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P R E F A C E

It’s been quite a journey. We started writing in the late 1970s. The first edition of Using Multivari-
ate Statistics came out in 1983, contained six technique chapters, and had about 500 pages. This 
sixth edition appears in 2012, contains 12 technique chapters (one online www.pearsonhighered.com/
tabachnick), and is about 1,000 pages long. In addition to Multiple Regression, Canonical Correla-
tion, ANCOVA, MANOVA and MANCOVA, Discriminant Analysis, and PCA/FA (the technique 
chapters from the first edition), over time we added chapters on Logistic Regression, Survival/Failure 
Analysis, Structural Equation Modeling, Multilevel Linear Modeling, Multiway Frequency Analy-
sis, and Time Series Analysis. Many of the additions were driven by changes in the type of analyses 
performed in our professions; others reflected changes in our own consulting/teaching and curiosity.

There were four leading statistical packages when we started (SAS, IBM SPSS, SYSTAT, and 
BMDP), some little more than aggregations of programs written by individual faculty members and 
others. Over time, two of these packages were gobbled up by a third, the control language became 
menu driven, execution time became shorter, and the output became prettier. The remaining pack-
ages are so powerful and fast that you feel like you are driving a very powerful machine, hopefully 
not off a cliff. As the analyses have become more and more convenient, it has become more and 
more necessary to be clear minded about what you are doing and why. We remain hopeful that our 
efforts are helpful in this regard.

At least three things remain constant over the six editions of the book. The first is the practical 
approach to using these statistics. We try to indicate the questions they can answer, the limitations to 
their application, the things to beware of when applying them to a real-life data set, how to use the 
software, and what you need to tell your readers to convince them that you have performed an honest 
analysis. We do present an abbreviated version of the math in the fourth section of each chapter, but that 
won’t necessarily tell you all you need to know to actually do the analysis. The second constant is the 
organization of the technique chapters—they all follow the same outline. We did that in the hope that 
it would help you find what you are looking for quickly when you use the book as a reference. Finally, 
although we take the analyses very seriously, we have great difficulty taking ourselves seriously; silli-
ness still pervades our writing. We hope we still provide a few smiles to remind data analysts that this 
stuff really is fun.

We’ve been friends for all these years, had many roaringly good times, learned to belly dance 
in the same classes, have been through some husbands, and now support one another in artistic 
endeavors. It’s been a good partnership with one of the best partners anyone could hope for. We’ve 
been lucky, and careful.

We thank all of our students and reviewers over the years and editions for their insightful and 
helpful comments. We also thank our readers who have taken the time to e-mail us with suggestions 
and corrections. This time around, we especially thank Mike Govia, who gave us a comprehensive 
review of the fifth edition that far surpassed anything we have experienced in all these years. Thank 
you, Mike—you are our hero! Any remaining errors, of course, are entirely ours.

Barbara G. Tabachnick
Linda S. Fidell
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1

1.1 Multivariate Statistics: Why?

Multivariate statistics are increasingly popular techniques used for analyzing complicated data sets. 
They provide analysis when there are many independent variables (IVs) and/or many dependent 
variables (DVs), all correlated with one another to varying degrees. Because of the difficulty in 
addressing complicated research questions with univariate analyses and because of the availability 
of canned software for performing multivariate analyses, multivariate statistics have become widely 
used. Indeed, a standard univariate statistics course only begins to prepare a student to read research 
literature or a researcher to produce it.

But how much harder are the multivariate techniques? Compared with the multivariate meth-
ods, univariate statistical methods are so straightforward and neatly structured that it is hard to 
believe they once took so much effort to master. Yet many researchers apply and correctly interpret 
results of intricate analysis of variance before the grand structure is apparent to them. The same 
can be true of multivariate statistical methods. Although we are delighted if you gain insights into 
the full multivariate general linear model,1 we have accomplished our goal if you feel comfortable 
selecting and setting up multivariate analyses and interpreting the computer output.

Multivariate methods are more complex than univariate by at least an order of magnitude. 
However, for the most part, the greater complexity requires few conceptual leaps. Familiar concepts 
such as sampling distributions and homogeneity of variance simply become more elaborate.

Multivariate models have not gained popularity by accident—or even by sinister design. Their 
growing popularity parallels the greater complexity of contemporary research. In psychology, for 
example, we are less and less enamored of the simple, clean, laboratory study, in which pliant, first-
year college students each provides us with a single behavioral measure on cue.

1.1.1  The Domain of Multivariate Statistics: 
Numbers of IVs and DVs

Multivariate statistical methods are an extension of univariate and bivariate statistics. Multivariate 
statistics are the complete or general case, whereas univariate and bivariate statistics are special 
cases of the multivariate model. If your design has many variables, multivariate techniques often let 
you perform a single analysis instead of a series of univariate or bivariate analyses.

Variables are roughly dichotomized into two major types—independent and dependent. 
Independent variables (IVs) are the differing conditions (treatment vs. placebo) to which you ex-
pose your subjects, or the characteristics (tall or short) that the subjects themselves bring into the 

1 Introduction

1Chapter 17 attempts to foster such insights.
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research situation. IVs are usually considered predictor variables because they predict the DVs—the 
response or outcome variables. Note that IV and DV are defined within a research context; a DV in 
one research setting may be an IV in another.

Additional terms for IVs and DVs are predictor-criterion, stimulus-response, task-
performance, or simply input–output. We use IV and DV throughout this book to identify variables 
that belong on one side of an equation or the other, without causal implication. That is, the terms 
are used for convenience rather than to indicate that one of the variables caused or determined the 
size of the other.

The term univariate statistics refers to analyses in which there is a single DV. There may be, 
however, more than one IV. For example, the amount of social behavior of graduate students (the 
DV) is studied as a function of course load (one IV) and type of training in social skills to which 
students are exposed (another IV). Analysis of variance is a commonly used univariate statistic.

Bivariate statistics frequently refers to analysis of two variables, where neither is an experi-
mental IV and the desire is simply to study the relationship between the variables (e.g., the relation-
ship between income and amount of education). Bivariate statistics, of course, can be applied in an 
experimental setting, but usually they are not. Prototypical examples of bivariate statistics are the 
Pearson product–moment correlation coefficient and chi-square analysis. (Chapter 3 reviews uni-
variate and bivariate statistics.)

With multivariate statistics, you simultaneously analyze multiple dependent and multiple in-
dependent variables. This capability is important in both nonexperimental (correlational or survey) 
and experimental research.

1.1.2 Experimental and Nonexperimental Research

A critical distinction between experimental and nonexperimental research is whether the researcher 
manipulates the levels of the IVs. In an experiment, the researcher has control over the levels (or 
conditions) of at least one IV to which a subject is exposed by determining what the levels are, how 
they are implemented, and how and when cases are assigned and exposed to them. Further, the 
experimenter randomly assigns subjects to levels of the IV and controls all other influential factors 
by holding them constant, counterbalancing, or randomizing their influence. Scores on the DV are 
expected to be the same, within random variation, except for the influence of the IV (Campbell & 
Stanley, 1966). If there are systematic differences in the DV associated with levels of the IV, these 
differences are attributed to the IV.

For example, if groups of undergraduates are randomly assigned to the same material but dif-
ferent types of teaching techniques, and afterward some groups of undergraduates perform better 
than others, the difference in performance is said, with some degree of confidence, to be caused by 
the difference in teaching technique. In this type of research, the terms independent and dependent
have obvious meaning: the value of the DV depends on the manipulated level of the IV. The IV is 
manipulated by the experimenter and the score on the DV depends on the level of the IV.

In nonexperimental (correlational or survey) research, the levels of the IV(s) are not manipu-
lated by the researcher. The researcher can define the IV, but has no control over the assignment 
of subjects to levels of it. For example, groups of people may be categorized into geographic area 
of residence (Northeast, Midwest, etc.), but only the definition of the variable is under researcher 
control. Except for the military or prison, place of residence is rarely subject to manipulation by a 
researcher. Nevertheless, a naturally occurring difference like this is often considered an IV and is 
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used to predict some other nonexperimental (dependent) variable such as income. In this type of 
research, the distinction between IVs and DVs is usually arbitrary and many researchers prefer to 
call IVs predictors and DVs criterion variables.

In nonexperimental research, it is very difficult to attribute causality to an IV. If there is a 
systematic difference in a DV associated with levels of an IV, the two variables are said (with some 
degree of confidence) to be related, but the cause of the relationship is unclear. For example, income 
as a DV might be related to geographic area, but no causal association is implied.

Nonexperimental research takes many forms, but a common example is the survey. Typically, 
many people are surveyed, and each respondent provides answers to many questions, producing a 
large number of variables. These variables are usually interrelated in highly complex ways, but uni-
variate and bivariate statistics are not sensitive to this complexity. Bivariate correlations between all 
pairs of variables, for example, could not reveal that the 20 to 25 variables measured really represent 
only two or three “supervariables.”

If a research goal is to distinguish among subgroups in a sample (e.g., between Catholics and 
Protestants) on the basis of a variety of attitudinal variables, we could use several univariate t tests 
(or analyses of variance) to examine group differences on each variable separately. But if the vari-
ables are related, which is highly likely, the results of many t tests are misleading and statistically 
suspect.

With the use of multivariate statistical techniques, complex interrelationships among vari-
ables are revealed and assessed in statistical inference. Further, it is possible to keep the overall 
Type I error rate at, say, 5%, no matter how many variables are tested.

Although most multivariate techniques were developed for use in nonexperimental research, 
they are also useful in experimental research, in which there may be multiple IVs and multiple DVs. 
With multiple IVs, the research is usually designed so that the IVs are independent of each other and 
a straightforward correction for numerous statistical tests is available (see Chapter 3). With multiple 
DVs, a problem of inflated error rate arises if each DV is tested separately. Further, at least some of 
the DVs are likely to be correlated with each other, so separate tests of each DV reanalyze some of 
the same variance. Therefore, multivariate tests are used.

Experimental research designs with multiple DVs were unusual at one time. Now, however, 
with attempts to make experimental designs more realistic, and with the availability of computer 
programs, experiments often have several DVs. It is dangerous to run an experiment with only 
one DV and risk missing the impact of the IV because the most sensitive DV is not measured. 
Multivariate statistics help the experimenter design more efficient and more realistic experiments 
by allowing measurement of multiple DVs without violation of acceptable levels of Type I error.

One of the few considerations not relevant to choice of statistical technique is whether the 
data are experimental or correlational. The statistical methods “work” whether the researcher 
manipulated the levels of the IV or not. But attribution of causality to results is crucially affected by 
the experimental–nonexperimental distinction.

1.1.3 Computers and Multivariate Statistics

One answer to the question “Why multivariate statistics?” is that the techniques are now accessible 
by computer. Only the most dedicated number cruncher would consider doing real-life-sized prob-
lems in multivariate statistics without a computer. Fortunately, excellent multivariate programs are 
available in a number of computer packages.
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Two packages are demonstrated in this book. Examples are based on programs in IBM SPSS
and SAS.

If you have access to both packages, you are indeed fortunate. Programs within the packages 
do not completely overlap, and some problems are better handled through one package than the 
other. For example, doing several versions of the same basic analysis on the same set of data is par-
ticularly easy with IBM SPSS, whereas SAS has the most extensive capabilities for saving derived 
scores from data screening or from intermediate analyses.

Chapters 5 through 16 (the chapters that cover the specialized multivariate techniques) 
and Chapter 18 (available at www.pearsonhighered.com/tabachnick) offer explanations and il-
lustrations of a variety of programs2 within each package and a comparison of the features of 
the programs. We hope that once you understand the techniques, you will be able to generalize 
to virtually any multivariate program.

Recent versions of the programs are implemented in Windows, with menus that implement 
most of the techniques illustrated in this book. All of the techniques may be implemented through 
syntax, and syntax itself is generated through menus. Then you may add or change syntax as desired 
for your analysis. For example, you may “paste” menu choices into a syntax window in IBM SPSS,
edit the resulting text, and then run the program. Also, syntax generated by IBM SPSS menus is 
saved in the “journal” file (statistics.jnl), which may also be accessed and copied into a syntax win-
dow. Syntax generated by SAS menus is recorded in a “log” file. The contents may then be copied 
to an interactive window, edited, and run. Do not overlook the help files in these programs. Indeed, 
SAS and IBM SPSS now provide the entire set of user manuals on CD, often with more current 
information than is available in printed manuals.

Our demonstrations in this book are based on syntax generated through menus whenever fea-
sible. We would love to show you the sequence of menu choices, but space does not permit. And, 
for the sake of parsimony, we have edited program output to illustrate the material that we feel is 
the most important for interpretation. We have also edited out some of the unnecessary (because it 
is default) syntax that is generated through menu choices.

With commercial computer packages, you need to know which version of the package you 
are using. Programs are continually being changed, and not all changes are immediately imple-
mented at each facility. Therefore, many versions of the various programs are simultaneously in use 
at different institutions; even at one institution, more than one version of a package is sometimes 
available.

Program updates are often corrections of errors discovered in earlier versions. Occasionally, 
though, there are major revisions in one or more programs or a new program is added to the pack-
age. Sometimes defaults change with updates, so that the output looks different although syntax 
is the same. Check to find out which version of each package you are using. Then be sure that the 
manual you are using is consistent with the version in use at your facility. Also check updates for 
error correction in previous releases that may be relevant to some of your previous runs.

Except where noted, this book reviews Windows versions of IBM SPSS Version 19 and 
SAS Version 9.2. Information on availability and versions of software, macros, books, and the like 
changes almost daily. We recommend the Internet as a source of “keeping up.”

2We have retained descriptions of features of SYSTAT (Version 13) in these sections, despite the removal of detailed demon-
strations of that program in this edition.
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1.1.4 Garbage In, Roses Out?

The trick in multivariate statistics is not in computation. This is easily done as discussed above. The 
trick is to select reliable and valid measurements, choose the appropriate program, use it correctly, 
and know how to interpret the output. Output from commercial computer programs, with their beau-
tifully formatted tables, graphs, and matrices, can make garbage look like roses. Throughout this 
book, we try to suggest clues that reveal when the true message in the output more closely resembles 
the fertilizer than the flowers.

Second, when you use multivariate statistics, you rarely get as close to the raw data as you do 
when you apply univariate statistics to a relatively few cases. Errors and anomalies in the data that 
would be obvious if the data were processed by hand are less easy to spot when processing is entirely 
by computer. But the computer packages have programs to graph and describe your data in the sim-
plest univariate terms and to display bivariate relationships among your variables. As discussed in 
Chapter 4, these programs provide preliminary analyses that are absolutely necessary if the results of 
multivariate programs are to be believed.

There are also certain costs associated with the benefits of using multivariate procedures. 
Benefits of increased flexibility in research design, for instance, are sometimes paralleled by in-
creased ambiguity in interpretation of results. In addition, multivariate results can be quite sensitive 
to which analytic strategy is chosen (cf. Section 1.2.4) and do not always provide better protection 
against statistical errors than their univariate counterparts. Add to this the fact that occasionally 
you still cannot get a firm statistical answer to your research questions, and you may wonder if the 
increase in complexity and difficulty is warranted.

Frankly, we think it is. Slippery as some of the concepts and procedures are, these statistics 
provide insights into relationships among variables that may more closely resemble the complexity 
of the “real” world. And sometimes you get at least partial answers to questions that could not be 
asked at all in the univariate framework. For a complete analysis, making sense of your data usually 
requires a judicious mix of multivariate and univariate statistics.

The addition of multivariate statistical methods to your repertoire makes data analysis a lot 
more fun. If you liked univariate statistics, you will love multivariate statistics!3

1.2 Some Useful Definitions

In order to describe multivariate statistics easily, it is useful to review some common terms in re-
search design and basic statistics. Distinctions were made between IVs and DVs and between exper-
imental and nonexperimental research in preceding sections. Additional terms that are encountered 
repeatedly in the book but not necessarily related to each other are described in this section.

1.2.1 Continuous, Discrete, and Dichotomous Data

In applying statistical techniques of any sort, it is important to consider the type of measurement 
and the nature of the correspondence between the numbers and the events that they represent. The 
distinction made here is among continuous, discrete, and dichotomous variables; you may prefer to 

3Don’t even think about it.



6 C H A P T E R  1

substitute the terms interval or quantitative for continuous and nominal, categorical or qualitative
for dichotomous and discrete.

Continuous variables are measured on a scale that changes values smoothly rather than in steps. 
Continuous variables take on any values within the range of the scale, and the size of the number re-
flects the amount of the variable. Precision is limited by the measuring instrument, not by the nature 
of the scale itself. Some examples of continuous variables are time as measured on an old-fashioned 
analog clock face, annual income, age, temperature, distance, and grade point average (GPA).

Discrete variables take on a finite and usually small number of values, and there is no smooth 
transition from one value or category to the next. Examples include time as displayed by a digital 
clock, continents, categories of religious affiliation, and type of community (rural or urban).

Sometimes discrete variables are used in multivariate analyses as if continuous if there are 
numerous categories and the categories represent a quantitative attribute. For instance, a variable 
that represents age categories (where, say, 1 stands for 0 to 4 years, 2 stands for 5 to 9 years, 3 stands 
for 10 to 14 years, and so on up through the normal age span) can be used because there are a lot of 
categories and the numbers designate a quantitative attribute (increasing age). But the same num-
bers used to designate categories of religious affiliation are not in appropriate form for analysis with 
many of the techniques4 because religions do not fall along a quantitative continuum.

Discrete variables composed of qualitatively different categories are sometimes analyzed 
after being changed into a number of dichotomous or two-level variables (e.g., Catholic vs. non-
Catholic, Protestant vs. non-Protestant, Jewish vs. non-Jewish, and so on until the degrees of free-
dom are used). Recategorization of a discrete variable into a series of dichotomous ones is called 
dummy variable coding. The conversion of a discrete variable into a series of dichotomous ones is 
done to limit the relationship between the dichotomous variables and others to linear relationships. 
A discrete variable with more than two categories can have a relationship of any shape with another 
variable, and the relationship is changed arbitrarily if the assignment of numbers to categories is 
changed. Dichotomous variables, however, with only two points, can have only linear relationships 
with other variables; they are, therefore, appropriately analyzed by methods using correlation in 
which only linear relationships are analyzed.

The distinction between continuous and discrete variables is not always clear. If you add 
enough digits to the digital clock, for instance, it becomes for all practical purposes a continuous 
measuring device, whereas time as measured by the analog device can also be read in discrete cat-
egories such as hours or half hours. In fact, any continuous measurement may be rendered discrete 
(or dichotomous) with some loss of information, by specifying cutoffs on the continuous scale.

The property of variables that is crucial to the application of multivariate procedures is not the 
type of measurement so much as the shape of distribution, as discussed in Chapter 4 and in discus-
sions of tests of assumptions in Chapters 5 through 16 and 18 (online). Non-normally distributed 
continuous variables and dichotomous variables with very uneven splits between the categories 
present problems to several of the multivariate analyses. This issue and its resolution are discussed 
at some length in Chapter 4.

Another type of measurement that is used sometimes produces a rank order (ordinal) scale. 
This scale assigns a number to each subject to indicate the subject’s position vis-à-vis other subjects 
along some dimension. For instance, ranks are assigned to contestants (first place, second place, 
third place, etc.) to provide an indication of who is the best—but not by how much. A problem with 

4Some multivariate techniques (e.g., logistic regression, SEM) are appropriate for all types of variables.
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ordinal measures is that their distributions are rectangular (one frequency per number) instead of 
normal, unless tied ranks are permitted and they pile up in the middle of the distribution.

In practice, we often treat variables as if they are continuous when the underlying scale is 
thought to be continuous, but the measured scale actually is ordinal, the number of categories is 
large—say, seven or more, and the data meet other assumptions of the analysis. For instance, the 
number of correct items on an objective test is technically not continuous because fractional values 
are not possible, but it is thought to measure some underlying continuous variable such as course 
mastery. Another example of a variable with ambiguous measurement is one measured on a Likert-
type scale, in which consumers rate their attitudes toward a product as “strongly like,” “moderately 
like,” “mildly like,” “neither like nor dislike,” “mildly dislike,” “moderately dislike,” or “strongly 
dislike.” As mentioned previously, even dichotomous variables may be treated as if continuous under 
some conditions. Thus, we often use the term “continuous” throughout the remainder of this book, 
whether the measured scale itself is continuous or the variable is to be treated as if continuous. We 
use the term “discrete” for variables with a few categories, whether the categories differ in type or 
quantity.

1.2.2 Samples and Populations

Samples are measured to make generalizations about populations. Ideally, samples are selected, usu-
ally by some random process, so that they represent the population of interest. In real life, however, 
populations are frequently best defined in terms of samples, rather than vice versa; the population is 
the group from which you were able to randomly sample.

Sampling has somewhat different connotations in nonexperimental and experimental research.
In nonexperimental research, you investigate relationships among variables in some predefined 
population. Typically, you take elaborate precautions to ensure that you have achieved a represen-
tative sample of that population; you define your population, and then do your best to randomly 
sample from it.5

In experimental research, you attempt to create different populations by treating subgroups 
from an originally homogeneous group differently. The sampling objective here is to ensure that all 
subjects come from the same population before you treat them differently. Random sampling con-
sists of randomly assigning subjects to treatment groups (levels of the IV) to ensure that, before dif-
ferential treatment, all subsamples come from the same population. Statistical tests provide evidence 
as to whether, after treatment, all samples still come from the same population. Generalizations 
about treatment effectiveness are made to the type of subjects who participated in the experiment.

1.2.3 Descriptive and Inferential Statistics

Descriptive statistics describe samples of subjects in terms of variables or combinations of vari-
ables. Inferential statistical techniques test hypotheses about differences in populations on the basis 
of measurements made on samples of subjects. If reliable differences are found, descriptive sta-
tistics are then used to provide estimations of central tendency, and the like, in the population. 
Descriptive statistics used in this way are called parameter estimates.

5Strategies for random sampling are discussed in many sources, including Levy and Lemenshow (1999), Rea and Parker 
(1997), and de Vaus (2002).
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Use of inferential and descriptive statistics is rarely an either–or proposition. We are usually 
interested in both describing and making inferences about a data set. We describe the data, find reli-
able differences or relationships, and estimate population values for the reliable findings. However, 
there are more restrictions on inference than there are on description. Many assumptions of multi-
variate statistical methods are necessary only for inference. If simple description of the sample is the 
major goal, many assumptions are relaxed, as discussed in Chapters 5 through 16 and 18 (online).

1.2.4 Orthogonality: Standard and Sequential Analyses

Orthogonality is a perfect nonassociation between variables. If two variables are orthogonal, know-
ing the value of one variable gives no clue as to the value of the other; the correlation between them 
is zero.

Orthogonality is often desirable in statistical applications. For instance, factorial designs for 
experiments are orthogonal when two or more IVs are completely crossed with equal sample sizes 
in each combination of levels. Except for use of a common error term, tests of hypotheses about 
main effects and interactions are independent of each other; the outcome of each test gives no hint 
as to the outcome of the others. In orthogonal experimental designs with random assignment of 
subjects, manipulation of the levels of the IV, and good controls, changes in value of the DV can be 
unambiguously attributed to various main effects and interactions.

Similarly, in multivariate analyses, there are advantages if sets of IVs or DVs are orthogonal. 
If all pairs of IVs in a set are orthogonal, each IV adds, in a simple fashion, to prediction of the 
DV. Consider income as a DV with education and occupational prestige as IVs. If education and 
occupational prestige are orthogonal, and if 35% of the variability in income may be predicted from 
education and a different 45% is predicted from occupational prestige, then 80% of the variance in 
income is predicted from education and occupational prestige together.

Orthogonality can easily be illustrated in Venn diagrams, as shown in Figure 1.1. Venn dia-
grams represent shared variance (or correlation) as overlapping areas between two (or more) circles. 
The total variance for income is one circle. The section with horizontal stripes represents the part of 
income predictable from education, and the section with vertical stripes represents the part predict-
able from occupational prestige; the circle for education overlaps the circle for income 35% and the 
circle for occupational prestige overlaps 45%. Together, they account for 80% of the variability in 
income because education and occupational prestige are orthogonal and do not themselves overlap. 
There are similar advantages if a set of DVs is orthogonal. The overall effect of an IV can be parti-
tioned into effects on each DV in an additive fashion.

Y

X2 X1

FIGURE 1.1 Venn diagram for Y (income), X1 (education), 
and X2 (occupational prestige).
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Usually, however, the variables are correlated with each other (nonorthogonal). IVs in nonex-
perimental designs are often correlated naturally; in experimental designs, IVs become correlated 
when unequal numbers of subjects are measured in different cells of the design. DVs are usually 
correlated because individual differences among subjects tend to be consistent over many attributes.

When variables are correlated, they have shared or overlapping variance. In the example of 
Figure 1.2, education and occupational prestige correlate with each other. Although the independent 
contribution made by education is still 35% and that by occupational prestige is 45%, their joint 
contribution to prediction of income is not 80%, but rather something smaller due to the overlapping 
area shown by the arrow in Figure 1.2(a). A major decision for the multivariate analyst is how to 
handle the variance that is predictable from more than one variable. Many multivariate techniques 
have at least two strategies for handling it, but some have more.

In standard analysis, the overlapping variance contributes to the size of summary statistics of 
the overall relationship but is not assigned to either variable. Overlapping variance is disregarded 
in assessing the contribution of each variable to the solution. Figure 1.2(a) is a Venn diagram of a 
standard analysis in which overlapping variance is shown as overlapping areas in circles; the unique 
contributions of X1 and X2 to prediction of Y are shown as horizontal and vertical areas, respectively, 
and the total relationship between Y and the combination of X1 and X2 is those two areas plus the 
area with the arrow. If X1 is education and X2 is occupational prestige, then in standard analysis, 
X1 is “credited with” the area marked by the horizontal lines and X2 by the area marked by vertical 
lines. Neither of the IVs is assigned the area designated with the arrow. When X1 and X2 substan-
tially overlap each other, very little horizontal or vertical area may be left for either of them, despite 
the fact that they are both related to Y. They have essentially knocked each other out of the solution.

Sequential analyses differ, in that the researcher assigns priority for entry of variables into 
equations, and the first one to enter is assigned both unique variance and any overlapping variance 
it has with other variables. Lower-priority variables are then assigned on entry their unique and 
any remaining overlapping variance. Figure 1.2(b) shows a sequential analysis for the same case as 
Figure 1.2(a), where X1 (education) is given priority over X2 (occupational prestige). The total vari-
ance explained is the same as in Figure 1.2(a), but the relative contributions of X1 and X2 have changed; 

Y

X1

X2

Area represents variance
in relationship that contributes
to solution but is assigned to
neither X1 nor X2

(a) Standard analysis

Y

X1

X2

(b) Sequential analysis in which
X1 is given priority over X2

FIGURE 1.2 Standard (a) and sequential (b) analyses of the relationship 
between Y, X1, and X2. Horizontal shading depicts variance assigned to X1.

Vertical shading depicts variance assigned to X2.
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education now shows a stronger relationship with income than in the standard analysis, whereas the 
relation between occupational prestige and income remains the same.

The choice of strategy for dealing with overlapping variance is not trivial. If variables are 
correlated, the overall relationship remains the same, but the apparent importance of variables to 
the solution changes depending on whether a standard or a sequential strategy is used. If the mul-
tivariate procedures have a reputation for unreliability, it is because solutions change, sometimes 
dramatically, when different strategies for entry of variables are chosen. However, the strategies also 
ask different questions of the data, and it is incumbent on the researcher to determine exactly which 
question to ask. We try to make the choices clear in the chapters that follow.

1.3 Linear Combinations of Variables

Multivariate analyses combine variables to do useful work, such as predict scores or predict group 
membership. The combination that is formed depends on the relationships among the variables and 
the goals of analysis, but in most cases, the combination is linear. A linear combination is one in 
which each variable is assigned a weight (e.g., W1), and then the products of weights and the vari-
able scores are summed to predict a score on a combined variable. In Equation 1.1, Y� (the predicted 
DV) is predicted by a linear combination of X1 and X2 (the IVs).

Y� = W1X1 + W2X2 (1.1)

If, for example, Y� is predicted income, X1 is education, and X2 is occupational prestige, the 
best prediction of income is obtained by weighting education (X1) by W1 and occupational prestige 
(X2) by W2 before summing. No other values of W1 and W2 produce as good a prediction of income.

Notice that Equation 1.1 includes neither X1 nor X2 raised to powers (exponents) nor a product 
of X1 and X2. This seems to severely restrict multivariate solutions until one realizes that X1 could
itself be a product of two different variables or a single variable raised to a power. For example, X1
might be education squared. A multivariate solution does not produce exponents or cross-products 
of IVs to improve a solution, but the researcher can include Xs that are cross-products of IVs or are 
IVs raised to powers. Inclusion of variables raised to powers or cross-products of variables has both 
theoretical and practical implications for the solution. Berry (1993) provides a useful discussion of 
many of the issues.

The size of the W values (or some function of them) often reveals a great deal about the 
relationship between DVs and IVs. If, for instance, the W value for some IV is zero, the IV is not 
needed in the best DV–IV relationship. Or if some IV has a large W value, then the IV tends to be 
important to the relationship. Although complications (to be explained later) prevent interpretation 
of the multivariate solution from the sizes of the W values alone, they are nonetheless important in 
most multivariate procedures.

The combination of variables can be considered a supervariable, not directly measured but 
worthy of interpretation. The supervariable may represent an underlying dimension that predicts 
something or optimizes some relationship. Therefore, the attempt to understand the meaning of the 
combination of IVs is worthwhile in many multivariate analyses.

In the search for the best weights to apply in combining variables, computers do not try out 
all possible sets of weights. Various algorithms have been developed to compute the weights. Most 
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algorithms involve manipulation of a correlation matrix, a variance–covariance matrix, or a sum-
of-squares and cross-products matrix. Section 1.6 describes these matrices in very simple terms and 
shows their development from a very small data set. Appendix A describes some terms and manipu-
lations appropriate to matrices. In the fourth sections of Chapters 5 through 16 and 18 (online), a 
small hypothetical sample of data is analyzed by hand to show how the weights are derived for each 
analysis. Though this information is useful for a basic understanding of multivariate statistics, it is 
not necessary for applying multivariate techniques fruitfully to your research questions and may, 
sadly, be skipped by those who are math aversive.

1.4 Number and Nature of Variables to Include

Attention to the number of variables included in analysis is important. A general rule is to get the 
best solution with the fewest variables. As more and more variables are included, the solution usu-
ally improves, but only slightly. Sometimes the improvement does not compensate for the cost in 
degrees of freedom of including more variables, so the power of the analyses diminishes.

A second problem is overfitting.With overfitting, the solution is very good; so good, in fact, 
that it is unlikely to generalize to a population. Overfitting occurs when too many variables are in-
cluded in an analysis relative to the sample size. With smaller samples, very few variables can be 
analyzed. Generally, a researcher should include only a limited number of uncorrelated variables in 
each analysis,6 fewer with smaller samples. We give guidelines for the number of variables that can 
be included relative to sample size in the third section of Chapters 5–16 and 18 (online).

Additional considerations for inclusion of variables in a multivariate analysis include cost, 
availability, meaning, and theoretical relationships among the variables. Except in analysis of struc-
ture, one usually wants a small number of valid, cheaply obtained, easily available, uncorrelated 
variables that assess all the theoretically important dimensions of a research area. Another important 
consideration is reliability. How stable is the position of a given score in a distribution of scores when 
measured at different times or in different ways? Unreliable variables degrade an analysis, whereas 
reliable ones enhance it. A few reliable variables give a more meaningful solution than a large num-
ber of less reliable variables. Indeed, if variables are sufficiently unreliable, the entire solution may 
reflect only measurement error. Further considerations for variable selection are mentioned as they 
apply to each analysis.

1.5 Statistical Power

A critical issue in designing any study is whether there is adequate power. Power, as you may recall, 
represents the probability that effects that actually exist have a chance of producing statistical signifi-
cance in your eventual data analysis. For example, do you have a large enough sample size to show 
a significant relationship between GRE and GPA if the actual relationship is fairly large? What if the 
relationship is fairly small? Is your sample large enough to reveal significant effects of treatment on 
your DV(s)? Relationships among power and errors of inference are discussed in Chapter 3.

6The exceptions are analysis of structure, such as factor analysis, in which numerous correlated variables are measured.
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Issues of power are best considered in the planning state of a study when the researcher 
determines the required sample size. The researcher estimates the size of the anticipated effect 
(e.g., an expected mean difference), the variability expected in assessment of the effect, the desired 
alpha level (ordinarily .05), and the desired power (often .80). These four estimates are required 
to determine the necessary sample size. Failure to consider power in the planning stage often 
results in failure to find a significant effect (and an unpublishable study). The interested reader 
may wish to consult Cohen (1965, 1988), Rossi (1990), or Sedlmeier and Gigerenzer (1989) for 
more detail.

There is a great deal of software available to help you estimate the power available with vari-
ous sample sizes for various statistical techniques, and to help you determine necessary sample size 
given a desired level of power (e.g., an 80% probability of achieving a significant result if an effect 
exists) and expected sizes of relationships. One of these programs that estimates power for several 
techniques is NCSS PASS (Hintze, 2011). Many other programs are reviewed (and sometimes 
available as shareware) on the Internet. Issues of power relevant to each of the statistical techniques 
are discussed in Chapters 5 through 16 and 18 (online).

1.6 Data Appropriate for Multivariate Statistics

An appropriate data set for multivariate statistical methods consists of values on a number of variables 
for each of several subjects or cases. For continuous variables, the values are scores on variables. For 
example, if the continuous variable is the GRE (Graduate Record Examination), the values for the 
various subjects are scores such as 500, 420, 650, and so on. For discrete variables, values are num-
ber codes for group membership or treatment. For example, if there are three teaching techniques, 
students who receive one technique are arbitrarily assigned a “1,” those receiving another technique 
are assigned a “2,” and so on.

1.6.1 The Data Matrix

The data matrix is an organization of scores in which rows (lines) represent subjects and columns 
represent variables. An example of a data matrix with six subjects7 and four variables is given in 
Table 1.1. For example, X1 might be type of teaching technique, X2 score on the GRE, X3 GPA, and 
X4 gender, with women coded 1 and men coded 2.

7Normally, of course, there are many more than six subjects.

TABLE 1.1 A Data Matrix of Hypothetical Scores

Student X1 X2 X3 X4

1 1 500 3.20 1
2 1 420 2.50 2
3 2 650 3.90 1
4 2 550 3.50 2
5 3 480 3.30 1
6 3 600 3.25 2
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Data are entered into a data file with long-term storage accessible by computer in order to 
apply computer techniques to them. Each subject starts with a new row (line). Information identify-
ing the subject is typically entered first, followed by the value of each variable for that subject.

Scores for each variable are entered in the same order for each subject. If there are more data 
for each subject than can be accommodated on a single line, the data are continued on additional 
lines, but all of the data for each subject are kept together. All of the computer package manuals 
provide information on setting up a data matrix.

In this example, there are values for every variable for each subject. This is not always the case 
with research in the real world. With large numbers of subjects and variables, scores are frequently 
missing on some variables for some subjects. For instance, respondents may refuse to answer some 
kinds of questions, or some students may be absent the day when a particular test is given, and so 
forth. This creates missing values in the data matrix. To deal with missing values, first build a data file 
in which some symbol is used to indicate that a value on a variable is missing in data for a subject. 
The various programs have standard symbols, such as a dot (.), for this purpose. You can also use other 
symbols, but it is often just as convenient to use one of the default symbols. Once the data set is avail-
able, consult Chapter 4 for various options to deal with this messy (but often unavoidable) problem.

1.6.2 The Correlation Matrix

Most readers are familiar with R, a correlation matrix. R is a square, symmetrical matrix. Each 
row (and each column) represents a different variable, and the value at the intersection of each row 
and column is the correlation between the two variables. For instance, the value at the intersection 
of the second row, third column, is the correlation between the second and the third variables. The 
same correlation also appears at the intersection of the third row, second column. Thus, correlation 
matrices are said to be symmetrical about the main diagonal, which means they are mirror images of 
themselves above and below the diagonal from top left to bottom right. Hence, it is common prac-
tice to show only the bottom half or the top half of an R matrix. The entries in the main diagonal are 
often omitted as well, since they are all ones—correlations of variables with themselves.8

Table 1.2 shows the correlation matrix for X2, X3, and X4 of Table 1.1. The value .85 is the cor-
relation between X2 and X3 and it appears twice in the matrix (as do other values). Other correlations 
are as indicated in the table.

Many programs allow the researcher a choice between analysis of a correlation matrix and 
analysis of a variance–covariance matrix. If the correlation matrix is analyzed, a unit-free result is pro-
duced. That is, the solution reflects the relationships among the variables but not in the metric in which 
they are measured. If the metric of the scores is somewhat arbitrary, analysis of R is appropriate.

TABLE 1.2 Correlation Matrix for Part 
of Hypothetical Data for Table 1.1

X2 X3 X4

X2 1.00 .85 -.13

R = X3 .85 1.00 -.46

X4 -.13 -.46 1.00

8Alternatively, other information such as standard deviations is inserted.
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1.6.3 The Variance–Covariance Matrix

If scores are measured along a meaningful scale, it is sometimes appropriate to analyze a variance–
covariance matrix. A variance–covariance matrix, �, is also square and symmetrical, but the elements 
in the main diagonal are the variances of each variable, and the off-diagonal elements are covari-
ances between pairs of different variables.

Variances, as you recall, are averaged squared deviations of each score from the mean of the 
scores. Since the deviations are averaged, the number of scores included in computation of a vari-
ance is not relevant, but the metric in which the scores are measured is relevant. Scores measured in 
large numbers tend to have large numbers as variances, and scores measured in small numbers tend 
to have small variances.

Covariances are averaged cross-products (product of the deviation between one variable and 
its mean and the deviation between a second variable and its mean). Covariances are similar to 
correlations except that they, like variances, retain information concerning the scales in which the 
variables are measured. The variance–covariance matrix for the continuous data in Table 1.1 ap-
pears in Table 1.3.

1.6.4 The Sum-of-Squares and Cross-Products Matrix

The matrix, S, is a precursor to the variance–covariance matrix in which deviations are not yet aver-
aged. Thus, the size of the entries depends on the number of cases as well as on the metric in which 
the elements were measured. The sum-of-squares and cross-products matrix for X2, X3, and X4 in
Table 1.1 appears in Table 1.4.

The entry in the major diagonal of the matrix S is the sum of squared deviations of scores 
from the mean for that variable, hence, “sum of squares,” or SS. That is, for each variable, the value 
in the major diagonal is

SS(Xj) = a
N

i=1
(Xij - Xj)2 (1.2)

where i = 1, 2, . . . , N
N = the number of subjects
j = the variable identifier

Xij = the score on variable j by subject i
Xj = the mean of all scores on the jth variable 

TABLE 1.3 Variance–Covariance Matrix 
for Part of Hypothetical Data of Table 1.1

X2 X3 X4

X2 7026.66 32.80 −6.00

π = X3 32.80 .21 −.12

X4 −6.00 −.12 .30

TABLE 1.4 Sum-of-Squares and Cross-
Products Matrix for Part of Hypothetical 
Data of Table 1.1

X2 X3 X4

X2 35133.33 164.00 -30.00

S = X3 164.00 1.05 -0.58

X4 -30.00 -0.58 1.50
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For example, for X4, the mean is 1.5. The sum of squared deviations around the mean and the 
diagonal value for the variable is

a
6

i = 1
(Xi4 - X4)

2 = (1 - 1.5)2 + (2 - 1.5)2 + (1 - 1.5)2 + (2 - 1.5)2 + (1 - 1.5)2 + (2 - 1.5)2

= 1.50

The off-diagonal elements of the sum-of-squares and cross-products matrix are the cross-products—
the sum of products (SP)—of the variables. For each pair of variables, represented by row and col-
umn labels in Table 1.4, the entry is the sum of the product of the deviation of one variable around 
its mean times the deviation of the other variable around its mean.

SP(Xj Xk) = a
N

i = 1
(Xij - Xj)(Xik - Xk) (1.3)

where j identifies the first variable, k identifies the second variable, and all other terms 
are as defined in Equation 1.1. (Note that if j = k, Equation 1.3 becomes identical to 
Equation 1.2.) 

For example, the cross-product term for variables X2 and X3 is

a
N

i = 1
(Xi2 - X2)(Xi3 - X3) = (500 - 533.33)(3.20 - 3.275) + (420 - 533.33)(2.50 - 3.275)

      + g + (600 - 533.33)(3.25 - 3.275) = 164.00

Most computations start with S and proceed to � or R. The progression from a sum-of-
squares and cross-products matrix to a variance–covariance matrix is simple.

� =
1

N - 1
S (1.4)

The variance–covariance matrix is produced by dividing every element in the sum-of-
squares and cross-products matrix by N − 1, where N is the number of cases.

The correlation matrix is derived from an S matrix by dividing each sum-of-squares by itself 
(to produce the 1s in the main diagonal of R) and each cross-product of the S matrix by the square 
root of the product of the sum-of-squared deviations around the mean for each of the variables in the 
pair. That is, each cross-product is divided by

Denominator(Xj Xk) = 2�(Xij - Xj)
2�(Xik - Xk)

2 (1.5)

where terms are defined as in Equation 1.3.

For some multivariate operations, it is not necessary to feed the data matrix to a computer 
program. Instead, an S or an R matrix is entered, with each row (representing a variable) starting a 
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new line. Often, considerable computing time and expense are saved by entering one or the other of 
these matrices rather than raw data.

1.6.5 Residuals

Often a goal of analysis or test of its efficiency is its ability to reproduce the values of a DV or the 
correlation matrix of a set of variables. For example, we might want to predict scores on the GRE
(X2) of Table 1.1 from knowledge of GPA (X3) and gender (X4). After applying the proper statistical 
operations—a multiple regression in this case—a predicted GRE score for each student is computed 
by applying the proper weights for GPA and gender to the GPA, and gender scores for each student. 
But because we already obtained GRE scores for the sample of students, we are able to compare the 
predicted score with the obtained GRE score. The difference between the predicted and obtained 
values is known as the residual and is a measure of error of prediction.

In most analyses, the residuals for the entire sample sum to zero. That is, sometimes the 
prediction is too large and sometimes it is too small, but the average of all the errors is zero. The 
squared value of the residuals, however, provides a measure of how good the prediction is. When 
the predictions are close to the obtained values, the squared errors are small. The way that the re-
siduals are distributed is of further interest in evaluating the degree to which the data meet the as-
sumptions of multivariate analyses, as discussed in Chapter 4 and elsewhere.

1.7 Organization of the Book

Chapter 2 gives a guide to the multivariate techniques that are covered in this book and places them 
in context with the more familiar univariate and bivariate statistics where possible. Chapter 2 in-
cludes a flow chart that organizes statistical techniques on the basis of the major research questions 
asked. Chapter 3 provides a brief review of univariate and bivariate statistical techniques for those 
who are interested.

Chapter 4 deals with the assumptions and limitations of multivariate statistical methods. 
Assessment and violation of assumptions are discussed, along with alternatives for dealing with 
violations when they occur. The reader is guided back to Chapter 4 frequently in Chapters 5 through 
16 and 18 (online).

Chapters 5 through 16 and 18 (online) cover specific multivariate techniques. They include 
descriptive, conceptual sections as well as a guided tour through a real-world data set for which the 
analysis is appropriate. The tour includes an example of a Results section describing the outcome of 
the statistical analysis appropriate for submission to a professional journal. Each technique chapter 
includes a comparison of computer programs. You may want to vary the order in which you cover 
these chapters.

Chapter 17 is an attempt to integrate univariate, bivariate, and multivariate statistics through 
the multivariate general linear model. The common elements underlying all the techniques are em-
phasized, rather than the differences among them. Chapter 17 is meant to pull together the material 
in the remainder of the book with a conceptual rather than pragmatic emphasis. Some may wish to 
consider this material earlier, for instance, immediately after Chapter 2.
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2.1 Research Questions and Associated 
Techniques

This chapter organizes the statistical techniques in this book by major research question. A decision 
tree at the end of this chapter leads you to an appropriate analysis for your data. On the basis of your 
major research question and a few characteristics of your data set, you determine which statistical 
technique(s) is appropriate. The first and the most important criterion for choosing a technique 
is the major research question to be answered by the statistical analysis. Here, the research ques-
tions are categorized into degree of relationship among variables, significance of group differences, 
prediction of group membership, structure, and questions that focus on the time course of events. 
This chapter emphasizes differences in research questions answered by the different techniques 
described in nontechnical terms, whereas Chapter 17 provides an integrated overview of the tech-
niques with some basic equations used in the multivariate general linear model.1

2.1.1 Degree of Relationship Among Variables

If the major purpose of analysis is to assess the associations among two or more variables, some form 
of correlation/regression or chi-square is appropriate. The choice among five different statistical tech-
niques is made by determining the number of independent and dependent variables, the nature of the 
variables (continuous or discrete), and whether any of the IVs are best conceptualized as covariates.2

2.1.1.1 Bivariate r

Bivariate correlation and regression, as reviewed in Chapter 3, assess the degree of relationship be-
tween two continuous variables, such as belly dancing skill and years of musical training. Bivariate 
correlation measures the association between two variables with no distinction necessary between 
IV and DV. Bivariate regression, on the other hand, predicts a score on one variable from knowledge 
of the score on another variable (e.g., predicts skill in belly dancing as measured by a single index, 
such as knowledge of steps, from a single predictor, such as years of musical training).

The predicted variable is considered the DV, whereas the predictor is considered the IV. 
Bivariate correlation and regression are not multivariate techniques, but they are integrated into the 
general linear model in Chapter 17.

2 A Guide to Statistical 
Techniques

Using the Book

2If the effects of some IVs are assessed after the effects of other IVs are statistically removed, the latter are called covariates.

1You may find it helpful to read Chapter 17 now instead of waiting for the end.
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2.1.1.2 Multiple R

Multiple correlation assesses the degree to which one continuous variable (the DV) is related to a set 
of other (usually) continuous variables (the IVs) that have been combined to create a new, composite
variable. Multiple correlation is a bivariate correlation between the original DV and the composite 
variable created from the IVs. For example, how large is the association between the belly dancing 
skill and the number of IVs, such as years of musical training, body flexibility, and age?

Multiple regression is used to predict the score on the DV from scores on several IVs. In the 
preceding example, belly dancing skill measured by knowledge of steps is the DV (as it is for bi-
variate regression), and we have added body flexibility and age to years of musical training as IVs. 
Other examples are prediction of success in an educational program from scores on a number of ap-
titude tests, prediction of the sizes of earthquakes from a variety of geological and electromagnetic 
variables, or stock market behavior from a variety of political and economic variables.

As for bivariate correlation and regression, multiple correlation emphasizes the degree of 
relationship between the DV and the IVs, whereas multiple regression emphasizes the prediction of 
the DV from the IVs. In multiple correlation and regression, the IVs may or may not be correlated 
with each other. With some ambiguity, the techniques also allow assessment of the relative contribu-
tion of each of the IVs toward predicting the DV, as discussed in Chapter 5.

2.1.1.3 Sequential R

In sequential (sometimes called hierarchical) multiple regression, IVs are given priorities by the 
researcher before their contributions to the prediction of the DV are assessed. For example, the re-
searcher might first assess the effects of age and flexibility on belly dancing skill before looking at the 
contribution that years of musical training makes to that skill. Differences among dancers in age and 
flexibility are statistically “removed” before assessment of the effects of years of musical training.

In the example of an educational program, success of outcome might first be predicted from 
variables such as age and IQ. Then scores on various aptitude tests are added to see if prediction of 
outcome is enhanced after adjustment for age and IQ.

In general, then, the effects of IVs that enter first are assessed and removed before the effects 
of IVs that enter later are assessed. For each IV in a sequential multiple regression, higher-priority 
IVs act as covariates for lower-priority IVs. The degree of relationship between the DV and the 
IVs is reassessed at each step of the sequence. That is, multiple correlation is recomputed as each 
new IV (or set of IVs) is added. Sequential multiple regression, then, is also useful for developing 
a reduced set of IVs (if that is desired) by determining when IVs no longer add to predictability. 
Sequential multiple regression is discussed in Chapter 5.

2.1.1.4 Canonical R

In canonical correlation, there are several continuous DVs as well as several continuous IVs, and 
the goal is to assess the relationship between the two sets of variables. For example, we might study 
the relationship between a number of indices of belly dancing skill (the DVs, such as knowledge of 
steps, ability to play finger cymbals, and responsiveness to the music) and the IVs (such as flexibil-
ity, musical training, and age). Thus, canonical correlation adds DVs (e.g., further indices of belly 
dancing skill) to the single index of skill used in bivariate and multiple correlations, so that there are 
multiple DVs as well as multiple IVs in canonical correlation.
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Or we might ask whether there is a relationship among achievements in arithmetic, reading, 
and spelling as measured in elementary school and a set of variables reflecting early childhood 
development (e.g., age at first speech, walking, and toilet training). Such research questions are 
answered by canonical correlation, the subject of Chapter 12.

2.1.1.5 Multiway Frequency Analysis

A goal of multiway frequency analysis is to assess relationships among discrete variables where 
none is considered a DV. For example, you might be interested in the relationships among gender, 
occupational category, and preferred type of reading material. Or the research question might in-
volve relationships among gender, categories of religious affiliation, and attitude toward abortion. 
Chapter 16 deals with multiway frequency analysis.

When one of the variables is considered a DV with the rest serving as IVs, multiway fre-
quency analysis is called logit analysis, as described in Section 2.1.3.3.

2.1.1.6 Multilevel Modeling

In many research applications, cases are nested in (normally occurring) groups, which may, in turn, 
be nested in other groups. The quintessential example is students nested in classrooms, which are, in 
turn, nested in schools. (Another common example involves repeated measures where, e.g., scores 
are nested within students who are, in turn, nested in classrooms, which, in turn, are nested in 
schools.) However, students in the same classroom are likely to have scores that correlate more 
highly than those of students in general. This creates problems with an analysis that pools all stu-
dents into one very large group, ignoring classroom and school designations. Multilevel modeling 
(Chapter 15) is a somewhat complicated but increasingly popular strategy for analyzing data in 
these situations.

2.1.2 Significance of Group Differences

When subjects are randomly assigned to groups (treatments), the major research question usually 
is the extent to which statistically significant mean differences on DVs are associated with group 
membership. Once significant differences are found, the researcher often assesses the degree of 
relationship (effect size or strength of association) between IVs and DVs.

The choice among techniques hinges on the number of IVs and DVs and whether some vari-
ables are conceptualized as covariates. Further distinctions are made as to whether all DVs are 
measured on the same scale and how within-subjects IVs are to be treated.

2.1.2.1 One-Way ANOVA and t Test

The two statistics, reviewed in Chapter 3, one-way ANOVA and t test, are strictly univariate in 
nature and are adequately covered in most standard statistical texts.

2.1.2.2 One-Way ANCOVA

One-way analysis of covariance is designed to assess group differences on a single DV after the 
effects of one or more covariates are statistically removed. Covariates are chosen because of their 
known association with the DV; otherwise, there is no point in using them. For example, age and 
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degree of reading disability are usually related to the outcome of a program of educational therapy 
(the DV). If groups are formed by randomly assigning children to different types of educational 
therapies (the IV), it is useful to remove differences in age and degree of reading disability before 
examining the relationship between outcome and type of therapy. Prior differences among children 
in age and reading disability are used as covariates. The ANCOVA question is: Are there mean dif-
ferences in outcome associated with type of educational therapy after adjusting for differences in 
age and degree of reading disability?

ANCOVA gives a more powerful look at the IV–DV relationship by minimizing error vari-
ance (cf. Chapter 3). The stronger the relationship between the DV and the covariate(s), the greater 
the power of ANCOVA over ANOVA. ANCOVA is discussed in Chapter 6.

ANCOVA is also used to adjust for differences among groups, when groups are naturally oc-
curring and random assignment to them is not possible. For example, one might ask if attitude toward 
abortion (the DV) varies as a function of religious affiliation. However, it is not possible to randomly 
assign people to religious affiliation. In this situation, there could easily be other systematic differ-
ences among groups, such as level of education, that are also related to attitude toward abortion. 
Apparent differences among religious groups might well be due to differences in education rather 
than differences in religious affiliation. To get a “purer” measure of the relationship between attitude 
and religious affiliation, attitude scores are first adjusted for educational differences, that is, educa-
tion is used as a covariate. Chapter 6 also discusses this somewhat problematical use of ANCOVA.

When there are more than two groups, planned or post hoc comparisons are available in 
ANCOVA just as in ANOVA. With ANCOVA, selected and/or pooled group means are adjusted for 
differences on covariates before differences in means on the DV are assessed.

2.1.2.3 Factorial ANOVA

Factorial ANOVA, reviewed in Chapter 3, is the subject of numerous statistics texts (e.g., Brown, 
Michels, & Winer, 1991; Keppel & Wickens, 2004; Myers & Well, 2002; Tabachnick & Fidell, 2007) 
and is introduced in most elementary texts. Although there is only one DV in factorial ANOVA, its 
place within the general linear model is discussed in Chapter 17.

2.1.2.4 Factorial ANCOVA

Factorial ANCOVA differs from one-way ANCOVA only in that there is more than one IV. The de-
sirability and the use of covariates are the same. For instance, in the educational therapy example of 
Section 2.1.2.2, another interesting IV might be gender of the child. The effects of gender, the type 
of educational therapy, and their interaction on the outcome are assessed after adjusting for age and 
prior degree of reading disability. The interaction of gender with type of therapy asks if boys and 
girls differ as to which type of educational therapy is more effective after adjustment for covariates.

2.1.2.5 Hotelling’s T2

Hotelling’s T2 is used when the IV has only two groups and there are several DVs. For example, 
there might be two DVs, such as score on an academic achievement test and attention span in the 
classroom, and two levels of type of educational therapy, emphasis on perceptual training versus 
emphasis on academic training. It is not legitimate to use separate t tests for each DV to look for dif-
ferences between groups because that inflates Type I error due to unnecessary multiple significance 
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tests with (likely) correlated DVs. Instead, Hotelling’s T2 is used to see if groups differ on the two 
DVs combined. The researcher asks if there are non-chance differences in the centroids (average on 
the combined DVs) for the two groups.

Hotelling’s T 2 is a special case of multivariate analysis of variance, just as the t test is a spe-
cial case of univariate analysis of variance, when the IV has only two groups. Multivariate analysis 
of variance is discussed in Chapter 7.

2.1.2.6 One-Way MANOVA

Multivariate analysis of variance evaluates differences among centroids (composite means) for a set 
of DVs when there are two or more levels of an IV (groups). MANOVA is useful for the educational 
therapy example in the preceding section with two groups and also when there are more than two 
groups (e.g., if a nontreatment control group is added).

With more than two groups, planned and post hoc comparisons are available. For example, if 
a main effect of treatment is found in MANOVA, it might be interesting to ask post hoc if there are 
differences in the centroids of the two groups given different types of educational therapies, ignor-
ing the control group, and, possibly, if the centroid of the control group differs from the centroid of 
the two educational therapy groups combined.

Any number of DVs may be used; the procedure deals with correlations among them, and the 
entire analysis is accomplished within the preset level for Type I error. Once statistically significant 
differences are found, techniques are available to assess which DVs are influenced by which IV. For 
example, assignment to treatment group might affect the academic DV but not attention span.

MANOVA is also available when there are within-subject IVs. For example, children might 
be measured on both DVs three times: 3, 6, and 9 months after therapy begins. MANOVA is dis-
cussed in Chapter 7 and a special case of it (profile analysis, in which the within-subjects IV is 
treated multivariately) in Chapter 8. Profile analysis is an alternative to one-way between-subjects 
MANOVA when the DVs are all measured on the same scale. Discriminant analysis is an alternative 
to one-way between-subjects designs, as described in Section 2.1.3.1 and Chapter 9.

2.1.2.7 One-Way MANCOVA

In addition to dealing with multiple DVs, multivariate analysis of variance can be applied to prob-
lems when there are one or more covariates. In this case, MANOVA becomes multivariate analysis 
of covariance—MANCOVA. In the educational therapy example of Section 2.1.2.6, it might be 
worthwhile to adjust the DV scores for pretreatment differences in academic achievement and at-
tention span. Here the covariates are pretests of the DVs, a classic use of covariance analysis. After 
adjustment for pretreatment scores, differences in posttest scores (DVs) can be more clearly attrib-
uted to treatment (the two types of educational therapies plus control group that make up the IV).

In the one-way ANCOVA example of religious groups in Section 2.1.2.2, it might be interest-
ing to test political liberalism versus conservatism and attitude toward ecology, as well as attitude 
toward abortion, to create three DVs. Here again, differences in attitudes might be associated with 
both differences in religion and differences in education (which, in turn, varies with religious af-
filiation). In the context of MANCOVA, education is the covariate, religious affiliation the IV, and 
attitudes the DVs. Differences in attitudes among groups with different religious affiliations are as-
sessed after adjustment for differences in education.
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If the IV has more than two levels, planned and post hoc comparisons are useful, with ad-
justment for covariates. MANCOVA (Chapter 7) is available for both the main analysis and the 
comparisons.

2.1.2.8 Factorial MANOVA

Factorial MANOVA is the extension of MANOVA to designs with more than one IV and mul-
tiple DVs. For example, gender (a between-subjects IV) might be added to the type of educational 
therapy (another between-subjects IV) with both academic achievement and attention span used 
as DVs. In this case, the analysis is a two-way between-subjects factorial MANOVA that provides 
tests of the main effects of gender and type of educational therapy and their interaction on the cen-
troids of the DVs.

Duration of therapy (3, 6, and 9 months) might be added to the design as a within-subjects IV 
with type of educational therapy a between-subjects IV to examine the effects of duration, the type 
of educational therapy, and their interaction on the DVs. In this case, the analysis is a factorial 
MANOVA with one between- and one within-subjects IV.

Comparisons can be made among margins or cells in the design, and the influence of various 
effects on combined or individual DVs can be assessed. For instance, the researcher might plan (or 
decide post hoc) to look for linear trends in scores associated with duration of therapy for each type 
of therapy separately (the cells) or across all types of therapies (the margins). The search for linear 
trend could be conducted among the combined DVs or separately for each DV with appropriate 
adjustments for Type I error rate.

Virtually any complex ANOVA design (cf. Chapter 3) with multiple DVs can be analyzed 
through MANOVA, given access to appropriate computer programs. Factorial MANOVA is covered 
in Chapter 7.

2.1.2.9 Factorial MANCOVA

It is sometimes desirable to incorporate one or more covariates into a factorial MANOVA design 
to produce factorial MANCOVA. For example, pretest scores on academic achievement and atten-
tion span could serve as covariates for the two-way between-subjects design with gender and type 
of educational therapy serving as IVs and posttest scores on academic achievement and attention 
span serving as DVs. The two-way between-subjects MANCOVA provides tests of gender, type of 
educational therapy, and their interaction on adjusted, combined centroids for the DVs.

Here again, procedures are available for comparisons among groups or cells and for eval-
uating the influences of IVs and their interactions on the various DVs. Factorial MANCOVA is 
discussed in Chapter 7.

2.1.2.10 Profile Analysis of Repeated Measures

A special form of MANOVA is available when all of the DVs are measured on the same scale (or on 
scales with the same psychometric properties) and you want to know if groups differ on the scales. 
For example, you might use the subscales of the Profile of Mood States as DVs to assess whether 
mood profiles differ between a group of belly dancers and a group of ballet dancers.

There are two ways to conceptualize this design. The first is as a one-way between-subjects 
design in which the IV is the type of dancer and the DVs are the Mood States subscales; one-way 
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MANOVA provides a test of the main effect of type of dancer on the combined DVs. The second 
way is as a profile study with one grouping variable (type of dancer) and the several subscales; 
profile analysis provides tests of the main effects of type of dancer and of subscales as well as their 
interaction (frequently the effect of greatest interest to the researcher).

If there is a grouping variable and a repeated measure such as trials in which the same DV is 
measured several times, there are three ways to conceptualize the design. The first is as a one-way 
between-subjects design with several DVs (the score on each trial); MANOVA provides a test of 
the main effect of the grouping variable. The second is as a two-way between- and within-subjects 
design; ANOVA provides tests of groups, trials, and their interaction, but with some very restric-
tive assumptions that are likely to be violated. Third is as a profile study, in which profile analysis 
provides tests of the main effects of groups and trials and their interaction, but without the restrictive 
assumptions. This is sometimes called the multivariate approach to repeated-measures ANOVA.

Finally, you might have a between- and within-subjects design (groups and trials), in which 
several DVs are measured on each trial. For example, you might assess groups of belly and ballet 
dancers on the Mood States subscales at various points in their training. This application of profile 
analysis is frequently referred to as doubly multivariate. Chapter 8 deals with all these forms of 
profile analysis.

2.1.3 Prediction of Group Membership

In research where groups are identified, the emphasis is frequently on predicting group membership 
from a set of variables. Discriminant analysis, logit analysis, and logistic regression are designed to 
accomplish this prediction. Discriminant analysis tends to be used when all IVs are continuous and 
nicely distributed, logit analysis when IVs are all discrete, and logistic regression when IVs are a 
mix of continuous and discrete and/or poorly distributed.

2.1.3.1 One-Way Discriminant Analysis

In one-way discriminant analysis, the goal is to predict membership in groups (the DV) from a set 
of IVs. For example, the researcher might want to predict category of religious affiliation from at-
titude toward abortion, liberalism versus conservatism, and attitude toward ecological issues. The 
analysis tells us if group membership is predicted at a rate that is significantly better than chance. 
Or the researcher might try to discriminate belly dancers from ballet dancers from scores on Mood 
States subscales.

These are the same questions as those addressed by MANOVA, but turned around. Group 
membership serves as the IV in MANOVA and the DV in discriminant analysis. If groups differ 
significantly on a set of variables in MANOVA, the set of variables significantly predicts group 
membership in discriminant analysis. One-way between-subjects designs can be fruitfully analyzed 
through either procedure and are often best analyzed with a combination of both procedures.

As in MANOVA, there are techniques for assessing the contribution of various IVs to the predic-
tion of group membership. For example, the major source of discrimination among religious groups 
might be abortion attitude, with little predictability contributed by political and ecological attitudes.

In addition, discriminant analysis offers classification procedures to evaluate how well indi-
vidual cases are classified into their appropriate groups on the basis of their scores on the IVs. One-
way discriminant analysis is covered in Chapter 9.
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2.1.3.2 Sequential One-Way Discriminant Analysis

Sometimes IVs are assigned priorities by the researcher, so their effectiveness as predictors of group 
membership is evaluated in the established order in sequential discriminant analysis. For exam-
ple, when attitudinal variables are predictors of religious affiliation, variables might be prioritized 
according to their expected contribution to prediction, with abortion attitude given the highest pri-
ority, political liberalism versus conservatism second priority, and ecological attitude the lowest 
priority. Sequential discriminant analysis first assesses the degree to which religious affiliation is 
predicted from abortion attitude at a better-than-chance rate. Gain in prediction is then assessed 
with the addition of political attitude, and then with the addition of ecological attitude.

Sequential analysis provides two types of useful information. First, it is helpful in eliminat-
ing predictors that do not contribute more than predictors already in the analysis. For example, if 
political and ecological attitudes do not add appreciably to abortion attitude in predicting religious 
affiliation, they can be dropped from further analysis. Second, sequential discriminant analysis is 
a covariance analysis. At each step of the hierarchy, higher-priority predictors are covariates for 
lower-priority predictors. Thus, the analysis permits you to assess the contribution of a predictor 
with the influence of other predictors removed.

Sequential discriminant analysis is also useful for evaluating sets of predictors. For example, 
if a set of continuous demographic variables is given higher priority than an attitudinal set in predic-
tion of group membership, one can see if attitudes significantly add to prediction after adjustment 
for demographic differences. Sequential discriminant analysis is discussed in Chapter 9. However, 
it is usually more efficient to answer such questions through sequential logistic regression, particu-
larly when some of the predictor variables are continuous and others discrete (see Section 2.1.3.5).

2.1.3.3 Multiway Frequency Analysis (Logit)

The logit form of multiway frequency analysis may be used to predict group membership when all 
of the predictors are discrete. For example, you might want to predict whether someone is a belly 
dancer (the DV) from knowledge of gender, occupational category, and preferred type of reading 
material (science fiction, romance, history, and statistics).

This technique allows evaluation of the odds that a case is in one group (e.g., belly dancer) 
based on membership in various categories of predictors (e.g., female professors who read science 
fiction). This form of multiway frequency analysis is discussed in Chapter 16.

2.1.3.4 Logistic Regression

Logistic regression allows prediction of group membership when predictors are continuous, dis-
crete, or a combination of the two. Thus, it is an alternative to both discriminant analysis and logit 
analysis. For example, prediction of whether someone is a belly dancer may be based on gender, 
occupational category, preferred type of reading material, and age.

Logistic regression allows one to evaluate the odds (or probability) of membership in one of the 
groups (e.g., belly dancer) based on the combination of values of the predictor variables (e.g., 35-year-
old female professors who read science fiction). Chapter 10 covers logistic regression analysis.

2.1.3.5 Sequential Logistic Regression

As in sequential discriminant analysis, sometimes predictors are assigned priorities and then 
assessed in terms of their contribution to prediction of group membership given their priority. For 
example, one can assess how well the preferred type of reading material predicts whether someone 
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is a belly dancer after adjusting for differences associated with age, gender, and occupational cat-
egory. Sequential logistic regression is also covered in Chapter 10.

2.1.3.6 Factorial Discriminant Analysis

If groups are formed on the basis of more than one attribute, prediction of group membership from a 
set of IVs can be performed through factorial discriminant analysis. For example, respondents might 
be classified on the basis of both gender and religious affiliation. One could use attitudes toward 
abortion, politics, and ecology to predict gender (ignoring religion) or religion (ignoring gender), 
or both gender and religion. But this is the same problem as addressed by factorial MANOVA. For 
a number of reasons, programs designed for discriminant analysis do not readily extend to factorial 
arrangements of groups. Unless some special conditions are met (cf. Chapter 9), it is usually better 
to rephrase the research question so that factorial MANOVA can be used.

2.1.3.7 Sequential Factorial Discriminant Analysis

Difficulties inherent in factorial discriminant analysis extend to sequential arrangements of predictors. 
Usually, however, questions of interest can readily be rephrased in terms of factorial MANCOVA.

2.1.4 Structure

Another set of questions is concerned with the latent structure underlying a set of variables. Depending 
on whether the search for structure is empirical or theoretical, the choice is principal components, fac-
tor analysis, or structural equation modeling. Principal components is an empirical approach, whereas 
factor analysis and structural equation modeling tend to be theoretical approaches.

2.1.4.1 Principal Components

If scores on numerous variables are available from a group of subjects, the researcher might ask 
if and how the variables group together. Can the variables be combined into a smaller number of 
supervariables on which the subjects differ? For example, suppose people are asked to rate the 
effectiveness of numerous behaviors for coping with stress (e.g., talking to a friend, going to a 
movie, jogging, and making lists of ways to solve the problem). The numerous behaviors may be 
empirically related to just a few basic coping mechanisms, such as increasing or decreasing social 
contact, engaging in physical activity, and instrumental manipulation of stress producers.

Principal components analysis uses the correlations among the variables to develop a small 
set of components that empirically summarizes the correlations among the variables. It provides 
a description of the relationship rather than a theoretical analysis. This analysis is discussed in 
Chapter 13.

2.1.4.2 Factor Analysis

When there is a theory about underlying structure or when the researcher wants to understand un-
derlying structure, factor analysis is often used. In this case, the researcher believes that responses 
to many different questions are driven by just a few underlying structures called factors. In the 
example of mechanisms for coping with stress, one might hypothesize ahead of time that there are 
two major factors: general approach to problems (escape vs. direct confrontation) and the use of 
social supports (withdrawing from people vs. seeking them out).
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Factor analysis is useful in developing and assessing theories. What is the structure of per-
sonality? Are there some basic dimensions of personality on which people differ? By collecting 
scores from many people on numerous variables that may reflect different aspects of personality, 
researchers address questions about underlying structure through factor analysis, as discussed in 
Chapter 13.

2.1.4.3 Structural Equation Modeling

Structural equation modeling combines factor analysis, canonical correlation, and multiple regres-
sion. Like factor analysis, some of the variables can be latent, whereas others are directly observed. 
Like canonical correlation, there can be many IVs and many DVs. And similar to multiple regres-
sion, the goal may be to study the relationships among many variables.

For example, one may want to predict birth outcome (the DVs) from several demographic, 
personality, and attitudinal measures (the IVs). The DVs are a mix of several observed variables such 
as birth weight, a latent assessment of mother’s acceptance of the child based on several measured 
attitudes, and a latent assessment of infant responsiveness; the IVs are several demographic variables 
such as socioeconomic status, race, and income, several latent IVs based on personality measures, 
and prebirth attitudes toward parenting.

The technique evaluates whether the model provides a reasonable fit to the data and the contri-
bution of each of the IVs to the DVs. Comparisons among alternative models, as well as evaluation 
of differences between groups, are also possible. Chapter 14 covers structural equation modeling.

2.1.5 Time Course of Events

Two techniques focus on the time course of events. Survival/failure analysis asks how long it takes 
for something to happen. Time-series analysis looks at the change in a DV over the course of time.

2.1.5.1 Survival/Failure Analysis

Survival/failure analysis is a family of techniques dealing with the time it takes for something to 
happen: a cure, a failure, an employee leaving, a relapse, a death, and so on. For example, what is 
the life expectancy of someone diagnosed with breast cancer? Is the life expectancy longer with 
chemotherapy? Or, in the context of failure analysis, what is the expected time before a hard disk 
fails? Do DVDs last longer than CDs?

Two major varieties of survival/failure analysis are life tables, which describe the course of 
survival of one or more groups of cases (e.g., DVDs and CDs), and determination of whether sur-
vival time is influenced by some variables in a set. The latter technique encompasses a set of regres-
sion techniques in which the DV is the survival time. Chapter 11 covers this analysis.

2.1.5.2 Time-Series Analysis

Time-series analysis is used when the DV is measured over a very large number of time periods—at 
least 50; time is the major IV. Time-series analysis is used to forecast future events (stock markets’ 
indices, crime statistics, etc.) based on a long series of past events. Time-series analysis is also used 
to evaluate the effect of an intervention, such as implementation of a water-conservation program by 
observing water usage for many periods before and after the intervention. Chapter 18 is available on 
the publisher’s Web site (www.pearsonhighered.com/tabachnick).
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2.2 Some Further Comparisons

When assessing the degree of relationship among variables, bivariate r is appropriate when only two 
variables (one DV and one IV) are involved, while multiple R is appropriate when there are several 
variables on the IV side (one DV and several IVs). The multivariate analysis adjusts for correlations 
that are likely present among the IVs. Canonical correlation is available to study the relationship be-
tween several DVs and several IVs, adjusting for correlations among all of them. These techniques 
are usually applied to continuous (and dichotomous) variables. When all variables are discrete, 
multiway frequency analysis (vastly expanded chi square) is the choice.

Numerous analytic strategies are available to study mean differences among groups, depend-
ing on whether there is a single DV or multiple DVs, and whether there are covariates. The familiar 
ANOVA (and ANCOVA) is used with a single DV, while MANOVA (and MANCOVA) is used 
when there are multiple DVs. Essentially, MANOVA uses weights to combine multiple DVs into a 
new DV and then performs ANOVA.

A third important issue when studying mean differences among groups is whether there are 
repeated measures (the familiar within-subjects ANOVA). You may recall the restrictive and often-
violated assumption of sphericity with this type of ANOVA. The two multivariate extensions of 
repeated-measures ANOVA (profile analysis of repeated measures and doubly multivariate pro-
file analysis) circumvent this assumption by combining the DVs; MANOVA combines different 
DVs, while profile analysis combines the same DV measured repeatedly. Another variation of pro-
file analysis (here called profile analysis of repeated measures) is a multivariate extension of the 
familiar “mixed” (between-within-subjects) ANOVA. None of the multivariate extensions is usually 
as powerful as its univariate “parent.”

The DV in both discriminant analysis and logistic regression is a discrete variable. In dis-
criminant analysis, the IVs are usually continuous variables. A complication arises with discriminant 
analysis when the DV has more than two groups because there can be as many ways to distinguish 
the groups from each other as there are degrees of freedom for the DV. For example, if there are three 
levels of the DV, there are two degrees of freedom and therefore two potential ways to combine the 
IVs to separate the levels of the DV. The first combination might, for instance, separate members of 
the first group from the second and third groups (but not them from each other); the second combina-
tion might, then, separate members of group two from group three. Those of you familiar with com-
parisons in ANOVA probably recognize this as a familiar process for working with more than two 
groups; the difference is that in ANOVA you create the comparison coefficients used in the analysis 
while in discriminant analysis, the analysis tells you how the groups are best discriminated from each 
other (if they are).

Logistic regression analyzes a discrete DV too, but the IVs are often a mix of continuous 
and discrete variables. For that reason, the goal is to predict the probability that a case will fall into 
various levels of the DV rather than group membership per se. In this way, the analysis closely 
resembles the familiar chi-square analysis. In logistic regression, as in all multivariate techniques, 
the IVs are combined, but in an exponent rather than directly. That makes the analyses conceptually 
more difficult, but well worth the effort, especially in the medical/biological sciences where the risk 
ratios, a product of logistic regression, are routinely discussed.

There are several procedures for examining structure (that become increasingly “speculative”). 
Two very closely aligned techniques are principal components and factor analyses. These techniques 
are interesting because there is no DV (or, for that matter, IVs). Instead, there is just a bunch of 
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variables, with the goal of analysis to discover which of them “go” together. The idea is that some 
latent, underlying structure (e.g., several different factors representing components of personality) is 
driving similar responses to correlated sets of questions. The trick for the researcher is to divine the 
“meaning” of the factors that are developed during analysis. The technique of principal components 
provides an empirical solution while factor analysis provides a more theoretical solution.

Structural equation modeling combines multiple regression with factor analysis. There is a 
DV in this technique, but the IVs can be both discrete and continuous, both latent and observed. 
That is, the researcher tries to predict the values on an observed DV (continuous or discrete) using 
both observed variables (continuous and discrete) and the latent ones (factors derived from many 
observed variables during the analysis). Structural equation modeling is undergoing rapid develop-
ment at present, with expansion to MANOVA-like analyses, longitudinal analysis, sophisticated 
procedures for handling missing data, and the like.

Multilevel modeling assesses the significance of variables where the cases are nested into 
different levels (e.g., students nested in classes nested in schools; patients nested in wards nested 
in hospitals). There is a DV at the lowest (student) level, but some IVs pertain to students, some to 
classes, and some to schools. The analysis takes into account the (likely) higher correlations among 
scores of students nested in the same class and of classes nested in the same school. Relationships
(regressions) developed at one level (e.g., predicting student scores on the SAT from parental edu-
cational level) become the DVs for the next level, and so on.

Finally, we present two techniques for analyzing the time course of events, survival analysis 
and time-series analysis. One underlying IV for both of these is time; there may be other IVs as 
well. In survival analysis, the goal is often to determine whether a treated group survives longer 
than an untreated group, given the current standard of care. (In manufacturing, it is called failure 
analyses, and the goal, for instance, is to see if a part manufactured from a new alloy fails later than 
the part manufactured from the current alloy.) One advantage of this technique, at least in medicine, 
is its ability to analyze data for cases that have disappeared for one reason or another (moved away, 
gone to another clinic for treatment, or died of another cause) before the end of the study; these are 
called censored cases.

Time-series analysis tracks the pattern of the DV over multiple measurements (at least 50) and 
may or may not have an IV. If there is an IV, the goal is to determine if the pattern seen in the DV 
over time is the same for the group in one level of the IV as for the group in the other level. The IV 
can be naturally occurring or manipulated.

Generally, statistics are like tools—you pick the wrench you need to do the job.

2.3 A Decision Tree

A decision tree starting with major research questions appears in Table 2.1. For each question, 
choice among techniques depends on number of IVs and DVs (sometimes an arbitrary distinction) 
and whether some variables are usefully viewed as covariates. The table also briefly describes ana-
lytic goals associated with some techniques.

The paths in Table 2.1 are only recommendations concerning an analytic strategy. Researchers
frequently discover that they need two or more of these procedures or, even more frequently, a judi-
cious mix of univariate and multivariate procedures to fully answer their research questions. We rec-
ommend a flexible approach to data analysis in which both univariate and multivariate procedures 
are used to clarify the results.
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TABLE 2.1 Choosing Among Statistical Techniques

Major
Research
Question

Number (Kind)
of Dependent

Variables

One
(continuous)

Multiple
(continuous)

One (may be
repeated)

None

Number (Kind)
of Independent

Variables

One
(continuous)

Multiple
(continuous)

Multiple
(continuous)

Multiple
(continuous and
discrete; cases and
IVs are nested)

Multiple (discrete)

One (discrete)

Multiple (discrete)

One (discrete)

Multiple (discrete)

Multiple (one
discrete within S)

Covariates

None

Some

None

Some

None

Some

None

Some

None

Some

Analytic
Strategy

Bivariate r

Multiple R

Sequential multiple R

Canonical R

Multilevel modeling

Multiway frequency
analysis

One-way ANOVA or
t test

One-way ANCOVA

Factorial ANOVA

Factorial ANCOVA

One-way MANOVA
or Hotelling’s T 2

One-way MANCOVA

Factorial MANOVA

Factorial MANCOVA

Profile analysis of
repeated measures

Profile analysis

Doubly multivariate
profile analysis

Goal of
Analysis

Create a linear
combination of IVs
to optimally predict
DV.

Maximally correlate
a linear combination
of DVs with a linear
combination of IVs.

Create linear
combinations of
IVs at one level
to serve as DVs at
another level.

Degree of
relationship
among
variables

Significance
of group
differences

One
(continuous)

Multiple
(continuous)

One
(continuous)

Multiple
(continuous/
commensurate)

Multiple
(continuous)

Create a log-linear
combination of IVs
to optimally predict
category frequencies.

Determine significance
of mean group
differences.

Create a linear
combination of DVs
to maximize mean
group differences.

One (discrete)

Multiple (one discrete
within S)

Create linear
combinations of DVs
to maximize mean
group differences and
differences between
levels of within-
subjects IVs.

(continued)
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Major
Research
Question

Number
(Kind) of

Dependent
Variables

Number
(Kind) of

Independent
Variables

Multiple
(continuous)

Multiple
(discrete)

Multiple
(continuous
and/or
discrete)

Covariates

None

Some

None

Some

None

Some

Analytic
Strategy

One-way
discriminant function

Sequential one-way
discriminant function

Multiway frequency
analysis (logit)

Logistic
regression

Sequential logistic
regression

Factorial
discriminant function

Sequential factorial
discriminant function

Factor analysis
(theoretical)

Principal components
(empirical)

Goal of
Analysis

Create a linear
combination of
IVs to maximize
group differences.

Create a log-linear
combination of
IVs to optimally
predict DV.

Create a linear
combination of
the log of the
odds of being in
one group.

Create a linear
combination of
IVs to maximize
group differences
(DVs).

Prediction
of group
membership

Structure

Multiple
(discrete)

One
(discrete)

Multiple
(continuous
observed)

Multiple
(latent)

Multiple
(continuous
observed
and/or latent)

Create linear
combinations of
observed variables
to represent latent
variables.

Create linear
combinations of
observed and
latent IVs to
predict linear
combinations of
observed and
latent DVs.

Multiple (latent)

Multiple (continuous
observed)

Multiple (continuous
observed and/or latent)

Multiple
(continuous)

Structural equation
modeling

TABLE 2.1 Continued
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Major
Research
Question

Number
(Kind) of

Dependent
Variables

Number
(Kind) of

Independent
Variables

None

One or
more

Time

One or more
(including

time)

Covariates

None

None or
some

None or
some

None or
some

Analytic
Strategy

Survival analysis
(life tables)

Survival analysis
(with predictors)

Time-series analysis
(forecasting)

Time-series analysis
(intervention)

Goal of
Analysis

Determine how
long it takes for
something to
happen.

Create a linear
combination of
IVs and CVs to
predict time to an
event.

Predict future
course of DV on
basis of past
course of DV.

Determine
whether course of
DV changes with
intervention.

Time
course of
events

One (time)

One
(continuous)

TABLE 2.1 Continued

2.4 Technique Chapters

Chapters 5 through 16 and Chapter 18 (online), the basic technique chapters, follow a common 
format. In the first section, the technique is described and the general purpose briefly discussed. 
Then the specific kinds of questions that can be answered through the application of the technique 
are listed. Next, both the theoretical and practical limitations of the technique are discussed; this 
section lists assumptions particularly associated with the technique, describes methods for checking 
the assumptions for your data set, and gives suggestions for dealing with violations. Then a small 
hypothetical data set is used to illustrate the statistical development of the procedure. Most of the 
data sets are deliberately silly and too small to produce significant differences. It is recommended 
that students follow the matrix calculations using a matrix algebra program available in IBM SPSS,
SAS/IML, or a spreadsheet program such as Excel or Quattro. Simple analyses by both computer 
packages follow.

The next section describes the major types of the techniques, when appropriate. Then some of 
the most important issues to be considered when using the technique are covered, including special 
statistical tests, data snooping, and the like.
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The next section shows a step-by-step application of the technique to actual data gathered, as 
described in Appendix B. Because the data sets are real, large, and fully analyzed, this section is 
often more difficult than the preceding sections. Assumptions are tested and violations dealt with, 
when necessary. Major hypotheses are evaluated, and follow-up analyses are performed as indi-
cated. Then a Results section is developed, as might be appropriate for submission to a professional 
journal. The Results section is in APA format; we recommend close attention to the publication 
manual (APA, 2009) for advice about clarity, simplification of presentation, and the like. These 
Results section provides a model for presentation to a fairly sophisticated audience. It is a good idea 
to discuss the analysis technique and its appropriateness early in the Results section when writing 
for an audience that is expected to be unfamiliar with the technique. When more than one major 
type of technique is available, there are additional complete examples using real data. Finally, a 
detailed comparison of features available in the IBM SPSS, SAS, and SYSTAT programs is made.

In working with these technique chapters, it is suggested that the student/researcher apply the 
various analyses to some interesting large data set. Many data banks are readily accessible through 
computer installations.

Further, although we recommend methods of reporting multivariate results, it may be inap-
propriate to report them fully in all publications. Certainly, one would at least want to mention that 
univariate results were supported and guided by multivariate inference. But the details associated 
with a full disclosure of multivariate results at a colloquium, for instance, might require more atten-
tion than one could reasonably expect from an audience. Likewise, a full multivariate analysis may 
be more than some journals are willing to print.

2.5 Preliminary Check of the Data

Before applying any technique, or sometimes even before choosing a technique, you should deter-
mine the fit between your data and some very basic assumptions underlying most of the multivariate 
statistics. Although each technique has specific assumptions as well, most require consideration of 
material provided in Chapter 4.
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This chapter provides a brief review of univariate and bivariate statistics. Although it is probably too 
“dense” to be a good source from which to learn, it is hoped that it will serve as a useful reminder of 
material already mastered and will help in establishing a common vocabulary. Section 3.1 goes over 
the logic of the statistical hypothesis test, and Sections 3.2 through 3.4 skim many topics in analysis 
of variance and are the background for Chapters 6 through 9. Section 3.5 summarizes correlation 
and regression, which are the background for Chapters 5, 12, 14, and 15, and Section 3.6 summarizes 
chi-square (x2), which is the background for Chapters 10, 14, and 16.

3.1 Hypothesis Testing

Statistics are used to make rational decisions under conditions of uncertainty. Inferences (deci-
sions) are made about populations based on data from samples that contain incomplete information. 
Different samples taken from the same population probably differ from one another and from the 
population. Therefore, inferences regarding the population are always a little risky.

