable coding, typing in the data accurately, and checking your work. If you  
are collecting your data by computer, be sure to check that the data are being 
collected accurately and that the results will be available to you in a form you 
can use.

 7. Before carrying out the main statistical analyses, you should screen your data 
for accuracy, to identify and handle missing values, and to check for normal 
distributions.

 8. After carrying out your plan for the main statistical analyses, you may want to 
consider conducting some exploratory analyses.

 9. When you are writing up the results of a research study, most of the results of 
the statistical analyses will go in the Results section of your paper or report, 
although some information about the study participants is usually given in the 
Methods section. Describe the implications of the study results and conclusions 
in your Discussion section.

American Psychological Association (2009). Publication manual of the American Psychological 
Association (6th edition). Washington, DC: American Psychological Association.

Cohen, J. (1988). Statistical power analysis for the behavioral sciences. Hillsdale, NJ: Erlbaum.

Fielding, N. G., Lee, R. M., & Blank, G. (Eds.) (2008). The handbook of online research 
methods. London: Sage.

Gaiser, T. J., & Schreiner, A. E. (2009). A guide to conducting online research. London: Sage.

Gosling, S. D., & Johnson, J. A. (Eds.) (2010). Advanced methods for conducting online 
behavioral research. Washington, DC: American Psychological Association.

Landrum, R. E. (2012). Undergraduate writing in psychology: Learning to tell the scientific 
story. Washington, DC: American Psychological Association.

Nicol, A. A. M., & Paxman, P. M. (2010a). Displaying your findings: A practical guide 
for creating figures, posters, and presentations (6th edition). Washington, DC: American 
Psychological Association.

Nicol, A. A. M., & Paxman, P. M. (2010b). Presenting your findings: A practical guide for 
creating tables (6th edition). Washington, DC: American Psychological Association.

Reynolds, R. A., Woods, R., & Baker, J. D. (Eds.) (2007). Handbook of research on electronic 
surveys and measurements. Hershey, PA: Idea Group.

References



26

In all the analysis of variance situations we considered in Chapters 9 and 10, 
the different cells or groupings were based on scores from different individu-
als. Sometimes, however, a researcher measures the same individual in several 

different situations. (If there are only two such conditions, such as before and after 
some treatment, you can use a t test for dependent means, as described in Chapter 7.) 
Consider a study in which the participants’ task is to recognize a syllable when em-
bedded in three word types flashed quickly on a screen: familiar words, unfamiliar 
words, and nonword sounds. The result is that, for each participant, you have the 
total number of errors for each word type. Or suppose you do a study of psycho-
therapy effects testing patients on their depression before, immediately following, 
and again three months after therapy. In both examples, you have three groups of 
scores, but all three scores are from the same people. These studies each employ a 
repeated measures design. 

Repeated measures designs are often analyzed with a repeated measures 
analysis of variance, so named because the same participants are measured 
 repeatedly. This kind of design and analysis is also called a within-subjects 
 design and within-subjects analysis of variance because the comparison is 
within, not between, the different participants or subjects. In this chapter, we 
cover the following topics:

 ❶ The logic and figuring for a one-way repeated measures analysis of variance
 ❷ The assumptions for a one-way repeated measures analysis of variance and how 

researchers handle situations where the assumptions might not be met
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T I P  F O R  S U C C E S S
Before starting this chapter, you 
should have mastered Chapters 1 
through 10. It is especially impor-
tant to have mastered the proce-
dures in Chapter 10 for working 
out a two-way analysis of variance.
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T I P  F O R  S U C C E S S
In the analysis of variance you 
learned in Chapters 9 and 10, the 
scores in the different groupings 
were from different individuals. In 
the repeated measures analysis 
of variance you learn in this Web 
chapter, the same participants 
are measured repeatedly in differ-
ent conditions. You have already 
learned about this distinction with 
regard to the t test. The indepen-
dent means t test is used when 
you have scores from two separate 
groups of people (see Chapter 8).  
The dependent means t test is 
used when you have two scores 
for each person in the study (see 
Chapter 7).

Table W3-1  Scores and Scores Minus Participant’s Mean for Four Participants Each 

Exposed to Target Syllable in Familiar, Unfamiliar, and Nonword-Sound Word 

Types (Fictional Data)

  Actual Scores:

Measure: Number of errors

Word Type

Participant
Familiar  

Word
Unfamiliar  

Word
Nonword  

Sound

A 9 3 0

B 6 2 1

C 11 6 4

D 10 5 3

Scores minus participant’s mean:

Measure: Number of errors

Word Type

Participant
Familiar  

Word
Unfamiliar  

Word
Nonword  

Sound

A 5 -1 -4

B 3 -1 -2

C 4 -1 -3

D 4 -1 -3

 ❸ How to expand the basic one-way repeated measures analysis of variance to 
factorial repeated measures analysis of variance and to analyses of variance that 
include both repeated measures factors and the usual between-subjects factors

Basic Logic 
Ironically, you carry out a one-way repeated measures analysis of variance using the 
procedures for a standard two-way between-subjects analysis of variance. But this 
standard two-way analysis is modified in one crucial respect. Just as with an ordi-
nary two-way analysis of variance, you treat your groupings (conditions) as one fac-
tor, usually as columns. The modification is that the rows, instead of another factor, 
are participants. That is, there is one participant per row, and each participant has a 
score in each column. (See the example in the top of Table W3-1.) Thus, one factor 
is conditions and the other factor is participants; the cells have only one score each. 
Your main effect for conditions, as in any analysis of variance, uses the population 
variance estimate based on the deviation of each score’s condition’s mean from the 
grand mean. However, what changes is the population variance estimate that is the 
denominator of the F ratio.

In a repeated measures analysis of variance, you cannot use the within-cell vari-
ation as your denominator for the F ratio. One problem is that there is no within-cell 
variation. There is only one score per cell, and there cannot be any variation within 
a single score. An alternative that might seem reasonable at first glance would be 
to use the average variation within each condition, as you would do in an ordinary 
one-way between-subjects analysis of variance. This, however, ignores the fact that 
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the scores in each condition are from the same participants. Ignoring this is a prob-
lem for technical reasons (it violates the requirement that all scores should be in-
dependent). More important, however, is that doing so would not take advantage 
of the fact that you are interested in differences among conditions over and above 
individual overall differences among participants. So how do you take the repeated 
measures nature of the study into account?

One solution that takes the repeated measures nature of the study into account 
would be to use, for each score, not the actual score, but its difference from that 
participant’s mean across conditions. For example, consider the scores in the top 
part of Table W3-1 showing the number of errors for four participants who each 
were exposed to the syllable embedded in 30 presentations each of Familiar Words, 
Unfamiliar Words, and Nonword Sounds. Participant A’s average is 4 errors (that is, 
9 + 3 + 0 divided by 3). Thus, A’s errors in the Familiar Word condition are 5 above 
A’s average, A’s errors in the Unfamiliar Word condition are 1 below A’s average, 
and A’s errors in the Nonword Sound condition are 4 below A’s average. The bot-
tom part of Table W3-1 shows these scores (each score minus the participant’s own 
mean) for all four participants.

Suppose you were to figure an ordinary between-subjects one-way analysis of 
variance using these difference-from-the-participant’s-own-mean scores. Your re-
sults would come out in a way that takes into account, and properly takes advantage 
of, the fact that the same participants are in each condition. You can see that there is 
much less variance within conditions in this lower table than in the original scores in 
the upper table. This is because we have eliminated the variation due to overall be-
tween person tendencies—everyone’s scores only vary from their own mean so that 
any variation among different participants’ means is eliminated. The result of there 
being less variance is that the within-group population variance is smaller, making 
the overall F larger. (This is the same principle we saw in Chapter 7 with the t test 
for dependent means that a repeated measures design in general has more power. 
Now you can see the reason for this: the repeated measures design removes the vari-
ance due to individual overall differences among participants.)

If you were actually to carry out a standard between-subjects one-way analysis 
of variance with these scores in the bottom table (that is, taking the conditions as 
groups and figuring the denominator of the F ratio based on the variation within 
conditions), you would have to correct the degrees of freedom for the fact that you 
are subtracting out mean scores. You would then get the correct results. But it would 
also be a tedious process in a larger analysis because you would have to perform all 
these subtractions of scores from each participant’s means. This method also gets 
complicated in more complex designs.

Thus, in practice, researchers use a slightly different approach that accom-
plishes the same thing. When figuring the denominator of the F ratio in a repeated 
measures analysis like this, they take advantage of the two-way set up and use the 
interaction of participants by conditions. This interaction, like any interaction, is the 
difference in pattern across one factor according to the level of the other factor. In 
this situation, it means the average variation in pattern across conditions for differ-
ent participants. Since we are looking at patterns, we are in effect subtracting out 
each participant’s mean. In fact, using this interaction term gives exactly the same 
result as using the scores based on differences from each participant’s mean that 
we described in the preceding paragraph (after adjusting the degrees of freedom 
appropriately).

Here is another way to think of this participant : condition interaction. Like 
any interaction, its sum of squared deviations is the total squared deviations from 
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the grand mean minus all the other deviations—the deviations within cells and the 
deviations for each of the factors. In this situation, however, the deviations within 
cells (the deviation of each score from its cell’s mean) are all 0, because there is 
only one score per cell. This means that, in addition to subtracting out the deviations 
for the main effect for conditions (each score’s condition’s mean minus the grand 
mean), you are also subtracting out the deviations of each score’s participant’s mean 
from the grand mean. That is, by subtracting out the differences among participant’s 
means, you are subtracting out the overall differences among participants, which 
is—as we have seen—what gives such an advantage to repeated measures designs.

In sum, you can think of a one-way repeated measures analysis of variance 
across conditions as a two-way analysis of variance in which one factor is experi-
mental condition and the other factor is participant. Also, your between-conditions 
population variance estimate is as usual based on the deviations of each score’s 
condition mean from the grand mean, but in which the within-groups population 
variance estimate is based only on the deviation of scores within conditions after 
adjusting for each participant’s overall mean.

It is important to note that, in order to conduct a repeated measures analysis 
of variance, each participant in your study must have a score for each condition. 
Participants who are missing a score from one or more conditions should either be 
dropped from the analysis, or you should use one of the methods described in Web 
Chapter W2 to substitute for each missing score.

Figuring a One-Way Repeated Measures  
Analysis of Variance
Following the logic we have just considered, you figure a one-way repeated mea-
sures analysis of variance by setting it up as a condition : participant two-way de-
sign, figuring the two main effects and interaction in the usual way, and testing the 
condition main effect with an F ratio of the between-condition population variance 
estimate divided by the interaction population variance estimate.

Here are the steps:

 ❶ Set up the scores with groupings across the top (the conditions factor on 
which each participant has a score for each condition) and a row for each 
participant.

 ➋ Figure the sums of squares in the usual way for total (squared deviations of 
each score from the grand mean), columns (squared deviations of each score’s 
column’s mean from the grand mean), and rows (squared deviations of each 
score’s row’s mean from the grand mean). Notice that in figuring the sum of 
squares for rows, the row means are the same as each participant’s mean score 
across conditions.

 ➌ Figure the sum of squares for the interaction, figuring the deviation for each 
score as its deviation from the grand mean minus the deviation of its column’s 
mean from the grand mean and minus the deviation of its row’s mean from 
the grand mean. (That is, you don’t need also to subtract the scores deviation 
from its cell’s mean because all cells only have one score, so this deviation is 
always 0.)

 ➍ Figure the degrees of freedom in the usual way for columns (the number of 
columns minus 1), rows (the number of rows minus 1), and interaction (the 
number of cells minus the degrees of freedom for rows and columns, minus 1). 
Notice that the degrees of freedom for rows is the number of participants minus 1.

Copyright © 2013 Pearson Education, Inc., Upper Saddle River, NJ 07458. All rights reserved.
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 ❺ Figure the mean squares (the population variance estimates) in the usual way 
for columns and the interaction. For columns, this means the columns’ sum of 
squares divided by the columns’ degrees of freedom; for the interaction, this means 
the interaction’s sum of squares divided by the interaction’s degrees of freedom. 
Notice that you do not figure a population variance estimate based on rows. This 
would be the variance among participants, which is not usually of interest.

 ❻ Figure the F ratio for the repeated measures condition effect: Divide the 
mean square for columns by the mean square for the interaction.

To test the significance of the repeated measures condition effect, compare 
your F to a cutoff F based on the appropriate numerator (columns) and denominator 
(interaction) degrees of freedom.

Table W3-2 shows scores, figuring, and an analysis of variance table for the 
repeated measures analysis of variance for the example we have been considering.

Assumptions and Related Issues
The assumptions for a repeated measures analysis of variance include the usual ones 
for an ordinary analysis of variance—normal distributions and equal variances of the 
populations for each condition or condition combination. There is also an additional 
assumption, called sphericity. Sphericity means that not only are the population 
variances for each condition the same, but the population correlations among the 
different conditions are the same. (See Chapter 11 for a detailed discussion of the 
topic of correlation. If you have not yet read that chapter, then it is enough for now 
to know that a correlation describes the association between scores on two or more 
variables.) For example, if you have sphericity, the population correlation between 
errors in the Familiar Word condition and errors in the Unfamiliar Word condition 
will be the same as the correlation between errors in the Familiar Word condition 
and errors in the Nonword Sounds condition.

With the small sample size usually used in repeated measures analysis of vari-
ance, it is hard to know whether you meet any of the assumptions. For example, 
regarding sphericity, correlations in small samples can vary quite considerably 
even if in the population they are equal. And correlations in small samples could be 
quite similar even if in the population they are different. The difficulty of knowing 
whether you have met the sphericity assumption is especially a problem because the 
accuracy of the F test for repeated measures analysis of variance can be strongly af-
fected by violations of this assumption.