The traditional solution to this problem is statistical decision theory. Two hypothetical states 
of reality are set up, each represented by a probability distribution. Each distribution represents an 
alternative hypothesis about the true nature of events. Given the sample results, a best guess is made 
as to which distribution the sample was taken from using formalized statistical rules to define “best.”

3.1.1  One-Sample z Test as Prototype

Statistical decision theory is most easily illustrated through a one-  sample z test, using the standard 
normal distribution as the model for two hypothetical states of reality. Suppose there is a sample of 
25 IQ scores and a need to decide whether this sample of scores is a random sample of a “normal” 
population with m = 100 and s = 15, or a random sample from a population with m = 108 and s = 15.

First, note that hypotheses are tested about means, and not individual scores. Therefore, the 
distributions representing hypothetical states of reality are distributions of means rather than distribu-
tions of individual scores. Distributions of means produce “sampling distributions of means” that dif-
fer systematically from distributions of individual scores; the mean of a population distribution, m, is 
equal to the mean of a sampling distribution, m, but the standard deviation of a population of individual 
scores, s, is not equal to the standard deviation of a sampling distribution, sY. Sampling distributions

s
Y

=
s

2N
(3.1)

3 Review of Univariate 
and Bivariate Statistics
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have smaller standard deviations than distributions of scores, and the decrease is related to N, the 
sample size. For the sample, then,

s
Y

=
15

225
= 3

The question being asked, then, is, “Does our mean, taken from a sample of size 25, come from 
a sampling distribution with m

Y
= 100 and s

Y
= 3 or does it come from a sampling distribution 

with m
Y

= 108 and s
Y

= 3.” Figure 3.1(a) shows the first sampling distribution, defined as the null 
hypothesis, H0, that is, the sampling distribution of means calculated from all possible samples of 
size 25 taken from a population where m = 100 and s = 15.

The sampling distribution for the null hypothesis has a special, fond place in statistical decision 
theory because it alone is used to define “best guess.” A decision axis for retaining or rejecting H0
cuts through the distribution so that the probability of rejecting H0 by mistake is small. “Small” is 
defined probabilistically as a. An error in rejecting the null hypothesis is referred to as an a or Type I 
error. There is little choice in picking a. Tradition and journal editors decree that it is .05 or smaller, 
meaning that the null hypothesis is rejected no more than 5% of the time when it is true.

With a table of areas under the standard normal distribution (the table of z scores or standard 
normal deviates), the decision axis is placed so that the probability of obtaining a sample mean 
above that point is 5% or less. Looking up 5% in Table C.1, the z corresponding to a 5% cutoff is 
1.645 (between 1.64 and 1.65). Notice that the z scale is one of two abscissas in Figure 3.1(a). If the 
decision axis is placed where z = 1.645, one can translate from the z scale to the Y  scale to properly 
position the decision axis. The transformation equation is

Y = m + zs
Y

(3.2)

Equation 3.2 is a rearrangement of terms from the z test for a single sample:1

z =
Y - m

s
Y

(3.3)

Applying Equation 3.2 to the example,

Y = 100 + (1.645)(3) = 104.935

The null hypothesis, that the mean IQ of the sampling distribution is 100, is rejected if the 
mean IQ of the sample is equal to or greater than 104.935 (call it 105).

Frequently, this is as far as the model is taken—  the null hypothesis is either retained or rejected. 
However, if the null hypothesis is rejected, it is rejected in favor of an alternative hypothesis, Ha.

1The more usual procedure for testing a hypothesis about a single mean is to solve for z on the basis of the sample mean and 
standard deviation to see if the sample mean is sufficiently far away from the mean of the sampling distribution under the null 
hypothesis. If z is 1.645 or larger, the null hypothesis is rejected.
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The alternative hypothesis is not always stated explicitly,2 but when it is, one can evaluate the prob-
ability of retaining the null hypothesis when it should be rejected, because Ha is true.

This second type of error is called a b or Type II error. Since m for Ha is 108 in the example, 
the sampling distribution of means for Ha can be graphed, as shown in Figure 3.1(b). The decision 
axis is placed with regard to H0. Hence we need to find the probability associated with the place 
it crosses Ha. The first step is to find z corresponding to an IQ score of 105 in a distribution with 
mY = 108 and sY = 3. Applying Equation 3.3, we find that

z =
105 - 108

3
= -1.00

By looking up z = -1.00, about 16% of the time sample means are … 105 when the population 
m = 108 and the alternative hypothesis is true. Therefore, b = .16.

sY �3

"Ha""H0"

m�100 103 105

0 1 1.645

5%�a

Y

z

(a) H0

�Y �3

m�108105

0 1�1

16%�b

Y

z

(b) Ha

Decision
axis

FIGURE 3.1 Sampling Distribution for Means with N � 25 
and S � 15 under two hypotheses (a) H0: M � 100 

and (b) Ha: M � 108.

2Often, the alternative hypothesis is simply that the sample is taken from a population that is not equal to the population 
represented by the null hypothesis. There is no attempt to specify “not equal to.”
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H0 and Ha represent alternative realities, only one of which is true. When the researcher is 
forced to decide whether to retain or reject H0, four things can happen. If the null hypothesis is true, 
a correct decision is made if the researcher retains H0 and an error is made if the researcher rejects 
it. If the probability of making the wrong decision is a, the probability of making the right decision 
is 1 - a. If, on the other hand, Ha is true, the probability of making the right decision by rejecting 
H0 is 1 - b and the probability of making the wrong decision is b. This information is summarized 
in a “confusion matrix” (aptly named, according to beginning statistics students) showing the prob-
abilities of each of these four outcomes:

Reality
H0 Ha

Statistical
decision

“H0” 1 - a b

“Ha” a 1 - b

1.00 1.00

For the example, the probabilities are

Reality
H0 Ha

Statistical
decision

“H0” .95 .16

“Ha” .05 .84

1.00 1.00

3.1.2 Power

The lower right-  hand cell of the confusion matrix represents the most desirable outcome and the 
power of the research. Usually, the researcher believes that Ha is true and hopes that the sample data 
lead to rejection of H0. Power is the probability of rejecting H0 when Ha is true. In Figure 3.1(b), 
power is the portion of the Ha distribution that falls above the decision axis. Many of the choices in 
designing research are made with an eye toward increasing power because research with low statis-
tical power usually is not worth the effort.

Figure 3.1 and Equations 3.1 and 3.2 suggest some ways to enhance power. One obvious way 
to increase power is to move the decision axis to the left. However, it cannot be moved far or Type I 
error rates reach an unacceptable level. Given the choice between .05 and .01 for a error, though, 
a decision in favor of .05 increases the power. A second strategy is to move the curves farther apart 
by applying a stronger treatment. Other strategies involve decreasing the standard deviation of the 
sampling distributions either by decreasing variability in scores (e.g., exerting greater experimental 
control) or by increasing sample size, N.

This model for statistical decisions and these strategies for increasing power generalize to 
other sampling distributions and to tests of hypotheses other than a single sample mean against a 
hypothesized population mean.

There is occasionally the danger of too much power. The null hypothesis is probably never 
exactly true and any sample is likely to be slightly different from the population value. With a large 
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enough sample, rejection of H0 is virtually certain. Hence, a “minimal meaningful difference” 
and acceptable effect size should guide the selection of sample size (Kirk, 1995). The sample size 
should be large enough to be likely to reveal a minimal meaningful difference. Rejection of the null 
hypothesis may be trivial if the sample is large enough to reveal any difference whatever. This issue 
is considered further in Section 3.4.

3.1.3 Extensions of the Model

The z test for the difference between a sample mean and a population mean readily extends to a z
test of the difference between two sample means. A sampling distribution is generated for the differ-
ence between means under the null hypothesis that m1 = m2 and is used to position the decision axis. 
The power of an alternative hypothesis is calculated with reference to the decision axis, as earlier.

When population variances are unknown, it is desirable to evaluate the probabilities using 
Student’s t rather than z, even for large samples. Numerical examples of use of t to test differences 
between two means are available in most univariate statistics books and are not presented here. The 
logic of the process, however, is identical to that described in Section 3.1.1.

3.1.4 Controversy Surrounding Significance Testing

While the statistical significance test is pervasive in the social sciences, its use is not without contro-
versy. The latest round of arguments against the use of statistical significance testing began with an 
article by Carver in 1978, and updated in 1993. In these articles, Carver argues that the significance 
test, used by itself, does not answer most research questions. These articles, and many others in a 
rather large literature, are summarized by McLean and Ernest (1998). The significance test, they assert, 
tells whether the result was likely obtained by chance, but does not convey information about the 
practical importance of the difference (effect size), the quality of the research design, the reliabil-
ity and validity of the measures, the fidelity of the treatment, or whether the results are replicable. 
Thus, a significance test is properly only one among many criteria by which a finding is assessed.

Because of the controversy, the Task Force on Statistical Inference was convened by the 
American Psychological Association in 1996 and produced a final report in 1999 (Wilkinson & Task 
Force on Statistical Inference, 1999), where the authors stress the importance of the factors listed 
above, along with the importance of data screening prior to analysis. Like those who oppose the use 
of statistical significance testing, they urge reporting effect size, and particularly confidence intervals 
around effect size estimates. We take this recommendation to heart in the chapters that follow and try 
to provide guidance regarding how that is to be accomplished. Another approach (Cumming & Finch, 
2005) involves plots of means with error bars as a way of accomplishing statistical inference by eye. 
They propose “7 rules of eye to guide the inferential use of figures with error bars” (p. 170).

3.2 Analysis of Variance

Analysis of variance is used to compare two or more means to see if there are any statistically sig-
nificant differences among them. Distributions of scores for three hypothetical samples are provided 
in Figure 3.2. Analysis of variance evaluates the differences among means relative to the disper-
sion in the sampling distributions. The null hypothesis is that m1 = m2 = . . . = mk as estimated from 
Y1 = Y2 = g = Yk, where k is equal to the number of means being compared.
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Analysis of variance (ANOVA) is really a set of analytic procedures based on a comparison of 
two estimates of variance. One estimate comes from differences among scores within each group; 
this estimate is considered random or error variance. The second estimate comes from differences 
in group means and is considered a reflection of group differences or treatment effects plus error. If 
these two estimates of variance do not differ appreciably, one concludes that all of the group means 
come from the same sampling distribution of means and that the slight differences among them are 
due to random error. If, on the other hand, the group means differ more than expected, it is con-
cluded that they were drawn from different sampling distributions of means and the null hypothesis 
that the means are the same is rejected.

Differences among variances are evaluated as ratios, where the variance associated with dif-
ferences among sample means is in the numerator, and the variance associated with error is in the 
denominator. The ratio between these two variances forms an F distribution. F distributions change 
shape depending on degrees of freedom in both numerator and denominator of the F ratio. Thus, 
tables of critical F, for testing the null hypothesis, depend on two degree-of-freedom parameters 
(cf. Appendix C, Table C.3).

The many varieties of analysis of variance are conveniently summarized in terms of the parti-
tion of sums of squares, that is, sums of squared differences between scores and their means. A sum 
of squares (SS) is simply the numerator of a variance,

S2 =
g (Y - Y )2

N - 1
(3.4)

SS = g (Y - Y )2 (3.5)

The square root of variance is standard deviation, S, which is the measure of variability that is in the 
metric of the original scores.

S = 2S2 (3.6)

K1 K2 K3

Y1 Y2 Y3

Score on Y
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FIGURE 3.2 Idealized frequency distribution of three samples and their means.
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3.2.1  One-Way Between-Subjects ANOVA

DV scores appropriate to one-  way between-  subjects ANOVA with equal n are presented in a table, 
with k columns representing groups (levels of the IV) and n scores within each group.3 Table 3.1 
shows how subjects are assigned to groups within this design.

Each column has a mean, Yj where j = 1, 2, . . . , k levels of treatment. Each score is designated 
Yij where i = 1, 2, . . . , n scores within each treatment. Each case provides a single score on the DV. 
The symbol GM represents the grand mean of all scores over all groups.

The difference between each score and the grand mean (Yij - GM) is considered the sum of 
two component differences, the difference between the score and its own group mean and the differ-
ence between that mean and the overall mean.

Yij - GM = (Yij - Yj) + (Yj - GM) (3.7)

This result is achieved by first subtracting and then adding the group mean to the equation. 
Each term is then squared and summed separately to produce the sum of squares for error and 
the sum of squares for treatment, respectively. The basic partition holds because, conveniently, the 
cross-  product terms produced by squaring and summing cancel each other out. Across all scores, 
the partition is

a
i
a

j
(Yij - GM)2 = a

i
a

j
(Yij - Yj)

2 + na
j

(Yj - GM)2 (3.8)

Each of these terms is a sum of squares (SS)—a sum of squared differences between scores 
(with means sometimes treated as scores) and their associated means. That is, each term is a special 
case of Equation 3.5.

The term on the left-  hand side of the equation is the total sum of squared differences between 
scores and the grand mean, ignoring groups with which scores are associated, designated SStotal.
The first term on the right-  hand side is the sum of squared deviations between each score and its 
group mean. When summed over all groups, it becomes the sum of squares within groups, SSwg.

3Throughout the book, n is used for sample size within a single group or cell, and N is used for total sample size.

TABLE 3.1 Assignment of Subjects in a One-  Way 
Between-Subjects ANOVA

Treatment

K1 K2 K3

S1 S4 S7

S2 S5 S8

S3 S6 S9
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The last term is the sum of squared deviations between each group mean and the grand mean, the 
sum of squares between groups, SSbg. Equation 3.8 is also symbolized as

SStotal = SSwg + SSbg (3.9)

Degrees of freedom in ANOVA partition the same way as sums of squares:

dftotal = dfwg + dfbg (3.10)

Total degrees of freedom are the number of scores minus 1. The 1 df is lost when the grand 
mean is estimated. Therefore,

dftotal = N - 1 (3.11)

Within-  groups degrees of freedom are the number of scores minus k, lost when the means for 
each of the k groups are estimated. Therefore,

dfwg = N - k (3.12)

Between-  groups degrees of freedom are k “scores” (each group mean treated as a score) 
minus 1, lost when the grand mean is estimated, so that

dfbg = k - 1 (3.13)

Verifying the equality proposed in Equation 3.10, we get

N - 1 = N - k + k - 1

As in the partition of sums of squares, the term associated with group means is subtracted out of the 
equation and then added back in.

Another common notation for the partition of Equation 3.7 is

SStotal = SSk + SSS(K) (3.14)

as shown in Table 3.2(a). In this notation, the total sum of squares is partitioned into a sum of 
squares due to the k groups, SSK , and a sum of squares due to subjects within the groups, SSS(K).
(Notice that the order of terms on the right-  hand side of the equation is the reverse of that in 
Equation 3.9.)

The division of a sum of squares by degrees of freedom produces variance, called mean square 
(MS), in ANOVA. Variance, then, is an “average” sum of squares. ANOVA produces three variances: 
one associated with total variability among scores, MStotal; one associated with variability within 

TABLE 3.2 Partition of Sums of Squares and Degrees of Freedom for Several ANOVA Designs

(a) One-way between-subjects ANOVA

SStotal
a

SSK

df � k � 1,

SSS (K)

N � k
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TABLE 3.2 Continued

(b) Factorial between-subjects ANOVA
SStotal

SSK SSS (K)

SSG

df � g � 1,

SST

t � 1,

SSGT

(g � 1)(t � 1),

SSS (GT)

N � gt

(c) One-way within-subjects ANOVA
SStotal

SSK SSS (K)

SSK

df � k � 1,

SSS

s � 1,

SSSK

(s � 1)(k � 1)

(d) One-way matched-randomized ANOVA
SStotal

SSK SSS (K)

SSK

df � k � 1,

SSB

b � 1,

SSBK

(b � 1)(k � 1)

(e) Factorial within-subjects ANOVA
SStotal

SSK SSS (K)

SSA

df � a � 1,

SSB

b � 1,

SSAB

(a � 1)(b � 1),

SSSA

(s � 1)(a � 1),

SSSB

(s � 1)(b � 1),

SSSAB

(s � 1)(a � 1)(b � 1)

SSS

s � 1,

(f) Mixed within-between-subjects ANOVA
SStotal

SSbs SSws

SSG

df � g � 1,

SSS (G)

s � g,

SST

t � 1,

SSGT

(g � 1)(t � 1),

SSTS (G)

(t � 1)(s � g)

a For all SStotal, df = N − 1.
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groups, MSbg or MSK; and one associated with variability between groups, MSwg or MSS>K. MSK

and MSS>K provide the variances for an F ratio to test the null hypothesis that m1 = m2 = . . . = mk.

F =
MSK

MSS(K)
df = (k - 1), N - k (3.15)

Once F is computed, it is tested against critical F obtained from a table, such as Table C.3, with 
numerator df = k - 1 and denominator df = N - k at a desired alpha level. If obtained F exceeds 
critical F, the null hypothesis is rejected in favor of the hypothesis that there is a difference among 
the means in the k groups.

Anything that increases the obtained F increases the power. Power is increased by decreasing 
the error variability or increasing the sample size in the denominator (MSS(K )) or by increasing dif-
ferences among means in the numerator (MSK).

3.2.2 Factorial Between-Subjects ANOVA

If groups are formed along more than one dimension, differences among means are attributable to 
more than one source. Consider an example with six groups, three of women and three of men, in 
which the DV is scores on a final examination in statistics. One source of variation in means is due 
to gender, SSG. If the three groups within each gender are exposed to three different methods of 
teaching statistics, a second source of differences among means is teaching method, SST . The final 
source of known differences among means is the interaction between gender and teaching methods, 
SSGT . The interaction tests whether effectiveness of teaching methods varies with gender.

Allocation of subjects in this design is shown in Table 3.3. Sums of squares and degrees of 
freedom are partitioned as in Table 3.2(b). Error is estimated by variation in scores within each of 
the six cells, SSS(GT ). Three null hypotheses are tested using the F distribution.

The first test asks if means for men and women are likely to have come from the same sampling
distribution of means. Scores are averaged across teaching methods to eliminate that source of vari-
ability. Gender differences are tested in the F ratio:

F =
MSG

MSS(GT)
df = (g - 1), N - gt (3.16)

TABLE 3.3 Assignment of Subjects in a 
Factorial Between-Subjects Design

Teaching 
Techniques

T1 T2 T3

G1
S1 S5 S9

Gender
S2 S6 S10

G2
S3 S7 S11

S4 S8 S12
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Rejection of the null hypothesis supports an interpretation of differences between women and men 
in performance on the final exam.

The second test asks if means from the three teaching methods are likely to have come from 
the same sampling distribution of means, averaged across women and men. This is tested as

F =
MST

MSS(GT)
df = (t - 1), N - gt (3.17)

Rejection of the null hypothesis supports an interpretation of differences in effectiveness of the 
three teaching methods.

The third test asks if the cell means, the means for women and the means for men within 
each teaching method, are likely to have come from the same sampling distribution of differences 
between means.

F =
MSGT

MSS(GT)
df = (g - 1)(t - 1), N - gt (3.18)

Rejection of the null hypothesis supports an interpretation that men and women differ regarding the 
most effective teaching methods.

In each case, the estimate of normally occurring variability in test scores, error, is MSS(GT) or 
within-  cell variance. In each case, critical F is read from a table with appropriate degrees of free-
dom and desired alpha, and if obtained F (Equation 3.16, 3.17, or 3.18) is greater than critical F, the 
null hypothesis is rejected. When there is an equal number of scores in each cell, the three tests are 
independent (except for use of a common error term): the test of each main effect (gender and teach-
ing method) is not related to the test of the other main effect or the test of the interaction.

In a one-  way between-  subjects design (Section 3.2.1), (k - 1) degrees of freedom are used to 
test the null hypothesis of differences among groups. If k is equal to the number of cells in a two-
way design, tests of G, T, and GT use up the (k - 1) degrees of freedom. With proper partitioning, 
then, of a two-  way factorial design, you get three tests for the price of one.

With higher-  order between-  subjects factorial designs, variation due to differences among 
groups is partitioned into main effects for each IV, two-  way interactions between each pair of IVs, 
three-  way interactions among each trio of IVs, and so on. In any between-  subjects factorial design, 
error sum of squares is the sum of squared differences within each cell of the design.

3.2.3  Within-Subjects ANOVA

In some designs, the means that are tested are derived from the same subjects measured on dif-
ferent occasions, as shown in Table 3.4, rather than from different groups of subjects.4 In these 
designs, computation of sum of squares and mean square for the effect of the IV is the same as for 
the between-  subject designs. However, the error term is further partitioned into individual differ-
ences due to subjects, SSS, and interaction of individual differences with treatment, SSSK. Because 
subjects are measured repeatedly, their effect as a source of variability in scores is estimated and 

4This design is also called repeated measures, one score per cell, randomized blocks, matched-  randomized changeover, or 
crossover.
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subtracted from SSS(K), the error term in a corresponding between-  subjects design. The interaction 
of individual differences with treatment, MSSK, is used as the error term:

F =
MSK

MSSK
df = (k - 1), (k - 1)(s - 1) (3.19)

The partition of sums of squares for a one-  way within-  subjects design with k levels is shown in 
Table 3.2(c), where s is the number of subjects.

MSSK is used as the error term because once SSS is subtracted, no variation is left within cells 
of the design—  there is, in fact, only one score per cell. The interaction of individual differences 
with treatment is all that remains to serve as an estimate of error variance. If there are individual 
differences among subjects in scores, and if individuals react similarly to the IV, the interaction is a 
good estimate of error. Once individual differences are subtracted, the error term is usually smaller 
than the error term in a corresponding between-  subjects design, so the within-  subjects design is 
more sensitive than the between-  subjects design.

But if there are no consistent individual differences in scores,5 or if there is an interaction be-
tween subjects and treatment, the error term may be larger than that of a between-  subjects design. The 
statistical test is then conservative, it is more difficult to reject the null hypothesis of no difference 
between means, and the power of the test is reduced. Since Type I error is unaffected, the statistical 
test is not in disrepute, but, in this case, a within-  subjects design is a poor choice of research design.

A within-  subjects analysis is also used with a matched-  randomized blocks design, as shown 
in Tables 3.2(d) and 3.5. Subjects are first matched on the basis of variables thought to be highly 
related to the DV. Subjects are then divided into blocks, with as many subjects within each block as 
there are levels of the IV. Finally, members of each block are randomly assigned to levels of the IV. 
Although the subjects in each block are actually different people, they are treated statistically as if 
they were the same person. In the analysis, there is a test of the IV, and a test of blocks (the same as 
the test of subjects in the within-  subjects design), with the interaction of blocks and treatment used 
as the error term. Since matching is used to produce consistency in performance within blocks and 
the effect of blocks is subtracted from the error term, this design should also be more sensitive than 
the between-  subjects design. It will not be, however, if the matching fails.

5Notice that the degrees of freedom for error, (k − 1)(s − 1), are fewer than in the between-  subjects design. Unless the reduc-
tion in error variance due to subtraction of SSS is substantial, the loss of degrees of freedom may overcome the gain due to 
smaller SS when MSSK is computed.

TABLE 3.4 Assignment of Subjects in a 
One-Way Within-Subjects Design

Treatment

K1 K2 K3

S1 S1 S1 S1

Subjects S2 S2 S2 S2

S3 S3 S3 S3
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Factorial within-  subjects designs, as shown in Table 3.6, are an extension of the one-  way 
within-  subjects design. The partition of a two-  way within-  subjects design is in Table 3.2(e).

In the analysis, the error sum of squares is partitioned into a number of “subjects-by-effects” 
interactions just as the sum of squares for effects is partitioned into numerous sources. It is common 
(though not universal) to develop a separate error term for each F test; for instance, the test of the 
main effect of A is

F =
MSA

MSSA
df = (a - 1), (a - 1)(s - 1) (3.20)

For the main effect of B, the test is

F =
MSB

MSSB
df = (b - 1), (b - 1)(s - 1) (3.21)

and for the interaction,

F =
MSAB

MSSAB
df = (a - 1)(b - 1), (a - 1)(b - 1)(s - 1) (3.22)

For higher-  order factorial designs, the partition into sources of variability grows prodigiously, 
with an error term developed for each main effect and interaction tested.

There is controversy in within-  subject analyses concerning conservatism of the F tests and 
whether separate error terms should be used. In addition, if the repeated measurements are on single 
subjects, there are often carry-  over effects that limit generalizability to situations where subjects 
are  tested repeatedly. Finally, when there are more than two levels of the IV, the analysis has 
the assumption of sphericity. One component of sphericity—  homogeneity of covariance—  roughly
speaking, is the assumption that the subjects “line up” in scores is the same for all pairs of levels of 
the IV. If some pairs of levels are close in time (e.g., trial 2 and trial 3) and other pairs are distant in 
time (e.g., trial 1 and trial 10), the assumption is often violated. Such violation is serious because 
Type I error rate is affected. Sphericity is discussed in greater detail in Chapters 7 and, especially, 8, 
and in Tabachnick and Fidell (2007) and Frane (1980).

TABLE 3.6 Assignment of Subjects in a 
Factorial Within-Subjects Design

Treatment A

A1 A2 A3

B1 S1 S1 S1

Treatment B S2 S2 S2

B2 S1 S1 S1

S2 S2 S2

TABLE 3.5 Assignment of Subjects in a 
Matched-Randomized Designa

Treatment

A1 A2 A3

B1 S1 S2 S3

Blocks B2 S4 S5 S6

B3 S7 S8 S9

aWhere subjects in the same block have been 
matched on some relevant variable.
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9“Subjects” are no longer available as a source of variance for analysis. Because subjects are confined to levels of the 
between-  subjects variable(s), differences between subjects in each group are used to estimate error for testing variance as-
sociated with between-subjects variables.

6This design is also called a split-  plot, repeated-  measures, or randomized-  block factorial design.
7Mixed designs can also have “blocks” rather than repeated measures on individual subjects as the within-  subjects segment 
of the design.
8When the between-  subjects variables are based on naturally occurring differences among subjects (e.g., age and sex), the 
design is said to be “blocked” on the subject variables. This is a different use of the term blocks from that of the preceding 
section. In a mixed design, both kinds of blocking can occur.

TABLE 3.7 Assignment of Subjects in a 
Between-Within-Subjects Design

Trials

T1 T2 T3

G1
S1 S1 S1

Groups
S2 S2 S2

G2
S3 S3 S3

S4 S4 S4

For these reasons, within-  subjects ANOVA is sometimes replaced by profile analysis, where 
repetitions of DVs are transformed into separate DVs (Chapter 8) and a multivariate statistical test 
is used.

3.2.4 Mixed Between-Within-Subjects ANOVA6

Often in factorial designs, one or more IVs are measured between subjects, whereas other IVs are 
measured within subjects.7 The simplest example of the mixed between-  within-  subjects design in-
volves one between-  subjects and one within-  subjects IV, as shown in Table 3.7.8

To show the partition, the total SS is divided into a source attributable to the between-  subjects
part of the design (Groups), and a source attributable to the within-  subjects part (Trials), as shown 
in Table 3.2(f). Each source is then further partitioned into effects and error components: between-
subjects into groups and subjects-  within-  groups error term; and within-  subjects into trials, the 
group-by-trials interaction, and the trial-by-subjects-  within-  groups error term.

As more between-  subjects IVs are added, between-  subjects main effects and interactions 
expand the between-  subjects part of the partition. For all the between-  subjects effects, there is 
a single error term consisting of variance among subjects confined to each combination of the 
between-  subjects IVs. As more within-  subjects IVs are added, the within-  subjects portion of the 
design expands. Sources of variability include main effects and interactions of within-  subjects IVs 
and interactions of between-   and within-  subjects IVs. Separate error terms are developed for each 
source of variability in the within-  subjects segment of the design.9
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Problems associated with within-  subjects designs (e.g., homogeneity of covariance) carry 
over to mixed designs, and profile analysis is sometimes used to circumvent some of these 
problems.

3.2.5 Design Complexity

Discussion of analysis of variance has so far been limited to factorial designs where there are 
equal numbers of scores in each cell, and levels of each IV are purposely chosen by the researcher. 
Several deviations from these straightforward designs are possible. A few of the more common 
types of design complexity are mentioned below, but the reader actually faced with the use of 
these designs is referred to one of the more complete analysis of variance texts such as by Brown, 
Michels, and Winer (1991), Keppel and Wickens (2004), Myers and Well (2002), and Tabachnick 
and Fidell (2007).

3.2.5.1 Nesting

In between-  subjects designs, subjects are said to be nested within levels of the IV. That is, each 
subject is confined to only one level of each IV or combination of IVs. Nesting also occurs with IVs 
when levels of one IV are confined to only one level of another IV, rather than factorially crossing 
over the levels of the other IV.

Take the example where the IV is various levels of teaching methods. Children within the 
same classroom cannot be randomly assigned to different methods, but whole classrooms can be 
so assigned. The design is one-  way between-  subjects where teaching methods is the IV and class-
rooms serve as subjects. For each classroom, the mean score for all children on the test is obtained, 
and the means serve as DVs in one-  way ANOVA.

If the effect of classroom is also assessed, the design is nested or hierarchical, as shown 
in Table 3.8(a). Classrooms are randomly assigned to and nested in teaching methods, and 
children are nested in classrooms. The error term for the test of classroom is subjects within 
classrooms and teaching method, and the error term for the test of teaching method is class-
rooms within teaching technique. Nested models also are analyzed through multilevel modeling 
(Chapter 15).

3.2.5.2  Latin-Square Designs

The order of presentation of levels of an IV often produces differences in the DV. In within-  subjects
designs, subjects become practiced or fatigued or experiment wise as they experience more levels of 
the IV. In between-  subjects designs, there are often time-of-day or experimenter effects that change 
scores on the DV. To get an uncontaminated look at the effects of the IV, it is important to counter-
balance the effects of increasing experience, time of day, and the like, so that they are independent 
of levels of the IV. If the within-  subjects IV is something like trials, counterbalancing is not possible 
because the order of trials cannot be changed. But when the IV is something like background color 
of slide used to determine if background color affects memory for material on the slide, a Latin-
square arrangement is often used to control order effects.

A Latin-  square design is shown in Table 3.8(b). If A1 is a yellow background, A2 a blue back-
ground, and A3 a red background, then subjects are presented the slides in the order specified by 
the Latin square. The first subject is presented the slide with the blue background, then yellow, and 
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finally red. The second subject is presented with yellow, then red, then blue, and so on. The yellow 
slide (A1) appears once in first position, once in second, and once in third, and so on for the other 
colors, so that order effects are distributed evenly across the levels of the IV.

The simple design of Table 3.8(b) produces a test of the IV (A), a test of subjects (if desired), 
and a test of order. The effect of order (like the effect of subjects) is subtracted out of the error term, 
leaving it smaller than it is when order effects are not analyzed. The error term itself is composed 
of fragments of interactions that are not available for analysis because effects are not fully crossed 
in the design. Thus, the design is more sensitive than a comparable between-  subjects design when 
there are order effects and no interactions and less sensitive when there are no order effects but there 
are interactions. Refer to Tabachnick and Fidell (2007) or one of the other ANOVA texts for greater 
detail on this fascinating topic.

3.2.5.3 Unequal n and Nonorthogonality

In simple one-  way between-  subjects ANOVA, problems created by unequal group sizes are rela-
tively minor. Computation is slightly more difficult, but that is no real disaster, especially if analysis 
is by computer. However, as group sizes become more discrepant, the assumption of homogeneity 
of variance is more important. If the group with the smaller n has the larger variance, the F test is 
too liberal, leading to increased Type I error rate (inflated alpha level.)

In factorial designs with more than one between-  subjects IV, unequal sample sizes in each 
cell create difficulty in computation and ambiguity of results. With unequal n, a factorial design is 
nonorthogonal. Hypotheses about main effects and interactions are not independent, and sums of 
squares are not additive. The various sources of variability contain overlapping variance, and the 
same variance can be attributed to more than one source, as discussed in Chapter 1. If effects are 
tested without taking the overlap into account, the probability of a Type I error increases because 
systematic variance contributes to more than one test. Various strategies are available to deal with 
the problem, none of them completely satisfactory.

The simplest strategy is to randomly delete cases from cells with greater n until all cells are 
equal. If unequal n is due to random loss of a few subjects in an experimental design originally 
set up for equal n, deletion is often a good choice. An alternative strategy with random loss of 
subjects in an experimental design is an unweighted-  means analysis, described in Chapter 6 and 
ANOVA textbooks such as Tabachnick and Fidell (2007). The unweighted-  means approach has 

TABLE 3.8 Some Complex ANOVA Designs

(a) Nested Designs

Teaching Techniques

T1 T2 T3

Classroom 1 Classroom 2 Classroom 3

Classroom 4 Classroom 5 Classroom 6

Classroom 7 Classroom 8 Classroom 9

(b) Latin-Square Designsa

Order

1 2 3

S1 A2 A1 A3

Subjects S2 A1 A3 A2

S3 A3 A2 A1

aWhere the three levels of treatment A are experienced by different subjects in different orders, as indicated.
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greater power than random deletion of cases and is the preferred approach as long as computational 
aids are available.

But in nonexperimental work, unequal n often results from the nature of the population. 
Differences in sample sizes reflect true differences in numbers of various types of subjects. To arti-
ficially equalize n is to distort the differences and lose generalizability. In these situations, decisions 
are made as to how tests of effects are to be adjusted for overlapping variance. Standard methods for 
adjusting tests of effects with unequal n are discussed in Chapter 6.

3.2.5.4 Fixed and Random Effects

In all the ANOVA designs discussed so far, levels of each IV are selected by the researchers on 
the basis of their interest in testing significance of the IV. This is the usual fixed-  effects model. 
Sometimes, however, there is a desire to generalize to a population of levels of an IV. In order to 
generalize to the population of levels of the IVs, a number of levels are randomly selected from the 
population, just as subjects are randomly selected from the population of subjects when the desire 
is to generalize results to the population of subjects. Consider, for example, an experiment to study 
effects of word familiarity10 on recall, where the desire is to generalize results to all levels of word 
familiarity. A finite set of familiarity levels is randomly selected from the population of familiarity 
levels. Word familiarity is considered a random-  effects IV.

The analysis is set up so that results generalize to levels other than those selected for the 
experiment—  generalize to the population of levels from which the sample was selected. During 
analysis, alternative error terms for evaluating the statistical significance of random-  effects IVs are 
used. Although computer programs are available for analysis of random-  effects IVs, use of them 
is fairly rare. The interested reader is referred to one of the more sophisticated ANOVA texts, such 
as Tabachnick and Fidell (2007) or Brown et al. (1991), for a full discussion of the random-  effects 
model.

3.2.6 Specific Comparisons

When an IV has more than one degree of freedom (more than two levels) or when there is an 
interaction between two or more IVs, the overall test of the effect is ambiguous. The overall test, 
with (k - 1) degrees of freedom, is pooled over (k - 1) single-  degree-of-freedom subtests. If the 
overall test is significant, so usually are one or more of the subtests, but there is no way to tell 
which one(s). To find out which single-  degree-of-freedom subtests are significant, comparisons 
are performed.

In analysis, degrees of freedom are best thought of as a nonrenewable resource. They are ana-
lyzed once with conventional alpha levels, but further analyses require very stringent alpha levels. 
Hence, the best strategy is to plan the analysis very carefully so that the most interesting compari-
sons are tested with conventional alpha levels. Unexpected findings or less interesting effects are 
tested later with stringent alpha levels. This is the strategy used by the researcher who has been 
working in an area for a while and knows precisely what to look for.

Regrettably, research is often more tentative; so the researcher “spends” the degrees of free-
dom on omnibus (routine) ANOVA testing main effects and interactions at conventional alpha levels 

10Word familiarity is usually operationalized by frequency of usage of words in the English language.
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and then snoops the single-  degree-of-freedom comparisons of significant effects at stringent alpha 
levels. Snooping through data after results of ANOVA are known is called conducting post hoc 
comparisons.

We present here the most flexible method of conducting comparisons, with mention of 
other methods as they are appropriate. The procedure for conducting comparisons is the same 
for planned and post hoc comparisons up to the point where an obtained F is evaluated against a 
critical F.

3.2.6.1 Weighting Coefficients for Comparisons

Comparison of treatment means begins by assigning a weighting factor (w) to each of the cell or 
marginal means so the weights reflect your null hypotheses. Suppose you have a one-  way design 
with k means and you want to make comparisons. For each comparison, a weight is assigned to each 
mean. Weights of zero are assigned to means (groups) that are left out of a comparison, although at 
least two of the means must have nonzero weights. Means that are contrasted with each other are 
assigned weights with opposite signs (positive or negative) with the constraint that the weights sum 
to zero, that is,

a
k

j = 1
wj = 0

For example, consider an IV with four levels, producing Y1, Y2, Y3, and Y4. If you want to test the hypoth-
esis that m1 - m3 = 0, weighting coefficients are 1, 0, -1, 0, producing 1Y1 + 0Y2 + (-1)Y3 + 0Y4.
Y2 and Y4 are left out while Y1 is compared with Y3. Or if you want to test the null hypothesis that 
(m1 + m2)/2 - m3 = 0 (to compare the average of means from the first two groups with the mean 
of the third group leaving out the fourth group), weighting coefficients are 1>2, 1>2, -1, 0 (or 
any multiple of them, such as 1, 1, -2, 0), respectively. Or if you want to test the null hypothesis that 
(m1 + m2)/2 - (m3 + m4)/2 = 0 (to compare the average mean of the first two groups with the average 
mean of the last two groups), the weighting coefficients are 1>2, 1>2, -1>2, -1>2 (or 1, 1, -1, -1).

The idea behind the test is that the sum of the weighted means is equal to zero when the null 
hypothesis is true. The more the sum diverges from zero, the greater the confidence with which the 
null hypothesis is rejected.

3.2.6.2 Orthogonality of Weighting Coefficients

In a design with an equal number of cases in each group, any pair of comparisons is orthogonal if 
the sum of the cross-  products of the weights for the two comparisons is equal to zero. For example, 
in the following three comparisons,

w1 w2 w3

Comparison 1 1 -1 0

Comparison 2 1>2 1>2 -1

Comparison 3 1 0 -1
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the sum of the cross-  products of weights for Comparisons 1 2 is

(1)(1>2) + (-1)(1>2) + (0)(-1) = 0

Therefore, the two comparisons are orthogonal.
Comparison 3, however, is orthogonal to neither of the first two comparisons. For instance, 

checking it against Comparison 1,112 112 + 1-12 102 + 102 1-12 = 1

In general, there are as many orthogonal comparisons as there are degrees of freedom. Since 
k = 3 in the example, df = 2. There are only two orthogonal comparisons when there are three levels 
of an IV, and only three orthogonal comparisons when there are four levels of an IV.

There are advantages of using orthogonal comparisons, if they suit the needs of the research. 
First, there are only as many of them as there are degrees of freedom, so the temptation to “over-
spend” degrees of freedom is avoided. Second, orthogonal comparisons analyze nonoverlapping 
variance. If one of them is significant, it has no bearing on the significance of another. Last, because 
they are independent, if all (k - 1) orthogonal comparisons are performed, the sum of the sum of 
squares for the comparisons is the same as the sum of squares for the IV in omnibus ANOVA. That 
is, the sum of squares for the effect has been completely broken down into the (k - 1) orthogonal 
comparisons that comprise it.

3.2.6.3 Obtained F for Comparisons

Once the weighting coefficients are chosen, the following equation is used to obtain F for the com-
parison if sample sizes are equal in each group:

F =
nc1gwjYj22>gw2

j

MSerror
(3.23)

where nc = the number of scores in each of the means to be compared1gwjYj22 = the squared sum of the weighted means

gw2
j = the sum of the squared coefficients

MSerror = the mean square for error in the ANOVA

The numerator of Equation 3.23 is both the sum of squares and the mean square for the comparison 
because a comparison has only one degree of freedom.

For factorial designs, comparisons are done on either marginal or cell means, corresponding 
to comparisons on main effects and interactions, respectively. The number of scores per mean and 
the error term follow from the ANOVA design used. However, if comparisons are made on within-
subjects effects, it is customary to develop a separate error term for each comparison, just as sepa-
rate error terms are developed for omnibus tests of within-  subjects IVs.
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Chapter 6 has much more information on comparisons of both main effects and interactions, 
including syntax for performing them through some of the more popular computer programs. Once 
you have obtained F for a comparison, whether by hand calculation or computer, the obtained F is 
compared with critical F to see if it is statistically reliable.

If obtained F exceeds critical F, the null hypothesis for the comparison is rejected. But which 
critical F is used depends on whether the comparison is planned or performed post hoc.

3.2.6.4 Critical F for Planned Comparisons

If you are in the enviable position of having planned your comparisons prior to data collection, 
and if you have planned no more of them than you have degrees of freedom for effect, critical F is 
obtained from the tables just as in routine ANOVA. Each comparison is tested against critical F at 
routine alpha with one degree of freedom in the numerator and degrees of freedom associated with 
the MSerror in the denominator. If obtained F is larger than critical F, the null hypothesis represented 
by the weighting coefficients is rejected.

With planned comparisons, omnibus ANOVA is not performed;11 the researcher moves 
straight to comparisons. Once the degrees of freedom are spent on the planned comparisons, how-
ever, it is perfectly acceptable to snoop the data at more stringent alpha levels (Section 3.2.6.5), 
including main effects and interactions from omnibus ANOVA if they are appropriate.

Sometimes, however, the researcher cannot resist the temptation to plan more comparisons 
than degrees of freedom for effect. When there are too many tests, even if comparisons are planned, 
the a level across all tests exceeds the a level for any one test and some adjustment of a for each test 
is needed. It is common practice to use a Bonferroni-  type adjustment, where slightly more stringent 
a levels are used with each test to keep a across all tests at reasonable levels. For instance, when 
5 comparisons are planned, if each one of them is tested at a = .01 the alpha across all tests is an 
acceptable .05 (roughly .01 times 5, the number of tests). However, if 5 comparisons are each tested 
at a = .05, the alpha across all tests is approximately .25 (roughly .05 times 5)—unacceptable by 
most standards.

If you want to keep overall a at, say, .10, and you have 5 tests to perform, you can assign a =
.02 for each test or you can assign a = .04 for two tests with the other three evaluated at a = .01 for 
an overall Type I error rate of roughly .11. The decision about how to apportion a through the tests is 
also made prior to data collection.

As an aside, it is important to realize that routine ANOVA designs with numerous main effects 
and interactions suffer from the same problem of inflated Type I error rate across all tests as planned 
comparisons where there are too many tests. Some adjustment of alpha for separate tests is needed 
in big ANOVA problems as well, if all effects are evaluated even if the tests are planned.

3.2.6.5 Critical F for Post Hoc Comparisons

If you are unable to plan your comparisons and choose to start with routine ANOVA instead, you 
want to follow up significant main effects (with more than two levels) and interactions with post hoc 
comparisons to find the treatments that are different from one another. Post hoc comparisons are 
needed to provide adjustment to a level because of two considerations. First, you have already spent 

11You might perform routine ANOVA to compute the error term(s).
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your degrees of freedom, and your “cheap” a level, conducting routine ANOVA; therefore, you run 
into rapidly increasing overall error rates if you conduct additional analyses without adjustment. 
Second, you have already seen the means, and it is much easier to identify comparisons that are 
likely to be significant. These mean differences, however, may have come from chance fluctuations 
in the data unless you have some theoretical reason to believe they are real—  and if you believe they 
are real, you should plan to test them ahead of time.

Many procedures for dealing with an inflated Type I error rate are available as described in 
standard ANOVA texts such as Tabachnick and Fidell (2007). The tests differ in the number and 
type of comparisons they permit and the amount of adjustment required of a. The tests that permit 
more numerous comparisons have correspondingly more stringent adjustments to critical F. For 
instance, the Dunnett test, which compares the mean from a single control group with each of the 
means of the other groups, in turn, has a less stringent correction than the Tukey test, which allows 
all pairwise comparisons of means. The name of this game is to choose the most liberal test that 
permits you to perform the comparisons of interest.

The test described here (Scheffé, 1953) is the most conservative and most flexible of the 
popular methods. Once critical F is computed with the Scheffé adjustment, there is no limit to 
the number and complexity of comparisons that can be performed. You can perform all pairwise 
comparisons and all combinations of treatment means pooled and contrasted with other treatment 
means, pooled or not, as desired. Some possibilities for pooling are illustrated in Section 3.2.6.1. 
Once you pay the “price” in conservatism for this flexibility, you might as well conduct all the com-
parisons that make sense, given your research design.

The Scheffé method for computing critical F for a comparison on marginal means is

F� = (k - 1)Fc (3.24)

where F� is adjusted critical F, (k - 1) is degrees of freedom for the effect, and Fc is 
tabled F with (k - 1) degrees of freedom in the numerator and degrees of freedom 
associated with the error term in the denominator.

If obtained F is larger than critical Fs, the null hypothesis represented by the weighting 
coefficients for the comparison is rejected. (See Chapter 8 for a more extended discussion of the 
appropriate correction.)

3.3 Parameter Estimation

If a statistically significant difference among means is found, one is usually interested in reporting 
the likely population value for each mean. Since sample means are unbiased estimators of popula-
tion means, the best guess about the size of a population mean (m) is the mean of the sample ran-
domly selected from that population. In most reports of research, therefore, sample mean values are 
reported along with statistical results.

Sample means are only estimations of population means. They are unbiased because they are 
systematically neither large nor small, but they are rarely precisely at the population value—  and 
there is no way to know when they are. Thus, the error in estimation, the familiar confidence in-
terval of introductory statistics, is often reported along with the estimated means. The size of the 
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confidence interval depends on sample size, the estimation of population variability, and the degree 
of confidence one wishes to have in estimating m. Alternatively, cell standard deviations or standard 
errors are presented along with sample means so that the reader can compute the confidence interval 
if it is desired.

3.4 Effect Size12

Although significance testing, comparisons, and parameter estimation help illuminate the nature of 
group differences, they do not assess the degree to which the IV(s) and DV are related. It is impor-
tant to assess the degree of relationship to avoid publicizing trivial results as though they had practi-
cal utility. As discussed in Section 3.1.2, overly powerful research sometimes produces results that 
are statistically significant but realistically meaningless.

Effect size reflects the proportion of variance in the DV that is associated with levels of an IV. It 
assesses the amount of total variance in the DV that is predictable from knowledge of the levels of the 
IV. If the total variances of the DV and the IV are represented by circles as in a Venn diagram, effect 
size assesses the degree of overlap of the circles. Statistical significance testing assesses the reliability
of the association between the IV and the DV. Effect size measures how much association there is.

A rough estimate of effect size is available for any ANOVA through h2 (eta squared).

h2 =
SSeffect

SStotal
(3.25)

When there are two levels of the IV, h2 is the (squared) point biserial correlation between the con-
tinuous variable (the DV) and the dichotomous variable (the two levels of the IV).13 After finding 
a significant main effect or interaction, h2 shows the proportion of variance in the DV (SStotal)
attributable to the effect (SSeffect). In a balanced, equal-n design, h2s are additive; the sum of h2 for 
all significant effects is the proportion of variation in the DV that is predictable from knowledge of 
the IVs.

This simple popular measure of effect size is flawed for two reasons. First, h2 for a particu-
lar IV depends on the number and significance of other IVs in the design. h2 for an IV tested in a 
one-  way design is likely to be larger than h2 for the same IV in a two-  way design, where the other 
IV and the interaction increase the size of the total variance, especially if one or both of the addi-
tional effects are large. This is because the denominator of h2 contains systematic variance for other 
effects in addition to error variance and systematic variance for the effect of interest.

Therefore, an alternative form of h2 called partial h2 is available in which the denominator 
contains only variance attributable to the effect of interest plus error.

Partial h2 =
SSeffect

SSeffect + SSerror
(3.26)

13All effect size values are associated with the particular levels of the IV used in the research and do not generalize to other 
levels.

12This is also called strength of association or treatment magnitude.
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With this alternative, h2s for all significant effects in the design do not sum to proportion of system-
atic variance in the DV. Indeed, the sum is sometimes greater than 1.00. It is imperative, therefore, 
to be clear in your report when this version of h2 is used.

Second, h2 describes proportion of systematic variance in a sample with no attempt to esti-
mate proportion of systematic variance in the population. A statistic developed to estimate effect 
size between IV and DV in the population is vn2 (omega squared).

vn2 =
SSeffect - (dfeffect)(MSerror)

SStotal + MSerror
(3.27)

This is the additive form of vn2, where the denominator represents total variance, not just variance 
due to effect plus error, and is limited to between-  subjects analysis of variance designs with equal 
sample sizes in all cells. Forms of vn2 are available for designs containing repeated measures (or 
randomized blocks), as described by Vaughn and Corballis (1969).

A separate measure of effect size is computed and reported for each main effect and interac-
tion of interest in a design. Confidence intervals also may be developed around effect sizes using 
recent software (Smithson, 2003; Steiger & Fouladi, 1992). These are demonstrated in subsequent 
chapters. Effect sizes described can range from 0 to 1 because they are proportions of variance. 
Another type of effect size is Cohen’s d, basically a difference between standardized means (i.e., 
means divided by their common standard deviation). That measure becomes less convenient in mul-
tivariate designs in which comparisons are more complex than simply the difference between a pair 
of means. Further, Cohen (1988) shows equations for converting d to h2. Therefore, the measures 
described in this book are based on h2.

A frequent question is “Do I have (or expect to find) a big effect?” The answer to this ques-
tion depends on the research area and type of study. Simple experiments typically account for less 
variance than do nonexperimental studies (nature generally exhibits more control over people than 
we do in our roles as experimenters). Clinical/personality/social psychology and education tend to 
have smaller effects than found in sociology, economics, and perception/physiological psychology. 
Cohen (1988) has presented some guidelines for small (h2 = .01), medium (h2 = .09), and large 
(h2 = .25) effects. These guidelines apply to experiments and social/clinical areas of psychology; 
larger values could be expected for nonexperimental research, sociology, and the more physiologi-
cal aspects of psychology. Ultimately, the size of the effect desired or expected depends on the 
context of the research: Is it meaningful? Does it matter?

3.5  Bivariate Statistics: Correlation 
and Regression

Effect size as described in Section 3.4 is assessed between a continuous DV and discrete levels 
of an IV. Frequently, however, a researcher wants to measure the effect size between two con-
tinuous variables, where the IV–  DV distinction is blurred. For instance, the association between 
years of education and income is of interest even though neither is manipulated and inferences 
regarding causality are not possible. Correlation is the measure of the size and direction of the 
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linear relationship between the two variables, and squared correlation is the measure of strength 
of association between them.

Correlation is used to measure the association between variables; regression is used to predict 
one variable from the other (or many others). However, the equations for correlation and bivariate 
regression are very similar, as indicated in what follows.

3.5.1 Correlation

The Pearson product-  moment correlation coefficient, r, is easily the most frequently used measure 
of association and the basis of many multivariate calculations. The most interpretable equation for 
Pearson r is

r =
gZXZY

N - 1 (3.28)

where Pearson r is the average cross-  product of standardized X and Y variable scores.

ZX =
X - X

S
and ZY =

Y - Y

S

and S is as defined in Equations 3.4 and 3.6.
Pearson r is independent of scale of measurement (because both X and Y scores are converted 

to standard scores) and independent of sample size (because of division by N ). The value of r ranges 
between + 1 and - 1, where values close to .00 represent no linear relationship or predictability 
between the X and Y variables. An r value of + 1.00 or - 1.00 indicates perfect predictability of one 
score when the other is known. When correlation is perfect, scores for all subjects in the X distribu-
tion have the same relative positions as corresponding scores in the Y distribution.14

The raw score form of Equation 3.28 also sheds light on the meaning of r:

r =
NgXY - 1gX2 1gY2

23NgX 2 - 1gX224 3NgY2 - 1gY224 (3.29)

Pearson r is the covariance between X and Y relative to (the square root of the product of) X and Y
variances. Only the numerators of variance and covariance equations appear in Equation 3.29, be-
cause the denominators cancel each other out.

14When correlation is perfect, ZX = ZY for each pair, and the numerator in Equation 3.28 is, in effect, gZX ZX. Because 

gZ2
X = N - 1, Equation 3.28 reduces to (N - 1)>(N - 1), or 1.00.
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3.5.2 Regression

Whereas correlation is used to measure the size and direction of the linear relationship between two 
variables, regression is used to predict a score on one variable from a score on the other. In a bivari-
ate (two-  variable) regression (simple linear regression) where Y is predicted from X, a straight line 
between the two variables is found. The best-  fitting straight line goes through the means of X and Y
and minimizes the sum of the squared distances between the data points and the line.

To find the best-  fitting straight line, an equation is solved of the form

Y� = A + BX (3.30)

where Y� is the predicted score, A is the value of Y when X is 0.00, B is the slope of the line (change 
in Y divided by change in X ), and X is the value from which Y is to be predicted.

The difference between the predicted and the observed values of Y at each value of X repre-
sents errors of prediction or residuals. The best-  fitting straight line is the line that minimizes the 
squared errors of prediction.

To solve Equation 3.30, both B and A are found.

B =
NgXY - 1gX2 1gY2

NgX2 - 1gX22 (3.31)

The bivariate regression coefficient, B, is the ratio of the covariance of the variables and 
the variance of the one from which predictions are made.

Note the differences and similarities between Equation 3.29 (for correlation) and Equation 
3.31 (for the regression coefficient). Both have the covariance between the variables as a numera-
tor but differ in denominator. In correlation, the variances of both are used in the denominator. In 
regression, the variance of the predictor variable serves as the denominator; if Y is predicted from X,
X variance is the denominator, whereas if X is predicted from Y, Y variance is the denominator. To 
complete the solution, the value of the intercept, A, is also calculated.

A = Y - BX (3.32)

The intercept is the mean of the observed value of the predicted variable minus the 
product of the regression coefficient times the mean of the predictor variable.

Figure 3.3 illustrates many of the relationships among slopes, intercepts, predicted scores, and 
residuals.

The intercept for the small data set is 2.16; at a value of zero on the X axis, the regression line 
crosses the Y axis at 2.16. The slope is .60; when the value on the X axis increases by 1 unit, the 
value on the Y axis goes up .60 units. The equation for the predicted Y score (Equation 3.30 above) 
is Y� = 2.16 + .60X. For an X score of 4, the predicted Y score is [2.16 + .60(4) = 4.56]. This is the 
value indicated by the up arrow Figure 3.3. But 5 is the actual Y score associated with an X score of 
4 in the data set. The residual, then, for the X score of 4 is the difference between the actual Y score 
and the predicted Y score (5 - 4.56 = .44). The bracket indicates the residual for this value in the 
data set. Linear regression minimizes the squared residuals across the whole data set.
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3.6  Chi-Square Analysis

Analysis of variance examines the relationship between a discrete variable (the IV) and a continu-
ous variable (the DV); correlation and regression examine the relationship between two continuous 
variables; and the chi-  square (x2) test of independence is used to examine the relationship between 
two discrete variables. If, for instance, one wants to examine a potential relationship between region 
of the country (Northeast, Southeast, Midwest, South, and West) and approval versus disapproval of 
current political leadership, x2 is the appropriate analysis.

In x2 analysis, the null hypothesis generates expected frequencies against which observed 
frequencies are tested. If the observed frequencies are similar to the expected frequencies, then the 
value of x2 is small and the null hypothesis is retained; if they are sufficiently different, then the 
value of x2 is large and the null hypothesis is rejected. The relationship between the size of x2 and 
the difference in observed and expected frequencies can be seen readily from the following compu-
tational equation for x2:

a
ij

( fo - Fe)
2

Fe
(3.33)

Linear Regression
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FIGURE 3.3 Slopes, intercepts, predicted scores, and residuals in 
bivariate regression; figure created using IBM SPSS graphs.
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where fo represents observed frequencies and Fe represents the expected frequencies in each cell. 
Summation is over all the cells in a two-  way table.

Usually, the expected frequencies for a cell are generated from the sum of its row and the sum 
of the column.

Cell Fe =
1row sum21column sum2

N
(3.34)

When this procedure is used to generate the expected frequencies, the null hypothesis tested is that 
the variable on the row (say, region of the country) is independent of the variable on the column (at-
titude toward current political leadership). If the fit to the observed frequencies is good (so that x2

is small), then one concludes that the two variables are independent; a poor fit leads to a large x2,
rejection of the null hypothesis, and the conclusion that the two variables are related.

The techniques discussed in this chapter for making decisions about differences, estimat-
ing population means, assessing association between two variables, and predicting a score on one 
variable from a score on another are important to, and widely used in, the social and behavioral 
sciences. They form the basis for most undergraduate—  and some graduate—  statistics courses. It is 
hoped that this brief review reminds you of material already mastered, so that, with common back-
ground and language, we begin in earnest the study of multivariate statistics.
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This chapter deals with a set of issues that are resolved after data are collected but before the main 
data analysis is run. Careful consideration of these issues is time-consuming and sometimes tedious; 
it is common, for instance, to spend many days in careful examination of data prior to running the 
main analysis that, itself, takes about 5 min. But consideration and resolution of these issues before 
the main analysis are fundamental to an honest analysis of the data.

The first issues concern the accuracy with which data have been entered into the data file and 
consideration of factors that could produce distorted correlations. Second, missing data—the bane 
of (almost) every researcher—are assessed and dealt with. Next, many multivariate procedures are 
based on assumptions; the fit between your data set and the assumptions is assessed before the pro-
cedure is applied. Transformations of variables to bring them into compliance with the requirements 
of analysis are considered. Outliers—cases that are extreme (outlandish)—create other headaches 
because solutions are unduly influenced and sometimes distorted by them. Last, perfect or near-
perfect correlations among variables can threaten a multivariate analysis.

This chapter deals with issues that are relevant to most analyses. However, the issues are not 
all applicable to all analyses all the time; for instance, multiway frequency analysis (Chapter 16) 
and logistic regression (Chapter 10)—procedures that use log-linear techniques—have far fewer 
assumptions than the other techniques. Other analyses have additional assumptions that are not 
covered in this chapter. For these reasons, assumptions and limitations specific to each analysis are 
reviewed in the third section of the chapter describing that analysis.

There are differences in data screening for grouped and ungrouped data. If you are performing 
multiple regression, canonical correlation, factor analysis, or structural equation modeling, where 
subjects are not subdivided into groups, there is one procedure for screening data. If you are per-
forming analysis of covariance, multivariate analysis of variance or covariance, profile analysis, dis-
criminant analysis, or multilevel modeling where subjects are in groups, there is another procedure 
for screening data. Differences in these procedures are illustrated by example in Section 4.2. Other 
analyses (survival analysis and time-series analysis) sometimes have grouped data and often do not, 
so screening is adjusted accordingly.

You may find the material in this chapter difficult from time to time. Sometimes it is neces-
sary to refer to material covered in subsequent chapters to explain some issue, material that is more 
understandable after those chapters are studied. Therefore, you may want to read this chapter now 
to get an overview of the tasks to be accomplished prior to the main data analysis and then read it 
again after mastering the remaining chapters.

4 Cleaning Up Your Act

Screening Data Prior to Analysis
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4.1 Important Issues in Data Screening

4.1.1 Accuracy of Data File

The best way to ensure the accuracy of a data file is to proofread the original data against the com-
puterized data file in the data window. In SAS, data are most easily viewed in the Interactive Data 
Analysis window. With a small data file, proofreading is highly recommended, but with a large data 
file, it may not be possible. In this case, screening for accuracy involves examination of descriptive 
statistics and graphic representations of the variables.

The first step with a large data set is to examine univariate descriptive statistics through one of 
the descriptive programs such as IBM SPSS FREQUENCIES, or SAS MEANS or UNIVARIATE 
or Interactive Data Analysis. For continuous variables, are all the values within range? Are means 
and standard deviations plausible? If you have discrete variables (such as categories of religious 
affiliation), are there any out-of-range numbers? Have you accurately programmed your codes for 
missing values?

4.1.2 Honest Correlations

Most multivariate procedures analyze patterns of correlation (or covariance) among variables. It 
is important that the correlations, whether between two continuous variables or between a dichot-
omous and continuous variable, be as accurate as possible. Under some rather common research 
conditions, correlations are larger or smaller than they should be.

4.1.2.1 Inflated Correlation

When composite variables are constructed from several individual items by pooling responses to in-
dividual items, correlations are inflated if some items are reused. Scales on personality inventories, 
measures of socioeconomic status, health indices, and many other variables in social and behavioral 
sciences are often composites of several items. If composite variables are used and they contain, in 
part, the same items, correlations are inflated; do not overinterpret a high correlation between two 
measures composed, in part, of the same items. If there is enough overlap, consider using only one 
of the composite variables in the analysis.

4.1.2.2 Deflated Correlation

Sample correlations may be lower than population correlations when there is restricted range in 
sampling of cases or very uneven splits in the categories of dichotomous variables.1 Problems with 
distributions that lead to lower correlations are discussed in Section 4.1.5.

A falsely small correlation between two continuous variables is obtained if the range of re-
sponses to one or both of the variables is restricted in the sample. Correlation is a measure of the 
extent to which scores on two variables go up together (positive correlation) or one goes up while the 
other goes down (negative correlation). If the range of scores on one of the variables is narrow due to 

1A very small coefficient of determination (standard deviation/mean) was also associated with lower correlations when com-
puters had less computational accuracy. However, computational accuracy is so high in modern statistical packages that the 
problem is unlikely to occur, unless, perhaps, to astronomers.
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restricted sampling, then it is effectively a constant and cannot correlate highly with another variable. 
In a study of success in graduate school, for instance, quantitative ability could not emerge as highly 
correlated with other variables if all students had about the same high scores in quantitative skills.

When a correlation is too small because of restricted range in sampling, you can estimate its 
magnitude in a nonrestricted sample by using Equation 4.1 if you can estimate the standard devia-
tion in the nonrestricted sample. The standard deviation in the nonrestricted sample is estimated 
from prior data or from knowledge of the population distribution.

r�xy =
rt(xy)3Sx>St (x)4

21 + r2
t (xy)3Sx>St(x)4 - r 2

t (xy)

(4.1)

where rt(xy) = adjusted correlation
r2

t(xy) = correlation between X and Y with the range of X truncated
Sx = unrestricted standard deviation of X

St(x) = truncated standard deviation of X

Many programs allow analysis of a correlation matrix instead of raw data. The estimated correlation 
is inserted in place of the truncated correlation prior to analysis of the correlation matrix. (However, 
insertion of estimated correlations may create internal inconsistencies in the correlation matrix, as 
discussed in Section 4.1.3.3.)

The correlation between a continuous variable and a dichotomous variable, or between two 
dichotomous variables (unless they have the same peculiar splits), is also too low if most (say, over 
90%) responses to the dichotomous variable fall into one category. Even if the continuous and dichoto-
mous variables are strongly related in the population, the highest correlation that could be obtained is 
well below 1. Some recommend dividing the obtained (but deflated) correlation by the maximum it 
could achieve given the split between the categories and then using the resulting value in subsequent 
analyses. This procedure is attractive, but not without hazard, as discussed by Comrey and Lee (1992).

4.1.3 Missing Data

Missing data is one of the most pervasive problems in data analysis. The problem occurs when rats 
die, equipment malfunctions, respondents become recalcitrant, or somebody goofs. Its seriousness 
depends on the pattern of missing data, how much is missing, and why it is missing. Summaries 
of issues surrounding missing data are provided by Schafer and Graham (2002) and by Graham, 
Cumsille, and Elek-Fisk (2003).

The pattern of missing data is more important than the amount missing. Missing values scat-
tered randomly through a data matrix pose less serious problems. Nonrandomly missing values, on 
the other hand, are serious no matter how few of them there are because they affect the generaliz-
ability of results. Suppose that in a questionnaire with both attitudinal and demographic questions, 
several respondents refuse to answer questions about income. It is likely that refusal to answer ques-
tions about income is related to attitude. If respondents with missing data on income are deleted, the 
sample values on the attitude variables are distorted. Some method of estimating income is needed 
to retain the cases for analysis of attitude.

Missing data are characterized as MCAR (missing completely at random), MAR (missing 
at random, called ignorable nonresponse), and MNAR (missing not at random or nonignorable). 
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The distribution of missing data is unpredictable in MCAR, the best of all possible worlds if data must 
be missing. The pattern of missing data is predictable from other variables in the data set when data 
are MAR. In NMAR, the missingness is related to the variable itself and, therefore, cannot be ignored.

If only a few data points—say, 5% or less—are missing in a random pattern from a large 
data set, the problems are less serious and almost any procedure for handling missing values yields 
similar results. If, however, a lot of data are missing from a small to moderately sized data set, the 
problems can be very serious. Unfortunately, there are as yet no firm guidelines for how much miss-
ing data can be tolerated for a sample of a given size.

Although the temptation to assume that data are missing randomly is nearly overwhelming, the 
safest thing to do is to test it. Use the information you have to test for patterns in missing data. For 
instance, construct a dummy variable with two groups, cases with missing and nonmissing values on 
income, and perform a test of mean differences in attitude between the groups. If there are no differ-
ences, decisions about how to handle missing data are not so critical (except, of course, for inferences 
about income). If there are significant differences and h2 is substantial (cf. Equation 3.25), care is 
needed to preserve the cases with missing values for other analyses, as discussed in Section 4.1.3.2.

IBM SPSS MVA (Missing Values Analysis) is specifically designed to highlight patterns of 
missing values as well as to replace them in the data set. Table 4.1 shows syntax and output for a 
data set with missing values on ATTHOUSE and INCOME. A TTEST is requested to see if miss-
ingness is related to any of other variables, with a = .05 and tests done only for variables with at 
least 5 PERCENT of data missing. The EM syntax requests a table of correlations and a test of 
whether data are missing completely at random (MCAR).

The Univariate Statistics table shows that there is one missing value on ATTHOUSE and 26 
missing values on INCOME. Separate Variance t Tests show no systematic relationship between 
missingness on INCOME and any of the other variables. ATTHOUSE is not tested because fewer than 
5% of the cases have missing values. The Missing Patterns table shows that Case number 52, among 
others, is missing INCOME, indicated by an S in the table. Case number 253 is missing ATTHOUSE. 
The last table shows EM Correlations with missing values filled in using the EM method, to be dis-
cussed. Below the table is Little’s MCAR test of whether the data are missing completely at random. 
A statistically nonsignificant result is desired: p = .76 indicates that the probability that the pattern of 
missing diverges from randomness is greater than .05, so that MCAR may be inferred.

MAR can be inferred if the MCAR test is statistically significant but missingness is predict-
able from variables (other than the DV) as indicated by the Separate Variance t Tests. MNAR is 
inferred if the t test shows that missingness is related to the DV.

The decision about how to handle missing data is important. At best, the decision is among 
several bad alternatives, several of which are discussed in the subsections that follow.

4.1.3.1 Deleting Cases or Variables

One procedure for handling missing values is simply to drop any cases with them. If only a few 
cases have missing data and they seem to be a random subsample of the whole sample, deletion is 
a good alternative. Deletion of cases with missing values is the default option for most programs in 
the IBM SPSS and SAS packages.2

2Because this is the default option, numerous cases can be deleted without the researcher’s knowledge. For this reason, it is 
important to check the number of cases in your analyses to make sure that all of the desired cases are used.
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TABLE 4.1 IBM SPSS MVA Syntax and Output for Missing Data

MVA VARIABLES=timedrs attdrug atthouse income emplmnt mstatus race
/TTEST NO PROB PERCENT=5
/MPATTERN
/EM(TOLERANCE=0.001 CONVERGENCE=0.0001 ITERATIONS=25).

Univariate Statistics

N Mean
Std. 

Deviation

Missing No. of Extremesa,b

Count Percent Low High

TIMEDRS 465 7.90 10.948 0 .0 0 34
ATTDRUG 465 7.69 1.156 0 .0 0 0
ATTHOUSE 464 23.54 4.484 1 .2 4 0
INCOME
EMPLMNT

439
465

4.21
.47

2.419
.500

26
0

5.6
.0

0
0

0
0

MSTATUS 465 1.78 .416 0 .0 . .
RACE 465 1.09 .284 0 .0 . .

a. Indicates that the interquartile range (IQR) is zero.

b. Number of cases outside the range (Q1 - 1.5*IQR, Q3 + 1.5*IQR)

Separate Variance t Testsa

T
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O
M

E

M
S
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T
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S

R
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C
E

E
M

P
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N
T
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C

O
M

E

t .2 -1.1 -.2 . -1.0 -.4 -1.1
df 32.2 29.6 28.6 . 29.0 27.3 28.0
# Present 439 439 438 439 439 439 439
# Missing 26 26 26 0 26 26 26
Mean (Present) 7.92 7.67 23.53 4.21 1.77 1.09 .46
Mean (Missing) 7.62 7.88 23.69 . 1.85 1.12 .58

For each quantitative variable, pairs of groups are formed by indicator variables (present, missing).

a. Indicator variables with less than 5% missing are not displayed.
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Missing Patterns (cases with missing values)

Missing and Extreme Value Patternsa

Case # 
M

is
si

ng

%
 M

is
si

ng
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R
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P
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C

O
M

E

52 1 14.3 − − S
64 1 14.3 + − − S
69 1 14.3 − − S
77 1 14.3 − − S
118 1 14.3 − − S
135 1 14.3 − − S
161 1 14.3 − − S
172 1 14.3 − − S
173 1 14.3 − − S
174 1 14.3 − − S
181 1 14.3 − − S
196 1 14.3 − + S
203 1 14.3 + − − S
236 1 14.3 − − S
240 1 14.3 − − S
258 1 14.3 − + S
304 1 14.3 − − S
321 1 14.3 − − S
325 1 14.3 − − S
352 1 14.3 − − S
378 1 14.3 − − S
379 1 14.3 − − S
409 1 14.3 + − − S
419 1 14.3 − − S
421 1 14.3 − − S
435 1 14.3 − + − S
253 1 14.3 − + S

- Indicates an extreme low value, and + indicates an extreme high value. The 
range used is (Q1 - 1.5*IQR, Q3 + 1.5*IQR).

a.Cases and variables are sorted on missing patterns.

TABLE 4.1 Continued

(continued)
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If missing values are concentrated in a few variables and those variables are not critical to the 
analysis, or are highly correlated with other, complete variables, the variable(s) with missing values 
are profitably dropped.

But if missing values are scattered throughout cases and variables, deletion of cases can mean 
substantial loss of subjects. This is particularly serious when data are grouped in an experimental 
design because loss of even one case requires adjustment for unequal n (see Chapter 6). Further, the 
researcher who has expended considerable time and energy collecting data is not likely to be eager 
to toss some out. And as previously noted, if cases with missing values are not randomly distributed 
through the data, distortions of the sample occur if they are deleted.

4.1.3.2 Estimating Missing Data

A second option is to estimate (impute) missing values and then use the estimates during data analy-
sis. There are several popular schemes for doing so: using prior knowledge; inserting mean values; 
using regression; expectation-maximization; and multiple imputation.

Prior knowledge is used when a researcher replaces a missing value with a value from an 
educated guess. If the researcher has been working in an area for a while, and if the sample is large 
and the number of missing values small, this is often a reasonable procedure. The researcher is often 
confident that the value would have been about at the median, or whatever, for a particular case. 
Alternatively, the researcher can downgrade a continuous variable to a dichotomous variable (e.g., 
“high” vs. “low”) to predict with confidence into which category a case with a missing value falls. 
The discrete variable replaces the continuous variable in the analysis, but it has less information 
than the continuous variable. An option with longitudinal data is to apply the last observed value to 
fill in data missing at a later point in time. However, this requires the expectation that there are no 
changes over time.

Remaining options for imputing missing data are available through software. Table 4.2 shows 
programs that implement missing data procedures.

EM Correlationsa

tim
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timedrs 1
attdrug .104 1
atthouse .128 .023 1
income .050 -.005 .002 1
emplmnt .059 .085 -.023 -.006 1
mstatus -.065 -.006 -.030 -.466 .234 1
race -.035 .019 -.038 .105 -.081 -.035 1

a. Little’s MCAR test: Chi-Square = 19.550, DF = 12, Sig. = 0.76.

TABLE 4.1 Continued
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Mean substitution has been a popular way to estimate missing values, although it is less 
commonly used now that more desirable methods are feasible through computer programs. Means 
are calculated from available data and are used to replace missing values prior to analysis. In the 
absence of all other information, the mean is the best guess about the value of a variable. Part of 
the attraction of this procedure is that it is conservative; the mean for the distribution as a whole 
does not change and the researcher is not required to guess at missing values. On the other hand, 
the variance of a variable is reduced because the mean is closer to itself than to the missing value it 
replaces, and the correlation the variable has with other variables is reduced because of the reduc-
tion in variance. The extent of loss in variance depends on the amount of missing data and on the 
actual values that are missing.

A compromise is to insert a group mean for the missing value. If, for instance, the case with a 
missing value is a Republican, the mean value for Republicans is computed and inserted in place of 
the missing value. This procedure is not as conservative as inserting overall mean values and not as 
liberal as using prior knowledge. However, the reduction in within-group variance can make differ-
ences among groups spuriously large.

Many programs have provisions for inserting mean values. SAS STANDARD allows a data set 
to be created with missing values replaced by the mean on the variable for complete cases. SOLAS 
MDA, a program devoted to missing data analysis, produces data sets in which group means are 
used to replace missing values IBM SPSS REGRESSION permits MEANSUBSTITUTION. And, 
of course, transformation instructions can be used with any program to replace any defined value of 
a variable (including a missing code) with the mean.

Regression (see Chapter 5) is a more sophisticated method for estimating missing values. 
Other variables are used as IVs to write a regression equation for the variable with missing data 

TABLE 4.2 Missing Data Options Available in Some Computer Programs

Strategy

Program

SPSS
MVA

SOLAS
MDA

SPSS
REGRESSION NORM

SAS
STANDARD

SAS MI 
and 

MIANALYZE

AMOS, 
EQS, 
and 

LISREL

Mean
substi-
tution

Grand
mean No

Group
Meansa

MEAN
SUBSTITUTION No REPLACE No No

Group
mean No

Group
Means No No No No No

Regression Regression No No No No No No

Expectation
Maximization
(EM/FIML) EM No No Yesc No

PROC MI 
with

NIMPUTE = Yes

Multiple
imputation Nob

Multiple
Imputation No Yes No Yes No

aWith omission of group identification.

bMay be done by generating multiple files through the EM method and computing additional statistics.
cFor preparation of data prior to multiple imputation; provides missing values for one random imputation.
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serving as DV. Cases with complete data generate the regression equation; the equation is then used 
to predict missing values for incomplete cases. Sometimes, the predicted values from a first round 
of regression are inserted for missing values and then all the cases are used in a second regression. 
The predicted values for the variable with missing data from round two are used to develop a third 
equation, and so forth, until the predicted values from one step to the next are similar (they con-
verge). The predictions from the last round are the ones used to replace missing values.

An advantage of regression is that it is more objective than the researcher’s guess but not 
as blind as simply inserting the grand mean. One disadvantage to the use of regression is that the 
scores fit together better than they should; because the missing value is predicted from other vari-
ables, it is likely to be more consistent with them than a real score is. A second disadvantage is 
reduced variance because the estimate is probably too close to the mean. A third disadvantage is 
the requirement that good IVs be available in the data set; if none of the other variables is a good 
predictor of the one with missing data, the estimate from regression is about the same as simply in-
serting the mean. Finally, estimates from regression are used only if the estimated value falls within 
the range of values for complete cases; out-of-range estimates are not acceptable. Using regression 
to estimate missing values is convenient in IBM SPSS MVA. The program also permits adjustment 
of the imputed values so that overconsistency is lessened.

Expectation maximization (EM) methods are available for randomly missing data. EM forms 
a missing data correlation (or covariance) matrix by assuming the shape of a distribution (such as 
normal) for the partially missing data and basing inferences about missing values on the likelihood 
under that distribution. It is an iterative procedure with two steps—expectation and maximization—
for each iteration. First, the E step finds the conditional expectation of the “missing” data, given the 
observed values and current estimate of the parameters, such as correlations. These expectations are 
then substituted for the missing data. Second, the M step performs maximum likelihood estimation 
(often referred to as FIML—full information maximum likelihood) as though the missing data had 
been filled in. Finally, after convergence is achieved, the EM variance–covariance matrix may be 
provided and/or the filled-in data saved in the data set.

However, as pointed out by Graham et al. (2003), analysis of an EM-imputed data set is 
biased because error is not added to the imputed data set. Thus, analyses based on this data set have 
inappropriate standard errors for testing hypotheses. The bias is greatest when the data set with 
imputed values filled in is analyzed, but bias exists even when a variance–covariance or correlation 
matrix is used as input. Nevertheless, these imputed data sets can be useful for evaluating assump-
tions and for exploratory analyses that do not employ inferential statistics. Analysis of EM-imputed 
data sets can also provide insights when amounts of missing data are small if inferential statistics 
are interpreted with caution.

IBM SPSS MVA performs EM to generate a data set with imputed values as well as variance–
covariance and correlation matrices, and permits specification of some distributions other than nor-
mal. IBM SPSS MVA also is extremely helpful for assessing patterns of missing data, providing t
tests to predict missingness from other variables in the data set, and testing for MCAR, as seen in 
Table 4.1.

Structural equations modeling (SEM) programs (cf. AMOS, EQS, and LISREL in Chapter 
14) typically have their own built-in imputation procedures which are based on EM. The programs 
do not produce data sets with imputed values but utilize appropriate standard errors in their analyses.

SAS, NORM, and SOLAS MDA can be used to create an EM-imputed data set by running 
the MI (multiple imputation, see below) procedure with m (number of imputations) = 1, but analysis 
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of the imputed data set is subject to the same cautions as noted for IBM SPSS MVA. The EM vari-
ance–covariance matrix produced by NORM builds in appropriate standard errors, so that analyses 
based on those matrices are unbiased (Graham et al., 2003). Little and Rubin (1987) discuss EM and 
other methods in detail. EM through IBM SPSS MVA is demonstrated in Section 10.7.1.1.

Multiple imputation also takes several steps to estimate missing data. First, logistic regression 
(Chapter 10) is used when cases with and without a missing value on a particular variable form the 
dichotomous DV. You determine which other variables are to be used as predictors in the logistic 
regression, which in turn provides an equation for estimating the missing values. Next, a random 
sample is taken (with replacement) from the cases with complete responses to identify the distribu-
tion of the variable with missing data.

Then several (m) random samples are taken (with replacement) from the distribution of the 
variable with missing data to provide estimates of that variable for each of m newly created (now 
complete) data sets. Rubin (1996) shows that five (or even three in some cases) such samples are 
adequate in many situations. You then perform your statistical analysis separately on the m new data 
sets and report the average parameter estimates (e.g., regression coefficients) from the multiple runs 
in your results.

Advantages of multiple imputation are that it can be applied to longitudinal data (e.g., for 
within-subjects IVs or time-series analysis) as well as data with single observations on each vari-
able, and that it retains sampling variability (Statistical Solutions, Ltd., 1997). Another advantage is 
that it makes no assumptions about whether data are randomly missing. This is the method of choice 
for databases that are made available for analyses outside the agency that collected the data. That is, 
multiple data sets are generated, and other users may either make a choice of a single data set (with 
its inherent bias) or use the multiple data sets and report combined results. Reported results are the 
mean for each parameter estimate over the analyses of multiple data sets as well as the total variance 
estimate, which includes variance within imputations and between imputations—a measure of the 
true uncertainty in the data set caused by missing data (A. McDonnell, personal communication, 
August 24, 1999).

SOLAS MDA performs multiple imputation directly and provides a ROLLUP editor that 
combines the results from the newly created complete data sets (Statistical Solutions, Ltd., 1997). 
The editor shows the mean for each parameter and its total variance estimate, as well as within- and 
between-imputations variance estimates. The SOLAS MDA manual demonstrates multiple imputa-
tions with longitudinal data. Rubin (1996) provides further details about the procedure. With IBM 
SPSS MVA, you apply your method m times via the EM procedure, using a random-number seed 
that changes for each new data set. Then you do your own averaging to establish the final parameter 
estimate.

NORM is a freely distributed program for multiple imputation available on the Internet 
(Schafer, 1999). The program currently is limited to normally distributed predictors and encompasses 
an EM procedure to estimate parameters, provide start values for the data augmentation step (mul-
tiple imputation), and help determine the proper number of imputations. A summary of the results of 
the multiple data sets produced by data augmentation is available as are the multiple data sets.

Newer versions of SAS use a three-step process to deal with multiple imputation of missing 
data. First, PROC MI provides an analysis of missing data patterns much like that of IBM SPSS 
MVA (Table 4.1) but without the MCAR diagnosis or t tests to predict missingness from other 
variables. At the same time, a data set is generated with m subsets (default m = 5) with different 
imputations of missing data in each subset. A column indicating the imputation number (e.g., 1 to 5) 
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is added to the data set. Next, the desired analysis module is run (e.g., REG, GLM, or MIXED) 
with syntax that requests a separate analysis for each imputation number and with some (but not 
all) results added to a data file. Finally, PROC MIANALYZE is run on the data file of results which 
combines the m sets of results into a single summary report.3 Graham and colleagues (2003) report 
that m typically ranges from 5 to 20. Rubin (1996) suggests that often 3 to 5 imputations are ad-
equate, as long as the amount of missing data is fairly small. He also asserts that any m > 1 is better 
than just one imputed data set. SAS MI and MIANALYZE are demonstrated in Section 5.7.4, where 
guidelines are given for choice of m.

IBM SPSS MVA may be used to create multiple data sets with different imputations by run-
ning EM imputation m times with different random number seeds. However, you are then on your 
own for combining the results of the multiple analyses, and there is no provision for developing ap-
propriate standard errors. Rubin (1987) discusses multiple imputation at length.

Other methods, such as hot decking, are available but they require specialized software and 
have few advantages in most situations over other imputation methods offered by SAS, SOLAS, 
and NORM.

4.1.3.3 Using a Missing Data Correlation Matrix

Another option with randomly missing data involves analysis of a missing data correlation matrix. 
In this option, all available pairs of values are used to calculate each of the correlations in R. A vari-
able with 10 missing values has all its correlations with other variables based on 10 fewer pairs of 
numbers. If some of the other variables also have missing values, but in different cases, the number 
of complete pairs of variables is further reduced. Thus, each correlations in R can be based on a dif-
ferent number and a different subset of cases, depending on the pattern of missing values. Because 
the standard error of the sampling distribution for r is based on N, some correlations are less stable 
than others in the same correlation matrix.

But that is not the only problem. In a correlation matrix based on complete data, the sizes of 
some correlations place constraints on the sizes of others. In particular,

r13r23 - 211 - r2
132 11 - r2

232 … r12 … r13r23 + 211 - r2
132 11 - r2

232 (4.2)

The correlation between variables 1 and 2, r12, cannot be smaller than the value on the left 
or larger than the value on the right in a three-variable correlation matrix. If r13 = .60 and r23 = .40 
then r12 cannot be smaller than −.49 or larger than .97. If, however, r12, r23, and r13 are all based on 
different subsets of cases due to missing data, the value for r12 can go out of range.

Most multivariate statistics involve calculation of eigenvalues and eigenvectors from a cor-
relation matrix (see Appendix A). With loosened constraints on size of correlations in a missing 
data correlation matrix, eigenvalues sometimes become negative. Because eigenvalues represent 
variance, negative eigenvalues represent something akin to negative variance. Moreover, because 
the total variance that is partitioned in the analysis is a constant (usually equal to the number of 
variables), positive eigenvalues are inflated by the size of negative eigenvalues, resulting in inflation 
of variance. The statistics derived under these conditions can be quite distorted.

However, with a large sample and only a few missing values, eigenvalues are often all positive 
even if some correlations are based on slightly different pairs of cases. Under these conditions, a 

3Output is especially sparse for procedures other than SAS REG. 
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missing data correlation matrix provides a reasonable multivariate solution and has the advantage of 
using all available data. Use of this option for the missing data problem should not be rejected out 
of hand but should be used cautiously with a wary eye to negative eigenvalues.