There are two widely used solutions for dealing with possible violations of the 
sphericity assumption. One solution is to estimate how much the assumption is violated 
and statistically correct for it by using a comparison F distribution with fewer degrees 
of freedom (so that you need a stronger result to be significant). Thus, when you do a 
repeated measures analysis of variance with most statistics programs (including SPSS), 
in addition to the standard results, you get various results with corrected degrees of 
freedom and the resulting more conservative (less extreme) significance levels.

For example, Figure W3-1 shows a key section of the SPSS output for the 
 example we have been considering. (The slight difference in the F figured in 
Table W3-2 is due to rounding error.) Notice that in addition to the standard output 
(“sphericity assumed”), you get three other results. These refer to different ways of  
correcting for violation of the sphericity assumption. The correction is to the  degrees 
of freedom. The Fs all come out the same, but since they are being compared to 
 different F distributions, the p levels are not the same. In this present example, the 
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Table W3-2  One-Way Repeated Measures Analysis at Variance for Study of Errors in Recognition for Four Participants Each Exposed to 

Target Syllable in Familiar, Unfamiliar, and Nonword-Sound Word Types (Fictional Data)

 Measure: Number of errors

Word Type

Participant ➊

Familiar  
Word

Unfamiliar  
Word

Nonword  
Sound

Row

g M

A 9 3 0 12 4

B 6 2 1 9 3

C 11 6 4 21 7

D 10 5 3 18 6

g 36 16 8

M 9 4 2

GM = 5

Squared deviations from grand mean

Participant Familiar Word Unfamiliar Word Nonword Sound

X Column Row Int X Column Row Int X Column Row Int

A 16 16 1 1 4 1 1 0 25 9 1 1

B 1 16 4 1 9 1 4 0 16 9 4 1

C 36 16 4 0 1 1 4 0 1 9 4 0

D 25 16 1 0 0 1 1 0 4 9 1 0

g 78 64 10 2 14 4 10 0 46 36 10 2

 SSTotal = 78 + 14 + 46 = 138

 ➋  SSColumns = 64 +  4 + 36 = 104

 SSRows = 10 + 10 + 10 =  30

 ➌ SSInteraction =  2 +  0 +  2 =  4

Check: SSTotal = SSColumns + SSRows + SSInteraction = 104 + 30 + 4 = 138

 dfTotal =  12 - 1 = 11

    dfColumns =  3 - 1 = 2

 dfRows =  4 - 1 = 3

➍  dfInteraction =  11 - 2 - 3 = 6

Check: dfTotal = dfColumns + dfRows + dfInteraction = 2 + 3 + 6 = 11

F  needed for repeated measures (columns) effect (df  =  2, 6; p < .05): 5.14

Analysis of Variance Table

❺

Source SS df MS F

Between Conditions (Columns) 104 2 52 77.6

Participants (Rows) 30 3

Error (Interaction) 4 6 .67

Total 138 11

Conclusion: Reject the null hypothesis. ❻

uncorrected result (with df = 2, 6) has a p that rounds off to .000. But the corrected 
results (with dfs = 1, 3) are all about .003.

In most real data sets, the three different corrected results (that is, their dfs and 
p values) also differ from each other. The “Lower-bound” correction, as the name 
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suggests, is the most conservative, giving the highest p value. The “Greenhouse-
Geisser” correction is the next most conservative. The “Huynh-Feldt” correction is 
the least conservative, but still widely (although not unanimously) agreed to be quite 
accurate. Thus, most psychologists focus on the Huynh-Feldt correction.

If the results using the Huynh-Feldt correction are not much different from the 
uncorrected (sphericity assumed) results, for simplicity, researchers usually just report 
the uncorrected results. However, if there is much difference between the corrected 
and uncorrected results, then the Huynh-Feldt corrected results are usually reported. 
In the present example, researchers would probably just report significance as p 6 .01. 
Another solution to the concern about violating the sphericity assumption is to use 
an entirely different approach, a special application of multivariate analysis of vari-
ance (see Chapter 15). Thus, most computer printouts for a repeated measures analysis 
of variance also automatically include results of multivariate tests. The results using 
these tests are typically similar to those using the standard procedures. (In the word-
type example we have been considering, the p for the multivariate tests is .003.) Most 
psychologists use the standard procedures, although there is a strong minority opinion 
in favor of the multivariate approach. The advantage of the multivariate approach is 
that you don’t have to make the sphericity assumption. On the other hand, with small 
samples, the multivariate approach usually has lower power and you get around the 
sphericity assumption in any case by using the Huynh-Feldt correction.

More Complex Repeated Measures Designs  
and Mixed Designs
So far, we have considered the one-way repeated measures analysis of variance, in 
which each of several participants are tested under different conditions. In this design, 
there is one repeated measures variable, such as Word Type. Sometimes, however, 
a study includes two or more repeated measures variables. For example, Word Type 
could be crossed with Word Length, so that each participant might have scores in six 
conditions: Familiar Long Words, Familiar Short Words, Unfamiliar Long Words, 

Figure W3-1 Key section of SPSS output for study of errors in recognition for four 
participants, each exposed to a target syllable in familiar, unfamiliar, and nonword-sound 
word types (fictional data).
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and so forth. This would be an example of a two-way repeated measures design. 
The repeated measures two-way analysis of variance would be set up like a three-way 
between-subjects analysis of variance, with one dimension for Word Type, one dimen-
sion for Word Length, and one dimension for Participants. The denominator of the F 
ratio for each of the two condition main effects (Word Type and Word Length) and 
their interaction (Word Type : Word Length) would in each case be the interaction 
of that term with the Participant factor. For example, you would test the Word Length 
main effect by figuring an F ratio in which the numerator is the population variance es-
timate based on the Word Length mean squares and the denominator is the population 
variance estimate based on the Word Length : Participant interaction mean squares.

It is also possible to have in the same analysis both repeated measures and ordi-
nary between-subjects factors. For example, in the word recognition study, each par-
ticipant might have only the three Word Types, but some participants might be college 
age and other participants might be in their 70s. Thus, you would have one repeated 
measures factor (Word Type) and one between-subjects factor (Age). This would be 
an example of a mixed design. In this example, the analysis of variance allows you to 
test the main effect for the repeated measures factor (Word Type), the main effect for 
the between-subjects factor (Age), and the interaction (Word Type : Age).

The actual figuring of a mixed design is somewhat complicated, but two main 
points are of interest. First, the between-subjects part of the analysis would come out 
the same as if you were doing a one-way analysis for the between subjects factor using 
each participant’s mean across the conditions. That is, in the example, it would be the 
same result as if you just had two levels of age and the scores within each were each 
participant’s mean number of errors across the three words types. Second, the denomi-
nator of the F ratio for the repeated measures main effect and the interaction is based 
on the interaction of participant with the repeated measures factor, figured separately 
within each level of the between-subjects factor (for each age group) and averaged. 
That is, in the example, the main effect for Word Type and the Word Type : Age in-
teraction would both be figured using as the denominator the Word Type : Participant 
interaction figured separately within each age group and then averaged. Thus, the com-
puter output from a mixed analysis of variance, gives two sets of  results: one for the 
between-subjects and one part for the repeated measures aspect.

 1. A study uses a repeated measures design (or within-subjects design) when each 
participant is tested more than once. Repeated measures designs are commonly 
analyzed with a repeated measures analysis of variance.

 2. You carry out a one-way repeated measures analysis of variance using a modi-
fied two-way between-subjects analysis of variance. Just as with an ordinary 
two-way analysis of variance, the groupings (conditions) are treated as a factor, 
usually as columns. The modification is that the rows, instead of another factor, 
are participants. Thus, one factor is condition and the other factor is partici-
pants. This modification has implications for the population variance estimate 
that is the denominator of the F ratio.

 3. In practice, when figuring the denominator of the F ratio in a repeated measures 
analysis of variance, researchers take advantage of the two-way set up and use 
the variance of the interaction of condition by participants. Thus, you figure a  

Summary

Learning Aids
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one-way repeated measures analysis of variance by setting it up as a condition : 
participant two-way design, figuring the two main effects and interaction in the 
usual manner, and then testing the condition main effect with an F ratio of the 
between-condition population variance estimate divided by the interaction pop-
ulation variance estimate.

 4. As with the ordinary analysis of variance, the repeated measures analysis of vari-
ance assumes that the populations for each condition or condition combination 
follow a normal distribution and have equal variances. An additional assumption 
of the repeated measures analysis of variance is called sphericity, which means 
that not only are the population variances for each condition the same but the 
population correlations among the different conditions are the same.

 5. It is often difficult to know whether the sphericity assumption has been violated. 
The most common solution to this issue is to use a statistical correction based on 
an estimate of how much the assumption is violated. This correction involves us-
ing a comparison F distribution with fewer degrees of freedom. Several different 
corrections are provided by computer programs, such as SPSS. The Huynh-Feldt 
correction is often used by researchers. Another solution to the issue of violating 
the sphericity assumption is to use a special application of multivariate analysis of 
variance. However, this approach usually has lower power with small samples.

 6. Some studies include two or more repeated measures variables. Other stud-
ies might include one (or more) repeated measures factor and one (or more)  
between-subjects factor. This is an example of a mixed design.

Key Terms
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repeated measures  
analysis of variance  (p. 26)
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(p. 26)
sphericity  (p. 30)

Huynh-Feldt correction  (p. 32)
two-way repeated measures design  

(p. 33)
mixed design  (p. 33)

Using SPSS 

The  in the following steps indicates a mouse click. (We used SPSS version 19 
for Windows to carry out these analyses. The steps and output may be slightly dif-
ferent for other versions of SPSS.) It is easier to learn the SPSS steps for repeated 
measures analysis of variance using actual numbers, so we will use the example in 
which four participants were asked to recognize a syllable when it was embedded 
in three types of word (familiar words, unfamiliar words, and nonword sounds) that 
were flashed quickly on a screen (see Table W3-1).

One-Way Repeated Measures Analysis of Variance 
 ❶ Enter the scores into SPSS. As shown in Figure W3-2, the scores for each person 

are listed in a separate row. We labeled the variables “familiar”, “unfamiliar”, 
and “nonword”.

 ❷  Analyze.
 ❸  General Linear Model,  Repeated Measures.
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 ❹ In the “Within-Subject Factor Name” box, type “wordtype” (the default name is 
“factor1”, but we recommend using a name that describes the variables in your 
study). Enter “3” as the number of levels.  Add.  Define.

 ❺ In the new window that opens up,  familiar and  the arrow to move it into 
the box labeled “Within-Subjects Variables”. Repeat this process for “unfamiliar” 
and “nonword”. The window should now look like Figure W3-3.

Figure W3-2 SPSS data editor window for a fictional study of errors in recognition for 
four participants, each exposed to a target syllable in familiar, unfamiliar, and nonword-sound 
word types.

Figure W3-3 SPSS repeated measures window for a fictional study of errors in 
 recognition for four participants, each exposed to a target syllable in familiar, unfamiliar, and 
nonword-sound word types.
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 ❻  Options.  the box labeled “Descriptive statistics” (this checks the box). 
 Continue. (Although this step is optional, we recommend that you always 

request descriptive statistics when carrying out any statistical test.)
 ❼  OK. The SPSS output is quite long, but the most important tables for you 

to look at are labeled “Descriptive Statistics” and “Tests of Within-Subjects 
Effects” (see Figure W3-1). The descriptive statistics include the mean  
number of errors for each word type. As you learned earlier in the chapter, 
the tests of within-subjects effects include the standard test (which is used 
when the sphericity assumption is not violated) as well as three other tests 
that are used if the sphericity assumption is violated. As shown in Figure 
W3-1, all of the tests were statistically significant, indicating that the num-
ber of errors made by participants varied according to the type of word they 
viewed.



37

Aron, A., Coups, E. J., & Aron, E. N. (2013). Statistics for Psychology. Upper Saddle River, NJ: Pearson.

Copyright © 2013 Pearson Education, Inc., Upper Saddle River, NJ 07458. All rights reserved.

Chapter W4

Integration and the General Linear Model

This chapter is intended to integrate and deepen your knowledge of the major 
statistical techniques you have learned throughout the book. Equally impor-
tant, it provides a thorough review of those techniques.

The General Linear Model
In Chapter 15, we introduced you to the general linear model, which is a general 
statement of the influences that make up an individual’s score on a particular vari-
able. The general linear model states that the value of a variable for any individual 
is the sum of a constant, plus the weighted influence of each of several other vari-
ables, plus error. Bivariate and multiple correlation and regression (and associated 
significance tests), the t test, and the analysis of variance are all special cases of 
the general linear model. You also learned in Chapter 15 that bivariate correlation/ 
prediction and analysis of variance are special cases of multiple regression, and that 
the t test can be derived directly from either bivariate correlation/prediction or  analysis 
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T I P  F O R  S U C C E S S
To understand this chapter, you 
should already have covered 
the chapters on t tests, analysis 
of variance, correlation, and 
prediction. You should also have 
covered the first part of Chapter 15 
that provides an introduction to the 
general linear model. We suggest 
that you reread that section before 
reading this chapter.
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of variance (for a summary, see Figure W4-1, which is the same as Figure 15-1 in 
Chapter 15). We describe these relationships in detail in this Web chapter.

The General Linear Model and Multiple Regression
The link between the general linear model and multiple regression is intimate—they 
are nearly the same. Traditionally, they have not been equated because the general 
linear model is understood to be behind other techniques, such as bivariate correla-
tion and the analysis of variance, in addition to multiple regression. However, in 
recent years psychologists have become increasingly aware that these other tech-
niques can be derived from multiple regression as well as from the general linear 
model.

Bivariate Prediction and Correlation as Special 
Cases of Multiple Regression
Bivariate prediction, prediction from one predictor variable to one criterion vari-
able, is a special case of multiple regression, which is prediction from any number 
of predictor variables to one criterion variable. Similarly, bivariate correlation, the 
association between one predictor variable and one criterion variable, is a special 
case of multiple correlation, the association of any number of predictor variables 
and one criterion variable.