A missing value correlation matrix is prepared through the PAIRWISE deletion option in 
some of the IBM SPSS programs. It is the default option for SAS CORR. If this is not an option of 
the program you want to run, then generate a missing data correlation matrix through another pro-
gram for input to the one you are using.

4.1.3.4 Treating Missing Data as Data

It is possible that the fact that a value is missing is itself a very good predictor of the variable of 
interest in your research. If a dummy variable is created when cases with complete data are assigned 
0 and cases with missing data 1, the liability of missing data could become an asset. The mean is 
inserted for missing values so that all cases are analyzed, and the dummy variable is used as simply 
another variable in analysis, as discussed by Cohen, Cohen, West, and Aiken (2003, pp. 431–451).

4.1.3.5 Repeating Analyses With and Without Missing Data

If you use some method of estimating missing values or a missing data correlation matrix, consider 
repeating your analyses using only complete cases. This is particularly important if the data set is 
small, the proportion of missing values high, or data are missing in a nonrandom pattern. If the 
results are similar, you can have confidence in them. If they are different, however, you need to 
investigate the reasons for the difference, and either evaluate which result more nearly approximates 
“reality” or report both sets of results.

4.1.3.6 Choosing Among Methods for Dealing With Missing Data

The first step in dealing with missing data is to observe their pattern to try to determine whether data 
are randomly missing. Deletion of cases is a reasonable choice if the pattern appears random and 
if only a very few cases have missing data and those cases are missing data on different variables. 
However, if there is evidence of nonrandomness in the pattern of missing data, methods that pre-
serve all cases for further analysis are preferred.

Deletion of a variable with a lot of missing data is also acceptable as long as that variable 
is not critical to the analysis. Or, if the variable is important, use a dummy variable that codes the 
fact that the scores are missing coupled with mean substitution to preserve the variable and make it 
possible to analyze all cases and variables.

It is best to avoid mean substitution unless the proportion of missing values is very small and 
there are no other options available to you. Using prior knowledge requires a great deal of confidence 
on the part of the researcher about the research area and expected results. Regression methods may be 
implemented (with some difficulty) without specialized software but are less desirable than EM methods.

EM methods sometimes offer the simplest and most reasonable approach to imputation of 
missing data, as long as your preliminary analysis provides evidence that scores are missing ran-
domly (MCAR or MAR). Use of an EM covariance matrix, if the technique permits it as input, 
provides a less biased analysis a data set with imputed values. However, unless the EM program 
provides appropriate standard errors (as per the SEM programs of Chapter 14 or NORM), the strat-
egy should be limited to data sets in which there is not a great deal of missing data, and inferential 
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results (e.g., p values) are interpreted with caution. EM is especially appropriate for techniques that 
do not rely on inferential statistics, such as exploratory factor analysis (Chapter 13). Better yet is to 
incorporate EM methods into multiple imputation.

Multiple imputation is currently considered the most respectable method of dealing with 
missing data. It has the advantage of not requiring MCAR (and perhaps not even MAR) and can 
be used for any form of GLM analysis, such as regression, ANOVA, and logistic regression. The 
problem is that it is more difficult to implement and does not provide the full richness of output that 
is typical with other methods.

Using a missing data correlation matrix is tempting if your software offers it as an option for your 
analysis because it requires no extra steps. It makes most sense to use when missing data are scattered 
over variables, and there are no variables with a lot of missing values. The vagaries of missing data 
correlation matrices should be minimized as long as the data set is large and missing values are few.

Repeating analyses with and without missing data is highly recommended whenever any im-
putation method or a missing data correlation matrix is used and the proportion of missing values is 
high—especially if the data set is small.

4.1.4 Outliers

An outlier is a case with such an extreme value on one variable (a univariate outlier) or such a 
strange combination of scores on two or more variables (multivariate outlier) that it distorts statis-
tics. Consider, for example, the bivariate scatterplot of Figure 4.1 in which several regression lines, 
all with slightly different slopes, provide a good fit to the data points inside the swarm. But when the 
data point labeled A in the upper right-hand portion of the scatterplot is also considered, the regres-
sion coefficient that is computed is the one from among the several good alternatives that provides 
the best fit to the extreme case. The case is an outlier because it has much more impact on the value 
of the regression coefficient than any of those inside the swarm.

Outliers are found in both univariate and multivariate situations, among both dichotomous 
and continuous variables, among both IVs and DVs, and in both data and results of analyses. They 
lead to both Type I and Type II errors, frequently with no clue as to which effect they have in a 

A

X2

X1

FIGURE 4.1 Bivariate scatterplot for 
showing impact of an outlier.
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particular analysis. And they lead to results that do not generalize except to another sample with the 
same kind of outlier.

There are four reasons for the presence of an outlier. First is incorrect data entry. Cases that 
are extreme should be checked carefully to see that data are correctly entered. Second is failure to 
specify missing-value codes in computer syntax so that missing-value indicators are read as real 
data. Third is that the outlier is not a member of the population from which you intended to sample. 
If the case should not have been sampled, it is deleted once it is detected. Fourth is that the case 
is from the intended population but the distribution for the variable in the population has more 
extreme values than a normal distribution. In this event, the researcher retains the case but considers 
changing the value on the variable(s) so that the case no longer has as much impact. Although errors
in data entry and missing values specification are easily found and remedied, deciding between 
alternatives three and four, between deletion and retention with alteration, is difficult.

4.1.4.1 Detecting Univariate and Multivariate Outliers

Univariate outliers are cases with an outlandish value on one variable; multivariate outliers are cases 
with an unusual combination of scores on two or more variables. For example, a 15-year-old is per-
fectly within bounds regarding age, and someone who earns $45,000 a year is in bounds regarding 
income, but a 15-year-old who earns $45,000 a year is very unusual and is likely to be a multivariate 
outlier. Multivariate outliers can occur when several different populations are mixed in the same 
sample or when some important variables are omitted that, if included, would attach the outlier to 
the rest of the cases.

Univariate outliers are easier to spot. Among dichotomous variables, the cases on the “wrong” 
side of a very uneven split are likely univariate outliers. Rummel (1970) suggests deleting dichoto-
mous variables with 90–10 splits between categories, or more, both because the correlation coef-
ficients between these variables and others are truncated and because the scores for the cases in the 
small category are more influential than those in the category with numerous cases. Dichotomous 
variables with extreme splits are easily found in the programs for frequency distributions (IBM 
SPSS FREQUENCIES, or SAS UNIVARIATE or Interactive Data Analysis) used during routine 
preliminary data screening.

Among continuous variables, the procedure for searching for outliers depends on whether 
data are grouped. If you are going to perform one of the analyses with ungrouped data (regression, 
canonical correlation, factor analysis, structural equation modeling, or some forms of time-series 
analysis), univariate and multivariate outliers are sought among all cases at once, as illustrated in 
Sections 4.2.1.1 (univariate) and 4.2.1.4 (multivariate). If you are going to perform one of the analy-
ses with grouped data (ANCOVA, MANOVA or MANCOVA, profile analysis, discriminant analy-
sis, logistic regression, survival analysis, or multilevel modeling), outliers are sought separately 
within each group, as illustrated in Sections 4.2.2.1 and 4.2.2.3.

Among continuous variables, univariate outliers are cases with very large standardized scores, 
z scores, on one or more variables, that are disconnected from the other z scores. Cases with stan-
dardized scores in excess of 3.29 (p 6 .001, two-tailed test) are potential outliers. However, the 
extremeness of a standardized score depends on the size of the sample; with a very large N, a 
few standardized scores in excess of 3.29 are expected. Z scores are available through IBM SPSS 
EXPLORE or DESCRIPTIVES (where z scores are saved in the data file), and SAS STANDARD 
(with MEAN = 0 and STD = 1). Or you can hand-calculate z scores from any output that provides 
means, standard deviations, and maximum and minimum scores.
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As an alternative or in addition to inspection of z scores, there are graphical methods for 
finding univariate outliers. Helpful plots are histograms, box plots, normal probability plots, or 
detrended normal probability plots. Histograms of variables are readily understood and available 
and may reveal one or more univariate outliers. There is usually a pileup of cases near the mean 
with cases trailing away in either direction. An outlier is a case (or a very few cases) that seems to 
be unattached to the rest of the distribution. Histograms for continuous variables are produced by 
IBM SPSS FREQUENCIES (plus SORT and SPLIT for grouped data), and SAS UNIVARIATE or 
CHART (with BY for grouped data).

Box plots are simpler and literally box in observations that are around the median; cases that 
fall far away from the box are extreme. Normal probability plots and detrended normal probability 
plots are very useful for assessing normality of distributions of variables and are discussed in that 
context in Section 4.1.5.1. However, univariate outliers are visible in these plots as points that lie a 
considerable distance from others.

Once potential univariate outliers are located, the researcher decides whether transformations 
are acceptable. Transformations (Section 4.1.6) are undertaken both to improve the normality of 
distributions (Section 4.1.5.1) and to pull univariate outliers closer to the center of a distribution, 
thereby reducing their impact. Transformations, if acceptable, are undertaken prior to the search for 
multivariate outliers because the statistics used to reveal them (Mahalanobis distance and its vari-
ants) are also sensitive to failures of normality.

Mahalanobis distance is the distance of a case from the centroid of the remaining cases where 
the centroid is the point created at the intersection of the means of all the variables. In most data 
sets, the cases form a swarm around the centroid in multivariate space. Each case is represented in 
the swarm by a single point at its own peculiar combination of scores on all of the variables, just 
as each case is represented by a point at its own X, Y combination in a bivariate scatterplot. A case 
that is a multivariate outlier, however, lies outside the swarm, some distance from the other cases. 
Mahalanobis distance is one measure of that multivariate distance and it can be evaluated for each 
case using the x2 distribution.

Mahalanobis distance is tempered by the patterns of variances and covariances among the 
variables. It gives lower weight to variables with large variances and to groups of highly correlated 
variables. Under some conditions, Mahalanobis distance can either “mask” a real outlier (produce a 
false negative) or “swamp” a normal case (produce a false positive). Thus, it is not a perfectly reli-
able indicator of multivariate outliers and should be used with caution.

Mahalanobis distances are requested and interpreted in Sections 4.2.1.4 and 4.2.2.3 and in nu-
merous other places throughout the book. A very conservative probability estimate for a case being 
an outlier, say, p 6 .001 for the x2 value, is appropriate with Mahalanobis distance.

Other statistical measures used to identify multivariate outliers are leverage, discrepancy, and 
influence. Although developed in the context of multiple regression (Chapter 5), the three measures 
are now available for some of the other analyses. Leverage is related to Mahalanobis distance (or 
variations of it in the “hat” matrix) and is variously called HATDIAG, RHAT, or hii. Although lever-
age is related to Mahalanobis distance, it is measured on a different scale so that significance tests 
based on a x2 distribution do not apply.4 Equation 4.3 shows the relationship between leverage, hii,
and Mahalanobis distance.

4Lunneborg (1994) suggests that outliers be defined as cases with hii ≥ 2(k/N ).
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Mahalanobis distance = (N - 1)1hii - 1>N2 (4.3)

Or, as is sometimes more useful,

hii =
Mahalanobis distance

N - 1
+

1

N

The latter form is handy if you want to find a critical value for leverage at a = .001 by translating 
the critical x2 value for Mahalanobis distance.

Cases with high leverage are far from the others, but they can be far out on basically the same 
line as the other cases, or far away and off the line. Discrepancy measures the extent to which a 
case is in line with the others. Figure 4.2(a) shows a case with high leverage and low discrepancy; 
Figure 4.2(b) shows a case with high leverage and high discrepancy. In Figure 4.2(c) is a case with 
low leverage and high discrepancy. In all of these figures, the outlier appears disconnected from the 
remaining scores.

Influence is a product of leverage and discrepancy (Fox, 1991). It assesses change in regres-
sion coefficients when a case is deleted; cases with influence scores larger than 1.00 are suspected 
of being outliers. Measures of influence are variations of Cook’s distance and are identified in out-
put as Cook’s distance, modified Cook’s distance, DFFITS, and DBETAS. For the interested reader, 
Fox (1991, pp. 29–30) describes these terms in more detail.

Leverage and/or Mahalanobis distance values are available as statistical methods of outlier 
detection in both statistical packages. However, research (e.g., Egan & Morgan, 1998; Hadi & 
Simonoff, 1993; Rousseeuw & van Zomeren, 1990) indicates that these methods are not perfectly 
reliable. Unfortunately, alternative methods are computationally challenging and not readily avail-
able in statistical packages. Therefore, multivariate outliers are currently most easily detected 
through Mahalanobis distance, or one of its cousins, but cautiously.

Statistics assessing the distance for each case, in turn, from all other cases, are available 
through IBM SPSS REGRESSION by evoking Mahalanobis, Cook’s, or Leverage values through 
the Save command in the Regression menu; these values are saved as separate columns in the data 
file and examined using standard descriptive procedures. To use the regression program just to 
find outliers, however, you must specify some variable (such as the case number) as DV, to find 

(b) High leverage,
high discrepancy,

high influence

(a) High leverage,
low discrepancy,

moderate influence

(c) Low leverage,
high discrepancy,

moderate influence

FIGURE 4.2 The relationships among leverage, discrepancy, 
and influence.
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outliers among the set of variables of interest, considered IVs. Alternatively, the 10 cases with larg-
est Mahalanobis distance are printed out by IBM SPSS REGRESSION using the RESIDUALS 
subcommand, as demonstrated in Section 4.2.1.4.

SAS regression programs provide a leverage, hii, value for each case that converts easily to 
Mahalanobis distance (Equation 4.3). These values are also saved to the data file and examined 
using standard statistical and graphical techniques.

When multivariate outliers are sought in grouped data, they are sought within each group 
separately. IBM SPSS and SAS REGRESSION require separate runs for each group, each with 
its own error term. Programs in other packages, such as SYSTAT DISCRIM and BMDP7M, pro-
vide Mahalanobis distance for each case using a within-groups error term, so that outliers iden-
tified through those programs may be different from those identified by IBM SPSS and SAS 
REGRESSION.

IBM SPSS DISCRIMINANT provides outliers in the solution. These are not particularly 
helpful for screening (you would not want to delete cases just because the solution doesn’t fit them 
very well), but are useful to evaluate generalizability of the results.

Frequently, some multivariate outliers hide behind other multivariate outliers—outliers are 
known to mask other outliers (Rousseeuw & van Zomeren, 1990). When the first few cases identi-
fied as outliers are deleted, the data set becomes more consistent and then other cases become ex-
treme. Robust approaches to this problem have been proposed (e.g., Egan & Morgan, 1998; Hadi & 
Simonoff, 1993; Rousseeuw & van Zomeren, 1990), but these are not yet implemented in popular 
software packages. These methods can be approximated by screening for multivariate outliers sev-
eral times—each time dealing with cases identified as outliers on the last run, until finally no new 
outliers are identified. But if the process of identifying ever more outliers seems to stretch into infin-
ity, do a trial run with and without outliers to see if ones identified later are truly influencing results. 
If not, do not delete the later-identified outliers.

4.1.4.2 Describing Outliers

Once multivariate outliers are identified, you need to discover why the cases are extreme. (You al-
ready know why univariate outliers are extreme.) It is important to identify the variables on which 
the cases are deviant for three reasons. First, this procedure helps you decide whether the case is 
properly part of your sample. Second, if you are going to modify scores instead of delete cases, you 
have to know which scores to modify. Third, it provides an indication of the kinds of cases to which 
your results do not generalize.

If there are only a few multivariate outliers, it is reasonable to examine them individually. If 
there are several, you can examine them as a group to see if there are any variables that separate the 
group of outliers from the rest of the cases.

Whether you are trying to describe one or a group of outliers, the trick is to create a dummy 
grouping variable where the outlier(s) has one value and the rest of the cases another value. The 
dummy variable is then used as the grouping DV in discriminant analysis (Chapter 9) or logistic 
regression (Chapter 10), or as the DV in regression (Chapter 5). The goal is to identify the variables 
that distinguish outliers from the other cases. Variables on which the outlier(s) differs from the rest 
of the cases enter the equation; the remaining variables do not. Once those variables are identified, 
means on those variables for outlying and nonoutlying cases are found through any of the routine 
descriptive programs. Description of outliers is illustrated in Sections 4.2.1.4 and 4.2.2.3.
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4.1.4.3 Reducing the Influence of Outliers

Once univariate outliers have been identified, there are several strategies for reducing their impact. 
But before you use one of them, check the data for the case to make sure that they are accurately 
entered into the data file. If the data are accurate, consider the possibility that one variable is respon-
sible for most of the outliers. If so, elimination of the variable would reduce the number of outliers. 
If the variable is highly correlated with others or is not critical to the analysis, deletion of it is a good 
alternative.

If neither of these simple alternatives is reasonable, you must decide whether the cases that 
are outliers are properly part of the population from which you intended to sample. Cases with ex-
treme scores, which are, nonetheless, apparently connected to the rest of the cases, are more likely 
to be a legitimate part of the sample. If the cases are not part of the population, they are deleted with 
no loss of generalizability of results to your intended population.

If you decide that the outliers are sampled from your target population, they remain in the 
analysis, but steps are taken to reduce their impact—variables are transformed or scores changed.

A first option for reducing impact of univariate outliers is variable transformation—undertaken 
to change the shape of the distribution to more nearly normal. In this case, outliers are considered 
part of a nonnormal distribution with tails that are too heavy so that too many cases fall at extreme 
values of the distribution. Cases that were outliers in the untransformed distribution are still on the 
tails of the transformed distribution, but their impact is reduced. Transformation of variables has 
other salutary effects, as described in Section 4.1.6.

A second option for univariate outliers is to change the score(s) on the variable(s) 
for the outlying case(s) so that they are deviant, but not as deviant as they were. For instance, as-
sign the outlying case(s) a raw score on the offending variable that is one unit larger (or smaller) 
than the next most extreme score in the distribution. Because measurement of variables is some-
times rather arbitrary anyway, this is often an attractive alternative to reduce the impact of a 
univariate outlier.

Transformation or score alteration may not work for a truly multivariate outlier because the 
problem is with the combination of scores on two or more variables, not with the score on any one 
variable. The case is discrepant from the rest in its combinations of scores. Although the number 
of possible multivariate outliers is often substantially reduced after transformation or alteration of 
scores on variables, there are sometimes a few cases that are still far away from the others. These 
cases are usually deleted. If they are allowed to remain, it is with the knowledge that they may dis-
tort the results in almost any direction. Any transformations, changes of scores, and deletions are 
reported in the Results section together with the rationale.

4.1.4.4 Outliers in a Solution

Some cases may not fit well within a solution; the scores predicted for those cases by the selected 
model are very different from the actual scores for the cases. Such cases are identified after an 
analysis is completed, not as part of the screening process. To identify and eliminate or change 
scores for such cases, before conducting the major analysis, make the analysis look better than it 
should. Therefore, conducting the major analysis and then “retrofitting” is a procedure best limited 
to exploratory analysis. Chapters that describe techniques for ungrouped data deal with outliers in 
the solution when discussing the limitations of the technique.



78 C H A P T E R  4

4.1.5 Normality, Linearity, and Homoscedasticity

Underlying some multivariate procedures and most statistical tests of their outcomes is the assump-
tion of multivariate normality. Multivariate normality is the assumption that each variable and all 
linear combinations of the variables are normally distributed. When the assumption is met, the re-
siduals5 of analysis are also normally distributed and independent. The assumption of multivariate 
normality is not readily tested because it is impractical to test an infinite number of linear combina-
tions of variables for normality. Those tests that are available are overly sensitive.

The assumption of multivariate normality is made as part of derivation of many significance 
tests. Although it is tempting to conclude that most inferential statistics are robust6 to violations of 
the assumption, that conclusion may not be warranted.7 Bradley (1982) reports that statistical infer-
ence becomes less and less robust as distributions depart from normality, rapidly so under many 
conditions. And even when the statistics are used purely descriptively, normality, linearity, and ho-
moscedasticity of variables enhance the analysis. The safest strategy, then, is to use transformations 
of variables to improve their normality unless there is some compelling reason not to.

The assumption of multivariate normality applies differently to different multivariate statis-
tics. For analyses when subjects are not grouped, the assumption applies to the distributions of the 
variables themselves or to the residuals of the analyses; for analyses when subjects are grouped, the 
assumption applies to the sampling distributions8 of means of variables.

If there is multivariate normality in ungrouped data, each variable is itself normally distributed 
and the relationships between pairs of variables, if present, are linear and homoscedastic (i.e., the 
variance of one variable is the same at all values of the other variable). The assumption of multivari-
ate normality can be partially checked by examining the normality, linearity, and homoscedasticity 
of individual variables or through examination of residuals in analyses involving prediction.9 The 
assumption is certainly violated, at least to some extent, if the individual variables (or the residuals) 
are not normally distributed or do not have pairwise linearity and homoscedasticity.

For grouped data, it is the sampling distributions of the means of variables that are to be nor-
mally distributed. The Central Limit Theorem reassures us that, with sufficiently large sample sizes, 
sampling distributions of means are normally distributed regardless of the distributions of variables. 

5Residuals are leftovers. They are the segments of scores not accounted for by the multivariate analysis. They are also called 
“errors” between predicted and obtained scores where the analysis provides the predicted scores. Note that the practice of 
using a dummy DV such as case number to investigate multivariate outliers will not produce meaningful residuals plots.
6Robust means that the researcher is led to correctly reject the null hypothesis at a given alpha level the right number of 
times even if the distributions do not meet the assumptions of analysis. Often, Monte Carlo procedures are used where 
a distribution with some known properties is put into a computer, sampled from repeatedly, and repeatedly analyzed; the 
researcher studies the rates of retention and rejection of the null hypothesis against the known properties of the distribution 
in the computer.
7The univariate F test of mean differences, for example, is frequently said to be robust to violation of assumptions of normal-
ity and homogeneity of variance with large and equal samples, but Bradley (1984) questions this generalization.
8A sampling distribution is a distribution of statistics (not of raw scores) computed from random samples of a given size 
taken repeatedly from a population. For example, in univariate ANOVA, hypotheses are tested with respect to the sampling 
distribution of means (Chapter 3).
9Analysis of residuals to screen for normality, linearity, and homoscedasticity in multiple regression is discussed in Section 
5.3.2.4.
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For example, if there are at least 20 degrees of freedom for error in a univariate ANOVA, the F test 
is said to be robust to violations of normality of variables (provided that there are no outliers).

These issues are discussed again in the third sections of Chapters 5 through 16 and 18 (online) 
as they apply directly to one or another of the multivariate procedures. For nonparametric proce-
dures such as multiway frequency analysis (Chapter 16) and logistic regression (Chapter 10), there 
are no distributional assumptions. Instead, distributions of scores typically are hypothesized and 
observed distributions are tested against hypothesized distributions.

4.1.5.1 Normality

Screening continuous variables for normality is an important early step in almost every multivariate 
analysis, particularly when inference is a goal. Although normality of the variables is not always 
required for analysis, the solution is usually quite a bit better if the variables are all normally distrib-
uted. The solution is degraded, if the variables are not normally distributed, and particularly if they 
are nonnormal in very different ways (e.g., some positively and some negatively skewed).

Normality of variables is assessed by either statistical or graphical methods. Two components 
of normality are skewness and kurtosis. Skewness has to do with the symmetry of the distribution; a 
skewed variable is a variable whose mean is not in the center of the distribution. Kurtosis has to do 
with the peakedness of a distribution; a distribution is either too peaked (with short, thick tails) or too 
flat (with long, thin tails).10 Figure 4.3 shows a normal distribution, distributions with skewness, and 
distributions with nonnormal kurtosis. A variable can have significant skewness, kurtosis, or both.

When a distribution is normal, the values of skewness and kurtosis are zero. If there is positive 
skewness, there is a pileup of cases to the left and the right tail is too long; with negative skewness, 
there is a pileup of cases to the right and the left tail is too long. Kurtosis values above zero indicate 
a distribution that is too peaked with short, thick tails, and kurtosis values below zero indicate a 
distribution that is too flat (also with too many cases in the tails).11 Nonnormal kurtosis produces an 
underestimate of the variance of a variable.

There are significance tests for both skewness and kurtosis that test the obtained value against 
null hypotheses of zero. For instance, the standard error for skewness is approximately

ss = A
6

N
(4.4)

where N is the number of cases. The obtained skewness value is then compared with zero using the 
z distribution, where

z =
S - 0

ss
(4.5)

and S is the value reported for skewness. The standard error for kurtosis is approximately

sk = A
24

N
(4.6)

10If you decide that outliers are sampled from the intended population but that there are too many cases in the tails, you are 
saying that the distribution from which the outliers are sampled has kurtosis that departs from normal.
11The equation for kurtosis gives a value of 3 when the distribution is normal, but all of the statistical packages subtract 3 
before printing kurtosis so that the expected value is zero.



80 C H A P T E R  4

and the obtained kurtosis value is compared with zero using the z distribution, where

z =
K - 0

Sk
(4.7)

and K is the value reported for kurtosis.
Conventional but conservative (.01 or .001) alpha levels are used to evaluate the significance 

of skewness and kurtosis with small to moderate samples, but if the sample is large, it is a good idea 
to look at the shape of the distribution instead of using formal inference tests. Because the standard 
errors for both skewness and kurtosis decrease with larger N, the null hypothesis is likely to be re-
jected with large samples when there are only minor deviations from normality.

In a large sample, a variable with statistically significant skewness often does not deviate enough 
from normality to make a substantive difference in the analysis. In other words, with large samples, the 
significance level of skewness is not as important as its actual size (worse the farther from zero) and 
the visual appearance of the distribution. In a large sample, the impact of departure from zero kurtosis 
also diminishes. For example, underestimates of variance associated with positive kurtosis (distribu-
tions with short, thick tails) disappear with samples of 100 or more cases; with negative kurtosis, 
underestimation of variance disappears with samples of 200 or more (Waternaux, 1976).

Normal

Positive skewness Negative skewness

Positive kurtosis Negative kurtosis

FIGURE 4.3 Normal distribution, distributions with 
skewness, and distributions with kurtoses.
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Values for skewness and kurtosis are available in several programs. IBM SPSS FREQUENCIES, 
for instance, prints as options skewness, kurtosis, and their standard errors, and, in addition, su-
perimposes a normal distribution over a frequency histogram for a variable if HISTOGRAM = 
NORMAL is specified. DESCRIPTIVES and EXPLORE also print skewness and kurtosis statistics. 
A histogram or stem-and-leaf plot is also available in SAS UNIVARIATE.12

Frequency histograms are an important graphical device for assessing normality, especially 
with the normal distribution as an overlay, but even more helpful than frequency histograms are 
expected normal probability plots and detrended expected normal probability plots. In these plots, 
the scores are ranked and sorted; then an expected normal value is computed and compared with the 
actual normal value for each case. The expected normal value is the z score that a case with that rank 
holds in a normal distribution; the normal value is the z score it has in the actual distribution. If the 
actual distribution is normal, then the points for the cases fall along the diagonal running from lower 
left to upper right, with some minor deviations due to random processes. Deviations from normality 
shift the points away from the diagonal.

Consider the expected normal probability plots for ATTDRUG and TIMEDRS through IBM 
SPSS PPLOT in Figure 4.4. Syntax indicates the VARIABLES we are interested in are attdrug and 
timedrs. The remaining syntax is produced by default by the IBM SPSS Windows menu system. 
As reported in Section 4.2.1.1, ATTDRUG is reasonably normally distributed (kurtosis = -0.447, 
skewness = -0.123) and TIMEDRS is too peaked and positively skewed (kurtosis = 13.101, skew-
ness = 3.248, both significantly different from 0). The cases for ATTDRUG line up along the diagonal, 
whereas those for TIMEDRS do not. At low values of TIMEDRS, there are too many cases above the 
diagonal, and at high values, there are too many cases below the diagonal, reflecting the patterns of 
skewness and kurtosis.

Detrended normal probability plots for TIMEDRS and ATTDRUG are also in Figure 4.4. 
These plots are similar to expected normal probability plots except that deviations from the diagonal 
are plotted instead of values along the diagonal. In other words, the linear trend from lower left to 
upper right is removed. If the distribution of a variable is normal, as is ATTDRUG, the cases distrib-
ute themselves evenly above and below the horizontal line that intersects the Y-axis at 0.0, the line of 
zero deviation from expected normal values. The skewness and kurtosis of TIMEDRS are again ap-
parent from the cluster of points above the line at low values of TIMEDRS and below the line at high 
values of TIMEDRS. Normal probability plots for variables are also available in SAS UNIVARIATE 
and IBM SPSS MANOVA. Many of these programs also produce detrended normal plots.

If you are going to perform an analysis with ungrouped data, an alternative to screening the 
variables prior to analysis is conducting the analysis and then screening the residuals (the differences 
between the predicted and obtained DV values). If normality is present, the residuals are normally 
and independently distributed. That is, the differences between predicted and obtained scores—the 
errors—are symmetrically distributed around a mean value of zero and there are no contingencies 
among the errors. In multiple regression, residuals are also screened for normality through the ex-
pected normal probability plot and the detrended normal probability plot.13 IBM SPSS REGRESSION

12In structural equation modeling (Chapter 14), skewness and kurtosis for each variable are available in EQS and Mardia’s 
coefficient (the multivariate kurtosis measure) is available in EQS, PRELIS, and CALIS. In addition, PRELIS can be used 
to deal with nonnormality through alternative correlation coefficients, such as polyserial or polychoric (cf. Section 14.5.6).
13For grouped data, residuals have the same shape as within-group distributions because the predicted value is the mean, and 
subtracting a constant does not change the shape of the distribution. Many of the programs for grouped data plot the within-
group distribution as an option, as discussed in the next few chapters when relevant.
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provides this diagnostic technique (and others, as discussed in Chapter 5). If the residuals are nor-
mally distributed, the expected normal probability plot and the detrended normal probability plot 
look just the same as they do if a variable is normally distributed. In regression, if the residuals plot 
looks normal, there is no reason to screen the individual variables for normality.
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FIGURE 4.4 Expected normal probability plot and detrended normal probability plot for 
ATTDRUG and TIMEDRS. IBM SPSS PPLOT syntax and output.
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Although residuals will reveal departures from normality, the analyst has to resist temptation to 
look at the rest of the output to avoid “tinkering” with variables and cases to produce an anticipated 
result. Because screening the variables should lead to the same conclusions as screening residuals, it 
may be more objective to make one’s decisions about transformations, deletion of outliers, and the 
like, on the basis of screening runs alone rather than screening through the outcome of analysis.14

With ungrouped data, if nonnormality is found, transformation of variables is considered. 
Common transformations are described in Section 4.1.6. Unless there are compelling reasons not 
to transform, it is probably better to do so. However, realize that even if each of the variables is 
normally distributed, or transformed to normal, there is no guarantee that all linear combinations of 
the variables are normally distributed. That is, if variables are each univariate normal, they do not 
necessarily have a multivariate normal distribution. However, it is more likely that the assumption 
of multivariate normality is met if all the variables are normally distributed.

4.1.5.2 Linearity

The assumption of linearity is that there is a straight-line relationship between two variables (where 
one or both of the variables can be combinations of several variables). Linearity is important in a 
practical sense because Pearson’s r only captures the linear relationships among variables; if there 
are substantial nonlinear relationships among variables, they are ignored.

Nonlinearity is diagnosed either from residuals plots in analyses involving a predicted vari-
able or from bivariate scatterplots between pairs of variables. In plots where standardized residuals 
are plotted against predicted values, nonlinearity is indicated when most of the residuals are above 
the zero line on the plot at some predicted values and below the zero line at other predicted values 
(see Chapter 5).

Linearity between two variables is assessed roughly by inspection of bivariate scatterplots. 
If both variables are normally distributed and linearly related, the scatterplot is oval-shaped. If one 
of the variables is nonnormal, then the scatterplot between this variable and the other is not oval. 
Examination of bivariate scatterplots is demonstrated in Section 4.2.1.2, along with transformation 
of a variable to enhance linearity.

However, sometimes the relationship between variables is simply not linear. Consider, for 
instance, the number of symptoms and the dosage of drug, as shown in Figure 4.5(a). It seems likely 
that there are lots of symptoms when the dosage is low, only a few symptoms when the dosage is 
moderate, and lots of symptoms again when the dosage is high. Number of symptoms and drug dos-
age are curvilinearly related. One alternative in this case is to use the square of dosage to represent 
the curvilinear relationship instead of dosage in the analysis. Another alternative is to recode dosage 
into two dummy variables (high vs. low on one dummy variable and a combination of high and low 
vs. medium on another dummy variable) and then use the dummy variables in place of dosage in 
analysis.15 The dichotomous dummy variables can only have a linear relationship with other vari-
ables, if, indeed, there is any relationship at all after recoding.

Often, two variables have a mix of linear and curvilinear relationships, as shown in Figure 
4.5(b). One variable generally gets smaller (or larger) as the other gets larger (or smaller) but there 

14We realize that others (e.g., Berry, 1993; Fox, 1991) have very different views about the wisdom of screening from 
residuals.
15A nonlinear analytic strategy is most appropriate here, such as nonlinear regression through SAS NLIN, but such strategies 
are beyond the scope of this book.
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is also a curve to the relationship. For instance, symptoms might drop off with increasing dosage, 
but only to a point; increasing dosage beyond the point does not result in further reduction or in-
crease in symptoms. In this case, the linear component may be strong enough that not much is lost 
by ignoring the curvilinear component unless it has important theoretical implications.

Assessing linearity through bivariate scatterplots is reminiscent of reading tea leaves, espe-
cially with small samples. And there are many cups of tea if there are several variables and all pos-
sible pairs are examined, especially when subjects are grouped and the analysis is done separately 
within each group. If there are only a few variables, screening all possible pairs is not burdensome; 
if there are numerous variables, you may want to use statistics on skewness to screen only pairs that 
are likely to depart from linearity. Think, also, about pairs of variables that might have true nonlin-
earity and examine them through bivariate scatterplots. Bivariate scatterplots are produced by IBM 
SPSS GRAPH, and SAS PLOT, among other programs.
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4.1.5.3  Homoscedasticity, Homogeneity of Variance, and Homogeneity 
of Variance–Covariance Matrices

For ungrouped data, the assumption of homoscedasticity is that the variability in scores for one con-
tinuous variable is roughly the same at all values of another continuous variable. For grouped data, 
this is the same as the assumption of homogeneity of variance when one of the variables is discrete 
(the grouping variable), the other is continuous (the DV); the variability in the DV is expected to be 
about the same at all levels of the grouping variable.

Homoscedasticity is related to the assumption of normality because when the assumption of 
multivariate normality is met, the relationships between variables are homoscedastic. The bivariate 
scatterplots between two variables are of roughly the same width all over with some bulging toward 
the middle. Homoscedasticity for a bivariate plot is illustrated in Figure 4.6(a).

Heteroscedasticity, the failure of homoscedasticity, is caused either by nonnormality of one of 
the variables or by the fact that one variable is related to some transformation of the other. Consider, 
for example, the relationship between age (X1) and income (X2) as depicted in Figure 4.6(b). People 
start out making about the same salaries, but with increasing age, people spread farther apart on 
income. The relationship is perfectly lawful, but it is not homoscedastic. In this example, income is 
likely to be positively skewed and transformation of income is likely to improve the homoscedastic-
ity of its relationship with age.

Another source of heteroscedasticity is a greater error of measurement at some levels of an 
IV. For example, people in the age range 25 to 45 might be more concerned about their weight than 
people who are younger or older. Older and younger people would, as a result, give less reliable 
estimates of their weight, increasing the variance of weight scores at those ages.

It should be noted that heteroscedasticity is not fatal to an analysis of ungrouped data. The lin-
ear relationship between variables is captured by the analysis, but there is even more predictability 
if the heteroscedasticity is accounted for. If it is not, the analysis is weakened, but not invalidated.

X2

X1

(a) Homoscedasticity with both
variables normally distributed

X2

(b) Heteroscedasticity with 
skewness on X2

X1

FIGURE 4.6 Bivariate scatterplots under conditions of homoscedasticity 
and heteroscedasticity.
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When data are grouped, homoscedasticity is known as homogeneity of variance. A great deal 
of research has assessed the robustness (or lack thereof) of ANOVA and ANOVA-like analyses 
to violation of homogeneity of variance. Recent guidelines have become more stringent than ear-
lier, more cavalier ones. There are formal tests of homogeneity of variance but most are too strict 
because they also assess normality. (An exception is Levene’s test of homogeneity of variance, 
which is not typically sensitive to departures from normality.) Instead, once outliers are eliminated, 
homogeneity of variance is assessed with Fmax in conjunction with sample-size ratios.

Fmax is the ratio of the largest cell variance to the smallest. If sample sizes are relatively equal 
(within a ratio of 4 to 1 or less for largest to smallest cell size), an Fmax as great as 10 is acceptable. As 
the cell size discrepancy increases (say, goes to 9 to 1 instead of 4 to 1), an Fmax as small as 3 is associ-
ated with inflated Type I error if the larger variance is associated with the smaller cell size (Milligan, 
Wong, & Thompson, 1987).

Violations of homogeneity usually can be corrected by transformation of the DV scores. 
Interpretation, however, is then limited to the transformed scores. Another option is to use untrans-
formed variables with a more stringent a level (for nominal a, use .025 with moderate violation and 
.01 with severe violation).

The multivariate analog of homogeneity of variance is homogeneity of variance–covariance 
matrices. As for univariate homogeneity of variance, inflated Type I error rate occurs when the 
greatest dispersion is associated with the smallest sample size. The formal test used by IBM SPSS, 
Box’s M, is too strict with the large sample sizes usually necessary for multivariate applications 
of ANOVA. Section 9.7.1.5 demonstrates an assessment of homogeneity of variance–covariance 
matrices through SAS DISCRIM using Bartlett’s test. SAS DISCRIM permits a stringent a level 
for determining heterogeneity, and bases the discriminant analysis on separate variance–covariance 
matrices when the assumption of homogeneity is violated.

4.1.6 Common Data Transformations

Although data transformations are recommended as a remedy for outliers and for failures of nor-
mality, linearity, and homoscedasticity, they are not universally recommended. The reason is that 
an analysis is interpreted from the variables that are in it, and transformed variables are sometimes 
harder to interpret. For instance, although IQ scores are widely understood and meaningfully inter-
preted, the logarithm of IQ scores may be harder to explain.

Whether transformation increases difficulty of interpretation often depends on the scale in 
which the variable is measured. If the scale is meaningful or widely used, transformation often hin-
ders interpretation, but if the scale is somewhat arbitrary anyway (as is often the case), transforma-
tion does not notably increase the difficulty of interpretation.

With ungrouped data, it is probably best to transform variables to normality unless interpretation 
is not feasible with the transformed scores. With grouped data, the assumption of normality is evaluated 
with respect to the sampling distribution of means (not the distribution of scores) and the Central Limit 
Theorem predicts normality with decently sized samples. However, transformations may improve the 
analysis and may have the further advantage of reducing the impact of outliers. Our recommendation, 
then, is to consider transformation of variables in all situations unless there is some reason not to.

If you decide to transform, it is important to check that the variable is normally or near-
normally distributed after transformation. Often you need to try first one transformation and then 
another until you find the transformation that produces the skewness and kurtosis values nearest 
zero, the prettiest picture, and/or the fewest outliers.
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With almost every data set in which we have used transformations, the results of analysis have 
been substantially improved. This is particularly true when some variables are skewed and others 
are not, or variables are skewed very differently prior to transformation. However, if all the variables 
are skewed to about the same moderate extent, improvements of analysis with transformation are 
often marginal.

With grouped data, the test of mean differences after transformation is a test of differences 
between medians in the original data. After a distribution is normalized by transformation, the mean 
is equal to the median. The transformation affects the mean but not the median because the median 
depends only on rank order of cases. Therefore, conclusions about means of transformed distribu-
tions apply to medians of untransformed distributions. Transformation is undertaken because the 
distribution is skewed and the mean is not a good indicator of the central tendency of the scores in 
the distribution. For skewed distributions, the median is often a more appropriate measure of central 
tendency than the mean, anyway, so interpretation of differences in medians is appropriate.

Variables differ in the extent to which they diverge from normal. Figure 4.7 presents several 
distributions together with the transformations that are likely to render them normal. If the distribu-
tion differs moderately from normal, a square root transformation is tried first. If the distribution 

Logarithm Reflect and logarithm

Square root

TRANSFORMATION

Reflect and square root

Inverse Reflect and inverse

FIGURE 4.7 Original distributions and common 
transformations to produce normality.
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differs substantially, a log transformation is tried. If the distribution differs severely, the inverse is 
tried. According to Bradley (1982), the inverse is the best of several alternatives for J-shaped distri-
butions, but even it may not render the distribution normal. Finally, if the departure from normality 
is severe and no transformation seems to help, you may want to try dichotomizing the variable.

The direction of the deviation is also considered. When distributions have positive skewness, 
as discussed earlier, the long tail is to the right. When they have negative skewness, the long tail is 
to the left. If there is negative skewness, the best strategy is to reflect the variable and then apply 
the appropriate transformation for positive skewness.16 To reflect a variable, find the largest score in 
the distribution. Then create a new variable by subtracting each score from the largest score plus 1. 
In this way, a variable with negative skewness is converted to one with positive skewness prior to 
transformation. When you interpret a reflected variable, be sure to reverse the direction of the inter-
pretation as well (or consider re-reflecting it after transformation).

Remember to check your transformations after applying them. If a variable is only moder-
ately positively skewed, for instance, a square root transformation may make the variable moder-
ately negatively skewed, and there is no advantage to transformation. Often you have to try several 
transformations before you find the most helpful one.

Syntax for transforming variables in IBM SPSS and SAS is given in Table 4.3.17 Notice that 
a constant is also added if the distribution contains a value less than one. A constant (to bring the 
smallest value to at least one) is added to each score to avoid taking the log, square root, or inverse 
of zero.

Different software packages handle missing data differently in various transformations. Be 
sure to check the manual to ensure that the program is treating missing data the way you want it to 
in the transformation.

It should be clearly understood that this section merely scratches the surface of the topic of 
transformations, about which a great deal more is known. The interested reader is referred to Box 
and Cox (1964) or Mosteller and Tukey (1977) for a more flexible and challenging approach to the 
problem of transformation.

4.1.7 Multicollinearity and Singularity

Multicollinearity and singularity are problems with a correlation matrix that occur when variables 
are too highly correlated. With multicollinearity, the variables are very highly correlated (say, .90 
and above); with singularity, the variables are redundant; one of the variables is a combination of 
two or more of the other variables.

For example, scores on the Wechsler Adult Intelligence Scale (the WAIS) and scores on the 
Stanford–Binet Intelligence Scale are likely to be multicollinear because they are two similar mea-
sures of the same thing. But the total WAIS IQ score is singular with its subscales because the total 
score is found by combining subscale scores. When variables are multicollinear or singular, they 

16Remember, however, that the interpretation of a reflected variable is just the opposite of what it was; if big numbers meant 
good things prior to reflecting the variable, big numbers mean bad things afterward.
17Logarithmic (LO) and power (PO) transformations are also available in PRELIS for variables used in structural equation 
modeling (Chapter 14). A l (GA) value is specified for power transformations; for example, l =1/2 provides a square root 
transform (PO GA =.5).
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contain redundant information and they are not all needed in the same analysis. In other words, 
there are fewer variables than it appears and the correlation matrix is not full rank because there are 
not really as many variables as columns.

Either bivariate or multivariate correlations can create multicollinearity or singularity. If a 
bivariate correlation is too high, it shows up in a correlation matrix as a correlation above .90, and, 
after deletion of one of the two redundant variables, the problem is solved. If it is a multivariate 
correlation that is too high, diagnosis is slightly more difficult because multivariate statistics are 
needed to find the offending variable. For example, although the WAIS IQ is a combination of its 
subscales, the bivariate correlations between total IQ and each of the subscale scores are not all that 
high. You would not know there was singularity by examination of the correlation matrix.

Multicollinearity and singularity cause both logical and statistical problems. The logical prob-
lem is that unless you are doing analysis of structure (factor analysis, principal components analysis, 
and structural-equation modeling), it is not a good idea to include redundant variables in the same 
analysis. They are not needed, and because they inflate the size of error terms, they actually weaken 
an analysis. Unless you are doing analysis of structure or are dealing with repeated measures of the 
same variable (as in various forms of ANOVA including profile analysis), think carefully before 

TABLE 4.3 Syntax for Common Data Transformations

IBM SPSS COMPUTE SASa DATA Procedure

Moderate
positive
skewness NEWX=SQRT(X) NEWX=SQRT(X)

Substantial
positive
skewness NEWX=LG10(X) NEWX=LOG10(X)

With zero NEWX=LG10(X + C) NEWX=LOG10(X+C)

Severe positive
skewness NEWX=1/X NEWX=1/X

L-shaped
With zero NEWX=1/(X + C) NEWX=1/(X+C)

Moderate
negative
skewness NEWX=SQRT(K – X) NEWX=SQRT(K-X)

Substantial
negative
skewness NEWX=LG10(K – X) NEWX=LOG10(K-X)

Severe negative
skewness
J-shaped NEWX=1/(K – X) NEWX=1/(K-X)

C = a constant added to each score so that the smallest score is 1.

K = a constant from which each score is subtracted so that the smallest score is 1; usually equal to the largest score + 1.
aAlso may be done through SAS Interactive Data Analysis.
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including two variables with a bivariate correlation of, say, .70 or more in the same analysis. You 
might omit one of the variables or you might create a composite score from the redundant variables.

The statistical problems created by singularity and multicollinearity occur at much higher 
correlations (.90 and higher). The problem is that singularity prohibits, and multicollinearity ren-
ders unstable, matrix inversion. Matrix inversion is the logical equivalent of division; calculations 
requiring division (and there are many of them—see the fourth sections of Chapters 5 through 16 
and 18) cannot be performed on singular matrices because they produce determinants equal to zero 
that cannot be used as divisors (see Appendix A). Multicollinearity often occurs when you form 
cross products or powers of variables and include them in the analysis along with the original vari-
ables, unless steps are taken to reduce the multicollinearity (Section 5.6.6).

With multicollinearity, the determinant is not exactly zero, but it is zero to several decimal 
places. Division by a near-zero determinant produces very large and unstable numbers in the inverted 
matrix. The sizes of numbers in the inverted matrix fluctuate wildly with only minor changes (say, in 
the second or third decimal place) in the sizes of the correlations in R. The portions of the multivariate 
solution that flow from an inverted matrix that is unstable are also unstable. In regression, for instance, 
error terms get so large that none of the coefficients is significant (Berry, 1993). For example, when 
r is .9, the precision of estimation of regression coefficients is halved (Fox, 1991).

Most programs protect against multicollinearity and singularity by computing SMCs for the 
variables. SMC is the squared multiple correlation of a variable where it serves as DV with the rest 
as IVs in multiple correlation (see Chapter 5). If the SMC is high, the variable is highly related to 
the others in the set and you have multicollinearity. If the SMC is 1, the variable is perfectly related 
to others in the set and you have singularity. Many programs convert the SMC values for each vari-
able to tolerance (1 - SMC) and deal with tolerance instead of SMC.

Screening for singularity often takes the form of running your main analysis to see if the 
computer balks. Singularity aborts most runs except those for principal components analysis (see 
Chapter 13), where matrix inversion is not required. If the run aborts, you need to identify and de-
lete the offending variable. A first step is to think about the variables. “Did you create any of the 
variables from other variables; for instance, did you create one of them by adding two others?” If so, 
deletion of one removes singularity.

Screening for multicollinearity that causes statistical instability is also a routine with most 
programs because they have tolerance criteria for inclusion of variables. If the tolerance (1 – SMC) 
is too low, the variable does not enter the analysis. Default tolerance levels range between .01 and 
.0001, so SMCs are .99 to .9999 before variables are excluded. You may wish to take control of 
this process, however, by adjusting the tolerance level (an option with many programs) or decid-
ing yourself which variable(s) to delete instead of letting the program make the decision on purely 
statistical grounds. For this you need SMCs for each variable. Note that SMCs are not evaluated 
separately for each group if you are analyzing grouped data.

SMCs are available through factor analysis and regression programs in all packages. PRELIS 
provides SMCs for structural equation modeling. SAS and IBM SPSS have incorporated collinearity 
diagnostics proposed by Belsley, Kuh, and Welsch (1980) in which a conditioning index is produced, 
as well as variance proportions associated with each variable, after standardization, for each root (see 
Chapters 12 and 13 and Appendix A for a discussion of roots and dimensions). Two or more variables 
with large variance proportions on the same dimension are those with problems.

Condition index is a measure of tightness or dependency of one variable on the others. The 
condition index is monotonic with SMC, but not linear with it. A high condition index is associated 
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with variance inflation in the standard error of the parameter estimate for a variable. When its stan-
dard error becomes very large, the parameter estimate is highly uncertain. Each root (dimension) 
accounts for some proportion of the variance of each parameter estimated. A collinearity problem 
occurs when a root with a high condition index contributes strongly (has a high variance proportion) 
to the variance of two or more variables. Criteria for multicollinearity suggested by Belsely et al. 
(1980) are a conditioning index greater than 30 for a given dimension coupled with variance propor-
tions greater than .50 for at least two different variables. Collinearity diagnostics are demonstrated 
in Section 4.2.1.6.

There are several options for dealing with collinearity if it is detected. First, if the only goal 
of analysis is prediction, you can ignore it. A second option is to delete the variable with the highest 
variance proportion. A third option is to sum or average the collinear variables. A fourth option is 
to compute principal components and use the components as the predictors instead of the original 
variables (see Chapter 13). A final alternative is to center one or more of the variables, as discussed 
in Chapters 5 and 15, if multicollinearity is caused by forming interactions or powers of continuous 
variables.

4.1.8 A Checklist and Some Practical Recommendations

Table 4.4 is a checklist for screening data. It is important to consider all the issues prior to the funda-
mental analysis lest you be tempted to make some of your decisions based on their influence on the 
analysis. If you choose to screen through residuals, you cannot avoid doing an analysis at the same 
time; however, in these cases, you concentrate on the residuals and not on the other features of the 
analysis while making your screening decisions.

TABLE 4.4 Checklist for Screening Data

1. Inspect univariate descriptive statistics for accuracy of input

a. Out-of-range values

b. Plausible means and standard deviations

c. Univariate outliers

2. Evaluate amount and distribution of missing data; deal with problem

3. Check pairwise plots for nonlinearity and heteroscedasticity

4. Identify and deal with nonnormal variables and univariate outliers

a. Check skewness and kurtosis, probability plots

b. Transform variables (if desirable)

c. Check results of transformation

5. Identify and deal with multivariate outliers

a. Variables causing multivariate outliers

b. Description of multivariate outliers

6. Evaluate variables for multicollinearity and singularity



92 C H A P T E R  4

The order in which screening takes place is important because the decisions that you make 
at one step influence the outcomes of later steps. In a situation where you have both nonnormal 
variables and potential univariate outliers, a fundamental decision is whether you would prefer to 
transform variables, delete cases, or change scores on cases. If you transform variables first, you are 
likely to find fewer outliers. If you delete or modify the outliers first, you are likely to find fewer 
variables with nonnormality.

Of the two choices, transformation of variables is usually preferable. It typically reduces the 
number of outliers. It is likely to produce normality, linearity, and homoscedasticity among the vari-
ables. It increases the likelihood of multivariate normality to bring the data into conformity with one 
of the fundamental assumptions of most inferential tests. And on a very practical level, it usually 
enhances the analysis even if inference is not a goal. On the other hand, transformation may threaten 
interpretation, in which case all the statistical niceties are of little avail.

Or, if the impact of outliers is reduced first, you are less likely to find variables that are skewed 
because significant skewness is sometimes caused by extreme cases on the tails of the distributions. 
If you have cases that are univariate outliers because they are not part of the population from which 
you intended to sample, by all means delete them before checking distributions.

Last, as will become obvious in the next two sections, although the issues are different, the 
runs on which they are screened are not necessarily different. That is, the same run often provides 
you with information regarding two or more issues.

4.2 Complete Examples of Data Screening

Evaluation of assumptions is somewhat different for ungrouped and grouped data. That is, if you 
are going to perform multiple regression, canonical correlation, factor analysis, or structural equa-
tion modeling on ungrouped data, there is one approach to screening. If you are going to perform 
univariate or multivariate analysis of variance (including profile analysis), discriminant analysis, or 
multilevel modeling on grouped data, there is another approach to screening.18

Therefore, two complete examples are presented that use the same set of variables taken from 
the research described in Appendix B: number of visits to health professionals (TIMEDRS), atti-
tudes toward drug use (ATTDRUG), attitudes toward housework (ATTHOUSE), INCOME, marital 
status (MSTATUS), and RACE. The grouping variable used in the analysis of grouped data is cur-
rent employment status (EMPLMNT).19 Data are in files labeled SCREEN.* (e.g. SCREEN.sav for 
IBM SPSS or SCREEN.sas7bdat for SAS Version 8 or newer).

Where possible in these examples, and for illustrative purposes, screening for ungrouped data 
is performed using IBM SPSS, and screening for grouped data is performed using SAS programs.

4.2.1 Screening Ungrouped Data

A flow diagram for screening ungrouped data appears as Figure 4.8. The direction of flow assumes 
that data transformation is undertaken, as necessary. If transformation is not acceptable, then other 
procedures for handling outliers are used.

18If you are using multiway frequency analysis or logistic regression, there are far fewer assumptions than with these other 
analyses.
19This is a motley collection of variables chosen primarily for their statistical properties.
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4.2.1.1 Accuracy of Input, Missing Data, Distributions, and Univariate Outliers

A check on accuracy of data entry, missing data, skewness, and kurtosis for the data set is done 
through IBM SPSS FREQUENCIES, as shown in Table 4.5.

The minimum and maximum values, means, and standard deviations of each of the variables 
are inspected for plausibility. For instance, the Minimum number of visits to health professionals 
(TIMEDRS) is 0 and the Maximum is 81, higher than expected but found to be accurate on check-
ing the data sheets.20 The Mean for the variable is 7.901, higher than the national average but not 
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TRANSFORM

MISSING DATA

MAHALANOBIS
DISTANCE

DELETE OR RECODE
OUTLIERS, DESCRIBE
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Univariate Outliers
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Or Check Residuals

Deal with Missing Data
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(Describe Outliers)
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EXPLORE

SAS MEANS
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SAS MEANS
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SAS PLOT

IBM SPSS REGRESSION
SAS REG

IBM SPSS MVA
SAS MI

IBM SPSS REGRESSION
SAS REG

Onward

FIGURE 4.8 Flow diagram for screening ungrouped data.

20The woman with this number of visits was terminally ill when she was interviewed.



TABLE 4.5 Syntax and IBM SPSS FREQUENCIES Output Showing Descriptive Statistics and Histograms for Ungrouped Data

FREQUENCIES
VARIABLES=timedrs attdrug atthouse income mstatus race
/FORMAT=NOTABLE
/STATISTICS=STDDEV VARIANCE MINIMUM MAXIMUM MEAN SKEWNESS SESKEW KURTOSIS
SEKURT
/HISTOGRAM NORMAL
/ORDER=ANALYSIS

Statistics

Visits to 

health

professionals

Attitudes 

toward 

medication

Attitudes 

toward 

housework Income

Whether

currently 

married Race

N Valid 465 465 464 439 465 465
Missing 0 0 1 26 0 0

Mean 7.90 7.69 23.54 4.21 1.78 1.09
Std. Deviation 10.948 1.156 4.484 2.419 .416 .284
Variance 119.870 1.337 20.102 5.851 .173 .081
Skewness 3.248 −.123 −.457 .582 −1.346 2.914
Std. Error of Skewness .113 .113 .113 .117 .113 .113
Kurtosis 13.101 −.447 1.556 −.359 −.190 6.521
Std. Error of Kurtosis .226 .226 .226 .233 .226 .226
Minimum 0 5 2 1 1 1
Maximum 81 10 35 10 2 2

94
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TABLE 4.5 Continued
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extremely so, and the standard deviation (Std. Deviation) is 10.948. These values are all reason-
able, as are the values on the other variables. For instance, the ATTDRUG variable is constructed 
with a range of 5 to 10, so it is reassuring to find these values as Minimum and Maximum.

TIMEDRS shows no Missing cases but has strong positive Skewness (3.248). The signifi-
cance of Skewness is evaluated by dividing it by Std. Error of Skewness, as in Equation 4.5,

z =
3.248

.113
= 28.74

to reveal a clear departure from symmetry. The distribution also has significant Kurtosis as evalu-
ated by Equation 4.7,

z =
13.101

.22
= 57.97

The departures from normality are also obvious from inspection of the difference between fre-
quencies expected under the normal distribution (the superimposed curve) and obtained frequencies. 
Because this variable is a candidate for transformation, evaluation of univariate outliers is deferred.

ATTDRUG, on the other hand, is well behaved. There are no Missing cases, and Skewness 
and Kurtosis are well within expected values. ATTHOUSE has a single missing value but is oth-
erwise well distributed except for the two extremely low scores. The score of 2 is 4.8 standard 
deviations below the mean of ATTHOUSE (well beyond the p = .001 criterion of 3.29, two-tailed) 
and is disconnected from the other cases. It is not clear whether these are recording errors or if 
these two women actually enjoy housework that much. In any event, the decision is made to de-
lete from further analysis the data from the two women with extremely favorable attitudes toward 
housework.

Information about these deletions is included in the report of results. The single missing value 
is replaced with the mean. (Section 10.7.1.1 illustrates a more sophisticated way of dealing with 
missing data in IBM SPSS when the amount missing is greater than 5%.)

On INCOME, however, there are 26 cases with Missing values—more than 5% of the sam-
ple. If INCOME is not critical to the hypotheses, we delete it in subsequent analyses. If INCOME is 
important to the hypotheses, we could replace the missing values.

The two remaining variables are dichotomous and not evenly split. MSTATUS has a 362 to 
103 split, roughly a 3.5 to 1 ratio, that is not particularly disturbing. But RACE, with a split greater 
than 10 to 1 is marginal. For this analysis, we choose to retain the variable, realizing that its associa-
tion with other variables is deflated because of the uneven split.

Table 4.6 shows the distribution of ATTHOUSE with elimination of the univariate outliers. The 
mean for ATTHOUSE changes to 23.634, the value used to replace the missing ATTHOUSE score in 
subsequent analyses. The case with a missing value on ATTHOUSE becomes complete and available 
for use in all computations. The COMPUTE instructions filter out cases with values equal to or less 
than 2 on ATTHOUSE (univariate outliers) and the RECODE instruction sets the missing value to 
23.63.

At this point, we have investigated the accuracy of data entry and the distributions of all vari-
ables, determined the number of missing values, found the mean for replacement of missing data, 
and found two univariate outliers that, when deleted, result in N = 463.
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TABLE 4.6 Syntax and IBM SPSS FREQUENCIES Output Showing Descriptive Statistics 
and Histograms for ATTHOUSE With Univariate Outliers Deleted

USE ALL.
COMPUTE filter_$=(atthouse > 2).
VARIABLE LABEL filter_$ ‘atthouse > 2 (FILTER)’.
VALUE LABELS filter_$ 0 ‘Not Selected’ 1 ‘Selected’.
FORMAT filter_$ (f1.0).
FILTER BY filter_$.
EXECUTE.
RECODE
atthouse (SYSMIS=23.63).

EXECUTE.
FREQUENCIES
VARIABLES=atthouse /FORMAT=NOTABLE
/STATISTICS=STDDEV VARIANCE MINIMUM MAXIMUM MEAN SKEWNESS SESKEW KURTOSIS
SEKURT
/HISTOGRAM NORMAL
/ORDER= ANALYSIS.

Frequencies
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Mean = 23.63
Std. Dev. = 4.258
N = 463
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Histogram

Statistics

Attitudes toward housework

N Valid 463
Missing 0

Mean  23.63
Std. Deviation  4.258
Variance  18.128
Skewness -.038
Std. Error of Skewness .113
Kurtosis -.254
Std. Error of Kurtosis  .226
Minimum 11
Maximum 35

4.2.1.2 Linearity and Homoscedasticity

Owing to nonnormality on at least one variable, IBM SPSS GRAPH is run to check the bivariate 
plots for departures from linearity and homoscedasticity, as reproduced in Figure 4.9. The variables
picked as worst case are those with the most discrepant distributions: TIMEDRS, which has the 
greatest departure from normality, and ATTDRUG, which is nicely distributed. (The SELECT IF 
instruction eliminates the univariate outliers on ATTHOUSE.)

In Figure 4.9, ATTDRUG is along the Y axis; turn the page so that the Y axis becomes the X
axis and you can see the symmetry of the ATTDRUG distribution. TIMEDRS is along the X axis. 
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The asymmetry of the distribution is apparent from the pileup of scores at low values of the 
variable. The overall shape of the scatterplot is not oval; the variables are not linearly related. 
Heteroscedasticity is evident in the greater variability in ATTDRUG scores for low than high values 
of TIMEDRS.

4.2.1.3 Transformation

Variables are transformed prior to searching for multivariate outliers. A logarithmic transfor-
mation is applied to TIMEDRS to overcome strong skewness. Because the smallest value on 
the variable is zero, one is added to each score as the transformation is performed, as indicated 
in the COMPUTE statement. Table 4.7 shows the distribution of TIMEDRS as transformed to 
LTIMEDRS.

Skewness is reduced from 3.248 to 0.221 and Kurtosis is reduced from 13.101 to -0.183 by 
the transformation. The frequency plot is not exactly pleasing (the frequencies are still too high for 
small scores), but the statistical evaluation of the distribution is much improved.

Figure 4.10 is a bivariate scatterplot between ATTDRUG and LTIMEDRS. Although still not 
perfect, the overall shape of the scatterplot is more nearly oval. The nonlinearity associated with 
nonnormality of one of the variables is “fixed” by transformation of the variable.
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FIGURE 4.9 Assessment of linearity through bivariate scatterplots, as produced by 
IBM SPSS GRAPH. This indicates ATTDRUG is normal; TIMEDRS is nonnormal.
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4.2.1.4 Detecting Multivariate Outliers

The 463 cases, with transformation applied to LTIMEDRS, are screened for multivariate outliers 
through IBM SPSS REGRESSION (Table 4.8) using the RESIDUALS=OUTLIERS(MAHAL)
syntax added to menu choices. Case labels (SUBNO) are used as the dummy DV—convenient be-
cause multivariate outliers among IVs are unaffected by the DV.21 The remaining VARIABLES are 
considered independent variables.

The criterion for multivariate outliers is Mahalanobis distance at p < .001. Mahalanobis dis-
tance is evaluated as x2 with degrees of freedom equal to the number of variables, in this case five: 
LTIMEDRS, ATTDRUG, ATTHOUSE, MSTATUS, and RACE. Any case with a Mahal. Distance
in Table 4.8 greater than x5

2 = 20.5l5 (cf. Appendix C, Table C.4), then, is a multivariate outlier. As 
shown in Table 4.8, cases 117 and 193 are outliers among these variables in this data set.

TABLE 4.7 Syntax and IBM SPSS FREQUENCIES Output Showing Descriptive Statistics 
and Histograms for TIMEDRS After Logarithmic Transform

COMPUTE ltimedrs=lg10(timedrs+1).
EXECUTE.
FREQUENCIES
VARIABLES=ltimedrs/FORMAT=NOTABLE
/STATISTICS=STDDEV VARIANCE MINIMUM MAXIMUM MEAN SKEWNESS SESKEW KURTOSIS
SEKURT
/HISTOGRAM NORMAL
/ORDER=ANALYSIS.

Frequencies

Statistics

ltimedrs

N Valid 463
Missing 0

Mean  .7424
Std. Deviation  .41579
Variance .173
Skewness .221
Std. Error of Skewness .113
Kurtosis  −.183
Std. Error of Kurtosis .226
Minimum .00
Maximum 1.91

21For a multiple regression analysis, the actual DV would be used here rather than SUBNO as a dummy DV.
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There are 461 cases remaining if the two multivariate outliers are deleted. Little is lost by 
deleting the additional two outliers from the sample. It is still necessary to determine why the two 
cases are multivariate outliers, to better understand how their deletion limits generalizability, and to 
include that information in the Results section.

4.2.1.5 Variables Causing Cases to Be Outliers

IBM SPSS REGRESSION is used to identify the combination of variables on which case 117 (sub-
ject number 137 as found in the data editor) and case 193 (subject number 262) deviate from the 
remaining 462 cases. Each outlying case is evaluated in a separate IBM SPSS REGRESSION run 

TABLE 4.8 Syntax and Selected IBM SPSS REGRESSION Output for Multivariate Outliers 
and Multicollinearity

REGRESSION
/MISSING LISTWISE
/STATISTICS COEFF OUTS R ANOVA COLLIN TOL
/CRITERIA=PIN(.05) POUT(.10)
/NOORIGIN
/DEPENDENT subno
/METHOD=ENTER attdrug atthouse mstatus race ltimedrs
/RESIDUALS=OUTLIERS(MAHAL).
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FIGURE 4.10 Assessment of linearity after log transformation of 
TIMEDRS, as produced by IBM SPSS GRAPH.

GRAPH
/SCATTERPLOT(BIVAR)=ltimedrs WITH attdrug
/MISSING=LISTWISE.



Regression

Collinearity Diagnosticsa

Model Dimension Eigenvalue

Condition

Index

Variance Proportions

(Constant)

Attitudes 

toward 

medication

Attitudes 

toward 

housework

Whether

currently 

married Race Itimedrs

1 1 5.656 1.000 .00 .00 .00 .00 .00 .01
2 .210 5.193 .00 .00 .00 .01 .02 .92
3 .060 9.688 .00 .00 .01 .29 .66 .01
4 .043 11.508 .00 .03 .29 .46 .16 .06
5 .025 15.113 .00 .53 .41 .06 .04 .00
6 .007 28.872 .99 .43 .29 .18 .12 .00

a. Dependent Variable: Subject number

Outlier Statisticsa

Case Number Statistic

Mahal. Distance 1 117 21.837
2 193 20.650
3 435 19.968
4 99 18.499
5 335 18.469
6 292 17.518
7 58 17.373
8 71 17.172
9 102 16.942

10 196 16.723

a. Dependent Variable: Subject number

TABLE 4.8 Continued
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TABLE 4.9 IBM SPSS REGRESSION Syntax and Partial Output Showing Variables Causing the 
117th Case to Be an Outlier

COMPUTE dummy = 0.
EXECUTE.
IF (subno=137) dummy = 1.
EXECUTE.
REGRESSION
/MISSING LISTWISE
/STATISTICS COEFF OUTS
/CRITERIA=PIN(.05) POUT(.10)
/NOORIGIN
/DEPENDENT dummy
/METHOD=STEPWISE attdrug atthouse emplmnt mstatus race ltimedrs.

Coefficientsa

Model

Unstandardized 

Coefficients

Standardized 

Coefficients

B Std. Error Beta t Sig.

1 (Constant) -.024 .008 -2.881 .004

race .024 .008 .149 3.241 .001

2 (Constant) .009 .016 .577 .564

race .025 .007 .151 3.304 .001

Attitudes toward 
medication -.004 .002 -.111 -2.419 .016

3 (Constant) .003 .016 .169 .866

race .026 .007 .159 3.481 .001

Attitude toward 
medication -.005 .002 -.123 -2.681 .008

Itimedrs .012 .005 .109 2.360 .019

a. Dependent Variable: DUMMY

after a dummy variable is created to separate the outlying case from the remaining cases. In Table 
4.9, the dummy variable for subject 137 is created in the COMPUTE instruction with dummy = 0 
and if (subno=137) dummy = 1. With the dummy variable as the DV and the remaining variables 
as IVs, you can find the variables that distinguish the outlier from the other cases.

For the 117th case (subno=137), RACE, ATTDRUG, and LTIMEDRS show up as significant 
predictors of the case (Table 4.9).

Variables separating case 193 (subno=262) from the other cases are RACE and LTIMEDRS, 
as seen in Table 4.10. The final step in evaluating outlying cases is to determine how their scores 
on the variables that cause them to be outliers differ from the scores of the remaining sample. The 
IBM SPSS LIST and DESCRIPTIVES procedures are used, as shown in Table 4.11. The LIST 
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TABLE 4.10 IBM SPSS REGRESSION Syntax and Partial Output Showing Variables 
Causing the 193rd Case to Be an Outlier

COMPUTE dummy = 0.
EXECUTE.
IF (subno=262) dummy = 1.
EXECUTE.
REGRESSION
/MISSING LISTWISE
/STATISTICS COEFF OUTS
/CRITERIA=PIN(.05) POUT(.10)
/NOORIGIN
/DEPENDENT dummy
/METHOD=STEPWISE attdrug atthouse emplmnt mstatus race ltimedrs.

Coefficientsa

Model

Unstandardized 

Coefficients

Standardized 

Coefficients

B Std. Error Beta t Sig.

1 (Constant) -.024 .008 -2.881 .004

race .024 .008 .149 3.241 .001

2 (Constant) -.036 .009 -3.787 .000

race .026 .007 .158 3.436 .001

ltimedrs .014 .005 .121 2.634 .009

a. Dependent Variable: DUMMY

TABLE 4.11 Syntax and IBM SPSS Output Showing Variable Scores for Multivariate Outliers 
and Descriptive Statistics for All Cases

LIST VARIABLES=subno attdrug atthouse mstatus race ltimedrs
/CASES FROM 117 TO 117.

List
subno attdrug atthouse mstatus race ltimedrs
137 5 24 2 2 1.49

LIST VARIABLES=subno attdrug atthouse mstatus race ltimedrs
/CASES FROM 193 TO 193.

List
subno attdrug atthouse mstatus race ltimedrs
262 9 31 2 2 1.72
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Descriptives

Descriptive Statistics

 
N Minimum Maximum Mean

Std. 
Deviation

Attitudes toward medication 463 5 10 7.68 1.158
Attitudes toward housework 463 11 35 23.63 4.258
Whether currently married 463 1 2 1.78 .413
race 463 1 2 1.09 .284
Itimedrs 463 .00 1.91 .7424 .41579
Valid N (listwise) 463        

22These values are equal to those shown in the earlier FREQUENCIES runs but for deletion of the two univariate outliers.

TABLE 4.11 Continued

procedure is run for each outlying case to show its values on all the variables of interest. Then 
DESCRIPTIVES is used to show the average values for the 463 cases remaining after deletion of 
the two univariate outliers against which the values for the outlying cases are compared.22

The 117th case is nonwhite on RACE, has very unfavorable attitudes regarding use of drugs 
(the lowest possible score on ATTDRUG), and has a high score on LTIMEDRS. The 193rd case is 
also nonwhite on RACE and has a very high score on LTIMEDRS. There is some question, then, 
about the generalizability of subsequent findings to nonwhite women who make numerous visits to 
physicians, especially in combination with unfavorable attitude toward use of drugs.

4.2.1.6 Multicollinearity

Evaluation of multicollinearity is produced in IBM SPSS through the STATISTICS COLLIN in-
struction. As seen by the Collinearity Diagnostics output of Table 4.8, no multicollinearity is evi-
dent. Although the last root has a Condition Index that approaches 30, no dimension (row) has 
more than one Variance Proportion greater than .50.

Screening information as it might be described in a Results section of a journal article appears 
next.

Results

Prior to analysis, number of visits to health professionals, 

attitude toward drug use, attitude toward housework, income, 

marital status, and race were examined through various IBM SPSS 

programs for accuracy of data entry, missing values, and fit 
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between their distributions and the assumptions of multivariate 

analysis. The single missing value on attitude toward housework 

was replaced by the mean, while income, with missing values on 

more than 5% of the cases, was deleted. The poor split on race (424 

to 41) truncates its correlations with other variables, but it was 

retained for analysis. To improve pairwise linearity and to reduce 

the extreme skewness and kurtosis, visits to health professionals 

was logarithmically transformed.

Two cases with extremely low z scores on attitude toward 

housework were found to be univariate outliers; two other cases 

were identified through Mahalanobis distance as multivariate 

outliers with p < .001.23

All four outliers were deleted, leaving 461 cases for analysis.

23Case 117 was nonwhite with very unfavorable attitudes regarding use of drugs but numerous visits to physicians. Case 
193 was also nonwhite with numerous visits to physicians. Results of analysis may not generalize to nonwhite women with 
numerous visits to physicians, particularly if they have very unfavorable attitude toward use of drugs.

4.2.2 Screening Grouped Data

For this example, the cases are divided into two groups according to the EMPLMNT (employment 
status) variable; there are 246 cases who have paid work (EMPLMNT = 0) and 219 cases who are 
housewives (EMPLMNT = 1). For illustrative purposes, variable transformation is considered inap-
propriate for this example, to be undertaken only if proved necessary. A flow diagram for screening 
grouped data appears in Figure 4.11.

4.2.2.1  Accuracy of Input, Missing Data, Distributions, Homogeneity of Variance, 
and Univariate Outliers

SAS MEANS and Interactive Data Analysis provide descriptive statistics and histograms, respec-
tively, for each group separately, as shown in Table 4.12. Menu choices are shown for SAS Interactive 
Data Analysis because no SAS log file is provided. Note that data must be sorted by EMPLMNT 
group before analyzing separately by groups. As with ungrouped data, accuracy of input is judged by 
plausible Means  and Std Devs  and reasonable Maximum  and Minimum  values. The distri-
butions are judged by their overall shapes within each group. TIMEDRS is just as badly skewed when 
grouped as when ungrouped, but this is of less concern when dealing with sampling distributions 
based on over 200 cases unless the skewness causes nonlinearity among variables or there are outliers. 
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FIGURE 4.11 Flow diagram for screening grouped data.

ATTDRUG remains well distributed within each group. As shown in Table 4.12, the ATTHOUSE vari-
able is nicely distributed as well, but the two cases in the employment status = 0 (paid workers) group 
with very low scores are outliers. With scores of 2, each case is 4.48 standard deviations below the mean 
for her group—beyond the a = .001 criterion of 3.29 for a two-tailed test. Because there are more cases 
in the group of paid workers, it is decided to delete these two women with extremely favorable attitudes 
toward housework from further analysis and to report the deletion in the Results section. There is 
also a score missing within the group of women with paid work. ATTDRUG and most of the other 
variables have 246 cases in this group, but ATTHOUSE has only 245 cases. Because the case with the 
missing value is from the larger group, it is decided to delete the case from subsequent analyses.



TABLE 4.12 Syntax and Selected SAS MEANS and SAS Interactive Data Analysis Output Showing (a) Descriptive Statistics 
and (b) Histograms for Grouped Data

proc sort data = SASUSER.SCREEN;
by EMPLMNT;

run;
proc means data=SASUSER.SCREEN   vardef=DF
N NMISS MIN MAX MEAN VAR STD SKEWNESS KURTOSIS;
Var TIMEDRS ATTDRUG ATTHOUSE INCOME MSTATUS RACE;

by EMPLMNT;
run;

Current employment status=0

The MEANS Procedure

Variable Label N N Miss Minimum Maximum Mean

TIMEDRS Visits to health professionals 246 0 0 81.0000000 7.2926829
ATTDRUG Attitudes toward use of medication 246 0 5.0000000 10.0000000 7.5934959
ATTHOUSE Attitudes toward housework 245 1 2.0000000 34.0000000 23.6408163
INCOME Income code 235 11 1.0000000 10.0000000 4.2382979
MSTATUS Current marital status 246 0 1.0000000 2.0000000 1.6869919
RACE Ethnic affiliation 246 0 1.0000000 2.0000000 1.1097561

Variable Label Variance Std Dev Skewness Kurtosis

TIMEDRS Visits to health professionals 122.4527626 11.0658376 3.8716749 18.0765985
ATTDRUG Attitudes toward use of medication 1.2381616 1.1127271 −0.1479593 −0.4724261
ATTHOUSE Attitudes toward housework 23.3376715 4.8309079 −0.6828286 2.1614074
INCOME Income code 5.9515185 2.4395734 0.5733054 −0.4287488
MSTATUS Current marital status 0.2159117 0.4646630 −0.8114465 −1.3526182
RACE Ethnic affiliation 0.0981085 0.3132228 2.5122223 4.3465331

Current employment status = 1

Variable Label N N Miss Minimum Maximum Mean

TIMEDRS Visits to health professionals 219 0 0 60.0000000 8.5844749
ATTDRUG Attitudes toward use of medication 219 0 5.0000000 10.0000000 7.7899543
ATTHOUSE Attitudes toward housework 219 0 11.0000000 35.0000000 23.4292237
INCOME Income code 204 15 1.0000000 10.0000000 4.1764706
MSTATUS Current marital status 219 0 1.0000000 2.0000000 1.8812785
RACE Ethnic affiliation 219 0 1.0000000 2.0000000 1.0639269

(continued)
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Variable Label Variance Std Dev Skewness Kurtosis

TIMEDRS Visits to health professionals 116.6292991 10.7995046 2.5624008 7.8645362
ATTDRUG Attitudes toward use of medication 1.4327427 1.1969723 −0.1380901 −0.4417282
ATTHOUSE Attitudes toward housework 16.5488668 4.0680298 −0.0591932 0.0119403
INCOME Income code 5.7618082 2.4003767 0.5948250 −0.2543926
MSTATUS Current marital status 0.1051066 0.3242015 −2.3737868 3.6682817
RACE Ethnic affiliation 0.0601148 0.2451832 3.5899053 10.9876845

(b)  1. Open SAS Interactive Data Analysis with appropriate data set (here Sasuser.Screen).

  2. Choose Analyze and then Histogram/Bar Chart(Y).

  3. Select Y variables: TIMEDRS ATTDRUG ATTHOUSE INCOME MSTATUS RACE.

  4. In Group box, select EMPLMNT.

  5. In Output dialog box, select Both, Vertical Axis at Left, and Horizontal Axis at Bottom.

TABLE 4.12 Continued
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On INCOME, however, it is the smaller group, housewives, with the greater number of miss-
ing values; within that group almost 7% of the cases do not have INCOME scores. INCOME, then, 
is a good candidate for variable deletion, although other remedies are available should deletion seri-
ously interfere with hypothesis testing.

The splits in the two dichotomous variables, MSTATUS and RACE, are about the same for 
grouped as for ungrouped data. The splits for both MSTATUS (for the housewife group) and for 
RACE (both groups) are disturbing, but we choose to retain them here.

For the remaining analyses, INCOME is deleted as a variable, and the case with the missing 
value as well as the two univariate outliers on ATTHOUSE are deleted, leaving a total sample size 
of 462, 243 cases in the paid work group and 219 cases in the housewife group.

Because cell sample sizes are not very discrepant, variance ratios as great as 10 can be tolerated. 
All Fmax are well below this criterion. As an example, for the two groups for ATTDRUG, Fmax =
1.438/1.238 = 1.16. Thus, there is no concern about violation of homogeneity of variance nor of 
homogeneity of variance–covariance matrices.

TABLE 4.12 Continued
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data SASUSER.SCREENX;
set SASUSER.SCREEN;
if ATTHOUSE < 3 then delete;

run;

1. Open SAS Interactive Data Analysis with appropriate data set (here-
SASUSER.SCREENX).

2. Choose Analyze and the Scatter Plot (YX).
3. Select Y variable: ATTDRUG.
4. Select X variable: TIMEDRS.
5. In Group box, select EMPLMNT.
6. In Output dialog box, select Names, Y Axis Vertical, Vertical Axis 

at Left, and Horizontal Axis at Bottom.

4.2.2.2 Linearity

Owing to the poor distribution on TIMEDRS, a check of scatterplots is warranted to see if TIMEDRS 
has a linear relationship with other variables. There is no need to check for linearity with MSTATUS 
and RACE because variables with two levels have only linear relationships with other variables. Of 
the two remaining variables, ATTHOUSE and ATTDRUG, the distribution of ATTDRUG differs 
most from that of TIMEDRS after univariate outliers are deleted.

Appropriately checked first, then, are within-group scatterplots of ATTDRUG versus TIMEDRS. 
Figure 4.12 shows syntax for creating the data set with extreme cases and missing data on ATTHOUSE 
deleted (SASUSER.SCREENX) and the setup and output for creating the scatterplots.

In the within-group scatterplots of Figure 4.12, there is ample evidence of skewness in 
the bunching up of scores at low values of TIMEDRS, but no suggestion of nonlinearity for 
these variables in the group of paid workers or housewives. Because the plots are acceptable, 
there is no evidence that the extreme skewness of TIMEDRS produces a harmful departure 
from linearity. Nor is there any reason to expect nonlinearity with the symmetrically distributed 
ATTHOUSE. 

FIGURE 4.12 Syntax for creating reduced data set through SAS DATA and SAS Interactive Data 
Analysis setup and output showing within-group scatterplot of ATTDRUG versus TIMEDRS.
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4.2.2.3 Multivariate Outliers

Multivariate outliers within the groups are sought using SAS REG with EMPLMNT as the DV. 
Because outliers are sought only among IVs, the choice of the DV is simply one of convenience. 
Mahalanobis distance is unavailable directly but may be calculated from leverage values, which are 
added to the data file. Table 4.13 shows SAS REG syntax and a selected portion of the output data 
file (SASUSER.SCRN_LEV) that provides leverage (H) for each case from the centroid of each 
group. Missing data and univariate outliers have already been omitted (see syntax for Figure 4.12).

Critical values of Mahalanobis distance with five variables at a = .001 is 20.515 (Appendix C, 
Table C.4). Equation 4.3 is used to convert this to a critical leverage value for each group.

For housewives,

hii =
20.515

219 - 1
+

1

219
= 0.099

TABLE 4.13 Syntax for SAS REG and Selected Portion of Output File for Identification 
of Multivariate Outliers

proc reg data=SASUSER.SCREENX;
by EMPLMNT
model SUBNO = TIMEDRS ATTDRUG ATTHOUSE MSTATUS RACE;
output out=SASUSER.SCRN_LEV H=H;

run;
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and for the paid work group,

hii =
20.515

243 - 1
+

1

243
= 0.089

The data set is shown for the first cases for the paid workers (group = 0). The last column, 
labeled H, shows leverage values. The 21st case, SUBNO #48 is a multivariate outlier among paid 
workers.

Altogether, 12 cases (about 2.5%) are identified as multivariate outliers: 4 paid workers and 8 
housewives. Although this is not an exceptionally large number of cases to delete, it is worth investi-
gating alternative strategies for dealing with outliers. The univariate summary statistics for TIMEDRS 
in Table 4.12 show a Maximum score of 81, converting to a standard score of z = (81 − 7.293)/
11.066 = 6.66 among those with PAIDWORK and z = 4.76 among HOUSEWIVEs; the poorly dis-
tributed variable produces univariate outliers in both groups. The skewed histograms of Table 4.13 
suggest a logarithmic transformation of TIMEDRS.

TABLE 4.14 SAS DATA Syntax for Transformation of TIMEDRS; Syntax For SAS REG 
and Selected Portion of Output File

data SASUSER.SCREENT;
set SASUSER.SCREENX;
LTIMEDRS = log10(TIMEDRS + 1) ;

run;
proc reg data=SASUSER.SCREENT;
by EMPLMNT;
model SUBNO = LTIMEDRS ATTDRUG ATTHOUSE MSTATUS RACE;
output out=sasuser.Scrnlev2 H=H;

run;
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Table 4.14 shows output from a second run of SAS REG identical to the run in Table 4.13 ex-
cept that TIMEDRS is replaced by LTIMEDR, its logarithmic transform (transformation syntax is
shown). The 21st case no longer is an outlier. With the transformed variable, the entire data set con-
tains only five multivariate outliers, all of them in the housewife group. One of these, SUBNO #262 
was also identified as a multivariate outlier in the ungrouped data set.24

4.2.2.4 Variables Causing Cases to Be Outliers

Identification of the variables causing outliers to be extreme proceeds in the same manner as for un-
grouped data except that the values for the case are compared with the means for the group the case 
comes from. For subject number 262, a paid worker, the regression run is limited to paid workers, as 
shown in Table 4.15. First, Table 4.15 shows the SAS DATA syntax to create a dummy variable in 
which SUBNO #262 forms one code of the dummy variable and the remaining housewives form the 

TABLE 4.15 SAS DATA Syntax for Forming the Dummy DV and Limiting Data to Housewives; 
Syntax and Partial SAS REG Output Showing Variables Causing SUBNO #262 to Be an Outlier 
Among Housewives

data SASUSER.SCREEND;
set SASUSER.SCREENT;

  DUMMY = 0;
if SUBNO=262 then DUMMY=1;
if EMPLMNT=0 then delete;
run;

proc reg DATA=SASUSER.SCREEND;
model DUMMY = LTIMEDRS ATTDRUG ATTHOUSE MSTATUS RACE/
selection=FORWARD SLENTRY=0.05;

run;

The REG Procedure

Model: MODEL1

Dependent Variable: DUMMY

Forward Selection: Step 2

Variable
Parameter
Estimate

Standard
Error Type II SS F Value Pr > F

Intercept −0.09729 0.02167 0.08382 20.16 <.0001

LTIMEDR 0.02690 0.00995 0.03041 7.31 0.0074

RACE 0.07638 0.01791 0.07565 18.19 <.0001

Bounds on condition number: 1.0105, 4.0422

No other variable met the 0.0500 significance level for entry into 
the model.

24Note that these are different multivariate outliers than found by software used in earlier editions of this book.
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other code. The dummy variable then serves as the DV in the SAS REG run. The table shows that 
the same variables cause this woman to be an outlier from her group as from the entire sample: She 
differs on the combination of RACE and LTIMEDRS.

Regression runs for the other four cases are not shown; however, the remaining four cases all 
differed on RACE. In addition, one case differed on ATTDRUG and another on MSTATUS.

As with ungrouped data, identification of variables on which cases are outliers is followed by 
an analysis of the scores on the variables for those cases. First, Table 4.16 shows the means on the 
three variables involved in outlying cases, separately by employment group. The data set is con-
sulted for these values for the five outliers.

The data set shows that scores for subject number 262 are 2 for RACE and 1.763 for 
LTIMEDRS. For subject number 45, they are 2 for RACE and 1 (single) for MSTATUS. For subject 
number 119, they are 2 for RACE and 10 for ATTDRUG. For subject numbers 265 and 584, they are 
2 for RACE. Thus, all of the outliers are non-Caucasian housewives. A separate run of descriptive 
statistics for housewives (not shown) reveals that only 14 of the housewives in the sample of 219 are 
non-Caucasian. One of them also has an unusually large number of visits to health professionals, 
one is unmarried, and one has exceptionally unfavorable attitudes regarding use of drugs.

4.2.2.5 Multicollinearity

The collinearity diagnostics of a SAS REG run are used to assess multicollinearity for the two 
groups, combined (Table 4.17) after deleting the five multivariate outliers.

Screening information as it might be described in a Results section of a journal article appears 
next.

TABLE 4.16 Syntax and SAS MEANS Output Showing Descriptive Statistics for Housewife Group

data SASUSER.SCREEND;
  set SASUSER.SCREENT;
if EMPLMNT=0 then delete;
run;

proc means data=SASUSER.SCREEND
  N MEAN STD;
var LTIMEDRS ATTDRUG MSTATUS RACE;
by EMPLMNT;

run;

Current employment status=1

The MEANS Procedure

Variable Label N Mean Std Dev

LTIMEDR   219 0.7657821 0.4414145

ATTDRUG Attitudes toward use of medication 219 7.7899543 1.1969723

MSTATUS Current marital status 219 1.8812785 0.3242015

RACE Ethnic affiliation 219 1.0639269 0.2451832
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TABLE 4.17 Sytnax and Selected Multicollinearity Output From SAS REG

data SASUSER.SCREENF;
set SASUSER.SCREENT;
if subno=45 or subno=265 or subno=119 or subno=262 or

subno=584 then delete;
run;
proc reg data=SASUSER.SCREENF;
  model SUBNO= ATTDRUG ATTHOUSE MSTATUS RACE LTIMEDRS/COLLIN;
run;

Collinearity Diagnostics

Number Eigenvalue Condition Index

1 5.66743    1.00000
2 0.20446    5.26483
3 0.05466 10.18261
4 0.04223 11.58407
5 0.02453 15.19939
6 0.00668 29.13622

Proportion of Variation

Number Intercept ATTDRUG ATTHOUSE MSTATUS RACE LTIMEDRS

1 0.00026439 0.00066304 0.00090957 0.00148 0.00169 0.00581
2 0.00093585 0.00162 0.00193 0.01207 0.01614 0.92916
3 0.00033355 0.00118 0.00259 0.35672 0.62656 0.00305
4 0.00401 0.04221 0.28153 0.40511 0.20211 0.05695
5 0.00391 0.53054 0.43329 0.04863 0.03159 0.00408
6 0.99055 0.42378 0.27975 0.17598 0.12191 .00094416

Results

Prior to analysis, number of visits to health professionals, 

attitude toward drug use, attitude toward housework, income, 

marital status, and race were examined through various SAS 

programs for accuracy of data entry, missing values, and fit 

between their distributions and the assumptions of multivariate 

analysis. The variables were examined separately for the 246 

employed women and the 219 housewives.

The REG Procedure

Model: MODEL1

Dependent Variable: SUBNO

Collinearity Diagnostics
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A case with a single missing value on attitude toward 

housework was deleted from the group of employed women, leaving 

245 cases in that group. Income, with missing values on more 

than 5% of the cases, was deleted. Pairwise linearity was checked 

using within-group scatterplots and found to be satisfactory.

Two cases in the employed group were univariate outliers due 

to their extremely low z scores on attitude toward housework; 

these cases were deleted. By using Mahalanobis distance with 

p < .001, derived from leverage scores, 15 cases (about 3%) were 

identified as multivariate outliers in their own groups. Because 

several of these cases had extreme z scores on visits to health 

professionals and because that variable was severely skewed, a 

logarithmic transformation was applied. With the transformed 

variable in the variable set, only five cases were identified 

as multivariate outliers, all from the employed group.25 With 

all seven outliers and the case with missing values deleted, 238 

cases remained in the employed group and 214 in the group of 

housewives.

25All the outliers were non-Caucasian housewives. Thus, 36% (5/14) of the non-Caucasian housewives were outliers. One 
of them also had an unusually large number of visits to health professionals, one was unmarried, and one had exceptionally 
unfavorable attitudes regarding use of drugs. Thus, results may not generalize to non-Caucasian housewives, particularly 
those who are unmarried, make frequent visits to physicians, and have very unfavorable attitudes toward the use of drugs.
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5.1 General Purpose and Description

Regression analyses are a set of statistical techniques that allow one to assess the relationship 
between one dependent variable (DV) and several independent variables (IVs). For example, is 
reading ability in primary grades (the DV) related to several IVs such as perceptual development, 
motor development, and age? The terms regression and correlation are used more or less inter-
changeably to label these procedures, although the term regression is often used when the intent of 
the analysis is prediction, and the term correlation is used when the intent is simply to assess the 
relationship between the DV and the IVs.

Multiple regression is a popular technique in many disciplines. For example, Stefl-  Mabry 
(2003) used standard multiple regression to study satisfaction derived from various sources of in-
formation (word-of-mouth, expert oral advice, Internet, print news, nonfiction books, and radio and 
television news). Forty vignettes were developed with high and low levels of information and high 
and low consistency; individual regression analyses were performed for each of the 90 professional 
participants, and then their standardized regression coefficients were averaged. The normative par-
ticipant was most satisfied by expert oral advice, with nonfiction books and word-of-mouth next 
in order to produce satisfaction. Participants were consistent in the satisfaction they derived from 
various sources in various vignettes.

Peguero and Bondy (2011) used data from the public-  use Educational Longitudinal Study 
of 2002 (ELS:2002) to study the relationship between a student’s immigration status and his/
her relationship with teachers. The study used a weighted sample of 9,874 10th grade students 
(1,628 Latino/a, 1,129 Asian American, 1,491 Black/African American, and 5,626 White American 
students in public schools). Immigration status was dummy variable coded as first generation (the 
student is born outside the United States), second generation (the student is born in the United 
States but one or both parents are not), and third generation (both the student and parents are born in 
the United States). A sequential multiple-  regression strategy was used where race/ethnicity, student 
achievement (math and verbal ETS scores), family SES, gender, region of country (Midwest, South, 
Northeast, West), and locale (urban and rural) were entered as Model 1; Model 2 added immigration 
status. In Model 1, racial/ethnic status, student achievement, and gender were significant predictors 
of the relationship with a teacher. In Model 2, those predictors remained and immigration status 
also entered as a powerful predictor. For Latino, Asian American, and Black/African American 
immigrants (but particularly Latino students), there was a strong positive relationship with teachers for 
first-  generation immigrants, but the relationship “fell off” sharply for second-   and third-  generation
immigrants. The deterioration in the relationship was not seen for White American immigrants.

5 Multiple Regression



118 C H A P T E R  5

For Williams (2010), a total of 249 undergraduate psychology students participated in the first 
study of a sequence that investigated the predictive power of three demographic characteristics and 
eight personality variables on self-  reported cheating in high school. The three demographic charac-
teristics were gender, major, and ethnicity. The eight personality characteristics were the Dark Triad 
(narcissism, Machiavellianism, and psychopathy) and the Big Five (extraversion, agreeableness, 
conscientiousness, emotional stability, and openness to experience). Among the demographic vari-
ables, only gender was predictive. Univariate correlations between cheating and the Dark Triad were 
all significant, with psychopathy the highest. Significant, but low, negative univariate correlations 
were also found between conscientiousness and agreeableness among the Big Five. However, the 
personality variables were almost all at least modestly correlated with each other. When they were 
entered into a multiple regression, only psychopathy remained a significant predictor of cheating.

Regression techniques can be applied to a data set in which the IVs are correlated with one 
another and with the DV to varying degrees. One can, for instance, assess the relationship between 
a set of IVs, such as education, income, and socioeconomic status, with a DV, such as occupational 
prestige. Because regression techniques can be used when the IVs are correlated, they are helpful 
both in experimental research when, for instance, correlation among IVs is created by unequal num-
bers of cases in cells, and in observational or survey research when nature has “manipulated” cor-
related variables. The flexibility of regression techniques is, then, especially useful to the researcher 
who is interested in real-  world or very complicated problems that cannot be meaningfully reduced 
to orthogonal designs in a laboratory setting.

Multiple regression is an extension of bivariate regression (see Section 3.5.2) in which several 
IVs, instead of just one, are combined to predict a value on a DV for each subject. The result of re-
gression is a generalization of Equation 3.30 that represents the best prediction of a DV from several 
continuous (or dichotomous) IVs. The regression equation takes the following form:

Y� = A + B1X1 + B2X2 + . . . +BkXk

where Y� is the predicted value on the DV, A is the Y intercept (the value of Y when all the X values 
are zero), the Xs represent the various IVs (of which there are k), and the Bs are the coefficients as-
signed to each of the IVs during regression. Although the same intercept and coefficients are used 
to predict the values on the DV for all cases in the sample, a different Y� value is predicted for each 
subject as a result of inserting the subject’s own X values into the equation.

The goal of regression is to arrive at the set of B values, called regression coefficients, for the 
IVs that bring the Y values predicted from the equation as close as possible to the Y values obtained 
by measurement. The regression coefficients that are computed accomplish two intuitively appeal-
ing and highly desirable goals: they minimize (the sum of the squared) deviations between predicted 
and obtained Y values and they optimize the correlation between the predicted and obtained Y val-
ues for the data set. In fact, one of the important statistics derived from a regression analysis is the 
multiple-  correlation coefficient, the Pearson product–  moment correlation coefficient between the 
obtained and predicted Y values: R = ryy� (see Section 5.4.1).

Regression techniques consist of standard multiple regression, sequential (hierarchical) re-
gression, and statistical (stepwise) regression. Differences between these techniques involve the 
way variables enter the equation: what happens to variance shared by variables and who determines 
the order in which variables enter the equation?
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5.2 Kinds of Research Questions

The primary goal of regression analysis is usually to investigate the relationship between a DV and 
several IVs. As a preliminary step, one determines how strong the relationship is between the DV and 
IVs; then, with some ambiguity, one assesses the importance of each of the IVs to the relationship.

A more complicated goal might be to investigate the relationship between a DV and some 
IVs with the effect of other IVs statistically eliminated. Researchers often use regression to perform 
what is essentially a covariates analysis in which they ask if some critical variable (or variables) 
adds anything to a prediction equation for a DV after other IVs—  the covariates—  have already en-
tered the equation. For example, does gender add to prediction of mathematical performance after 
statistical adjustment for extent and difficulty of mathematical training?

Another strategy is to compare the ability of several competing sets of IVs to predict a DV. 
Is the use of Valium better predicted by a set of health variables or by a set of attitudinal variables?

All too often, regression is used to find the best prediction equation for some phenomenon 
regardless of the meaning of the variables in the equation, a goal met by statistical (stepwise) 
regression. In the several varieties of statistical regression, statistical criteria alone, computed from 
a single sample, determine which IVs enter the equation and the order in which they enter.

Regression analyses can be used with either continuous or dichotomous IVs. A variable that is 
initially discrete can be used if it is first converted into a set of dichotomous variables (numbering one 
fewer than the number of discrete categories) by dummy variable coding with 1s and 0s. For example, 
consider an initially discrete variable assessing religious affiliation in which 1 stands for Protestant, 2 for 
Catholic, 3 for Jewish, and 4 for none or other. The variable may be converted into a set of three new 
variables (Protestant = 1 vs. non-Protestant = 0, Catholic = 1 vs. non-  Catholic = 0, Jewish = 1 vs. non-
Jewish = 0), one variable for each degree of freedom. When the new variables are entered into regression 
as a group (as recommended by Fox, 1991), the variance due to the original discrete IV is analyzed, and, 
in addition, one can examine effects of the newly created dichotomous components. Dummy variable 
coding is covered in glorious detail in Cohen, Cohen, West, and Aiken (2003, Section 8.2).

Analysis of variance (ANOVA; Chapter 3) is a special case of regression in which main 
effects and interactions are a series of dichotomous IVs. The dichotomies are created by dummy-
variable coding for the purpose of performing a statistical analysis. ANOVA problems can be 
handled  through multiple regression, but multiple-  regression problems often cannot readily be 
converted into ANOVA because of correlations among IVs and the presence of continuous IVs. If 
analyzed through ANOVA, continuous IVs have to be rendered discrete (e.g., high, medium, and 
low), a process that often results in the loss of information and unequal cell sizes. In regression, the 
full range of continuous IVs is maintained. Simple ANOVA through regression is covered briefly 
in Section 5.6.5 and in detail for a variety of ANOVA models in Tabachnick and Fidell (2007).

As a statistical tool, regression is very helpful in answering a number of practical questions, 
as discussed in Section 5.2.1 through Section 5.2.8.

5.2.1 Degree of Relationship

How good is the regression equation? Does the regression equation really provide better-  than-
chance prediction? Is the multiple correlation really any different from zero when allowances 
for naturally occurring fluctuations in such correlations are made? For example, can one reliably 
predict reading ability given knowledge of perceptual development, motor development, and age? 
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The statistical procedures described in Section 5.6.2.1 allow you to determine if your multiple cor-
relation is reliably different from zero.

5.2.2 Importance of IVs

If the multiple correlation is different from zero, you may want to ask which IVs are important 
in the equation and which are not. For example, is knowledge of motor development helpful in 
predicting reading ability or can we do just as well with knowledge of only age and perceptual 
development? The methods described in Section 5.6.1 help you to evaluate the relative importance 
of various IVs to a regression solution.

5.2.3 Adding IVs

Suppose that you have just computed a regression equation and you want to know whether you 
can improve your prediction of the DV by adding one or more IVs to the equation. For example, is 
prediction of a child’s reading ability enhanced by adding a variable reflecting parental interest in 
reading to the three IVs already included in the equation? A test for improvement of the multiple 
correlation after addition of one new variable is given in Section 5.6.1.2, and for improvement after 
addition of several new variables in Section 5.6.2.3.

5.2.4 Changing IVs

Although the regression equation is a linear equation (i.e., it does not contain squared values, cubed 
values, cross-  products of variables, and the like), the researcher may include nonlinear relationships 
in the analysis by redefining IVs. Curvilinear relationships, for example, can be made available for 
analysis by squaring or raising original IVs to a higher power. Interaction can be made available for 
analysis by creating a new IV that is a cross-  product of two or more original IVs and including it 
with the originals in the analysis. It is recommended that IVs be centered (replacing original scores 
with deviations from their mean) when including interactions or powers of IVs (cf. Section 5.6.6).

For an example of a curvilinear relationship, suppose a child’s reading ability increases with 
increasing parental interest up to a point, and then levels off. Greater parental interest does not result 
in greater reading ability. If the square of parental interest is added as an IV, better prediction of a 
child’s reading ability could be achieved.

Inspection of a scatterplot between predicted and obtained Y values (known as residuals 
analysis—  see Section 5.3.2.4) may reveal that the relationship between the DV and the IVs also 
has more complicated components, such as curvilinearity and interaction. To improve prediction 
or because of theoretical considerations, one may want to include some of these more complicated 
IVs. Procedures for using regression for nonlinear curve fitting are discussed in Cohen et al. (2003). 
There is danger, however, in too liberal use of powers or cross-  products of IVs; the sample data may 
be overfit to the extent that results no longer generalize to a population.

5.2.5 Contingencies Among IVs

You may be interested in the way that one IV behaves in the context of one, or a set, of other IVs. 
Sequential regression can be used to adjust statistically for the effects of some IVs while examin-
ing the relationship between an especially interesting IV and DV. For example, after adjustment for 



Multiple Regression 121

differences in perceptual development and age, does motor development predict reading ability? 
This procedure is described in Section 5.5.2.

5.2.6 Comparing Sets of IVs

Is prediction of a DV from one set of IVs better than prediction from another set of IVs? For 
example, is prediction of reading ability based on perceptual and motor development and age as 
good as prediction from family income and parental educational attainments? Section 5.6.2.5 dem-
onstrates a method for comparing the solutions given by two sets of predictors.

5.2.7 Predicting DV Scores for Members of a New Sample

One of the more important applications of regression involves predicting scores on a DV for sub-
jects for whom only data on IVs are available. This application is fairly frequent in personnel 
selection for employment, selection of students for graduate training, and the like. Over a fairly long 
period, a researcher collects data on a DV, say, success in graduate school, and on several IVs, say, 
undergraduate grade point average (GPA), graduate record exam (GRE) verbal scores, and GRE 
math scores. Regression analysis is performed and the regression equation obtained. If the IVs are 
strongly related to the DV, then, for a new sample of applicants to graduate school, regression coef-
ficients are applied to IV scores to predict success in graduate school ahead of time. Admission to 
graduate school may, in fact, be based on the prediction of success through regression.

The generalizability of a regression solution to a new sample is checked within a single large 
sample by a procedure called cross-  validation. A regression equation is developed from a portion of 
a sample and then applied to the other portion of the sample. If the solution generalizes, the regres-
sion equation predicts DV scores better than chance for the new cases, as well. Section 5.5.3 dem-
onstrates cross-  validation with statistical regression.

5.2.8 Parameter Estimates

Parameter estimates in multiple regression are the unstandardized regression coefficients 
(B weights). A B weight for a particular IV represents the change in the DV associated with a one-
unit change in that IV, all other IVs held constant. Suppose, for example, we want to predict GRE 
scores from GPA and our analysis produces the following equation:

(GRE)� = 200 + 100 (GPA)

B = 100 tells us that for each one-  unit increase in GPA (e.g., from a GPA of 2.0 to one of 3.0), 
we expect a 100-  point increase in GRE scores. Sometimes this is usefully expressed in terms of 
percentage of gain in the DV. For example, assuming the mean GRE is 500, an increase of one grade 
point represents a 20% average increase in GRE.

Accuracy of parameter estimates depends on agreement with the assumptions of multiple-
regression analysis (cf. Section 5.3.2.4), including the assumption that IVs are measured without 
error. Therefore, interpretation has to be tempered by knowledge of the reliability of the IVs. You 
need to be cautious when interpreting regression coefficients with transformed variables, because 
the coefficients and interpretations of them apply only to the variable after transformation.
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5.3 Limitations to Regression Analyses

Attention to issues surrounding assumptions of regression analysis has become a growth industry, 
partly because of the relative simplicity of regression compared to the multivariate techniques and 
partly because of the extensive use of multiple regression in all facets of science and commerce. A 
glance at the myriad of diagnostic tests available in regression programs confirms this view. However, 
it should also be noted that many of the popular diagnostic tests are concerned with poor fit of regres-
sion models to some cases—  outliers in the solution—  rather than tests conducted as part of screening.

This discussion barely skims the surface of the goodies available for screening your data 
and assessing the fit of cases to your solution, but should adequately cover most gross violations 
of assumptions. Berry (1993) and Fox (1991) offer some other interesting insights into regression 
assumptions and diagnostics.

5.3.1 Theoretical Issues

Regression analyses reveal relationships among variables but do not imply that the relationships are 
causal. Demonstration of causality is a logical and experimental, rather than statistical, problem. An 
apparently strong relationship between variables could stem from many sources, including the in-
fluence of other, currently unmeasured variables. One can make an airtight case for causal relation-
ship among variables only by showing that manipulation of some of them is followed inexorably by 
change in others when all other variables are controlled.

Another problem for theory rather than statistics is inclusion of variables. Which DV should 
be used, and how is it to be measured? Which IVs should be examined, and how are they to be mea-
sured? If one already has some IVs in an equation, which IVs should be added to the equation for the 
most improvement in prediction? The answers to these questions can be provided by theory, astute 
observation, good hunches, or sometimes by careful examination of the distribution of residuals.

There are, however, some general considerations for choosing IVs. Regression will be best 
when each IV is strongly correlated with the DV but uncorrelated with other IVs. A general goal of 
regression, then, is to identify the fewest IVs necessary to predict a DV, where each IV predicts a 
substantial and independent segment of the variability in the DV.

There are other considerations to the selection of variables. If the goal of research is ma-
nipulation of some DV (say, body weight), it is strategic to include as IVs variables that can be 
manipulated (e.g., caloric intake and physical activity) as well as those that cannot (e.g., genetic 
predisposition). Or, if one is interested in predicting a variable such as annoyance caused by noise 
for a neighborhood, it is strategic to include cheaply obtained sets of IVs (e.g., neighborhood char-
acteristics published by the Census Bureau) rather than expensively obtained ones (e.g., attitudes 
from in-depth interviews) if both sets of variables predict equally well.

It should be clearly understood that a regression solution is extremely sensitive to the combi-
nation of variables that is included in it. Whether an IV appears particularly important in a solution 
depends on the other IVs in the set. If the IV of interest is the only one that assesses some important 
facet of the DV, the IV will appear important; if the IV of interest is only one of several that assess 
the same important facet of the DV, it usually will appear less important. An optimal set of IVs is the 
smallest reliable, uncorrelated set that “covers the waterfront” with respect to the DV.1

1W. Knecht (personal communication, 2003) points to a potential problem of overfitting if the first few “good” IVs are 
selected from a very large pool of potential IVs; the regression can be too good due to chance factors alone.
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Regression analysis assumes that IVs are measured without error, a clear impossibility in 
most social and behavioral science research. The best we can do is choose the most reliable IVs 
possible. More subtly, it is assumed that important unmeasured IVs, which contribute to error, are 
not correlated with any of the measured IVs. If, as Berry (1993) points out, an unmeasured IV is 
correlated with a measured IV, then the components of error are correlated with the measured IV, a 
violation of the assumption of independence of errors. Worse, the relationship between an unmea-
sured IV and a measured IV can change the estimates of the regression coefficients: if the relation-
ship is positive, the coefficient for the measured IV is overestimated; if negative, underestimated. If 
the regression equation is to accurately reflect the contribution of each IV to prediction of the DV, 
then, all of the relevant IVs have to be included.

Analysis of residuals provides information important to both theoretical and practical issues 
in multiple-  regression analysis. Judicious inspection of residuals can help identify variables that are 
degrading rather than enhancing prediction. Plots of residuals identify failure to comply with distri-
butional assumptions. And residuals help identify cases that are outliers in the regression solution—
cases poorly fit by the model. Procedures for examining residuals for normality, homoscedasticity, 
and the like are the same as those for examining any other variable, as discussed in Chapter 4 and 
in Section 5.3.2.4.

5.3.2 Practical Issues

In addition to theoretical considerations, use of multiple regression requires that several practical 
matters be attended to, as described in Section 5.3.2.1 through Section 5.3.2.4.

5.3.2.1 Ratio of Cases to IVs

The cases-to-IVs ratio has to be substantial or the solution will be perfect—  and meaningless. With 
more IVs than cases, one can find a regression solution that completely predicts the DV for each 
case, but only as an artifact of the cases-to-IV ratio.

Required sample size depends on a number of issues, including the desired power, alpha level, 
number of predictors, and expected effect sizes. Green (1991) provides a thorough discussion of 
these issues and some procedures to help decide how many cases are necessary. Some simple rules 
of thumb are N Ú 50 + 8m (where m is the number of IVs) for testing the multiple correlation and 
N Ú 104 + m for testing individual predictors. These rules of thumb assume a medium-  size rela-
tionship between the IVs and the DV, a = .05 and b = .20. For example, if you plan six predictors, 
you need 50 + (8)(6) = 98 cases to test regression and 104 + 6 = 110 cases for testing individual 
predictors. If you are interested in both the overall correlation and the individual IVs, calculate N 
both ways and choose the larger number of cases. Alternatively, you can consult one of the software 
programs that are available for estimating power in multiple regression, such as SAS POWER, IBM 
SPSS Sample Power, or PASS (Hintze, 2011) or those available on the Internet (entering “statisti-
cal power” in your search engine or browser should produce a wealth of helpful programs, many of 
them free). More recently, Khamis and Kepler (2010), using reliability as a criterion, suggest n Ú
20 + 5m. This could be considered a minimum sample size when power estimates are not feasible.

A higher cases-to-IV ratio is needed when the DV is skewed, a small effect size is anticipated, 
or substantial measurement error is expected from less reliable variables. That is, if the DV is not 
normally distributed and transformations are not undertaken, more cases are required. The size of 
anticipated effect is also relevant because more cases are needed to demonstrate a small effect than 
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a large one. The following, more complex, rule of thumb that takes into account the effect size is 
based on Green (1991): N Ú (8/f 2) + (m - 1), where f 2 = .02, .15, and .35 for small, medium, and 
large effects, respectively. For more precisely estimated effect sizes, note that f 2 = pr2/(1 - pr2),
where pr2 is the expected squared partial correlation for the IV with the smallest expected effect of 
interest. Finally, if variables are less reliable, measurement error is larger and more cases are needed.

It is also possible to have too many cases. As the number of cases becomes quite large, almost 
any multiple correlation will depart significantly from zero, even one that predicts negligible vari-
ance in the DV. For both statistical and practical reasons, then, one wants to measure the smallest 
number of cases that has a decent chance of revealing a relationship of a specified size.

If statistical (stepwise) regression is to be used, even more cases are needed. A cases-to-IV 
ratio of 40 to 1 is reasonable because statistical regression can produce a solution that does not gener-
alize beyond the sample unless the sample is large. An even larger sample is needed in statistical re-
gression if cross-  validation (deriving the solution with some of the cases and testing it on the others) 
is used to test the generalizability of the solution.  Cross-  validation is illustrated in Section 5.5.3.

If you cannot measure as many cases as you would like, there are some strategies that may 
help you. You can delete some IVs or create one (or more than one) IV that is a composite of several 
others. The new, composite IV is used in the analysis in place of the original IVs.

Be sure to verify that the analysis included as many cases as you think it should have. By 
default, regression programs delete cases for which there are missing values on any of the variables 
that can result in substantial loss of cases. Refer to Chapter 4 if you have missing values and wish to 
estimate them rather than delete the cases.

5.3.2.2 Absence of Outliers Among the IVs and on the DV

Extreme cases have too much impact on the regression solution and also affect the precision of estima-
tion of the regression weights (Fox, 1991). With high leverage and low discrepancy (Figure 4.2), the 
standard errors of the regression coefficients are too small; with low leverage and high discrepancy, the 
standard errors of the regression coefficients are too large. Neither situation generalizes well to popu-
lation values. Therefore, outliers should be deleted, rescored, or the variable transformed. See Chap-
ter 4 for a summary of general procedures for detecting and dealing with univariate and multivariate 
outliers using both statistical tests and graphical methods, including evaluation of disconnectedness.

In regression, cases are evaluated for univariate extremeness with respect to the DV and each 
IV. Univariate outliers show up in initial screening runs (e.g., with IBM SPSS FREQUENCIES 
or SAS Interactive Data Analysis) as cases far from the mean and unconnected with other cases 
on either plots or z-scores. Multivariate outliers among the IVs are sought using either statistical 
methods, such as Mahalanobis distance (IBM SPSS REGRESSION or SAS GLM as described in 
Chapter 4), or by using graphical methods.

Screening for outliers can be performed either prior to a regression run (as recommended in 
Chapter 4) or through a residuals analysis after an initial regression run. The problems with an ini-
tial regression run are, first, the temptation to make screening decisions based on desired outcome, 
and, second, the overfitting that may occur if outliers in the solution are deleted along with outliers 
among the variables. It seems safer to deal with outliers among the variables in initial screening 
runs, and then determine the fit of the solution to the cases.

Regression programs offer more specialized tests for identifying outliers than most programs 
for the other techniques. IBM SPSS REGRESSION provides Mahalanobis distance for multivariate 
outliers; SAS GLM provides leverage.
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5.3.2.3 Absence of Multicollinearity and Singularity

Calculation of regression coefficients requires inversion of the matrix of correlations among the 
IVs (Equation 5.6), an inversion that is impossible if IVs are singular and unstable if they are 
multicollinear, as discussed in Chapter 4. Either of these problems can occur either because the IVs 
themselves are highly correlated, or because you have included interactions among IVs or powers 
of IVs in your analysis. In the latter case, the problem can be minimized by centering the variables, 
as discussed in Section 5.6.6.

Singularity and multicollinearity can be identified in screening runs through perfect or very high 
squared multiple correlations (SMCs) among IVs (where each IV in turn serves as DV and the others 
are IVs), or very low tolerances (1 - SMC) or through multicollinearity diagnostics, as illustrated in 
Chapter 4.2

In regression, multicollinearity is also signaled by very large (relative to the scale of the vari-
ables) standard errors for regression coefficients. Berry (1993) reports that when r is .9, the standard 
errors of the regression coefficients are doubled; when multicollinearity is present, none of the 
regression coefficients may be significant because of the large size of standard errors. Even toler-
ances as high as .5 or .6 may pose difficulties in testing and interpreting regression coefficients.

Most multiple-  regression programs have default values for tolerance (1 - SMC) that protect 
the user against inclusion of multicollinear IVs. If the default values for the programs are in place, 
IVs that are very highly correlated with IVs already in the equation are not entered. This makes 
sense both statistically and logically because the IVs threaten the analysis due to inflation of regres-
sion coefficients and because they are not needed due to their correlations with other IVs.

If variables are to be deleted, however, you probably want to make your own choice about which 
IV to delete on logical rather than statistical grounds by considering issues such as the reliability of 
the variables or the cost of measuring the variables. You may want to delete the least reliable variable, 
for instance, rather than the variable identified by the program with very low tolerance. With a less 
reliable IV deleted from the set of IVs, the tolerance for the IV in question may be sufficient for entry.

If multicollinearity is detected but you want to maintain your set of IVs anyway, ridge regres-
sion might be considered. Ridge regression is a controversial procedure that attempts to stabilize 
estimates of regression coefficients by inflating the variance that is analyzed. For a more thorough 
description of ridge regression, see Dillon and Goldstein (1984, Chapter 7). Although originally 
greeted with enthusiasm (cf. Price, 1977), serious questions about the procedure have been raised 
by Rozeboom (1979), Fox (1991), and others. If, after consulting this literature, you still want to 
employ ridge regression, it is available through SAS REG and as a macro in IBM SPSS.

5.3.2.4 Normality, Linearity, and Homoscedasticity of Residuals

Routine preanalysis screening procedures of Chapter 4 may be used to assess normality, linearity, 
and homoscedasticity. Regression programs, however, also offer an assessment of the three assump-
tions simultaneously through analysis of residuals produced by the programs.

Examination of residuals scatterplots provides a test of assumptions of normality, linearity, 
and homoscedasticity between predicted DV scores and errors of prediction. Assumptions of anal-
ysis are that the residuals (differences between obtained and predicted DV scores) are normally 
distributed about the predicted DV scores, that residuals have a horizontal-  line relationship with 

2For an extended discussion of the complicated relationship between outliers and collinearity, see Fox (1991).
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predicted DV scores, and that the variance of the residuals about predicted DV scores is the same 
for all predicted scores.3 When these assumptions are met, the residuals appear as in Figure 5.1(a).

Residuals scatterplots may be examined in lieu of or after initial screening runs. If residuals 
scatterplots are examined in lieu of initial screening, and the assumptions of analysis are deemed 
met, further screening of variables and cases is unnecessary. That is, if the residuals show normality, 
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FIGURE 5.1 Plots of predicted values of the DV (Y)
against residuals showing (a) assumptions met, (b) failure 
of normality, (c) nonlinearity, and (d) heteroscedasticity.

3Note that there are no distributional assumptions about the IVs, other than their relationship with the DV. However, a prediction 
equation often is enhanced if IVs are normally distributed, primarily because linearity between the IV and the DV is enhanced.
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linearity, and homoscedasticity—  if no outliers are evident, if the number of cases is sufficient, and 
if there is no evidence of multicollinearity or singularity—  then regression requires only one run. 
(Parenthetically, we might note that we have never, in many years of multivariate analyses with 
many data sets, found this to be the case.) If, on the other hand, the residuals scatterplot from an 
initial run looks awful, further screening via the procedures in Chapter 4 is warranted.

Residuals scatterplots are provided by all the statistical programs discussed in this chapter. All 
provide a scatterplot in which one axis is predicted scores and the other axis is errors of prediction. 
Which axis is which, however, and whether the predicted scores and residuals are standardized dif-
fer from program to program.

IBM SPSS and SAS provide the plots directly in their regression programs. In IBM SPSS, 
both predicted scores and errors of prediction are standardized; in SAS, they are not. In any event, it 
is the overall shape of the scatterplot that is of interest. If all assumptions are met, the residuals will 
be nearly rectangularly distributed with a concentration of scores along the center. As mentioned 
earlier, Figure 5.1(a) illustrates a distribution in which all assumptions are met.

The assumption of normality is that errors of prediction are normally distributed around each 
and every predicted DV score. The residuals scatterplot should reveal a pileup of residuals in the 
center of the plot at each value of predicted score and a normal distribution of residuals trailing off 
symmetrically from the center. Figure 5.1(b) illustrates a failure of normality, with a skewed distri-
bution of residuals.

Linearity of relationship between predicted DV scores and errors of prediction is also assumed. 
If nonlinearity is present, the overall shape of the scatterplot is curved instead of rectangular, as 
shown in Figure 5.1(c). In this illustration, errors of prediction are generally in a negative direction 
for low and high predicted scores and in a positive direction for medium predicted scores. Typically, 
nonlinearity of residuals can be made linear by transforming IVs (or the DV), so that there is a linear 
relationship between each IV and the DV. If, however, there is a genuine curvilinear relationship 
between an IV and the DV, it may be necessary to include the square of the IV in the set of IVs.

Failure of linearity of residuals in regression does not invalidate an analysis so much as weaken 
it. A curvilinear relationship between the DV and an IV is a perfectly good relationship that is not 
completely captured by a linear correlation coefficient. The power of the analysis is reduced to the 
extent that the analysis cannot map the full extent of the relationships among the IVs and the DV.

The assumption of homoscedasticity is the assumption that the standard deviations of errors 
of prediction are approximately equal for all predicted DV scores. Heteroscedasticity also does not 
invalidate the analysis so much as weaken it. Homoscedasticity means that the band enclosing the 
residuals is approximately equal in width at all values of the predicted DV. Typical heteroscedasticity 
is a case in which the band becomes wider at larger predicted values, as illustrated in Figure 5.1(d). In 
this illustration, the errors of prediction increase as the size of the prediction increases. Serious het-
eroscedasticity occurs when the spread in standard deviations of residuals around predicted values is 
three times higher for the widest spread as for the most narrow spread (Fox, 1991). Heteroscedasticity 
may occur when some of the variables are skewed and others are not. Transformation of the variables 
may reduce or eliminate heteroscedasticity.

Heteroscedasticity can also result from interaction of an IV with another variable that is not 
part of the regression equation. For example, it may be that increasing variability in income with age 
is associated with education; for those with higher education, there is greater growth in income with 
age. Including education as well as age as predictors of income will strengthen the model as well as 
eliminate heteroscedasticity.
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Another remedy is to use weighted (generalized) least squares regression, available as an 
option in all major regression programs. In this procedure, you weight the regression by the variance 
of the variable that produces the heteroscedasticity. For example, if you know that variance in the 
DV (e.g., income) increases with increasing values of an IV (e.g., age), you weight the regression by 
age. This latter remedy is less appealing than inclusion of the “interacting” variable (education), but 
may be more practical if you cannot identify or measure the interacting variable, or if the heterosce-
dasticity is a result of measurement error.

Under special and somewhat rare conditions, significance tests are available for linearity and 
homoscedasticity. Fox (1991, pp. 64–  66) summarizes some of these significance tests for failure of 
linearity and heteroscedasticity, useful when some of the IVs are discrete with only a few categories.

5.3.2.5 Independence of Errors

Another assumption of regression, testable through residuals analysis, is that errors of prediction are 
independent of one another. In some instances, this assumption is violated as a function of some-
thing associated with the order of cases. Often “something” is either time or distance. For example, 
time produces nonindependence of errors when subjects who are interviewed early in a survey 
exhibit more variability of response because of inexperience of the interviewer with a questionnaire. 
Distance produces nonindependence of errors when subjects who are farther away from a toxic 
source exhibit more variable reactions. Nonindependence of errors is, then, either a nuisance factor 
to be eliminated or of considerable research interest.

Nonindependence of errors associated with order of cases is assessed by entering cases in 
order and requesting a plot of residuals against sequence of cases. The associated Durbin–  Watson 
statistic is a measure of autocorrelation of errors over the sequence of cases, and, if significant, 
indicates nonindependence of errors. Positive autocorrelation makes estimates of error variance too 
small, and results in inflation of the Type I error rate. Negative autocorrelation makes the estimates 
too large, and results in loss of power. Details on the use of this statistic and a test for its significance 
are given by Wesolowsky (1976). If nonindependence is found, refer Dillon and Goldstein (1984) 
for the options available to you.

5.3.2.6 Absence of Outliers in the Solution

Some cases may be poorly fit by the regression equation. These cases lower the multiple correla-
tion. Examination of these cases is informative, because they are the kinds of cases that are not well 
predicted by your solution.

Cases with large residuals are outliers in the solution. Residuals are available in raw or stan-
dardized form—  with or without the outlying case deleted. A graphical method based on residuals 
uses leverage on the X-axis and residuals on the Y-axis. As in routine residuals plots, outlying cases 
in the solution fall outside the swarm of points produced by the remainder of the cases.

Examine the residuals plot. If outlying cases are evident, identify them through the list of stan-
dardized residuals for individual cases. The statistical criterion for identifying an outlier in the solution 
depends on the sample size; the larger the sample, the more likely that one or more outliers are present. 
When N 6 1000 a criterion of p = .001 is appropriate; this p is associated with a standardized residuals 
in excess of about {3.3.
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5.4  Fundamental Equations 
for Multiple Regression

A data set appropriate for multiple regression consists of a sample of research units (e.g., graduate 
students) for whom scores are available on a number of IVs and on one DV. An unrealistically small 
sample of hypothetical data with three IVs and one DV is illustrated in Table 5.1.

Table 5.1 contains scores for six students on three IVs: a measure of professional motivation 
(MOTIV), a composite rating of qualifications for admissions to graduate training (QUAL), and a 
composite rating of performance in graduate courses (GRADE). The DV is a rating of performance 
on graduate comprehensive exams (COMPR). We ask how well we can predict COMPR from scores 
on MOTIV, QUAL, and GRADE.

A sample of six cases is highly inadequate, of course, but the sample is sufficient to illustrate the 
calculation of multiple correlation and to demonstrate some analyses by canned computer programs. 
The reader is encouraged to work problems involving these data by hand as well as by available com-
puter programs. Syntax and selected output for this example through IBM SPSS REGRESSION and 
SAS REG appear in Section 5.4.3. A variety of methods are available to develop the “basic” equation 
for multiple correlation.

5.4.1 General Linear Equations

One way of developing multiple correlation is to obtain the prediction equation for Y� to compare 
the predicted value of the DV with obtained Y.

Y� = A + B1X1 + B2X2 + g + BkXk (5.1)

where Y� is the predicted value of Y, A is the value of Y� when all Xs are zero, B1 to Bk
represent regression coefficients, and X1 to Xk represent the IVs.

The best-  fitting regression coefficients produce a prediction equation for which squared dif-
ferences between Y and Y� are at a minimum. Because squared errors of prediction, (Y - Y�)2, are 
minimized, this solution is called a least-  squares solution.

TABLE 5.1 Small Sample of Hypothetical Data for Illustration 
of Multiple Correlation

IVs DV

Case No. MOTIV (X1) QUAL (X2) GRADE (X3) COMPR (Y)

1 14 19 19 18

2 11 11 8 9

3 8 10 14 8

4 13 5 10 8

5 10 9 8 5

6 10 7 9 12

Mean 11.00 10.17 11.33 10.00

Standard deviation 2.191 4.834 4.367 4.517
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In the sample problem, k = 3. That is, there are three IVs available to predict the DV, COMPR.1COMPR2� = A + BM1MOTIV2 + BQ1QUAL2 + BG1GRADE2
To predict a student’s COMPR score, the available IV scores (MOTIV, QUAL, and GRADE) are 

multiplied by their respective regression coefficients. The coefficient-by-score products are summed 
and added to the intercept, or baseline, value (A).

Differences among the observed values of the DV (Y), the mean of Y (Y ), and the predicted 
values of Y (Y�) are summed and squared, yielding estimates of variation attributable to different 
sources. Total sum of squares for Y is partitioned into a sum of squares due to regression and a sum 
of squares left over or residual.

SSY = SSreg + SSres (5.2)

Total sum of squares of Y

SSY = a (Y - Y )2

is, as usual, the sum of squared differences between each individual’s observed Y score and the 
mean of Y over all N cases. The sum of squares for regression

SSreg = a (Y� - Y )2

is the portion of the variation in Y that is explained by the use of the IVs as predictors. That is, it is 
the sum of squared differences between predicted (Y�) and the mean of Y, because the mean of Y
is the best prediction for the value of Y in the absence of any useful IVs. Sum-of-squares residual

SSres = a (Y - Y�)2

is the sum of squared differences between observed Y and the predicted scores, Y� and represents 
errors in prediction.

The squared multiple correlation is

R2 =
SSreg

SSY
(5.3)

The squared multiple correlation, R2 is the proportion of sum of squares for regression 
in the total sum of squares for Y.

The squared multiple correlation is, then, the proportion of variation in the DV that is predict-
able from the best linear combination of the IVs. The multiple correlation itself is the correlation 
between the obtained and predicted Y values; that is, R = ryy�.

Total sum of squares (SSY) is calculated directly from the observed values of the DV. For 
example, in the sample problem, where the mean on the comprehensive examination is 10,

SSC = 118 - 1022 + 19 - 1022 + 18 - 1022 + 18 - 1022 + 15 - 1022 + 112 - 1022 = 102
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To find the remaining sources of variation, it is necessary to solve the prediction equation 
(Equation 5.1) for Y� which means finding the best-  fitting A and Bi. The most direct method of 
deriving the equation involves thinking of multiple correlation in terms of individual correlations.

5.4.2 Matrix Equations

Another way of looking at R2 is in terms of the correlations between each of the IVs and the DV. 
The squared multiple correlation is the sum across all IVs of the product of the correlation between 
the DV and the IV and the (standardized) regression coefficient for the IV.

R2 = a
k

i = 1
ryibi (5.4)

where each ryi = correlation between the DV and the ith IV
bi = standardized regression coefficient, or beta weight4

The standardized regression coefficient is the regression coefficient that would be applied to 
the standardized Xi value—the z-score of the X value—to predict standardized Y�.

Because ryi are calculated directly from the data, computation of R2 involves finding the 
standardized regression coefficients (bi) for the k IVs. Derivation of the k equations in k unknowns 
is beyond the scope of this book. However, solution of these equations is easily illustrated using 
matrix algebra. For those who are not familiar with matrix algebra, the rudiments of it are available 
in Appendix A. Sections A.5 (matrix multiplication) and A.6 (matrix inversion or division) are the 
only portions of matrix algebra necessary to follow the next few steps. We encourage you to follow 
along using specialized matrix programs, such as SAS IML, MATLAB, SYSTAT MATRIX, or IBM 
SPSS MATRIX, or standard spreadsheet programs, such as Quattro Pro or Excel.

In matrix form:

R2 = RyiBi (5.5)

where Ryi = row matrix of correlations between the DV and the k IVs
      Bi = column matrix of standardized regression coefficients for the same k IVs

The standardized regression coefficients can be found by inverting the matrix of correlations 
among IVs and multiplying that inverse by the matrix of correlations between the DV and the IVs.

Bi = R- 1
ii Riy (5.6)

where Bi = column matrix of standardized regression coefficients
  R- 1

ii = inverse of the matrix of correlations among the IVs
          Riy = column matrix of correlations between the DV and the IVs

Because multiplication by an inverse is the same as division, the column matrix of correla-
tions between the IVs and the DV is divided by the correlation matrix of IVs.

4b is used to indicate a sample standardized regression coefficient, rather than a population estimate of the unstandardized 
coefficient consistent with usage in software packages.
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These equations,5 then, are used to calculate R2 for the sample COMPR data from Table 5.1. 
All the required correlations are in Table 5.2.

Procedures for inverting a matrix are amply demonstrated elsewhere (e.g., Cooley & Lohnes, 
1971; Harris, 2001) and are typically available in computer installations and spreadsheet programs. 
Because the procedure is extremely tedious by hand, and becomes increasingly so as the matrix 
becomes larger, the inverted matrix for the sample data is presented without calculation in Table 5.3.

From Equation 5.6, the Bi matrix is found by postmultiplying the R- 1
ii  matrix by the Riy

matrix.

Bi = £ 1.20255 -0.31684 -0.20435

-0.31684 2.67113 -1.97305

-0.20435 -1.97305 2.62238

§ £ .58613

.73284

.75043

§ = £ 0.31931

0.29117

0.40221

§
so that bM = .319, bQ = .291, and bG = .402. Then, from Equation 5.5, we obtain

R2 = [.58613 .73284 .75043]

0.31931£ 0.29117

0.40221

§ = .70237

In this example, 70% of the variance in graduate comprehensive exam scores is predictable from 
knowledge of motivation, admission qualifications, and graduate course performance.

TABLE 5.2 Correlations Among IVs and the DV for Sample Data 
in Table 5.1

Rii
Riy

MOTIV QUAL GRADE COMPR

MOTIV 1.00000 .39658 .37631 .58613
QUAL .39658 1.00000 .78329 .73284
GRADE .37631 .78329 1.00000 .75043

Ryi COMPR .58613 .73284 .75043 1.00000

TABLE 5.3 Inverse of Matrix of Intercorrelations 
Among IVs for Sample Data in Table 5.1

MOTIV QUAL GRADE

MOTIV 1.20255 −0.31684 −0.20435
QUAL −0.31684 2.67113 −1.97305
GRADE −0.20435 −1.97305 2.62238

5Similar equations can be solved in terms of π (variance–  covariance) matrices or S (sum-of-squares and cross-  product) 
matrices as well as correlation matrices. If π or S matrices are used, the regression coefficients are unstandardized coef-
ficients, as in Equation 5.1.
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Once the standardized regression coefficients are available, they are used to write the equation 
for the predicted values of COMPR (Y�). If z-scores are used throughout, the beta weights (bi) are 
used to set up the prediction equation. The equation is similar to Equation 5.1 except that there is no 
A (intercept) and both the IVs and the predicted DV are in standardized form.

If, instead, the equation is needed in raw score form, the coefficients must first be transformed 
to unstandardized bi coefficients.

Bi = bia SY

Si
b (5.7)

Unstandardized coefficients (Bi) are found by multiplying standardized coefficients (bi) by the ratio 
of standard deviations of the DV and the IV, where Si is the standard deviation of the ith IV and SY
is the standard deviation of the DV, and

A = Y - a
k

i = 1
(biXi) (5.8)

The intercept is the mean of the DV less the sum of the means of the IVs multiplied by 
their respective unstandardized coefficients.

For the sample problem of Table 5.1:

BM = 0.319a 4.517

2.191
b = 0.658

BQ = 0.291a 4.517

4.834
b = 0.272

BG = 0.402a 4.517

4.367
b = 0.416

A = 10 - [(0.658)(11.00) + (0.272)(10.17) + (0.416)(11.33)] = -4.72

The prediction equation for raw COMPR scores, once scores on MOTIV, QUAL, and GRADE 
are known, is1COMPR)� = -4.72 + 0.6581MOTIV2 + 0.2721QUAL2 + 0.4161GRADE2
If a graduate student has ratings of 12, 14, and 15, respectively, on MOTIV, QUAL, and GRADE, 
the predicted rating on COMPR is1COMPR)� = -4.72 + 0.6581122 + 0.2721142 + 0.4161152 = 13.22

The prediction equation also shows that for every one-  unit change in GRADE, there is a 
change of about 0.4 point on COMPR if the values on the other IVs are held constant.

5.4.3 Computer Analyses of Small-Sample Example

Tables 5.4 and 5.5 demonstrate syntax and selected output for computer analyses of the data in 
Table 5.1, using default values. Table 5.4 illustrates IBM SPSS REGRESSION. Table 5.5 shows a 
run through SAS REG.
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TABLE 5.4 Syntax and Selected IBM SPSS REGRESSION Output for Standard Multiple Regression 
on Sample Data in Table 5.1

REGRESSION
/MISSING LISTWISE
/STATISTICS COEFF OUTS R ANOVA
/CRITERIA=PIN(.05) POUT(.10)
/NOORIGIN
/DEPENDENT compr
/METHOD=ENTER motiv qual grade

Regression

Model Summary

Model R R Square
Adjusted 
R Square

Std. Error 
of the 

Estimate

1 .838a .702 .256 3.8961

a. Predictors: (Constant), GRADE, MOTIV, QUAL

ANOVAb

Model
Sum of 
Squares df

Mean
Square F Sig.

1 Regression 71.640 3 23.880 1.573 .411a

    Residual 30.360 2 15.180
    Total 102.000 5

a. Predictors: (Constant), GRADE, MOTIV, QUAL
b. Dependent Variable: COMPR

Coefficientsa

Unstandardized 
Coefficients

Standardized 
Coefficients

Model B Std. Error Beta t Sig.

1       (Constant) -4.722 9.066 .319 -.521 .654
     MOTIV .658 .872 .291 .755 .529
     QUAL .272 .589 .402 .462 .690
    GRADE .416 .646 .644 .586

a. Dependent Variable: COMPR
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In IBM SPSS REGRESSION, the DV is specified as compr. METHOD=ENTER, followed 
by the list of IVs, is the instruction that specifies standard multiple regression.

In standard multiple regression, results are given for only one step in the Model Summary 
table. The table includes R, R2, adjusted R2 (see Section 5.6.3) and Std. Error of the Estimate, the 
standard error of the predicted score, Y2. Then the ANOVA table shows details of the F test of the 
hypothesis that multiple regression is zero (see Section 5.6.2.1). The following are the regression 
coefficients and their significance tests, including B weights, the standard error of B (Std. Error),
b weights (Beta), t tests for the coefficients (see Section 5.6.2.2), and their significance levels 
(Sig.). The term “Constant” refers to the intercept (A).

In using SAS REG for standard multiple regression, the variables for the regression equation 
are specified in the Model statement, with the DV on the left side of the equation and the IVs on 
the right.

TABLE 5.5 Syntax and SAS REG Output for Standard Multiple Regression 
on Sample Data of Table 5.1

proc reg data=SASUSER.SS_REG;
    model COMPR= MOTIV QUAL GRADE;
run;

The REG Procedure
Model: MODEL1

Dependent Variable: COMPR

Number of Observations Read 7
Number of Observations Used 6
Number of Observations with Missing Values 1

Analysis of Variance

Source DF
Sum of 

Squares
Mean

Square F Value Pr > F

Model 3 71.64007 23.88002 1.57 0.4114
Error 2 30.35993 25.17997
Corrected Total 5 102.00000

Root MSE 3.89615 R-Square 0.7024
Dependent Mean 10.00000 Adj R-Sq 0.2559
Coeff Var 38.96148

Parameter Estimates

Variable DF
Parameter
Estimate

Standard
Error t Value Pr > |t|

Intercept 1 -4.72180 9.06565 -0.52 0.6544
MOTIV 1 0.65827 0.87213 0.75 0.5292
QUAL 1 0.27205 0.58911 0.46 0.6896
GRADE 1 0.41603 0.64619 0.64 0.5857
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In the ANOVA table, the sum of squares for regression is called Model and residual is called 
Error. Total SS and df are in the row labeled C Total. Below the ANOVA is the standard 
error of the estimate, shown as the square root of the error term, (Root MSE). Also printed are 
the mean of the DV (Dep Mean), R2, adjusted R2, and the coefficient of variation (Coeff
Var)—defined here as 100 times the standard error of the estimate divided by the mean of the 
DV. The section labeled Parameter Estimates includes the usual B coefficients in the 
Parameter Estimate column, their standard errors, t tests for those coefficients and 
significance levels (Pr > |t|). Standardized regression coefficients are not printed unless requested.

Additional features of these programs are discussed in Section 5.8.

5.5 Major Types of Multiple Regression

There are three major analytic strategies in multiple regression: standard multiple regression, 
sequential (hierarchical) regression, and statistical (stepwise) regression. Differences among the 
strategies involve what happens to overlapping variability due to correlated IVs and who determines 
the order of entry of IVs into the equation.

Consider the Venn diagram in Figure 5.2(a) in which there are three IVs and one DV. IV1
and IV2 both correlate substantially with the DV and with each other. IV3 correlates to a lesser 
extent with the DV and to a negligible extent with IV2. R2 for this situation is the area a + b + c +
d + e. Area a comes unequivocally from IV1, area c unequivocally from IV2, and area e from IV3.
However, there is ambiguity regarding areas b and d. Both areas could be predicted from either of 
two IVs: area b from either IV1 or IV2 , and area d from either IV2 or IV3. To which IV should the 
contested area be assigned? The interpretation of analysis can be drastically affected by the choice 
of strategy because the apparent importance of the various IVs to the solution changes.

5.5.1 Standard Multiple Regression

The standard model is the one used in the solution for the small-  sample graduate student data in 
Table 5.1. In the standard, or simultaneous, model, all IVs enter into the regression equation at once; 
each one is assessed as if it had entered the regression after all other IVs had entered. Each IV is 
evaluated in terms of what it adds to prediction of the DV that is different from the predictability 
afforded by all the other IVs.

Consider Figure 5.2(b). The darkened areas of the figure indicate the variability accorded 
each of the IVs when the procedure of Section 5.6.1.1 is used. IV1 “gets credit” for area a, IV12 for 
area c, and IV3 for area e. That is, each IV is assigned only the area of its unique contribution. The 
overlapping areas, b and d, contribute to but are not assigned to any of the individual IVs.

In standard multiple regression, it is possible for a variable like IV2 to appear unimportant 
in the solution when it actually is highly correlated with the DV. If the area of that correlation is 
whittled away by other IVs, the unique contribution of the IV is often very small despite a substan-
tial correlation with the DV. For this reason, both the full correlation and the unique contribution of 
the IV need to be considered in interpretation.

Standard multiple regression is handled in the IBM SPSS package by the REGRESSION pro-
gram, as are all other types of multiple regression. A selected part of output is given in Table 5.4 for the 
sample problem of Table 5.1. (Full interpretation of program output is available in substantive examples 
presented later in this chapter.) SAS REG is used for standard analyses, as illustrated in Table 5.5.
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5.5.2 Sequential Multiple Regression

In sequential regression (sometimes called hierarchical regression), IVs enter the equation in an 
order specified by the researcher. Each IV (or set of IVs) is assessed in terms of what it adds to the 
equation at its own point of entry. Consider the example in Figure 5.2(c). Assume that the researcher 
assigns IV1 first entry, IV2 second entry, and IV3 third entry. In assessing the importance of vari-
ables by the procedure of Section 5.6.1.2, IV1 “gets credit” for areas a and b, IV2 for areas c and d,
and IV3 for area e. Each IV is assigned the variability, unique and overlapping, left to it at its own 
point of entry. Notice that the apparent importance of IV2 would increase dramatically if it were as-
signed first entry and, therefore, “got credit” for b, c, and d.

DV
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IV
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2
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a
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2
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FIGURE 5.2 Venn diagrams illustrating (a) overlapping 
variance sections, and allocation of overlapping variance in 
(b) standard multiple regression, (c) sequential regression, 

and (d) statistical (stepwise) regression.
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The researcher normally assigns order of entry of variables according to logical or theoretical 
considerations. For example, IVs that are presumed (or manipulated) to be causally prior are given 
higher priority of entry. For instance, height might be considered prior to the amount of training 
in assessing success as a basketball player and accorded a higher priority of entry. Variables with 
greater theoretical importance could also be given early entry.

Or the opposite tack could be taken. The research could enter manipulated or other variables of 
major importance on later steps, with “nuisance” variables given higher priority for entry. The lesser, 
or nuisance, set is entered first; then the major set is evaluated for what it adds to the prediction over 
and above the lesser set. For example, we might want to see how well we can predict reading speed 
(the DV) from intensity and length of a speed-  reading course (the major IVs) while holding the ini-
tial differences in reading speed (the nuisance IV) constant. This is the basic analysis of covariance 
problem in regression format.

IVs can be entered one at a time or in blocks. The analysis proceeds in steps, with information 
about variables both in and out of the equation given in computer output at each step. Finally, after 
all variables are entered, summary statistics are provided along with the information available at the 
last step.

In the IBM SPSS package, sequential regression is performed by the REGRESSION pro-
gram. SAS REG also has interactive modes in which individual IVs can be entered sequentially.

Syntax and selected output are shown for the sample problem of Table 5.1 using IBM SPSS 
REGRESSION. In Table 5.6, with higher priority given to admission qualifications and course per-
formance, and lower priority given to motivation, the sequence is indicated by having two ENTER
instructions, one for each step of the model. CHANGE is added to STATISTICS to provide a table 
that shows the gain in prediction afforded by motiv, once qual and grade are in the model. IBM 
SPSS REGRESSION sequential analysis is interpreted in detail in Section 5.7.3.

5.5.3 Statistical (Stepwise) Regression

Statistical regression (sometimes generically called stepwise regression) is a controversial proce-
dure, in which order of entry of variables is based solely on statistical criteria. The meaning or in-
terpretation of the variables is not relevant. Decisions about which variables are included and which 
omitted from the equation are based solely on statistics computed from the particular sample drawn; 
minor differences in these statistics can have a profound effect on the apparent importance of an IV.

Consider the example in Figure 5.2(d). Both IV1 and IV2 correlate substantially with the DV; 
IV3 correlates less strongly. The choice between IV1 and IV2 for first entry is based on which of the 
two IVs has the higher full correlation with the DV, even if the higher correlation shows up in the 
second or third decimal place. Let us say that IV1 has the higher correlation with the DV and enters 
first. It “gets credit” for areas a and b. At the second step, IV2 and IV3 are compared, where IV2 has 
areas c and d available to add to prediction, and IV3 has areas e and d. At this point, IV3 contributes 
more strongly to R2 and enters the equation. IV2 is now assessed for whether or not its remaining 
area, c, contributes significantly to R2. If it does, IV2 enters the equation; otherwise, it does not 
despite the fact that it is almost as highly correlated with the DV as the variable that entered first. 
For this reason, interpretation of a statistical regression equation is hazardous unless the researcher 
takes special care to remember the message of the initial DV–  IV correlations.

There are actually three versions of statistical regression: forward selection, backward dele-
tion, and stepwise regression. In forward selection, the equation starts out empty and IVs are added 
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TABLE 5.6 Syntax and Selected IBM SPSS REGRESSION Output for Sequential Multiple 
Regression on Sample Data in Table 5.1

REGRESSION
/MISSING LISTWISE
/STATISTICS COEFF OUTS R ANOVA CHANGE
/CRITERIA=PIN(.05) POUT(.10)
/NOORIGIN
/DEPENDENT compr
/METHOD=ENTER qual grade /METHOD=ENTER motiv.

Regression

Model Summary

Change Statistics

Model R R Square
Adjusted 
R Square

Std. Error 
of the 

Estimate
R Square 
Change F Change df1 df2

Sig. F 
Change

1 .786a .618 .363 3.6059 .618 2.422 2 3 .236
2 .838b .702 .256 3.8961 .085 .570 1 2 .529

a. Predictors: (Constant), GRADE, QUAL
b. Predictors: (Constant), GRADE, QUAL, MOTIV

ANOVAc

Model
Sum of 
Squares df

Mean
Square F Sig.

1 Regression 62.992 2 31.496 2.422 .236a

Residual 39.008 3 13.003
Total 102.000 5

2 Regression 71.640 3 23.880 1.573 .411b

Residual 30.360 2 15.180
Total 102.000 5

a. Predictors: (Constant), GRADE, QUAL
b. Predictors: (Constant), GRADE, QUAL, MOTIV
c. Dependent Variable: COMPR

Coefficientsa

Unstandardized 
Coefficients

Standardized 
Coefficients

Model B Std. Error Beta t Sig.

1 (Constant) 1.084 4.441 .244 .823
    QUAL .351 .537 .375 .653 .560
    GRADE .472 .594 .456 .795 .485

2 (Constant) −4.722 9.066 −.521 .654
QUAL .272 .589 .291 .462 .690
GRADE .416 .646 .402 .644 .586
MOTIV .658 .872 .319 .755 .529

a. Dependent Variable: COMPR
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one at a time provided they meet the statistical criteria for entry. Once in the equation, an IV stays 
in. Bendel and Afifi (1977) recommend a liberal criterion for entry of predictors in forward regres-
sion. Important variables are less likely to be excluded from the model with a more liberal probabil-
ity level for entry of .15 to .20 rather than .05. In backward deletion, the equation starts out with all 
IVs entered and they are deleted one at a time if they do not contribute significantly to regression. 
Stepwise regression is a compromise between the two other procedures in which the equation starts 
out empty and IVs are added one at a time if they meet statistical criteria, but they may also be 
deleted at any step where they no longer contribute significantly to regression.

Statistical regression is typically used to develop a subset of IVs that is useful in predicting 
the DV, and to eliminate those IVs that do not provide additional prediction to the IVs already in the 
equation. Hence, statistical regression may have some utility if the only aim of the researcher is a 
prediction equation.

Even so, the sample from which the equation is drawn should be large and representative 
because statistical regression tends to capitalize on chance and overfit data. It capitalizes on chance 
because decisions about which variables to include are dependent on potentially minor differences 
in statistics computed from a single sample, where some variability in the statistics from sample to 
sample is expected. It overfits data because the equation derived from a single sample is too close to 
the sample and may not generalize well to the population.

An additional problem is that statistical analysis may not lead to the optimum solution in 
terms of R2. Several IVs considered together may increase R2, whereas any one of them considered 
alone does not. In simple statistical regression, none of the IVs enters. By specifying that IVs enter 
in blocks, one can set up combinations of sequential and statistical regression. A block of high-
priority IVs is set up to compete among themselves stepwise for order of entry; then a second block 
of IVs compete among themselves for order of entry. The regression is sequential over blocks, but 
statistical within blocks.

 Cross-  validation with a second sample is highly recommended for statistical regression and 
is accomplished through several steps. First, the data set is divided into two random samples; a 
recommended split is 80% for the statistical regression analysis and the remaining 20% as the cross-
validation sample (SYSTAT Software Inc., 2004, p. II-16). After the statistical regression on the 
larger subsample is run, predicted scores are created for the smaller cross-  validation sample using 
the regression coefficients produced by the analysis. Finally, predicted scores and actual scores are 
correlated to find R2 for the smaller sample. A large discrepancy between R2 for the smaller and 
larger samples indicates overfitting and lack of generalizability of the results of the analysis.

Tables 5.7 and 5.8 show cross-  validation with statistical regression through SAS. There 
is forward selection on an 80% sample of a hypothetical data set with the same variables as in 
Section 5.4, but with 100 cases, followed by cross-  validation using the remaining 20% of the 
cases. Syntax in Table 5.7 first creates the two random samples, with the 80% sample coded 1 
(SAMP80) and the 20% sample coded 0 (SAMP30). Then the 80% sample is selected for the 
statistical regression run.

The output shows that only MOTIV and GRADE enter the equation. QUAL does not reliably 
add to the prediction of COMPR over and above that produced by the other two IVs, when order 
of entry is chosen by a statistical criterion for this sample of 77 cases. (Note that the 80% random 
sample actually produced 77 rather than 80 cases.)

Syntax in Table 5.8 shows the creation of predicted scores for the 20% cross-  validation sample, 
followed by a request for a correlation between predicted (PREDCOMP) and actual (COMPR) scores 
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TABLE 5.7 Forward Statistical Regression on an 80% Subsample. 
Syntax and Selected SAS REG Output

data SASUSER.REGRESSX;
set SASUSER.CROSSVAL;

  samp = 0;
  if uniform(13068) < .80 then samp = 1;
run;
data SASUSER.SAMP80;

set SASUSER.REGRESSX;
  where samp = 1;
data SASUSER.SAMP20;

set SASUSER.REGRESSX;
  where samp = 0;
run;
proc reg data=SASUSER.SAMP80;

model COMPR= MOTIV QUAL GRADE/ selection= FORWARD;
run;

The REG Procedure
Model: MODEL1

Dependent Variable: COMPR

Number of Observations Read 77
Number of Observations Used 77

Forward Selection: Step 1

Variable GRADE Entered: R-Square = 0.5828 and C(p) = 52.7179

Analysis of Variance

Source DF
Sum of 

Squares
Mean

Square F Value Pr > F

Model 1 797.72241 797.72241 104.77 <.0001
Error 75 571.04564 7.61394
Corrected Total 76 1368.76805

Variable
Parameter
Estimate

Standard
Error Type II SS F Value Pr > F

Intercept 1.19240 0.95137 11.96056 1.57 0.2140
GRADE 0.79919 0.07808 797.72241 104.77 <.0001

Bounds on condition number: 1, 1

Forward Selection: Step 2

Variable MOTIV Entered: R-Square = 0.7568 and C(p) = 2.2839

(continued)
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for that sample. The prediction equation is taken from the last section of Table 5.7. The first two lines 
turn off the selection of the 80% sample and turn on the selected of the cross-  validation sample.

The correlation between predicted and actual scores is squared (R2 = .904172 = .81752) to 
compare it with R2 = .726 for the larger sample. In this case, the cross-  validation sample is better 
predicted by the regression equation than the sample that generated the equation. This is an unusual 
result, but one that would make a researcher breathe a sigh of relief after using statistical regression.

IBM SPSS REGRESSION provides statistical regression in a manner similar to that of 
sequential regression. However, STEPWISE is chosen as the METHOD, rather than ENTER.

TABLE 5.7 Continued

Analysis of Variance

Source DF
Sum of 

Squares
Mean

Square F Value Pr > F

Model 2 1035.89216 517.94608 115.14 <.0001
Error 74 332.87589 4.49832
Corrected Total    76 1368.76805

Variable
Parameter
 Estimate

Standard
Error Type II SS F Value Pr > F

Intercept  −5.86448 1.21462 104.86431 23.31 <.0001
MOTIV 0.78067 0.10729 238.16975 52.95 <.0001
GRADE 0.65712 0.06311 487.68516 108.41 <.0001

TABLE 5.8 Correlation Between Predicted and Actual Scores on Comprehension. 
Syntax and Selected SAS CORR Output

data SASUSER.PRED20;
set SASUSER.SAMP20

PREDCOMP = −5.86448 + 0.78067*MOTIV + 0.65712*GRADE
run;
proc corr data=SASUSER.PRED20 PEARSON;

var COMPR  PREDCOMP;
run;

The CORR Procedure
Pearson Correlation Coefficients, N = 23

Prob > |r| under HO: Rho=0

COMPR PREDCOMP

COMPR 1.00000 0.90417
<.0001

PREDCOMP 0.90417 1.00000
<.0001
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Another option to avoid overfitting is bootstrapping, available in IBM SPSS using a macro 
available when the pack is installed: oms_bootstrapping.sps. Instructions are available within 
the macro. Bootstrapping is a process by which statistics (e.g., regression weights) are generated 
over a very large number of replications, with samples drawn with replacement from a data set. 
For example, there might be 1,000 bootstrap samples of 6 cases drawn from the small-  sample data 
set of 6 cases. Each case may be drawn more than once, or not at all, because of replacement. In a 
given sample, for instance, case 1 might be drawn twice, case 2 drawn twice, case 3 drawn once, 
case 4 drawn once, and cases 5 and 6 not drawn. Descriptive statistics and histograms are then 
viewed for the requested statistics. For example, a 1,000-  replication bootstrap of the small-  sample 
data set yielded an average intercept of -4.74 and average B weights of 0.68, -0.12, and 1.07. Values 
for QUAL and GRADE are very different from the values of Section 5.4 for such a small sample.

At the very least, separate analyses of two halves of an available sample should be conducted 
to avoid overfitting, with conclusions limited to results that are consistent for both analyses.

On the other hand, statistical regression is a handy (and acceptable) procedure for determin-
ing which variables are associated with the difference between an outlier and the remaining cases, 
as shown in Sections 4.2.1 and 4.2.2. Here, there is no intent to generalize to any population—  use
of statistical regression is just to describe some characteristics of the sample.

5.5.4 Choosing Among Regression Strategies

To simply assess relationships among variables and answer the basic question of multiple correla-
tion, the method of choice is the standard multiple regression. However, standard multiple regres-
sion is atheoretical—  a shotgun approach. Reasons for using sequential regression are theoretical or 
for testing explicit hypotheses.

Sequential regression allows the researcher to control the advancement of the regression pro-
cess. Importance of IVs in the prediction equation is determined by the researcher according to 
logic or theory. Explicit hypotheses are tested about proportion of variance attributable to some IVs 
after variance due to IVs already in the equation is accounted for.

Although there are similarities in programs used and output produced for sequential and 
statistical regression, there are fundamental differences in the way that IVs enter the prediction 
equation and in the interpretations that can be made from the results. In sequential regression, the 
researcher controls entry of variables, whereas in statistical regression, statistics computed from 
sample data control order of entry. Statistical regression is, therefore, a model-  building rather than 
model-  testing procedure. As an exploratory technique, it may be useful for such purposes as elimi-
nating variables that are clearly superfluous in order to tighten up future research. However, clearly 
superfluous IVs will show up in any of the procedures. Also, results of statistical regression can be 
very misleading unless based on samples that are large and highly representative of the population 
of interest. When multicollinearity or singularity is present, statistical regression may be helpful in 
identifying multicollinear variables, as indicated in Chapter 4.

For the example of Section 5.4, in which performance on graduate comprehensive exam 
(COMPR) is predicted from professional motivation (MOTIV), qualifications for graduate training
(QUAL), and performance in graduate courses (GRADE), the differences among regression 
strategies might be phrased as follows. If standard multiple regression is used, two fundamental 
questions are asked: (1) What is the size of the overall relationship between COMPR and the set 
of IVs: MOTIV, QUAL, and GRADE? (2) How much of the relationship is contributed uniquely 
by each IV? If sequential regression is used, with QUAL and GRADE entered before MOTIV, 
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the question is: Does MOTIV significantly add to prediction of COMPR after differences among 
students in QUAL and GRADE have been statistically eliminated? If statistical regression is used, 
one asks: What is the best linear combination of IVs to predict the DV in this sample?

5.6 Some Important Issues

5.6.1 Importance of IVs

If the IVs are uncorrelated with each other, assessment of the contribution of each of them to mul-
tiple regression is straightforward. IVs with bigger correlations or higher standardized regression 
coefficients are more important to the solution than those with lower (absolute) values. (Because 
unstandardized regression coefficients are in a metric that depends on the metric of the original 
variables, their sizes are harder to interpret. A large regression coefficient for an IV with a low cor-
relation with the DV can also be misleading because the IV predicts the DV well only after another 
IV suppresses irrelevant variance, as shown in Section 5.6.4.)

If the IVs are correlated with each other, assessment of the importance of each of them to re-
gression is more ambiguous. The correlation between an IV and the DV reflects the variance shared 
with the DV, but some of that variance may be predictable from other IVs.

To get the most straightforward answer regarding the importance of an IV to regression, one 
needs to consider the type of regression it is, and both the full and unique relationship between the 
IV and the DV. This section reviews several of the issues to be considered when assessing the im-
portance of an IV to standard multiple, sequential, or statistical regression. In all cases, one needs to 
compare the total relationship of the IV with the DV, the unique relationship of the IV with the DV, 
and the correlations of the IVs with each other in order to get a complete picture of the function of 
an IV in regression. The total relationship of the IV with the DV (correlation) and the correlations 
of the IVs with each other are given in the correlation matrix. The unique contribution of an IV to 
predicting a DV is generally assessed by either partial or semipartial correlation.

For standard multiple and sequential regression, the relationships between correlation, partial 
correlation, and semipartial correlation are given in Figure 5.3 for a simple case of one DV and two 
IVs. In the figure, squared correlation, partial correlation, and semipartial correlation coefficients 
are defined as areas created by overlapping circles. Area a + b + c + d is the total area of the DV and 
reduces to a value of 1 in many equations. Area b is the segment of the variability of the DV that can 
be explained by either IV1 or IV2 and is the segment that creates the ambiguity. Notice that it is the 
denominators that change between squared semipartial and partial correlation.

In a partial correlation, the contribution of the other IVs is taken out of both the IV and the 
DV. In a semipartial correlation, the contribution of other IVs is taken out of only the IV. Thus, 
squared semipartial correlation expresses the unique contribution of the IV to the total variance 
of the DV. Squared semipartial correlation (sr2

i ) is the more useful measure of importance of 
an IV. The interpretation of sr2

i  differs, however, depending on the type of multiple regression 
employed.

5.6.1.1 Standard Multiple Regression

In standard multiple regression, sr2
i  for an IV is the amount by which R2 is reduced if that IV is 

deleted from the regression equation. That is, sr2
i  represents the unique contribution of the IV to R2

in that set of IVs.
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When the IVs are correlated, squared semipartial correlations do not necessarily sum to 
multiple R2. The sum of sr2

i  is usually smaller than R2 (although under some rather extreme circum-
stances, the sum can be larger than R2). When the sum is smaller, the difference between R2 and the 
sum of sr2

i  for all IVs represents shared variance, variance that is contributed to R2 by two or more 
IVs. It is rather common to find substantial R2 with sr2

i  for all IVs quite small.
Table 5.9 summarizes procedures for finding sr2

i  (and pr2
i ) for both standard multiple and 

sequential regression through IBM SPSS and SAS.
IBM SPSS and SAS provide versions of sr2

i  as part of their output. If you use IBM SPSS 
REGRESSION, sr2

i  is optionally available as Part Correlations by requesting STATISTICS = 
ZPP (part and partial correlations on the Statistics menu). SAS REG provides squared semipar-
tial correlations when SCORR2 is requested (from the parameter estimates menu: Print Type II 
squared semipartial correlations).

In all standard multiple-  regression programs, Fi (or ti is the significance test for sr2
i , pr2

i , Bi,
and bi as discussed in Section 5.6.2).

5.6.1.2 Sequential or Statistical Regression

In sequential and statistical regression, sr2
i  is interpreted as the amount of variance added to R2 by 

each IV at the point it enters the equation. The research question is, How much does this IV add to 
multiple R2 after IVs with higher priority have contributed their share to prediction of the DV? Thus, 

IV
2

DV

IV
1

bd

c

a

Standard Multiple Sequential

r i
2 IV1 (a�b ) / (a�b �c �d ) (a�b ) / (a�b �c �d )

IV2 (c�b ) / (a�b �c �d ) (c�b ) / (a�b �c �d )

sr i
2 IV1 a / (a�b �c �d ) (a�b ) / (a�b �c �d )

IV2 c / (a�b �c �d ) c / (a�b �c �d )

pr i
2 IV1 a / (a�d ) (a�b ) / (a�b �d )

IV2 c / (c�d ) c / (c�d )

FIGURE 5.3 Areas representing squared 
correlation, squared semipartial correlation, and 
squared partial correlation in standard multiple 

and sequential regression (where IV1 is given 
priority over IV2).
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the apparent importance of an IV is very likely to depend on its point of entry into the equation. In 
sequential and statistical regression, the sr2

i  do, indeed, sum to R2 (see Figure 5.2 to review this point).
As reviewed in Table 5.9, IBM SPSS REGRESSION provides squared semipartial correlations 

as part of the output for sequential and statistical regression when CHANGE statistics are requested.6

For IBM SPSS, sr2
i  is R Square Change for each IV in the Model Summary table (see Table 5.6).

SAS REG (for sequential regression) provides R2 for each step. You can calculate sr2
i  by sub-

traction between subsequent steps.

5.6.1.3 Commonality Analysis

A more fine-  grained way of dealing with importance of variables and interpretation of them is to 
partition and report various types of common as well as unique variances (Reichwein, Zientek, & 
Thompson, 2006). In Figure 5.3, for example, the partition would consist of a and c as unique vari-
ances and b as the common variance.

Syntax and selected output for commonality analysis for the small sample example is shown 
in Table 5.10. The first three regression analyses provide the unique variances (R2) for the three IVs. 

TABLE 5.9 Procedures for Finding sr2
i and pr2

i Through IBM SPSS and SAS for 
Standard Multiple and Sequential Regression

sr 2
i pr 2

i

Standard Multiple Regression 

IBM SPSS REGRESSION STATISTICS ZPP 
Part

STATISTICS ZPP 
Partial

SAS REG SCORR2 PCORR2

Sequential Regression 

IBM SPSS REGRESSION R Square Change in 
Model Summary table

Not available

SAS REG SCORR1 PCORR1

6If you request one of the statistical regression options in PROC REG, squared semipartial correlations will be printed out in 
a summary table as Partial R**2.

TABLE 5.10 IBM SPSS Syntax and Selected Output for Commonality Analysis

REGRESSION/VARIABLES = motiv qual grade compr
/DEPENDENT compr/METHOD=ENTER motiv.

Regression

Model Summary

Model R R Square
Adjusted 
R Square

Std. Error of 
the Estimate

1 .586a .344 .179 4.09140

a. Predictors: (Constant), motiv
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(continued)

Model R R Square
Adjusted 
R Square

Std. Error of 
the Estimate

1 .733a .537 .421 3.43588

a. Predictors: (Constant), qual

Model R R Square
Adjusted 
R Square

Std. Error of 
the Estimate

1 .750a .563 .454 3.33764

a. Predictors: (Constant), grade

Model R R Square
Adjusted 
R Square

Std. Error of 
the Estimate

1 .800a .641 .401 3.49534

a. Predictors: (Constant), qual, motiv

Model R R Square
Adjusted 
R Square

Std. Error of 
the Estimate

1 .819a .671 .451 3.34649

a. Predictors: (Constant), grade, motiv

Model R R Square
Adjusted 
R Square

Std. Error of 
the Estimate

1 .786a .618 .363 3.60591

a. Predictors: (Constant), grade, qual

TABLE 5.10 Continued

REGRESSION/VARIABLES = motiv qual grade compr
/DEPENDENT compr/METHOD=ENTER qual.

Regression

Model Summary

REGRESSION/VARIABLES = motiv qual grade compr   
/DEPENDENT compr/METHOD=ENTER grade.

Regression

Model Summary

REGRESSION/VARIABLES = motiv qual grade compr   
/DEPENDENT compr/METHOD=ENTER motiv qual.

Regression

Model Summary

REGRESSION /VARIABLES = motiv qual grade compr   
/DEPENDENT compr/METHOD=ENTER motiv grade.

Regression

Model Summary

REGRESSION/VARIABLES = motiv qual grade compr   
/DEPENDENT compr/METHOD=ENTER qual grade.

Regression

Model Summary
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These values could also be found squaring the results of a bivariate correlation analysis and 
are equivalent to sr2

i  in standard multiple regression. The next three analyses provide R2 for 
all combinations of two IVs, and the final analysis provides the R2 for the combination of all 
three IVs. This is identical to the R2 found in any multiple-  regression analysis that includes 
all IVs.

Interpretation is problematic with these nonsignificant results; however, Table 5.11 suggests 
that the correlations among the three IVs are so high that the overlap among all three variables 
accounts for about half the variance. Among all other sources, only the combination of qualifica-
tions and grades accounts for more than 10% of the variance in comprehensive exams. Reichwein, 
Zientek, & Thompson (2006) thoroughly discuss commonality analysis as well as other interesting 
topics in interpreting the results of multiple-  regression analyses.

TABLE 5.11 Equations for Commonality Analysis

Effects Equations

Unique MOTIV R2(MOTIV QUAL GRADE) - R2(QUAL GRADE) = .838 - .786 = .052

QUAL R2(MOTIV QUAL GRADE) - R2(MOTIV GRADE) = .838 - .819 = .019

GRADE R2(MOTIV QUAL GRADE) - R2(QUAL MOTIV) = .838 - .800 = .038

Common MOTIV QUAL R2(MOTIV GRADE) + R2(QUAL GRADE) - R2(GRADE) - R2(MOTIV 

QUAL GRADE) = .819 + .786 - .750 - .838 = .017

MOTIV GRADE R2(MOTIV QUAL) + R2(QUAL GRADE) - R2(QUAL) - R2(MOTIV QUAL 

GRADE) = .800 + .786 - .733 - .838 = .015 

QUAL GRADE R2(MOTIV QUAL) + R2(MOTIV GRADE) - R2(MOTIV) - R2(MOTIV QUAL 

GRADE) = .800 + .819 - .586 - .838 = .195

MOTIV QUAL 
GRADE

R2(MOTIV QUAL GRADE) + R2(MOTIV) + R2(QUAL) + R2(GRADE) -
R2(QUAL GRADE) - R2(MOTIV GRADE) - R2 (QUAL MOTIV) 

= .838 + .586 + .733 + .750 - .786 - .819 - .800 = .502

TABLE 5.10 Continued

REGRESSION/VARIABLES = motiv qual grade compr   
/DEPENDENT compr/METHOD=ENTER motiv qual grade.

Regression

Model Summary

Model R R Square
Adjusted 
R Square

Std. Error of 
the Estimate

1 .838a .702 .256 3.89615

a. Predictors: (Constant), grade, motiv qual
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5.6.2 Statistical Inference

This section covers significance tests for multiple regression and for regression coefficients for 
individual IVs. A test, Finc, is also described for evaluating the statistical significance of adding 
two or more IVs to a prediction equation in sequential or statistical analysis. Calculations of confi-
dence limits for unstandardized regression coefficients and procedures for comparing the predictive 
capacity of two different sets of IVs conclude the section.

When the researcher is using statistical regression as an exploratory tool, inferential proce-
dures of any kind may be inappropriate. Inferential procedures require that the researcher have a 
hypothesis to test. When statistical regression is used to snoop data, there may be no hypothesis, 
even though the statistics themselves are available.