The t Test as a Special Case of the Analysis 
of Variance
Both the t test and the analysis of variance test differences between means of 
groups. You use the t test when there are only two groups.1 You usually use the 
analysis of variance, with its F ratio, only when there are more than two groups. 
However, you can use the analysis of variance with just two groups. When 
there are only two groups, the t test and the analysis of variance give identical 
conclusions.

The strict identity of t and F applies only in this two-group case. You can-
not figure an ordinary t test among three groups. This is why we say that the 
t test is a special case of the analysis of variance. The test is mathematically 
identical to the analysis of variance in the particular case where there are only 
two groups.

Multiple regression

Analysis of
variance

Bivariate
prediction/
correlation

General

Specialized t test

Figure W4-1 The relationship among the four major statistical techniques.
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Intuitive Understanding of the Relationship  
of the two Procedures
One way to get a sense of the link of the two procedures is through the analogy of 
signal-to-noise ratio that we introduced in Chapter 9 to explain the analysis of vari-
ance. The idea is that the analysis of variance F ratio is a measure of how much the 
signal (analogous to the difference between group means) is greater than the noise 
(analogous to the variation within each of the groups). The same idea applies to a t 
test, which is also really about how much the signal (the difference between the two 
group means) is greater than the noise (the standard deviation of the distribution of 
differences between means, which is also based on the variation within the groups).

Parallels in the Basic Logic of the Two Procedures
The analysis of variance F ratio is the population variance estimate, based on the 
variation between the means of the groups divided by the population variance 
estimate, based on the variation within each of the groups. That is, the F ratio is a 
fraction in which the numerator is based on the differences among the groups, com-
paring their means, and the denominator is based on the variation within each of the 
groups.

The t score is the difference between the means of the two groups divided by 
the standard deviation of the distribution of differences between means (and this 
standard deviation is based mainly on a pooled variance estimate that is figured 
from the variation within each of the two groups). Thus, the t score is a fraction in 
which the numerator is the difference between the groups, comparing their means, 
and the denominator is based on the variation within each of the groups.

In other words, as shown in the top sections of Table W4-1, an F ratio and a 
t score are both fractions in which the numerator is based on the differences be-
tween the group means and the denominator is based on the variances within the 
groups.

Numeric Relationship of the Two Procedures
The formula for a t score comes out to be exactly the square root of the formula for 
the F ratio in the situation where there are just two groups. Most of you will not 
be interested in the precise derivation, but there is an important implication. If you 

Table W4-1  Some Links Between the t Test for Independent Means and the Analysis 

of Variance

t Test Analysis of Variance

Numerator of t is the difference 
between the means of the two groups.

Numerator of F is partly based on variation between the means of 
the two or more groups.

Denominator of t is partly based 
on pooling the population variance 
estimates figured from each group.

Denominator of F is figured by pooling the population variance 
estimates figured from each group.

Denominator of t involves dividing by 
number of scores.

Numerator of F involves multiplying by number of scores. 
(Multiplying a numerator by a number has the same effect as 
dividing the denominator by that number.)

When using two groups, t = 2F When using two groups, F = t 2

df = 1N1 - 12 + 1N2 - 12 dfWithin = 1N1 - 12 + 1N2 - 12 + g + 1NLast - 12
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figure a t score, it will come out to be exactly the square root of what you would 
get if you figured an F ratio for the same study. For example, if you figured a t of 
3 and then you figured F for the same study, the F would come out to 9. Similarly, 
consider the cutoffs in a t table. These are exactly the square roots of the cutoffs in 
the column of an F table for an analysis of variance for two groups (that is, the part 
of the F table with numerator df = 1).

An apparent difference between the two procedures is how they are affected by 
sample size. In the analysis of variance, the sample size is part of the numerator. As we 
saw in Chapter 9, the numerator of the F ratio is the population variance estimate using 
the difference among the means multiplied by the number of scores in each group. That 
is, S2

Between = 1S2
M21n2. In the t test, the sample size is part of the denominator. As we 

saw in Chapter 8, the denominator of the t test uses the pooled population variance esti-
mate divided by the number of scores in each group. That is, SDifference = 2S2

Difference 
and S2

Difference = S2
M1

+ S2
M2

; S2
M1

= S2
Pooled>N1; S

2
M2

= S2
Pooled>N2. This apparent con-

tradiction is resolved, however, because multiplying the numerator of a fraction by 
a number has exactly the same effect as dividing the denominator by that number. 
For example, take the fraction 3/8. Multiplying the numerator by 2 gives 6/8, or 3/4; 
dividing the denominator of 3/8 by 2 also gives 3/4.2

Worked-Out Example of the Two Procedures
An example with all the figuring makes the equivalence more vivid. Table W4-2 
shows the t and F figuring for a study in which a researcher randomly assigns seven 
individuals to a new experimental procedure and seven to a control condition. At 
the end of the study, all 14 are measured. Scores for those in the experimental group 
were 6, 4, 9, 7, 7, 3, and 6. Scores for those in the control group were 6, 1, 5, 3, 1, 
1, and 4. Notice the following: (a) The pooled population variance estimate in the 
t test 1S2

Pooled = 4.172 is the same as the within-group population variance estimate 
for the analysis of variance 1S2

Within = 4.172, both figured as part of the denomina-
tor. (b) The degrees of freedom for the t distribution 1df = 122 is exactly the same 
as the denominator degrees of freedom for the F distribution 1dfWithin = 122. (c) 
The cutoff t for rejecting the null hypothesis (2.179) is the square root of the cutoff 
F for rejecting the null hypothesis 124.75 = 2.1792. (d) The t for these data (2.73) is 
the square root of the F 127.55 = 2.75, the slight difference being due to rounding 
error). And (e) the conclusion is the same. With both methods, you reject the null 
hypothesis (and if you were to get an exact p value using a statistics program, both 
methods would give exactly the same exact p value).

How are you doing?

 1. How is bivariate prediction a special case of multiple regression?
 2. When can you use an analysis of variance to do the same thing as a t test?
 3. How is the numerator of a t test like the numerator of an F ratio in an analysis 

of variance?
 4. How is the denominator of a t test like the denominator of an F ratio in an 

analysis of variance?
 5. How is S2

Pooled like S2
Within?

 6. When figured for the same scores, what is the relation of the t to the F?
 7. What is the relation of the t cutoff to the F cutoff for the same study (involving 

two groups)?
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Table W4-2 t Test and Analysis of Variance Computations for the Same Study (Fictional Data)

Experimental Group Control Group

X1 X1 - M1 1X1 - M122 X2 X2 - M2 1X2 - M222
6 0 0  6 3  9

4 -2 4  1 -2  4

9 3 9  5 2  4

7 1 1  3 0  0

7 1 1  1 -2  4

3 -3 9  1 -2  4

6 0 0  4 1  1

�    42 0 24 21 0 26

M1 = 6 S2
1 = 24>6 = 4 M2 = 3 S2

2 = 26>6 = 4.33

N1 = 7 df1 = N1 - 1 = 6 N2 = 7 df2 = N2 - 1 = 6

t test ANOVA

Numerator

Mean difference = 6.00 - 3.00 = 3.00 dfBetween = NGroups - 1 = 2 - 1 = 1

GM = 16 + 32>2 = 9>2 = 4.5

�1M - GM22 = 16 - 4.522 + 13 - 4.522
= 1.52 + -1.52

= 2.25 + 2.25 = 4.5

S2
Between or MS Between = a �(M - GM22

df Between
b1n2 = a 4.5

1
b172 = 31.5

Denominator

S2
Pooled = a df1

dfTotal
b1S2

12 + a df2

dfTotal
b1S2

22 = a 6
12
b142 + a 6

12
b14.332 S2

Within or MSWithin =
S2

1 + S2
2 + g + S 2

Last

NGroups
=

4 + 4.33
2

= 1.52142 + 1.5214.332 = 2.00 + 2.17 = 4.17
 =

8.33
2

= 4.17

S2
Difference = S2

M1
+ S2

M = 1S2
Pooled>N12 + 1S2

Pooled>N22
= 14.17>72 + 14.17>72
= .60 + .60 = 1.20

SDifference = 2S2
Difference = 21.20 = 1.10

Degrees of Freedom

dfTotal = df1 + df2 = 6 + 6 = 12 dfWithin = df1 + df2 g dfLast = 6 + 6 = 12

Cutoff

Needed t  with df = 12 at 5% level, 
 two-tailed = { 2.179

Needed F with df = 1, 12 at 5% level = 4.75

Score on Comparison Distribution

t = 1M1 - M22>SDifference = 16.00 - 3.002>1.10 = 3.00>1.10 = 2.73 F = S2
Between>S2

Within or MSBetween>MSWithin = 31.5>4.17 = 7.55

Conclusions

Reject the null hypothesis;  
the research hypothesis is supported.

Reject the null hypothesis;  
the research hypothesis is supported.
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The t Test as a Special Case of the Significance 
Test for the Correlation Coefficient
The relationship of the correlation coefficient to the t test is far from obvious. The 
correlation coefficient is about the degree of association between two variables; the t 
test is about the significance of the difference between two population means. What 
is the possible connection?

As you learned in Chapter 11, one connection is that both use the t distribution 
to determine significance. As a reminder, the score for a correlation coefficient on 
the comparison distribution is a t score figured from the correlation coefficient us-
ing the formula t = r>111 - r22>1N - 22 (formula 11-2, Chapter 11, page 459). 
However, knowing about this procedure does not give much insight into why the cor-
relation coefficient can be turned into a t score for purposes of hypothesis testing or 
of the connection between this t based on the correlation coefficient and the t test for 
the difference between means of two groups. Let’s take a look at these issues now.

Group Differences as Associations Among Variables
We usually think of the correlation coefficient as the association between two vari-
ables, typically a predictor variable and a criterion variable. Testing the significance 
of a correlation coefficient asks whether you can reject the null hypothesis that in 
the population there is no association between the predictor and criterion variable 
(that in the population, r = 0).

The t test for independent means examines the difference between two popula-
tion means, based on the means of two samples. The sample scores are on a mea-
sured variable that is like a criterion variable (you want to know the effect on it). 
The distinction between the two groups in a t test is like the predictor variable. In 
our example from the previous section (see Table W4-2), the variable that divides 
the two groups was whether participants were in the experimental or control group. 
Thus, you can think of the t test as about whether there is any association between 
the variable that divides the groups and the measured variable (see Table W4-3).

Numerical Predictor Variables Versus Two-Category 
Nominal Variable that Divides the Groups
“But wait!” you might say. “The predictor variable in a correlation coefficient is a 
numerical variable, such as number of hours sleep or high school GPA. The variable 
that divides the groups in a t test for independent means is a variable with exactly 

Answers

 1. Multiple regression predicts the criterion variable from any number of predic-
tor variables; bivariate prediction is the special case in which you are predict-
ing from only one predictor variable.

 2. When there are only two groups.
 3. Both are about the difference or variation between the groups.
 4. Both are about variation within groups.
 5. The two are identical.
 6. The t is the square root of the F.
 7. The t cutoff is the square root of the F cutoff.
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two values, the two categories, such as experimental group versus control group.” 
You would be quite correct. This is precisely the difference between the situations 
in which you use a correlation coefficient and those in which you ordinarily use a t 
test for independent means.

How can this gap be bridged? Suppose that you arbitrarily give a number to 
each level of the two-category nominal variable that divides the groups. For ex-
ample, you could make the experimental group a “1” and the control group a “2.” 
(Using any other two numbers will, in the end, give exactly the same result. How-
ever, which group gets the higher number does determine the plus or minus sign of 
the final result.) Once you change the two-category nominal variable that divides 
the groups to a numerical variable, you can then figure the correlation between this 
two-valued numeric variable and the measured variable.

Example of the Numeric Equivalence of the t Test 
and the Correlation Coefficient Significance Test
Table W4-4 shows the figuring for the correlation coefficient and its significance 
using the scores from the same t test example we used earlier (see Table W4-2). 
Notice that in this correlation setup, each individual has two scores: (a) a 1 or a 2, 
depending on whether the person is in the experimental group or the control group, 
and (b) a score on the measured variable.

The resulting correlation is - .62. Using the formula for changing a correlation 
to a t score gives a t of -2.74. This t is the same, within rounding error, that we 
figured earlier (2.73) using the ordinary t test procedures (see Table W4-2). The 
difference in sign has to do with which group gets the 1, and which group gets the 
2—a decision that is arbitrary. The degrees of freedom, and thus the needed t for 
significance and the conclusion, are also the same as for the t test for independent 
means.

In sum, the significance test of the correlation coefficient gives the same result 
as the ordinary t test. We say that the t test is a special case of the correlation coef-
ficient, however, because you can use the t test only in the situation in which the 
predictor variable has exactly two values.

Graphic Interpretation of the Relationship of the t Test 
to the Correlation Coefficient
Figure W4-2 shows the scatter diagram, including the regression line, for the scores 
in the example we have been following. The predictor variable (the variable that 
divides the groups) has just two values, so the dots all line up above these two val-
ues. Note that the regression line goes through the middle of each line of dots. In 
fact, when making a scatter diagram of the scores for a t test, the regression line 
always goes exactly through the mean of each set of dots. This is because the 

Table W4-3 Relation between Correlation and t Test for Independent Means

Correlation t Test

Variable 1 Predictor Variable Variable that Divides the Groups

Variable 2 Criterion Variable Measured Variable

Relation tested High scores on predictor go 
with high scores on criterion

Those in one group on the variable that divides the 
groups have higher scores on the measured variable
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Table W4-4 Figuring of the Correlation Coefficient and a Hypothesis Test of the Correlation Coefficient Using the Data from Table W4-2 

and Changing the Variable that Divides the Groups Into a Numeric Variable Having Values of 1 (for the Experimental Group) 

or 2 (for the Control Group)

Variable that Divides the Groups  
(Experimental Versus Control) (X)

Measured Variable  
(Y )

Deviation
Deviation  
Squared Z Score Deviation

Deviation  
Squared Z Score

Cross-Products  
of Z Scores

X X - MX 1X - MX22 ZX Y Y - MY 1Y - MY22 ZY ZX ZY

1 - .5 .25 -1 6 1.5 2.25 .62 - .62

1 - .5 .25 -1 4 - .5 .25 - .21 .21

1 - .5 .25 -1 9 4.5 20.25 1.87 -1.87

1 - .5 .25 -1 7 2.5 6.25 1.04 -1.04

1 - .5 .25 -1 7 2.5 6.25 1.04 -1.04

1 - .5 .25 -1 3 -1.5 2.25 - .62 .62

1 - .5 .25 -1 6 1.5 2.25 .62 - .62

2 .5 .25 1 6 1.5 2.25 .62 .62

2 .5 .25 1 1 -3.5 12.25 -1.45 -1.45

2 .5 .25 1 5 .5 .25 .21 .21

2 .5 .25 1 3 -1.5 2.25 - .62 - .62

2 .5 .25 1 1 -3.5 12.25 -1.45 -1.45

2 .5 .25 1 1 -3.5 12.25 -1.45 -1.45

2 .5 .25 1 4 - .5 .25 - .21 - .21

� = 21 �(X - Mx)2 = 3.5 � = 63 �(Y - MY )2 = 81.5 � = -8.71

MX = 1.5 SD2 = 3.5/14 = .25  MY = 4.5 SD2 = 81.5/14 = 5.82

SD = .5 SD = 2.41

df = N - 2 = 14 - 2 = 12.                                 r = (�ZXZY )>N = -8.71>14 = - .62

t  needed with df = 12 at 5% level, two-tailed ={2.179.

t = r >211 - r 22>1N - 22 = - .62 >211 - (- .6222)>114 - 22 = - .62>2.0513 = -2.74

Decision: Reject the null hypothesis; the research hypothesis is supported.

 regression line shows the best predicted score at each level of the predictor variable, 
and for any group of scores, the best predicted score is always the mean.

Figure W4-3 shows some additional examples. In Figure W4-3a, the two means 
are nearly the same. Here, the slope of the regression line is about 0; the correlation is 
low and not statistically significant. The correlation is .10; thus, with 20 participants, 

t = r>211 - r22>1N - 22 = .10>211 - .1022>120 - 22 = .43.  Thinking in 
terms of a t test for independent means, because there is little difference between the 
means of the two groups, the t test will not be significant. The mean difference is 
7.39 - 7.60 = - .21. The standard deviation of the distribution of differences  between 
means is .48; thus, t = 1M1 - M22/SDifference = 17.39 - 7.602/.48 = - .44. This is 
the same result as you get using the correlation approach (within rounding error, and 
ignoring sign).

In Figure W4-3b, the means of the two groups are somewhat different, but the 
dots in each group are even more widely spread out. Once again, the correlation 
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Figure W4-2 Scatter diagram and regression line for the example, originally ana-
lyzed with a t test for independent means, with a value of 1 for the experimental group and 2 
for the control group.
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Figure W4-3 Three possible scatter diagrams of scores analyzed with a t test for inde-
pendent means, in which the means for the two groups are (a) nearly the same, (b) different but 
the scores are widely spread (large pooled variance and thus large standard deviation of the dis-
tribution of differences between means), and (c) very different, with the scores not widely spread.
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 coefficient is low and not statistically significant. In the t test for independent means, 
the spread of the dots makes a large estimated population variance for each group, 
creating a large pooled variance estimate and a large standard deviation of the dis-
tribution of differences between means. In a t test, you divide the mean difference 
by the standard deviation of the distribution of differences between means; thus, the 
larger this standard deviation, the smaller the t score. In the example, the mean dif-
ference is .52, and the standard deviation of the distribution of differences between 
means is 1.21. This gives a t of .43, which is clearly not significant.

Finally, in Figure W4-3c, there is a large difference between the means and less 
variation among the dots around each mean. Thus, the regression line is a very good 
predictor. Similarly, the large mean difference and small variance within each group 
make for a large t using a t test for independent means.

These figures illustrate the principle that the t test for independent means and 
the significance test for the correlation coefficient give the same results. This is 
 because both are largest when the difference between the two means is large and the 
variation among the scores in each group is small.

The Analysis of Variance as a Special Case of the 
Significance Test of Multiple Regression
The relationship between the analysis of variance and multiple regression parallels 
the relationship we just considered between the t test for independent means and the 
correlation coefficient. And, in both, the solution is the same. The analysis of vari-
ance tests whether there is a difference on the measured variable between means of 
three or more groups. The multiple regression approach sees this as a relationship 
between a criterion variable (the measured variable) and a predictor variable (the 
different levels of the variable that divides the groups). For example, in the Hazan 
and Shaver (1987) study of attachment style and jealousy discussed in Chapter 9, 
the analysis of variance showed a significant difference in jealousy (the measured 
variable) among the three attachment styles (the variable that divides the groups). 
A correlation or regression approach, by contrast, would describe this result as a 
significant association between jealousy (the criterion variable) and attachment style 
(the predictor variable). We describe the relationship between analysis of variance 
and regression in more detail in an Advanced Topic section later in the chapter.

Choice of Statistical Tests
We have seen that the four major statistical procedures you have learned in this 
book can be considered special cases of multiple regression. You may now won-
der why you don’t learn just one technique, multiple regression, and do everything 
using it. You could. And you would get entirely correct results.

Why, then, should anyone use, say, a t test instead of an analysis of variance? The 
reason is that it is a procedure that is traditional and widely understood. Most research-
ers today expect to see a t test when two groups are compared. It seems strange, and 
somehow grandiose, to see an analysis of variance when a t test would do—though, in 
fact, the sense of grandiosity is simply a holdover from the days when all the figuring 
was done by hand and an analysis of variance was harder to do than a t test.

To use a correlation coefficient (and its associated significance test) in the two-
group situation instead of an ordinary t test would confuse people who were not very 
statistically sophisticated. Similarly, analyzing an experiment with several groups 
using multiple regression instead of analysis of variance would confuse those same 
less sophisticated readers.3
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There is one advantage in using correlation and regression over the t test or an anal-
ysis of variance: The correlational approach automatically gives you direct information 
on the relationship between the variable that divides the groups and the measured vari-
able as well as permitting a significance test. The t test and the analysis of variance give 
only statistical significance. (You can figure an effect size for either of these, but with 
a correlation coefficient or a multiple regression, you get the effect size automatically.)

How are you doing?

 1. How can you understand a difference between groups on a measured vari-
able in terms of an association between a predictor and a criterion variable?

 2. How can you make a two-level nominal variable that divides the groups into a 
numeric variable that you can use in correlation or regression?

 3. (a) What is the effect of the scores being spread out around their mean, and 
(b) why, for the t test for independent means?

 4. When you make a scatter diagram for the scores in a t test for independent 
means, (a) what does it look like, and (b) where does the regression line go?

 5. How do the variables in an analysis of variance correspond to the variables in 
a regression?

 6. (a) Why do researchers use t tests and analyses of variance when they could 
use correlation or regression instead? (b) What is an advantage of using re-
gression and correlation over using analysis of variance and the t test?

Answers

 1. A difference between groups on a measured variable is the same as an asso-
ciation between the variable that divides the groups (which is like the predic-
tor variable in correlation or regression) and the measured variable (which is 
like the criterion variable in correlation or regression).

 2. Make it into a two-valued numeric variable by giving a score of, say, 1 on this 
variable to everyone in one group and a score of, say, 2 on this variable to 
everyone in the other group.

 3. (a) It reduces the t.
(b) The variance of each group will be greater, making the pooled estimate of 
the population variance greater, making the variance of the distribution of differ-
ences between means greater, making the standard deviation of the distribu-
tion of differences between means greater. You figure the t by dividing by the 
standard deviation of the differences between means. Thus, if it is bigger, the  
t is smaller.

 4. (a) The dots are all lined up above the points for the two levels of the variable 
that divides the groups.
(b) It goes through the mean of each group.

 5. The grouping variable in an analysis of variance is like a predictor variable in 
regression. The measured variable in an analysis of variance is like a criterion 
variable in regression.

 6. (a) Researchers are familiar with t tests and analysis of variance for testing 
differences between groups, they are traditional for this purpose, and some 
researchers are unfamiliar with and would be confused by the use of correla-
tion and regression for this purpose.
(b) Correlation and regression automatically give you estimates of effect size 
and not just significance.
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Controversy: What is Causality?
The general linear model itself is not very controversial; it is simply a mathemati-
cal statement of a relationship among variables. In fact, its role as the foundation of 
the major statistical techniques has not yet been widely realized among practicing 
researchers. There is, however, an area of controversy that is appropriate to mention 
here. It has to do with the role of statistics in science generally, but in practice it is 
most often raised in the context of the major general linear model-based procedures. 
This is the issue of causality. We have already addressed this issue at one level in 
Chapter 11, where we considered the problem of inferring a direction of causality 
from a study that does not use random assignment to groups. But there is a still 
deeper level to the issue: What does causality mean?

In a classic discussion of the issues, the eminent developmental psychologist 
Diana Baumrind (1983) outlined two main understandings of causality that are used 
in science. One, which she calls the regularity theory of causality, has its roots in 
philosophers like David Hume and John Stuart Mill (as well as early scientists, in-
cluding Galileo). This view holds that we recognize X as a cause of Y if (a) X and 
Y are regularly associated, (b) X precedes Y, and (c) there are no other causes that 
precede X that might cause both X and Y. In psychology, we address the (a) part by 
finding a significant correlation between X and Y. We address the (b) part, if possi-
ble, by our knowledge of the situation (for example, in a correlation of whether one 
is the firstborn in one’s family with anxiety later in life, you can rule out the pos-
sibility that anxiety later in life caused the person to be firstborn) or designing the 
study into an experiment (by manipulating X prior to measuring Y). The (c) part has 
to do with the issue of a correlation between X and Y being due to some third vari-
able causing both. Ideally, we address this by random assignment to groups. But if 
that is not possible, various statistical methods of equating groups on proposed third 
factors are used as a makeshift strategy (we explore some of these in Chapter 15).

As psychologists, we are only sometimes in a position to do the kind of rigorous 
experimental research that provides a strong basis for drawing conclusions about 
cause and effect. Thus, much of the criticism and controversy involving research of 
practical importance, where it is usually least easy to apply rigorous methods, often 
hinges on such issues. For example, if marriage correlates with happiness, does mar-
riage make people happier, or do happy people get and stay married?

There is another view of causality, a still more stringent view that sees the 
regularity theory conditions as a prerequisite to calling something a cause, but that 
these conditions are not sufficient alone. This other view, which Baumrind calls the 
generative theory of causality, has its roots in Aristotle, Thomas Aquinas, and Im-
manuel Kant. The focus of this view is on just how X affects Y. This is the way most 
nonscientists (and nonphilosophers) understand causality. The very idea of causality 
may have its roots as a metaphor of experiences, such as willing your own arm to 
move (Event X) and it moves (Event Y). Scientists also take this view of causality 
very much to heart, even if it offers much more difficult challenges. It is addressed 
primarily by theory and by careful analysis of mediating processes. But even those 
who emphasize this view would recognize that demonstrating a reliable connection 
between X and Y (by finding statistical significance, for example) plays an important 
role at least in identifying linkages that require scrutiny for determining the real 
causal connection.

Finally, there are also those who hold—with some good arguments—that dem-
onstrating causality should not be a goal of scientific psychology at all. But we have 
already had enough controversy for one chapter.
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Advanced Topic: Detailed Examination of the 
Analysis of Variance as a Special Case of the 
Significance Test of Multiple Regression
In order to follow the material in this Advanced Topic section, you must have read 
the Advanced Topic sections in Chapter 9 (on the structural model in the analysis of 
variance) and Chapter 12 (on error and proportionate reduction in error).

Earlier in this chapter, we noted that the relationship between the analysis of 
variance and multiple regression parallels the relationship between the t test for in-
dependent means and the correlation coefficient. Here, we give a detailed analysis 
of the relationship between the analysis of variance and multiple regression.

Analysis of Variance for Two Groups as a Special Case of 
the Significance of a Bivariate Correlation
The link between the analysis of variance and multiple regression is easiest to see if 
we begin with a two-group situation and (a) consider the correlation coefficient in 
terms of its being the square root of the proportionate reduction in error (see Chapter 
12), and (b) consider the analysis of variance using the structural model approach 
(see the Advanced Topic section of Chapter 9). Table W4-5 shows the scores for 

Table W4-5 Figuring of the Proportionate Reduction in Error With Bivariate Prediction Using the Data From Table W4-2

Predictor Variable  
(Experimenal Versus Control)

Criterion Variable

Actual Score Predicted Score Error Error2

Y Yn Y - Yn 1Y - Yn22
1 6 6 0 0

1 4 6 -2 4

1 9 6 3 9

1 7 6 1 1

1 7 6 1 1

1 3 6 -3 9

1 6 6 0 0

2 6 3 3 9

2 1 3 -2 4

2 5 3 2 4

2 3 3 0 0

2 1 3 -2 4

2 1 3 -2 4

2 4 3 1 1

� = SSError = 50

Sum of squared error using the overall mean as a prediction rule (computation not shown): SSTotal = 81.5

Proportionate reduction in error =
SSTotal - SSError

SSTotal
=

81.5 - 50
81.5

= .39

r 2 = .39; r = 2r 2 = 2.39 = { .62.