5.6.2.1 Test for Multiple R

The overall inferential test in multiple regression is whether the sample of scores is drawn from a 
population in which multiple R is zero. This is equivalent to the null hypothesis that all correlations 
between DV and IVs and all regression coefficients are zero. With large N, the test of this hypothesis 
becomes trivial because it is almost certain to be rejected.

For standard multiple and sequential regression, the test of this hypothesis is presented in 
all computer outputs as analysis of variance. For sequential regression (and for standard multiple 
regression performed through stepwise programs), the analysis of variance table at the last step 
gives the relevant information. The F ratio for mean square regression over mean square residual 
tests the significance of multiple R. Mean square regression is the sum of squares for regression 
in Equation 5.2 divided by k degrees of freedom; mean square residual is the sum of squares for 
residual in the same equation divided by ( N - k - 1) degrees of freedom.

If you insist on inference in statistical regression, adjustments are necessary because all 
potential IVs do not enter the equation and the test for R2 is not distributed as F. Therefore, the 
analysis of variance table at the last step (or for the “best” equation) is misleading; the reported F is 
biased so that the F ratio actually reflects a Type I error rate in excess of a.

Wilkinson and Dallal (1981) have developed tables for critical R2 when forward selection 
procedures are used for statistical addition of variables and the selection stops when the F-to-enter
for the next variable falls below some preset value. Table C.5 (Appendix C) shows how large multi-
ple R2 must be to be statistically significant at .05 or .01 levels, given N, k, and F, where N is sample 
size, k is the number of potential IVs, and F is the minimum F-to-enter that is specified. F-to-enter
values that can be chosen are 2, 3, or 4.

For example, for a statistical regression in which there are 100 subjects, 20 potential IVs, 
and an F-to-enter value of 3 chosen for the solution, a multiple R2 of approximately .19 is required 
to be considered significantly different from zero at a = .05 (and approximately .26 at a = .01). 
Wilkinson and Dallal report that linear interpolation on N and k works well. However, they caution 
against extensive extrapolation for values of N and k beyond those given in the table. In sequential 
regression, this table is also used to find critical R2 values if a post hoc decision is made to terminate 
regression as soon as R2 reaches statistical significance, and if the appropriate F-to-enter is substi-
tuted for R2 probability value as the stopping rule.

Wilkinson and Dallal recommend forward selection procedures in favor of other selection 
methods (e.g., stepwise selection). They argue that, in practice, results using different procedures 
are not likely to be substantially different. Further, forward selection is computationally simple 
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and efficient, and allows straightforward specification of stopping rules. If you are able to specify 
in advance the number of variables you wish to select, an alternative set of tables is provided by 
Wilkinson (1979) to evaluate significance of multiple R2 with forward selection.

After looking at the data, you may wish to test the significance of some subsets of IVs in 
predicting the DV, where a subset may even consist of a single IV. If several similar post hoc tests 
are desired, Type I errors become increasingly likely. Larzelere and Mulaik (1977) recommend the 
following conservative F test to keep Type I error rate below alpha for all combinations of IVs:

F =
R2

s >k
(1 - R2

s)>(N - k - 1)
(5.9)

where R2
s  is the squared multiple (or bivariate) correlation to be tested for significance, and k is the 

total number of IVs. Obtained F is compared with tabled F, with k and (N - k - 1) degrees of 
freedom (Table C.3). That is, the critical value of F for each subset is the same as the critical value 
for the overall multiple R.

In the sample problem of Section 5.4, the bivariate correlation between MOTIV and COMPR
(from Table 5.2) is tested post hoc as follows:

F =
.586132>3

(1 - .586132)>(2)
= 0.349, with df = 3, 2

which is obviously not significant. (Note that results can be nonsensical with very small samples.)

5.6.2.2 Test of Regression Components

In standard multiple regression, for each IV, the same significance test evaluates Bi, bi pr2
i , and sr2

i .
The test is straightforward, and results are given in computer output. In IBM SPSS, ti tests the unique 
contribution of each IV and appears in the output section labeled Coefficients (see Table 5.4). Degrees 
of freedom are 1 and dfres, which appear in the accompanying ANOVA table. In SAS REG, Ti or Fi val-
ues are given for each IV, tested with dfres from the analysis of variance table (see Tables 5.5 and 5.7).

Recall the limitations of these significance tests. The significance tests are sensitive only to the 
unique variance an IV adds to R2. A very important IV that shares variance with another IV in the anal-
ysis may be nonsignificant, although the two IVs in combination are responsible in large part for the 
size of R2. An IV that is highly correlated with the DV, but has a nonsignificant regression coefficient, 
may have suffered just such a fate. For this reason, it is important to report and interpret riy in addition 
to Fi for each IV, as shown later in Table 5.17, summarizing the results of a complete example.

For statistical and sequential regression, assessment of contribution of variables is more com-
plex, and appropriate significance tests may not appear in the computer output. First, there is inherent 
ambiguity in the testing of each variable. In statistical and sequential regression, tests of sr2

i  are not the 
same as tests of the regression coefficients (Bi and bi). Regression coefficients are independent of order 
of entry of the IVs, whereas sr2

i  depend directly on order of entry. Because sr2
i  reflects “importance” as 

typically of interest in sequential or statistical regression, tests based on sr2
i  are discussed here.7

IBM SPSS and SAS provide significance tests for sr2
i  in summary tables. For IBM SPSS, 

the test is F Change—F ratio for change in R2—that is accompanied by a significance value, 

7For combined standard-  sequential regression, it might be desirable to use the “standard” method for all IVs simply to 
maintain consistency. If so, be sure to report that the F test is for regression coefficients.
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Sig F Change. If you use SAS REG, you need to calculate F for sr2
i  as found by subtraction 

(cf.  Section 5.6.1.2) using the following equation:

Fi =
sr2

i

(1 - R2)>dfres
(5.10)

The Fi for each IV is based on sr2
i  (the squared semipartial correlation), multiple R2 at the final 

step, and residual degrees of freedom from the analysis of variance table for the final step.

Note that these are incremental F ratios, Finc, because they test the incremental change in R2

as variables in each step are added to prediction.

5.6.2.3 Test of Added Subset of IVs

For sequential and statistical regression, one can test whether or not a block of two or more vari-
ables significantly increases R2 above the R2 predicted by a set of variables already in the equation.

Finc =
(R2

wi - R2
wo)>m

(1 - R2)>dfres
(5.11)

where Finc is the incremental F ratio; R2
wi is the multiple R2 achieved with the new block 

of IVs in the equation; R2
wo is the multiple R2 without the new block of IVs in the equa-

tion; m is the number of IVs in the new block; and dfres = (N - k - 1) is residual 
degrees of freedom in the final analysis of variance table.

Both R2
wi and R2

wo are found in the summary table of any program that produces one. The null 
hypothesis of no increase in R2 is tested as F with m and dfres degrees of freedom. If the null hypoth-
esis is rejected, the new block of IVs does significantly increase the explained variance.

Although this is a poor example as only one variable is in the new block, we can use the se-
quential example in Table 5.6 to test whether MOTIV adds significantly to the variance contributed 
by the first two variables to enter the equation, QUAL and GRADE.

Finc =
(.70235 - .61757)>1

(1 - .70235)>2 = 0.570 with df = 1, 2

Since only one variable was entered, this test is the same as F Change for Model 2 in Table 5.6 in 
the Model Summary output. Thus, Finc can be used when there is only one variable in the block, 
but the information is already provided in the output. Indeed, as noted previously, any test of a step 
in a sequential model is a form of Finc.

5.6.2.4 Confidence Limits Around B and Multiple R2

To estimate population values, confidence limits for unstandardized regression coefficients (Bi) are 
calculated. Standard errors of unstandardized regression coefficients, unstandardized regression 
coefficients, and the critical two-  tailed value of t for the desired confidence level (based on N - 2 
degrees of freedom, where N is the sample size) are used in Equation 5.12.



152 C H A P T E R  5

CLBi
= Bi { SEBi

(ta>2) (5.12)

The (1 -a) confidence limits for the unstandardized regression coefficient for the ith IV(CLBi
)

are the regression coefficient (Bi) plus or minus the standard error of the regression coefficient 
(SEBi

) times the critical value of t, with (N - 2) degrees of freedom at the desired level of a.

If 95% confidence limits are requested, they are given in IBM SPSS REGRESSION output 
in the segment of output titled Coefficients. With other output or when 99% confidence limits are 
desired, Equation 5.12 is used. Unstandardized regression coefficients and the standard errors of 
those coefficients appear in the sections labeled Coefficients or Parameter Estimates.

For the example in Table 5.4, the 95% confidence limits for GRADE with df = 4 are

CLBi
= 0.416 { 0.646(2.78) = 0.416 { 1.796 = -1.380 4 2.212

If the confidence interval contains zero, one retains the null hypothesis that the population regres-
sion coefficient is zero.

(a)

(b)

FIGURE 5.4 Confidence limits around R2 using Steiger and Fouladi’s 
(1992) software: (a) setup and (b) results.
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Confidence limits around R2 are also calculated to estimate population values. Steiger and 
Fouladi (1992) have provided a computer program R2 (included with data sets for this book) to find 
them. The Confidence Interval is chosen as the Option, and Maximize Accuracy is chosen as the 
Algorithm. Using the R2 value of .702, Figure 5.4(a) shows setup values of six observations, four 
variables (including three IVs plus the DV) and probability value of .95. As seen in Figure 5.4(b), the 
R2 program provides 95% confidence limits from .00 to .89. Once more, inclusion of zero suggests 
no statistically significant effect.

Software is also available in SAS and IBM SPSS to find confidence limits around R2 using 
values of the F ratio and degrees of freedom as input. These programs by Smithson (2003), 
also included with the data sets for this book, are demonstrated in Sections 6.6.2, 7.6.2, and 
elsewhere.

5.6.2.5 Comparing Two Sets of Predictors

It is sometimes of interest to know whether one set of IVs predicts a DV better than another set of 
IVs. For example, can ratings of current belly dancing ability be better predicted by personality tests 
or by past dance and musical training?

The procedure for finding out is fairly convoluted, but if you have a large sample and you are 
willing to develop a data file with a pair of predicted scores for each subject in your sample, a test 
for the significance of the difference between two “correlated correlations” (both correlations are 
based on the same sample and share a variable) is available (Steiger, 1980). (If sample size is small, 
nonindependence among predicted scores for cases can result in serious violation of the assump-
tions underlying the test.)

As suggested in Section 5.4.1, a multiple correlation can be thought of as a simple correlation 
between obtained DVs and predicted DVs, that is, R = ryy�. If there are two sets of predictors, Ya�

and Yb� (where, for example, Ya� is prediction from personality scores and Yb� is prediction from 
past training), a comparison of their relative effectiveness in predicting Y is made by testing for the 
significance of the difference between ryy� a and ryy� b. For simplicity, let’s call these rya and ryb.

To test the difference, we need to know the correlation between the predicted scores from set 
A (personality) and those from set B (training), that is, rya�yb� or, simplified, rab. This is where file 
manipulation procedures or hand entering become necessary. (IBM SPSS REGRESSION saves 
predicted scores to the data file on request, so that you may run multiple regressions for both sets of 
scores as IVs and save them to the same data file.)

The z test for the difference between rya and ryb is

Z* = (zya - zyb)A
N - 3

2 - 2sya, yb
(5.13)

where N is, as usual, the sample size,

zya = (1>2) ln a 1 + rya

1 - rya
b and zyb = (1>2) ln a 1 + ryb

1 - ryb
b

and

sya, yb =
[(rab)(1 - 2r 2)] - [(1>2)(r 2)(1 - 2r 2 - r 2

ab)]

(1 - r 2)2

where r = (1>2)(rya + ryb).
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Hence, for the example, if the correlation between currently measured ability and ability as 
predicted from personality scores is .40 (Ra = rya = .40), the correlation between currently mea-
sured ability and ability as predicted from past training is .50 (and the correlation between ability 
as predicted from personality and ability as predicted from training is .10 (rab = .10) and N = 103,

r = (1>2)(.40 + .50) = .45

sya,yb =
[(.10)(1 - 2(.45)2)] - [(1>2)(.452)(1 - 2(.452) - .102)]

(1 - .452)2 = .0004226

Zya = (1>2) ln a 1 + .40

1 - .40
b = .42365

Zyb = (1>2) ln a 1 + .50

1 - .50
b = .54931

and, finally,

Z* = (.42365 - .54931)A
103 - 3

2 - .000845
= -0.88874

Since Z* is within the critical values of ;1.96 for a two-  tailed test, there is no statistically signifi-
cant difference between multiple R when predicting Y from Ya� or Yb�. That is, there is no statistically sig-
nificant difference in predicting current belly dancing ability from past training versus personality tests.

Steiger (1980) and Steiger and Browne (1984) present additional significance tests for situa-
tions where both the DV and the IVs are different, but from the same sample, and for comparing the 
difference between any two correlations within a correlation matrix.

5.6.3 Adjustment of R2

Just as simple rxy from a sample is expected to fluctuate around the value of the correlation in the popu-
lation, sample R is expected to fluctuate around the population value. But multiple R never takes on a 
negative value, so all chance fluctuations are in the positive direction and add to the magnitude of R. As 
in any sampling distribution, the magnitude of chance fluctuations is larger with smaller sample sizes. 
Therefore, R tends to be overestimated, and the smaller the sample the greater the overestimation. For this 
reason, in estimating the population value of R, adjustment is made for expected inflation in sample R.

All the programs discussed in Section 5.8 routinely provide adjusted R2. Wherry (1931) pro-
vides a simple equation for this adjustment, which is called R

~2.

R�2 = 1 - (1 - R2)a N - 1

N - k - 1
b (5.14)

where N = sample size
   k = number of IVs
    R2  = squared multiple correlation

For the small sample problem,

R�2 = 1 - (1 - .70235)(5>2) = .25588

as printed out for IBM SPSS, Table 5.4.
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For statistical regression, Cohen et al. (2003) recommend k based on the number of IVs con-
sidered for inclusion, rather than on the number of IVs selected by the program. They also suggest 
the convention of reporting

�
R2 = 0, when the value spuriously becomes negative.

When the number of subjects is 60 or fewer and there are numerous IVs (say, more than 20), 
Equation 5.15 may provide inadequate adjustment for R2. The adjusted value may be off by as much 
as .10 (Cattin, 1980). In these situations of small N and numerous IVs,

R2
s =

(N - k - 3)R�4 + R�2

(N - 2k - 2)R�2 + k
(5.15)

Equation 5.16 (Browne, 1975) provides further adjustment:

R�4 = (R�2)2 -
2k (1 - R�2)2

(N - 1)(N - k + 1)
(5.16)

The adjusted R2 for small samples is a function of the number of cases, N, the number 
of IVs, k, and the

�
R2 value as found from Equation 5.15.

When N < 50, Cattin (1980) provides an equation that produces even less bias but requires far 
more computation.

5.6.4 Suppressor Variables

Sometimes you may find an IV that is useful in predicting the DV and in increasing the multiple R2

by virtue of its correlations with other IVs. This IV is called a suppressor variable because it sup-
presses variance that is irrelevant to the prediction of the DV. Thus, a suppressor variable is defined 
not by its own regression weight, but by its enhancement of the effects of other variables in the set 
of IVs. It is a suppressor for only those variables whose regression weights are increased (Conger, 
1974). In a full discussion of suppressor variables, Cohen et al. (2003) describe and provide 
examples of several varieties of suppression.

For instance, one might administer as IVs two paper-  and-  pencil tests, a test of ability to list 
dance patterns and a test of test-  taking ability. By itself, the first test poorly predicts the DV (say, 
belly dancing ability), and the second test does not predict the DV at all. However, in the context of 
the test of test taking, the relationship between the ability to list dance patterns and the belly dancing 
ability improves. The second IV serves as a suppressor variable because by removing variance due 
to ability in taking tests, prediction of the DV by the first IV is enhanced.

The foregoing is an example of classical suppression (called traditional by Conger, 1974). 
Another type is cooperative or reciprocal suppression, in which IVs correlate positively with the DV 
and correlate negatively with each other (or vice versa). Both IVs end up with higher correlations 
with the DV after each IV is adjusted for the other. For example, the ability to list dance patterns and 
prior musical training might be negatively correlated, although both predict belly dancing ability to 
some extent. In the context of both the predictors, belly dancing ability is predicted more fully than 
expected on the basis of adding the separate predictive ability of the two IVs.

A third type of suppression occurs when the sign of a regression weight of an IV is the 
opposite of what would be expected on the basis of its correlation with the DV. This is negative 
or net suppression. Prediction still is enhanced because the magnitude of the effect of the IV is 
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greater (although the sign is opposite) in the presence of the suppressor. Suppose that belly dance 
ability is positively predicted by both knowledge of dance steps and previous dance training, and 
that the IVs are positively correlated. The regression weight of previous dance training might turn 
out to be negative, but stronger than would be expected on the basis of its bivariate correlation 
with belly dance ability. Thus, knowledge of dance steps is a negative suppressor for previous 
dance training.

In the output, the presence of a suppressor variable is identified by the pattern of regression coef-
ficients and correlations of each IV with the DV. Compare the simple correlation between each IV and 
the DV in the correlation matrix with the standardized regression coefficient (beta weight) for the IV. 
If the beta weight is significantly different from zero, either one of the following two conditions signals 
the presence of a suppressor variable: (1) the absolute value of the simple correlation between IV and 
DV is substantially smaller than the beta weight for the IV, or (2) the simple correlation and beta weight 
have opposite signs. There is as yet no statistical test available to assess how different a regression 
weight and a simple correlation need to be to identify suppression (Smith, Ager, & Williams, 1992).

It is often difficult to identify which variable is doing the suppression if there are more than 
two or three IVs. If you know that a suppressor variable is present, you need to search for it among 
the regression coefficients and correlations of the IVs. The suppressor is among the ones that are 
congruent, where the correlation with the DV and the regression coefficients are consistent in size 
and direction. One strategy is to systematically leave each congruent IV out of the equation and 
examine the changes in regression coefficients for the IV(s) with inconsistent regression coefficients 
and correlations in the original equation.

If a suppressor variable is identified, it is properly interpreted as a variable that enhances the 
importance of other IVs by virtue of suppression of irrelevant variance in them. If the suppressor is 
not identified, Tzelgov and Henik (1991) suggest an approach in which the focus is on suppression 
situations rather than on specific suppressor variables.

5.6.5 Regression Approach to ANOVA

Analysis of variance is a part of the general linear model, as is regression. Indeed, ANOVA can be 
viewed as a form of multiple regression in which the IVs are levels of discrete variables rather than 
the more usual continuous variables of regression. This approach is briefly reviewed here. Interested 
readers are referred to Tabachnick and Fidell (2007) for a fuller description and demonstrations of 
the regression approach to a variety of ANOVA models.

Chapter 3 reviews the traditional approach to the calculation of sums of squares for analysis 
of variance. The regression approach to calculating the same sums of squares involves creating a 
variable for each df of the IVs that separates the levels of IVs. For example, a one-  way between-
subjects ANOVA with two levels requires only one variable, X, to separate its levels. If contrast 
coding is used, cases in a1 are coded as 1 and cases in a2 as -1 as shown in Table 5.12. (There are 
several other forms of coding, but for many applications, contrast coding works best.)

When a column for DV scores, Y, is added, the bivariate correlation between X and Y, the 
intercept, and the regression coefficient, B can be calculated as per Equations 3.31 and 3.32. Thus, 
the data set fits within the model of bivariate regression (Equation 3.30).

To convert this to ANOVA, total sum of squares (equivalent to SStotal of Equation 3.9) is 
calculated for Y using Equation 3.5, where Y  is the grand mean of the DV column. Sum of squares 
for regression (effect of A)8 and residual (error) are also calculated and they correspond to the 

8A here refers to the symbol for an IV in ANOVA, not the intercept as in regression.
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SSbg and SSwg of Equation 3.10.9 Degrees of freedom for A is the number of X columns needed 
to code the levels of A (1 in this example). Degrees of freedom total is the number of cases minus 
1 (6 - 1 = 5 here). And degrees of freedom for error is the difference between the other two df 
(5 - 1 = 4 here). Mean squares and the F ratio are found in the usual manner.

Additional levels of A make the coding more interesting because more X columns are needed 
to separate the levels of A and the problem moves from bivariate to multiple regression. For example, 
with three levels of A and contrast coding, you need two X columns, as shown in Table 5.13.

The X1 column codes the difference between a1 and a2 with all cases in a3 assigned a code 
of zero. The X2 column combines a1 and a2 (by giving all cases in both levels the same code of 1) 
against a3 (with a code of -2).

In addition to a vector for Y, then, you have two X vectors, and a data set appropriate for mul-
tiple regression (Equation 5.1). Total sum of squares is calculated in the usual way, ignoring group 
membership. Separate sums of squares are calculated for X1 and X2 and are added together to form 

9Details for calculating ANOVA sums of squares using the regression approach are provided by Tabachnick and Fidell (2007).

TABLE 5.12 Contrast Coding for a
One-Way Between-Subjects ANOVA,
in Which A Has Two Levels

Level
of A Case X

Y
(DV Scores)

S1   1

a1 S2   1

S3   1

S4 -1

a2 S5 -1

S6 -1

TABLE 5.13 Contrast Coding for a One-Way
Between-Subjects ANOVA, in Which A Has Three Levels

Level
of A Case X1 X2

Y
(DV Scores)

S1 1 1

a1 S2 1 1

S3 1 1

S4 -1 1

a2 S5 -1 1

S6 -1 1

S7 0 -2

a3 S8 0 -2

S9 0 -2
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SSA (as long as orthogonal coding is used—  Section 3.2.6.2—  and there are equal sample sizes in 
each cell). Sum of squares for error is found by subtraction, and mean squares and the F ratio for the 
omnibus effect of A are found in the usual manner.

The regression approach is especially handy when orthogonal comparisons are desired, 
because those are the codes in the X columns. The difference between this procedure and the tradi-
tional approach to specific comparisons is that the weighting coefficients are applied to each case 
rather than to group means. The sums of squares for the X1 and X2 columns can be evaluated sepa-
rately to test the comparisons represented in those columns.

As the ANOVA problem grows, the number of columns needed to code for various IVs and 
their interactions10 also grows, as does the complexity of the multiple regression, but the general 
principles remain the same. In several situations, the regression approach to ANOVA is easier to 
understand, if not compute, than the traditional approach. This fascinating topic is explored in great 
(excruciating?) detail in Tabachnick and Fidell (2007).

5.6.6  Centering When Interactions and Powers of IVs 
Are Included

Interactions between discrete IVs are common and are discussed in any standard ANOVA text. 
Interactions between continuous IVs are less common, but are of interest if we want to test whether the 
regression coefficient or importance of one IV (X1) varies over the range of another IV (X2). If so, X2 is 
said to moderate the relationship between X1 and the DV. For example, is the importance of education in 
predicting occupational prestige the same over the range of income? If there is interaction, the regression 
coefficient (B) for education in the regression equation depends on income. A different regression coef-
ficient for education is needed for different incomes. Think about what the interaction would look like 
if income and education were discrete variables. If income has three levels (low, middle, and high) and 
so does education (high school grad, college grad, postgrad degree), you could plot a separate line for 
education at each level of income (or vice versa) and each line would have a different slope. The same 
plot could be generated for continuous variables, except that distinct values for income must be used.

When you want to include interactions of IVs or power of IVs in the prediction equation, 
they can cause problems of multicollinearity unless they have been centered: converted to deviation 
scores so that each variable has a mean of zero (Aiken & West, 1991). Note that centering does not 
require that scores be standardized, because it is not necessary to divide the score’s deviation from 
its mean by its standard deviation. Centering an IV does not affect its simple correlation with other 
variables, but it does affect regression coefficients for interactions or powers of IVs included in the 
regression equation. (There is no advantage to centering the DV.)

Recall from Chapter 4 that computational problems arise when IVs are highly correlated. If the IVs 
with interactions are not centered, their product (as well as higher-  order polynomial terms such as X2

1) is 
highly correlated with the component IVs. That is, X1X2 is highly correlated with both X1 and with X2;
X2

1 is also highly correlated with X1. Note that the problem with multicollinearity in this case is strictly 
statistical; the logical problems sometimes associated with multicollinearity among supposedly different 
predictors are not at issue. In the case of interaction between IVs or powers of an IV, multicollinearity 
is caused by the measurement scales of the component IVs and can be ameliorated by centering them.

Analyses with centered variables lead to the same unstandardized regression coefficients for 
simple terms in the equation (e.g., B1 for X1 and B2 for X2 as when uncentered). The significance 

10Problems in interpreting parameter estimates may occur if interactions are listed in the regression equation before main effects.
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test for the interaction also is the same, although the unstandardized regression coefficient is not 
(e.g., B3 for X1X2). However, the standardized regression coefficients (b) are different for all effects. 
If a standardized solution is desired, the strategy suggested by Friedrich (1982) is to convert all 
scores to z-scores, including the DV, and apply the usual solution. The computer output column 
showing “unstandardized” regression coefficients (Parameter Estimate, Coefficient, B)
actually shows standardized regressions coefficients, b. Ignore any output referring to standardized 
regression coefficients. However, the intercept for the standardized solution for centered data is not 
necessarily zero, as it always is for noncentered data.

When interaction terms are statistically significant, plots are useful for interpretation. Plots 
are generated by solving the regression equation at chosen levels of X2, typically high, medium, and 
low levels. In the absence of theoretical reasons for choice of levels, Cohen et al. (2003) suggest 
levels corresponding to the mean of X2, one standard deviation above, and one standard deviation 
below the mean as the medium, high, and low levels, respectively. Then, for each slope, substitute 
the chosen value of X2 in the rearranged regression equation:

Y� = (A + B2X2) + (B1 + B3X2)X1 (5.17)

where B3 is the regression coefficient for the interaction.
Suppose, for example, that A = 2, B1 = 3, B2 = 3.5, B3 = 4, and the X2 value at one stan-

dard deviation below the mean is -2.5. The regression line for the DV at the low value of X2 is

Y� = 32 + (3.5)(-2.5)4 + 33 + (4)(-2.5)4X1

= -6.75 - 7.00X1

If X2 at one standard deviation above the mean is 2.5 and the regression line for the DV at the high 
value of X2 is

Y� = 32 + (3.5)(2.5)4 + 33 + (4)(2.5)4X1

= 10.75 + 13.00X1

Figure 5.5 is the resulting plot. Each regression equation is solved for two values of X1 within 
a reasonable range of values and the resulting DV values plotted. For this example, the very simplest
are chosen: X1 = 1 and X1 = -1. For the low value of X2 (-2.5) then, Y� = 0.25 when X1 = -1
and Y�= -13.75 when X1 = 1. For the high value of X2 (2.5), Y�= -2.25 when X1 = -1 and 
Y = 23.75 when X1 = 1.

The finding of a significant interaction in multiple regression often is followed up by a simple 
effects analysis, just as it is in ANOVA (cf. Chapter 8). In multiple regression, this means that the 
relationship between Y and X1 is tested separately at the chosen levels of X2. Aiken and West (1991) 
call this a simple slope analysis and provide techniques for testing the significance of each of the 
slopes, both as planned and post hoc comparisons.

Aiken and West (1991) provide a wealth of information about interactions among continuous 
variables, including higher-  order interactions, relationships taken to higher-  order powers, and dealing 
with interactions between discrete and continuous variables. Their book is highly recommended if 
you plan to do serious work with interactions in multiple regression. Alternatively, Holmbeck (1997) 
suggests the use of structural equation modeling (the topic of Chapter 14) when interactions between 
continuous variables (and presumably their powers) are included and sample size is large.
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5.6.7 Mediation in Causal Sequence

If you have a hypothetical causal sequence of three (or more) variables, the middle variable is 
considered a mediator (indirect effect) that represents at least part of the chain of events leading 
to changes in the DV. For example, there is a relationship between gender and number of visits 
to health care professionals, but what mechanism underlies the relationship? You might propose 
that the linkage is through some aspect of personality. That is, you might hypothesize that gender 
“causes” some differences in personality which, in turn, “cause” women to make more visits to 
health care professionals. Gender, personality, and visits are in causal sequence, with gender the IV, 
personality the mediator, and visits the DV.

As seen in Figure 5.6, the relationship between the IV and the DV is called the total effect.
The direct effect is the relationship between the IV and the DV after “controlling for” the media-
tor. According to Baron and Kenny (1986) a variable is confirmed as a mediator if (1) there is a 
significant relationship between the IV and the DV, (2) there is a significant relationship between 
the IV and the mediator, (3) the mediator still predicts the DV after controlling for the IV, and 
(4) the relationship between the IV and the DV is reduced when the mediator is in the equation. 
If the relationship between the IV and the DV goes to zero when the mediator is in the equation, 
mediation is said to be perfect (or full, or complete, Figure 5.6(b)); if the relationship is diminished, 
but not to zero, mediation is said to be partial (Figure 5.6(c)).

In the example, personality is a mediator if there is a relationship between gender and visits, 
there is a relationship between gender and personality, personality predicts visits even after control-
ling for gender, and the relationship between gender and visits is smaller when personality is in the 
equation. If the relationship between gender and visits is plausibly zero when personality is in the 
equation, the mediation is perfect. If the relationship is smaller, but not zero, mediation is partial. In 
this example, you might expect the relationship to be reduced, but not to zero, due to childbearing.

Note that the three variables (the IV, the mediator, and the DV) are hypothesized to occur 
in a causal sequence. In the example, gender is presumed to “cause” personality, which, in turn, 
“causes” visits to health care professionals. There are other types of relationships between three 
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variables (e.g., interaction, Section 5.6.6) that do not involve a sequence of causal relationships. 
Note also that this discussion is of simple mediation with three variables. As seen in Chapter 14, 
there are many other forms of mediation. For example, there may be more than one mediator in a 
sequence, or mediators may be operating in parallel instead of in sequence. Further, in SEM, media-
tors may be directly measured or latent.

Sobel (1982), among others, presents a method for testing the significance of a simple 
mediator by testing the difference between the total effect and the direct effect. In the example, the 
mediating effects of personality are tested as the difference between the relationship of gender and 
visits with and without consideration of personality. If adding personality to the equation does not 
reduce the relationship between gender and visits, personality is not a mediator of the relationship. 
The Sobel method requires just one significance test for mediation rather than several as proposed 
by Baron and Kenny and is thus less susceptible to family-  wise alpha errors. Preacher and Hayes
(2004) provide both IBM SPSS and SAS macros for following the Baron and Kenny procedure and 
for formally testing mediation as recommended by Sobel. They also discuss the assumption of the 
formal test (normality of sampling distribution) and bootstrapping methods for circumventing it. 
Tests of indirect effects in SEM are demonstrated in Section 14.6.2.

5.7 Complete Examples of Regression Analysis

To illustrate applications of regression analysis, variables are chosen from among those measured 
in the research described in Appendix B, Section B.1. Two analyses are reported here, both with 
number of visits to health professionals (TIMEDRS) as the DV and both using the IBM SPSS 
REGRESSION program. Files are REGRESS.*.

The first example is a standard multiple regression between the DV and number of physical 
health symptoms (PHYHEAL), number of mental health symptoms (MENHEAL), and stress from 

IV DV

Total effect

(a) No mediation

IV DV

Mediator

(b) Perfect mediation

IV DVDirect effect

Mediator

(c) Partial mediation

FIGURE 5.6 Simple mediation.
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acute life changes (STRESS). From this analysis, one can assess the degree of relationship between 
the DV and the IVs, the proportion of variance in the DV predicted by regression, and the relative 
importance of the various IVs to the solution.

The second example demonstrates sequential regression with the same DV and the IVs. The 
first step of the analysis is the entry of PHYHEAL to determine how much variance in number of 
visits to health professionals can be accounted for by differences in physical health. The second 
step is the entry of STRESS to determine if there is a significant increase in R2 when differences in 
stress are added to the equation. The final step is the entry of MENHEAL to determine if differences 
in mental health are related to number of visits to health professionals after differences in physical 
health and stress are statistically accounted for.

5.7.1 Evaluation of Assumptions

Since both analyses use the same variables, this screening is appropriate for both.

5.7.1.1 Ratio of Cases to IVs

With 465 respondents and 3 IVs, the number of cases is well above the minimum requirement of 
107 (104 + 3) for testing individual predictors in standard multiple regression. There are no missing 
data.

5.7.1.2 Normality, Linearity, Homoscedasticity, and Independence of Residuals

We choose for didactic purposes to conduct preliminary screening through residuals. The initial run 
through IBM SPSS REGRESSION uses untransformed variables in a standard multiple regression 
to produce the scatterplot of residuals against predicted DV scores that appears in Figure 5.7.

Notice the execrable overall shape of the scatterplot that indicates violation of many of the 
assumptions of regression. Comparison of Figure 5.7 with Figure 5.1(a) (in Section 5.3.2.4) sug-
gests further analysis of the distributions of the variables. (It was noticed in passing, although we 
tried not to look, that R2 for this analysis was significant, but only .22.)

IBM SPSS EXPLORE is used to examine the distributions of the variables, as shown in 
Table 5.14. All the variables have significant positive skewness (see Chapter 4), which explains, 
at least in part, the problems in the residuals scatterplot. Logarithmic and square root transforma-
tions are applied as appropriate, and the transformed distributions checked once again for skew-
ness. Thus, TIMEDRS and PHYHEAL (with logarithmic transformations) become LTIMEDRS 
and LPHYHEAL, whereas STRESS (with a square root transformation) becomes SSTRESS.11 In 
the case of MENHEAL, application of the milder square root transformation makes the variable 
significantly negatively skewed, so no transformation is undertaken.

Table 5.15 shows output from FREQUENCIES for one of the transformed variables, 
LTIMEDRS, the worst prior to transformation. Transformations similarly reduce skewness in the 
other two transformed variables.

The residuals scatterplot from IBM SPSS REGRESSION following regression with the trans-
formed variables appears as Figure 5.8. Notice that, although the scatterplot is still not perfectly 
rectangular, its shape is considerably improved over that in Figure 5.7.

11Note the DV (TIMEDRS) is transformed to meet the assumptions of multiple regression. Transformation of the IVs is 
undertaken to enhance prediction.
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Regression Standardized Predicted Value
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REGRESSION
/MISSING LISTWISE
/STATISTICS COEFF OUTS R ANOVA CHANGE
/CRITERIA=PIN(.05) POUT(.10)
/NOORIGIN
/DEPENDENT timedrs
/METHOD=ENTER phyheal menheal stress
/SCATTERPLOT=(*ZRESID, *ZPRED).

FIGURE 5.7 IBM SPSS REGRESSION syntax and residuals Scatterplot 
for original variables.

TABLE 5.14 Syntax and Output for Examining Distributions of Variables Through 
IBM SPSS EXPLORE

EXAMINE
  VARIABLES=timedrs phyheal menheal stress
  /PLOT BOXPLOT HISTOGRAM NPPLOT

/COMPARE GROUP
  /STATISTICS DESCRIPTIVES EXTREME

/CINTERVAL 95
/MISSING LISTWISE
/NOTOTAL.

(continued)
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Descriptives

Statistic Std. Error

Visits to health 
professionals

Mean
95% Confidence Lower Bound

7.90
6.90

.508

Interval for Mean Upper Bound 8.90

5% Trimmed Mean 6.20
Median 4.00
Variance 119.870
Std. Deviation 10.948
Minimum 0
Maximum 81
Range 81
Interquartile Range 8
Skewness 3.248 .113
Kurtosis 13.101 .226

Physical health 
symptoms

Mean
95% Confidence Lower Bound

4.97
4.75

.111

Interval for Mean Upper Bound 5.19

5% Trimmed Mean 4.79
Median 5.00
Variance 5.704
Std. Deviation 2.388
Minimum 2
Maximum 15
Range 13
Interquartile Range 3
Skewness 1.031 .113
Kurtosis 1.124 .226

Mental health 
symptoms

Mean
95% Confidence Lower Bound

6.12
5.74

.194

Interval for Mean Upper Bound 6.50

5% Trimmed Mean 5.93
Median 6.00
Variance 17.586
Std. Deviation 4.194
Minimum 0
Maximum 18
Range 18
Interquartile Range 6
Skewness .602 .113
Kurtosis −.292 .226

TABLE 5.14 Continued
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Descriptives

Statistic Std. Error

Stressful life 
events

Mean
95% Confidence Lower Bound

204.22
191.84

6.297

Interval for Mean Upper Bound 216.59
5% Trimmed Mean 195.60
Median 178.00
Variance 18439.662
Std. Deviation 135.793
Minimum 0
Maximum 920
Range 920
Interquartile Range 180
Skewness 1.043 .113
Kurtosis 1.801 .226

Extreme Values

Case Number Value

Visits to health professionals Highest 1
2

405
290

81
75

3 40 60
4 168 60
5 249 58

Lowest 1 437 0
2 435 0
3 428 0
4 385 0
5 376 0a

Physical health symptoms Highest 1
2

277
373

15
14

3 381 13
4 391 13
5 64 12b

Lowest 1 454 2
2 449 2
3 440 2
4 419 2
5 418 2c

Mental health symptoms Highest 1
2

52
103

18
18

3 113 18
4 144 17
5 198 17

TABLE 5.14 Continued

(continued)
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Extreme Values

Case Number Value

Lowest 1 462 0
2 454 0
3 352 0
4 344 0
5 340 0a

Stressful life events Highest 1
2

403
405

920
731

3 444 643
4 195 597
5 304 594

Lowest 1 446 0
2 401 0
3 387 0
4 339 0
5 328 0a

a. Only a partial list of cases with the value 0 are shown in the table of lower extremes.
b. Only a partial list of cases with the value 12 are shown in the table of upper extremes.
c. Only a partial list of cases with the value 2 are shown in the table of lower extremes.

TABLE 5.14 Continued
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5.7.1.3 Outliers

Univariate outliers in the DV and in the IVs are sought using output from Table 5.14. The high-
est values in the histograms appear disconnected from the next highest scores for TIMEDRS and 
STRESS; from the table of Extreme Values, the two highest values for TIMEDRS (81 and 75) 
have z-scores of 6.68 and 6.13, respectively. The three highest values for STRESS (920, 731, and 
643) have z-scores of 5.27, 3.88, and 3.23, respectively. The highest value for PHYHEAL (15) has a 
z-score of 4.20, but it does not appear disconnected from the rest of the distribution. Because there 
is no reason not to, the decision is to transform TIMEDRS and STRESS because of the presence of 
outliers and PHYHEAL because of failure of normality.

Once variables are transformed, the highest scores for LTIMEDRS (see Table 5.15), 
LPHYHEAL, and SSTRESS (not shown) no longer appear disconnected from the rest of their dis-
tributions; the z-scores associated with the highest scores on STRESS are now 3.41, 2.58, and 2.81, 
respectively. In a sample of this size, these values seem reasonable.

Multivariate outliers are sought using the transformed IVs as part of an IBM SPSS 
REGRESSION run, in which the Mahalanobis distance of each case to the centroid of all cases is 
computed. The ten cases with the largest distance are printed (see Table 5.16). Mahalanobis distance 
is distributed as a chi-  square (x2) variable, with degrees of freedom equal to the number of IVs. To 
determine which cases are multivariate outliers, one looks up critical x2 at the desired alpha level 

TABLE 5.15 Syntax and Output for Examining Distribution of Transformed 
Variable Through IBM SPSS FREQUENCIES

FREQUENCIES
  VARIABLES=ltimedrs/
  /STATISTICS=STDDEV VARIANCE MINIMUM MAXIMUM MEAN SKEWNESS SESKEW
  KURTOSIS
  SEKURT
  /HISTOGRAM NORMAL
  /ORDER = ANALYSIS.

Statistics

ltimedrs

N Valid 465
Missing 0

Mean .7413
Median .6990
Std. Deviation .41525
Skewness .228
Std. Error of 
Skewness

.113

Kurtosis −.177
Std. Error of 
Kurtosis

.226

Minimum .00
Maximum 1.91

Histogram

ltimedrs

70

40

50

60

30

20

10

0

Fr
eq

ue
nc

y

Mean = 0.7413
Std. Dev. = 0.41525
N = 465

0.00 0.50 1.00 1.50 2.00



168 C H A P T E R  5

(Table C.4). In this case, critical x2 at a = .001 for 3 df is 16.266. Any case with a value larger than 
16.266 in the Statistic column of the Outlier Statistics table is a multivariate outlier among the IVs.

None of the cases has a value in excess of 16.266. (If outliers are found, the procedures 
detailed in Chapter 4 are followed to reduce their influence.)

Note that Figure 5.8 shows no outliers in the solution; none of the standardized residuals 
exceeds 3.29.

5.7.1.4 Multicollinearity and Singularity

None of the tolerances (1 - SMC) listed in Table 5.16 approaches zero. Collinearity diagnos-
tics indicate no cause for concern using the criteria of Section 4.1.7. The REGRESSION run of 
Table 5.17 additionally resolves doubts about possible multicollinearity and singularity among 

TABLE 5.16 Output from IBM SPSS REGRESSION Showing Multivariate Outliers and Collinearity 
Diagnostics. See Figure 5.8 for Syntax.

Collinearity Diagnosticsa

Variance Proportions

Model Dimension Eigenvalue
Condition 

Index (Constant) Iphyheal

Mental 
health

symptoms sstress

1 1 3.685 1.000 .00 .00 .01 .01
2 .201 4.286 .06 .01 .80 .03
3 .076 6.971 .07 .25 .00 .85
4 .039 9.747 .87 .74 .19 .11

a. Dependent Variable: LTIMEDRS

Outlier Statisticsa

Case 
Number Statistic

Mahal. Distance 1 403 14.135
2 125 11.649
3 198 10.569
4 52 10.548
5 446 10.225
6 159 9.351
7 33 8.628
8 280 8.587
9 405 8.431

10 113 8.353

a. Dependent Variable: LTIMEDRS
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Regression Standardized Predicted Value
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FIGURE 5.8 Residuals scatterplot following regression with transformed variables. 
Output from IBM SPSS REGRESSION.

the transformed IVs. All variables enter the equation without violating the default value for tol-
erance (cf. Chapter 4). Further, the highest correlation among the IVs, between MENHEAL and 
LPHYHEAL, is .511. (If multicollinearity is indicated, redundant IVs are dealt with as discussed 
in Chapter 4.)

5.7.2 Standard Multiple Regression

IBM SPSS REGRESSION is used to compute a standard multiple regression between LTIMEDRS (the 
transformed DV), and MENHEAL, LPHYHEAL, and SSTRESS (the IVs), as shown in Table 5.17.

Included in the REGRESSION output are descriptive statistics, including a correlation table, 
the values of R, R2, and adjusted R2, and a summary of the analysis of variance for regression. 
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TABLE 5.17 Standard Multiple Regression Analysis of LTIMEDRS (the IBM SPSS REGRESSION 
DV) With MENHEAL, SSTRESS, and LPHYHEAL (the IVs). IBM SPSS REGRESSION Syntax 
and Selected Output

REGRESSION
/DESCRIPTIVES MEAN STDDEV CORR SIG N
/MISSING LISTWISE
/STATISTICS COEFF OUTS CI(95) R ANOVA ZPP
/CRITERIA=PIN(.05) POUT(.10)
/NOORIGIN
/DEPENDENT ltimedrs
/METHOD=ENTER lphyheal menheal sstress.

Regression

Descriptive Statistics

Mean
Std. 

Deviation N

Itimedrs .7413 .41525 465
Iphyheal .6484 .20620 465
Mental health symptoms 6.12 4.194 465
sstress 13.3995 4.97217 465

Correlations

Itimedrs Iphyheal

Mental 
health

symptoms sstress

Pearson Correlation Itimedrs 1.000 .586 .355 .359
Iphyheal .586 1.000 .511 .317
Mental health symptoms .355 .511 1.000 .383
sstress .359 .317 .383 1.000

Sig. (1-tailed) Itimedrs . .000 .000 .000
Iphyheal .000 . .000 .000
Mental health symptoms .000 .000 . .000
sstress .000 .000 .000 .

N Itimedrs 465 465 465 465
Iphyheal 465 465 465 465
Mental health symptoms 465 465 465 465
sstress 465 465 465 465

Model Summary

Model R R Square
Adjusted 
R Square

Std. Error 
of the 

Estimate

1 .614a .377 .373 .3289

a. Predictors: (Constant), sstress, lphyheal, Mental health symptoms
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ANOVAb

Model
Sum of 
Squares df

Mean
Square F Sig.

1 Regression 30.146 3 10.049 92.901 .000a

 Residual 49.864 461 .108
     Total 80.010 464

a. Predictors: (Constant), sstress, lphyheal, Mental health symptoms
b. Dependent Variable: ltimedrs

Coefficientsa

Unstandardized 
Coefficients

Standardized 
Coefficients

95% Confidence 
Interval for B Correlations

Model B
Std. 
Error Beta t Sig.

Lower 
Bound

Upper
Bound

Zero-
order Partial Part

1 (Constant) −.155 .058 −2.661 .008 −.270 −.041

Iphyheal 1.040 .087 .516 11.928 .000 .869 1.211 .586 .486 .439

Mental health symptoms .002 .004 .019 .428 .669 −.007 .011 .355 .020 .016

sstress .016 .003 .188 4.671 .000 .009 .022 .359 .213 .172

a. Dependent Variable: LTIMEDRS

TABLE 5.17 Continued
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The significance level for R is found in the ANOVA table with F(3, 461) = 92.90, p 6 .001. In the 
table labeled Coefficients are printed unstandardized and standardized regression coefficients with 
their significance levels, 95% confidence intervals, and three correlations: Zero-  order (matching 
the IV–  DV values of the correlation table), semipartial (Part), and partial.

The significance levels for the regression coefficients are assessed through t statistics, which 
are evaluated against 461 df, or through confidence intervals. Only two of the IVs, SSTRESS and 
LPHYHEAL, contribute significantly to regression with ts of 4.67 and 11.928, respectively. The 
significance of SSTRESS and LPHYHEAL is confirmed by their 95% confidence intervals that do 
not include zero as a possible value.

Semipartial correlations are labeled Part in the Coefficients section. These values, when 
squared, indicate the amount by which R2 would be reduced if an IV were omitted from the equa-
tion. The sum for the two significant IVs (.1722 + .4392 = .222) is the amount of R2 attributable to 
unique sources. The difference between R2 and unique variance (.377 - .222 = .155) represents vari-
ance that SSTRESS, LPHYHEAL, and MENHEAL jointly contribute to R2.

Information from this analysis is summarized in Table 5.18 in a form that might be appropriate 
for publication in a professional journal. Confidence limits around R2 are found using Steiger and 
Fouladi’s (1992) software, as per Section 5.6.2.4. It is noted from the correlation matrix in Table 
5.17 that MENHEAL correlates with LTIMEDRS (r = .355) but does not contribute significantly to 
regression. If Equation 5.10 is used post hoc to evaluate the significance of the correlation coefficient,

F =
(.355)2>3

1 - (.355)2>(465 - 3 - 1)
= 22.16

the correlation between MENHEAL and LTIMEDRS differs reliably from zero; F(3, 461) = 22.16, 
p 6 .01.

TABLE 5.18 Standard Multiple Regression of Health and Stress Variables on Number 
of Visits to Health Professionals

Variables
Visits to Dr. 
(log) (DV)

Physical 
Health (log)

Stress 
(Sq. root)

Mental
health B B

sr2

(unique)

Physical health
(log) .59 1.040** 0.52 .19

Stress (sq. root) .36 .32 0.016** 0.19 .03
Mental health .36 .51 .38 0.002 0.02

Intercept = -0.155

Means 0.74 0.65 13.40 6.12
Standard

deviations 0.42 0.21 4.97 4.19 R2 = .38a

        Adjusted R2 = .37
    R = .61**

**p 6 .01
a. Unique variability = .22; shared variability = .16, 95% confidence limits from .30 to .44.
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TABLE 5.19 Checklist for Standard Multiple Regression

1. Issues

a. Ratio of cases to IVs and missing data

b. Normality, linearity, and homoscedasticity of residuals

c. Outliers

d. Multicollinearity and singularity

e. Outliers in the solution

2. Major analyses

a. Multiple R2 and its confidence limits, F ratio

b. Adjusted multiple R2, overall proportion of variance accounted for

c. Significance of regression coefficients

d. Squared semipartial correlations

3. Additional analyses

a. Post hoc significance of correlations

b. Unstandardized (B) weights, confidence limits

c. Standardized (b) weights

d. Unique versus shared variability

e. Suppressor variables

f. Prediction equation

Results

A standard multiple regression was performed between number 

of visits to health professionals as the dependent variable 

and physical health, mental health, and stress as independent 

variables. Analysis was performed using IBM SPSS REGRESSION and 

EXPLORE for evaluation of assumptions.

Thus, although the bivariate correlation between MENHEAL and LTIMEDRS is reliably dif-
ferent from zero, the relationship seems to be mediated by, or redundant to, the relationship be-
tween LTIMEDRS and other IVs in the set. Had the researcher measured only MENHEAL and 
LTIMEDRS, however, the significant correlation might have led to stronger conclusions than are 
warranted about the relationship between mental health and number of visits to health professionals.

Table 5.19 contains a checklist of analyses performed with standard multiple regression. An 
example of a Results section in journal format appears next.
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Results of evaluation of assumptions led to transformation of 

the variables to reduce skewness, reduce the number of outliers, 

and improve the normality, linearity, and homoscedasticity of 

residuals. A square root transformation was used on the measure 

of stress. Logarithmic transformations were used on number of 

visits to health professionals and on physical health. One IV, 

mental health, was positively skewed without transformation and 

negatively skewed with it; it was not transformed. With the use 

of a p < .001 criterion for Mahalanobis distance no outliers 

among the cases were found. No cases had missing data and no 

suppressor variables were found, N = 465.

Table 5.18 displays the correlations between the variables, 

the unstandardized regression coefficients (B) and intercept, 

the standardized regression coefficients (b), the semipartial 

correlations (sri
2), R2, and adjusted R2. R for regression was 

significantly different from zero, F (3, 461) = 92.90, p < .001, 

with R2 at .38 and 95% confidence limits from .30 to .44. The 

adjusted R2 value of .37 indicates that more than a third of the 

variability in visits to health professionals is predicted by number 

of physical health symptoms, stress, and mental health symptoms. For 

the two regression coefficients that differed significantly from 

zero, 95% confidence limits were calculated. The confidence limits 

for (square root of) stress were 0.0091 to 0.0223, and those for 

(log of) physical health were 0.8686 to 1.2113.

The three IVs in combination contributed another .15 in 

shared variability. Altogether, 38% (37% adjusted) of the 

variability in visits to health professionals was predicted by 

knowing scores on these three IVs. The size and direction of the 

relationships suggest that more visits to health professionals 
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are made among women with a large number of physical health 

symptoms and higher stress. Between those two, however, number of 

physical health symptoms is much more important, as indicated by 

the squared semipartial correlations.

Although the bivariate correlation between (log of) visits to 

health professionals and mental health was statistically different 

from zero using a post hoc correction, r = .36, F(3, 461) =

22.16, p < .01, mental health did not contribute significantly 

to regression. Apparently, the relationship between the number of 

visits to health professionals and mental health is mediated by 

the relationships between physical health, stress, and visits to 

health professionals.

5.7.3 Sequential Regression

The second example involves the same three IVs entered one at a time in an order determined by the 
researcher. LPHYHEAL is the first IV to enter, followed by SSTRESS and then MENHEAL. The 
main research question is whether information regarding differences in mental health can be used to 
predict visits to health professionals after differences in physical health and in acute stress are sta-
tistically eliminated. In other words, do people go to health professionals for more numerous mental 
health symptoms if they have physical health and stress similar to other people?

Table 5.20 shows syntax and selected portions of the output for sequential analysis using the 
IBM SPSS REGRESSION program. Notice that a complete regression solution is provided at the 
end of each step.

TABLE 5.20 Syntax and Selected Output for IBM SPSS Sequential Regression

REGRESSION
/MISSING LISTWISE
/STATISTICS COEFF OUTS CI(95) R ANOVA ZPP
/CRITERIA=PIN(.05) POUT(.10)
/NOORIGIN
/DEPENDENT ltimedrs
/METHOD=ENTER lphyheal /METHOD=ENTER sstress/METHOD=ENTER menheal.

(continued)
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Regression

Variables Entered/Removedb

Model Variables Entered
Variables 
Removed Method

1 Iphyheala . Enter
2 sstressa . Enter
3 Mental health symptomsa . Enter

a. All requested variables entered.
b. Dependent Variable: ltimedrs

Model Summary

Change Statistics

Model R R Square
Adjusted 
R Square

Std. Error of 
the Estimate

R Square 
Change F Change df1 df2

Sig. F 
Change

1 .586a .343 .342 .3369 .343 241.826 1 463 .000
2 .614b .377 .374 .3286 .033 24.772 1 462 .000
3 .614c .377 .373 .3289 .000 .183 1 461 .669

a. Predictors: (Constant), lphyheal
b. Predictors: (Constant), lphyheal, sstress
c. Predictors: (Constant), lphyheal, sstress, Mental health symptoms

ANOVAd

Model Sum of Squares df Mean Square F Sig.

1 Regression 27.452 1 27.452 241.826 .000a

Residual 52.559 463 .114
Total 80.010 464

2 Regression 30.126 2 15.063 139.507 .000b

Residual 49.884 462 .108
Total 80.010 464

3 Regression 30.146 3 10.049 92.901 .000c

Residual 49.864 461 .108
Total 80.010 464

a. Predictors: (Constant), lphyheal
b. Predictors: (Constant), lphyheal, sstress
c. Predictors: (Constant), lphyheal, sstress, mental health symptoms
d. Dependent Variable: ltimedrs

TABLE 5.20 Continued
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TABLE 5.20 Continued

Coefficientsa

Unstandardized 
Coefficients

Standardized 
Coefficients

t Sig.

95% Confidence 
Interval for B Correlations

Model B Std. Error Beta Lower Bound Upper Bound Zero-order Partial Part

1 (Constant) −.024 .052 −.456 .648 −.125 .078
Iphyheal 1.180 .076 .586 15.551 .000 1.031 1.329 .586 .586 .586

2 (Constant) −.160 .057 −2.785 .006 −.272 −.047
Iphyheal 1.057 .078 .525 13.546 .000 .903 1.210 .586 .533 .498
sstress .016 .003 .193 4.977 .000 .010 .022 .359 .226 .183

3 (Constant) −.155 .058 −2.661 .008 −.270 −.041
Iphyheal 1.040 .087 .516 11.928 .000 .869 1.211 .586 .486 .439
sstress .016 .003 .188 4.671 .000 .009 .022 .359 .213 .172
Mental health symptoms .002 .004 .019 .428 .669 −.007 .011 .355 .020 .016

a. Dependent Variable: ltimedrs

Excluded Variablesc

Collinearity 
Statistics

Model Beta ln t Sig.
Partial 

Correlation Tolerance

1 sstress .193a 4.977 .000 .226 .900
Mental health symptoms .075a 1.721 .086 .080 .739

2 Mental health symptoms .019b .428 .669 .020 .684

a. Predictors in the Model: (Constant), lphyheal
b. Predictors in the Model: (Constant), lphyheal, sstress
c. Dependent Variable: ltimedrs
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The significance of the bivariate relationship between LTIMEDRS and LPHYHEAL is assessed 
at the end of step 1, F(1, 463) = 241.83, p 6 .001. The bivariate correlation is .59, accounting for 34% 
of the variance. After step 2, with both LPHYHEAL and SSTRESS in the equation, F(1, 462) = 139.51, 
p 6 .001, R = .61 and R2 = .38. With the addition of MENHEAL, F (1, 461) = 92.90, R = .61 and 
R2 = .38. Increments in R2 at each step are read directly from the R Square Change column of 
the Model Summary table. Thus, sr2

LPHYHEAL = .34, sr2
SSTRESS = .03, and sr2

MENHEAL = .00.
By using procedures of Section 5.6.2.3, significance of the addition of SSTRESS to the equa-

tion is indicated in the output at the second step (Model 2, where SSTRESS entered) as F for 
SSTRESS in the segment labeled Change Statistics. Because the F value of 24.772 exceeds criti-
cal F with 1 and 461 df (dfres at the end of analysis), SSTRESS is making a significant contribution 
to the equation at this step.

Similarly, significance of the addition of MENHEAL to the equation is indicated for Model 3,
where the F for MENHEAL is .183. Because this F value does not exceed critical F with 1 and 461 df, 
MENHEAL is not significantly improving R2 at its point of entry.

The significance levels of the squared semipartial correlations are also available in the Model
Summary table as F Change, with probability value Sig F Change for evaluating the signifi-
cance of the added IV.

Thus, there is no significant increase in prediction of LTIMEDRS by addition of MENHEAL
to the equation if differences in LPHYHEAL and SSTRESS are already accounted for. Apparently, 
the answer is “no” to the question: Do people with numerous mental health symptoms go to health 
professionals more often if they have physical health and stress similar to others? A summary of 
information from this output appears in Table 5.21.

Table 5.22 is a checklist of items to consider in sequential regression. An example of a Results 
section in journal format appears next.

TABLE 5.21 Sequential Regression of Health and Stress Variables on Number 
of Visits to Health Professionals

Variables
Visits to Dr. 

(log) DV
Physical 

Health (log)
Stress 

(sq. root)
Mental
Health B SE B B

sr2

(incremental)

Physical health 
(log) .59 1.040 0.058** 0.52 .34**

Stress (sq. root) .36 .32 –0.016 0.003** 0.19 .03**

Mental health .36 .51 .38 –0.002 0.004 0.02 .00
Intercept –0.155 0.058

Means
Standard

deviations

0.74
0.42

0.65
0.21

13.40
4.97

6.12
4.19 R2 = .38a

Adjusted R2 = .37
R = .61**

a95% confidence limits from .30 to .44.
*p 6 .05.
**p 6 .01.
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TABLE 5.22 Checklist for Sequential Regression Analysis

1. Issues

a. Ratio of cases to IVs and missing data

b. Normality, linearity, and homoscedasticity of residuals

c. Outliers

d. Multicollinearity and singularity

e. Outliers in the solution

2. Major analyses

a. Multiple R2 and its confidence limits, F ratio

b. Adjusted R2 proportion of variance accounted for

c. Squared semipartial correlations

d. Significance of regression coefficients

e. Incremental F

3. Additional analyses

a. Unstandardized (B) weights, confidence limits

b. Standardized (b) weights

c. Prediction equation from stepwise analysis

d. Post hoc significance of correlations

e. Suppressor variables

f.  Cross-validation (stepwise)

Results

Sequential regression was employed to determine if addition 

of information regarding stress and then mental health symptoms 

improved prediction of visits to health professionals beyond 

that afforded by differences in physical health. Analysis was 

performed using IBM SPSS REGRESSION and EXPLORE for evaluation of 

assumptions.

These results led to transformation of the variables to 

reduce skewness, reduce the number of outliers, and improve 

the normality, linearity, and homoscedasticity of residuals. 
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A square root transformation was used on the measure of stress. 

Logarithmic transformations were used on the number of visits to 

health professionals and physical health. One IV, mental health, 

was positively skewed without transformation and negatively 

skewed with it; it was not transformed. With the use of a p

< .001 criterion for Mahalanobis distance, no outliers among 

the cases were identified. No cases had missing data and no 

suppressor variables were found, N = 465.

Table 5.21 displays the correlations between the variables, 

the unstandardized regression coefficients (B) and intercept, 

the standardized regression coefficients (b), the semipartial 

correlations (sri
2), and R, R2, and adjusted R2 after entry of 

all three IVs. R was significantly different from zero at the 

end of each step. After step 3, with all IVs in the equation, 

R2 = .38 with 95% confidence limits from .30 to .44, F(3, 461) 

= 92.90, p < .01. The adjusted R2 value of .37 indicates that more 

than a third of the variability in visits to health professionals 

is predicted by number of physical health symptoms and stress.

After step 1, with log of physical health in the equation, 

R2 = .34, Finc(1, 461) = 241.83, p < .001. After step 2, with 

square root of stress added to prediction of (log of) visits to 

health professionals by (log of) physical health, R2 = .38, Finc
(1, 461) = 24.77, p < .01. Addition of square root of stress 

to the equation with physical health results in a significant 

increment in R2. After step 3, with mental health added to 

prediction of visits by (log of) physical health and square 

root of stress, R2 = .38 (adjusted R2 = .37), Finc (1, 461) =

0.18. Addition of mental health to the equation did not reliably 
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improve R2. This pattern of results suggests that over a third of 

the variability in number of visits to health professionals is 

predicted by number of physical health symptoms. Level of stress 

contributes modestly to that prediction; number of mental health 

symptoms adds no further prediction.

5.7.4  Example of Standard Multiple Regression With Missing 
Values Multiply Imputed

A number of cases were randomly deleted from the SASUSER.REGRESS file after transformations 
to create a new file, SASUSER.REGRESSMI, with a fair amount of missing data. Table 5.23 shows 
the first 15 cases of the data set. There are no missing data on the DV, LTIMEDRS.

Multiple imputation through SAS is a three-  step procedure:

1. Run PROC MI to create the multiply-  imputation data set, with m imputations (subsets), in 
which missing values are imputed from a distribution of missing values.

TABLE 5.23 Partial View of SASUSER.REGRESSMI With Missing Data
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2. Run the analysis for each of the imputations (e.g., PROC REG) on the file with m subsets and 
save parameter estimates (regression coefficients) in a second file.

3. Run PROC MIANALYZE to combine the results of the m analyses into a single set of param-
eter estimates.

Table 5.24 shows SAS MI syntax and selected output to create five imputations (the de-
fault m) and save the resulting data set in SASUSER.ANCOUTMI. The DV is not included in 
the var list; including LTIMEDRS could artificially inflate prediction by letting the DV influ-
ence the imputed values. Instead, only cases with nonmissing data on the DV are included in 
the data set.

The output first shows the missing data patterns, of which there are seven. The first and 
the most common pattern is a complete data with 284 cases (61.08% of the 465 cases). The 
second most common pattern is one in which MENHEAL is missing, with 69 cases (14.84%), 
and so on.

Table 5.23 also shows means on each of the unmissing variables for each pattern. For exam-
ple, the mean for MENHEAL when both SSTRESS and LPHYHEAL are missing is 10, as opposed 
to a mean of 6.05 for MENHEAL when data are complete.

The table labeled EM (Posterior Mode) Estimates shows the means and covariances 
(cf. Section 1.6.3) for the first step of multiple imputation, formation of the EM covariance matrix 
(Section 4.1.3.2). The next table, Multiple Imputation Variance Information, shows the partition 
of total variance for the variables with missing data into variance between imputations and variance 
within imputations. That is, how much do the predictors individually vary, on average, within each 
imputed data subset and how much do their means vary among the five imputed data subsets. The 
Relative Increase in Variance is a measure of increased uncertainty due to missing data. Notice 
that the variable with the most missing data, MENHEAL, has the greatest relative increase in vari-
ance. Relative efficiency is related to power; greater relative efficiency is associated with a smaller 
standard error for testing a parameter estimate. Again, the fewer the missing data, the greater the 
relative efficiency. Choice of m also affects relative efficiency.12 Finally, the Multiple Imputation 
Parameter Estimates are the average, minimum, and maximum values for means of the variables 
with missing data averaged over the five imputed data sets. The t for H0: is uninteresting, testing 
whether the mean differs from zero. Thus, the mean for MENHEAL varies from 5.95 to 6.16 over 
the five data subsets, with an average of 6.05 with 95% confidence limits from 5.63 to 6.48.

Table 5.25 shows a portion of the imputed data set, with the imputation variable (1 to 5) as 
well as missing values filled in. The latter portion of imputation 1 is shown, along with the first 
15 cases of imputation 2.

The next step is to run SAS REG on the five imputations. This is done by including the 
by _Imputation_ instruction in the syntax, as seen in Table 5.26. The results of the analyses in 
terms of parameter estimates (regression coefficients, B) and variance–  covariance matrices are 
sent to the output file: REGOUT.

12Relative efficiency of a parameter estimate depends on m and the amount of missing data. Rubin (1987) provides the fol-
lowing equation for relative efficiency:

% Efficiency = a1 +
g

m
b - 1

where g is the rate of missing data. For example, with m = 5 and 10% of data missing, relative efficiency is 98%.
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TABLE 5.24 Syntax and Selected SAS MI Output to Create Multiply-  Imputed Data Set

proc mi data=SASUSER.REGRESSMI seed=45792 
  out=SASUSER.REGOUTMI; var LPHYHEAL MENHEAL SSTRESS;
run:

Missing Data Patterns

---------Group Means---------

Group LPHYHEAL MENHEAL SSTRESS Freq Percent LPHYHEAL MENHEAL SSTRESS

1 X X X 284 61.08 0.647020 6.049296 13.454842

2 X X . 26 5.59 0.630585 4.884615 .

3 X . X 69 14.84 0.646678 . 12.948310

4 X . . 12 2.58 0.774916 . .

5 . X X 56 12.04 . 6.375000 13.820692

6 . X . 4 0.86 . 10.000000 .

7 . . X 14 3.01 . . 14.053803

EM (Posterior Mode) Estimates

_TYPE_ _NAME_ LPHYHEAL MENHEAL SSTRESS

MEAN 0.652349 6.079942 13.451916

COV LPHYHEAL 0.041785 0.441157 0.310229

COV MENHEAL 0.441157 17.314557 7.770443

COV SSTRESS 0.310229 7.770443 24.269465

Multiple Imputation Variance Information

-----------------Variance----------------

Variable Between Within Total DF

LPHYHEAL 0.000006673 0.000092988 0.000101 254.93

MENHEAL 0.007131 0.037496 0.046054 88.567

SSTRESS 0.002474 0.052313 0.055281 332.44

Multiple Imputation Variance Information

Variable

Relative Increase 

in Variance

Fraction Missing 

Information

Relative

Efficiency

LPHYHEAL 0.086119 0.082171 0.983832

MENHEAL 0.228232 0.199523 0.961627

SSTRESS 0.056744 0.055058 0.989108

Multiple Imputation Parameter Estimates

Variable Mean Std Error 95% Confidence Limits DF

LPHYHEAL 0.651101 0.010050 0.63131 0.67089 254.93

MENHEAL 6.054922 0.214601 5.62849 6.48136 88.567

SSTRESS 13.423400 0.235120 12.96089 13.88591 332.44

Multiple Imputation Parameter Estimates

Variable Minimum Maximum Mu0 t for HO: Mean=Mu0 Pr > |t|

LPHYHEAL 0.646559 0.652602 0 64.79 <.0001

MENHEAL 5.953237 6.160381 0 28.21 <.0001

SSTRESS 13.380532 13.502912 0 57.09 <.0001
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TABLE 5.25 Partial View of SASUSER.REGOUTMI With Imputation Variable 
and Missing Data Imputed

TABLE 5.26 SAS REG Syntax and Selected Output for Multiple Regression on All Five Imputations

proc reg data=SASUSER.REGOUTMI outest=REGOUT covout;
   model LTIMEDRS = LPHYHEAL MENHEAL SSTRESS; 

by _Imputation_; 
run;

--------------------------Imputation Number=1--------------------------

The REG Procedure

Model: MODEL 1

Dependent Variable: LTIMEDRS LTIMEDRS
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Number of Observations Read 465

Number of Observations Used 465

Analysis of Variance

Source DF Sum of 

Squares

Mean

Square

F Value Pr > F

Model 3 25.62241 8.54080 72.39 <.0001

Error 461 54.38776 0.11798

Corrected Total 464 80.01017

Root MSE 0.34348 R-Square 0.3203

Dependent Mean 0.74129 Adj R-Sq 0.3158

Coeff Var 46.33561

Parameter Estimates

Variable Label DF

Parameter

Estimate

Standard

Error t Value Pr > |t|

Intercept Intercept 1 –0.10954 0.06239 –1.76 0.0798

LPHYHEAL LPHYHEAL 1 0.91117 0.09324 9.77 <.0001

MENHEAL MENHEAL 1 0.00275 0.00467 0.59 0.5566

SSTRESS SSTRESS 1 0.01800 0.00361 4.98 <.0001

--------------------------Imputation Number=2--------------------------

The REG Procedure

Model: MODEL1

Dependent Variable: LTIMEDRS LTIMEDRS

Number of Observations Read 465
Number of Observations Used 465

Analysis of Variance

Source DF

Sum of 

Squares

Mean

Square F Value Pr > F

Model 3 23.14719 7.71573 62.55 <.0001
Error 461 56.86297 0.12335
Corrected Total 464 80.01017

Root MSE 0.35121 R–Square 0.2893

Dependent Mean 0.74129 Adj R–Sq 0.2847

Coeff Var 47.37826

Parameter Estimates

Variable Label DF

Parameter

Estimate

Standard

Error t Value Pr > |t|

Intercept Intercept   1 –0.03392 0.06067 –0.56 0.5764

LPHYHEAL LPHYHEAL   1 0.79920 0.09270 8.62 <.0001

MENHEAL MENHEAL   1 0.00259 0.00481 0.54 0.5902

SSTRESS SSTRESS   1 0.01770 0.00358 4.94 <.0001

TABLE 5.26 Continued

(continued)
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--------------------------Imputation Number=3--------------------------

The REG Procedure

Model: MODEL 1

Dependent Variable: LTIMEDRS LTIMEDRS

Number of Observations Read 465

Number of Observations Used 465

Analysis of Variance

Source DF

Sum of 

Squares

Mean

Square F Value Pr > F

Model 3 24.22616 8.07539 66.74 <.0001

Error 461 55.78401 0.12101

Corrected Total 464 80.01017

Root MSE 0.34786 R–Square 0.3028

Dependent Mean 0.74129 Adj R–Sq 0.2983

Coeff Var 46.92661

Parameter Estimates

Variable Label DF

Parameter

Estimate

Standard

Error t value Pr > |t|

Intercept Intercept   1 –0.09996 0.06381 –1.57 0.1179

LPHYHEAL LPHYHEAL   1 0.86373 0.09238 9.35 <.0001

MENHEAL MENHEAL   1 0.00255 0.00464 0.55 0.5826

SSTRESS SSTRESS   1 0.01954 0.00354 5.51 <.0001

--------------------------Imputation Number=4--------------------------

The REG Procedure

Model: MODEL 1

Dependent Variable: LTIMEDRS LTIMEDRS

Number of Observations Read 465

Number of Observations Used 465

Analysis of Variance

Source DF

Sum of 

Squares

Mean

Square F Value Pr > F

Model 3 24.27240 8.09080 66.92 <.0001

Error 461 55.73777 0.12091

Corrected Total 464 80.01017

Root MSE 0.34772 R–Square 0.3034

Dependent Mean 0.74129 Adj R–Sq 0.2988

Coeff Var 46.90716

TABLE 5.26 Continued
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Parameter Estimates

Variable Label DF

Parameter

Estimate

Standard

Error t Value Pr > |t|

Intercept Intercept 1 –0.07371 0.06260 –1.18 0.2396

LPHYHEAL LPHYHEAL 1 0.87685 0.09194 9.54 <.0001

MENHEAL MENHEAL 1 0.00138 0.00475 0.29 0.7725
SSTRESS SSTRESS 1 0.01790 0.00362 4.95 <.0001

--------------------------Imputation Number=5--------------------------

The REG Procedure

Model: MODEL1

Dependent Variable: LTIMEDRS LTIMEDRS

Number of Observations Read: 465

Number of Observations Used: 465

Analysis of Variance

Source DF

Sum of 

Squares

Mean

Square F Value Pr > F

Model 3 25.12355 8.37452 70.34 <.0001

Error 461 54.88662 0.11906

Corrected Total 464 80.01017

Root MSE 0.34505 R–Square 0.3140

Dependent Mean 0.74129 Adj R–Sq 0.3095

Coeff Var 46.54763

Parameter Estimates

Variable Label DF

Parameter

Estimate

Standard

Error t Value Pr > |t|

Intercept Intercept 1 –0.08577 0.06050 –1.42 0.1569

LPHYHEAL LPHYHEAL 1 0.88661 0.09123 9.72 <.0001

MENHEAL MENHEAL 1 –0.00083306 0.00474 –0.18 0.8605

SSTRESS SSTRESS 1 0.01879 0.00350 5.37 <.0001

All of the imputations show similar results, with F values ranging from 62.55 to 72.39 (all 
p 6 .0001), but these are considerably smaller than the F = 92.90 of the full-  data standard multiple-
regression analysis of Section 5.7.2. Adjusted R2 ranges from .28 to .32, as compared with .37 with 
the full data reported in Table 5.18.

Table 5.27 shows syntax and output for combining the results of the five imputations through 
SAS MIANALYZE. Data from the five imputations are used. Variables are the ones for which 
Parameter Estimates were sent to the REGOUT data set.

TABLE 5.26 Continued
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TABLE 5.27 SAS MIANALYZE Syntax and Output for Combining Parameter Estimates 
From the Results of Five Multiple Regression Analyses

proc mianalyze data=REGOUT; 
   modeleffects Intercept LPHYHEAL MENHEAL SSTRESS; 
run;

The MIANALYZE Procedure

Model Information

Data Set WORK.REGOUT

Number of Imputations 5

Multiple Imputation Variance Information

---------------Variance---------------

Parameter Between Within Total DF

Intercept 0.000866 0.003845 0.004884 88.288

LPHYHEAL 0.001760 0.008520 0.010631 101.37

MENHEAL 0.000002286 0.000022309 0.000025052 333.65

SSTRESS 0.000000589 0.000012756 0.000013462 1453.4

Multiple Imputation Variance Information

Parameter

Relative

Increase in 

Variance

Fraction

Missing

Information

Relative

Efficiency

Intercept 0.270411 0.230099 0.956005

LPHYHEAL 0.247882 0.213998 0.958957

MENHEAL 0.122956 0.114783 0.977559

SSTRESS 0.055366 0.053762 0.989362

Multiple Imputation Parameter Estimates

Parameter Estimate Std Error 95% Confidence Limits DF

Intercept –0.080582 0.069888 –0.21946 0.058300 88.288

LPHYHEAL 0.867511 0.103108 0.66298 1.072042 101.37

MENHEAL 0.001687 0.005005 –0.00816 0.011533 333.65

SSTRESS 0.018384 0.003669 0.01119 0.025581 1453.4

Multiple Imputation Parameter Estimates

Parameter Minimum Maximum Theta0

t for H0:

Parameter=Theta0 Pr > |t|

Intercept –0.109545 –0.033922 0 –1.15 0.2520

LPHYHEAL 0.799195 0.911169 0 8.41 <.0001

MENHEAL –0.000833 0.002750 0 0.34 0.7363

SSTRESS 0.017697 0.019539 0 5.01 <.0001
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TABLE 5.28 SAS REG Syntax and Output for Standard Multiple 
Regression With Listwise Deletion of Missing Values

proc reg data=SASUSER.REGRESSMI; 
model LTIMEDRS = LPHYHEAL MENHEAL SSTRESS; 

run;
The REG Procedure

Model: MODEL 1

Dependent Variable: LTIMEDRS LTIMEDRS

Number of Observations Read 465

Number of Observations Used 284

Number of Observations with Missing Values 181

Analysis of Variance

Source DF

Sum of 

Squares

Mean

Square F Value Pr > F

Model 3 18.43408 6.14469 57.36 <.0001

Error 280 29.99510 0.10713

Corrected Total 283 48.42918

Root MSE 0.32730 R–Square 0.3806

Dependent Mean 0.78354 Adj R–Sq 0.3740

Coeff Var 41.77218

Parameter Estimates

Variable Label DF

Parameter

Estimate

Standard

Error t Value Pr > |t|

Intercept Intercept 1 –0.09014 0.07529 –1.20 0.2322

LPHYHEAL LPHYHEAL 1 1.05972 0.11127 9.52 <.0001

MENHEAL MENHEAL 1 0.00398 0.00555 0.72 0.4741

SSTRESS SSTRESS 1 0.01219 0.00435 2.80 0.0055

Parameter estimates differ from those of the standard multiple regression of Section 5.7.2, but 
conclusions do not. Again, only LPHYHEAL and SSTRESS contribute to prediction of LTIMEDRS, 
MENHEAL does not. Note that DF are based on the fraction of missing data and m: the more data 
missing, the smaller the DF. If a DF value is close to 1, you need greater m because estimates are 
unstable.

MIANALYZE does not provide an ANOVA table to assess the results of overall prediction 
or any form of multiple R2. Instead, ranges of results are reported from the PROC REG runs of 
Table 5.26. The outcome of this sample multiple-  imputation analysis is that some power is lost 
relative to the complete data of SASUSER.REGRESS.

As another comparison, Table 5.28 shows the results of a standard multiple regression using 
only the 284 complete cases of SASUSER.REGRESSMI (partially shown in Table 5.4). SAS REG 
uses listwise deletion as default, so that cases with missing data on any of the variables are deleted 
before analysis.
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Additional power in terms of statistical significance is lost by deleting all cases with any miss-
ing data. Overall F has been reduced to 57.36 (although p remains 6.0001) and there is a larger p
value for the test of SSTRESS. However, adjusted R2 has not been reduced by this strategy, unlike 
that of multiple imputation. Also, in this case, parameter estimates appear to more closely resemble 
those of the analysis of the full data set.

5.8 Comparison of Programs

The popularity of multiple regression is reflected in the abundance of applicable programs. IBM 
SPSS, SYSTAT, and SAS each have a single, highly flexible program for the various types of 
multiple regression. The packages also have programs for the more exotic forms of multiple re-
gression, such as nonlinear regression, probit regression, logistic regression (cf. Chapter 10), and 
the like.

Direct comparisons of programs for standard regression are summarized in Table 5.29. 
Additional features for statistical and sequential regression are summarized in Table 5.30. Features 
include those that are available only through syntax. Some of these features are elaborated in 
Sections 5.7.1 through 5.7.4.

5.8.1 IBM SPSS Package

The distinctive feature of IBM SPSS REGRESSION, summarized in Tables 5.27 and 5.28, is flex-
ibility. IBM SPSS REGRESSION offers four options for the treatment of missing data (described in 
the on-disk help system). Data can be input raw or as correlation or covariance matrices. Data can 
be limited to a subset of cases, with residuals statistics and plots reported separately for selected and 
unselected cases.

A special option is available so that correlation matrices are printed only when one or more 
of the correlations cannot be calculated. Also convenient is the optional printing of semipartial cor-
relations for standard multiple regression and 95% confidence intervals for regression coefficients.

The statistical procedure offers forward, backward, and stepwise selection of variables, with 
several user-  modifiable statistical criteria for variable selection.

A series of METHOD=ENTER subcommands are used for sequential regression. Each 
ENTER subcommand is evaluated in turn; the IV or the IVs listed after each ENTER subcommand 
are evaluated in that order. Within a single subcommand, IBM SPSS enters the IVs in the order of 
decreasing tolerance. If there is more than one IV in the subcommand, they are treated as a block in 
the Model Summary table where changes in the equation are evaluated.

Extensive analysis of residuals is available. For example, a table of predicted scores and 
residuals can be requested and accompanied by a plot of standardized residuals against standardized
predicted values of the DV (z-scores of the Y� values). Plots of standardized residuals against 
sequenced cases are also available. For a sequenced file, one can request a Durbin–  Watson statistic,
which is used for a test of autocorrelation between adjacent cases. In addition, you can request 
Mahalanobis distance for cases as a convenient way of evaluating outliers. This is the only program
within the IBM SPSS package that offers Mahalanobis distance. A case labeling variable may 
be specified, so that subject numbers for outliers can be easily identified. Partial residual plots 
(partialing out all but one of the IVs) are available in IBM SPSS REGRESSION.
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TABLE 5.29 Comparison of Programs for Standard Multiple Regression

Feature
IBM SPSS 
REGRESSION SAS REG

SYSTAT 
REGRESS

Input

Correlation matrix input Yes Yes Yes

Covariance matrix input Yes Yes Yes

SSCP matrix input No Yes Yes

Missing data options Yes No No

Regression through the origin ORIGIN NOINT Yesb

Tolerance option TOLERANCE SINGULAR Tolerance

Post hoc hypothesesa TEST Yes Yes

Optional error terms No Yes No

Collinearity diagnostics COLLIN COLLIN PRINT=MEDIUM

Select subset of cases Yes WEIGHT WEIGHT

Weighted least squares REGWGT Yes WEIGHT

Multivariate multiple regression No MTEST No

Setwise regression No Yes Yes

Ridge regression No RIDGE Yes

Identify case labeling variable RESIDUALS ID No No

Bayesian regression No No Yes

Resampling No No Yes

Regression output

Analysis of variance for regression ANOVA Analysis of Variance Analysis of Variance

Multiple R R No Multiple R

R2 R Square R-square Squared multiple R

Adjusted R2 Adjusted R Square Adj R-sq Adjusted Squared 
Multiple R

Standard error of Y� Std. Error of the 
Estimate

Root MSE Standard error of 
estimate

Coefficient of variation No Coeff Var No

Correlation matrix Yes CORR No

Significance levels of correlation 
matrix

Yesa No No

Sum-of-squares and cross-products
(SSCP) matrix

Yes USSCP No

Covariance matrix Yes No No

Means and standard deviations Yes Yes No

Matrix of correlation coefficients 
if some not computed

Yes N.A. N.A.

(continued)
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Feature
IBM SPSS 
REGRESSION SAS REG

SYSTAT 
REGRESS

Regression output (continued )

N for each correlation coefficient Yes N.A. N.A.

Sum of squares for each variable Yesd Uncorrected SS No

Unstandardized regression 
coefficients

B Parameter Estimate Coefficient

Standard error of regression 
coefficient

Std. Error Standard Error Std Error

F or t test of regression coefficient t (F optional) T value t

Significance for regression 
coefficient

Sig. Pr > |t| P

Intercept (constant) (Constant) Intercept CONSTANT

Standardized regression coefficient Beta Standardized
Estimate

Std Coef

Approx. standard error of b Std. Error No No

Partial correlation Partial Squared Partial Corr
Type II

No

Semipartial correlation or sri
2 Part Squared Semi-partial

Corr Type II
No

Bivariate correlation with DV No CORR Zero Order

Tolerance Yes Yes Yes

Variance–covariance matrix for 
unstandardized B coefficients

Yes Yes No

Correlation matrix of B coefficients No No Yes

Correlation matrix for 
unstandardized B coefficients

Yes Yes (PRINT=LONG)

95% confidence interval for B Yes Yes (PRINT=MEDIUM)

Specify alternative α for CI for B No Yes No

Hypothesis matrices No Yes No

Collinearity diagnostics Yes Yes Yes

Residuals

Predicted scores, residuals and 
standardized residuals

Yes Yes Data file

Partial residuals No No Data file

95% confidence interval for 
predicted value

No 95% CL Predict No

Plot of standardized residuals 
against predicted scores

Yes Yes Yes

TABLE 5.29 Continued
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TABLE 5.29 Continued

Feature
IBM SPSS 
REGRESSION SAS REG

SYSTAT 
REGRESS

Normal plot of residuals Yes No No

Durbin–Watson statistic Yes Yes Yes

Leverage diagnostics (e.g., 
Mahalanobis distance)

Mahal. Distance Hat Diag H Data file (Leverage)

Influence diagnostics (e.g., 
Cook’s distance)

Cook’s distance Cook’s D Data file

Histograms Yes No No

Casewise plots Yes No No

Partial plots Yes Yes No

Other plots available Yes Yes No

Summary statistics for residuals Yes Yes No

Save predicted values/residuals Yes Yes Yes

Note: SAS and SYSTAT GLM can also be used for standard multiple regression.
aDoes not use Larzelere and Mulaik (1977) correction.
bOmit CONSTANT from MODEL.
cAvailable through TEST (syntax only).