50 Chapter W4
Aron, A., Coups, E. J., & Aron, E. N. (2013). Statistics for Psychology. Upper Saddle River, NJ: Pearson.

Copyright © 2013 Pearson Education, Inc., Upper Saddle River, NJ 07458. All rights reserved.

our experimental versus control group example. However, this time we show the 
predicted scores and the errors and squared errors, as well as the figuring for the 
proportionate reduction in error. Table W4-6 shows the analysis of variance figur-
ing, using the structural model approach, for the same scores.

There are several clear links. First, the sum of squared error figured in the cor-
relation when using the bivariate prediction rule 1SSError = 502 is the same as the 
within-group sum of squared deviations 1SSWithin2 for the analysis of variance. Why 
are they the same? In regression, the error is a score’s difference from the predicted 
value, and the predicted value in this situation of only two values for the predictor 
variable is the mean of the scores at each value (that is, the mean of each group’s 
scores). In other words, in the regression, the sum of squared error comes from squar-
ing and summing the difference of each score from its group’s mean. In the analysis 

Table W4-6 Figuring of the Proportional Reduction in Error with the One-Way Analysis of Variance Structural Model Approach Using the 

Data From Table W4-2

One-way analysis of variance structural model calculation

GM = 4.5

Experimental Group Control Group

X X - GM X - M M - GM X X - GM X - M M - GM

Dev Dev2 Dev Dev2 Dev Dev2 Dev Dev2 Dev Dev2 Dev Dev2

6 1.5 2.25 0 0 1.5 2.25 6 1.5 2.25 3 9 -1.5 2.25

4 - .5 .25 -2 4 1.5 2.25 1 -3.5 12.25 -2 4 -1.5 2.25

9 4.5 20.25 3 9 1.5 2.25 5 .5 .25 2 4 -1.5 2.25

7 2.5 6.25 1 1 1.5 2.25 3 -1.5 2.25 0 0 -1.5 2.25

7 2.5 6.25 1 1 1.5 2.25 1 -3.5 12.25 -2 4 -1.5 2.25

3 -1.5 2.25 -3 9 1.5 2.25 1 -3.5 12.25 -2 4 -1.5 2.25

6 1.5 2.25 0 0 1.5 2.25 4 - .5 .25 1 1 -1.5 2.25

�: 39.75 24 15.75 41.75 26 15.75

M = 6                             M = 3

Note: Dev = Deviation; Dev 2 = Squared deviation 

Sums of squared deviations:

�1X - GM22 or SSTotal = 39.75 + 41.75 = 81.5

�1X - M22 or SS Within = 24 + 26 = 50

�1M - GM22 or SS Between = 15.75 + 15.75 = 31.5

Degrees of freedom:

df Total = N - 1 = 14 - 1 = 13

df Within = df1 + df2 + g + df Last = 6 + 6 = 12

dfBetween = NGroups - 1 = 2 - 1 = 1

Check 1dfTotal = dfWithin + dfBetween2: 13 = 12 + 1

Population variance estimates:

S2
Total or MSTotal = SSTotal/dfTotal = 81.5>13 = 6.27

S2
Within or MSWithin = SS Within>dfWithin = 50>12 = 4.17

S2
Between or MSBetween = SSBetween>dfBetween = 31.5>1 = 31.5

F ratio: F = S2
Between>S2

Within or MSBetween>MS Within = 31.5>4.17 = 7.55

R2 = eta2 = SSBetween>SSTotal = 31.5>81.5 = .39
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of variance, you figure the sum of squared error within groups as precisely the same 
thing—the sum of the squared deviations of each score from its group’s mean.

Second, the sum of squared error total 1SSTotal2 is the same in regression and 
analysis of variance (in this example they are both 81.5). They are the same because 
in regression, SSTotal is the sum of the squared deviations of each criterion variable 
score from the overall mean of all the criterion variable scores and in the analysis 
of variance, SSTotal is the sum of the squared deviations of each measured variable 
score from the grand mean, which is the overall mean of all the measured variable 
scores.

Third, the reduction in squared error in regression—the sum of squared error 
using the mean to predict (that is, 81.5) minus the sum of squared error using the 
bivariate prediction rule (that is, 50)—comes out to 31.5. This is the same as the 
analysis of variance sum of squared error between groups (that is, SSBetween = 31.5). 
The reduction in error in regression is what the prediction rule adds over knowing 
just the mean. In this example, the prediction rule estimates the mean of each group, 
so the reduction in squared error for each score is the squared difference between 
the mean of that score’s group and the overall mean. In analysis of variance, you 
figure SSBetween by adding up, for each participant, the squared differences between 
the  participant’s group’s mean and the grand mean.

Finally, the proportionate reduction in error in the regression 1r2 = .392 comes 
out to exactly the same as the proportionate reduction in error used as an effect size 
in analysis of variance (R2 or eta2 = .39). Both tell us the proportion of the total 
variation in the criterion (or measured) variable that is accounted for by its asso-
ciation with the predictor variable (the variable that divides the groups). That these 
numbers come out the same should be no surprise by now; we have already seen that 
the numerator and the proportionate reduction in error are the same for both.

Thus, the links between regression and the analysis of variance are quite deep. 
In fact, some researchers figure the significance of a correlation coefficient by lay-
ing it out as a regression analysis and plugging the various sums of squared error 
into an analysis of variance table and figuring F. The result is identical to any other 
way of figuring the significance of the correlation coefficient. If you figure the  
t for the correlation, it comes out to the square root of the F you would get using this 
procedure.

Analysis of Variance for More Than two Groups as a  
Special Case of Multiple Correlation
When considering the t test for independent means or the analysis of variance for 
two groups, we could carry out a correlation or regression analysis by changing the 
two categories of the nominal variable that divides the groups into any two differ-
ent numbers (in the example, we used 1 for the experimental group and 2 for the 
control group). The problem is more difficult with an analysis of variance with more 
than two groups because the variable that divides the groups has more than two 
categories.

In the two-category situation, the particular two numbers you use do not mat-
ter (except for the sign). However, when there are three or more groups, making up 
a predictor variable with arbitrary numbers for the different groups will not work. 
Whatever three numbers you pick imply some particular relation among the groups, 
and not all relations will be the same. For example, with three groups, making a pre-
dictor variable with 1s, 2s, and 3s gives a different result depending on which groups 
gets put in the middle. It also gives a different result than using 1s, 2s, and 4s.
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Recall the example from Chapter 9 comparing ratings of a defendant’s degree 
of guilt for participants who believed the defendant had either a criminal record or 
a clean record or in which nothing was said about the defendant’s record. Suppose 
that we arbitrarily give a 1 to the first group, a 2 to the second, and a 3 to the third. 
This would imply that we consider these three levels to be equally spaced values 
on a numerical variable of knowledge about the criminal record. For this particular 
example, we might want to think of the three groups as ordered from criminal record 
to clean record, with the no information group in between. However, even then it 
would not be clear that the groups are evenly spaced on this dimension.

More generally, when you have several groups, you may have no basis in advance 
for putting the groups in a particular order, let alone for deciding how they should be 
spaced. For example, in a study comparing attitudes of four different Central American 
nationalities, nationality is the nominal variable that divides the groups. But you can’t 
make these four nationalities into any meaningful four values of a single numerical 
variable.

There is a clever solution to this problem. When there are more than two groups, in-
stead of trying to make the nominal variable that divides the groups into a single numerical 
variable, you can make it into several numerical predictor variables with two levels each.

Here is how this is done: Suppose that the variable that divides the groups has four 
categories—for example, four Central American nationalities: Costa Rican, Guatema-
lan, Nicaraguan, and Salvadoran. You can make one predictor variable for whether 
the participant is Costa Rican—1 if Costa Rican, 0 if not. You can then make a second 
predictor variable for whether the participant is Guatemalan, 1 or 0; and a third for 
whether the participant is Nicaraguan, 1 or 0. You could make a fourth for whether the 
participant is Salvadoran. However, if a participant has 0s on the first three variables, 
the participant has to be Salvadoran (because there are only the four possibilities).

In this example, you know any participant’s nationality by the scores on the 
combination of the three two-value numerical variables. For example, a Costa Rican 
participant would have a 1 for Costa Rican and 0s for Guatemalan and Nicaraguan. 
Each Guatemalan participant would have a 1 for Guatemalan but 0s for Costa Rican 
and Nicaraguan. Each Nicaraguan participant would have 0s for Costa Rican and 
Guatemalan. Each Salvadoran participant would have 0s on all three variables. (In-
cidentally, you can use any two numbers for each two-valued nominal variable; we 
just used 1 and 0 for convenience.) Table W4-7 shows this coding for 10 participants.

Table W4-7 Example of Nominal Coding for Participants of Four Central American 

Nationalities

Participant Nationality
Variable 1  

Costa Rican or Not
Variable 2  

Guatemalan or Not
Variable 3  

Nicaraguan or Not

1 Guatemalan 0 1 0

2 Nicaraguan 0 0 1

3 Salvadoran 0 0 0

4 Nicaraguan 0 0 1

5 Costa Rican 1 0 0

6 Costa Rican 1 0 0

7 Salvadoran 0 0 0

8 Nicaraguan 0 0 1

9 Costa Rican 1 0 0

10 Guatemalan 0 1 0
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This entire procedure is called nominal coding (or dummy coding). The result 
in this example is that the variable that divides the groups, instead of being a nomi-
nal variable with four categories, is now three numerical variables but with only two 
values each. Creating several two-valued numerical variables in this way avoids the 
problem of creating an arbitrary ranking and distancing of the four levels.

Table W4-8 shows another example, this time for the criminal record study 
from Chapters 9 and 10. The variable that divides the groups, instead of being a 
nominal variable with three categories, is now two numerical variables (each with 
values of 1 or 0). More generally, you can code the nominal variable that divides the 
groups in an analysis of variance into several two-value numerical variables, exactly 
one less such two-valued numerical variables than there groups. (Not coincidentally, 
this comes out the same as the degrees of freedom for the between-group population 
variance estimate.)

Once you have done the nominal coding (changed the variable that divides the 
groups into two-value numerical variables), you then want to know the relation of 
this set of variables to the measured variable. You do this with multiple regression, 
using the set of two-value numerical variables as predictors and the measured vari-
able as the criterion variable. Consider again the criminal record example. Having 
done the nominal coding, you can now figure the multiple regression of the two 
numerical predictor variables taken together with what you now think of as the crite-
rion variable, rating of guilt. The result (in terms of significance level and R2) comes 
out exactly the same as the analysis of variance.

The nominal coding procedure is extremely flexible and can be extended to the 
most complex factorial analysis of variance situations. In practice, researchers rarely 
actually do nominal coding—usually, a computer does it for you. We wanted you to 
see the principle so that you can understand how it is possible to make an analysis of 

Table W4-8 Example of Nominal Coding for the Criminal Record Example

Predictor Variable Criterion Variable

Participant
Experimental 

Condition

Variable 1:  
Criminal  

Record or Not

Variable 2:  
Clean  

Record or Not

Participant’s Rating  
of  

Defendant’s Guilt

1 Criminal record 1 0 10

2 Criminal record 1 0 7

3 Criminal record 1 0 5

4 Criminal record 1 0 10

5 Criminal record 1 0 8

6 Clean record 0 1 5

7 Clean record 0 1 1

8 Clean record 0 1 3

9 Clean record 0 1 7

10 Clean record 0 1 4

11 No information 0 0 4

12 No information 0 0 6

13 No information 0 0 9

14 No information 0 0 3

15 No information 0 0 3
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variance problem into a multiple regression problem. There are, however, a number 
of analysis of variance research situations in which there are advantages to using the 
multiple regression approach (such as in a factorial analysis with unequal cell sizes). 
In fact, many analysis of variance computer programs do the actual computations—
not using the analysis of variance formulas, but by doing nominal coding and mul-
tiple regression.

How are you doing?

 1. Under what conditions can you use the analysis of variance to find the signifi-
cance of a bivariate prediction or correlation?

 2. When there are only two groups, explain the similarity between the analysis 
of variance structural model approach and regression in terms of (a) SSTotal, 
(b) SSWithin and SSError, (c) SSBetween and SSTotal - SSError, and (d) proportion-
ate reduction in error.

 3. Based on what you have learned in previous sections, give an argument for 
why, when there are only two groups, the analysis of variance and correlation 
should give the same significance.

 4. (a) What is nominal coding? (b) How is it done? (c) Why is it done? (d) Why 
can’t you just use a single numeric variable with more than two values? (e) In 
a particular study, participants 1 and 2 are in Group A, participants 3 and 4 
are in Group B, and participants 5 and 6 in Group C. Make a table showing 
nominal coding for these six participants.

Answers

 1. When the predictor variable has only two values.
 2. (a) In analysis of variance, SSTotal is the sum of squared deviations of each 

measured variable score from the grand mean, which is the mean of all 
measured variable scores; in regression, SSTotal is the sum of squared de-
viations of each criterion variable score from the mean of all criterion vari-
able scores. The measured variable in analysis of variance is the same as 
the criterion variable in regression. Thus, for the same study, SSTotal is the 
same in both.
(b) SSWithin in analysis of variance is the sum of squared deviations of each 
measured variable score from the mean of the measured variable scores of 
its group. SSError in regression is the sum of squared deviations of each cri-
terion variable score from the predicted criterion variable score. The mean 
of the measured variable scores of a particular group in analysis of variance 
is exactly what would be the predicted score for the criterion variable in 
regression if there are only two groups. Thus, for the same study, SSWithin and 
SSError is the same.
(c) In analysis of variance, SSTotal = SSBetween + SSWithin. Thus, SSBetween 
has to equal SSTotal - SSWithin. We have already seen that SSTotal is the same 
in analysis of variance and regression, and that SSWithin in analysis of variance 
is the same as SSError in regression. Thus, for the same study, SSBetween and 
SSTotal – SSError are the same.
(d) Proportionate reduction in error in analysis of variance is SSBetween/
SSTotal. The proportionate reduction in error in regression is 1SSTotal - SSError2> 
SSTotal. We have already seen that the terms that make up these numerators 
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Learning Aids

Summary

 1. The general linear model states that the value of a variable for any individual 
is the sum of a constant, plus the weighted influence of each of several other 
variables, plus error. Bivariate and multiple correlation and regression (and as-
sociated significance tests), the t test, and the analysis of variance are all special 
cases of the general linear model.

 2. Multiple regression is almost identical to the general linear model, and bivariate 
correlation and regression are the special cases of multiple regression/correla-
tion in which there is only one predictor variable.

 3. The t test for independent means can be mathematically derived from the analy-
sis of variance. It is a special case of the analysis of variance in which there are 
only two groups. The t score for the same data is the square root of the F ratio. 
The numerators of both t and F are based on the differences between group 
means; the denominators of both are based on the variance within the groups; 
the denominator of t involves dividing by the number of participants, and the 
numerator of F involves multiplying by the number of participants; and the t 
degrees of freedom are the same as the F denominator degrees of freedom.

and denominators are the same in analysis of variance and regres-
sion. Thus, in the same study, the proportionate reduction in error is the  
same.

 3. In this situation, both the analysis of variance and the significance test of the 
correlation give the same results as the t test for independent means. Thus, 
they must give the same result as each other.

 4. (a) Changing a nominal variable that divides groups into several two-value 
numeric variables.
(b) Participants in the first group are given a 1 on the first two-value numeric 
variable and a 0 on all others; participants in the second group are given a 1 
on the second two-value numeric variable and a 0 on the rest; this continues 
up to participants in the last group, who are given a 0 on all the two-value 
numeric variables.
(c) It allows you to figure an analysis of variance using the two-value numeric 
variables as predictors in a multiple regression.
(d) The order of those values and the distance between them would influ-
ence the results.
(e) 

Participant Score on Numeric Variable 1 Score on Numeric Variable 2

1 1 0

2 1 0

3 0 1

4 0 1

5 0 0

6 0 0
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 4. The t test for independent means is also a special case of the significance test 
for the correlation coefficient. A correlation is about the association of a pre-
dictor variable with a criterion variable. In the same way, by showing a dif-
ference between group means, the t test is about an association of the variable 
that divides the groups with the measured variable. If you give a score of 1 
to each participant in one of the two groups and a 2 to each participant in the 
other group (or any two different numbers), then figure a correlation of these 
scores with the measured variable, the significance of that correlation will be 
the same as the t test. Drawing a scatter diagram of these data makes a column 
of scores for each group, with the regression line passing through the mean of 
each group. The more the means are different, the greater the proportionate re-
duction in error over using the grand mean and the greater the t score based on a 
comparison of the two groups’ means.

 5. The relationship between the analysis of variance and multiple regression paral-
lels the relationship between the t test for independent means and the correlation 
coefficient. The grouping variable in an analysis of variance is like a predictor 
variable in regression. The measured variable in an analysis of variance is like a 
criterion variable in regression.

 6. The t test, analysis of variance, and correlation can all be done as multiple re-
gression. However, conventional practice leads to these procedures being used 
in different research contexts, as if they were actually different.

 7. The regularity view identifies X as a cause of Y if X and Y are associated, X pre-
cedes Y, and no other third factors precede X that could cause them both. The 
generative view argues that in addition there must be a clear understanding of 
the mechanism by which X affects Y.

 8. ADVANCED TOPIC: The analysis of variance and regression also have many 
similarities. SSTotal in regression and in the analysis of variance are both about 
the deviations of each score from the mean of all the criterion or measured vari-
able scores. The group means in an analysis of variance are the predicted scores 
for each individual in regression; thus, SSError and SSWithin are the same. The re-
duction in squared error 1SSTotal - SSError2 in regression is the same as the sum 
of squared deviations of scores’ group’s means from the grand mean 1SSBetween2 
in the analysis of variance. Finally, regression’s proportionate reduction in error 
(r2 or R2) is the same as the proportion of variance accounted for (R2 or eta2) 
effect size in analysis of variance.

 9. ADVANCED TOPIC: An analysis of variance can be set up as a multiple re-
gression using nominal coding to make the categories for the different groups 
into two-value numerical variables. The analysis of variance is a special case of 
multiple regression in which the predictor variables are set up in this way.

Key Term

nominal coding (p. 53)

Practice Problems

These problems involve figuring. Most real-life statistics problems are done with 
special statistical software. Even if you have such software, do these problems by 
hand to ingrain the method in your mind. To learn how to use a computer to solve 



 Integration and the General Linear Model 57
Aron, A., Coups, E. J., & Aron, E. N. (2013). Statistics for Psychology. Upper Saddle River, NJ: Pearson.

Copyright © 2013 Pearson Education, Inc., Upper Saddle River, NJ 07458. All rights reserved.

statistics problems like those in this chapter, refer to the Using SPSS section at the 
end of this chapter.

All data are fictional unless an actual citation is given.

Set I (for Answers to Set I problems, see the end of this 
Web chapter)
 1. (a) Look up and write down the t cutoff at the .05 level (two-tailed) for 5, 10, 

15, and 20 degrees of freedom. (b) Square each t cutoff and write it down next 
to the t. (c) Look up and write down, next to the squared ts, the cutoffs for F 
distributions with 1 degree of freedom in the numerator and 5, 10, 15, and 20 
degrees of freedom as the denominators. (The results should be identical, within 
rounding error.)

 2. Following are two data sets. For the first data set, in addition to the means and 
estimated population variances, we have shown the t test information. You 
should figure the second yourself. Also, for each, figure a one-way analysis of 
variance using the regular Chapter 9 method (not the structural model approach 
shown in the Advanced Topic section of that chapter). Make a chart of the simi-
larities of (a) t df to F denominator df, (b) t cutoff to square root of F cutoff, (c) 
S2

Pooled to S2
Within, and (d) the t score to the square root of the F ratio. (Use the .05 

level throughout; t tests are two-tailed.)

Experimental Group Control Group t test

N M S2 N M S2 df t needed S 2 
Pooled t

(i) 36 100 40 36 104 48 70 1.995 44 2.56

(ii) 16  73  8 16  75  6

 3. Following is a data set from practice problem 3 in Chapter 8. If you did not 
figure the t test for this problem with Chapter 8, do so now. Then, also figure a 
one-way analysis of variance using the regular Chapter 9 method (not the struc-
tural model approach shown in the Advanced Topic section of that chapter). 
Make a chart of the similarities of (a) t df to F denominator df, (b) t cutoff to 
square root of F cutoff, (c) S2

Pooled to S2
Within, and (d) the t score to the square root 

of the F ratio.

Experimental Group Control Group

N M S2 N M S2

30 12.0 2.4 30 11.1 2.8

 4. Group A includes 10 people whose scores have a mean of 170 and a population 
variance estimate of 48. Group B also includes 10 people: M = 150, S2 = 32. 
Carry out a t test for independent means (two-tailed) and an analysis of variance 
(using the regular Chapter 9 method, not the structural model approach shown 
in the Advanced Topic section of that chapter). Do your figuring on the two 
halves of the same page, with parallel computations next to each other. (That 
is, make a table similar in layout to the lower part of Table W4-2.) Use the .05 
level for both.

 5. Do the following for the scores in practice problems (a) 6, (b) 7, and (c) 8: 
(i) Figure a t test for independent means, (ii) figure the correlation coefficient 
(between the group that participants are in and their scores on the measured 
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variable), (iii) figure the t for significance of the correlation coefficient (using 
the formula t = r>211 - r22>1N - 22) and note explicitly the similarity of 
results, and (iv) make a scatter diagram. (v) For (a) only, explain the relation of 
the spread of the means, and the spread of the scores around the means, to the 
t test result.

 6. ADVANCED TOPIC: For the following scores, figure a t test for independent 
means (two-tailed) and then figure an analysis of variance using the structural 
model approach from Chapter 9 (use the .05 level for both). Make a chart of the 
similarities of (a) t df to F denominator df, (b) t cutoff to square root of F cutoff, 
(c) S2

Pooled to S2
Within, and (d) the t score to the square root of the F ratio.

Group A Group B

13 11

16  7

19  9

18  

19  

 7. ADVANCED TOPIC: The following are scores from practice problem 5 in 
Chapter 8. If you did not figure the t test for these with Chapter 8, do so now, 
using the .05 level, two-tailed. Then figure a one-way analysis of variance (also 
.05 level) using the structural model method from Chapter 9. Make a chart of 
the similarities of (a) t df to F denominator df, (b) t cutoff to square root of F 
cutoff, (c) S2

Pooled to S2
Within, and (d) the t score to the square root of the F ratio.

Ordinary Story Own-Name Story

Student Reading Time Student Reading Time

A 2 G  4

B 5 H 16

C 7 I 11

D 9 J  9

E 6 K  8

F 7   

 8. ADVANCED TOPIC: For the following scores, figure a t test for independent 
means if you have not already done so and then figure an analysis of variance 
using the structural model approach from Chapter 9. Make a chart of the simi-
larities of (a) t df to F denominator df, (b) t cutoff to square root of F cutoff, (c) 
S2

Pooled to S2
Within, and (d) the t score to the square root of the F ratio. (Use the .05 

level throughout; the t test is two-tailed.)

Group A Group B

.7 .6

.9 .4

.8 .2

 9. ADVANCED TOPIC: Do the following for the scores in practice problems (a) 6, 
(b) 7, and (c) 8: (i) Figure the analysis of variance using the structural model ap-
proach from Chapter 9 if you have not done so already; (ii) figure the proportion-
ate reduction in error based on the analysis of variance results; (iii) carry out a 
regression analysis (predicting the measured variable score from the group that 
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participants are in); (iv) figure the proportionate reduction in error using the long 
method of figuring predicted scores, and finding the average squared error using 
them; and (v) make a chart showing the parallels in the results; for (a), also (vi) 
explain the major similarities. (Use the .05 level throughout.)

 10. ADVANCED TOPIC: Participants 1, 2, and 3 are in Group I; participants 4 
and 5 are in Group II; participants 6, 7, and 8 are in Group III; and participants 
9 and 10 are in Group IV. Make a table showing nominal coding for these 10 
participants.

Set II
 11. (a) Look up and write down the F cutoff at the .01 level for distributions with 

1 degree of freedom in the numerator and 10, 20, 30, and 60 degrees of free-
dom in the denominator. (b) Take the square root of each and write it down 
next to it. (c) Look up the cutoffs on the t distribution at the .01 level (two-
tailed) using 10, 20, 30, and 60 degrees of freedom, and write it down next 
to the corresponding F square root. (The results should be identical, within 
rounding error.)

 12. Following are three data sets. For the first two data sets, in addition to the means 
and estimated population variances, we have shown the t test information. You 
should figure the third yourself. Also, for each, figure a one-way analysis of 
variance using the regular Chapter 9 method (not the structural model approach 
shown in the Advanced Topic section of that chapter). Make a chart of the simi-
larities of (a) t df to F denominator df, (b) t cutoff to square root of F cutoff, (c) 
S2

Pooled to S2
Within, and (d) the t score to the square root of the F ratio. (Use the .01 

level throughout; t tests are two-tailed.)

Experimental Group Control Group t test

N M S2 N M S2 df t needed S 2 
Pooled t

(i) 20 10 3 20 12 2 38 2.724 2.5 4

(ii) 25 7.5 4 25 4.5 2 48 2.690 3.0 6.12

(iii) 10 48 8 10 55 4

 13. The following are scores from three data sets from practice problem 16 in 
Chapter 8. If you did not figure the t tests for these with Chapter 8, do so now, 
this time using the .01 level, two-tailed. Then, for each, also figure a one-way 
analysis of variance (also .01 level) using the regular Chapter 9 method (not the 
structural model approach shown in the Advanced Topic section of that chap-
ter). Make a chart of the similarities of (a) t df to F denominator df, (b) t cutoff 
to square root of F cutoff, (c) S2

Pooled to S2
Within, and (d) the t score to the square 

root of the F ratio.

Experimental Group Control Group

N M S2 N M S 2

(i) 10 604 60 10 607 50

(ii) 40 604 60 40 607 50

(iii) 10 604 20 10 607 16

 14. Group I consists of 12 people whose scores have a mean of 15.5 and a 
population variance estimate of 4.5. Group B also consists of 12 people: 
M = 18.3, S2 = 3.5. Carry out a t test for independent means (two-tailed) and 
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an analysis of variance (using the regular Chapter 9 method, not the structural 
model approach shown in the Advanced Topic section of that chapter), figuring 
the two on two halves of the same page, with parallel computations next to each 
other. (That is, make a table similar in layout to the lower part of Table W4-2.) 
Use the .05 level.

 15. Do the following for the scores in practice problems (a) 16, (b) 17, and (c) 
18: (i) Figure a t test for independent means, (ii) figure the correlation coef-
ficient (between the group that participants are in and their scores on the 
measured variable), (iii) figure the t for significance of the correlation coeffi-
cient  (using the formula t = r>211 - r22>1N - 22) and note explicitly the 
similarity of results, (iv) make a scatter diagram, and (v) explain the relation 
of the spread of the means and the spread of the scores around the means to 
the t test results.

 16. ADVANCED TOPIC: For the following scores, carry out a t test for indepen-
dent means (two-tailed) and an analysis of variance using the structural model 
method from Chapter 9. (Use the .05 level for both.) Make a chart of the simi-
larities of (a) t df to F denominator df, (b) t cutoff to square root of F cutoff, (c) 
S2

Pooled to S2
Within, and (d) the t score to the square root of the F ratio.