TABLE 5.30 Comparison of Additional Features for Stepwise and/or Sequential Regression

Feature
IBM SPSS 
REGRESSION SAS REG

SYSTAT 
REGRESS

Input

Specify stepping algorithm Yes Yes Yes

Specify F to enter and/or remove FIN/FOUT No FEnter/FRemove

Specify probability of F to enter 
and/or remove

PIN/POUT SLE/SLS Enter/Remove

Specify maximum number of steps MAXSTEPS MAXSTEP Max step

Specify maximum number of 
variables

No STOP No

Request selection statistics (e.g., 
AIC, Mallow’s Cp)

SELECTION Yes No

Force variables into equation ENTER INCLUDE FORCE

Specify order of entry (hierarchy) ENTER No No

IV sets for entry in single step ENTER GROUPNAMES No

Interactive processing No Yes Yes
(continued)
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Feature
IBM SPSS 
REGRESSION SAS REG

SYSTAT 
REGRESS

Regression output

Analysis of variance for 
regression, each step

ANOVA Analysis of Variance Noa

Multiple R, each step R No R

R2, each step R Square R-Square R-Square

Mallow’s Cp, each step Mallow’s 
PredictionCriterion

C(p) No

Standard error of Y�, each step Std. Error of the 
Estimate

No Noa

Adjusted R2, each step Adjusted R Square No Noa

Variables in equation/coefficients 
(each step)

Unstandardized regression 
coefficients

B Parameter Estimate Coefficient

Standard error of regression 
coefficient

Std. Error Standard Error Std Error

95% confidence interval for B Yes No Yes

Standard regression coefficient Beta Standardized
Estimate

Std Coef

F (or T ) to remove t(F optional) F Value F

p to remove Sig. Pr > F ‘P’

Intercept (Constant) Intercept Constant

Tolerance No No Tol.

Variables not in equation/excluded 
variables (each step)

Standardized regression coefficient 
for entering

Beta In No No

Partial correlation coefficient for 
entering

Partial Correlation No Part. corr.

Tolerance Yes No Yes

F (or T ) to enter t (F optional) No F

p to enter Sig. Yes ‘P’

Summary table/change statistics

Multiple R R No No

R2 R Square Model R-Square No

Adjusted R2 Adjusted R Square No No

TABLE 5.30 Continued
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The flexibility of input for the IBM SPSS REGRESSION program does not carry over into 
output. The only difference between standard and statistical or sequential regression is in the print-
ing of each step (Model) in each table, and in an extension of the model summary table available 
through the CHANGE instruction. Otherwise, the statistics and parameter estimates are identical. 
These values, however, have different meanings, depending on the type of analysis. For example, 
you can request semipartial correlations (called Part) through the ZPP statistics. But these apply 
only to standard multiple regression. As pointed out in Section 5.6.1, semipartial correlations 
for statistical or sequential analysis appear in the Model Summary table (obtained through the 
CHANGE statistic) as R Square Change.

5.8.2 SAS System

Currently, SAS REG is the all-  purpose regression program in the SAS system. In addition, GLM 
can be used for regression analysis; it is more flexible and powerful than SAS but also more difficult 
to use.

SAS REG handles correlation, covariance, or SSCP matrix input but has no options for deal-
ing with missing data. A case is deleted if it contains any missing values.

In SAS REG, two types of semipartial correlations are available. The sr2
i  appropriate for stan-

dard multiple regression is the one that uses TYPE II (partial) sums of squares (that can also be 
printed). SAS REG also does multivariate multiple regression as a form of canonical correlation 
analysis, where specific hypotheses can be tested.

For statistical regression using SAS REG, the usual forward, backward, and stepwise criteria
for selection are available, in addition to five others. The statistical criteria available are the prob-
ability of F to enter and remove an IV from the equation as well as maximum number of variables. 
Interactive processing can be used to build sequential models.

TABLE 5.30 Continued

Feature
IBM SPSS 
REGRESSION SAS REG

SYSTAT 
REGRESS

Change in R2 (squared semipartial 
correlation)

R-Square Change Partial R Square No

Finc F Change F Value No

Degrees of freedom for Finc df1, df2 No

p for Finc Sig. F Change P 7 .F No

Standard regression coefficient Beta No No

Mallow’s Cp Mallow’s Prediction 
Criterion

C(p) No

Number of variables 
in the equation

No Number Vars In No

aAvailable by running separate standard multiple regressions for each step.
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Several criteria are available for setwise regression. You make the choice of the best subset by 
comparing values on your chosen criterion or on R2 which is printed for all criteria. No information 
is given about individual IVs in the various subsets.

Sequential regression is handled interactively, in which an initial model statement is followed 
by instructions to add one or more variables at each subsequent step. Full output is available at the 
end of each step, but there is no summary table.

Tables of residuals and other diagnostics, including Cook’s distance and hat diagonal (a mea-
sure of leverage, cf. Equation 4.3), are extensive, but are saved to file rather than printed. However, 
a plotting facility within SAS REG allows extensive plotting of residuals. SAS REG also provides 
partial residual plots where all IVs except one are partialed out. Recent enhancements to SAS REG 
greatly increase plotting capabilities.

5.8.3 SYSTAT System

Multiple regression in SYSTAT Version 11 is most easily done through REGRESS, although GLM 
also may be used. Statistical regression options include forward and backward stepping. Options 
are also available to modify a level to enter and remove, change tolerance, and force the first k
variables into the equation. By choosing the interactive mode for stepwise regression, you can 
specify individual variables to enter the equation at each step, allowing a simple form of sequen-
tial regression. This is the only program reviewed that permits standard multiple regression with 
resampling and Bayesian multiple regression.

Several criteria are available for setwise regression. You make the choice of the best subset 
by comparing values on your chosen criterion or on adjusted R2. No information is given about 
individual IVs in the various subsets.

Matrix input is accepted in SYSTAT REGRESS, but processing of output of matrices or 
descriptive statistics requires the use of other programs in the SYSTAT package. Residuals and other 
diagnostics are handled by saving values to a file, which can then be printed out or plotted through 
SYSTAT PLOT (a plot of unstandardized residuals against predicted scores is shown in the output). 
In this way, you can take a look at Cook’s value or leverage, from which Mahalanobis distance 
can be computed (Equation 4.3), for each case. Or, you can find summary values for residuals and 
diagnostics through SYSTAT STATS, the program for descriptive statistics.
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6.1 General Purpose and Description

Analysis of covariance is an extension of analysis of variance in which main effects and interactions
of IVs are assessed after DV scores are adjusted for differences associated with one or more 
covariates (CVs), variables that are measured before the DV and are correlated with it.1 The major 
question for ANCOVA (analysis of covariance) is essentially the same as for ANOVA: Are mean 
differences among groups on the adjusted DV likely to have occurred by chance? For example, is 
there a mean difference between a treated group and a control group on a posttest (the DV) after 
posttest scores are adjusted for differences in pretest scores (the CV)?

Analysis of covariance is used for three major purposes. The first purpose is to increase the 
sensitivity of the test of main effects and interactions by reducing the error term; the error term 
is adjusted for, and hopefully reduced by, the relationship between the DV and the CV(s). The 
second purpose is to adjust the means on the DV themselves to what they would be if all subjects 
scored equally on the CV(s). The third use of ANCOVA occurs in MANOVA (Chapter 7), where the 
researcher assesses one DV after the adjustment for other DVs that are treated as CVs.

The first use of ANCOVA is the most common. In an experimental setting, ANCOVA 
increases the power of an F test for a main effect or interaction by removing predictable variance 
associated with CV(s) from the error term. That is, CVs are used to assess the “noise” where “noise” 
is undesirable variance in the DV (e.g., individual differences) that is estimated by scores on CVs 
(e.g., pretests). Tabachnick and Fidell (2007) discuss the use of ANCOVA in experiments.

An experimental ANCOVA strategy was taken by Baranowski et al. (2011). One hundred 
thirty-  three 10- to 12-year-  old children participated in a randomized control trial where two-  thirds
of the sample was assigned to the treatment group and one-  third to the control group. Both groups 
were assessed for the intake of fruit, vegetables, and water as well as minutes of moderate to vigorous 
physical activity and weight (the DVs) prior to the start of the experiment, after the first treatment, 
after the second treatment, and 2 months after the conclusion of the study. Pretreatment measures 
and certain demographic characteristics were used as the covariates in a separate ANCOVA for each 
DV. The group assigned to treatment played “Escape from Diab” (Diab) and then “Nanoswarm: 
Invasion from Inner Space” (Nano) video games on children’s diet, physical activity, and adiposity 
in sequence. The control group played diet and physical activity knowledge-  based games on popular
Web sites for equivalent time. Using repeated measures ANCOVAs, the children who played the 
video games increased fruit and vegetable consumption but did not change water intake, physical 
activity, or weight.

6 Analysis of Covariance

1Strictly speaking, ANCOVA, like multiple regression, is not a multivariate technique because it involves a single DV. For the 
purposes of this book, however, it is convenient to consider it along with multivariate analyses.
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The second use of ANCOVA commonly occurs in nonexperimental situations when subjects 
cannot be randomly assigned to treatments. ANCOVA is used as a statistical matching procedure, 
although interpretation is fraught with difficulty, as discussed in Section 6.3.1. ANCOVA is used 
primarily to adjust group means to what they would be if all subjects scored identically on the 
CV(s). Differences between subjects on CVs are removed so that, presumably, the only differences 
that remain are related to the effects of the grouping IV(s). (Differences could also, of course, be 
due to attributes that have not been used as CVs.)

This second application of ANCOVA is primarily for descriptive model building: the CV 
enhances prediction of the DV, but there is no implication of causality. If the research question to be 
answered involves causality, ANCOVA is no substitute for running an experiment.

As an example, suppose we are looking at regional differences in political attitudes where 
the DV is some measure of liberalism–  conservatism. Regions of the United States form the IV, say, 
Northeast, South, Midwest, and West. Two variables that are expected to vary with political attitude 
and with geographical region are socioeconomic status and age. These two variables serve as CVs. 
The statistical analysis tests the null hypothesis that political attitudes do not differ with geographi-
cal region after adjusting for socioeconomic status and age. However, if age and socioeconomic 
differences are inextricably tied to geography, adjustment for them is not realistic. And, of course, 
there is no implication that political attitudes are caused in any way by geographic region. Further, 
unreliability in measurement of the CV and the DV–  CV relationship may lead to over-   or under-
adjustment of scores and means and, therefore, to misleading results. These issues are discussed in 
greater detail throughout the chapter.

This nonexperimental ANCOVA strategy was taken by Baron, Erickson, Ahronovich, 
Litman, and Brandt (2010). A modified version of the Hopkins Board (a measure of spatial location 
memory and neurodevelopmental maturation) was given to 135 three-  year-  olds who were born 
with extremely low birthweight (less than 2.2 lbs), or late-  preterm (born 3–  6 weeks early), or at 
term. The five DVs were naming, trials-to-criterion, errors-to-criterion, delayed item recall, and 
delayed location recall. Group differences were studied for each DV in ANCOVA with true chrono-
logical age, race/ethnicity, and gender as the covariates. Group differences were found on naming, 
errors-to-criterion, and delayed item recall. Generally, children with extremely low birthweight 
performed the most poorly.

In the third major application of ANCOVA, discussed more fully in Chapter 7, ANCOVA 
is used to interpret IV differences when several DVs are used in MANOVA. After a multivariate 
analysis of variance, it is frequently desirable to assess the contribution of the various DVs to sig-
nificant differences among IVs. One way to do this is to test DVs, in turn, with the effects of other 
DVs removed. Removal of the effects of other DVs is accomplished by treating them as CVs in a 
procedure called a stepdown analysis.

Denham (2010) used data from the US General Social Survey (GSS; N = 2,528) to study the 
relationships between demographic and media-  use variables and national pride generated by US 
athletes successful in international competitions. Analysis of covariance was used to study self-
reported pride in being American. The data set contained five demographic variables (sex, race, 
education level, age, and political party identification) and two media exposure variables (frequency 
of reading a newspaper and number of hours of TV watched per day). (Note that the media exposure 
variables were imputed for the half of the sample measured in 2004 from data obtained in 1996.) 
The author essentially did a stepdown analysis where three IVs were used to predict national pride 
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by themselves (year, sex, and age), and then reanalyzed as political affiliation, education level, 
frequency of reading newspapers, and number of hours of TV watched per day were added, one at 
a time, as covariates. Higher national pride was associated with race (African American), gender 
(male), age (older), education (lower), and political affiliation (Republican), but not with media 
exposure of either type.

The statistical operations are identical in all three major applications of ANCOVA. As in 
ANOVA, variance in scores is partitioned into variance due to differences between groups and 
variance due to differences within groups. Squared differences between scores and various means 
are summed (see Chapter 3) and these sums of squares, when divided by appropriate degrees of 
freedom, provide estimates of variance attributable to different sources (main effects of IVs, interac-
tions between IVs, and error). Ratios of variances then provide tests of hypotheses about the effects 
of IVs on the DV.

However, in ANCOVA, the regression of one or more CVs on the DV is estimated first. Then 
DV scores and means are adjusted to remove the linear effects of the CV(s) before analysis of 
variance is performed on these adjusted values.

Figure 6.1 illustrates the manner in which ANCOVA reduces error variance in a one-  way 
between-  subjects design with three levels of the IV. Note that the dotted lines illustrate group means 
in ANOVA. The error term is computed from the sum of squared deviations of DV scores around 
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FIGURE 6.1 Plot of hypothetical data. The 
solid straight lines with common slope are those that 
best fit the data for the three treatments. The dotted 

straight lines are means for the three groups.
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their associated group means. In this case, the error term is substantial because there is considerable 
spread in scores within each group.

When the same scores are analyzed in ANCOVA, a regression line is found first that relates 
the DV to the CV. The error term is based on the (sum of squared) deviations of the DV scores 
from the regression line running through each group mean instead of from the means themselves. 
Consider the score in the lower left-  hand corner of Figure 6.1. The score is near the regression line 
(a small deviation for error in ANCOVA) but far from the mean for its own group (a large deviation 
for error in ANOVA). As long as the slope of the regression lines is not zero, ANCOVA produces a 
smaller sum of squares for error than ANOVA. If the slope is zero, error sum of squares is the same 
as in ANOVA but error mean square is larger because CVs use up degrees of freedom.

CVs can be used in all ANOVA designs—factorial between-subjects, within-subjects, mixed 
within-  between, nonorthogonal, and so on. Analyses of these more complex designs are readily 
available in only a few programs, however. Similarly, specific comparisons and trend analysis of 
adjusted means are possible in ANCOVA but not always readily available through the programs.

6.2 Kinds of Research Questions

As with ANOVA, the question in ANCOVA is whether mean differences in the DV between groups 
are larger than expected by chance or not. In ANCOVA, however, one gets a more precise look at the 
IV–  DV relationship after removal of the effect of CV(s).

6.2.1 Main Effects of IVs

Holding all else constant, are changes in behavior associated with different levels of an IV larger than 
expected through random fluctuations occurring by chance? For example, is test anxiety affected by 
treatment, after holding constant prior individual differences in test anxiety? Does political attitude 
vary with geographical region, after holding constant differences in socioeconomic status and age? 
The procedures described in Section 6.4 answer these questions by testing the null hypothesis that 
the IV has no systematic effect on the DV.

With more than one IV, separate statistical tests are available for each one. Suppose there is 
a second IV in the political attitude example, for example, religious affiliation, with four groups: 
Protestant, Catholic, Jewish, and none-or-other. In addition to the test of geographic region, there is 
also a test of differences in attitudes associated with religious affiliation after adjustment for differ-
ences in socioeconomic status and age.

6.2.2 Interactions Among IVs

Holding all else constant, does change in behavior over levels of one IV depend on levels of 
another IV? That is, do IVs interact in their effect on behavior? (See Chapter 3 for a discussion 
of interaction.) For the political attitude example where religious affiliation is added as a second 
IV, are differences in attitudes over geographic region the same for all religions, after adjusting for 
socioeconomic status and age?

Tests of interactions, while interpreted differently from main effects, are statistically similar, 
as demonstrated in Section 6.6. With more than two IVs, numerous interactions are generated. 
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Except for common error terms, each interaction is tested separately from other interactions and 
from main effects. All tests are independent when sample sizes in all groups are equal and the 
design is balanced.

6.2.3 Specific Comparisons and Trend Analysis

When statistically significant effects are found in a design with more than two levels of a single IV, 
it is often desirable to pinpoint the nature of the differences. Which groups differ significantly from 
each other? Or, is there a simple trend over sequential levels of an IV? For the test anxiety example, 
we ask whether (1) the two treatment groups are more effective in reducing test anxiety than the 
waiting-  list control, after adjusting for preexisting differences in test anxiety; and whether (2) among 
the two treatment groups, desensitization is more effective than relaxation training in reducing test 
anxiety, again after adjusting for preexisting differences in test anxiety?

These two questions could be asked in planned comparisons instead of asking, through routine
ANCOVA, the omnibus question of whether means are the same for all three levels of the IV. Or, 
with some loss in sensitivity, these two questions could be asked post hoc after finding a main effect 
of the IV in ANCOVA. Planned and post hoc comparisons are discussed in Section 6.5.4.3.

6.2.4 Effects of Covariates

Analysis of covariance is based on a linear regression (Chapter 5) between the CV(s) and the DV, but 
there is no guarantee that the regression is statistically significant. The regression can be evaluated 
statistically by testing the CV(s) as a source of variance in DV scores, as discussed in Section 6.5.2. 
For instance, consider the test anxiety example where the CV is a pretest and the DV a posttest. To 
what extent is it possible to predict posttest anxiety from pretest anxiety, ignoring effects of differ-
ential treatment?

6.2.5 Effect Size

If a main effect or interaction of IVs is reliably associated with changes in the DV, the next logical 
question is, How much? How much of the variance in the adjusted DV scores—  adjusted for the 
CV(s)—is associated with the IV(s)? In the test anxiety example, if a main effect is found between 
the means for desensitization, relaxation training, and control group, one then asks: What propor-
tion of variance in the adjusted test anxiety scores is attributed to the IV? Effect sizes and their 
confidence intervals are demonstrated in Section 6.4.2, 6.5.4.4, and 6.6.2.1.

6.2.6 Parameter Estimates

If any main effects or interactions are statistically significant, what are the estimated population 
parameters (adjusted mean and standard deviation or confidence interval) for each level of the IV 
or combination of levels of the IVs? How do group scores differ, on the average, on the DV, after 
adjustment for CVs? For the test anxiety example, if there is a main effect of treatment, what is the 
average adjusted posttest anxiety score in each of the three groups? The reporting of parameter esti-
mates is demonstrated in Section 6.6.
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6.3 Limitations to Analysis of Covariance

6.3.1 Theoretical Issues

As with ANOVA, the statistical test in no way assures that changes in the DV were caused by the IV. 
The inference of causality is a logical rather than a statistical problem that depends on the manner
in which subjects are assigned to levels of the IV(s), manipulation of levels of the IV(s) by the 
researcher, and the controls used in the research. The statistical test is available to test hypotheses 
from both nonexperimental and experimental research, but only in the latter case is attribution of 
causality justified.

Choice of CVs is a logical exercise as well. As a general rule, one wants a very small number
of CVs, all correlated with the DV and none correlated with each other. The goal is to obtain 
maximum adjustment of the DV with minimum loss of degrees of freedom for error. Calculation 
of the regression of the DV on the CV(s) results in the loss of one degree of freedom for error for 
each CV. Thus, the gain in power from decreased sum of squares for error may be offset by the loss 
in degrees of freedom. When there is a substantial correlation between the DV and a CV, increased 
sensitivity due to reduced error variance offsets the loss of a degree of freedom for error. With multi-
ple CVs, however, a point of diminishing returns is quickly reached, especially if the CVs correlate
with one another (see Section 6.5.1).

In experimental work, a frequent caution is that the CVs must be independent of treatment. It 
is suggested that data on CVs be gathered before treatment is administered. Violation of this precept 
results in the removal of some portion of the effect of the IV on the DV—  that portion of the effect 
that is associated with the CV. In this situation, adjusted group means may be closer together than 
unadjusted means. Further, the adjusted means may be difficult to interpret.

In nonexperimental work, adjustment for prior differences in means associated with CVs is 
appropriate. If the adjustment reduces mean differences on the DV, so be it; unadjusted differences 
reflect unwanted influences (other than the IV) on the DV. In other words, mean differences on a CV 
associated with an IV are quite legitimately corrected for as long as the CV differences are not caused 
by the IV (Overall & Woodward, 1977).

When ANCOVA is used to evaluate a series of DVs after MANOVA, independence of the 
“CVs” and the IV is not required. Because CVs are actually DVs, it is expected that they be depen-
dent on the IV.

In all applications of ANCOVA, however, adjusted means must be interpreted with great 
caution because the adjusted mean DV score may not correspond to any situation in the real world. 
Adjusted means are the means that would have occurred if all subjects had the same scores on the 
CVs. Especially in nonexperimental work, such a situation may be so unrealistic as to make the 
adjusted values meaningless.

Sources of bias in ANCOVA are many and subtle and can produce either under-   or overad-
justment of the DV. At best, the nonexperimental use of ANCOVA allows you to look at IV–  DV 
relationships (noncausal) adjusted for the effects of CVs, as measured. If causal inference regarding 
effects is desired, there is no substitute for random assignment of subjects. Do not expect ANCOVA 
to permit causal inference of treatment effects with nonrandomly assigned groups. If random 
assignment is absolutely impossible, or if it breaks down because of nonrandom loss of subjects, 
be sure to thoroughly ground yourself in the literature regarding the use of ANCOVA in such cases, 
starting with Cook and Campbell (1979).
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Limitations to generalizability apply to ANCOVA as they do to ANOVA or any other statistical 
test. One can generalize only to those populations from which a random sample is taken. ANCOVA 
may, in some limited sense, sometimes adjust for a failure to randomly assign the sample to groups, but 
it does not affect the relationship between the sample and the population to which one can generalize.

6.3.2 Practical Issues

The ANCOVA model assumes reliability of CVs, linearity between pairs of CVs and between CVs 
and the DV, and homogeneity of regression, in addition to the usual ANOVA assumptions of nor-
mality and homogeneity of variance.

6.3.2.1 Unequal Sample Sizes, Missing Data, and Ratio of Cases to IVs

If scores on the DV are missing in a between-  subjects ANCOVA, this is reflected as the problem of 
unequal n, because all IV levels or combinations of IV levels do not contain equal numbers of cases. 
Refer to Section 6.5.4.2 for strategies to deal with unequal sample sizes. If some subjects are missing 
scores on CV(s), or if, in within-  subjects ANCOVA, some DV scores are missing for some subjects, this 
is more clearly a missing-  data problem. Refer to Chapter 4 for methods of dealing with missing data.

Sample sizes in each cell must be sufficient to ensure adequate power. Indeed, the point of 
including covariates in an analysis is often to increase power. There are many software programs 
available to calculate the required sample sizes depending on desired power and anticipated means 
and standard deviations in an ANOVA. Try a “statistical power” search on the Web to find some of 
them. These are easily applied to ANCOVA by substituting anticipated adjusted means or expected 
differences between adjusted means.

6.3.2.2 Absence of Outliers

Within each group, univariate outliers can occur in the DV or any one of the CVs. Multivariate 
outliers can occur in the space of the DV and CV(s). Multivariate outliers among the DV and CV(s) 
can produce heterogeneity of regression (Section 6.3.2.7), leading to rejection of ANCOVA or at 
least unreasonable adjustment of the DV. If CVs are serving as a convenience in most analyses, 
rejection of ANCOVA because of multivariate outliers is hardly convenient.

Refer to Chapter 4 for methods dealing with univariate outliers in the DV or CV(s) and multi-
variate outliers among the DV and CV(s). Tests for univariate and multivariate outliers within each 
group are demonstrated in Section 6.6.1.

6.3.2.3 Absence of Multicollinearity and Singularity

If there are multiple CVs, they should not be highly correlated with each other. Highly correlated 
CVs should be eliminated, both because they add no adjustment to the DV over that of other CVs 
and because of potential computational difficulties if they are singular or multicollinear. Most 
programs for ANCOVA automatically guard against statistical multicollinearity or singularity of 
CVs; however, logical problems with redundancy among CVs occur far short of that criterion. For 
purposes of ANCOVA, any CV with a squared multiple correlation (SMC) in excess of .50 may 
be considered redundant and deleted from further analysis. Calculation of SMCs among CVs is 
demonstrated in Section 6.6.1.5.
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6.3.2.4 Normality of Sampling Distributions

As in all ANOVA, it is assumed that the sampling distributions of means, as described in Chapter 3, 
are normal within each group. Note that it is the sampling distributions of means and not the raw 
scores within each cell that need to be normally distributed. Without the knowledge of population 
values, or production of actual sampling distributions of means, there is no way to test this assump-
tion. However, the central limit theorem suggests that, with large samples, sampling distributions 
are normal even if raw scores are not. With relatively equal sample sizes in groups, no outliers, and 
two-  tailed tests, robustness is expected with 20 degrees of freedom for error. (See Chapter 3 for 
calculation of error degrees of freedom.)

Larger samples are necessary for one-  tailed tests. With small, unequal samples or with outliers
present, it may be necessary to consider data transformation (cf. Chapter 4).

6.3.2.5 Homogeneity of Variance

It is assumed in ANCOVA that the variance of DV scores within each cell of the design is a separate
estimate of the same population variance. In ANCOVA, the covariances are also evaluated for 
homogeneity of variance. If a CV fails the test, either a more stringent test of main effects and 
interactions is required (e.g., a = .025, instead of .05) or the CV is dropped from the analysis. 
Section 4.1.5.3 provides guidelines and formal tests for evaluating homogeneity of variance and 
remedies for violation of the assumption.

6.3.2.6 Linearity

The ANCOVA model is based on the assumption that the relationship between each CV and the 
DV and the relationships among pairs of CVs are linear. As with multiple regression (Chapter 5), 
violation of this assumption reduces the power of the statistical test; errors in statistical decision 
making are in a conservative direction. Error terms are not reduced as fully as they might be, optimum
matching of groups is not achieved, and group means are incompletely adjusted. Section 4.1.5.2. 
discusses the methods for assessing linearity.

Where curvilinearity is indicated, it may be corrected by transforming some of the CVs. Or, 
because of the difficulties in interpreting transformed variables, you may consider eliminating a CV 
that produces nonlinearity. Or a higher order power of the CV can be used to produce an alternative 
CV that incorporates nonlinear influences.

6.3.2.7 Homogeneity of Regression

Adjustment of scores in ANCOVA is made on the basis of an average within-  cell regression 
coefficient. The assumption is that the slope of the regression between the DV and the CV(s) within 
each cell is an estimate of the same population regression coefficient, that is, that the slopes are 
equal for all cells.

Heterogeneity of regression implies that there is a different DV–  CV(s) slope in some cells of 
the design, or that there is an interaction between IV(s) and CV(s). If IV(s) and CV(s) interact, the re-
lationship between CV(s) and the DV is different at different levels of IV(s), and the CV adjustment 
that is needed for various cells is different. Figure 6.2 illustrates, for three groups, perfect homogene-
ity of regression (equality of slopes) and extreme heterogeneity of regression (inequality of slopes).
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If a between-  subjects design is used, test the assumption of homogeneity of regression accord-
ing to procedures described in Section 6.5.3. If any other design is used, and interaction between 
IVs and CVs is suspected, ANCOVA is inappropriate. If there is no reason to suspect an IV–  CV 
interaction with complex designs, it is probably safe to proceed with ANCOVA on the basis of the 
robustness of the model. Alternatives to ANCOVA are discussed in Section 6.5.5.

6.3.2.8 Reliability of Covariates

In ANCOVA, it is assumed that CVs are measured without error, and that they are perfectly reliable. 
In case of such variables as sex and age, the assumption can usually be justified. With self-  report of 
demographic variables and with variables measured psychometrically, such assumptions are not so 
easily made. And variables such as attitude may be reliable at the point of measurement, but fluctu-
ate over short periods.

In experimental research, unreliable CVs lead to loss of power and a conservative statistical test 
through underadjustment of the error term. In nonexperimental applications, however, unreliable CVs can 
lead to either under-   or overadjustment of the means. Group means may be either spread too far apart (Type 
I error) or compressed too closely together (Type II error). The degree of error depends on how unreliable 
the CVs are. In nonexperimental research, limit CVs to those that can be measured reliably (rxx 7 .8).

If fallible CVs are absolutely unavoidable, they can be adjusted for unreliability. However, 
there is no one procedure that produces appropriate adjustment under all conditions nor is there 
even agreement about which procedure is most appropriate for which application. Because of this 
disagreement and because procedures for correction require the use of sophisticated programs, they 
are not covered in this book. Interested readers can refer to Cohen, Cohen, West, and Aiken (2003) 
or to procedures discussed by St. Pierre (1978).

6.4  Fundamental Equations for Analysis 
of Covariance

The simplest application of analysis of covariance consists of a DV score, a grouping variable (IV), 
and a CV score for each subject. An example of such a small hypothetical data set is in Table 6.1. 
The IV is type of treatment given to a sample of nine learning-  disabled children. Three children 
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are assigned to one of the two treatment groups or to a control group, so that sample size of each 
group is three. For each of the nine children, two scores are measured, CV and DV. The CV is a 
pretest score on the reading subtest of the Wide Range Achievement Test (WRAT-A), measured 
before the study begins. The DV is a posttest score on the same test measured at the end of the 
study. The pretest score on the WRAT-A is the CV, because the goal of ANCOVA here is to adjust 
reading achievement scores after treatment (the DV) for individual differences in achievement be-
fore the scores can be affected by the treatment. This adjustment is expected to reduce variability in 
posttest scores within each of the treatment groups, resulting in a more powerful test of treatment 
differences.

The research question is: Does differential treatment of learning-  disabled children affect read-
ing scores, after adjusting for differences in the children’s prior reading ability? The sample size is, 
of course, inadequate for a realistic test of the research question but is convenient for illustration 
of the techniques in ANCOVA. The reader is encouraged to follow this example with hand calcula-
tions. Computer analyses using two popular programs follow this section.

6.4.1 Sums of Squares and Cross-  Products

Equations for ANCOVA are an extension of those for ANOVA, as discussed in Chapter 3. Averaged 
squared deviations from means—  variances—  are partitioned into variance associated with differ-
ent levels of the IV (between-  groups variance) and variance associated with differences in scores 
within groups (unaccounted for or error variance). Variance is partitioned by summing and squaring 
differences between scores and various means.

a
i
a

j
1Yij - GM22 = na

j
1Yj - GM22 + a

i
a

j
1Yij - Yj22 (6.1)

or

SStotal = SSbg + SSwg

TABLE 6.1 Small-Sample Data for Illustration 
of Analysis of Covariance

Groups

Treatment 1 Treatment 2 Control

Pre Post Pre Post Pre Post

85 100 86 92 90 95

80 98 82 99 87 80

92 105 95 108 78 82

Sums 257 303 263 299 255 257
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The total sum of squared differences between scores on Y (the DV) and the grand mean 
(GM) is partitioned into two components: sum of squared differences between group 
means (Yj) and the grand mean (i.e., systematic or between-  groups variability); and sum 
of squared differences between individual scores (Yij) and their respective group means 
(i.e., error).

In ANCOVA, there are two additional partitions. First, the differences between CV scores and 
their GM are partitioned into between-   and within-  groups sums of squares:

SStotal(x) = SSbg(x) + SSwg(x) (6.2)

The total sum of squared differences on the CV (X) is partitioned into differences be-
tween groups and differences within groups.

Similarly, the covariance (the linear relationship between the DV and the CV) is partitioned into 
sums of products associated with covariance between groups and sums of products associated with 
covariance within groups.

SPtotal = SPbg + SPwg (6.3)

A sum of squares involves taking deviations of scores from means (e.g., Xij - Xj or Yij - Yj),
squaring them, and then summing the squares over all subjects; a sum of products involves taking 
two deviations from the same subject (e.g., both Xij - Xj and Yij - Yj, multiplying them together 
(instead of squaring), and then summing the products over all subjects (Section 1.6.4). As discussed 
in Chapter 3, the means that are used to produce the deviations are different for the different sources 
of variance in the research design.

The partitions for the CV (Equation 6.2) and the partitions for the association between the 
CV and the DV (Equation 6.3) are used to adjust the sums of squares for the DV according to the 
following equations:

SS�bg = SSbg - c 1SPbg + SPwg22

SSbg1x2 + SSwg1x2 -
1SPwg22

SSwg1x2 d (6.4)

The adjusted between-  groups sum of squares (SS�bg) is found by subtracting from the 
unadjusted between-  groups sum of squares a term based on sums of squares associated 
with the CV, X, and sums of products for the linear relationship between the DV and the CV.

SS�wg = SSwg-
1SPwg)

2

SSwg(x)
(6.5)

The adjusted within-  groups sum of squares (SS�wg) is found by subtracting from the 
unadjusted within-  groups sum of squares a term based on within-  groups sums of 
squares and products associated with the CV and with the linear relationship between 
the DV and the CV.
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This can be expressed in an alternate form. The adjustment for each score consists of subtracting
from the deviation of that score from the grand mean a value that is based on the deviation of 
the corresponding CV from the grand mean on the CV, weighted by the regression coefficient for 
predicting the DV from the CV. Symbolically, for an individual score,

(Y - Y� ) = 1Y - GMy2 - By #x1X - GMx2 (6.6)

The adjustment for any subject’s score (Y - Y�) is obtained by subtracting the individual’s 
deviation on the CV (X − GMx) weighted by the regression coefficient, By·x from the 
unadjusted deviation score (Y − GMy).

Once adjusted sums of squares are found, mean squares are found as usual by dividing sums of 
squares by appropriate degrees of freedom. The only difference in the degrees of freedom between
ANOVA and ANCOVA is that in ANCOVA the error degrees of freedom are reduced by one for 
each CV because a degree of freedom is used up in estimating each regression coefficient.

For computational convenience, raw score equations rather than deviation equations are 
provided in Table 6.2 for Equations 6.4 and 6.5. Note that these equations apply only to equal-n
designs.

When applied to the data in Table 6.1, the six sums of squares and products are as follows:

SSbg =
(303)2 + (299)2 + (257)2

3
-

(859)2

(3)(3)
= 432.889

SSwg = (100)2 + (98)2 + (105)2 + (92)2 + (99)2 + (108)2 + (95)2 + (80)2

+ (82)2 -
(303)2 + (299)2 + (257)2

3
= 287.333

SSbg1x2 =
(257)2 + (263)2 + (255)2

3
-

(775)2

(3)(3)
= 11.556

SSwg1x2 = (85)2 + (80)2 + (92)2 + (86)2 + (82)2 + (95)2

+ (90)2 + (87)2 + (78)2 -
(257)2 + (263)2 + (255)2

3
= 239.333

SPbg =
(257)(303) + (263)(299) + (255)(257)

3
-

(775)(859)

(3)(3)
= 44.889

SPwg = (85)(100) + (80)(98) + (92)(105) + (86)(92) + (82)(99)

+ (95)(108) + (90)(105) + (87)(80) + (78)(82)

-
(257)(303) + (263)(299) + (255)(257)

3
= 181.667
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TABLE 6.2 Computation Equations for Sums of Squares and Cross-  Products in One-  Way  Between-  Subjects Analysis of Covariance

Source Sum of Squares for Y (DV) Sum of Squares for X (covariate) Sum of Products

Between
groups

SSbg =
a

k aan

Yb2

n
-
aak

a
n

Yb2

kn
SSbg(x) =

a
k aan

Xb2

n
-
aak

a
n

Xb2

kn
SPbg =

a
k aan

Yb aan

Xb
n

-
aak

a
n

Yb aak

a
n

Xb
kn

Within 
groups

SSwg = a
k

a
n

Y2 -
a

k aan

Yb2

n
SSwg(x) = a

k

a
n

X2 -
a

k aan

Xb2

n
SPwg = a

k

a
n

(XY) -
a

k aan

Yb aan

xb
n

Note: k = number of groups; n = number of subjects per group.
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These values are conveniently summarized in a sum-of-squares and cross-  products matrix (cf. 
Chapter 1). For the between-  groups sums of squares and cross-  products,

Sbg = c 11.556 44.889

44.889 432.889
d

The first entry (first row and first column) is the sum of squares for the CV and the last (second 
row, second column) is the sum of squares for the DV; the sum of products is shown in the   off-
diagonal portion of the matrix. For the within-  groups sums of squares and cross-  products, arranged 
similarly,

Swg = c 239.333 181.667

181.667 287.333
d

From these values, the adjusted sums of squares are found as per Equations 6.4 and 6.5.

SS�bg = 432.889 - c (44.889 + 181.667)2

11.556 + 239.333
-

(181.667)2

239.333
d = 366.202

SS�wg = 287.333 -
(181.667)2

239.333
= 149.438

6.4.2 Significance Test and Effect Size

These values are entered into a source table such as Table 6.3. Degrees of freedom for between-
groups variance are k - 1, and for within-  groups variance N - k - c (N = total sample size, k =
number of levels of the IV, and c = number of CVs).

As usual, mean squares are found by dividing sums of squares by appropriate degrees of 
freedom. The hypothesis that there are no differences among groups is tested by the F ratio formed 
by dividing the adjusted mean square between groups by the adjusted mean square within groups.

F =
183.101

29.888
= 6.13

From a standard F table, we find that the obtained F of 6.13 exceeds the critical F of 5.79 at 
a = .05 with 2 and 5 df. We, therefore, reject the null hypothesis of no change in WRAT reading 
scores associated with the three treatment levels, after adjustment for pretest reading scores.

TABLE 6.3 Analysis of Covariance for Data of Table 6.1

Source of Variance Adjusted SS df MS F

Between groups 366.202 2 183.101 6.13*

Within groups 149.438 5 29.888

*p 6 .05.
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The effect size then is assessed using h2.

h2 =
SS�bg

SS�bg + SS�wg
(6.7)

For the sample data,

h2 =
366.202

366.202 + 149.438
= .71

We conclude that 71% of the variance in the adjusted DV scores (WRAT-R) is associated with 
treatment. Confidence intervals around h2, a form of R2, are available through Smithson’s (2003) 
IBM SPSS or SAS files. Section 6.6.2 demonstrates use of Smithson’s SAS program for finding 
effect sizes and their confidence limits. Section 7.6.2 demonstrates the use of Smithson’s IBM SPSS 
program for finding effect sizes and their confidence limits. Using NoncF3.sps, the 95% confidence 
interval for partial h2 ranges from 0 to .83.

ANOVA for the same data appears in Table 6.4. Compare the results with those of ANCOVA 
in Table 6.3. ANOVA produces larger sums of squares, especially for the error term. There is 
also one more degree of freedom for error because there is no CV. However, in ANOVA the null 
hypothesis is retained while in ANCOVA it is rejected. Thus, use of the CV has reduced the “noise” 
in the error term for this example.

ANCOVA extends to factorial and within-  subjects designs (Section 6.5.4.1), unequal n
(Section 6.5.4.2), and multiple CVs (Section 6.5.2). In all cases, the analysis is done on adjusted, 
rather than raw, DV scores.

6.4.3 Computer Analyses of Small-Sample Example

Tables 6.5 and 6.6 demonstrate analyses of covariance of this small data set using IBM SPSS GLM 
and SAS GLM. Minimal output is requested for each of the programs, although much more is 
available upon request.

In IBM SPSS GLM UNIANOVA (General Factorial in the menu), the DV (POST) is specified 
in the ANOVA paragraph followed BY the IV (TREATMNT) WITH the CV (PRE) as seen in 
Table 6.5. Some default syntax generated by the menu system (but not necessary for analysis) is not 
shown here.

The output is an ANOVA source table with some extraneous sources of variation. The 
only sources of interest are PRE, TREATMNT, and Error (S/A). Sums of squares for PRE and 

TABLE 6.4 Analysis of Variance for Data of Table 6.1

Source of Variance SS df MS F

Between groups 432.889 2 216.444 4.52

Within groups 287.333 6 47.889



212 C H A P T E R  6

TREATMNT are adjusted for each other when Type III Sums of Squares (the default in GLM) 
are used. The Error sum of squares also is adjusted (compare with Table 6.3). The Corrected Total 
is inappropriate for calculating h2, instead form an adjusted total by summing the adjusted SS for 
TREATMNT and Error (Eq. 6.7). The R Squared and Adjusted R Squared shown here are not
measures of effect size for treatment.

SAS GLM requires the IV to be specified in the class instruction. Then a model instruc-
tion is set up, with the DV on the left-  hand side of the equation, and the IV and the CV on the right-
hand side as seen in Table 6.6. Two source tables are provided, one for the problem as a regression 
and the other for the problem as a more standard ANOVA, both with the same Error term.

The first test in the regression table asks if there is significant prediction of the DV by the 
combination of the IV and the CV. The output resembles that of standard multiple regression 
(Chapter 5) and includes R-Square (also inappropriate), the unadjusted Mean on POST (the 
DV), the Root MSE (square root of the error mean square), and Coeff Var the coefficient of 
variation (100 times the Root MSE divided by the mean of the DV).

In the ANOVA-  like table, two forms of tests are given by default, labeled Type I SS
and Type III SS. The sums of squares for TREATMNT are the same in both forms because 
both adjust treatment for the CV. In Type III SS, the sum of squares for the CV (PRE) is 

TABLE 6.5 Syntax and Selected IBM SPSS GLM Output for Analysis of Covariance 
on Sample Data in Table 6.1

UNIANOVA
POST BY TREATMNT WITH PRE
/METHOD = SSTYPE(3)
/INTERCEPT = INCLUDE
/CRITERIA = ALPHA(.05)
/DESIGN = PRE TREATMNT

Univariate Analysis of Variance

Tests of Between-Subjects Effects

Dependent Variable: POST

Source

Type III 
Sum of 
Squares df

Mean
Square F Sig.

Corrected Model 570.784a 3 190.261 6.366 .037
Intercept 29.103 1 29.103 .974 .369
PRE 137.895 1 137.895 4.614 .084
TREATMNT 366.201 2 183.101 6.126 .045
Error 149.439 5 29.888
Total 82707.000 9
Corrected Total 720.222 8

a. R Squared = .793 (Adjusted R Squared = .668)
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adjusted for treatment, but the sum of squares for the CV is not adjusted for the effect of treatment 
in Type I SS.

6.5 Some Important Issues

6.5.1 Choosing Covariates

One wants to use an optimal set of CVs if several are available. When too many CVs are used and 
they are correlated with each other, a point of diminishing returns in adjustment of the DV is quickly 

TABLE 6.6 Syntax and SAS GLM Output for Analysis of Covariance 
on Sample Data in Table 6.1

proc glm data=SASUSER.SS_ANCOV;
class TREATMNT;
model POST = PRE TREATMNT

run;

General Linear Models Procedure
Class Level Information

Class Levels Values

TREATMNT 3 1 2 3

Number of Observations Read 9
Number of Observations Used 9

Dependent Variable: POST

Source DF
Sum of 

Squares
Mean

Square F Value Pr > F

Model   3 570.7835036 190.2611679 6.37 0.0369
Error   5 149.4387187 29.8877437
Corrected Total   8 720.2222222

R-Square Coeff Var Root MSE POST Mean

0.792510 5.727906 5.466968 95.444444

Source DF Type I SS Mean Square F Value Pr > F

PRE   1 204.5822754 204.5822754 6.85 0.0473
TREATMNT   2 366.2012282 183.1006141 6.13 0.0452

Source DF Type III SS Mean Square F Value Pr > F

PRE   1 137.8946147 137.8946147 4.61 0.0845
TREATMNT   2 366.2012282 183.1006141 6.13 0.0452
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reached. Power is reduced because numerous correlated CVs subtract degrees of freedom from the 
error term while not removing commensurate sums of squares for error. Preliminary analysis of the 
CVs improves chances of picking a good set.

Statistically, the goal is to identify a small set of CVs that are uncorrelated with each other 
but correlated with the DV. Conceptually, one wants to select CVs that adjust the DV for predictable 
but unwanted sources of variability. It may be possible to pick the CVs on theoretical grounds or 
on the basis of knowledge of the literature regarding important sources of variability that should be 
controlled.

If theory is unavailable or the literature is insufficiently developed to provide a guide to 
important sources of variability in the DV, statistical considerations assist the selection of CVs. One 
strategy is to look at correlations among CVs and select one from among each of those groups of 
potential CVs that are substantially correlated with each other, perhaps by choosing the one with the 
highest correlation with the DV. Alternatively, stepwise regression may be used to pick an optimal set.

If N is large and power is not a problem, it may still be worthwhile to find a small set of CVs 
for the sake of parsimony. Useless CVs are identified in the first ANCOVA run. Then further runs 
are made, each time eliminating CVs, until a small set of useful CVs is found. The analysis with the 
smallest set of CVs is reported, but mention is made in the Results section of the discarded CV(s) 
and the fact that the pattern of results did not change when they were eliminated.

6.5.2 Evaluation of Covariates

CVs in ANCOVA can themselves be interpreted as predictors of the DV. From a sequential regres-
sion perspective (Chapter 5), each CV is a high-  priority, continuous IV with remaining IVs (main 
effects and interactions) evaluated after the relationship between the CV and the DV is removed.

Significance tests for CVs assess their utility in adjusting the DV. If a CV is significant, it 
provides adjustment of the DV scores. For the example in Table 6.5, the CV, PRE, does not provide 
significant adjustment to the DV, POST, with F(1, 5) = 4.61, p > .05. PRE is interpreted in the same 
way as any IV in multiple regression (Chapter 5).

With multiple CVs, all CVs enter the multiple regression equation at once and, as a set, are 
treated as a standard multiple regression (Section 5.5.1). Within the set of CVs, the significance of 
each CV is assessed as if it entered the equation last; only the unique relationship between the CV 
and the DV is tested for significance after overlapping variability with other CVs, in their relation-
ship with the DV, is removed. Therefore, although a CV may be significantly correlated with the 
DV when considered individually, it may add no significant adjustment to the DV when considered 
last. When interpreting the utility of a CV, it is necessary to consider correlations among CVs, cor-
relations between each CV and the DV, and significance levels for each CV as reported in ANCOVA 
source tables. Evaluation of CVs is demonstrated in Section 6.6.

Unstandardized regression coefficients, provided by most canned computer programs on 
request, have the same meaning as regression coefficients described in Chapter 5. However, with 
unequal n, interpretation of the coefficients depends on the method used for adjustment. When 
Method 1 (standard multiple regression—  see Table 6.10 and Section 6.5.4.2) is used, the signifi-
cance of the regression coefficients for CVs is assessed as if the CV entered the regression equation 
after all main effects and interactions. With other methods, however, CVs enter the equation first, or 
after main effects but before interactions. The coefficients are evaluated at whatever point the CVs 
enter the equation.
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6.5.3 Test for Homogeneity of Regression

The assumption of homogeneity of regression is that the slopes of the regression of the DV on the 
CV(s) (the regression coefficients or B weights as described in Chapter 5) are the same for all cells 
of a design. Both homogeneity and heterogeneity of regression are illustrated in Figure 6.2. Because 
the average of the slopes for all cells is used to adjust the DV, it is assumed that the slopes do not 
differ significantly either from one another or from a single estimate of the population value. If the 
null hypothesis of equality among slopes is rejected, the analysis of covariance is inappropriate and 
an alternative strategy as described in Sections 6.3.2.7 and 6.5.5 should be used.

Hand calculation of the test of homogeneity of regression (see, e.g., Keppel & Wickens, 2004, 
or Tabachnick & Fidell, 2007) is extremely tedious. The most straightforward program for testing 
homogeneity of regression is IBM SPSS MANOVA (available only in syntax mode.)

Special language is provided for the test in IBM SPSS MANOVA, as shown in Table 6.7. The 
inclusion of the IV by CV interaction (PRE BY TREATMNT) as the last effect in the DESIGN
instruction, after the CV and the IV, provides the test for homogeneity of regression. Placing this 
effect last and requesting METHOD=SEQUENTIAL ensures that the test for the interaction is 
adjusted for the CV and the IV. The ANALYSIS instruction identifies POST as the DV. The test for 
PRE BY TREATMNT shows that there is no violation of homogeneity of regression.

Programs based on the general linear model (IBM SPSS and SAS GLM) test for homogeneity 
of regression by evaluating the CV(s) by IV(s) interaction (e.g., PRE by TREATMNT) as the last 
effect entering a model (Chapter 5).

6.5.4 Design Complexity

Extension of ANCOVA to factorial between-  subjects designs is straightforward as long as sample 
sizes within cells are equal. Partitioning of sources of variance follows ANOVA (cf. Chapter 3) 

TABLE 6.7 IBM SPSS MANOVA Syntax and Selected Output for Homogeneity of Regression

MANOVA
POST BY TREATMNT(1, 3) WITH PRE
/PRINT=SIGNIF(BRIEF)
/ANALYSIS = POST
/METHOD=SEQUENTIAL
/DESIGN PRE TREATMNT PRE BY TREATMNT.

Manova

* * * * * * A n a l y s i s  of V a r i a n c e -- design 1 * * * * * *

Tests of Significance for POST using SEQUENTIAL Sums of Squares
Source of Variation SS DF MS F Sig of F

WITHIN+RESIDUAL 146.15 3 48.72
PRE 204.58 1 204.58 4.20 .133
TREATMNT 366.20 2 183.10 3.76 .152
PRE BY TREATMNT 3.29 2 1.64 .03 .967
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with “subjects nested within cells” as the simple error term. Sums of squares are adjusted for the 
average association between the CV and the DV in each cell, just as they are for the one-  way design 
demonstrated in Section 6.4.

There are, however, two major design complexities that arise: within-  subjects IVs and unequal 
sample sizes in the cells of a factorial design. And, just as in ANOVA, contrasts are appropriate for 
a significant IV with more than two levels and assessment of effect size is appropriate for all effects.

6.5.4.1  Within-Subjects and Mixed Within-Between Designs

Just as a DV can be measured once or repeatedly, so also a CV can be measured once or repeatedly. 
In fact, the same design may contain one or more CVs measured once and other CVs measured 
repeatedly.

A CV that is measured only once does not provide adjustment to a within-  subjects effect 
because it provides the same adjustment (equivalent to no adjustment) for each level of the effect. 
The CV does, however, adjust any between-  subjects effects in the same design. Thus ANCOVA 
with one or more CVs measured once is useful in a design with both between-   and within-  subjects
effects for increasing the power of the test of between-  subjects IVs. Both between-   and within-
subjects effects are adjusted for CVs measured repeatedly.

ANOVA and ANCOVA with repeated measures (within-  subjects effects) are more complicated
than designs with only between-  subjects effects. One complication is that some programs cannot
handle repeatedly measured CVs. A second complication is the assumption of sphericity, as 
discussed in Chapter 8 (which also discusses alternatives in the event of violation of the assumption).
A third complication (more computational than conceptual) is development of separate error terms 
for various segments of within-  subjects effects.

6.5.4.1.1 Same Covariate(s) for All Cells
There are two approaches to the analysis of designs with at least one within-  subjects IV, the 

traditional approach and the general linear model approach. In the traditional approach, the within-
subjects effects in the designs are not adjusted for CVs. In the GLM approach, the repeated measures 
are adjusted by the interaction of the CV(s) with the within-  subjects effects. IBM SPSS MANOVA 
takes the traditional approach to ANCOVA.2 Programs labeled GLM in SAS and IBM SPSS use the 
general linear model approach. All programs provide adjusted marginal and cell means. Tabachnick 
and Fidell (2007) show examples for both these approaches. It is not clear that the GLM strategy 
generally makes much sense or enhances power in ANCOVA. There is usually no a priori reason to 
expect a different relationship between the DV and the CV for different levels of the within-  subjects
IV(s). If no such relationship is present, the loss of degrees of freedom for estimating this effect 
could more than offset the reduction in sum of squares for error and result in a less powerful test of 
the within-  subjects effects. When using a GLM program, you could rerun the analysis without the 
CV to obtain the traditional within-  subjects portion of the source table.

6.5.4.1.2 Varying Covariate(s) Over Cells
There are two common designs where covariates differ for cells: matched randomized blocks 

designs where cases in the cells of a within-  subjects IV actually are different (cf. Section 3.2.3), and 

2Covariates that are listed after WITH (see Table 6.7) are in parentheses if they do not vary over trials in within-  subjects designs.
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designs where the covariate is reassessed prior to the administration of each level of within-  subjects
IV(s). In addition, a stepdown analysis uses higher priority DVs as covariates, which change for 
each level of the within-  subjects IV. When the covariates differ for levels of the within-  subjects 
IV(s), they are potentially useful in enhancing power for all effects.

In IBM SPSS MANOVA, covariates that vary over within-  subjects levels are listed without 
parentheses after the WITH instruction (see Table 6.7). However, GLM programs and IBM SPSS 
MIXED MODELS have no special syntax for specifying a covariate that changes with each level 
of the within-  subjects IV. Instead, the problem is set up as a randomized-  groups design with one IV 
representing cases where measurements for each trial are on a separate line. For this example, each 
case has two lines, one for each trial. Trial number, covariate score, and DV score are on each line. 
The within-  subjects design is simulated by considering both cases and trials randomized-  groups 
IVs. Table 6.8 shows a hypothetical data set arranged for this analysis.

Table 6.9 shows SAS GLM setup and output for this analysis. Because no interactions are re-
quested, the CASE by T interaction is the error term. Type III sums of squares (ss3) are requested 
to limit output.

Used this way, the SAS GLM source table provides a test of CASE as an IV, usually not 
available in a within-  subjects design. However, there is no test for sphericity using this setup, 
relevant if there are more than two levels of the within-  subjects IV. Therefore, some alternative to a 
univariate within-  subjects analysis, such as trend analysis, is warranted if there is reason to believe 
that sphericity might be violated. This issue is discussed in detail in Section 8.5.1.

TABLE 6.8 Hypothetical Data 
for Within-Subjects ANCOVA 
With Varying Covariate, One-  
Line-Per-Trial Setup

CASE T X Y
1 1 4 9
1 2 3 15
2 1 8 10
2 2 6 16
3 1 13 14
3 2 10 20
4 1 1 6
4 2 3 9
5 1 8 11
5 2 9 15
6 1 10 10
6 2 9 9
7 1 5 7
7 2 8 12
8 1 9 12
8 2 9 20
9 1 11 14
9 2 10 20
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proc glm data=SASUSER.SPLTPLOT;
class T CASE;
model Y = T CASE X / ss3;
lsmeans T/;

means T;
run;

Class Level Information

Class Levels Values

CASE 9 1 2 3 4 5 6 7 8 9
T 2 1 2

Number of Observations Read 18
Number of Observations Used 18

The GLM Procedure

Dependent Variable: Y

Source DF Sum of Squares Mean Square F Value Pr > F

Model 10 295.5359231 29.5535923 7.93 0.0059
Error     7 26.07518880     3.7250269
Corrected Total 17 321.6111111

R-Square  Coeff Var Root MSE Y Mean

0.918923 15.17056 1.930033 12.72222

Source DF Type III SS Mean Square F Value Pr > F

T 1 99.1581454 99.1581454 26.62 0.0013
CASE 8 105.1901182 13.1487648 3.53 0.0569
X 1 0.7025898     0.7025898 0.19 0.6771
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6.5.4.2 Unequal Sample Sizes

Two problems arise in a factorial design if cells have unequal numbers of scores. First, there is 
ambiguity regarding a marginal mean from cells with unequal n. Is the marginal mean the mean of 
the means, or is the marginal mean the mean of the scores? Second, the total sums of squares for all 
effects is greater than SStotal and there is ambiguity regarding assignment of overlapping sums of 
squares to sources. The design has become nonorthogonal and tests for main effects and interactions 
are no longer independent (cf. Section 3.2.5.3). The problem generalizes directly to ANCOVA.

If equalizing cell sizes by random deletion of cases is undesirable, there are a number of 
strategies for dealing with unequal n. The choice among strategies depends on the type of research. 
Of the three major methods described by Overall and Spiegel (1969), Method 1 is usually appropri-
ate for experimental research, Method 2 for survey or nonexperimental research, and Method 3 for 
research in which the researcher has clear priorities for effects.

Table 6.10 summarizes research situations calling for different methods and notes some of the 
jargon used by various sources. As Table 6.10 reveals, there are a number of ways of viewing these 
methods; the terminology associated with these viewpoints by different authors is quite different 
and, sometimes, seemingly contradictory. Choice of method affects adjusted (estimated) means as 
well as significance tests of effects.

Differences in these methods are easiest to understand from the perspective of multiple 
regression (Chapter 5). Method 1 is like standard multiple regression with each main effect and 
interaction assessed after adjustment is made for all other main effects and interactions, as well as 
for CVs. The same hypotheses are tested as in the unweighted-  means approach, where each cell 
mean is given equal weight regardless of its sample size. Interactions are listed after their constitu-
ent main effects even in Method 1, because order of listing may affect parameter estimates. This is 
the recommended approach for experimental research unless there are reasons for doing otherwise.

Reasons include a desire to give heavier weighting to some effects than others because of 
importance, or because unequal population sizes have resulted from treatments that occur naturally. 
(If a design intended to be equal-n ends up grossly unequal, the problem is not type of adjustment 
but, more seriously, differential dropout.)

The GLM Procedure
Least Squares Means

T Y LSMEAN
1 10.3575606
2 15.0868839

The GLM Procedure

Level of -----------Y----------- -----------X-----------

T N Mean Std Dev Mean Std Dev

1 9 10.3333333 2.78388218 7.66666667 3.74165739
2 9 15.1111111 4.42844342 7.44444444 2.78886676

TABLE 6.9 Continued
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Method 2 imposes a hierarchy of testing effects where main effects are adjusted for each other 
and for CVs, while interactions are adjusted for main effects, for CVs, and for same-   and lower-  level 
interactions. (The SAS implementation also makes adjustments for some higher-  order effects.) The 
order of priority for adjustment emphasizes main effects over interactions and lower-  order interactions 
over higher-  order interactions. This is labeled METHOD=EXPERIMENTAL in IBM SPSS MANOVA 
although it is normally used in nonexperimental work when there is a desire to weight marginal means 
by the sizes of samples in cells from which they are computed. The adjustment assigns heavier weighting 
to cells with larger sample sizes when computing marginal means and lower-  order interactions. Method 
3 allows the researcher to set up the sequence of adjustment of CVs, main effects, and interactions.

All programs in the reviewed packages perform ANCOVA with unequal sample sizes. SAS 
GLM and IBM SPSS MANOVA and GLM provide for design complexity and flexibility in adjust-
ment for unequal n.

Some researchers advocate the use of Method 1 always. Because Method 1 is the most con-
servative, you are unlikely to draw criticism by using it. On the other hand, you risk loss of power 
with a nonexperimental design and perhaps interpretability and generalizability by treating all cells 
as if they had equal sample sizes.

6.5.4.3 Specific Comparisons and Trend Analysis

If there are more than two levels of an IV, the finding of a significant main effect or interaction 
in ANOVA or ANCOVA is often insufficient for full interpretation of the effects of IV(s) on the 
DV. The omnibus F test of a main effect or interaction gives no information as to which means 
are significantly different from which other means. With a qualitative IV (whose levels differ in 
kind), the researcher generates contrast coefficients to compare some adjusted mean(s) against other 

TABLE 6.10 Terminology for Strategies for Adjustment for Unequal Cell Size

Research Type
Overall and 
Spiegel (1969)

IBM SPSS 
GLM

IBM SPSS 
MANOVA SAS

1. Experiments designed to 
be equal-n, with random 
dropout. All cells equally 
important.

Method 1 METHOD=
SSTYPE(3)
—(default) 
METHOD=
SSTYPE(4)a

METHOD=
UNIQUE
—(default) 

TYPE
III and
TYPE
IVa

2. Nonexperimental research 
in which sample sizes reflect 
importance of cells. Main 
effects have equal priority.b

Method 2 METHOD=
SSTYPE(2)

METHOD=
EXPERIMENTAL

TYPE
II

3. Like number 2 above, 
except all effects have 
unequal priority.

Method 3 METHOD=
SSTYPE(1)

METHOD=
SEQUENTIAL

TYPE I

aTypes III and IV differ only if there are missing cells.
bThe programs take different approaches to adjustment for interaction effects.
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adjusted means. With a quantitative IV (whose levels differ in amount rather than in kind), trend 
coefficients are used to see if adjusted means of the DV follow a linear or quadratic pattern, say, 
over increasing levels of the IV.

As with ANOVA (Chapter 3), specific comparisons or trends can be either planned as part of 
the research design, or tested post hoc as part of a data-  snooping procedure after omnibus analyses 
are completed. For planned comparisons, protection against inflated Type I error is achieved by 
running a small number of comparisons instead of omnibus F (where the number does not exceed 
the available degrees of freedom) and by working with an orthogonal set of coefficients. For post 
hoc comparisons, the probability of Type I error increases with the number of possible comparisons, 
so adjustment is made for inflated a error.

Comparisons are achieved by specifying coefficients and running analyses based on these 
coefficients. The comparisons can be simple (between two marginal or cell means with the other 
means left out) or complicated (where means for some cells or margins are pooled and contrasted 
with means for other cells or margins, or where coefficients for trend—  linear, quadratic, etc.—are 
used). The difficulty of conducting comparisons depends on the complexity of the design and the 
effect to be analyzed. Comparisons are more difficult if the design has within-  subjects IVs, either 
alone or in combination with between-  subjects IVs, where problems arise from the need to develop 
a separate error term for each comparison. Comparisons are more difficult for interactions than for 
main effects because there are several approaches to comparisons for interactions. Some of these 
issues are reviewed in Section 8.5.2.

Pairwise tests of adjusted means are also available through options in IBM SPSS MANOVA 
and SAS GLM. In addition, SAS GLM provides several tests that incorporate post hoc adjustments, 
such as Bonferroni.

Table 6.11 shows syntax and location of output for orthogonal contrasts and pairwise compar-
isons with a request for Tukey adjustment though IBM SPSS MANOVA and GLM, and SAS GLM.

The orthogonal comparisons are based on coefficients for testing the linear and quadratic 
trends of TREATMNT, respectively.3 (Because the IV in this sample is not quantitative, trend 
analysis is inappropriate; trend coefficients are used here for illustration only.) Note that the first 
(linear) comparison also is a “pairwise” comparison; the first (treatment 1) group is compared with 
the third (control) group.

The printed output of all the programs assumes that orthogonal comparisons are planned. 
Otherwise, some adjustment needs to be made by hand for inflation of Type I error rate when 
post hoc tests are done. Equation 3.24 shows the Scheffé adjustment for a single IV. Obtained F
is compared with an adjusted critical F produced by multiplying the tabled F value (in this case 
5.79 for 2 and 5 df, a = .05) by the degrees of freedom associated with the number of cells, or 
k − 1. For this example, the adjusted critical F value is 2(5.79) = 11.58, and the difference between 
the first treatment group and the control group (F = 11.00) fails to reach statistical significance, 
although it did so as a planned comparison.

In designs with more than one IV, the size of the Scheffé adjustment to critical F for post 
hoc comparisons depends on the degrees of freedom for the effect being analyzed. For a two-  way 
design, for example, with IVs A and B, adjusted critical F for A is tabled critical F for A multiplied 
by (a − 1) (where a is the number of levels of A); adjusted critical F for B is tabled critical F for B

3Coefficients for orthogonal polynomials are available in most standard ANOVA texts such as Tabachnick and Fidell (2007), 
Keppel and Wickens (2004), or Brown, Michels, and Winer (1991).
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Type of Comparison Program Syntax Section of Output Name of Effect

Orthogonal IBM SPSS GLM UNIANOVA
POST BY TREATMNT WITH PRE
/METHOD = SSTYPE(3)
/INTERCEPT = INCLUDE
/CRITERIA = ALPHA(.05)
/LMATRIX “LINEAR” TREATMNT 1 0 −1
/LMATRIX “QUADRATIC” TREATMNT 1 −2 1
/DESIGN = PRE TREATMNT.

Custom 

Hypothesis

Tests:

Test Results

Contrast

IBM SPSS 
MANOVA

MANOVA
POST BY TREATMNT(1,3) WITH PRE
/METHOD = UNIQUE
/PARTITION (TREATMNT)
/CONTRAST(TREATMNT)=SPECIAL(1  1  1,

1  0  -1,
1 -2  1)

/ANALYSIS POST
/DESIGN = PRE TREATMNT(1) TREATMNT(2).

Tests of 
significance
for POST 
using UNIQUE 
sums of 
squares

TREATMNT(1), 
TREATMNT(2)

SAS GLM PROC GLM DATA=SASUSER.SS_ANCOV;
CLASS TREATMNT;
MODEL POST = TREATMNT PRE;
CONTRAST ’LINEAR’ TREATMNT 1 0 -1;
CONTRAST ’QUADRATIC’ TREATMNT 1 -2 1;

run;

Contrast linear,
quadratic

Pairwise with 
Tukey

PSS GLM Tukey adjustment not available with covariatesa

IBM SPSS 
MANOVA

Pairwise comparisons with adjustments not available.

SAS GLM PROC GLM DATA=SASUSER.SS_ANCOV ;
CLASS TREATMNT;
MODEL POST = TREATMNT PRE ;
LSMEANS TREATMNT / ADJUST=TUKEY P ;

RUN;

Least
Squares
Means for 
effect
TREATMNT

i/j

aLSD, Sidak, and Bonferroni are available as adjustments for post hoc pairwise comparisons in the EMMEANS instruction.
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multiplied by (b − 1) adjusted critical F for the AB interaction is tabled critical F for the interaction 
multiplied by (a − 1)(b − 1).4

If appropriate programs are unavailable, hand calculations for specific comparisons (includ-
ing pairwise comparisons) are not particularly difficult, as long as sample sizes are equal for each 
cell. Equation 3.23 is for hand calculation of comparisons; to apply it, obtain the adjusted cell or 
marginal means and the error mean square from an omnibus ANCOVA program.

6.5.4.4 Effect Size

Once an effect is found to be statistically significant, the next logical question is, How important is 
the effect? It is becoming common now to report effect sizes and their confidence limits even when 
effects are not statistically significant. Importance is usually assessed as the percentage of variance 
in the DV that is associated with the IV. For one-  way designs, the strength of association between 
an effect and the DV (i.e., effect size) for adjusted sums of squares is found using Equation 6.7. For 
factorial designs, one uses an extension of Equation 6.7.

The numerator for h2 is the adjusted sum of squares for the main effect or interaction being 
evaluated; the denominator is the total adjusted sum of squares. The total adjusted sum of squares 
includes adjusted sums of squares for all main effects, interactions, and error terms, but does not 
include components for CVs or the mean, which are typically printed out by computer programs. To 
find the strength of association between an effect and the adjusted DV scores, then,

h2 =
SS�effect

SS�total
(6.8)

In multifactorial designs, the size of h2 for a particular effect is, in part, dependent on the 
strength of other effects in the design. In a design where there are several main effects and interac-
tions, h2 for a particular effect is diminished because other effects increase the size of the denomina-
tor. An alternative method of computing h2 (partial h2) uses in the denominator only the adjusted 
sum of squares for the effect being tested and the adjusted sum of squares for the appropriate error 
term for that effect (see Chapter 3 for appropriate error terms).

partial h2 =
SS�effect

SS�effect + SS�error
(6.9)

Confidence intervals around partial h2 (equivalent to h2 in a one-  way design) are demonstrated in 
Section 6.6.2.1.

6.5.5 Alternatives to ANCOVA

Because of the stringent limitations to ANCOVA and potential ambiguity in interpreting results of 
ANCOVA, alternative analytical strategies are often sought. The availability of alternatives depends 
on such issues as the scale of measurement of the CV(s) and the DV, the time that elapses between 
measurement of the CV and assignment to treatment, and the difficulty of interpreting results.

4The adjusted critical F for an interaction is insufficient if a great many post hoc comparisons are undertaken; it should 
suffice, however, if moderate numbers are performed. If a great many are undertaken, multiply by (ab − 1) instead of (a − 1)
(b − 1).
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When the CV(s) and the DV are measured on the same scale, two alternatives are available: 
use of difference (change) scores and conversion of the pretest and posttest scores into a within-
subjects IV. In the first alternative, the difference between a pretest score (the previous CV) and a 
posttest score (the previous DV) is computed for each subject and used as the DV in ANOVA. If 
the research question is phrased in terms of “change,” then difference scores provide the answer. 
For example, suppose self-  esteem is measured both before and after a year of either belly dance 
or aerobic dance classes. If difference scores are used, the research question is: Does one year of 
belly dance training change self-  esteem scores more than participation in aerobic dance classes? If 
ANCOVA is used, the research question is: Do belly dance classes produce greater self-  esteem than 
aerobic dance classes after adjustment for pretreatment differences in self-  esteem?

A problem with change scores and mixed ANOVA is ceiling and floor effects (or, more gener-
ally, skewness). A change score (or interaction) may be small because the pretest score is very near the 
end of the scale and no treatment effect can change it very much, or it may be small because the effect 
of treatment is small—  the result is the same in either case and the researcher is hard pressed to decide 
between them. Further, when the DV is skewed, a change in a mean also produces a change in the shape 
of the distribution and a potentially misleading significance test (Jamieson & Howk, 1992). Another 
problem with difference scores is their potential unreliability. They are less reliable than either the pre-  
or posttest scores, so they are not to be recommended unless used with a highly reliable test (Harlow, 
2002). If either ANCOVA or ANOVA with change scores is possible, then ANCOVA is usually the 
better approach when the data are skewed and transformations are not undertaken (Jamieson, 1999).

When CVs are measured on any continuous scale, other alternatives are available: randomized
blocks and blocking. In the randomized-  block design, subjects are matched into blocks—
equated—  on the basis of scores on what would have been the CV(s). Each block has as many 
subjects as the number of levels of the IV in a one-  way design or number of cells in a larger design 
(cf. Section 3.2.3). Subjects within each block are randomly assigned to levels or cells of the IV(s) 
for treatment. In the analytic phase, subjects in the same block are treated as if they were the same 
person, in a within-subjects analysis.

Disadvantages to this approach are the strong assumption of sphericity of a within-  subjects
analysis and the loss of degrees of freedom for error without commensurate loss of sums of squares 
for error if the variables used to block are not highly related to the DV. In addition, implementation
of the randomized-  block design requires the added step of equating subjects before randomly 
assigning them to treatment, a step that may be inconvenient, if not impossible, in some applications.

Another alternative is the use of blocking. Subjects are measured on potential CV(s) and then 
grouped according to their scores (e.g., into groups of high, medium, and low self-  esteem on the 
basis of pretest scores). The groups of subjects become the levels of another full-  scale IV that are 
crossed with the levels of the IV(s) of interest in factorial design. Interpretation of the main effect 
of the IV of interest is straightforward and variation due to the potential CV(s) is removed from the 
estimate of error variance and assessed as a separate main effect. Furthermore, if the assumption 
of homogeneity of regression would have been violated in ANCOVA, it shows up as an interaction 
between the blocking IV and the IV of interest.

Blocking has several advantages over ANCOVA and the other alternatives listed here. First, 
it has none of the assumptions of ANCOVA or within-  subjects ANOVA. Second, the relationship 
between the potential CV(s) and the DV need not be linear (blocking is less powerful when the 
CV–  DV relationship is linear); curvilinear relationships can be captured in ANOVA when three 
(or more) levels of an IV are analyzed. Blocking, then, is preferable to ANCOVA in many situations,
and particularly for experimental, rather than correlational, research.
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Blocking can also be expanded to multiple CVs. That is, several new IVs, one per CV, can 
be developed through blocking and, with some difficulty, crossed in factorial design. However, as 
the number of IVs increases, the design rapidly becomes very large and cumbersome to implement.

For some applications, however, ANCOVA is preferable to blocking. When the relation-
ship between the DV and the CV is linear, ANCOVA is more powerful than blocking. And, if the 
assumptions of ANCOVA are met, conversion of a continuous CV to a discrete IV can result in 
loss of information. Finally, practical limitations may prevent measurement of potential CV(s) 
sufficiently in advance of treatment to accomplish random assignment of equal numbers of subjects 
to the cells of the design. When blocking is attempted after treatment, sample sizes within cells are 
likely to be highly discrepant, leading to the problems of unequal n.

In some applications, a combination of blocking and ANCOVA may turn out to be best. Some 
potential CVs are used to create new IVs, while others are analyzed as CVs.

A final alternative is multilevel modeling (MLM; see Chapter 15). MLM has no assumption 
of homogeneity of regression; heterogeneity is dealt with by creating a second level of analysis 
consisting of groups and specifying that groups may have different slopes (relationships between 
the DV and CVs) as well as different intercepts (means on the DV).

6.6  Complete Example of Analysis 
of Covariance

The research described in Appendix B, Section B.1 provides the data for this illustration of 
ANCOVA. The research question is whether or not the attitudes toward drugs are associated with 
current employment status and/or religious affiliation. Files are ANCOVA.*.

Attitude toward drugs (ATTDRUG) serves as the DV, with increasingly high scores 
reflecting more favorable attitudes. The two IVs, factorially combined, are current employment 
status (EMPLMNT) with two levels: (1) employed and (2) unemployed, and religious affiliation 
(RELIGION) with four levels: (1) none-or-other, (2) Catholic, (3) Protestant, and (4) Jewish.

In examining other data for this sample of women, three variables stand out that could be 
expected to relate to attitudes toward drugs and might obscure effects of employment status and reli-
gion. These variables are general state of physical health, mental health, and the use of psychotropic 
drugs. In order to control for the effects of these three variables on attitudes toward drugs, they are 
treated as CVs. CVs, then, are physical health (PHYHEAL), mental health (MENHEAL), and sum 
of all psychotropic drug uses, prescription and over-  the-  counter (PSYDRUG). For all three CVs, 
larger scores reflect increasingly poor health or more use of drugs.

The 2 * 4 analysis of covariance, then, provides a test of the effects of employment status, 
religion, and their interaction on attitudes toward drugs after adjustment for differences in physical 
health, mental health, and use of psychotropic drugs. Note that this is a form of ANCOVA in which 
no causal inference can be made.

6.6.1 Evaluation of Assumptions

These variables are examined with respect to practical limitations of ANCOVA as described in 
Section 6.3.2.
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6.6.1.1 Unequal n and Missing Data

SAS MEANS provides an initial screening run to look at descriptive statistics for DV and CVs 
for the eight groups. Three women out of 465 failed to provide information on religious affilia-
tion (not shown). Because RELIGION is one of the IVs for which cell sizes are unequal in any 
event, the three cases are dropped from analysis. Output for the DV and the three CVs is shown 
in Table 6.12 for the first two groups: RELIGION = 1 EMPLMNT = 1(employed women who 
report other or no religious affiliation) and RELIGION = 3 EMPLMNT = 2 (unemployed Protestant 
women). Sample sizes for the eight groups are in Table 6.13.

The cell-  size approach (Method 3 of Section 6.5.4.2) for dealing with unequal n is chosen 
for this study. This method weights cells by their sample sizes, which, in this study, are meaningful 
because they represent population sizes for the groups. Religion is given higher priority to reflect its 
temporally prior status to employment.

6.6.1.2 Normality

Table 6.12 shows positive skewness for some variables. Because the assumption of normality 
applies to the sampling distribution of means, and not to the raw scores, skewness by itself poses no 
problem. With the large sample size and use of two-  tailed tests, normality of sampling distributions 
of means is anticipated.

6.6.1.3 Linearity

There is no reason to expect curvilinearity considering the variables used and the fact that the 
variables, when skewed, are all skewed in the same direction. Had there been reason to suspect 
curvilinearity, within-  group scattergrams would have been examined through a SAS PLOT run.

6.6.1.4 Outliers

The maximum values in the SAS MEANS run of Table 6.13 show that, although no outliers 
are evident for the DV, several cases are univariate outliers for two of the CVs, PHYHEAL and 
PSYDRUG. Note, for example, that z = (43 - 5.096)>8.641 = 4.39 for the largest PSYDRUG 
score among unemployed protestant women. Positive skewness is also visible for these variables.

To facilitate the decision between transformation of variables and deletion of outliers, sepa-
rate regression analyses are run on the eight groups through SAS REG, with a request for the h
(leverage) statistic. Critical x2 at a = .001 with three covariates is 16.266. This is translated into 
critical values for leverage for each of the eight groups based on their sample sizes (Table 6.13), 
using Equation 4.3, as seen in Table 6.14. For example, for the first group, employed women with 
none-or-other affiliation,

hii =
Mahalanobis distance

N - 1
+

1

N
=

16.266

45
+

1

46
= 0.3832

Table 6.15 shows syntax and a portion of the output data set with leverage values as produced
by SAS REG. The DATA step insures that the cases with missing data on the IVs are not included
in the analysis. Only the three CVs are included in the calculation of leverage values; use of 
ATTDRUG as a DV has no effect on the calculations.



TABLE 6.12 Syntax and Partial Output of Screening Run for Distributions and Univariate Outliers Using SAS MEANS

proc sort data = SASUSER.ANCOVA;
by RELIGION EMPLMNT;

run;

proc means data = SASUSER.ANCOVA vardef=DF
   N NMISS MIN MAX MEAN VAR STD SKEWNESS KURTOSIS;
   var ATTDRUG PHYHEAL MENHEAL PSYDRUG;

by RELIGION EMPLMNT;
run;

------------------- Religious affiliation=1 Current employment status=1 --------------------

Variable Label     N
    N
Miss Minimum Maximum

ATTDRUG Attitudes toward use of medication 46 0 5.0000000 10.0000000
PHYHEAL Physical health symptoms 46 0 2.0000000     9.0000000
MENHEAL Mental health symptoms 46 0 0 17.0000000
PSYDRUG Use of psychotropic drugs 46 0 0 32.0000000

Variable Label Mean Variance Std Dev

ATTDRUG Attitudes toward use of medication 7.6739130 1.8246377 1.3507915
PHYHEAL Physical health symptoms 5.0652174 3.5734300 1.8903518
MENHEAL Mental health symptoms 6.5434783 16.4314010 4.0535665
PSYDRUG Use of psychotropic drugs 5.3478261 58.6318841 7.6571459

Variable Label Skewness Kurtosis

ATTDRUG Attitudes toward use of medication −0.2741204 −0.6773951
PHYHEAL Physical health symptoms 0.3560510 −0.9003343
MENHEAL Mental health symptoms 0.6048430 0.1683358
PSYDRUG Use of psychotropic drugs 1.6761585 2.6270392
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-------------- Religious affiliation=3 Current employment status=2 --------------

Variable Label    N
     N
Miss Minimum Maximum

ATTDRUG Attitudes toward use of medication 83 0 5.0000000 10.0000000
PHYHEAL Physical health symptoms 83 0 2.0000000 13.0000000
MENHEAL Mental health symptoms 83 0 0 16.0000000
PSYDRUG Use of psychotropic drugs 83 0 0 43.0000000

Variable Label Mean Variance Std Dev

ATTDRUG Attitudes toward use of medication 7.8433735 1.4263885 1.1943151
PHYHEAL Physical health symptoms 5.3734940 7.7246547 2.7793263
MENHEAL Mental health symptoms 6.3132530 20.2177490 4.4964151
PSYDRUG Use of psychotropic drugs 5.0963855 74.6735234 8.6413843

Variable Label Skewness Kurtosis

ATTDRUG Attitudes toward use of medication −0.1299988 −0.3616168
PHYHEAL Physical health symptoms 0.8526678 0.2040353
MENHEAL Mental health symptoms 0.4068114 −0.8266558
PSYDRUG Use of psychotropic drugs 2.3466630 5.8717433

TABLE 6.12 Continued
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TABLE 6.13 Sample Sizes for Eight Groups

Religious Affiliation

Employment
Status

None-or-
Other Catholic Protestant Jewish

Employed 46 63 92 44
Unemployed 30 56 83 48

TABLE 6.14 Critical Leverage Values for Each Group

Religious Affiliation

Employment
Status

None-or-
Other Catholic Protestant Jewish

Employed 0.3832 0.2782 0.1896 0.4010
Unemployed 0.5942 0.3136 0.2104 0.3669

TABLE 6.15 Test for Multivariate Outliers. SAS REG Syntax 
and Selected Portion of Output Data Set

data SASUSER.ANC_LEV;
  set SASUSER.ANCOVA;
  if RELIGION =. or EMPLMNT =. then delete;
run;
proc reg;
     by RELIGION EMPLMNT;
   model ATTDRUG= PHYHEAL MENHEAL PSYDRUG;
   output out=SASUSER.ANC_LEV h=LEVERAGE;
run;

SASUSER.ANC_LEV1

462
8

SUBNO ATTDRUG PHYHEAL MENHEAL PSYDRUG EMPLMNT RELIGION LEVERAGE
IntIntIntIntIntIntIntInt

148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163

97
119
126
130
131
138
148
183
205
213
228
235
238
250
251
252

8
10
8
8
8
8
10
10
9
10
8
10
9
6
8
9

3
4
5
8
5
6
8
9
5
7
4
6
6
3
3
4

6
0
10
15
12
11
7
12
3
10
16
11
8
4
4
1

0
0
0
13
0
10
3
10
0
25
6
9
8
4
0
7

2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2

2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2

0.0367
0.0559
0.0483
0.1013
0.0742
0.0510
0.0701
0.0847
0.0358
0.3264
0.1487
0.0448
0.0314
0.0420
0.0331
0 0799
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Table 6.15 shows that subject number 213 is a multivariate outlier with a leverage value of 
0.3264 in the unemployed Catholic group, which has a critical value of 0.3136. (Note that case 
numbers are for the sorted data file with three cases deleted.) Altogether, four cases are multivariate 
outliers in four different groups.

This is a borderline case in terms of whether to transform variables or delete outliers—
somewhere between “few” and “many.” A log transform of the two skewed variables is undertaken 
to see if outliers remain after transformation. LPSYDRUG is created as the logarithm of PSYDRUG
(incremented by 1 since many of the values are at zero) and LPHYHEAL as the logarithm of 
PHYHEAL. See Table 4.3 for SAS DATA syntax for transforming variables. Transformed as well as 
original variables are saved into a file labeled ANC_LEVT.

A second run of SAS REG (not shown) with the three CVs (two of them transformed) revealed 
no outliers at a = .001. All four former outliers are within acceptable distance from their groups 
once the two CVs are transformed. The decision is to proceed with the analysis using the two trans-
formed CVs rather than to delete cases, although the alternative decision is also acceptable in this 
situation.

6.6.1.5 Multicollinearity and Singularity

SAS FACTOR provides squared multiple correlations for each variable as a DV with the remaining 
variables acting as IVs. This is helpful for detecting the presence of multicollinearity and singularity 
among the CVs, as seen in Table 6.16 for the transformed variables. There is no danger of multicol-
linearity or singularity because the largest SMC (R2) = .303. In any event, SAS GLM guards against 
statistical problems due to multicollinearity.

6.6.1.6 Homogeneity of Variance

Sample variances are available from a SAS MEANS run with the transformed variables, requesting 
only sample sizes, means, and variances, partially shown in Table 6.17. For the DV, find the largest 
and smallest variances over the groups. For example, the variance for ATTDRUG in the employed 
Catholic group = .968 (the smallest variance). The largest variance is for the first group (employed 
with no or other religious affiliation), with s2 = 1.825. The variance ratio (Fmax) = 1.89, well 

TABLE 6.16 Check for Multicollinearity Through SAS FACTOR—Syntax and Selected Output

proc factor data=SASUSER.ANC_LEVT priors = smc;
  var LPHYHEAL MENHEAL LPSYDRUG;
run;

The FACTOR Procedure
Initial Factor Method: Principal Factors

Prior Communality Estimates: SMC

LPHYHEAL MENHEAL LPSYDRUG
0.30276222 0.28483712 0.16531267
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TABLE 6.17 Sample Sizes, Means, and Variances for Transformed Variables Through SAS MEANS—Syntax and Selected Output

proc means data=SASUSER.ANC_LEVT vardef=DF
N MEAN VAR;

   var ATTDRUG LPHYHEAL MENHEAL LPSYDRUG;
by RELIGION EMPLMNT;

run;

-------------- Religious affiliation=1 Current employment status=1 --------------

The MEANS Procedure

Variable Label N Mean Variance

ATTDRUG Attitudes toward use of medication 46 7.6739130 1.8246377

LPHYHEAL 46 0.6733215 0.0289652

MENHEAL Mental health symptoms 46 6.5434783 16.4314010

LPSYDRUG 46 0.4881946 0.2867148

-------------- Religious affiliation=2 Current employment status=1 --------------

Variable Label N Mean Variance

ATTDRUG Attitudes toward use of medication 63 7.6666667 0.9677419

LPHYHEAL 63 0.6095463 0.0477688

MENHEAL Mental health symptoms 63 5.8412698 22.5873016

LPSYDRUG 63 0.3275272 0.1631570
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below the criterion of 10:1. There is no need for a formal test of homogeneity of variance with 
this variance ratio since the ratio of sample sizes is less than 4:1 (92/30 = 3.07), and there are no 
outliers. Tests for homogeneity of variance among CVs likewise show no concern for heterogeneity 
of variance.

6.6.1.7 Homogeneity of Regression

Homogeneity of regression is not tested automatically in any analysis of variance programs in 
SAS. However, it can be evaluated by forming interactions between effects (main effects and 
interactions) and covariates through the ANCOVA procedure demonstrated in the next section. 
Although covariates cannot be pooled, each covariate can be evaluated separately. Thus, the tests 
for homogeneity of regression will be demonstrated in Section 6.6.2 after the main analysis of 
covariance.

6.6.1.8 Reliability of Covariates

The three CVs, MENHEAL, PHYHEAL, and PSYDRUG, were measured as counts of symptoms 
or drug use—“have you ever . . .?” It is assumed that people are reasonably consistent in reporting 
the presence or absence of symptoms and that high reliability is likely. Therefore, no adjustment in 
ANCOVA is made for unreliability of CVs.

6.6.2 Analysis of Covariance

6.6.2.1 Main Analysis

The program chosen for the major two-  way analysis of covariance is SAS GLM. The cell-  size 
weights (Table 6.10, number 3, Method 3, SSTYPE I) approach to adjustment of unequal n is cho-
sen for this set of survey data. Ease of use, then, makes SAS GLM a convenient program for this 
unequal-n data set.

Syntax and selected output from application of SAS GLM to these data appear in Table 
6.18. The model instruction shows the DV on the left of the equation and the CVs and IVs 
on the right. Order of entry for Type I sums of squares follows the order on the right side of the 
equation.

Source tables for both Type I and Type III sums of squares are shown in Table 6.18. Type III 
sums of squares, which are adjusted for all other effects, are used to evaluate covariates. Type I sums 
of squares, which are adjusted for all previous but not following effects, are used to evaluate main 
effects of religious affiliation and employment status and their interaction.

In this example, the main effect of religion reaches statistical significance, F(3, 451) = 2.86, 
p = .0366. The only CV that reaches statistical significance is LPSYDRUG, F(1, 451) = 39.09, p < 
.0001. The source table is summarized in Table 6.19.

Entries in the sum of squares column of the source table are used to calculate partial h2

as a measure of effect size for main effects and the interaction (Sections 6.4 and 6.5.4.4). For 
RELIGION:

partial h2 =
10.259

10.259 + 539.179
= .02



TABLE 6.18 Syntax and Selected Output from SAS GLM Analysis of Covariance Run

proc glm data=SASUSER.ANC_LEVT;
  class RELIGION EMPLMNT;
  model ATTDRUG = LPHYHEAL MENHEAL LPSYDRUG RELIGION EMPLMNT RELIGION*EMPLMNT;
run;

The GLM Procedure

Dependent Variable: ATTDRUG Attitudes toward use of medication

Source DF
Sum of 
Squares Mean Square F Value Pr > F

Model 10 78.6827786 7.8682779 6.58 <.0001

Error 451 539.1786932 1.1955182

Corrected Total 461 617.8614719

R-Square Coeff Var Root MSE ATTDRUG Mean

0.127347 14.22957 1.093398 7.683983

Source DF Type I SS Mean Square F Value Pr > F

LPHYHEAL 1 9.90840138 9.90840138 8.29 0.0042

MENHEAL 1 0.13429906 0.13429906 0.11 0.7377

LPSYDRUG 1 45.72530836 45.72530836 38.25 <.0001

RELIGION 3 10.25921450 3.41973817 2.86 0.0366

EMPLMNT 1 3.78463591 3.78463591 3.17 0.0759

RELIGION*EMPLMNT 3 8.87091941 2.95697314 2.47 0.0611

Source DF Type III SS Mean Square F Value Pr > F

LPHYHEAL 1 0.62999012 0.62999012 0.53 0.4683

MENHEAL 1 1.42886911 1.42886911 1.20 0.2749

LPSYDRUG 1 46.73742309 46.73742309 39.09 <.0001

RELIGION 3 12.19374680 4.06458227 3.40 0.0178

EMPLMNT 1 1.07961032 1.07961032 0.90 0.3425

RELIGION*EMPLMNT 3 8.87091941 2.95697314 2.47 0.0611

233
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TABLE 6.19 Analysis of Covariance of Attitude Toward Drugs

Source of Variance Adjusted SS df MS F

Religious affiliation 10.26 3 3.42 2.86*

Employment status (adjusted for religious affiliation) 3.78 1 3.78 3.17
Interaction 8.87 3 2.95 2.47*

Covariates (adjusted for all effects)
Physical health (log) 0.63 1 0.63 0.42
Mental health 1.43 1 1.43 1.20
Drug uses (log) 46.74 1 46.74 39.09

Error 539.18 451 1.20

*p < .05.

Table 6.20 shows the use of the Smithson (2003) procedure to find partial h2 and its 
confidence limits for all the effects, whether statistically significant or not. Confidence limits 
for effect sizes as well as partial h2 are found by adding values of the syntax file: NoncF2.sas. 
Table 6.20 shows a portion of the syntax file with added values shaded. Filled in values (from 
Table 6.19) are F, numerator df, denominator df, and the proportion for the desired confidence 
interval, here .95. These replace the default values filled into NoncF2.sas. Effects appear in 
Table 6.20 in the following order: RELIGION, EMPLMNT, and the interaction. The output 
column labeled rsq is partial h2; lower and upper confidence limits are labeled rsqlow and 
rsqupp, respectively.

Thus, the 95% confidence interval for the size of the RELIGION effect using the Smithson’s 
(2003) SAS procedure ranges from .00 to .04. Effect size for employment status is .01 with a 95% 
confidence interval ranging from .00 to .03. For the interaction, partial h2 = .02 also, with a 95% 
confidence interval ranging from .00 to .04.

Unadjusted and adjusted (Least Squares) marginal means and confidence intervals for 
RELIGION are shown in Table 6.21, provided by SAS GLM. These could be requested in the main 
ANCOVA run.

Note that unadjusted means are provided for CVs as well as the DV. Because no a priori 
hypotheses about differences among religious groups were generated, planned comparisons are 
not appropriate. A glance at the four adjusted means in Table 6.21 suggests a straightforward inter-
pretation; the none-or-other group has the least favorable attitude toward the use of psychotropic 
drugs, the Catholic group the most favorable attitude, and the Protestant and Jewish groups an 
intermediate attitude. In the absence of specific questions about differences between means, there 
is no compelling reason to evaluate post hoc the significance of these differences, although they 
certainly provide a rich source of speculation for future research. Relevant means are summarized 
in Table 6.22. Means with 95% confidence limits are in Figure 6.3.

6.6.2.2 Evaluation of Covariates

Information about utility of covariates is provided in Table 6.18 where only LPSYDRUG was 
seen to adjust the DV, ATTDRUG, after adjustment for all other covariates and effects is taken 
into account. Table 6.23 shows the pooled within-  cell correlations among the DV and CVs as 
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TABLE 6.20 Data Set Output from NoncF2.sas for Effect Size (rsq) With 95% Confidence Limits (rsqlow and rsqupp)

.

.

.
rsqlow = ncplow / (ncplow + df1 + df2 + 1);
rsqupp = ncpupp / (ncpupp + df1 + df2 + 1);
cards;

2.860 3 451 0.95

3.170 1 451 0.95

2.470 3 451 0.95

;
proc print;
run;

Obs F df1 df2 conf prlow prupp ncplow ncpupp rsq rsqlow rsqupp

1 2.860 3 451 0.95 0.975 0.025 0.000 21.385 0.01867 0.00000 0.04489
2 3.170 1 451 0.95 0.975 0.025 0.000 14.009 0.00698 0.00000 0.03000
3 2.470 3 451 0.95 0.975 0.025 0.000 19.347 0.01616 0.00000 0.04079
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TABLE 6.21 Adjusted and Unadjusted Mean Attitude Toward Drugs for Four Categories 
of  Religion—  SAS GLM Syntax and Selected Output

proc glm data=SASUSER.ANC_LEVT;
class RELIGION EMPLMNT;
model ATTDRUG = LPHYHEAL MENHEAL LPSYDRUG RELIGION|EMPLMNT;
means RELIGION;
lsmeans RELIGION/cl;

run;

Level of           --------ATTDRUG-------- --------LPHYHEAL--------

RELIGION N Mean Std Dev Mean Std Dev

1 76 7.44736842 1.31041710 0.65639689 0.16746166

2 119 7.84033613 1.04948085 0.63034302 0.20673876

3 175 7.66857143 1.14665216 0.66175666 0.22091000

4 92 7.70652174 1.16296366 0.64575134 0.20602015

Level of          --------MENHEAL--------  -------LPSYDRUG---------

RELIGION N Mean Std Dev Mean Std Dev

1 76 5.93421053 3.99444790 0.40110624 0.49754148

2 119 6.13445378 4.65764247 0.32712918 0.43952791

3 175 6.08571429 4.10054264 0.43477410 0.51643966

4 92 6.40217391 3.97259785 0.50695061 0.53592293

Least Squares Means

RELIGION

ATTDRUG

LSMEAN

1 7.40744399

2 7.91776374

3 7.66041635

4 7.64441304

RELIGION

ATTDRUG

LSMEAN 95% Confidence Limits

1 7.407444 7.154984 7.659903
2 7.917764 7.719421 8.116106
3 7.660416 7.497559 7.823274
4 7.644413 7.419188 7.869639
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produced by SAS GLM. These correlations are adjusted for differences among cells—  the bivari-
ate correlations are found within each cell and then averaged (pooled). However, the correlations 
are not adjusted for each other. The run is done as a MANOVA, with the DV and CVs all treated 
as multiple DVs. This way, relationships among all four variables are shown. The printe
instruction requests the pooled within-  cell correlation table. The nouni instruction limits the 
output.

Table 6.23 shows that both LPHYHEAL and LPSYDRUG are related to the DV, 
ATTDRUG. However, only LPSYDRUG is effective as a covariate once adjustment is made for 
the other CVs and effects, as seen in Table 6.18. Table 6.23 shows the reason why; LPHYHEAL 

TABLE 6.22 Adjusted and Unadjusted Mean Attitude 
Toward Drugs for Four Categories of Religious Affiliation

Religion Adjusted Mean Unadjusted Mean

None-or-other 7.41 7.45
Catholic 7.92 7.84
Protestant 7.66 7.67
Jewish 7.64 7.71

Least Squares Means
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FIGURE 6.3 Adjusted means for attitude 
toward drug use with error bars representing 

the 95% confidence interval for the mean. 
Graph produced through SYSTAT 11.
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and LPSYDRUG are themselves related. According to the criteria of Section 6.5.1, then, use of 
MENHEAL as a covariate in future research is not warranted (it has, in fact, lowered the power 
of this analysis) and use of LPHYHEAL is questionable. Table 6.24 summarizes the pooled 
within-cell correlations.

TABLE 6.23 Pooled Within-  Cell Correlations Among the DV and CVs—SAS GLM 
Syntax and Selected Output

proc glm data=SASUSER.ANC_LEVT;
class RELIGION EMPLMNT;
model ATTDRUG LPHYHEAL MENHEAL LPSYDRUG =

RELIGION|EMPLMNT /nouni;
manova h=_all_ / printe;

run;

Partial Correlation Coefficients from the Error SSCP Matrix / 
Prob > |r|

DF = 454 ATTDRUG LPHYHEAL MENHEAL LPSYDRUG

ATTDRUG 1.000000 0.121087 0.064048 0.301193

0.0097 0.1726 <.0001

LPHYHEAL 0.121087 1.000000 0.509539 0.364506
0.0097 <.0001 <.0001

MENHEAL 0.064048 0.509539 1.000000 0.333499
0.1726 <.0001 <.0001

LPSYDRUG 0.301193 0.364506 0.333499 1.000000
<.0001 <.0001 <.0001

TABLE 6.24 Pooled Within-Cell Correlations Among Three Covariates 
and the Dependent Variable, Attitude Toward Drugs

Physical 
Health (LOG)

Mental
Health

Drug Uses
(LOG)

Attitude toward drugs .121* .064 .301*

Physical health (LOG) .510* .365*

Mental health .333*

*p < .01.



Analysis of Covariance 239

6.6.2.3 Homogeneity of Regression Run

The SAS GLM run to test for homogeneity of regression (Table 6.25) adds all interactions 
between effects and CVs to the analysis of Table 6.18. A hierarchical notation is used in 
which effects separated by a “|” include interactions and all lower-order effects. For example 
MENHEAL|RELIGION|EMPLMNT includes MENHEAL, RELIGION, EMPLMNT, 
MENHEAL*RELIGION, MENHEAL*EMPLMNT, RELIGION*EMPLMNT, and 
MENHEAL*RELIGION*EMPLMNT.

Effects of interest here are those which interact with CVs. Only one of them, 
LPSYDRUG*RELIGION*EMPLOYMENT is statistically significant at a = .05, suggesting 
different relationships between ATTDRUG and LPSYDRUG among the eight groups of women. 
However, a more stringent alpha criterion than .05 is advisable for the multitude of tests produced 
by this method of evaluating homogeneity of regression. (Indeed, an IBM SPSS MANOVA run, 
which pools the covariates into a single test, showed no violation of the assumption.)

A checklist for analysis of covariance appears as Table 6.26. An example of a Results section, 
in journal format, follows for the above-  described analysis.

TABLE 6.25 Analysis of Covariance for Evaluating Homogeneity of Regression—SAS GLM Syntax 
and Selected Output

proc glm data=SASUSER.ANC_LEVT;
class RELIGION EMPLMNT;
model ATTDRUG = RELIGION|EMPLMNT LPHYHEAL|RELIGION|EMPLMNT 

LPSYDRUG|RELIGION|EMPLMNT MENHEAL|RELIGION|
EMPLMNT;

run;

Source DF Type III SS Mean Square F Value Pr > F

RELIGION 3 1.87454235 0.62484745 0.52 0.6663
EMPLMNT 1 0.80314068 0.80314068 0.67 0.4125
RELIGION*EMPLMNT 3 1.83822082 0.61274027 0.51 0.6732
LPHYHEAL 1 1.18143631 1.18143631 0.99 0.3203
LPHYHEAL*RELIGION 3 0.49791878 0.16597293 0.14 0.9366
LPHYHEAL*EMPLMNT 1 0.62917073 0.62917073 0.53 0.4682
LPHYHE*RELIGI*EMPLMN 3 2.96516036 0.98838679 0.83 0.4789
LPSYDRUG 1 37.24237057 37.24237057 31.20 <.0001
LPSYDRUG*RELIGION 3 5.14751739 1.71583913 1.44 0.2312
LPSYDRUG*EMPLMNT 1 2.09112695 2.09112695 1.75 0.1863
LPSYDR*RELIGI*EMPLMN 3 9.69187356 3.23062452 2.71 0.0449
MENHEAL 1 0.44710058 0.44710058 0.37 0.5408
MENHEAL*RELIGION 3 3.92657123 1.30885708 1.10 0.3503
MENHEAL*EMPLMNT 1 0.05659585 0.05659585 0.05 0.8277
MENHEA*RELIGI*EMPLMN 3 4.80558448 1.60186149 1.34 0.2601
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Results

A 2 * 4 between-  subjects analysis of covariance was performed 

on attitude toward drugs. Independent variables consisted of 

current employment status (employed and unemployed) and religious 

identification (None-or-other, Catholic, Protestant, and Jewish), 

factorially combined. Covariates were physical health, mental 

health, and the sum of psychotropic drug uses. Analyses were 

performed by SAS GLM, weighting cells by their sample sizes to 

adjust for unequal n.

Results of evaluation of the assumptions of normality of 

sampling distributions, linearity, homogeneity of variance, 

homogeneity of regression, and reliability of covariates were 

satisfactory. Presence of outliers led to transformation of two 

of the covariates. Logarithmic transforms were made of physical 

health and the sum of psychotropic drug uses. No outliers 

TABLE 6.26 Checklist for Analysis of Covariance

1. Issues
a. Unequal sample size and missing data
b.  Within-cell outliers
c. Normality
d. Homogeneity of variance
e.  Within-cell linearity
f. Homogeneity of regression
g. Reliability of CVs

2. Major analyses
a. Main effect(s) or planned comparison. If significant: Adjusted marginal means and standard 

deviations or standard errors or confidence intervals
b. Interactions or planned comparisons. If significant: Adjusted cell means and standard deviations or 

standard errors or confidence intervals (in table or interaction graph)
c. Effect sizes with confidence intervals for all effects

3. Additional analyses
a. Evaluation of CV effects
b. Evaluation of intercorrelations
c. Post hoc comparisons (if appropriate)
d. Unadjusted marginal and/or cell means (if significant main effect and/or interaction) if 

nonexperimental application
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remained after transformation. The original sample of 465 was 

reduced to 462 by three women who did not provide information as 

to religious affiliation.

After adjustment by covariates, attitude toward drugs varied 

significantly with religious affiliation, as summarized in 

Table 6.19, with F(3, 451) = 2.86, p < .05. The strength of the 

relationship between adjusted attitudes toward drugs and religion 

was weak, however, with partial h2 = .02, 95% confidence limits 

from .00 to .04. The adjusted marginal means, as displayed in 

Table 6.22 and, with 95% confidence interval, in Figure 6.3 show 

that the most favorable attitudes toward drugs were held by 

Catholic women, and least favorable attitudes by women who 

either were unaffiliated with a religion or identified with some 

religion other than the major three. Attitudes among Protestant 

and Jewish women were almost identical, on average, for this 

sample, and fell between those of the two other groups.

No statistically significant main effect of current 

employment status was found. Nor was there a significant 

interaction between employment status and religion after 

adjustment for covariates. For employment, partial h2 = .01 with 

95% confidence limits from .00 to .03. For the interaction, 

partial h2 = .02 with 95% confidence limits from .00 to .04.

Pooled within-  cell correlations among covariates and attitude 

toward drugs are shown in Table 6.24. Two of the covariates, 

logarithm of physical health and logarithm of drug use, were 

significantly associated with the dependent variable. However, 

only logarithm of drug use uniquely adjusted the attitude scores, 

F(1, 451) = 39.09, p < .01, after covariates were adjusted for 

other covariates, main effects, and interaction. The remaining 

two covariates, mental health and logarithm of physical health, 

provided no statistically significant unique adjustment.



242 C H A P T E R  6

6.7 Comparison of Programs

For the novice, there is a bewildering array of canned computer programs in IBM SPSS 
(REGRESSION, GLM, and MANOVA), and SYSTAT (ANOVA, GLM, and REGRESS) packages 
for ANCOVA. For our purposes, the programs based on regression (SYSTAT REGRESS and IBM 
SPSS REGRESSION) are not discussed because they offer little advantage over the other, more 
easily used programs.

SAS has a single general linear model program designed for use with both discrete and con-
tinuous variables. This program deals well with ANCOVA. Features of eight programs are described 
in Table 6.27.

6.7.1 SPSS Package

Two IBM SPSS programs perform ANCOVA: GLM and MANOVA. Both programs are rich and 
highly flexible. Both provide a great deal of information about adjusted and unadjusted statistics, 
and have alternatives for dealing with unequal n. They are the only programs that offer power analy-
ses and effect sizes in the form of partial h2. Also available in GLM are plots of means. MANOVA 
shines in its ability to test assumptions such as homogeneity of regression (see Section 6.5.3). It 
provides adjusted cell and marginal means; specific comparisons and trend analysis are readily 
available. However, IBM SPSS does not facilitate the search for multivariate outliers between the 
DV and the CV(s) in each group. Only a measure of influence, Cook’s distance, is available in GLM 
(leverage values produced do not differ within cells).

6.7.2 SAS System

SAS GLM is a program for univariate and multivariate analysis of variance and covariance. SAS 
GLM offers analysis of complex designs, several adjustments for unequal n, a test for sphericity 
for within-  subjects IVs, a full array of descriptive statistics (upon request), and a wide variety of 
post hoc tests in addition to user-  specified comparisons and trend analysis. Although there is no 
example of a test for homogeneity of regression in the SAS manual, the procedures described in 
Section 6.6.2.3 can be followed.

6.7.3 SYSTAT System

SYSTAT ANOVA Version 11 is an easily used program that handles all types of ANOVA and ANCOVA. 
In addition, SYSTAT GLM is a multivariate general linear program that does almost everything that 
the ANOVA program does, and more, but is not always quite as easy to set up. MANOVA is a recent 
addition to the menu, but brings forth the same dialog box as GLM. All three programs handle repeated 
measures and post hoc comparisons. For some unknown reason, sphericity tests are not available for 
repeated measures in “long” output. The programs provide a great deal of control over error terms and 
comparisons. Cell means adjusted for CVs are produced and plotted. The program also provides 
leverage that may be converted to Mahalanobis distance, as per Equation 4.3. The program provides 
adjustment for violation of sphericity in within-  subject designs.
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TABLE 6.27 Comparison of Selected Programs for Analysis of Covariance

Feature

IBM
SPSS
GLM

IBM
SPSS
MANOVAa

SAS
GLMa

SYSTAT ANOVA,a

GLM,a and 
MANOVAa

Input

Maximum number of IVs No limit 10 No limit No limit

Choice of unequal-n adjustment Yes Yes Yes Nod

Within-subjects IVs Yes Yes Yes Yes

Specify tolerance EPS No SINGULAR Yes

Specify separate variance error term 
for contrasts No No Yes Yes

Resampling No No No Yes

Output

Source table Yes Yes Yes Yes

Unadjusted cell means Yes Yes Yes No

Confidence interval for unadjusted 
cell means No Yes No No

Unadjusted marginal means Yes Yes Yes No

Cell standard deviations Yes Yes Yes No

Adjusted cell means EMMEANS PMEANS LSMEANS Medium output

Standard errors or SDs for adjusted 
cell means Yes No STDERR Medium output

Adjusted marginal means Yes Yesb LSMEANS No

Standard error for adjusted marginal 
means Yes Yes STDERR No

Power analysis OPOWER POWER Noe No

Effect sizes ETASQ POWER No No

Test for equality of slope 
(homogeneity of regression) for 
multiple covariates No Yes No No

Post hoc tests with adjustment Yes Yesc Yes Yes

User-specified contrasts Yes Yes Yes Yes

Hypothesis SSCP matrices No Yes Yes No

Pooled within-cell error SSCP 
matrices No Yes Yes No

Hypothesis covariance matrices No Yes No No

Pooled within-cell covariance matrix No Yes No No

Group covariance matrices No Yes No No

(continued)
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Feature

IBM
SPSS
GLM

IBM
SPSS
MANOVAa

SAS
GLMa

SYSTAT ANOVA,a

GLM,a and 
MANOVAa

Output (continued)

Pooled within-cell correlation matrix No Yes Yes No

Group correlation matrices No Yes No No

Covariance matrix for adjusted group 
means No No Data file No

Regression coefficient for each CV Yes Yes Yes No

Regression coefficient for each cell No No Yes No

Multiple R and/or R2 Yes Yes Yes Yes

Test for homogeneity of variance Yes Yes No Yes

Test for sphericity Yes Yes Yes No

Adjustment for heterogeneity of 
covariance Yes Yes Yes Yesf

Predicted values and residuals Yes Yes Yes Data file

Plots of means Yes No No Yes

Multivariate influence and/or leverage 
statistics by cell No No No Data file

aAdditional features described in Chapter 7 (MANOVA).
bAvailable through the CONSPLUS procedure.
cBonferroni and Scheffé confidence intervals.
dSome flexibility is possible in GLM.
ePower analysis for ANCOVA is in a separate program: GLMPOWER.
fNot available in “long” output.

TABLE 6.27 Continued

The major advantage in using SYSTAT GLM over ANOVA is the greater flexibility with 
unequal-n designs. Only Method 1 is available in the ANOVA program. GLM allows specification 
of a MEANS model, which, when WEIGHTS are applied to cell means, provides a weighted means 
analysis. The manual also describes the multiple models that can be estimated to provide sums 
of squares that correspond to the four SS types of adjustments for unequal n. GLM is also the 
only SYSTAT program set up for simple effects and such designs as Latin square, nesting, and 
incomplete blocks.
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7.1 General Purpose and Description

Multivariate analysis of variance (MANOVA) is a generalization of ANOVA to a situation in which 
there are several DVs. For example, suppose a researcher is interested in the effect of different types 
of treatments on several types of anxieties: test anxiety, anxiety in reaction to minor life stresses, and 
so-called free-  floating anxiety. The IV consists of different treatment with three levels (desensitization, 
relaxation training, and a waiting-  list control). After random assignment of subjects to treatments and a 
subsequent period of treatment, subjects are measured for test anxiety, stress anxiety, and free-  floating 
anxiety. Scores on all three measures for each subject serve as DVs. MANOVA is used to ask whether 
a combination of the three anxiety measures varies as a function of treatment. MANOVA is statistically 
identical to discriminant analysis, the subject of Chapter 9. The difference between the techniques is 
only one of emphasis. MANOVA emphasizes the mean differences and statistical significance of dif-
ferences among groups. Discriminant analysis emphasizes prediction of group membership and the 
dimensions on which groups differ.

ANOVA tests whether mean differences among groups on a single DV are likely to have 
occurred by chance. MANOVA tests whether mean differences among groups on a combination of 
DVs are likely to have occurred by chance. In MANOVA, a new DV that maximizes group differ-
ences is created from the set of DVs. The new DV is a composite score, that is, a linear combination 
of measured DVs, combined so as to separate the groups as much as possible. ANOVA is then per-
formed on the newly created DV. As in ANOVA, hypotheses about means in MANOVA are tested 
by comparing variances—  hence multivariate analysis of variance.

In factorial or more complicated MANOVA, a different linear combination of DVs is formed 
for each main effect and interaction. If gender of subject is added to the example as a second IV, 
one combination of the three DVs maximizes the separation of the three treatment groups, a second 
combination maximizes separation of women and men, and a third combination maximizes separa-
tion of the cells of the interaction. Further, if the treatment IV has more than two levels, the DVs 
can be recombined in yet other ways to maximize the separation of groups formed by comparisons.1

MANOVA has a number of advantages over ANOVA. First, by measuring several DVs instead 
of only one, the researcher improves the chance of discovering what it is that changes as a result 
of different treatments and their interactions. For instance, desensitization may have an advantage 
over relaxation training or waiting-  list control, but only on test anxiety; the effect is missing if test 
anxiety isn’t one of your DVs. A second advantage of MANOVA over a series of ANOVAs when 

7 Multivariate Analysis of 
Variance and Covariance

1The linear combinations themselves are of interest in discriminant analysis (Chapter 9).
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there are several DVs is the protection against inflated Type I error due to multiple tests of (likely) 
correlated DVs.

Another advantage of MANOVA is that, under certain, probably rare conditions, it may reveal 
differences not shown in separate ANOVAs. Such a situation is shown in Figure 7.1 for a one-  way 
design with two levels. In this figure, the axes represent frequency distributions for each of two 
DVs, Y1 and Y2. Notice that from the point of view of either axis, the distributions are sufficiently 
overlapping that a mean difference might not be found in ANOVA. The ellipses in the quadrant, 
however, represent the distributions of Y1 and Y2 for each group separately. When responses to two 
DVs are considered in combination, group differences become apparent. Thus, MANOVA, which 
considers DVs in combination, may occasionally be more powerful than separate ANOVAs.

But there are no free lunches in statistics, either. MANOVA is a substantially more compli-
cated analysis than ANOVA. There are several important assumptions to consider, and there is often 
some ambiguity in interpretation of the effects of IVs on any single DV. Further, the situations in 
which MANOVA is more powerful than ANOVA are quite limited; often MANOVA is considerably 
less powerful than ANOVA, particularly in finding significant group differences for a particular 
DV. Thus, our recommendation is to think very carefully about the need for more than one DV 
in light of the added complexity and ambiguity of analysis and the likelihood that multiple DVs 
may be redundant (see also Section 7.5.3). Even moderately correlated DVs diminish the power of 
MANOVA. Figure 7.2 shows a set of hypothetical relationships between a single IV and four DVs. 
DV1 is highly related to the IV and shares some variance with DV2 and DV3. DV2 is related to both 
DV1 and DV3 and shares very little unique variance with the IV, although by itself in a univariate 
ANOVA might be related to the IV. DV3 is somewhat related to the IV, but also to all of the other 
DVs. DV4 is highly related to the IV and shares only a little bit of variance with DV3. Thus, 
DV2 is completely redundant with the other DVs, and DV3 adds only a bit of unique variance to 
the set. However, DV2 would be useful as a CV if that use made sense conceptually. DV2 reduces 
the total variance in DV1 and DV2, and most of the variance reduced is not related to the IV. 

Y2

Y1

FIGURE 7.1 Advantage of MANOVA, which combines DVs, over ANOVA. 
Each axis represents a DV; frequency distributions projected to axes show considerable 

overlap, while ellipses, showing DVs in combination, do not.
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Therefore, DV2 reduces the error variance in DV1 and DV3 (the variance that is not overlapping 
with the IV).

Multivariate analysis of covariance (MANCOVA) is the multivariate extension of ANCOVA 
(Chapter 6). MANCOVA asks if there are statistically significant mean differences among groups 
after adjusting the newly created DV for differences on one or more covariates. For the example, 
suppose that before treatment subjects are pretested on test anxiety, minor stress anxiety, and free-
floating anxiety. When pretest scores are used as covariates, MANCOVA asks if mean anxiety on 
the composite score differs in the three treatment groups, after adjusting for preexisting differences 
in the three types of anxieties.

MANCOVA is useful in the same ways as ANCOVA. First, in experimental work, it serves 
as a noise-  reducing device where variance associated with the covariate(s) is removed from error 
variance; smaller error variance provides a more powerful test of mean differences among groups. 
Second, in nonexperimental work, MANCOVA provides statistical matching of groups when ran-
dom assignment to groups is not possible. Prior differences among groups are accounted for by 
adjusting DVs as if all subjects scored the same on the covariate(s). (But review Chapter 6 for a 
discussion of the logical difficulties of using covariates this way.)

ANCOVA is used after MANOVA (or MANCOVA) in  Roy–  Bargmann stepdown analysis 
where the goal is to assess the contributions of the various DVs to a significant effect. One asks 
whether, after adjusting for differences on higher-  priority DVs serving as covariates, there is any 
significant mean difference among groups on a lower-  priority DV. That is, does a lower-  priority 
DV provide additional separation of groups beyond that of the DVs already used? In this sense, 
ANCOVA is used as a tool in interpreting MANOVA results.

Although computing procedures and programs for MANOVA and MANCOVA are not as well 
developed as for ANOVA and ANCOVA, there is in theory no limit to the generalization of the model, de-
spite complications that arise. There is no reason why all types of designs—  one-  way, factorial, repeated 
measures, nonorthogonal, and so on—  cannot be extended to research with several DVs. Questions of 
effect size, specific comparisons, and trend analysis are equally interesting with MANOVA. In addition, 
there is the question of importance of DVs—  that is, which DVs are affected by the IVs and which are not.

MANOVA developed in the tradition of ANOVA. Traditionally, MANOVA was applied to 
experimental situations where all, or at least some, IVs are manipulated and subjects are randomly 
assigned to groups, usually with equal cell sizes. Discriminant analysis (Chapter 9) developed in 

IV

DV1

DV2

DV3

DV4

FIGURE 7.2 Hypothetical relationships 
among a single IV and four DVs.
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the context of nonexperimental research where groups are formed naturally and are not usually the 
same size. MANOVA asks if mean differences among groups on the combined DV are larger than 
expected by chance; discriminant analysis asks if there is some combination of variables that reli-
ably separates groups. But there is no mathematical distinction between MANOVA and discriminant 
analysis. At a practical level, computer programs for discriminant analysis are more informative but 
are also, for the most part, limited to one-  way designs. Therefore, analysis of one-  way MANOVA is 
deferred to Chapter 9 and the present chapter covers factorial MANOVA and MANCOVA.

Ortner and Vormittag (2009) studied the effects of test administrator’s gender on both the 
expected performance and the actual performance of male and female students. The DVs were 
expected performance on a test of general verbal knowledge and then actual knowledge of a test of 
general verbal knowledge. The 93 student participants were randomly assigned to be tested by ei-
ther a male or female administrator. MANOVA was used in this 2 (administrator’s gender) *2 (test 
taker’s gender) analysis of the two DVs. Both main effects were significant: female students scored 
lower than male students and both types of students scored higher under a female test administrator. 
There was no interaction. Post hoc ANOVAs revealed that the differences were found in expected 
performance but not in actual performance.

Among other analyses, Popkess and McDaniel (2011) used two separate MANOVAs to 
compare the responses of nursing students, other health pre-  professional students, and education 
students (N = 1,000 in each group) on the indicators of the level of academic challenge (11 items) 
and the indicators of active and collaborative learning (7 items). There were significant multivariate 
differences on both sets of indicators among the three groups. Post hoc analyses of items relating 
to academic challenge revealed that nursing students scored higher on items assessing the necessity 
of synthesizing and applying concepts and on writing papers over 20 pages in length; nursing and 
other health students also reported spending more time studying than education majors. Post hoc 
analyses of active and collaborative learning revealed that nursing students were lower than educa-
tion students on asking questions in class, making class presentations, working with other students 
on projects. They were lower than both education and other health majors on tutoring other 
students, but higher in participating in a community-  based project than the other two groups.

A MANCOVA approach was taken by Raynor et al. (2011). Self-  reported dietary behaviors 
of three groups were studied: overweight adults (N = 97), normal weight adults (N = 85), and weight 
loss maintainers (N = 105). The focus was on the energy density of foods where the caloric content 
of the food is assessed relative to the weight of the food (kcal/g); low energy density foods include 
fruits, vegetables, and whole grains. Between group differences in several measures of food intake 
were examined by a MANCOVA that adjusted for significant group differences in baseline charac-
teristic variables and weekly energy expenditure. Weight loss maintainers consumed higher daily 
servings of vegetables and whole grains, and fewer servings of food high in fat and fiber than the 
other two groups; they also consumed lower energy (calories) per day but more grams of food and 
beverages per day than those in the overweight group.

7.2 Kinds of Research Questions

The goal of research using MANOVA is to discover whether behavior, as reflected by the DVs, is 
changed by manipulation (or other action) of the IVs. Statistical techniques are currently available 
for answering the types of questions posed in Sections 7.2.1 through 7.2.8.
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7.2.1 Main Effects of IVs

Holding all else constant, are mean differences in the composite DV among groups at 
different levels of an IV larger than expected by chance? The statistical procedures described in 
Sections 7.4.1 and 7.4.3 are designed to answer this question, by testing the null hypothesis that the 
IV has no systematic effect on the optimal linear combination of DVs.

As in ANOVA, “holding all else constant” refers to a variety of procedures: (1) controlling the 
effects of other IVs by “crossing over” them in a factorial arrangement, (2) controlling extraneous 
variables by holding them constant (e.g., running only women as subjects), counterbalancing their 
effects, or randomizing their effects, or (3) using covariates to produce an “as if constant” state by 
statistically adjusting for differences on covariates.

In the anxiety-  reduction example, the test of main effect asks: Are there mean differences 
in anxiety—  measured by test anxiety, stress anxiety, and free-  floating anxiety—  associated with 
differences in treatment? With addition of covariates, the question is: Are there differences in 
anxiety associated with treatment, after adjustment for individual differences in anxiety prior to 
treatment?

When there are two or more IVs, separate tests are made for each IV. Further, when sample 
sizes are equal in all cells, the separate tests are independent of one another (except for use of a 
common error term) so that the test of one IV in no way predicts the outcome of the test of another 
IV. If the example is extended to include gender of subject as an IV, and if there are equal numbers 
of subjects in all cells, the design produces tests of the main effect of treatment and of gender of 
subject, the two tests independent of each other.

7.2.2 Interactions Among IVs

Holding all else constant, does change in the DV over levels of one IV depend on the level of 
another IV? The test of interaction is similar to the test of main effect, but interpreted differently, 
as discussed more fully in Chapter 3 and in Sections 7.4.1 and 7.4.3. In the example, the test of 
interaction asks: Is the pattern of response to the three types of treatments the same for men as it is 
for women? If the interaction is significant, it indicates that one type of treatment “works better” for 
women while another type “works better” for men.

With more than two IVs, there are multiple interactions. Each interaction is tested separately 
from tests of other main effects and interactions, and these tests (but for a common error term) are 
independent when sample sizes in all cells are equal.

7.2.3 Importance of DVs

If there are significant differences for one or more of the main effects or interactions, the researcher 
usually asks which of the DVs are changed and which are unaffected by the IVs. If the main ef-
fect of treatment is significant, it may be that only test anxiety is changed while stress anxiety and 
free-  floating anxiety do not differ with treatment. As mentioned in Section 7.1,  Roy–  Bargmann 
stepdown analysis is often used where each DV is assessed in ANCOVA with higher-  priority DVs 
serving as covariates. Stepdown analysis and other procedures for assessing importance of DVs 
appear in Section 7.5.3.
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7.2.4 Parameter Estimates

Ordinarily, marginal means are the best estimates of population parameters for main effects and cell 
means are the best estimates of population parameters for interactions. But when  Roy–  Bargmann 
stepdown analysis is used to test the importance of the DVs, the means that are tested are adjusted 
means rather than sample means. In the example, suppose free-  floating anxiety is given first, stress 
anxiety second, and test anxiety third priority. Now suppose that a stepdown analysis shows that 
only test anxiety is affected by differential treatment. The means that are tested for test anxiety 
are not sample means, but sample means adjusted for stress anxiety and free-  floating anxiety. In 
MANCOVA, additional adjustment is made for covariates. Interpretation and reporting of results 
are based on both adjusted and sample means, as illustrated in Section 7.6. In any event, means are 
accompanied by some measure of variability: standard deviations, standard errors, and/or confi-
dence intervals.

7.2.5 Specific Comparisons and Trend Analysis

If an interaction or a main effect for an IV with more than two levels is significant, you probably 
want to ask which levels of main effect or cells of interaction are different from which others. If, 
in the example, treatment with three levels is significant, the researcher would be likely to want to 
ask if the pooled average for the two treated groups is different from the average for the waiting-  list
control, and if the average for relaxation training is different from the average for desensitization. 
Indeed, the researcher may have planned to ask these questions instead of the omnibus F questions 
about treatment. Similarly, if the interaction of gender of subject and treatment is significant, you 
may want to ask if there is a significant difference in the average response of women and men to, 
for instance, desensitization.

Specific comparisons and trend analysis are discussed more fully in Sections 7.5.4, 3.2.6, 
6.5.4.3, and 8.5.2.

7.2.6 Effect Size

If a main effect or interaction reliably affects behavior, the next logical question is: How much? 
What proportion of variance of the linear combination of DV scores is attributable to the effect? 
You can determine, for instance, the proportion of the variance in the linear combination of anxi-
ety scores that is associated with differences in treatment. These procedures are described in Sec-
tion 7.4.1. Procedures are also available for finding the effect sizes for individually significant 
DVs as demonstrated in Section 7.6, along with confidence intervals for effect sizes.

7.2.7 Effects of Covariates

When covariates are used, the researcher normally wants to assess their utility. Do the covariates 
provide statistically significant adjustment and what is the nature of the DV–  covariate relationship? 
For example, when pretests of test, stress, and free-  floating anxiety are used as covariates, to what 
degree does each covariate adjust the composite DV? Assessment of covariates is demonstrated in 
Section 7.6.3.1.
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7.2.8  Repeated-Measures Analysis of Variance

MANOVA is an alternative to repeated-  measures ANOVA in which responses to the levels of the 
within-  subjects IV are simply viewed as separate DVs. Suppose, in the example, that measures 
of test anxiety are taken three times (instead of measuring three different kinds of anxiety once), 
before, immediately after, and 6 months after treatment. Results could be analyzed as a two-  way 
ANOVA, with treatment as a between-  subjects IV and tests as a within-  subject IV, or as a one-  way 
MANOVA, with treatment as a between-  subjects IV and the three testing occasions as three DVs.

As discussed in Sections 3.2.3 and 8.5.1, repeated measures ANOVA has the often-  violated
assumption of sphericity. When the assumption is violated, significance tests are too liberal and 
some alternative to ANOVA is necessary. Other alternatives are adjusted tests of the significance 
of the within-  subjects IV (e.g.,  Huynh–  Feldt), decomposition of the repeated-  measures IV into an 
orthogonal series of single degree of freedom tests (e.g., trend analysis), and profile analysis of 
repeated measures (Chapter 8).

7.3  Limitations to Multivariate Analysis 
of Variance and Covariance

7.3.1 Theoretical Issues

As with all other procedures, attribution of causality to IVs is in no way assured by the statisti-
cal test. This caution is especially relevant because MANOVA, as an extension of ANOVA, stems 
from experimental research where IVs are typically manipulated by the experimenter and desire 
for causal inference provides the reason behind elaborate controls. But the statistical test is avail-
able whether or not IVs are manipulated, subjects randomly assigned, and controls implemented. 
Therefore, the inference that significant changes in the DVs are caused by concomitant changes in 
the IVs is a logical exercise, not a statistical one.

Choice of variables is also a question of logic and research design rather than of statistics. 
Skill is required in choosing IVs and levels of IVs, as well as DVs that have some chance of show-
ing effects of the IVs. A further consideration in choice of DVs is the extent of likely correlation 
among them. The best choice is a set of DVs that are uncorrelated with each other because they each 
measure a separate aspect of the influence of the IVs. When DVs are correlated, they measure the 
same or similar facets of behavior in slightly different ways. What is gained by inclusion of several 
measures of the same thing? Might there be some way of combining DVs or deleting some of them 
so that the analysis is simpler?

In addition to choice of number and type of DVs, is choice of the order in which DVs enter 
a stepdown analysis if  Roy–  Bargmann stepdown F is the method chosen to assess the importance 
of DVs (see Section 7.5.3.2). Priority is usually given to more important DVs or to DVs that are 
considered causally prior to others in theory. The choice is not trivial because the significance of a 
DV may well depend on how high a priority it is given, just as in sequential multiple regression the 
significance of an IV is likely to depend on its position in the sequence.

When MANCOVA is used, the same limitations apply as in ANCOVA. Refer to Sec-
tions 6.3.1 and 6.5 for a review of some of the hazards associated with interpretation of 
designs that include covariates.
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Finally, the usual limits to generalizability apply. The results of MANOVA and MANCOVA 
generalize only to those populations from which the researcher has randomly sampled. And 
although MANCOVA may, in some very limited situations, adjust for failure to randomly assign 
subjects to groups, MANCOVA does not adjust for failure to sample from segments of the popula-
tion to which one wishes to generalize.

7.3.2 Practical Issues

In addition to the above-  described theoretical and logical issues, the statistical procedure demands 
consideration of some practical matters.

7.3.2.1 Unequal Sample Sizes, Missing Data, and Power

Problems associated with unequal cell sizes are discussed in Section 6.5.4.2. Problems caused by in-
complete data (and solutions to them) are discussed in Chapters 4 and 6 (particularly Section 6.3.2.1). 
The discussion applies to MANOVA and, in fact, may be even more relevant because, as experiments 
are complicated by numerous DVs and, perhaps, covariates, the probability of missing data increases.

In addition, when using MANOVA, it is necessary to have more cases than DVs in every cell. 
With numerous DVs, this requirement can become burdensome, especially when the design is com-
plicated and there are numerous cells. There are two reasons for the requirement. The first is associ-
ated with the assumption of homogeneity of variance–  covariance matrices (see Section 7.3.2.4). If a 
cell has more DVs than cases, the cell becomes singular and the assumption is untestable. If the cell 
has only one or two more cases than DVs, the assumption is likely to be rejected. Thus, MANOVA 
as an analytic strategy may be discarded because of a failed assumption when the assumption failed 
because the cases-to-DVs ratio is too low.

Second, the power of the analysis is lowered unless there are more cases than DVs in every 
cell because of reduced degrees of freedom for error. One likely outcome of reduced power is 
a nonsignificant multivariate F, but one or more significant univariate Fs (and a very unhappy 
researcher). Sample sizes in each cell must be sufficient in any event to ensure adequate power. 
There are many software programs available to calculate required sample sizes depending on 
desired power and anticipated means and standard deviations in an ANOVA. An Internet search 
for “statistical power” reveals a number of them, some of which are free. One quick-  and-  dirty way 
to apply these is to pick the DV with the smallest expected difference that you want to show sta-
tistical significance—  your minimum significant DV. One program specifically designed to assess 
power in MANOVA is GANOVA (Woodward, Bonett, & Brecht, 1990). Another is NCSS PASS 
(Hintze, 2011), which now includes power analysis for between-  subjects MANOVA. Required 
sample size also may be estimated through IBM SPSS MANOVA by a process of successive 
approximation. For post hoc estimates of power at a given sample size, you compute a constant 
weighting variable, weight cases by that variable, and rerun the analysis until desired power is 
achieved (David P. Nichols, SPSS, personal communication, April 19, 2005). Matrix input is use-
ful for a priori estimates of sample size using IBM SPSS MANOVA (D’Amico, Neilands, & 
Zambarano, 2001).

Power in MANOVA also depends on the relationships among DVs. Power for the multivariate 
test is highest when the pooled within-  cell correlation between two DVs is high and negative. The 
multivariate test has much less power when the correlation is positive, zero, or moderately negative. 
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An interesting thing happens, however, when one of two DVs is affected by the treatment and the 
other is not. The higher the absolute value of the correlation between the two DVs, the greater the 
power of the multivariate test (Woodward et al., 1990).

7.3.2.2 Multivariate Normality

Significance tests for MANOVA, MANCOVA, and other multivariate techniques are based on the 
multivariate normal distribution. Multivariate normality implies that the sampling distributions of 
means of the various DVs in each cell and all linear combinations of them are normally distributed. 
With univariate F and large samples, the central limit theorem suggests that the sampling distribu-
tion of means approaches normality even when raw scores do not. Univariate F is robust to modest 
violations of normality as long as there are at least 20 degrees of freedom for error in a univariate 
ANOVA and the violations are not due to outliers (Section 4.1.5). Even with unequal n and only a 
few DVs, a sample size of about 20 in the smallest cell should ensure robustness (Mardia, 1971). In 
Monte Carlo studies, Seo, Kanda, and Fujikoshi (1995) have shown robustness to nonnormality in 
MANOVA with overall N = 40 (n = 10 per group).

With small, unequal samples, normality of DVs is assessed by reliance on judgment. Are the 
individual DVs expected to be fairly normally distributed in the population? If not, is some transfor-
mation likely to produce normality? With a nonnormally distributed covariate consider transforma-
tion or deletion. Covariates are often included as a convenience in reducing error, but it is hardly a 
convenience if it reduces power.

7.3.2.3 Absence of Outliers

One of the more serious limitations of MANOVA (and ANOVA) is its sensitivity to outliers. 
Especially worrisome is that an outlier can produce either a Type I or a Type II error, with no clue 
in the analysis as to which is occurring. Therefore, it is highly recommended that a test for outliers 
accompany any use of MANOVA.

Several programs are available for screening for univariate and multivariate outliers 
(cf. Chapter 4). Run tests for univariate and multivariate outliers for each cell of the design sepa-
rately and change, transform, or eliminate them. Report the change, transformation, or deletion 
of outlying cases. Screening runs for within-  cell univariate and multivariate outliers are shown in 
Sections 6.6.1.4 and 7.6.1.4.

7.3.2.4 Homogeneity of Variance–Covariance Matrices

The multivariate generalization of homogeneity of variance for individual DVs is homogeneity of 
variance–  covariance matrices as discussed in Section 4.1.5.3.2 The assumption is that variance–
covariance matrices within each cell of the design are sampled from the same population variance–
covariance matrix and can reasonably be pooled to create a single estimate of error.3 If the within-cell
error matrices are heterogeneous, the pooled matrix is misleading as an estimate of error variance.

2In MANOVA, homogeneity of variance for each of the DVs is also assumed. See Section 8.3.2.4 for discussion and 
recommendations.
3Do not confuse this assumption with the assumption of sphericity that is relevant to repeated-  measures ANOVA or 
MANOVA, as discussed in Sections 6.5.4.1 and 8.5.1.
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The following guidelines for testing this assumption in MANOVA are based on a generaliza-
tion of a Monte Carlo test of robustness for T2 (Hakstian, Roed, & Lind, 1979). If sample sizes are 
equal, robustness of significance tests is expected; disregard the outcome of Box’s M test, a notori-
ously sensitive test of homogeneity of variance–  covariance matrices available through IBM SPSS
MANOVA.

However, if sample sizes are unequal and Box’s M test is significant at p 6 .001, then robust-
ness is not guaranteed. The more numerous the DVs and the greater the discrepancy in cell sample 
sizes, the greater the potential distortion of alpha levels. Look at both sample sizes and the sizes of 
the variances and covariances for the cells. If cells with larger samples produce larger variances and 
covariances, the alpha level is conservative so that null hypotheses can be rejected with confidence. 
If, however, cells with smaller samples produce larger variances and covariances, the significance 
test is too liberal. Null hypotheses are retained with confidence but indications of mean differences 
are suspect. Use Pillai’s criterion instead of Wilks’ lambda (see Section 7.5.2) to evaluate multivari-
ate significance (Olson, 1979); or equalize sample sizes by random deletion of cases, if power can 
be maintained at reasonable levels.

7.3.2.5 Linearity

MANOVA and MANCOVA assume linear relationships among all pairs of DVs, all pairs of co-
variates, and all DV–  covariate pairs in each cell. Deviations from linearity reduce the power of 
the statistical tests because (1) the linear combinations of DVs do not maximize the separation of 
groups for the IVs, and (2) covariates do not maximize adjustment for error. Section 4.1.5.2 pro-
vides guidelines for checking for and dealing with nonlinearity. If serious curvilinearity is found 
with a covariate, consider deletion; if curvilinearity is found with a DV, consider transformation—
provided, of course, that increased difficulty in interpretation of a transformed DV is worth the 
increase in power.

7.3.2.6 Homogeneity of Regression

In  Roy–  Bargmann stepdown analysis (Section 7.5.3.2) and in MANCOVA (Section 7.4.3), it is 
assumed that the regression between covariates and DVs in one group is the same as the regres-
sion in other groups so that using the average regression to adjust for covariates in all groups is 
reasonable.

In both MANOVA and MANCOVA, if  Roy–  Bargmann stepdown analysis is used, the impor-
tance of a DV in a hierarchy of DVs is assessed in ANCOVA with higher-  priority DVs serving as 
covariates. Homogeneity of regression is required for each step of the analysis, as each DV, in turn, 
joins the list of covariates. If heterogeneity of regression is found at a step, the rest of the stepdown 
analysis is uninterpretable. Once violation occurs, the IV-“covariate” interaction is itself interpreted 
and the DV causing violation is eliminated from further steps.

In MANCOVA (like ANCOVA), heterogeneity of regression implies that there is interaction 
between the IV(s) and the covariates and that a different adjustment of DVs for covariates is needed 
in different groups. If interaction between IVs and covariates is suspected, MANCOVA is an inap-
propriate analytic strategy, both statistically and logically. Refer to Sections 6.3.2.7 and 6.5.5 for 
alternatives to MANCOVA where heterogeneity of regression is found.

For MANOVA, test for stepdown homogeneity of regression, and for MANCOVA, test for over-
all and stepdown homogeneity of regression. These procedures are demonstrated in Section 7.6.1.6.
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7.3.2.7 Reliability of Covariates

In MANCOVA as in ANCOVA, the F test for mean differences is more powerful if covariates are 
reliable. If covariates are not reliable, either increased Type I or Type II errors can occur. Reliability
of covariates is discussed more fully in Section 6.3.2.8.

In  Roy–  Bargmann stepdown analysis where all but the lowest-  priority DV act as covariates 
in assessing other DVs, unreliability of any of the DVs (say, ryy 6 .8) raises questions about step-
down analysis as well as about the rest of the research effort. When DVs are unreliable, use another 
method for assessing the importance of DVs (Section 7.5.3) and report known or suspected unreli-
ability of covariates and high-  priority DVs in your Results section.

7.3.2.8 Absence of Multicollinearity and Singularity

When correlations among DVs are high, one DV is a near-  linear combination of other DVs; the DV 
provides information that is redundant to the information available in one or more of the other DVs. 
It is both statistically and logically suspect to include all the DVs in analysis and the usual solution 
is deletion of the redundant DV. However, if there is some compelling theoretical reason to retain all 
DVs, a principal components analysis (cf. Chapter 13) is done on the pooled within-  cell correlation 
matrix, and component scores are entered as an alternative set of DVs.

SAS and IBM SPSS GLM protect against multicollinearity and singularity through compu-
tation of pooled within-  cell tolerance (1 - SMC) for each DV; DVs with insufficient tolerance 
are deleted from analysis. In IBM SPSS MANOVA, singularity or multicollinearity may be pres-
ent when the determinant of the within-  cell correlation matrix is near zero (say, less than .0001). 
Section 4.1.7 discusses multicollinearity and singularity and has suggestions for identifying the 
redundant variable(s).

7.4  Fundamental Equations for Multivariate 
Analysis of Variance and Covariance

7.4.1 Multivariate Analysis of Variance

A minimum data set for MANOVA has one or more IVs, each with two or more levels, and two or 
more DVs for each subject within each combination of IVs. A fictitious small sample with two DVs 
and two IVs is illustrated in Table 7.1. The first IV is degree of disability with three levels—  mild,
moderate, and severe—  and the second is treatment with two levels—  treatment and no treatment. 
These two IVs in factorial arrangement produce six cells; three children are assigned to each cell 
so there are 3 * 6 or 18 children in the study. Each child produces two DVs: score on the read-
ing subtest of the Wide Range Achievement Test (WRAT-R) and score on the arithmetic subtest 
(WRAT-A). In addition an IQ score is given in parentheses for each child to be used as a covariate 
in Section 7.4.3.

The test of the main effect of treatment asks: Disregarding degree of disability, does treatment 
affect the optimal composite score created from the two subtests of the WRAT (where the optimal 
composite score is the one that maximally separates the level of treatment)? The test of interaction 
asks: Does the effect of treatment on another optimal composite score from the two subtests differ 
as a function of degree of disability?
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The test of the main effect of disability is automatically provided in the analysis but is trivial 
in this example. The question is: Are scores on the WRAT affected by degree of disability? Because 
degree of disability is at least partially defined by difficulty in reading and/or arithmetic, a signifi-
cant effect provides no useful information. On the other hand, the absence of this effect would lead 
us to question the adequacy of classification.

The sample size of three children per cell is highly inadequate for a realistic test but serves 
to illustrate the techniques of MANOVA. Additionally, if causal inference is intended, the 
researcher should randomly assign children to the levels of treatment. The reader is encouraged to 
analyze these data by hand and by computer. Syntax and selected output for this example appear in 
Sec  tion 7.4.2 for several appropriate programs.

MANOVA follows the model of ANOVA where variance in scores is partitioned into variance 
attributable to difference among scores within groups and to differences among groups. Squared 
differences between scores and various means are summed (see Chapter 3); these sums of squares, 
when divided by appropriate degrees of freedom, provide estimates of variance attributable to dif-
ferent sources (main effects of IVs, interactions among IVs, and error). Ratios of variances provide 
tests of hypotheses about the effects of IVs on the DV.

In MANOVA, however, each subject has a score on each of several DVs. When several DVs 
for each subject are measured, there is a matrix of scores (subjects by DVs) rather than a simple set 
of DVs within each group. Matrices of difference scores are formed by subtracting from each score 
an appropriate mean; then the matrix of differences is squared. When the squared differences are 
summed, a sum-of-squares-and-cross-products matrix, an S matrix, is formed, analogous to a sum 
of squares in ANOVA (Section 6.4). Determinants4 of the various S matrices are found, and ratios 
between them provide tests of hypotheses about the effects of the IVs on the linear combination of 
DVs. In MANCOVA, the sums of squares and cross products in the S matrix are adjusted for covari-
ates, just as sums of squares are adjusted in ANCOVA (Chapter 6).

The MANOVA equation for equal n is developed below through extension of 
ANOVA. The simplest partition apportions variance to systematic sources (variance 
attributable to differences between groups) and to unknown sources of error (variance attributable 

TABLE 7.1 Small-  Sample Data for Illustration of Multivariate Analysis of Variance

Mild Moderate Severe

WRAT-R WRAT-A (IQ) WRAT-R WRAT-A (IQ) WRAT-R WRAT-A (IQ)

115 108 (110) 100 105 (115) 89 78 (99)
Treatment 98 105 (102) 105 95 (98) 100 85 (102)

107 98 (100) 95 98 (100) 90 95 (100)

90 92 (108) 70 80 (100) 65 62 (101)
Control 85 95 (115) 85 68 (99) 80 70 (95)

80 81 (95) 78 82 (105) 72 73 (102)

4A determinant, as described in Appendix A, can be viewed as a measure of generalized variance for a matrix.
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to differences in scores within groups). To do this, differences between scores and various 
means are squared and summed.

a
i
a

j
(Yij - GM)2 = na

j
(Yj - GM)2 + a

i
a

j
(Yij - Yj)

2 (7.1)

The total sum of squared differences between scores on Y (the DV) and the grand mean 
(GM) is partitioned into sum of squared differences between group means (Yj) and the 
grand mean (i.e., systematic or between-  groups variability), and sum of squared differ-
ence between individual scores (Yij) and their respective group means.

Or

SStotal = SSbg - SSwg

For designs with more than one IV, SSbg is further partitioned into variance associated with the first 
IV (e.g., degree of disability, abbreviated D), variance associated with the second IV (treatment, or 
T ), and variance associated with the interaction between degree of disability and treatment (or DT ).
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The sum of squared differences between cell (DTkm) means and the grand mean is par-
titioned into (1) sum of squared differences between means associated with different 
levels of disability (Dk) and the grand mean; (2) sum of squared differences between
means associated with different levels of treatment (Tm) and the grand mean; and 
(3) sum of squared differences associated with combinations of treatment and disability 
(DTkm) and the grand mean, from which differences associated with Dk and Tm are sub-
tracted. Each n is the number of scores composing the relevant marginal or cell mean.

Or

SSbg = SSD + SST + SSDT

The full partition for this factorial between-  subjects design is
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For MANOVA, there is no single DV but rather a column matrix (or vector) of Yikm values of 
scores on each DV. For the example in Table 7.1, column matrices of Y scores for the three children 
in the first cell of the design (mild disability with treatment) are

Yi11 = c 115

108
d c 98

105
d c 107

98
d

Similarly, there is a column matrix of disability—  Dk—means for mild, moderate, and severe 
levels of D, with one mean in each matrix for each DV.

D1 = c 95.83

96.50
d D2 = c 88.83

88.00
d D3 = c 82.67

77.17
d

where 95.83 is the mean on WRAT-R and 96.50 is the mean on WRAT-A for children 
with mild disability, averaged over treatment and control groups.

Matrices for treatment—Tm—means, averaged over children with all levels of disability are

T1 = c 99.89

96.33
d T2 = c 78.33

78.11
d

Similarly, there are six matrices of cell means DTkm averaged over the three children in each group.
Finally, there is a single matrix of grand means (GM), one for each DV, averaged over all 

children in the experiment.

GM = c 89.11

87.22
d

As illustrated in Appendix A, differences are found by simply subtracting one matrix from an-
other, to produce difference matrices. The matrix counterpart of a difference score, then, is a 
difference matrix. To produce the error term for this example, the matrix of grand means (GM)
is subtracted from each of the matrixes of individual scores Yikm. Thus, for the first child in the 
example:

(Y111 - GM) = c 115

108
d - c 89.11

87.22
d = c 25.89

20.78
d

In ANOVA, difference scores are squared. The matrix counterpart of squaring is multiplica-
tion by a transpose. That is, each column matrix is multiplied by its corresponding row matrix (see 
Appendix A for matrix transposition and multiplication) to produce a sum-of-squares and cross- 
products matrix. For example, for the first child in the first group of the design:

(Y111 - GM)(Y111 - GM)� = c 25.89

20.78
d [25.89 20.78] = c 670.29 537.99

537.99 431.81
d



Multivariate Analysis of Variance and Covariance 259

These matrices are then summed over subjects and over groups, just as squared differences 
are summed in univariate ANOVA.5 The order of summing and squaring is the same in MANOVA 
as in ANOVA for a comparable design. The resulting matrix (S) is called by various names: 
sum-of-squares and cross-  products, cross-  products, or sum-of-products. The MANOVA partition of 
sums-of-squares and cross-  products for our factorial example is represented below in a matrix form 
of Equation 7.3:
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(Yikm - DTkm)(Yikm - DTkm)�

or

Stotal = SD + ST + SDT + SS(DT)

The total cross-products matrix (Stotal) is partitioned into cross-  products matrices for 
differences associated with degree of disability, with treatment, with the interaction 
between disability and treatment, and for error–  subjects within groups (SS(DT )).

For the example in Table 7.1, the four resulting cross-  products matrices6 are

SD = c 570.78 761.72

761.72 1126.78
d ST = c 2090.89 1767.56

1767.56 1494.22
d

SDT = c 2.11 5.28

5.28 52.78
d    SS(DT) = c 544.00 31.00

31.00 539.33
d

Notice that all these matrices are symmetrical, with the elements top left to bottom right diagonal 
representing sums of squares (that, when divided by degrees of freedom, produce variances), and 
with the off-  diagonal elements representing sums of cross products (that, when divided by degrees 
of freedom, produce covariances). In this example, the first element in the major diagonal (top left 
to bottom right) is the sum of squares for the first DV, WRAT-R, and the second element is the sum 
of squares for the second DV, WRAT-A. The off-  diagonal elements are the sums of cross-  products
between WRAT-R and WRAT-A.

In ANOVA, sums of squares are divided by degrees of freedom to produce variances, or 
mean squares. In MANOVA, the matrix analog of variance is a determinant (see Appendix A); the 

5We highly recommend using a matrix algebra program, such as a spreadsheet or IBM SPSS MATRIX, MATLAB, or SAS 
IML, to follow the more complex matrix equations to come.
6Numbers producing these matrices were carried to 8 digits before rounding.
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determinant is found for each cross-  products matrix. In ANOVA, ratios of variances are formed 
to test main effects and interactions. In MANOVA, ratios of determinants are formed to test main 
effects and interactions when using Wilks’ lambda (see Section 7.5.2 for additional criteria). These 
ratios follow the general form

� =
� Serror �

� Seffect + Serror �
(7.4)

Wilks’ lambda (�) is the ratio of the determinant of the error cross-  products matrix to 
the determinant of the sum of the error and effect cross-  products matrices.

To find Wilks’ lambda, the within-  groups matrix is added to matrices corresponding to main 
effects and interactions before determinants are found. For the example, the matrix produced by 
adding the SDT matrix for interaction to the SS(DT) matrix for subjects within groups (error) is

SDT + SS(DT) = c 2.11 5.28

5.28 52.78
d + c 544.00 31.00

31.00 539.33
d

= c 546.11 36.28

36.28 592.11
d

For the four matrices needed to test main effect of disability, main effect of treatment, and the 
treatment-  disability interaction, the determinants are

 � SS(DT ) � = 292436.52

 � SD + SS(DT ) � = 1228124.71

 � ST + SS(DT ) � = 2123362.49

 � SDT + SS(DT ) � = 322040.95

At this point a source table, similar to the source table for ANOVA, is useful, as presented in 
Table 7.2. The first column lists sources of variance; in this case the two main effects and the in-
teraction. The error term does not appear. The second column contains the value of Wilks’ lambda.

TABLE 7.2 Multivariate Analysis of Variance of WRAT-R
and WRAT-A Scores

Source of 
Variance

Wilks’ 
Lambda df1 df2

Multivariate 
F

Treatment .13772 2.00 11.00 34.43570**

Disability .25526 4.00 22.00 5.38602*

Treatment by disability .90807 4.00 22.00 0.27170

*p 6 .01.

**p 6 .001.
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Wilks’ lambda is a ratio of determinants, as described in Equation 7.4. For example, for the 
interaction between disability and treatment, Wilks’ lambda is

� =
� SS(DT) �

� SDT + SS(DT) �
=

292436.52

322040.95
= .908068

Tables for evaluating Wilks’ lambda directly are rare; however, an approximation to F has 
been derived that closely fits ¶. The last three columns of Table 7.2, then, represent the approximate 
F values and their associated degrees of freedom.

The following procedure for calculating approximate F (Rao, 1952) is based on Wilks’ 
lambda and the various degrees of freedom associated with it.

Approximate F (df1, df2) = a 1 - y

y
b a df2

df1
b (7.5)

where df1 and df2 are defined below as the degrees of freedom for testing the F ratio, and y is

y = �1>s (7.6)

¶ is defined in Equation 7.4, and s is7

s = min (p, dfeffect) (7.7)

where p is the number of DVs and dfeffect is the degrees of freedom for the effect being tested. And

df1 = p(dfeffect)

and

df2 = s c (dferror) -
p - dfeffect + 1

2
d - c p(dfeffect) - 2

2
d

where dferror is the degrees of freedom associated with the error term.

For the test of interaction in the sample problem, we have

p = 2 the number of DVs

dfeffect = 2  the number of treatment levels minus 1 times the number of disability 
levels minus 1 or (t - 1)(d - 1)

dferror = 12  the number of treatment levels times the number of disability levels 
times the quantity (n - 1) (where n is the number of scores per cell for 
each DV)—that is, dferror = dt(n - 1)

7When p = 1, we have univariate ANOVA.
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Thus,

s = min( p, dfeffect) = 2

y = .9080681>2 = .952926

df1 = 2(2) = 4

df2 = 2 c 12 -
2 - 2 + 1

2
d - c 2(2) - 2

2
d = 22

Approximate F(4, 22) = a .047074

.952926
b a 22

4
b = 0.2717

This approximate F value is tested for significance by using the usual tables of F at selected a. In 
this example, the interaction between disability and treatment is not statistically significant with 4 and 
22 df, because the observed value of 0.2717 does not exceed the critical value of 2.82 at a = .05.

Following the same procedures, the effect of treatment is statistically significant, with the 
observed value of 34.44 exceeding the critical value of 3.98 with 2 and 11 df, a = .05. The effect 
of degree of disability is also statistically significant, with the observed value of 5.39 exceeding 
the critical value of 2.82 with 4 and 22 df, a = .05. (As noted previously, this main effect is not of 
research interest, but does serve to validate the classification procedure.) In Table 7.2, significance 
is indicated at the highest level of a reached, following standard practice.

A measure of effect size is readily available from Wilks’ lambda.8 For MANOVA,

h2 = 1 - � (7.8)

This equation represents the variance accounted for by the best linear combination of DVs as 
explained below.

In a one-  way analysis, according to Equation 7.4, Wilks’ lambda is the ratio of (the deter-
minant of) the error matrix and (the determinant of) the total sum-of-squares and cross-  products 
matrix. The determinant of the error matrix—¶—is the variance not accounted for by the combined 
DVs so 1 - � is the variance that is accounted for.

Thus, for each statistically significant effect, the proportion of variance accounted for is easily 
calculated using Equation 7.8. For example, for the main effect of treatment:

h2
T = 1 - �T = 1 - .137721 = .862279

In the example, 86% of the variance in the best linear combination of WRAT-R and WRAT-A 
scores is accounted for by assignment to levels of treatment. The square root of h2(h = .93) is a 
form of correlation between WRAT scores and assignment to treatment.

However, unlike h2 in the analogous ANOVA design, the sum of h2 for all effects in MANOVA 
may be greater than 1.0 because DVs are recombined for each effect. This lessens the appeal of an 
interpretation in terms of proportion of variance accounted for, although the size of h2 is still a mea-
sure of the relative importance of an effect.

8An alternative measure of effect size is canonical correlation, printed out by some computer programs. Canonical correla-
tion is the correlation between the optimal linear combination of IV levels and the optimal linear combination of DVs where 
optimal is chosen to maximize the correlation between combined IVs and DVs. Canonical correlation as a general procedure 
is discussed in Chapter 12, and the relation between canonical correlation and MANOVA is discussed briefly in Chapter 17.
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TABLE 7.3 MANOVA on Small-  Sample Example Through IBM SPSS MANOVA 
(Syntax and Output)

MANOVA
WRATR WRATA BY TREATMNT(1,2) DISABLTY(1,3)
/PRINT=SIGNIF(BRIEF)
/DESIGN = TREATMNT DISABLTY TREATMNT*DISABLTY.

* * * * * * A n a l y s i s  o f  V a r i a n c e —   design 1 * * * * * *

Multivariate Tests of Significance
Tests using UNIQUE sums of squares and WITHIN+RESIDUAL error term
Source of Variation Wilks Approx F Hyp. DF Error DF Sig of F

TREATMNT .138 34.436 2.00 11.000 .000
DISABLTY .255 5.386 4.00 22.000 .004
TREATMNT * DISABLTY .908 .272 4.00 22.000 .893

Another difficulty in using this form of h2 is that effects tend to be much larger in the multi-
variate than in the univariate case. Therefore, a recommended alternative when s 7 1 is

partial h2 = 1 - �1>s (7.9)

Estimated effect size is reduced to .63 with the use of partial h2 for the current data, a more 
reasonable assessment. Confidence limits around effect sizes are in Section 7.6.

7.4.2 Computer Analyses of Small-Sample Example

Tables 7.3 through 7.5 show syntax and selected minimal output for IBM SPSS MANOVA, IBM 
SPSS GLM, and SAS GLM, respectively.

In IBM SPSS MANOVA (Table 7.3) simple MANOVA source tables, resembling those of 
ANOVA, are printed out when PRINT=SIGNIF(BRIEF) is requested. After interpretive material 
is printed (not shown), the source table is shown, labeled Tests using UNIQUE sums of 
squares and WITHIN+RESIDUAL. WITHIN+RESIDUAL refers to the pooled within-  cell
error SSCP matrix (Section 7.4.1) plus any effects not tested, the error term chosen by default for 
MANOVA.

For the example, the two-  way MANOVA source table consists of the two main effects and the 
interaction. For each source, you are given Wilks’ lambda, Approximate (multivariate) F with 
numerator and denominator degrees of freedom (Hyp. DF and Error DF, respectively), and 
the probability level achieved for the significance test.

Syntax for IBM SPSS GLM is similar to that of MANOVA, except that levels of IVs are not 
shown in parentheses. METHOD, INTERCEPT, and CRITERIA instructions are produced by the 
menu system by default.

Output consists of a source table that includes four tests of the multivariate effects: Pillai’s, 
Wilks’, Hotelling’s, and Roy’s (see Section 7.5.2 for a discussion of these tests). All are identical 
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TABLE 7.4 MANOVA on Small-  Sample Example Through IBM SPSS GLM 
(Syntax and Selected Output)

GLM
wratr wrata BY treatmnt disablty
/METHOD = SSTYPE(3)
/INTERCEPT = INCLUDE
/CRITERIA = ALPHA(.05)
/DESIGN = treatmnt disablty treatmnt*disablty.

General Linear Model

Between-Subjects Factors

Value Label N

Treatment 
type

Degree of 
disability

1.00

2.00

1.00

2.00

3.00

Treatment

Control

Mild

Moderate

Severe

9

9

6

6

6

Multivariate Testsc

Effect Value F
Hypothesis

df
Error 

df Sig.

Intercept Pillai’s Trace .998 2687.779a 2.000 11.000 .000
Wilks’ Lambda .002 2687.779a 2.000 11.000 .000
Hotelling’s Trace 488.687 2687.779a 2.000 11.000 .000
Roy’s Largest Root 488.687 2687.779a 2.000 11.000 .000

Treatmnt Pillai’s Trace .862 34.436a 2.000 11.000 .000
Wilks’ Lambda .138 34.436a 2.000 11.000 .000
Hotelling’s Trace 6.261 34.436a 2.000 11.000 .000
Roy’s Largest Root 6.261 34.436a 2.000 11.000 .000

Disablty Pillai’s Trace .750 3.604 4.000 24.000 .019
Wilks’ Lambda .255 5.386a 4.000 22.000 .004
Hotelling’s Trace 2.895 7.238 4.000 20.000 .001
Roy’s Largest Root 2.887 17.323b 2.000 12.000 .000

Treatmnt * disablty Pillai’s Trace .092 .290 4.000 24.000 .882
Wilks’ Lambda .908 .272a 4.000 22.000 .893
Hotelling’s Trace .101 .252 4.000 20.000 .905
Roy’s Largest Root .098 .588b 2.000 12.000 .571

a. Exact statistic
b. The statistic is an upper bound on F that yields a lower bound on the significance level.
c. Design: Intercept+Treatmnt+Disablty+Treatmnt * Disablty



Tests of Between-Subjects Effects

Source Dependent Variable
Type III Sum 
of Squares df

Mean
Square F Sig.

Corrected Model WRAT - Reading 2613.778a 5 522.756 11.531 .000
WRAT - Arithmetic 2673.778b 5 534.756 11.898 .000

Intercept WRAT - Reading 142934.222 1 142934.222 3152.961 .000
WRAT - Arithmetic 136938.889 1 136938.999 3046.848 .000

Treatmnt WRAT - Reading 2090.889 1 2090.889 46.123 .000
WRAT - Arithmetic 1494.222 1 1494.222 33.246 .000

Disablty WRAT - Reading 520.778 2 260.389 5.744 .018
WRAT - Arithmetic 1126.778 2 563.389 12.535 .001

Treatmnt * Disablty WRAT - Reading 2.111 2 1.056 .023 .977
WRAT - Arithmetic 52.778 2 26.389 .587 .571

Error WRAT - Reading 544.000 12 45.333
WRAT - Arithmetic 539.333 12 44.944

Total WRAT - Reading 146092.000 18
WRAT - Arithmetic 140152.000 18

Corrected Total WRAT - Reading 3157.778 17
WRAT - Arithmetic 3213.111 17

a. R Squared = .828 (Adjusted R Squared = .756)

b. R Squared = .832 (Adjusted R Squared = .762)

TABLE 7.4 Continued

265
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when there are only two levels of a between-  subjects IV. The results of Wilks’ Lambda test match 
those of IBM SPSS MANOVA in Table 7.3. This is followed by univariate tests on each of the 
DVs, in the table labeled Tests of Between-  Subjects Effects. The format of the table follows 
that of univariate ANOVA (see Table 6.5). Note that interpretation of MANOVA through univariate 
ANOVAs is not recommended (cf. Section 7.5.3.1).

In SAS GLM (Table 7.5), IVs are defined in a class instruction and the model instruc-
tion defines the DVs and the effects to be considered. The nouni instruction suppresses printing 
of descriptive statistics and univariate F tests. The manova h = _all_ instruction requests 
tests of all main effects and interactions listed in the model instruction, and short condenses 
the printout.

The output begins with some interpretative information (not shown), followed by separate 
sections for TREATMNT, DISABLTY, and TREATMNT*DISABLTY. Each source table 
is preceded by information about characteristic roots and vectors of the error SSCP matrix (not 
shown—  these are discussed in Chapters 9, 12, and 13), and the three df parameters (Section 7.4.1). 
Each source table shows results of four multivariate tests, fully labeled (cf. Section 7.5.2).

7.4.3 Multivariate Analysis of Covariance

In MANCOVA, the linear combination of DVs is adjusted for differences in the covariates. The 
adjusted linear combination of DVs is the combination that would be obtained if all participants had 
the same scores on the covariates. For this example, pre-  experimental IQ scores (listed in parenthe-
ses in Table 7.1) are used as covariates.

In MANCOVA the basic partition of variance is the same as in MANOVA. However, all the 
matrices—Yikm, Dk, Tm, DTkm, and GM—have three entries in our example; the first entry is the covari-
ate (IQ score) and the second two entries are the two DV scores (WRAT-R and WRAT-A). For example, 
for the first child with mild disability and treatment, the column matrix of covariate and DV scores is

Y111 = £ 110

115

108

§ (IQ)

(WRAT R)

(WRATA)

As in MANOVA, difference matrices are found by subtraction, and then the squares and 
cross-  products matrices are found by multiplying each difference matrix by its transpose to form 
the S matrices.

At this point another departure from MANOVA occurs. The S matrices are partitioned into 
sections corresponding to the covariates, the DVs, and the cross-  products of covariates and DVs. 
For the example, the cross-  products matrix for the main effect of treatment is

ST = £ [2.00] [64.67 54.67]

64.67 2090.89 1767.56c
54.67

d c
1767.56 1494.22

d §
The lower right-  hand partition is the ST matrix for the DVs (or S(Y)

T ) and is the same as the ST

matrix developed in Section 7.4.1. The upper left matrix is the sum of squares for the covariate S(X)
T .

(With additional covariates, this segment becomes a full sum-of-squares and cross-  products ma-
trix.) Finally, the two off-  diagonal segments contain cross-  products of covariates and DVs or S(XY)

T .
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TABLE 7.5 MANOVA on Small-  Sample Example Through SAS GLM (Syntax and Selected Output)

proc glm data=SASUSER.SS_MANOV;

class TREATMNT DISABLTY;

model WRATR WRATA=TREATMNT DISABLTY TREATMNT*DISABLTY / nouni;

manova h=_all_ / short;

run;

MANOVA Test Criteria and Exact F Statistics for

the Hypothesis of NO Overall TREATMNT Effect

H = Type III SSCP Matrix for TREATMNT

E = Error SSCP Matrix

S=1 M=0 N=4.5

Statistic Value F Value Num DF Den DF Pr > F

Wilks’ lambda 0.13772139 34.44 2 11 <.0001
Pillai’s Trace 0.86227861 34.44 2 11 <.0001
Hotelling-Lawley Trace 6.26103637 34.44 2 11 <.0001
Roy’s Greatest Root 6.26103637 34.44 2 11 <.0001

Characteristic Roots and Vectors of: E Inverse * H, where

H = Type III SSCP Matrix for DISABLTY

E = Error SSCP Matrix

Characteristic 
Root Percent

Characteristic Vector V’EV=1
WRATR WRATA

2.88724085 99.73 0.02260839 0.03531017
0.00779322 0.27 −0.03651215 0.02476743

MANOVA Test Criteria and F Approximations for

the Hypothesis of NO Overall DISABLTY Effect

H = Type III SSCP Matrix for DISABLTY

E = Error SSCP Matrix

S=2 M=−0.5 N=4.5

Statistic Value F Value Num DF Den DF Pr > F

Wilks’ lambda 0.25526256 5.39 4 22 0.0035
Pillai’s Trace 0.75048108 3.60 4 24 0.0195
Hotelling-Lawley Trace 2.89503407 7.79 4 12.235 0.0023
Roy’s Greatest Root 2.88724085 17.32 2 12 0.0003

NOTE: F Statistic for Roy’s Greatest Root is an upper bound.

NOTE: F Statistic for Wilks’ lambda is exact.

(continued )
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Characteristic Roots and Vectors of: E Inverse * H, where

H = Type III SSCP Matrix for TREATMNT*DISABLTY

E = Error SSCP Matrix

Characteristic 
Root Percent

Characteristic 
WRATR

Vector V’EV=1 
WRATR

0.09803883 97.11 0.00187535 0.04291087
0.00291470 2.89 0.04290407 −0.00434641

MANOVA Test Criteria and F Approximations 

for the Hypothesis of NO Overall TREATMNT*DISABLTY Effect 

H = Type III SSCP Matrix for TREATMNT*DISABLTY

E = Error SSCP Matrix

S=2 M=−0.5 N=4.5

Statistic Value F Num DF Den DF Pr > F

Wilks’ lambda 0.90806786 0.27 4 22 0.8930
Pillai’s Trace 0.09219163 0.29 4 24 0.8816
Hotelling-Lawley Trace 0.10095353 0.27 4 12.235 0.8908
Roy’s Greatest Root 0.09803883 0.59 2 12 0.5706

NOTE: F Statistic for Roy’s Greatest Root is an upper bound.

NOTE: F Statistic for Wilks’ lambda is exact.

TABLE 7.5 Continued

Adjusted or S* matrices are formed from these segments. The S* matrix is the sums-of-squares 
and the cross-  products of DVs adjusted for effects of covariates. Each sum of squares and each 
cross-  product is adjusted by a value that reflects variance due to differences in the covariate.

In matrix terms, the adjustment is

S* = S(Y ) - S(YX )(S(X ))-1S(XY) (7.10)

The adjusted cross-products matrix S* is found by subtracting from the unadjusted 
cross-products matrix of DVs S(Y) a product based on the cross-  products matrix for 
covariate(s) S(X) and cross-  products matrices for the relation between the covariates and 
the DVs S(YX) and S(XY).

The adjustment is made for the regression of the DVs (Y ) on the covariates (X ). Because S(XY)

is the transpose of S(YX), their multiplication is analogous to a squaring operation. Multiplying by 
the inverse of S(X) is analogous to division. As shown in Chapter 3 for simple scalar numbers, the 
regression coefficient is the sum of cross-  products between X and Y, divided by the sum of squares 
for X.
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An adjustment is made to each S matrix to produce S* matrices. The S* matrices are 2 * 2
matrices, but their entries are usually smaller than those in the original MANOVA S matrices. For 
the example, the reduced S* matrices are

S*D = c388.18 500.49

500.49 654.57
d S*T = c2059.50 1708.24

1708.24 1416.88
d

S*DT = c2.06 0.87

0.87 19.61
d S*S(DT) = c 528.41 -26.62

-26.62 324.95
d

Note that, as in the lower right-  hand partition, cross-  products matrices may have negative 
values for entries other than the major diagonal, which contains sums of squares.

Tests appropriate for MANOVA are applied to the adjusted S* matrices. Ratios of determi-
nants are formed to test hypotheses about main effects and interactions by using Wilks’ lambda 
criterion (Equation 7.4). For the example, the determinants of the four matrices needed to test the 
three hypotheses (two main effects and the interaction) are

 � SS
*
(DT ) � = 171032.69

 � SD
* + SS

*
(DT ) � = 673383.31

 � ST
* + SS

*
(DT ) � = 1680076.69

 � SD
*

T + SS
*
(DT ) � = 182152.59

The source table for MANCOVA, analogous to that produced for MANOVA, for the sample 
data is in Table 7.6.

One new item in this source table that is not in the MANOVA table of Section 7.4.1 is the 
variance in the DVs due to the covariate. (With more than one covariate, there is a line for combined 
covariates and a line for each of the individual covariates.) As in ANCOVA, one degree of freedom for 
error is used for each covariate so that df2 and s of Equation 7.5 are modified. For MANCOVA, then,

s = min ( p + q, dfeffect ) (7.11)

where q is the number of covariates and all other terms are defined as in Equation 7.7.