Group A Group B

0 4

1 5

0 6

5

 17. ADVANCED TOPIC: For the following scores, figure a t test for independent 
means (.05 level, two-tailed) and an analysis of variance (.05 level) using the 
structural model method from Chapter 9. Make a chart of the similarities of 
(a) t df to F denominator df, (b) t cutoff to square root of F cutoff, (c) S2

Pooled to 
S2

Within, and (d) the t score to the square root of the F ratio.

Group A Group B

0 0

0 0

0 0

0 0

0 0

0 0

0 1

0 1

0 1

0 1

0 1

0 1

1 1

1 1

1 1

1 1
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 18. ADVANCED TOPIC: The following scores are from practice problem 17 in 
Chapter 8. If you did not figure the t test for these with Chapter 8 (or for prac-
tice problem 17 in this chapter), do so now, using the .05 level, two-tailed. Then 
figure a one-way analysis of variance (also .05 level) using the structural model 
method from Chapter 9. Make a chart of the similarities of (a) t df to F denomi-
nator df, (b) t cutoff to square root of F cutoff, (c) S2

Pooled to S2
Within, and (d) the 

t score to the square root of the F ratio.

Big Meal Group Small Meal Group

Subject Hearing Subject Hearing

A 22 D 19

B 25 E 23

C 25 F 21

 19. ADVANCED TOPIC: Do the following for the scores in practice problems (a) 
16, (b) 17, and (c) 18: (i) Figure the analysis of variance using the structural 
model approach from Chapter 9 if you have not already done so; (ii) figure the 
proportionate reduction in error based on the analysis of variance results; (iii) 
carry out a regression analysis (predicting the measured variable score from 
the group that participants are in); (iv) figure the proportionate reduction in er-
ror using the long method of figuring predicted scores, and finding the average 
squared error using them; and (v) make a chart showing the parallels in the 
results.

 20. ADVANCED TOPIC: Participants 1 and 2 are in Group A; participants 3, 4, 5, 
and 6 are in Group B; and participants 7, 8, and 9 are in Group C. Make a table 
showing nominal coding for these nine participants.

Using SPSS

The  in the following steps indicates a mouse click. (We used SPSS version 19 for 
Windows to carry out these analyses. The steps and output may be slightly different 
for other versions of SPSS.) 

For each SPSS analysis that follows, we use the scores from the main example 
we used in this chapter (see Tables W4-2 and W4-4, and also Table W4-6 if you 
read this chapter’s Advanced Topic section). First, we use SPSS to figure a t test for 
independent means for the example. We compare the results of this t test with the 
results of a one-way analysis of variance. Next, we figure the correlation coefficient 
for the example and compare it with the results for the t test. Finally, in an Advanced 
Topic Section, we figure the bivariate prediction (regression) for the example and 
compare the results to the analysis of variance results. 

For the results of each of the following tests, we highlight the most important 
parts of the SPSS output. For additional information on the SPSS steps for each test 
and a more detailed description of the SPSS output, see the Using SPSS sections in 
the relevant chapters (Chapters 8, 9, 11, and 12).

t Test for Independent Means
 ❶ Enter the scores into SPSS as shown in Figure W4-4. In the first column 

 (labeled “group”), we used the number “1” to indicate that a person is in the 
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 experimental group and the number “2” to indicate that a person is in the con-
trol group. 

 ❷  Analyze.
 ❸  Compare means.
 ❹  Independent-Samples T Test.
 ❺  on the variable called “score” and then  the arrow next to the box labeled 

“Test Variable(s)”. 
 ❻  the variable called “group” and then  the arrow next to the the box labeled 

“Grouping Variable.”  Define Groups. Put “1” in the Group 1 box and put “2” 
in the Group 2 box.  Continue.

 ❼  OK. Your SPSS output window should look like Figure W4-5.

The first table in the SPSS output provides information about the two vari-
ables (see Chapter 8 for a detailed description of this information). The second table 
shows the actual results of the t test for independent means. Note the t value of 2.750 
in the SPSS output in Figure W4-5 is consistent (within rounding error) with the 
value of t (of 2.73) shown in Table W4-2 earlier in the chapter. The result of the 
t test is statistically significant, as the significance level of .018 is less than our .05 
cutoff significance level.

One-Way Analysis of Variance
We will carry out the analysis of variance using the same set of scores as shown in 
Figure W4-4.
 ❶  Analyze.
 ❷  Compare means.
 ❸  One-Way ANOVA.

Figure W4-4 SPSS data editor window for the Web Chapter W4 Using SPSS 
 examples, showing scores on an equal-interval variable for individuals in an experimental and 
a control group.
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 ❹  on the variable called “score” and then  the arrow next to the box labeled 
“Dependent List”.

 ❺  the variable called “group” and then  the arrow next to the the box labeled 
“Factor.”

 ❻  OK. Your SPSS output window should look like Figure W4-6.

Note the F value of 7.560 in the SPSS output in Figure W4-6 is consistent 
(within rounding error) with the value of F (of 7.55) shown in Table W4-2. Also, 
note that if we figure the square root of the F value of 7.560 from the SPSS output, 

Figure W4-5 SPSS output window for a t test for independent means, using the 
scores shown in Figure W4-4.

Figure W4-6 SPSS output window for a one-way analysis of variance, using the 
scores shown in Figure W4-4.
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the result is 2.750. As we would expect, this is exactly the same value as the value 
of t from the SPSS output shown in Figure W4-5. Notice also that the F test is 
statistically significant, as the significance level of .018 is less than our .05 cutoff 
significance level. The fact that the square root of the F value from this analysis of 
variance is exactly the same as the t value from the t test for independent means, and 
the fact that the significance levels of both tests were exactly the same (.018), show 
that the t test is a special case of the analysis of variance.

Finding the Correlation Coefficient
We will find the correlation coefficient using the same set of scores as shown in 
Figure W4-4.
 ❶  Analyze.
 ❷  Correlate.
 ❸  Bivariate.
 ❹  on the variable called “group” and then  the arrow next to the box labeled 

“Variables.”  on the variable called “score” and then  the arrow next to the 
box labeled “Variables.” 

 ❺  OK. Your SPSS output window should look like Figure W4-7.

Note that the correlation coefficient (r) of –.622 shown in the SPSS output in 
Figure W4-7 is consistent with the correlation coefficient of –.62 shown in Table W4-
4 earlier in the chapter. As with the t test (and analysis of variance), the correlation 
coefficient is statistically significant, as the significance level of .018 is less than our 
.05 cutoff level. Again, the .018 significance level is identical to the .018 significance 
level found for the t test (and the analysis of variance) SPSS output. This demonstrates 
that the t test is a special case of the significance test for the correlation coefficient.

Advanced Topic: Bivariate Prediction
We will figure the bivariate prediction using the same set of scores as shown in 
Figure W4-4, using “group” as the predictor variable and “score” as the criterion 
variable.

Figure W4-7 SPSS output window for a correlation coefficient, using the scores 
shown in Figure W4-4.
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 ❶  Analyze.
 ❷  Regression.  Linear. 
 ❸  the variable called “score” and then  the arrow next to the the box labeled 

“Dependent.”  the variable called “group” and then  the arrow next to the 
the box labeled “Independent(s).” 

 ❹  OK. Your SPSS output window should look like Figure W4-8.

Note that the values of SSError, SSTotal, R Square, and R in the model summary 
table of the SPSS output in Figure W4-8 are the same as the equivalent values in 
Table W4-5 earlier in the chapter. Notice also that the values in the “ANOVA” table 
for the bivariate prediction shown in Figure W4-8 are identical to the values in the 
“ANOVA” table for the one-way analysis of variance shown in Figure W4-6. (The 
only differences between the two “ANOVA” tables is in their terminology: The 
“Regression Sums of Squares” and “Residual Sums of Squares” for the table for 
bivariate prediction in Figure W4-8 are called “Between Groups Sums of Squares” 
and “Within Groups Sums of Squares” for one-way analysis of variance in Figure 
W4-6.) This shows that analysis of variance is a special case of prediction (regres-
sion). This particular example shows the equivalence of analysis of variance and 
bivariate prediction, which is an example of the more general principle that analysis 
of variance is a special case of multiple regression.

Overall, the series of analyses in this Using SPSS section show that t tests, 
analysis of variance, correlation, and regression (bivariate prediction and multiple 
regression) are all based on the same underyling formula provided by the general 

Figure W4-8 SPSS output window for a bivariate prediction, using the scores shown 
in Figure W4-4.
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linear model. Your knowledge and understanding of this concept will provide a 
solid foundation for learning additional statistical procedures in intermediate and 
advanced statistics courses.

ANSWERS TO SET I PRACTICE PROBLEMS
1. 

df  5  10  15  20

(a) t  2.571 2.228  2.132  2.086

(b) t 2 6.61 4.96 4.55 4.35

(c) F 6.61 4.97 4.54 4.35

2.     (i)

(a) (b) (c) (d)

df Cutoff
Within-Group 

Variance t or F

t 70 1.995 S2
Pooled = 44 2.56

F 70 3.980 S2
Within = 44 6.55

12 = 1.9952 12 = 2.562
        (ii)  

 (a) (b) (c) (d)

 df Cutoff
Within-Group 

Variance t or F

t 30 2.043 S2
Pooled = 7   -2.13

F 30 4.170 S2
Within = 7   -4.57

  12 = 2.0422 12 = 2.142
3. 

 (a) (b) (c) (d)

df Cutoff
Within-Group 

Variance t or F

t 58 2.004 S2
Pooled = 2.6 2.16

F 58 4.020 S2
Within = 2.6 4.67

12 = 2.0052 12 = 2.162
4. 

t Test ANOVA

Numerator

df Between = N Groups - 1 = 2 - 1 = 1

Mean difference = 170 - 150 GM = 1170 + 1502/2
= 20      = 160

�1M - GM22 = 1170 - 16022 +  1150 - 16022
= 200 
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t Test ANOVA

 S 2  
Between  or MS Between =

�1M - GM22
dfBetween

1n2 
 = 1200>121102
 = 2,000

Denominator

S 2
Pooled = 1df1>dfTotal21S1

22
+1df2>dfTotal21S2

22
= 1.521482 + 1.521322
= 40

S 2
Within or MSWithin =
1S1

2 + S2
2 + c + S2

Last2>1NGroups2
= 148 + 322>2 = 40

S 2
Difference

= S 2
M 1 + S 2

M 2

= 1S 2
Pooled>N12 + 1S 2

Pooled>N22
= (40>102 + 140>102 = 8

S Difference

= 2S2
Difference

= 28 = 2.83.

Degrees of Freedom

dfTotal = df1 + df2 = 9 + 9               dfWithin = df1 + df2 + c + dfLast

                               = 18                               = 9 + 9 = 18

Cutoff

Needed t (df = 18, p 6 .05, 

two-tailed): 2.101
Needed F 1df = 1, 18; p 6 .052: 4.41 (2 = 2.12

Score on Comparison Distribution

t = 1M1 - M22/SDifference

= 20>2.83

= 7.07

F = S 2
Between>S2

Within or MSBetween>MSWithin

= 2,000>40 = 50 12 = 7.072
Conclusions

Reject the null hypothesis. Reject the null hypothesis.

5.  ( a ) ( i )  t = 4.60  ( s e e  q u e s t i o n  6 ) ;  ( i i )  r = 15>16.99 = .88;  ( i i i )  
t = .88>211 - .8822>6 = 4.54 (result is same as 4.60 within rounding error).

 (iv) 

0

0̂ 1̂

Group (X)

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

Sc
or

e 
(Y

)
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 (v) A t test is the difference between the means divided by the standard deviation 
of the distribution of differences between means. So, the larger the difference 
between the means, the larger the t test result. The standard deviation of the dis-
tribution of differences between means is largely based on the variances in each 
sample, and the variance in each sample is an indication of how spread out the 
scores in each sample are around the mean. So, the smaller the variance in each 
sample (that is, the closer the scores are to the mean of the sample), the larger 
the t test result (since you will be dividing by a smaller number when figuring 
the value of t).

  (b)(i) t = -1.73 (see question 7); (ii) r = - .50; (iii) t = -1.73; (iv) similar to 
5 (a)(iv) above.

  (c)(i) t = 3.1 (see question 8); (ii) r = .84; (iii) t = 3.10; (iv) similar to 8 (a)
(iv) above.

6. 

(a) (b) (c) (d)

df Cutoff
Within-Group 

Variance t or F

t 6 2.447 S2
Pooled = 5.67 4.60

F 6 5.99 S2
Within = 5.67 21.16

7. 

(a) (b) (c) (d)

df Cutoff
Within-Group 

Variance t or F

t 9 2.262 S2
Pooled = 11.69 -1.73

F 9 5.99 S 2
Within = 11.69 3.02

8. 

(a) (b) (c) (d)

df Cutoff
Within-Group 

Variance t or F

t 4 2.776 S2
Pooled = 0.25 3.1

F 4 7.71 S2
Within = 0.25 9.6

9.  (a)(v)

Regression ANOVA

Mean of Y = 14 Grand mean = 14

SSTotal = 154 SSTotal = 154

Predicted Y for Group A = 17 Mean of Group A = 17

Predicted Y for Group B = 9 Mean of Group B = 9

SSError = 34 SSWithin = 34

Reduction in error = 120 SSBetween = 120

r 2 = .77 R 2 = .78
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(vi) You can think of the analysis of variance as about the relationship between the 
variable on which the groups differ (Group A versus Group B in this problem) 
and the measured variable. If you think of the variable on which the groups 
differ as a predictor variable, regression is also about the same thing. In this 
problem, you can consider those in Group A to have a score of 2 on this predic-
tor and those in Group B to have a score of 1 on it. (Any two numbers would 
do; these are just examples.) In fact, the underlying mathematics is the same. 
Here are some of the parallels. In both regression and the analysis of variance, 
you figure the total squared deviations from the overall mean (in both, this is 
SSTotal). A deeper link is that the best predictor for those in either group is the 
group’s mean, so the linear prediction rule predicts the mean for each group. 
The result is that the errors of predictions are deviations of the scores from the 
mean. If you square these and add them up, they are called SSError in regression 
and SSWithin in ANOVA. In regression, before figuring the proportionate reduc-
tion in error, you figure the reduction in error (SSTotal - SSError)—the amount 
of squared error that the prediction rule saves over predicting from the overall 
mean of the criterion variable. This is the same as SSBetween in ANOVA, be-
cause when there are only two group means, regression improves on predic-
tion only to the extent that the means of the two groups are different. Finally, 
because SSTotal is the same in both regression and analysis of variance, and be-
cause reduction in error = SSBetween, r

2 in regression has to come out the same 
as R2 figured as an effect size in ANOVA.

 (b) 

Regression ANOVA

Mean reading time = 7.64 Grand mean = 7.64

SSTotal = 140.55 SS Total = 140.55

Predicted reading time ordinary story = 6 Mean reading time ordinary story = 6

Predicted reading time own-name story = 9.6 Mean reading time own-name story = 9.6

SSError = 105.2 SSWithin = 105.2

Reduction in error = 35.35 SSBetween = 35.35

r 2 = .34 R 2 = .34

 (c) 

Regression ANOVA

Mean of criterion variable = .6 Grand mean = .6

SSTotal = .34 SSTotal = .34

Predicted score for Group A = .8 Mean of Group A = .8

Predicted score for Group B = .4 Mean of Group B = .4

SSError = .1 SSWithin = .1

Reduction in error = .24 SSBetween = .24

r 2 = .71 R 2 = .71
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10. 

Variable 1 Variable 2 Variable 3

Participant Group (Group I or not) (Group II or not) (Group III or not)

1 I 1 0 0

2 I 1 0 0

3 I 1 0 0

4 II 0 1 0

5 II 0 1 0

6 III 0 0 1

7 III 0 0 1

8 III 0 0 1

9 IV 0 0 0

10 IV 0 0 0

 1. In this chapter, we focus on the t test for independent means (and also the analy-
sis of variance for between-subject designs). However, the conclusions are all 
the same for the t test for dependent means. It is a special case of the repeated 
measures analysis of variance. Also, both the t test for dependent means and the 
repeated measures analysis of variance are special cases of multiple regression/
correlation. However, the link between these methods and multiple regression 
involves some extra steps of logic that we do not consider here to keep the 
chapter focused on the main ideas.

 2. Other apparent differences (such as the seeming difference that the F ratio nu-
merator is based on a variance estimate and the t score numerator is a simple 
difference between means) are also actually the same when you go into them in 
detail.

 3. Another reason for the use of different procedures is that the t test and analysis 
of variance have traditionally been used to analyze results of true experiments 
with random assignment to levels of the variables that divide the groups, while 
correlation and regression have been used mainly to analyze results of studies 
in which the predictor variable was measured in people as it exists, what is 
called a correlational research design. Thus, using a correlation or regression 
approach to analyze a true experiment, while correct, might imply to the not-
very-careful reader that the study was not a true experiment.

Chapter Notes

Baumrind, D. (1983). Specious causal attributions in the social sciences: The reformulated 
stepping-stone theory of heroin use as exemplar. Journal of Personality and Social 
Psychology 45, 1289–1298.

Reference


	Cover
	Title Page
	Copyright Page
	Acknowledgments
	Contents
	Preface to the Instructor
	Introduction to the Student
	Chapter 1 Displaying the Order in a Group of Numbers Using Tables and Graphs
	The Two Branches of Statistical Methods
	Some Basic Concepts
	Box 1-1: Important Trivia for Poetic Statistics Students
	Frequency Tables
	Histograms
	Box 1-2: Math Anxiety, Statistics Anxiety, and You: A Message for Those of You Who Are Truly Worried About This Course
	Shapes of Frequency Distributions
	Controversy: Misleading Graphs
	Frequency Tables and Histograms in Research Articles
	Learning Aids
	Summary
	Key Terms
	Example Worked-Out Problems
	Practice Problems
	Using SPSS
	Chapter Note

	Chapter 2 Central Tendency and Variability
	Central Tendency
	Variability
	Box 2-1: The Sheer Joy (Yes, Joy) of Statistical Analysis
	Controversy: The Tyranny of the Mean
	Box 2-2: Gender, Ethnicity, and Math Performance
	Central Tendency and Variability in Research Articles
	Learning Aids
	Summary
	Key Terms
	Example Worked-Out Problems
	Practice Problems
	Using SPSS
	Chapter Notes

	Chapter 3 Some Key Ingredients for Inferential Statistics
	Z Scores
	The Normal Curve
	Box 3-1: de Moivre, the Eccentric Stranger Who Invented the Normal Curve
	Sample and Population
	Box 3-2: Surveys, Polls, and 1948’s Costly “Free Sample”
	Probability
	Box 3-3: Pascal Begins Probability Theory at the Gambling Table, Then Learns to Bet on God
	Controversies: Is the Normal Curve Really So Normal? And Using Nonrandom Samples
	Z Scores, Normal Curves, Samples and Populations, and Probabilities in Research Articles
	Advanced Topic: Probability Rules and Conditional Probabilities
	Learning Aids
	Summary
	Key Terms
	Example Worked-Out Problems
	Practice Problems
	Using SPSS
	Chapter Notes

	Chapter 4 Introduction to Hypothesis Testing
	A Hypothesis-Testing Example
	The Core Logic of Hypothesis Testing
	The Hypothesis-Testing Process
	One-Tailed and Two-Tailed Hypothesis Tests
	Controversy: Should Significance Tests Be Banned?
	Box 4-1: Jacob Cohen, the Ultimate New Yorker: Funny, Pushy, Brilliant, and Kind
	Hypothesis Tests in Research Articles
	Learning Aids
	Summary
	Key Terms
	Example Worked-Out Problems
	Practice Problems
	Chapter Notes

	Chapter 5 Hypothesis Tests with Means of Samples
	The Distribution of Means
	Hypothesis Testing with a Distribution of Means: The Z Test
	Box 5-1: More About Polls: Sampling Errors and Errors in Thinking About Samples
	Controversy: Marginal Significance
	Hypothesis Tests About Means of Samples (Z Tests) and Standard Errors in Research Articles
	Advanced Topic: Estimation, Standard Errors, and Confidence Intervals
	Advanced Topic Controversy: Confidence Intervals versus Significance Tests
	Advanced Topic: Confidence Intervals in Research Articles
	Learning Aids
	Summary
	Key Terms
	Example Worked-Out Problems
	Practice Problems
	Chapter Notes

	Chapter 6 Making Sense of Statistical Significance
	Decision Errors
	Effect Size
	Box 6-1: Effect Sizes for Relaxation and Meditation: A Restful Meta-Analysis
	Statistical Power
	What Determines the Power of a Study?
	Box 6-2: The Power of Typical Psychology Experiments
	The Role of Power When Planning a Study
	The Role of Power When Interpreting the Results of a Study
	Controversy: Statistical Significance Versus Effect Size
	Decision Errors, Effect Size, and Power in Research Articles
	Learning Aids
	Summary
	Key Terms
	Example Worked-Out Problems
	Practice Problems
	Chapter Notes

	Chapter 7 Introduction to t Tests
	The t Test for a Single Sample
	Box 7-1: William S. Gosset, Alias “Student”: Not a Mathematician, But a Practical Man
	The t Test for Dependent Means
	Assumptions of the t Test for a Single Sample and the t Test for Dependent Means
	Effect Size and Power for the t Test for Dependent Means
	Controversy: Advantages and Disadvantages of Repeated Measures Designs
	Box 7-2: The Power of Studies Using Difference Scores: How the Lanarkshire Milk Experiment Could Have Been Milked for More
	Learning Aids
	Summary
	Key Terms
	Example Worked-Out Problems
	Practice Problems
	Using SPSS
	Chapter Notes

	Chapter 8 The t Test for Independent Means
	The Distribution of Differences Between Means
	Hypothesis Testing with a t Test for Independent Means
	Assumptions of the t Test for Independent Means
	Box 8-1: Monte Carlo Methods: When Mathematics Becomes Just an Experiment, and Statistics Depend on a Game of Chance
	Effect Size and Power for the t Test for Independent Means
	Review and Comparison of the Three Kinds of t Tests
	Controversy: The Problem of Too Many t Tests
	The t Test for Independent Means in Research Articles
	Advanced Topic: Power for the t Test for Independent Means When Sample Sizes Are Not Equal
	Learning Aids
	Summary
	Key Terms
	Example Worked-Out Problems
	Practice Problems
	Using SPSS
	Chapter Notes

	Chapter 9 Introduction to the Analysis of Variance
	Basic Logic of the Analysis of Variance
	Box 9-1: Sir Ronald Fisher, Caustic Genius of Statistics
	Carrying Out an Analysis of Variance
	Hypothesis Testing with the Analysis of Variance
	Assumptions in the Analysis of Variance
	Planned Contrasts
	Post Hoc Comparisons
	Effect Size and Power for the Analysis of Variance
	Controversy: Omnibus Tests versus Planned Contrasts
	Analyses of Variance in Research Articles
	Advanced Topic: The Structural Model in the Analysis of Variance
	Learning Aids
	Summary
	Key Terms
	Example Worked-Out Problems
	Practice Problems
	Using SPSS
	Chapter Notes

	Chapter 10 Factorial Analysis of Variance
	Basic Logic of Factorial Designs and Interaction Effects
	Recognizing and Interpreting Interaction Effects
	Basic Logic of the Two-Way Analysis of Variance
	Box 10-1: Personality and Situational Influences on Behavior: An Interaction Effect
	Assumptions in the Factorial Analysis of Variance
	Extensions and Special Cases of the Analysis of Variance
	Controversy: Dichotomizing Numeric Variables
	Factorial Analysis of Variance in Research Articles
	Advanced Topic: Figuring a Two-Way Analysis of Variance
	Advanced Topic: Power and Effect Size in the Factorial Analysis of Variance
	Learning Aids
	Summary
	Key Terms
	Example Worked-Out Problems
	Practice Problems
	Using SPSS
	Chapter Notes

	Chapter 11 Correlation
	Graphing Correlations: The Scatter Diagram
	Patterns of Correlation
	The Correlation Coefficient
	Box 11-1: Galton: Gentleman Genius
	Significance of a Correlation Coefficient
	Correlation and Causality
	Issues in Interpreting the Correlation Coefficient
	Box 11-2: Illusory Correlation: When You Know Perfectly Well That If It’s Big, It’s Fat—and You Are Perfectly Wrong
	Effect Size and Power for the Correlation Coefficient
	Controversy: What Is a Large Correlation?
	Correlation in Research Articles
	Learning Aids
	Summary
	Key Terms
	Example Worked-Out Problems
	Practice Problems
	Using SPSS
	Chapter Notes


	Chapter 12 Prediction
	Predictor (X) and Criterion (Y) Variables
	Prediction Using Z Scores Versus Raw Scores
	The Linear Prediction Rule
	The Regression Line
	Finding the Best Linear Prediction Rule
	The Least Squared Error Principle
	Issues in Prediction
	Multiple Regression
	Assumptions of Prediction
	Limitations of Prediction
	Controversy: Unstandardized and Standardized Regression Coefficients; Comparing Predictors
	Box 12-1: Clinical Versus Statistical Prediction
	Prediction in Research Articles
	Advanced Topic: Error and Proportionate Reduction in Error
	Learning Aids
	Summary
	Key Terms
	Example Worked-Out Problems
	Practice Problems
	Using SPSS
	Chapter Notes

	Chapter 13 Chi-Square Tests
	Box 13-1: Karl Pearson, Inventor of Chi-Square and Center of Controversy
	The Chi-Square Statistic and the Chi-Square Test for Goodness of Fit
	The Chi-Square Test for Independence
	Assumptions for Chi-Square Tests
	Effect Size and Power for Chi-Square Tests for Independence
	Controversy: The Minimum Expected Frequency
	Chi-Square Tests in Research Articles
	Learning Aids
	Summary
	Key Terms
	Example Worked-Out Problems
	Practice Problems
	Using SPSS
	Chapter Notes

	Chapter 14 Strategies When Population Distributions Are Not Normal
	Assumptions in the Standard Hypothesis-Testing Procedures
	Data Transformations
	Rank-Order Tests
	Comparison of Methods
	Controversy: Computer-Intensive Methods
	Box 14-1: Where Do Random Numbers Come From?
	Data Transformations and Rank-Order Tests in Research Articles
	Learning Aids
	Summary
	Key Terms
	Example Worked-Out Problems
	Practice Problems
	Using SPSS
	Chapter Notes

	Chapter 15 The General Linear Model and Making Sense of Advanced Statistical Procedures in Research Articles
	The General Linear Model
	Box 15-1: Two Women Make a Point About Gender and Statistics
	Partial Correlation
	Reliability
	Multilevel Modeling
	Factor Analysis
	Causal Modeling
	Box 15-2: The Golden Age of Statistics: Four Guys Around London
	Procedures That Compare Groups
	Analysis of Covariance (ANCOVA)
	Multivariate Analysis of Variance (MANOVA) and Multivariate Analysis of Covariance (MANCOVA)
	Overview of Statistical Techniques
	Controversy: Should Statistics Be Controversial?
	Box 15-3: The Forced Partnership of Fisher and Pearson
	How to Read Results Using Unfamiliar Statistical Techniques
	Learning Aids
	Summary
	Key Terms
	Practice Problems
	Using SPSS
	Chapter Notes

	Appendix: Tables
	Answers to Set I Practice Problems
	Glossary
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Z

	Glossary of Symbols
	References
	Index
	A
	B
	C
	D
	E
	F
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z