TABLE 7.6 Multivariate Analysis of Covariance of WRAT-R
and WRAT-A Scores

Source of 
Variance

Wilks’ 
Lambda df1 df2

Multivariate 
F

Covariate .58485 2.00 10.00 3.54913

Treatment .10180 2.00 10.00 44.11554**

Disability .25399 4.00 22.00 4.92112*

Treatment by disability .93896 4.00 22.00 0.15997

*p 6 .01.
**p 6 .001.
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df2 = s c (dferror) -
(p + q) - dfeffect + 1

2
d - c (p + q)(dfeffect) - 2

2
d

Approximate F is used to test the significance of the covariate–  DV relationship as well as 
main effects and interactions. If a significant relationship is found, Wilks’ lambda is used to find the 
effect size as shown in Equation 7.8 or 7.9.

7.5 Some Important Issues

7.5.1 MANOVA versus ANOVAs

MANOVA works best with highly negatively correlated DVs and acceptably well with moderately 
correlated DVs in either direction (about � .6 � ). For example, two DVs, such as time to complete a 
task and number of errors, might be expected to have a moderate negative correlation and are best 
analyzed through MANOVA. MANOVA is less attractive if correlations among DVs are very highly 
positive or near zero (Woodward et al., 1990).

Using very highly positively correlated DVs in MANOVA is wasteful. For example, the 
effects of the Head Start program might be tested in a MANOVA with the WISC and Stanford- 
Binet as DVs. The overall multivariate test works acceptably well, but after the highest priority DV 
is entered in stepdown analysis, tests of remaining DVs are ambiguous. Once that DV becomes a 
covariate, there is no variance remaining in the lower priority DVs to be related to IV main effects 
or interactions. Univariate tests also are highly misleading, because they suggest effects on different 
behaviors when actually there is one behavior being measured repeatedly. Better strategies are to 
pick a single DV (preferably the most reliable) or to create a composite score (an average if the DVs 
are commensurate or a principal component score if they are not) for use in ANOVA.

MANOVA also is wasteful if DVs are uncorrelated—  naturally, or if they are factor or compo-
nent scores. The multivariate test has lower power than the univariate and there is little difference 
between univariate and stepdown results. The only advantage to MANOVA over separate ANOVAs 
on each DV is control of familywise Type I error. However, this error rate can be controlled by ap-
plying a Bonferroni correction (cf. Equation 7.12) to each test in a set of separate ANOVAs on each 
DV, although that could potentially result in a more conservative analysis than MANOVA.

Sometimes there is a mix of correlated and uncorrelated DVs. For example, there may be a set 
of moderately correlated DVs related to performance on a task and another set of moderately corre-
lated DVs related to attitudes. Separate MANOVAs on each of the two sets of moderately correlated 
DVs are likely to produce the most interesting interpretations as long as appropriate adjustments are 
made for familywise error rate for the multiple MANOVAs. Or one set might serve as covariates in 
a single MANCOVA.

7.5.2 Criteria for Statistical Inference

Several multivariate statistics are available in MANOVA programs to test significance of main 
effects and interactions: Wilks’ lambda, Hotelling’s trace criterion, Pillai’s criterion, as well as 
Roy’s greatest characteristic root (gcr) criterion. When an effect has only two levels (s = 1, 1 df 
in the univariate sense), the F tests for Wilks’ lambda, Hotelling’s trace, and Pillai’s criterion are 
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identical. And usually when an effect has more than two levels (s 7 1 and df 7 1 in the univariate 
sense), the F values are slightly different, but either all three statistics are significant or all are non-
significant. Occasionally, however, some of the statistics are significant while others are not, and the 
researcher is left wondering which result to believe.

When there is only one degree of freedom for effect, there is only one way to combine the DVs to 
separate the two groups from each other. However, when there is more than one degree of freedom for 
effect, there is more than one way to combine DVs to separate groups. For example, with three groups, 
one way of combining DVs may separate the first group from the other two while the second way of 
combining DVs separates the second group from the third. Each way of combining DVs is a dimension 
along which groups differ (as described in gory detail in Chapter 9) and each generates a statistic.

When there is more than one degree of freedom for effect, Wilks’ lambda, Hotelling’s trace 
criterion, and Pillai’s criterion pool the statistics from each dimension to test the effect; Roy’s gcr 
criterion uses only the first dimension (in our example, the way of combining DVs that separates the 
first group from the other two) and is the preferred test statistic for a few researchers (Harris, 2001). 
Most researchers, however, use one of the pooled statistics to test the effect (Olson, 1976).

Wilks’ lambda, defined in Equation 7.4 and Section 7.4.1, is a likelihood ratio statistic that 
tests the likelihood of the data under the assumption of equal population mean vectors for all groups 
against the likelihood under the assumption that population mean vectors are identical to those of 
the sample mean vectors for the different groups. Wilks’ lambda is the pooled ratio of error variance 
to effect variance plus error variance. Hotelling’s trace is the pooled ratio of effect variance to error 
variance. Pillai’s criterion is simply the pooled effect variances.

Wilks’ lambda, Hotelling’s trace, and Roy’s gcr criterion are often more powerful than Pillai’s 
criterion when there is more than one dimension but the first dimension provides most of the sepa-
ration of groups; they are less powerful when separation of groups is distributed over dimensions. 
But Pillai’s criterion is said to be more robust than the other three (Olson, 1979). As sample size 
decreases, unequal n’s appear, and the assumption of homogeneity of variance-  covariance matrices is 
violated (Section 7.3.2.2), the advantage of Pillai’s criterion in terms of robustness is more important. 
When the research design is less than ideal, then Pillai’s criterion is the criterion of choice.

In terms of availability, all the MANOVA programs reviewed here provide Wilks’ lambda, as 
do most research reports, so that Wilks’ lambda is the criterion of choice unless there is reason to 
use Pillai’s criterion. Programs differ in the other statistics provided (see Section 7.7).

In addition to potentially conflicting significance tests for multivariate F is the irritation of 
a nonsignificant multivariate F but a significant univariate F for one of the DVs. If the researcher 
measures only one DV—  the right one—  the effect is significant, but because more DVs are mea-
sured, it is not. Why doesn’t MANOVA combine DVs with a weight of 1 for the significant DV and 
a weight of zero for the rest? In fact, MANOVA comes close to doing just that, but multivariate F
is often not as powerful as univariate or stepdown F and significance can be lost. If this happens, 
about the best one can do is report the nonsignificant multivariate F and offer the univariate and/or 
stepdown result as a guide to future research.

7.5.3 Assessing DVs

When a main effect or interaction is significant in MANOVA, the researcher has usually planned to 
pursue the finding to discover which DVs are affected. But the problems of assessing DVs in sig-
nificant multivariate effects are similar to the problems of assigning importance to IVs in multiple 
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regression (Chapter 5). First, there are multiple significance tests so some adjustment is necessary for 
inflated Type I error. Second, if DVs are uncorrelated, there is no ambiguity in assignment of variance 
to them, but if DVs are correlated, assignment of overlapping variance to DVs is problematical.

7.5.3.1 Univariate F

If pooled within-  group correlations among DVs are zero (and they never are unless they are formed 
by principal components analysis), univariate ANOVAs, one per DV, give the relevant information 
about their importance. Using ANOVA for uncorrelated DVs is analogous to assessing importance 
of IVs in multiple regression by the magnitude of their individual correlations with the DV. The 
DVs that have significant univariate Fs are the important ones, and they can be ranked in importance 
by effect size. However, because of inflated Type I error rate due to multiple testing, more stringent 
alpha levels are required.

Since there are multiple ANOVAs, a Bonferroni-  type adjustment is made for inflated Type I 
error. The researcher assigns alpha for each DV so that alpha for the set of DVs does not exceed 
some critical value.

a = 1 - (1 - a1)(1 - a2)c (1 - ap) (7.12)

The Type I error rate (a) is based on the error rate for testing the first DV (a1), the 
second DV (a2), and all other DVs to the pth , or last, DV (ap).

All the alphas can be set at the same level, or more important DVs can be given more liberal 
alphas. For example, if there are four DVs and a for each DV is set at .01, the overall alpha level 
according to Equation 7.12 is .039, acceptably below .05 overall. Or if a is set at .02 for 2 DVs, and 
at .001 for the other 2 DVs, overall a is .042, also below .05. A close approximation if all ai are to 
be the same is

ai = afw>p
where afw is the familywise error rate (e.g., .05) and p is the number of tests.

Correlated DVs pose two problems with univariate Fs. First, correlated DVs measure overlap-
ping aspects of the same behavior. To say that both of them are “significant” mistakenly suggests 
that the IV affects two different behaviors. For example, if the two DVs are Stanford-  Binet IQ and 
WISC IQ, they are so highly correlated that an IV that affects one surely affects the other. The 
second problem with reporting univariate Fs for correlated DVs is inflation of Type I error rate; with 
correlated DVs, the univariate Fs are not independent and no straightforward adjustment of the error 
rate is possible. In this situation, reporting univariate ANOVAs violates the spirit of MANOVA. 
However, this is still the most common method of interpreting the results of a MANOVA.

Although reporting univariate F for each DV is a simple tactic, the report should also contain 
the pooled within-  group correlations among DVs so the reader can make necessary interpretive 
adjustments. The pooled within-  group correlation matrix is provided by IBM SPSS MANOVA and 
SAS GLM.

In the example of Table 7.2, there is a significant multivariate effect of treatment (and of dis-
ability, although, as previously noted, it is not interesting in this example). It is appropriate to ask 
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which of the two DVs is affected by treatment. Univariate ANOVAs for WRAT-R and WRAT-A 
are in Tables 7.7 and 7.8, respectively. The pooled within-  group correlation between WRAT-R and 
WRAT-A is .057 with 12 df. Because the DVs are relatively uncorrelated, univariate F with adjust-
ment of a for multiple tests might be considered appropriate (but note the stepdown results in the 
following section). There are two DVs, so each is set at a = .025.9 With 2 and 12 df, critical F is 
5.10; with 1 and 12 df, critical F is 6.55. There is a main effect of treatment (and disability) for both 
WRAT-R and WRAT-A.

7.5.3.2  Roy–Bargmann Stepdown Analysis10

The problem of correlated univariate F tests with correlated DVs is resolved by stepdown analysis 
(Bock, 1966; Bock & Haggard, 1968). Stepdown analysis of DVs is analogous to testing the impor-
tance of IVs in multiple regression by sequential analysis. Priorities are assigned to DVs according 
to theoretical or practical considerations.11 The highest-  priority DV is tested in univariate ANOVA, 
with appropriate adjustment of alpha. The rest of the DVs are tested in a series of ANCOVAs; each 
successive DV is tested with higher-  priority DVs as covariates to see what, if anything, it adds to the 
combination of DVs already tested. Because successive ANCOVAs are independent, adjustment for 
inflated Type I error due to multiple testing is the same as in Section 7.5.3.1.

TABLE 7.8 Univariate Analysis of Variance of WRAT-A Scores

Source SS df MS F

D 1126.7778 2 563.3889 12.5352

T 1494.2222 1 1494.2222 33.2460

DT 52.7778 2 26.3889 0.5871

S(DT) 539.5668 12 44.9444

TABLE 7.7 Univariate Analysis of Variance of 
WRAT-R Scores

Source SS df MS F

D 520.7778 2 260.3889 5.7439

T 2090.8889 1 2090.8889 46.1225

DT 2.1111 2 1.0556 0.0233

S(DT) 544.0000 12 45.3333

9When the design is very complicated and generates many main effects and interactions, further adjustment of a is necessary 
in order to keep overall a under .15 or so, across the ANOVAs for the DVs.
10Stepdown analysis can be run in lieu of MANOVA where a significant stepdown F is interpreted as a significant multivari-
ate effect for the main effect or interaction.
11It is also possible to assign priority on the basis of statistical criteria such as univariate F, but the analysis suffers all the 
problems inherent in stepwise regression, discussed in Chapter 5.
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For the example, we assign WRAT-R scores higher priority since reading problems represent 
the most common presenting symptoms for learning disabled children. To keep overall alpha below 
.05, individual alpha levels are set at .025 for each of the two DVs. WRAT-R scores are analyzed 
through univariate ANOVA, as displayed in Table 7.7. Because the main effect of disability is not 
interesting and the interaction is not statistically significant in MANOVA (Table 7.2), the only effect 
of interest is treatment. The critical value for testing the treatment effect (6.55 with 1 and 12 df 
at a = .025) is clearly exceeded by the obtained F of 46.1225.

WRAT-A scores are analyzed in ANCOVA with WRAT-R scores as covariate. The results of 
this analysis appear in Table 7.9.12 For the treatment effect, critical F with 1 and 11 df at a = .025
is 6.72. This exceeds the obtained F of 5.49. Thus, according to stepdown analysis, the significant 
effect of treatment is represented in WRAT-R scores, with nothing added by WRAT-A scores.

Note that WRAT-A scores show significant univariate but not stepdown F. The lack of 
significance for WRAT-A scores in stepdown analysis does not mean that they are unaffected by 
treatment, but rather that no unique variability is shared with treatment after adjustment for differ-
ences in WRAT-R. This result occurs despite the relatively low correlation between the DVs.

This procedure can be extended to sets of DVs through MANCOVA. If the DVs fall into catego-
ries, such as scholastic variables and attitudinal variables, one can ask whether there is any change in 
attitudinal variables as a result of an IV, after adjustment for differences in scholastic variables. The 
attitudinal variables serve as DVs in MANCOVA while the scholastic variables serve as covariates.

7.5.3.3 Using Discriminant Analysis

Discriminant analysis, as discussed in more detail in Chapter 9, provides information useful in 
assessing DVs (DVs are predictors in the context of discriminant analysis). A structure (loading) 
matrix is produced which contains correlations between the linear combination of DVs that 
maximizes treatment differences and the DVs themselves. DVs that correlate highly with the 
combination are more important to discrimination among groups.

Discriminant analysis can also be used to test each of the DVs in the standard multiple regres-
sion sense; the effect on each DV is assessed after adjustment for all other DVs. That is, each DV is 
assessed as if it were the last one to enter an equation. This is demonstrated in Section 9.6.4.

TABLE 7.9 Analysis of Covariance of WRAT-A Scores, 
With WRAT-R Scores as the Covariate

Source SS df MS F

Covariate 1.7665 1 1.7665 0.0361

D 538.3662 2 269.1831 5.5082

T 268.3081 1 268.3081 5.4903

DT 52.1344 2 26.0672 0.5334

S(DT) 537.5668 11 48.8679

12A full stepdown analysis is produced as an option through IBM SPSS MANOVA. For illustration, however, it is helpful to 
show how the analysis develops.
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7.5.3.4 Choosing Among Strategies for Assessing DVs

You may find the procedures of Sections 9.6.3 and 9.6.4 more useful than univariate or stepdown F
for assessing DVs when you have a significant multivariate main effect with more than two levels. 
Similarly, you may find the procedures described in Section 8.5.2 helpful for assessment of DVs if 
you have a significant multivariate interaction.

The choice between univariate and stepdown F is not always easy, and often you want to 
use both. When there is no correlation among the DVs, univariate F with adjustment for Type I 
error is acceptable. When DVs are correlated, as they almost always are, stepdown F is preferable 
on grounds of statistical purity, but you have to prioritize the DVs and the results can be difficult 
to interpret.

If DVs are correlated and there is some compelling priority ordering of them, stepdown analy-
sis is clearly called for, with univariate Fs and pooled within-  cell correlations reported simply as 
supplemental information. For significant lower-  priority DVs, marginal and/or cell means adjusted 
for higher-  priority DVs are reported and interpreted.

If the DVs are correlated but the ordering is somewhat arbitrary, an initial decision in favor 
of stepdown analysis is made. If the pattern of results from stepdown analysis makes sense in 
the light of the pattern of univariate results, interpretation takes both patterns into account with 
emphasis on DVs that are significant in stepdown analysis. If, for example, a DV has a significant 
univariate F but a nonsignificant stepdown F, interpretation is straightforward: The variance the 
DV shares with the IV is already accounted for through overlapping variance with one or more 
higher-  priority DVs. This is the interpretation of WRAT-A in the preceding section and the strat-
egy followed in Section 7.6.

But if a DV has a nonsignificant univariate F and a significant stepdown F, interpretation is 
much more difficult. In the presence of higher-  order DVs as covariates, the DV suddenly takes on 
“importance.” In this case, interpretation is tied to the context in which the DVs entered the step-
down analysis. It may be worthwhile at this point, especially if there is only a weak basis for order-
ing DVs, to forgo evaluation of statistical significance of DVs and resort to simple description. After 
finding a significant multivariate effect, unadjusted marginal and/or cell means are reported for DVs 
with high univariate Fs but significance levels are not given.

An alternative to attempting interpretation of either univariate or stepdown F is interpreta-
tion of loading matrices in discriminant analysis, as discussed in Section 9.6.3.2. This process 
is facilitated when IBM SPSS MANOVA or SAS GLM is used because information about the 
discriminant functions is provided as a routine part of the output. Alternatively, a discriminant 
analysis may be run on the data.

Another perspective is whether DVs differ significantly in the effects of IVs on them. For 
example: Does treatment affect reading significantly more than it affects arithmetic? Tests for con-
trasts among DVs have been developed in the context of meta-  analysis with its emphasis on com-
paring effect sizes. Rosenthal (2001) demonstrates these techniques.

7.5.4 Specific Comparisons and Trend Analysis

When there are more than two levels in a significant multivariate main effect and when a DV is 
important to the main effect, the researcher often wants to perform specific comparisons or trend 
analysis of the DV to pinpoint the source of the significant difference. Similarly, when there is a 
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significant multivariate interaction and a DV is important to the interaction, the researcher follows 
up the finding with comparisons on the DV. Specific comparisons may also be done on multi-
variate effects. These are often less interpretable than comparisons on individual DVs, unless DVs 
are all scaled in the same direction, or are based on factor or principal component scores. Review 
Sections 3.2.6, 6.5.4.3, and 8.5.2 for examples and discussions of comparisons. The issues and 
procedures are the same for individual DVs in MANOVA as in ANOVA.

Comparisons are either planned (performed in lieu of omnibus F) or post hoc (performed 
after omnibus F to snoop the data). When comparisons are post hoc, an extension of the Scheffé 
procedure is used to protect against inflated Type I error due to multiple tests. The procedure is very 
conservative but allows for an unlimited number of comparisons. Following Scheffé for ANOVA 
(see Section 3.2.6), the tabled critical value of F is multiplied by the degrees of freedom for the 
effect being tested to produce an adjusted, and much more stringent, F. If marginal means for a main 
effect are being contrasted, the degrees of freedom are those associated with the main effect. If cell 
means are being contrasted, our recommendation is to use the degrees of freedom associated with 
the interaction.

Various types of contrasts on individual DVs are demonstrated in Sections 8.5.2.1 and 8.5.2.3. 
The difference between setting up contrasts on individual DVs and setting up contrasts on the com-
bination is that all DVs are included in the syntax. Table 7.10 shows syntax for trend analysis and 
user-  specified orthogonal contrasts on the main effect of DISABLTY for the small-  sample example. 
The coefficients illustrated for the orthogonal contrasts actually are the trend coefficients. Note that 
IBM SPSS GLM requires fractions in part of the LMATRIX command to produce the right answers.

Use of this syntax also provides univariate tests of contrasts for each DV. None of these con-
trasts is adjusted for post hoc analysis. The usual corrections are to be applied to minimize inflated 
Type I error rate unless comparisons are planned (cf. Sections 3.2.6.5, 6.5.4.3, and 8.5.2).

7.5.5 Design Complexity

When between-  subjects designs have more than two IVs, extension of MANOVA is straightfor-
ward as long as sample sizes are equal within each cell of the design. The partition of variance 
continues to follow ANOVA, with a variance component computed for each main effect and in-
teraction. The pooled variance–  covariance matrix due to differences among subjects within cells 
serves as the single error term. Assessment of DVs and comparisons proceed as described in 
Sections 7.5.3 and 7.5.4.

Two major design complexities that arise, however, are inclusion of within-  subjects IVs and 
unequal sample sizes in cells.

7.5.5.1  Within-Subjects and Between-Within Designs

The simplest design with repeated measures is a one-  way within-  subjects design where the same 
subjects are measured on a single DV on several different occasions. The design can be complicated 
by addition of between-  subjects IVs or more within-  subjects IVs. Refer to Chapters 3 and 6 for dis-
cussion of some of the problems that arise in ANOVA with repeated measures.

Repeated measures analysis extends to MANOVA when the researcher measures several 
DVs on several different occasions. The occasions can be viewed in two ways. In the traditional 
sense, occasions is a within-  subjects IV with as many levels as occasions (Chapter 3). Alternatively, 
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TABLE 7.10 Syntax for Orthogonal Comparisons and Trend Analysis

Type of Comparison Program Syntax Section of Output Name of Effect

Orthogonal IBM SPSS
GLM

GLM
WRATR WRATA BY TREATMNT DISABLTY
/METHOD = SSTYPE(3)
/INTERCEPT = INCLUDE
/CRITERIA = ALPHA(.05)
/LMATRIX “LINEAR” DISABLTY 1 0 -1

TREATMNT*DISABLTY 1/2 0 -1/2 1/2 0 -1/2
/LMATRIX “QUADRATIC” DISABLTY 1 -2 1 

TREATMNT*DISABLTY 1/2 -2/2 1/2 1/2 -2/2 1/2
/DESIGN = TREATMNT DISABLTY TREATMNT*DISABLTY.

Custom Hypothesis 

Tests:
Wilks’ 
Lambda

Multivariate Test 

Results

IBM SPSS
MANOVA

MANOVA 
WRATR WRATA BY TREATMNT (1, 2) DISABLTY (1, 3)
/METHOD = UNIQUE
/PARTITION (DISABLTY)
/CONTRAST(DISABLTY)=SPECIAL(1 1 1,

1 0 -1,
1 -2 1)

/DESIGN = TREATMNT DISABLTY(1)
DISABLTY(2) TREATMNT BY DISABLTY.

EFFECT...
DISABLTY(2)

Wilks’
Lambda

EFFECT...
DISABLTY(1)

SAS GLM PROC GLM DATA=SASUSER.SS_MANOV;
CLASS TREATMNT DISABLTY;
MODEL WRATR WRATA = TREATMNT DISABLTY
TREATMNT*DISABLTY;
CONTRAST ’LINEAR’ DISABLTY 1 0 -1;
CONTRAST ’QUADRATIC’ DISABLTY 1 -2 1;
manova h=_all_/short;
run;

MANOVA Test 
Criteria.... 
No Overall 
linear 
(quadratic) 
Effect

Wilks’ 
Lambda

(continued )
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each occasion can be treated as a separate DV—  one DV per occasion (Section 7.2.8). In this lat-
ter view, if there is more than one DV measured on each occasion, the design is said to be doubly 
multivariate—  multiple DVs are measured on multiple occasions. (There is no distinction between 
the two views when there are only two levels of the within-  subjects IV.)

Section 8.5.3 discusses a doubly multivariate analysis of a small data set with a between- 
subjects IV (PROGRAM), a within-  subjects IV (MONTH), and two DVs (WTLOSS and ESTEEM),
both measured three times. A complete example of a doubly multivariate design is in Section 8.6.2.

It also is possible to have multiple DVs, but treat the within-  subjects IV univariately. This 
is useful when (1) there are only two levels of the within-  subjects IV, (2) there is no concern with 
violation of sphericity (Sections 3.2.3 and 8.5.1), or (3) a trend analysis is planned to replace the 
omnibus tests of the within-  subjects IV and any interactions with the within-  subjects IV. All pro-
grams that do doubly multivariate analysis also show univariate results; therefore, the syntax is the 
same as that used in Section 8.5.3.

7.5.5.2 Unequal Sample Sizes

When cells in a factorial ANOVA have an unequal number of scores, the sum of squares for effect 
plus error no longer equals the total sum of squares, and tests of main effects and interactions are 
correlated. There are a number of ways to adjust for overlap in sums of squares (cf. Woodward & 
Overall, 1975), as discussed in some detail in Section 6.5.4.2, particularly Table 6.10. Both the 
problem and the solutions generalize to MANOVA.

All the MANOVA programs described in Section 7.7 adjust for unequal n. IBM SPSS 
MANOVA offers both Method 1 adjustment (METHOD = UNIQUE), which is default, and 
Method 3 adjustment (METHOD = SEQUENTIAL). Method 3 adjustment with survey data through 
IBM SPSS MANOVA is shown in Section 7.6.2. Method 1—  called SSTYPE(3)—is the default 

TABLE 7.10 Continued

Type of 
Comparison Program Syntax

Section of 
Output

Name of 
Effect

Trend 
Analysis

IBM SPSS
GLM

No special syntax; done as any other 
userspecified contrasts.

EFFECT... 
DISABLTY(2)

Wilks’ 
Lambda

IBM SPSS
MANOVA

MANOVA
WRATR WRATA BY TREATMNT(1,2) 

DISABLTY(1,3)
/METHOD = UNIQUE
/PARTITION (DISABLTY)
/CONTRAST(DISABLTY)= 

POLYNOMIAL (1,2,3)
/DESIGN = TREATMNT DISABLTY(1) 

DISABLTY(2)
TREATMNT BY DISABLTY.

EFFECT...
DISABLTY(1)

SAS GLM No special syntax for between-  subjects IVs.
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among four options in IBM SPSS GLM. In SAS GLM, Method 1 (called TYPE III or TYPE 
IV) also is the default among four options available.

7.6  Complete Examples of Multivariate 
Analysis of Variance and Covariance

In the research described in Appendix B, Section B.1, there is interest in whether the means of 
several of the variables differ as a function of sex role identification. Are there differences in self-
esteem, introversion–  extraversion, neuroticism, and so on associated with a woman’s masculinity 
and femininity? Files are MANOVA.*.

Sex role identification is defined by the masculinity and femininity scales of the Bem Sex 
Role Inventory (Bem, 1974). Each scale is divided at its median to produce two levels of masculin-
ity (high and low), two levels of femininity (high and low), and four groups: Undifferentiated (low 
femininity, low masculinity), Feminine (high femininity, low masculinity), Masculine (low feminin-
ity, high masculinity), and Androgynous (high femininity, high masculinity). The design produces a 
main effect of masculinity, a main effect of femininity, and a masculinity–  femininity interaction.13

DVs for this analysis are self-  esteem (ESTEEM), internal versus external locus of con-
trol (CONTROL), attitudes toward women’s role (ATTROLE), socioeconomic level (SEL2), 
introversion–  extraversion (INTEXT), and neuroticism (NEUROTIC). Scales are coded so that 
higher scores generally represent the more “negative” trait:low self-  esteem, greater neuroticism, etc.

Omnibus MANOVA (Section 7.6.2) asks whether these DVs are associated with the two IVs 
(femininity and masculinity) or their interaction. The  Roy–  Bargmann stepdown analysis, in con-
junction with the univariate F values, allows us to examine the pattern of relationships between DVs 
and each IV.

In a second example (Section 7.6.3), MANCOVA is performed with SEL2, CONTROL, and 
ATTROLE used as covariates and ESTEEM, INTEXT, and NEUROTIC used as DVs. The research 
question is whether the three personality DVs vary as a function of sex role identification (the two 
IVs and their interaction) after adjusting for differences in socioeconomic status, attitudes toward 
women’s role, and beliefs regarding locus of control of reinforcements.

7.6.1 Evaluation of Assumptions

Before proceeding with MANOVA and MANCOVA, we must assess the variables with respect to 
practical limitations of the techniques.

7.6.1.1 Unequal Sample Sizes and Missing Data

IBM SPSS FREQUENCIES is run with SORT and SPLIT FILE to divide cases into the four groups. 
Data and distributions for each DV within each group are inspected for missing values, shape, and 
variance (see Table 7.11 for output on the CONTROL variable for the Feminine group). The run 
reveals the presence of a case for which the CONTROL score is missing. No datum is missing 

13Some would argue with the wisdom of considering masculinity and femininity separate IVs, and of performing a median 
split on them to create groups. This example is used for didactic purposes.



TABLE 7.11 Syntax and Selected IBM SPSS FREQUENCIES Output for MANOVA Variables 
Split by Group

MISSING VALUES CONTROL (0)
SORT CASES BY ANDRM.
SPLIT FILE

SEPARATE BY ANDRM.
FREQUENCIES

VARIABLES=ESTEEM CONTROL ATTROLE SEL2 INTEXT NEUROTIC /FORMAT NOTABLE
/STATISTICS=STDDEV VARIANCE MINIMUM MAXIMUM MEAN SKEWNESS SESKEW KURTOSIS
SEKURT

HISTOGRAM NORMAL
/ORDER=ANALYSIS.

Frequencies  Groups-4 = Feminine

Statisticsa

Self
esteem

Locus of 
control

Attitude 
toward role 
of women

Socio-economic
level

Introversion-
extroversion Neuroticism

N Valid 173 172 173 173 173 173
Missing 0 1 0 0 0 0

Mean 16.4913 6.7733 37.0520 40.402643 11.3266 8.9653
Std. Deviation 3.48688 1.26620 6.28145 24.659579 3.66219 5.10688
Variance 12.158 1.603 39.457 608.095 13.412 26.080
Skewness .471 .541 .076 −.235 −.327 .238
Std. Error of Skewness .185 .185 .185 .185 .185 .185
Kurtosis .651 −.381 −.204 −1.284 −.335 −.689
Std. Error of Kurtosis .367 .368 .367 .367 .367 .367
Minimum 9.00 5.00 22.00 .00000 2.00 .00
Maximum 28.00 10.00 55.00 81.00000 20.00 23.00

a. Groups-4 = Feminine
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on any of the other DVs for the 369 women who were administered the Bem Sex Role Inventory. 
Deletion of the case with the missing value, then, reduces the available sample size to 368.

Sample sizes are quite different in the four groups: There are 71 Undifferentiated, 
172 Feminine, 36 Masculine, and 89 Androgynous women in the sample. Because it is assumed that 
these differences in sample size reflect real processes in the population, the sequential approach to 
adjustment for unequal n is used with FEM (femininity) given priority over MASC (masculinity), 
and FEM by MASC (interaction between femininity and masculinity).

7.6.1.2 Multivariate Normality

The sample size of 368 includes over 35 cases for each cell of the 2 * 2 between-subjects design, 
more than the 20 df for error suggested to assure multivariate normality of the sampling distribu-
tion of means, even with unequal sample sizes; there are far more cases than DVs in the small-
est cell. Further, the distributions for the full run (of which CONTROL in Table 7.11 is a part) 
produce no cause for alarm. Skewness is not extreme and, when present, is roughly the same for 
the DVs.

Two-  tailed tests are automatically performed by the computer programs used. That is, the F
test looks for differences between means in either direction.

7.6.1.3 Linearity

The full output for the run of Table 7.11 reveals no cause for worry about linearity. All DVs in each 
group have reasonably balanced distributions so there is no need to examine scatterplots for each 
pair of DVs within each group. Had scatterplots been necessary, IBM SPSS PLOT would have been 
used with the SORT and SPLIT FILE syntax in Table 7.11.

Histogram Locus of control
Groups-4: Feminine

Locus of control
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TABLE 7.11 Continued
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7.6.1.4 Outliers

No univariate outliers were found using a criterion z = |3.3|, (a = .001) with the minimum and maxi-
mum values in the full output of Table 7.11. IBM SPSS REGRESSION is used with the split file in place 
to check for multivariate outliers within each of the four groups (Table 7.12). The RESIDUALS=_
OUTLIERS(MAHAL) instruction produces the 10 most outlying cases for each of the groups. With six 
variables and a criterion a = .001, critical x2 = 22.458; no multivariate outliers are found.

7.6.1.5 Homogeneity of Variance–Covariance Matrices

As a preliminary check for robustness, sample variances (in the full run of Table 7.11) for each 
DV are compared across the four groups. For no DV does the ratio of largest to smallest variance 
approach 10:1. As a matter of fact, the largest ratio is about 1.5:1 for the Undifferentiated versus 
Androgynous groups on CONTROL.

TABLE 7.12 Mahalanobis Distance Values for Assessing Multivariate Outliers 
(Syntax and Selected Portion of Output from IBM SPSS REGRESSION)

REGRESSION
/MISSING LISTWISE
/STATISTICS COEFF OUTS R ANOVA
/CRITERIA=PIN(.05) POUT(.10)
/NOORIGIN
/DEPENDENT CASENO
/METHOD=ENTER ESTEEM CONTROL ATTROLE SEL2 INTEXT NEUROTIC
/RESIDUALS=OUTLIERS(MAHAL).

Regression

Groups-4 = Undifferentiated

Outlier Statisticsa,b

Case 
Number Statistic

Mahal. Distance 1 32 14.975
2 71 14.229
3 64 11.777
4 5 11.577
5 41 11.371
6 37 10.042
7 55 9.378
8 3 9.352
9 1 9.318

10 25 8.704

a. Dependent Variable: CASENO
b. Groups-4 = Undifferentiated

Groups-4 = Masculine

Outlier Statisticsa,b

Case 
Number Statistic

Mahal. Distance 1 277 14.294
2 276 11.773
3 249 11.609
4 267 10.993
5 251 9.175
6 253 8.276
7 246 7.984
8 271 7.917
9 278 7.406

10 273 7.101

a. Dependent Variable: CASENO
b. Groups-4 = Masculine
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Groups-4 = Feminine

Outlier Statisticsa,b

Case 
Number Statistic

Mahal. Distance 1 209 19.348
2 208 15.888
3 116 14.813
4 92 14.633
5 167 14.314
6 233 13.464
7 150 13.165
8 79 12.794
9 138 12.181

10 179 11.916

a. Dependent Variable: CASENO
b. Groups-4 = Feminine

TABLE 7.12 Continued

Groups-4 = Androgynous

Outlier Statisticsa,b

Case 
Number Statistic

Mahal. Distance 1 326 19.622
2 301 15.804
3 315 15.025
4 312 10.498
5 288 10.381
6 347 10.101
7 285 9.792
8 338 9.659
9 318 9.203

10 302 8.912

a. Dependent Variable: CASENO
b. Groups-4 = Androgynous

Sample sizes are widely discrepant, with a ratio of almost 5:1 for the Feminine to Masculine 
groups. However, with very small differences in variance and two-  tailed tests, the discrepancy in 
sample sizes does not invalidate use of MANOVA. The very sensitive Box’s M test for homogeneity 
of dispersion matrices (performed through IBM SPSS MANOVA as part of the major analysis in 
Table 7.15) produces F(63, 63020) = 1.07, p 7 .05, supporting the conclusion of homogeneity of 
variance–covariance matrices.

7.6.1.6 Homogeneity of Regression

Because  Roy–  Bargmann stepdown analysis is planned to assess the importance of DVs after 
MANOVA, a test of homogeneity of regression is necessary for each step of the stepdown analysis. 
Table 7.13 shows the IBM SPSS MANOVA syntax for tests of homogeneity of regression where 
each DV, in turn, serves as DV on one step and then becomes a covariate on the next and all remain-
ing steps (the split file instruction first is turned off).

Table 7.13 also contains output for the last two steps where CONTROL serves as DV with 
ESTEEM, ATTROLE, NEUROTIC, and INTEXT as covariates, and then SEL2 is the DV with 
ESTEEM, ATTROLE, NEUROTIC, INTEXT, and CONTROL as covariates. At each step, the relevant 
effect is the one appearing last in the column labeled Source of Variation, so that for SEL2 the 
F value for homogeneity of regression is F(15, 344) = 1.46, p 7 .01. (The more stringent cutoff is used 
here because robustness is expected.) Homogeneity of regression is established for all steps.

For MANCOVA, an overall test of homogeneity of regression is required, in addition to 
stepdown tests. Syntax for all tests is shown in Table 7.14. The ANALYSIS sentence with three 
DVs specifies the overall test, while the ANALYSIS sentences with one DV each are for step-
down analysis. Output for the overall test and the last stepdown test is also shown in Table 7.14. 
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TABLE 7.13 Test for Homogeneity of Regression for MANOVA Stepdown Analysis 
(Syntax and Selected Output for Last Two Tests from IBM SPSS MANOVA)

SPLIT FILE
OFF.

MANOVA ESTEEM,ATTROLE,NEUROTIC,INTEXT,CONTROL,SEL2 BY FEM, MASC(1,2)
/PRINT=SIGNIF(BRIEF)
/ANALYSIS=ATTROLE

  /DESIGN=ESTEEM,FEM,MASC,FEM BY MASC, ESTEEM BY FEM, ESTEEM BY MASC, 
    ESTEEM BY FEM BY MASC

/ANALYSIS=NEUROTIC
  /DESIGN=ATTROLE,ESTEEM,FEM,MASC,FEM BY MASC, POOL(ATTROLE,ESTEEM)
    BY FEM + POOL(ATTROLE,ESTEEM) BY MASC + POOL(ATTROLE,

ESTEEM)BY FEM BY MASC/
/ANALYSIS=INTEXT

  /DESIGN=NEUROTIC,ATTROLE,ESTEEM,FEM,MASC,FEM BY MASC, POOL(NEUROTIC,
    ATTROLE,ESTEEM) BY FEM + POOL(NEUROTIC,ATTROLE,ESTEEM)
    BY MASC + POOL(NEUROTIC,ATTROLE,ESTEEM) BY FEM BY MASC

/ANALYSIS=CONTROL
  /DESIGN=INTEXT,NEUROTIC,ATTROLE,ESTEEM FEM,MASC FEM BY MASC,

POOL(INTEXT,NEUROTIC,ATTROLE,ESTEEM) BY FEM +
POOL(INTEXT,NEUROTIC,ATTROLE,ESTEEM) BY MASC +

    POOL(INTEXT,NEUROTIC,ATTROLE,ESTEEM) BY FEM BY MASC
/ANALYSIS=SEL2

  /DESIGN=CONTROL,INTEXT,NEUROTIC,ATTROLE,ESTEEM,FEM,MASC,FEM BY MASC,
POOL(CONTROL,INTEXT,NEUROTIC,ATTROLE,ESTEEM) BY FEM +
POOL(CONTROL,INTEXT,NEUROTIC,ATTROLE,ESTEEM) BY MASC +

    POOL(CONTROL,INTEXT,NEUROTIC,ATTROLE,ESTEEM) BY FEM BY MASC.

Tests of Significance for CONTROL using UNIQUE sums of squares

Source of Variation SS DF MS F Sig of F

WITHIN+RESIDUAL 442.61 348 1.27
INTEXT 2.19 1 2.19 1.72 .190
NEUROTIC 42.16 1 42.16 33.15 .000
ATTROLE .67 1 .67 .52 .470
ESTEEM 14.52 1 14.52 11.42 .001
FEM 2.80 1 2.80 2.20 .139
MASC 3.02 1 3.02 2.38 .124
FEM BY MASC .00 1 .00 .00 .995
POOL(INTEXT NEUROTIC 
ATTROLE ESTEEM) BY 
FEM + POOL(INTEXT 
NEUROTIC ATTROLE 
ESTEEM) BY MASC + 
POOL(IN TEXT NEUROTIC 
ATTROLE ESTEEM) BY 
FEM BY MASC

19.78 12 1.65 1.30 .219
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Tests of Significance of SEL2 using UNIQUE sums of squares

Source of Variation SS DF MS F Sig of F

WITHIN+RESIDUAL 220340.10 344 640.52
CONTROL 1525.23 1 1525.23 2.38 .124
INTEXT .99 1 .99 .00 .969
NEUR 262.94 1 262.94 .41 .522
ATT 182.98 1 182.98 .29 .593
EST 157.77 1 157.77 .25 .620
FEM 1069.23 1 1069.23 1.67 .197
MASC 37.34 1 37.34 .06 .809
FEM BY MASC 1530.73 1 1530.73 2.39 .123
POOL (CONTROL INTEXT 
NEUROTIC ATTROLE ESTEEM) 
BY FEM + POOL(CONTROL 
INTEXT NEUROTIC 
ATTROLE ESTEEM) BY 
MASC + POOL(CONTROL 
INTEXT NEUROTIC AT 
TROLE ESTEEM) BY FEM

14017.22

BY MASC)

15 934.48 1.46 .118

TABLE 7.13 Continued

TABLE 7.14 Tests of Homogeneity of Regression for MANCOVA and Stepdown Analysis 
(Syntax and Partial Output for Overall Tests and Last Stepdown Test from IBM SPSS MANOVA)

MANOVA ESTEEM,ATTROLE,NEUROTIC,INTEXT,CONTROL,SEL2 BY FEM MASC(1,2)
/PRINT=SIGNIF(BRIEF)

/ANALYSIS=ESTEEM,INTEXT,NEUROTIC
  /DESIGN=CONTROL,ATTROLE,SEL2,FEM,MASC,FEM BY MASC,
   POOL(CONTROL,ATTROLE,SEL2) BY FEM +
   POOL(CONTROL,ATTROLE,SEL2) BY MASC +
   POOL(CONTROL,ATTROLE,SEL2) BY FEM BY MASC

/ANALYSIS=ESTEEM
  /DESIGN=CONTROL,ATTROLE,SEL2,FEM,MASC,FEM BY MASC,
   POOL(CONTROL,ATTROLE,SEL2) BY FEM +
   POOL(CONTROL,ATTROLE,SEL2) BY MASC +
   POOL(CONTROL,ATTROLE,SEL2) BY FEM BY MASC

/ANALYSIS=INTEXT
  /DESIGN=ESTEEM,CONTROL,ATTROLE,SEL2,FEM,MASC,FEM BY MASC,
   POOL(ESTEEM,CONTROL,ATTROLE,SEL2) BY FEM +
   POOL(ESTEEM,CONTROL,ATTROLE,SEL2) BY MASC +
   POOL(ESTEEM,CONTROL,ATTROLE,SEL2) BY FEM BY MASC

/ANALYSIS=NEUROTIC
  /DESIGN=INTEXT,ESTEEM,CONTROL,ATTROLE,SEL2,FEM,MASC,FEM BY MASC,

POOL(INTEXT,ESTEEM,CONTROL,ATTROLE,SEL2) BY FEM+
   POOL(INTEXT,ESTEEM,CONTROL,ATTROLE,SEL2) BY MASC +
   POOL(INTEXT,ESTEEM,CONTROL,ATTROLE,SEL2) BY FEM BY MASC.

(continued )



286 C H A P T E R  7

TABLE 7.14 Continued

* * * * * * A n a l y s i s  o f  V a r i a n c e — design 1 * * * * * *

Multivariate Tests of Significance
Tests using UNIQUE Sums of Squares and WITHIN+RESIDUAL error term
Source of Variation Wilks Approx F Hyp. DF Error DF Sig of F

CONTROL .814 26.656 3.00 350.000 .000
ATTROLE .973 3.221 3.00 350.000 .023
SEL2 .999 .105 3.00 350.000 .957
FEM .992 .949 3.00 350.000 .417
MASC .993 .824 3.00 350.000 .481
FEM BY MASC .988 1.414 3.00 350.000 .238
POOL(CONTROL ATTROL 
E SEL2) BY FEM + POOL 
(CONTROL ATTROLE SEL2) 
BY MASC + POOL(CONTROL 
ATTROLE SEL2) BY FEM 
BY MASC

.933 .911 27.00 1022.823 .596

* * * * * * A n a l y s i s  o f V a r i a n c e — Design 1 * * * * * *

Tests of Significance for NEUROTIC using UNIQUE sums of squares
source of variation SS DF MS F Sig of F

WITHIN+RESIDUAL 6662.67 344 19.37
INTEXT 82.19 1 82.19 4.24 .040
ESTEEM 308.32 1 308.32 15.92 .000
CONTROL 699.04 1 699.04 36.09 .000
ATTROLE 1.18 1 1.18 .06 .805
SEL2 2.24 1 2.24 .12 .734
FEM .07 1 .07 .00 .952
MASC 74.66 1 74.66 3.85 .050
FEM BY MASC 1.65 1 1.65 .09 .770
POOL(INTEXT ESTEEM 
C ONTROL ATTROLE SEL2) 
BY FEM + POOL(INTEXT 
ESTEEM CONTROL AT-
TROLE SEL2) BY MASC + 
POOL(INTEXT ESTEEM 
CONTROL ATTROLE SEL2) 
BY FEM BY MASC

420.19 15 28.01 1.45 .124

Multivariate output is printed for the overall test because there are three DVs; univariate results are 
given for the stepdown tests. All runs show sufficient homogeneity of regression for this analysis.

7.6.1.7 Reliability of Covariates

For the stepdown analysis in MANOVA, all DVs except ESTEEM must be reliable because all 
act as covariates. Based on the nature of scale development and data collection procedures, there 
is no reason to expect unreliability of a magnitude harmful to covariance analysis for ATTROLE,
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TABLE 7.15 Multivariate Analysis of Variance of Composite of DVs (ESTEEM, CONTROL, 
ATTROLE, SEL2, INTEXT, and NEUROTIC), as a Function of (Top to Bottom) FEMININITY 
by MASCULINITY Interaction, MASCULINITY, and FEMININITY (Syntax and Selected Output 
from IBM SPSS MANOVA)

MANOVA ESTEEM,ATTROLE,NEUROTIC,INTEXT,CONTROL,SEL2 BY FEM,MASC(1,2)
/PRINT=SIGNIF(STEPDOWN), ERROR(COR),

HOMOGENEITY(BARTLETT,COCHRAN,BOXM)
/METHOD=SEQUENTIAL

    /DESIGN FEM MASC FEM BY MASC.

EFFECT.. FEM BY MASC
Multivariate Tests of Significance (S = 1, M = 2 , N = 178 1/2)
Test Name Value Exact F Hypoth. DF Error DF Sig. of F

Pillais .00816 .49230 6.00 359.00 .814
Hotellings .00823 .49230 6.00 359.00 .814
Wilks .99184 .49230 6.00 359.00 .814
Roys .00816
Note.. F statistics are exact.

EFFECT.. MASC
Multivariate Tests of Significance (S = 1, M = 2 , N = 178 1/2)

Test Name Value Exact F Hypoth. DF Error DF Sig. of F

Pillais .24363 19.27301 6.00 359.00 .000
Hotellings .32211 19.27301 6.00 359.00 .000
Wilks .75637 19.27301 6.00 359.00 .000
Roys .24363
Note.. F statistics are exact.

EFFECT.. FEM
Multivariate Tests of Significance (S = 1, M = 2 , N = 178 1/2)
Test Name Value Exact F Hypoth. DF Error DF Sig. of F

Pillais .08101 5.27423 6.00 359.00 .000
Hotellings .08815 5.27423 6.00 359.00 .000
Wilks .91899 5.27423 6.00 359.00 .000
Roys .08101
Note.. F statistics are exact.

NEUROTIC, INTEXT, CONTROL, and SEL2. These same variables act as true or stepdown 
covariates in the MANCOVA analysis.

7.6.1.8 Multicollinearity and Singularity

The log-  determinant of the pooled within-  cells correlation matrix is found (through IBM SPSS 
MANOVA syntax in Table 7.15) to be -.4336, yielding a determinant of 2.71. This is sufficiently 
different from zero that multicollinearity is not judged to be a problem.

7.6.2 Multivariate Analysis of Variance

Syntax and partial output of omnibus MANOVA produced by IBM SPSS MANOVA appear 
in Table  7.15. The order of IVs listed in the MANOVA statement together with METHOD=
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SEQUENTIAL sets up the priority for testing FEM before MASC in this unequal-n design. Results 
are reported for FEM by MASC, MASC, and FEM, in turn. Tests are reported out in order of adjust-
ment where FEM by MASC is adjusted for both MASC and FEM, and MASC is adjusted for FEM.

Four multivariate statistics are reported for each effect. Because there is only one degree of 
freedom for each effect, three of the tests—  Pillai’s, Hotelling’s, and Wilks’—produce the same F.14

Both main effects are highly significant, but there is no statistically significant interaction. If desired,
effect size for the composite DV for each main effect is found using Equation 7.8 (shown in IBM 
SPSS MANOVA as Pillai’s value) or 7.9. In this case, full and partial h2 are the same for each of the 
three effects because s = 1 for all of them. Confidence limits for effect sizes are found by entering
values from Table 7.15 (Exact F, Hypoth. DF, Error DF, and the percentage for the 
desired confidence interval) into Smithson’s (2003) NoncF.sav and running it through NoncF3.sps. 
Results are added to NoncF.sav, as seen in Table 7.16. (Note that partial h2 also is reported as r2.)
Thus, for the main effect of FEM, partial h2 = .08 with 95% confidence limits from .02 to .13. For 
the main effect of MASC, partial h2 = .24 with 95% confidence limits from .16 to .30. For the 
interaction, partial h2 = .01 with 95% confidence limits from .00 to .02.

Because omnibus MANOVA shows significant main effects, it is appropriate to investigate 
further the nature of the relationships among the IVs and DVs. Correlations, univariate Fs, and 
stepdown Fs help clarify the relationships.

The degree to which DVs are correlated provides information as to the independence of 
behaviors. Pooled within-  cell correlations, adjusted for IVs, as produced by IBM SPSS MANOVA 
through PRINT = ERROR(COR), appear in Table 7.17. (Diagonal elements are pooled standard 
deviations.) Correlations among ESTEEM, NEUROTIC, and CONTROL are in excess of .30 so 
stepdown analysis is appropriate.

Even if stepdown analysis is the primary procedure, knowledge of univariate Fs is required 
to correctly interpret the pattern of stepdown Fs. And, although the statistical significance of these 
F values is misleading, investigators frequently are interested in the ANOVA that would have been 
produced if each DV had been investigated in isolation. These univariate analyses are produced 
automatically by IBM SPSS MANOVA and shown in Table 7.18 for the three effects in turn: FEM
by MASC, MASC, and FEM. F values are substantial for all DVs except SEL2 for MASC and 
ESTEEM, ATTROLE, and INTEXT for FEM.

Finally,  Roy–  Bargmann stepdown analysis, produced by PRINT=SIGNIF(STEPDOWN),
allows a statistically pure look at the significance of DVs, in context, with Type I error rate controlled.

TABLE 7.16 Data Set Output from NoncF3.sps for Effect Size (r2) With 95% Confidence Limits 
(lr2 and ur2) for Interaction, MASC, and FEM, Respectively

14For more complex designs, a single source table containing all effects can be obtained through PRINT=SIGNIF(BRIEF)
but the table displays only Wilks’ lambda.



Multivariate Analysis of Variance and Covariance 289

TABLE 7.17 Pooled Within-  Cell Correlations Among Six DVs (Selected Output from IBM SPSS 
MANOVA—See Table 7.15 for Syntax)

WITHIN+RESIDUAL Correlations with Std. Devs. on Diagonal

ESTEEM ATTROLE NEUROTIC INTEXT CONTROL SEL2

ESTEEM 3.533
ATTROLE .145 6.227
NEUROTIC .358 .051 4.965
INTEXT −.164 .011 −.009 3.587
CONTROL .348 −.031 .387 −.083 1.267
SEL2 −.035 .016 −.015 .055 −.084 25.501

TABLE 7.18 Univariate Analyses of Variance of Six DVs for Effects of (Top to Bottom) 
FEM by MASC Interaction, Masculinity, and Femininity (Selected Output from IBM
SPSS MANOVA—  See Table 7.15 for Syntax)

EFFECT.. FEM BY MASC (Cont.)
Univariate F-tests with (1,364) D. F.

Variable Hypoth. SS Error SS Hypoth. MS Error MS F Sig. of F

ESTEEM 17.48685 4544.44694 17.48685 12.48474 1.40066 .237
ATTROLE 36.79594 14115.1212 36.79594 38.77781 .94889 .331
NEUROTIC .20239 8973.67662 .20239 24.65296 .00821 .928
INTEXT .02264 4684.17900 .02264 12.86862 .00176 .967
CONTROL .89539 584.14258 .89539 1.60479 .55795 .456
SEL2 353.58143 236708.966 353.58143 650.29936 .54372 .461

EFFECT.. MASC (Cont.)
Univariate F-tests with (1,364) D. F.

Variable Hypoth. SS Error SS Hypoth. MS Error MS F Sig. of F

ESTEEM 979.60086 4544.44694 979.60086 12.48474 78.46383 .000
ATTROLE 1426.75675 14115.1212 1426.75675 38.77781 36.79313 .000
NEUROTIC 179.53396 8973.67662 179.53396 24.65296 7.28245 .007
INTEXT 327.40797 4684.17900 327.40797 12.86862 25.44235 .000
CONTROL 11.85923 584.14258 11.85923 1.60479 7.38991 .007
SEL2 1105.38196 236708.966 1105.38196 650.29936 1.69980 .193

EFFECT.. FEM (Cont.)
Univariate F-tests with (1,364) D. F.

Variable Hypoth. SS Error SS Hypoth. MS Error MS F Sig. of F

ESTEEM 101.46536 4544.44694 101.46536 12.48474 8.12715 .005
ATTROLE 610.88860 14115.1212 610.88860 38.77781 15.75356 .000
NEUROTIC 44.05442 8973.67662 44.05442 24.65296 1.78698 .182
INTEXT 87.75996 4684.17900 87.75996 12.86862 6.81968 .009
CONTROL 2.83106 584.14258 2.83106 1.60479 1.76414 .185
SEL2 9.00691 236708.966 9.00691 650.29936 .01385 .906
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For this study, the following priority order of DVs is developed, from most to least important: ESTEEM, 
ATTROLE, NEUROTIC, INTEXT, CONTROL, and SEL2. Following the procedures for stepdown 
analysis (Section 7.5.3.2), the highest-  priority DV, ESTEEM, is tested in univariate ANOVA. The 
second-  priority DV, ATTROLE, is assessed in ANCOVA with ESTEEM as the covariate. The third- 
priority DV, NEUROTIC, is tested with ESTEEM and ATTROLE as covariates, and so on, until all 
DVs are analyzed. Stepdown analyses for the interaction and both main effects are in Table 7.19.

For purposes of journal reporting, critical information from Tables 7.18 and 7.19 is 
consolidated into a single table with both univariate and stepdown analyses, as shown in Table 
7.20. The alpha level established for each DV is reported along with the significance levels for 
stepdown F. The final three columns show partial h2 with 95% confidence limits for all stepdown effects, 
described later.

For the main effect of FEM, ESTEEM and ATTROLE are significant. (INTEXT would be 
significant in ANOVA but its variance is already accounted for through overlap with ESTEEM, 

TABLE 7.19 Stepdown Analyses of Six Ordered DVs for (Top to Bottom) FEM 
by MASC Interaction, Masculinity, and Femininity (Selected Output from IBM SPSS MANOVA—  
See Table 7.16 for Syntax)

Roy-Bargman Stepdown F-tests

Variable Hypoth. MS Error MS Stepdown F Hypoth. DF ERROR DF Sig. of F

ESTEEM 17.48685 12.48474 1.40066 1 364 .237
ATTROLE 24.85653 38.06383 .65302 1 363 .420
NEUROTIC 2.69735 21.61699 .12478 1 362 .724
INTEXT .26110 12.57182 .02077 1 361 .885
CONTROL .41040 1.28441 .31952 1 360 .572
SEL2 297.09000 652.80588 .45510 1 359 .500

Roy-Bargman Stepdown F-tests

Variable Hypoth. MS Error MS Stepdown F Hypoth. DF ERROR DF Sig. of F

ESTEEM 979.60086 12.48474 78.46383 1 364 .000
ATTROLE 728.51682 38.06383 19.13935 1 363 .000
NEUROTIC 4.14529 21.61699 .19176 1 362 .662
INTEXT 139.98354 12.57182 11.13471 1 361 .001
CONTROL .00082 1.28441 .00064 1 360 .980
SEL2 406.59619 652.80588 .62284 1 359 .431

Roy-Bargman Stepdown F-tests

Variable Hypoth. MS Error MS Stepdown F Hypoth. DF ERROR DF Sig. of F

ESTEEM 101.46536 12.48474 8.12715 1 364 .005
ATTROLE 728.76735 38.06383 19.14593 1 363 .000
NEUROTIC 2.21946 21.61699 .10267 1 362 .749
INTEXT 47.98941 12.57182 3.81722 1 361 .052
CONTROL .05836 1.28441 .04543 1 360 .831
SEL2 15.94930 652.80588 .02443 1 359 .876
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TABLE 7.20 Tests of Femininity, Masculinity, and Their Interaction

IV DV
Univariate 

F df
Stepdown 

F df A

Partial 
H2

CL around 
Partial H2 per A

Lower Upper

Femininity ESTEEM 8.13a 1/364 8.13** 1/364 .01 .02 .00 .07
ATTROLE 15.75a 1/364 19.15** 1/363 .01 .05 .01 .12
NEUROTIC 1.79 1/364 0.10 1/362 .01 .00 .00 .01
INTEXT 6.82a 1/364 3.82 1/361 .01 .01 .00 .05
CONTROL 1.76 1/364 0.05 1/360 .01 .00 .00 .01
SEL2 0.01 1/364 0.02 1/359 .001 .00 .00 .00

Masculinity ESTEEM 78.46a 1/364 78.46** 1/364 .01 .18 .09 .27
ATTROLE 36.79a 1/364 19.14** 1/363 .01 .05 .01 .12
NEUROTIC 7.28a 1/364 0.19 1/362 .01 .00 .00 .02
INTEXT 25.44a 1/364 11.13** 1/361 .01 .03 .00 .09
CONTROL 7.39a 1/364 0.00 1/360 .01 .00 .00 .00
SEL2 1.70 1/364 0.62 1/359 .001 .00 .00 .04

Femininity by ESTEEM 1.40 1/364 1.40 1/364 .01 .00 .00 .04
masculinity ATTROLE 0.95 1/364 0.65 1/363 .01 .00 .00 .03
interaction NEUROTIC 0.01 1/364 0.12 1/362 .01 .00 .00 .01

INTEXT 0.00 1/364 0.02 1/361 .01 .00 .00 .00
CONTROL 0.56 1/364 0.32 1/360 .01 .00 .00 .03
SEL2 0.54 1/364 0.46 1/359 .001 .00 .00 .04

aSignificance level cannot be evaluated but would reach p 6 .01 in univariate context.

**p 6 .01.

as noted in the pooled within-  cell correlation matrix.) For the main effect of MASC, ESTEEM, 
ATTROLE, and INTEXT are significant. (NEUROTIC and CONTROL would be significant in 
ANOVA, but their variance is also already accounted for through overlap with ESTEEM, ATTROLE,
and, in the case of CONTROL, NEUROTIC and INTEXT.)

For the DVs significant in stepdown analysis, the relevant adjusted marginal means are needed 
for interpretation. Marginal means are needed for ESTEEM for FEM and for MASC adjusted for 
FEM. Also needed are marginal means for ATTROLE with ESTEEM as a covariate for both FEM,
and MASC adjusted for FEM; lastly, marginal means are needed for INTEXT with ESTEEM, 
ATTROLE, and NEUROTIC as covariates for MASC adjusted for FEM. Table 7.21 contains syntax 
and selected output for these marginal means as produced through IBM SPSS MANOVA. In the 
table, level of effect is identified under PARAMETER and mean is under Coeff. Thus, the mean for 
ESTEEM at level 1 of FEM is 16.57. Marginal means for effects with univariate, but not stepdown, 
differences are shown in Table 7.22, where means for NEUROTIC and CONTROL are found for the 
main effect of MASC adjusted for FEM.

Effect size for each DV is evaluated as partial h2 (Equation 3.25, 3.26, 6.7, 6.8, or 6.9). The 
information you need for calculation of h2 is available in IBM SPSS MANOVA stepdown tables 
(see Table 7.19) but not in a convenient form; mean squares are given in the tables but you need 
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TABLE 7.21 Adjusted Marginal Means for ESTEEM; ATTROLE With ESTEEM as a Covariate; 
and INTEXT With ESTEEM, ATTROLE, and NEUROTIC as Covariates (Syntax and Selected 
Output from IBM SPSS MANOVA)

MANOVA ESTEEM,ATTROLE,NEUROTIC,INTEXT,CONTROL,SEL2 BY FEM,MASC(1,2)
/PRINT=PARAMETERS(ESTIM)

/ANALYSIS=ESTEEM /DESIGN=CONSPLUS FEM
/DESIGN=FEM,CONSPLUS MASC

   /ANALYSIS=ATTROLE WITH ESTEEM /DESIGN=CONSPLUS FEM
/DESIGN=FEM, CONSPLUS MASC

/ANALYSIS=INTEXT WITH ESTEEM,ATTROLE,NEUROTIC
/DESIGN=FEM, CONSPLUS MASC.

Estimates for ESTEEM
--- Individual univariate .9500 confidence intervals

CONSPLUS FEM

Parameter Coeff. Std. Err. t-Value Sig. t Lower -95% CL- Upper

1 16.5700935 .37617 44.04964 .00000 15.83037 17.30982
2 15.4137931 .24085 63.99636 .00000 14.94016 15.88742

Estimates for ESTEEM
--- Individual univariate .9500 confidence intervals

CONSPLUS MASC

Parameter Coeff. Std. Err. t-Value Sig. t Lower -95% CL- Upper

2 17.1588560 .24196 70.91464 .00000 16.68304 17.63468
3 13.7138144 .32770 41.84820 .00000 13.06939 14.35824

Estimates for ATTROLE adjusted for 1 covariate
--- Individual univariate .9500 confidence intervals

CONSPLUS FEM

Parameter Coeff. Std. Err. t-Value Sig. t Lower -95% CL- Upper

1 32.5743167 .61462 52.99941 .00000 31.36568 33.78295
2 35.9063146 .39204 91.58908 .00000 35.13538 36.67725

Estimates for ATTROLE adjusted for 1 covariate
--- Individual univariate .9500 confidence intervals

CONSPLUS MASC

Parameter Coeff. Std. Err. t-Value Sig. t Lower -95% CL- Upper

2 35.3849271 .44123 80.19697 .00000 34.51726 36.25260
3 32.1251995 .60108 53.44537 .00000 30.94316 33.30723
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Estimates for INTEXT adjusted for 3 covariates
—Individual univariate .9500 confidence intervals

CONSPLUS MASC

Parameter Coeff. Std. Err. t-Value Sig. t Lower -95% CL- Upper

2 11.0013930 .25372 43.36122 .00000 10.50245 11.50033
3 12.4772029 .35546 35.10172 .00000 11.77818 13.17623

Note: Coeff. = adjusted marginal mean; first parameter = low, second parameter = high.

TABLE 7.21 Continued

TABLE 7.22 Unadjusted Marginal Means for Neurotic and Control (Syntax and Selected Output 
from IBM SPSS MANOVA)

MANOVA  ESTEEM,ATTROLE,NEUROTIC,INTEXT,CONTROL,SEL2 BY FEM,MASC(1,2)
/PRINT=PARAMETERS(ESTIM)
/ANALYSIS=NEUROTIC /DESIGN=FEM, CONSPLUS MASC
/ANALYSIS=CONTROL /DESIGN=FEM, CONSPLUS MASC.

Estimates for NEUROTIC
--- Individual univariate .9500 confidence intervals

CONSPLUS MASC

Parameter Coeff. Std. Err. t-Value Sig. t Lower -95% CL- Upper

2 9.37093830 .33937 27.61309 .00000 8.70358 10.03830
3 7.89610411 .45962 17.17971 .00000 6.99227 8.79994

Estimates for CONTROL
--- Individual univariate .9500 confidence intervals

CONSPLUS MASC

Parameter Coeff. Std. Err. t-Value Sig. t Lower -95% CL- Upper

2 6.89163310 .08665 79.53388 .00000 6.72124 7.06203
3 6.51258160 .11735 55.49504 .00000 6.28181 6.74336

Note: Coeff. = unadjusted marginal mean; first parameter = low, second parameter = high.

sums of squares for calculation of h2. Smithson’s (2003) program (NoncF3.sps) calculates confi-
dence limits for effect sizes and also calculates the effect size itself from F (stepdown or otherwise), 
df for effect (df1) and error (df2), and the percentage associated with the desired confidence limits. 
These four values are entered into the data sheet (NoncF.sav). The remaining columns of NoncF.
sav are filled in when NoncF3.sps is run. The relevant output columns are r2 (equivalent to partial 
h2 of Equation 6.9), lr2 and ur2, the lower and upper confidence limits, respectively, for the effect 
size. Table 7.23 shows the input/output data set for all of the stepdown effects following the order 
in Table 7.20, for example, 1 = ESTEEM for FEM, 2 = ATTROLE for FEM, 3 = NEUROTIC for 
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FEM and so on. Values filled into the first three columns are from Table 7.20. The value of .99 or 
.999 filled in for the confidence limits reflects the chosen a level for each effect.

A checklist for MANOVA appears in Table 7.24. An example of a Results section, in journal 
format, follows for the study just described.

TABLE 7.23 Data Set Output for Stepdown Effects from NoncF3.sps for Effect Size (r2) With 95% 
Confidence Limits (lr2 and ur2)

TABLE 7.24 Checklist for Multivariate Analysis of Variance

1. Issues
a. Unequal sample sizes and missing data
b. Normality of sampling distributions
c. Outliers
d. Homogeneity of variance–covariance matrices
e. Linearity
f. In stepdown, when DVs act as covariates

(1) Homogeneity of regression
(2) Reliability of DVs

g. Multicollinearity and singularity
2. Major analyses: Planned comparisons or omnibus F, when significant. Importance of DVs

a.  Within-cell correlations, stepdown F, univariate F
b. Effect sizes with confidence interval for significant stepdown F
c. Means or adjusted marginal and/or cell means for significant F, with standard deviations, standard 

errors, or confidence intervals
3. Multivariate effect size(s) with confidence interval(s) for planned comparisons or omnibus F
4. Additional analyses

a. Post hoc comparisons
b. Interpretation of IV–  covariates interaction (if homogeneity of regression violated)
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Results

A 2 × 2 between-  subjects multivariate analysis of variance 

was performed on six dependent variables: Self-  esteem, attitude 

toward the role of women, neuroticism, introversion–  extraversion, 

locus of control, and socioeconomic level. Independent variables 

were masculinity (low and high) and femininity (low and high).

IBM SPSS MANOVA was used for the analyses with the sequential 

adjustment for nonorthogonality. Order of entry of IVs was 

femininity, then masculinity. Total N of 369 was reduced to 

368 with the deletion of a case missing a score on locus of 

control. There were no univariate or multivariate within-  cell 

outliers at p < .001. Results of evaluation of assumptions 

of normality, homogeneity of variance–  covariance matrices, 

linearity, and multicollinearity were satisfactory.

With the use of Wilks’ criterion, the combined DVs were 

significantly affected by both masculinity, F(6, 359) = 19.27, 

p < .001, and femininity, F(6, 359) = 5.27, p < .001, but not 

by their interaction, F(6, 359) = 0.49, p > .05. The results 

reflected a modest association between masculinity scores 

(low vs. high) and the combined DVs, partial h2 = .24 with 95% 

confidence limits from .16 to .30. The association was even less 

substantial between femininity and the DVs, partial h2 = .08 with 

95% confidence limits from .02 to .13. For the nonsignificant 

interaction, partial h2 = .01 with 95% confidence limits from 

.00 to .02. [F and Pillai’s value (partial h2) are from Table 7.15; 

confidence limits for partial h2 are found through NoncF3.sps.]

To investigate the impact of each main effect on the 

individual DVs, a Roy–  Bargmann stepdown analysis was performed 

on the prioritized DVs. All DVs were judged to be sufficiently 
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reliable to warrant stepdown analysis. In stepdown analysis 

each DV was analyzed, in turn, with higher-  priority DVs treated 

as covariates and with the highest-  priority DV tested in a 

univariate ANOVA. Homogeneity of regression was achieved for all 

components of the stepdown analysis.

Results of this analysis are summarized in Table 7.20. An 

experimentwise error rate of 5% was achieved by the apportionment of 

alpha as shown in the last column of Table 7.20 for each of the DVs.

A unique contribution to predicting differences between those 

low and high on femininity was made by self-  esteem, stepdown 

F(1, 364) = 8.13, p < .01, partial h2 = .02 with 99% confidence 

limits from .00 to .07. Self-  esteem was scored inversely, so 

women with higher femininity scores showed greater self-  esteem 

(mean self-  esteem = 15.41, SE = 0.24) than those with lower 

femininity (mean self-  esteem = 16.57, SE = 0.38). After the 

pattern of differences measured by self-  esteem was entered, a 

difference was also found on attitude toward the role of women, 

stepdown F(1, 363) = 19.15, p < .01, partial h2 = .05 with 

confidence limits from .01 to .12. Women with higher femininity 

scores had more conservative attitudes toward women’s role 

(adjusted mean attitude = 35.90, SE = 0.35) than those lower in 

femininity (adjusted mean attitude = 32.57, SE = 0.61). Although 

a univariate comparison revealed that those higher in femininity 

also were more extroverted, univariate F(1, 364) = 6.82, this 

difference was already represented in the stepdown analysis by  

higher-priority DVs.

Three DVs—  self-  esteem, attitude toward role of women, and 

introvert-extrovert–made unique contributions to the composite 

DV that best distinguished between those high and low in 
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masculinity. The greatest contribution was made by self-  esteem, 

the highest-priority DV, stepdown F(1, 364) = 78.46, p < .01, 

partial h2 = .18 with confidence limits from .09 to .27. Women 

scoring high in masculinity had higher self-  esteem (mean self- 

esteem = 13.71, SE = 0.33) than those scoring low (mean self- 

esteem = 17.16, SE = 0.24). With differences due to self-  esteem 

already entered, attitudes toward the role of women made a 

unique contribution, stepdown F(1, 363) = 19.14, p < .01, 

partial h2 = .05 with confidence limits from .01 to .12. Women 

scoring lower in masculinity had more conservative attitudes 

toward the proper role of women (adjusted mean attitude = 35.39, 

SE = 0.44) than those scoring higher (adjusted mean attitude = 

32.13, SE = 0.60). Introversion–  extraversion, adjusted by self- 

esteem, attitudes toward women’s role, and neuroticism also 

made a unique contribution to the composite DV, stepdown 

F(1, 361) = 11.13, p < .01, partial h2 = .03 with confidence 

limits from .00 to .09. Women with higher masculinity were more 

extroverted (mean adjusted introversion–  extraversion score = 

12.48) than lower masculinity women (mean adjusted introversion–

extraversion score = 11.00). Univariate analyses revealed that 

women with higher masculinity scores were also less neurotic, 

univariate F(1, 364) = 7.28, and had a more internal locus 

of control, univariate F(1, 364) 7.39, differences that were 

already accounted for in the composite DV by higher-  priority 

DVs. [Means adjusted for main effects and for other DVs for 

stepdown interpretation are from Table 7.21, partial h2 values 

and confidence limits are from Table 7.23. Means adjusted for 

main effects but not other DVs for univariate interpretation are 

in Table 7.22.]
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High-masculinity women, then, have greater self-esteem, 

less conservative attitudes toward the role of women, and more 

extraversion than women scoring low on masculinity. High femininity 

is associated with greater self-  esteem and more conservative 

attitudes toward women’s role than low femininity. Of the five 

effects, however, only the association between masculinity and 

self-  esteem shows even a moderate proportion of shared variance.

Pooled within-  cell correlations among DVs are shown in 

Table 7.17. The only relationships accounting for more than 10% of 

variance are between self-  esteem and neuroticism (r = .36), locus 

of control and self-  esteem (r = .35), and between neuroticism and 

locus of control (r = .39). Women who are high in neuroticism tend 

to have lower self-  esteem and more external locus of control.

7.6.3 Multivariate Analysis of Covariance

For MANCOVA the same six variables are used as for MANOVA but ESTEEM, INTEXT, and 
NEUROTIC are used as DVs and CONTROL, ATTROLE, and SEL2 are used as covariates. The 
research question is whether there are personality differences associated with femininity, masculin-
ity, and their interaction after adjustment for differences in attitudes and socioeconomic status.

Syntax and partial output of omnibus MANCOVA as produced by IBM SPSS MANOVA 
appear in Table 7.25. As in MANOVA, Method 3 adjustment for unequal n is used with MASC 
adjusted for FEM and the interaction is adjusted for FEM and MASC. And, as in MANOVA, both 
main effects are highly significant but there is no interaction. Effect sizes for the three effects are 
Pillai’s values. Entering Approx. F and appropriate df and percentage values into the NoncF.sav 
program and running NoncF3.sps, 95% confidence limits for these effect sizes are .00 to .08 for 
FEM, .08 to .21 for MASC, and .00 to .01 for the interaction.

7.6.3.1 Assessing Covariates

Under EFFECT..WITHIN+RESIDUAL Regression is the multivariate significance test for the 
relationship between the set of DVs (ESTEEM, INTEXT, and NEUROTIC) and the set of covari-
ates (CONTROL, ATTROLE, and SEL2) after adjustment for IVs. Partial h2 is calculated through 
the NoncF3.sps algorithm (Pillai’s criterion is inappropriate unless s = 1) using Approx. F and 
appropriate df and is found to be .10 with 95% confidence limits from .06 to .13.

Because there is multivariate significance, it is useful to look at the three multiple 
regression analyses of each DV in turn, with covariates acting as IVs (see Chapter 5). The syntax 
of Table 7.25 automatically produces these regressions. They are done on the pooled within-  cell 
correlation matrix, so that effects of the IVs are eliminated.
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TABLE 7.25 Multivariate Analysis of Covariance of Composite of DVs (ESTEEM, INTEXT, 
and NEUROTIC) as a Function of (Top to Bottom) FEM by MASC Interaction, Masculinity, 
and Femininity; Covariates Are ATTROLE, CONTROL, and SEL2 (Syntax and Selected Output 
from IBM SPSS MANOVA)

MANOVA  ESTEEM,ATTROLE,NEUROTIC,INTEXT,CONTROL,SEL2 BY FEM,MASC(1,2)
/ANALYSIS=ESTEEM,INTEXT,NEUROTIC WITH CONTROL,ATTROLE,SEL2
/PRINT=SIGNIF(STEPDOWN), ERROR(COR),

HOMOGENEITY(BARTLETT,COCHRAN,BOXM)
/METHOD=SEQUENTIAL

    /DESIGN FEM MASC FEM BY MASC.

EFFECT .. WITHIN+RESIDUAL Regression
Multivariate Tests of Significance (S = 3, M = −1/2, N = 178 1/2)

Test Name Value Approx. F Hypoth. DF Error DF Sig. of F

Pillais .23026 10.00372 9.00 1083.00 .000
Hotellings .29094 11.56236 9.00 1073.00 .000
Wilks .77250 10.86414 9.00 873.86 .000
Roys .21770

EFFECT.. FEM BY MASC
Multivariate Tests of Significance (S = 1, M = 1/2, N = 178 1/2)

Test Name Value Approx. F Hypoth. DF Error DF Sig. of F

Pillais .00263 .31551 3.00 359.00 .814
Hotellings .00264 .31551 3.00 359.00 .814
Wilks .99737 .31551 3.00 359.00 .814
Roys .00263
Note.. F statistics are exact.

EFFECT.. MASC
Multivariate Tests of Significance (S = 1, M = 1/2, N = 178 1/2)

Test Name Value Approx. F Hypoth. DF Error DF Sig. of F

Pillais .14683 20.59478 3.00 359.00 .000
Hotellings .17210 20.59478 3.00 359.00 .000
Wilks .85317 20.59478 3.00 359.00 .000
Roys .14683
Note.. F statistics are exact.

EFFECT.. FEM
Multivariate Tests of Significance (S = 1, M = 1/2, N = 178 1/2)

Test Name Value Approx. F Hypoth. DF Error DF Sig. of F

Pillais .03755 4.66837 3.00 359.00 .003
Hotellings .03901 4.66837 3.00 359.00 .003
Wilks .96245 4.66837 3.00 359.00 .003
Roys .03755
Note.. F statistics are exact.
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TABLE 7.26 Assessment of Covariates: Univariate, Stepdown, and Multiple Regression 
Analyses for Three DVs With Three Covariates (Selected Output from IBM SPSS MANOVA—
See Table 7.25 for Syntax)

EFFECT.. WITHIN+RESIDUAL Regression (Cont.)
Univariate F-tests with (3,361) D. F.

Variable Hypoth. SS Error SS Hypoth. MS Error MS F

ESTEEM 660.84204 3883.60490 220.28068 10.75791 20.47616
INTEXT 43.66605 4640.51295 14.55535 12.85461 1.13231
NEUROTIC 1384.16059 7589.51604 461.38686 21.02359 21.94615

Variable Sig. of F

ESTEEM .000
INTEXT .336
NEUROTIC .000

The results of the DV-covariate multiple regressions are shown in Table 7.26. At the top of 
Table 7.26 are the results of the univariate and stepdown analysis, summarizing the results of multiple 
regressions for the three DVs independently and then in priority order (see Section 7.6.3.2). At the 
bottom of Table 7.26 under Regression analysis for WITHIN+RESIDUAL error 
term are the separate regressions for each DV with covariates as IVs. For ESTEEM, two covariates, 
CONTROL and ATTROLE, are significantly related but SEL2 is not. None of the three covariates 
is related to INTEXT. Finally, for NEUROTIC, only CONTROL is significantly related. Because 
SEL2 provides no adjustment to any of the DVs, it could be omitted from future analyses.

7.6.3.2 Assessing DVs

Procedures for evaluating DVs, now adjusted for covariates, follow those specified in Section 
7.6.2 for MANOVA. Correlations among all DVs, among covariates, and between DVs and covari-
ates are informative so all the correlations in Table 7.17 are still relevant.15

Univariate Fs are now adjusted for covariates. The univariate ANCOVAs produced by the 
IBM SPSS MANOVA run specified in Table 7.25 are shown in Table 7.27. Although significance 
levels are misleading, there are substantial F values for ESTEEM and INTEXT for MASC (adjusted 
for FEM) and for FEM.

For interpretation of effects of IVs on DVs adjusted for covariates, comparison of stepdown 
Fs with univariate Fs again provides the best information. The priority order of DVs for this analy-
sis is ESTEEM, INTEXT, and NEUROTIC. ESTEEM is evaluated after adjustment only for the 
three covariates. INTEXT is adjusted for effects of ESTEEM and the three covariates; NEUROTIC 
is adjusted for ESTEEM and INTEXT and the three covariates. In effect, then, INTEXT is adjusted 
for four covariates and NEUROTIC is adjusted for five.

15For MANCOVA, IBM SPSS MANOVA prints pooled within-  cell correlations among DVs (called criteria) adjusted for 
covariates. To get a pooled within-  cell correlation matrix for covariates as well as DVs, you need a run in which covariates 
are included in the set of DVs.
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Roy-Bargman Stepdown F-tests

Variable Hypoth. MS Error MS Stepdown F  Hypoth. DF Error DF Sig. of F

ESTEEM 220.28068 10.75791 20.47616 3 361 .000
INTEXT 6.35936 12.60679 .50444 3 360 .679
NEUROTIC 239.94209 19.72942 12.16164 3 359 .000

Regression analysis for WITHIN+RESIDUAL error term
--- Individual Univariate .9500 confidence intervals
Dependent variable .. ESTEEM Self-esteem

COVARIATE B Beta Std. Err. t-Value Sig. of t

CONTROL .98173 .32005 .136 7.205 .000
ATTROLE .08861 .15008 .028 3.208 .001
SEL2 −.00111 −.00723 .007 −.164 .869

Regression analysis for WITHIN+RESIDUAL error term
Dependent variable .. ESTEEM Self-esteem

COVARIATE Lower -95% CL- Upper

CONTROL .714 1.250
ATTROLE .034 .143
SEL2 −.014 .012

Dependent variable .. INTEXT Introversion-extroversion

COVARIATE B Beta Std. Err. t-Value Sig. of t

CONTROL −.22322 −.07655 .149 −1.499 .135
ATTROLE .00456 .00812 .030 .151 .880
SEL2 .00682 .04662 .007 .922 .357

COVARIATE Lower -95% CL- Upper

CONTROL -.516 .070
ATTROLE -.055 .064
SEL2 -.008 .021

Dependent variable .. NEUROTIC Neuroticism

COVARIATE B Beta Std. Err. t-Value Sig. of t

CONTROL 1.53128 .39102 .190 8.040 .000
ATTROLE .04971 .06595 .039 1.287 .199
SEL2 .00328 .01670 .009 .347 .729

COVARIATE Lower -95% CL- Upper

CONTROL 1.157 1.906
ATTROLE −.026 .126
SEL2 −.015 .022

TABLE 7.26 Continued
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TABLE 7.27 Univariate Analyses of Covariance of Three DVs Adjusted for Three Covariates for 
(Top to Bottom) FEM by MASC Interaction, Masculinity, and Femininity (Selected Output from IBM 
SPSS MANOVA—  See Table 7.25 for Syntax)

EFFECT.. FEM BY MASC (Cont.)
Univariate F-tests with (1,361) D. F.

Variable Hypoth. SS Error SS Hypoth. MS Error MS F Sig. of F

ESTEEM 7.21931 3883.60490 7.21931 10.75791 .67107 .413
INTEXT 2.59032 464051.295 2.59032 1285.46065 .00202 .964
NEUROTIC 1.52636 7589.51604 1.52636 21.02359 .07260 .788

EFFECT.. MASC (Cont.)
Univariate F-tests with (1,361) D. F.

Variable Hypoth. SS Error SS Hypoth. MS Error MS F Sig. of F

ESTEEM 533.61774 3883.60490 533.61774 10.75791 49.60237 .000
INTEXT 26444.5451 464051.295 26444.5451 1285.46065 20.57204 .000
NEUROTIC 35.82929 7589.51604 35.82929 21.02359 1.70424 .193

EFFECT.. FEM (Cont.)
Univariate F-tests with (1,361) D. F.

Variable Hypoth. SS Error SS Hypoth. MS Error MS F Sig. of F

ESTEEM 107.44454 3883.60490 107.44454 10.75791 9.98749 .002
INTEXT 7494.31182 464051.295 7494.31182 1285.46065 5.83006 .016
NEUROTIC 26.81431 7589.51604 26.81431 21.02359 1.27544 .259

Stepdown analysis for the interaction and two main effects is in Table 7.28. The results are the 
same as those in MANOVA except that there is no longer a main effect of FEM on INTEXT after 
adjustment for four covariates. The relationship between FEM and INTEXT is already represented 
by the relationship between FEM and ESTEEM. Consolidation of information from Tables 7.27 and 
7.28, as well as some information from Table 7.26, appears in Table 7.29, along with apportionment 
of the .05 alpha error to the various tests and effect sizes with their confidence limits based on the 
a error chosen.

For the DVs associated with significant main effects, interpretation requires associated 
marginal means. Table 7.30 contains syntax and adjusted marginal means for ESTEEM and for 
INTEXT (which is adjusted for ESTEEM as well as covariates) for FEM and for MASC adjusted 
for FEM. Syntax and marginal means for the main effect of FEM on INTEXT (univariate but not 
stepdown effect) appear in Table 7.31.

Effect sizes and their confidence limits for stepdown effects are found through Smithson’s 
(2003) program as for MANOVA. Table 7.32 shows the input/output for that analysis using values 
from Table 7.28. Values chosen for confidence limits reflect apportionment of a. A checklist for 
MANCOVA appears in Table 7.33. An example of a Results section, as might be appropriate for 
journal presentation, follows.
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TABLE 7.28 Stepdown Analyses of Three Ordered DVs Adjusted for Three Covariates for 
(Top to Bottom) FEM by MASC Interaction, Masculinity, and Femininity (Selected Output from 
IBM SPSS MANOVA—  See Table 7.25 for Syntax)

Roy-Bargman Stepdown F-tests

Variable Hypoth. MS Error MS StepDown F Hypoth. DF Error DF Sig. of F

ESTEEM 7.21931 10.75791 .67107 1 361 .413
INTEXT .35520 12.60679 .02817 1 360 .867
NEUROTIC 4.94321 19.72942 .25055 1 359 .617

Roy-Bargman Stepdown F-tests

Variable Hypoth. MS Error MS StepDown F Hypoth. DF Error DF Sig. of F

ESTEEM 533.61774 10.75791 49.60237 1 361 .000
INTEXT 137.74436 12.60679 10.92621 1 360 .001
NEUROTIC 1.07421 19.72942 .05445 1 359 .816

Roy-Bargman Stepdown F-tests

Variable Hypoth. MS Error MS StepDown F Hypoth. DF Error DF Sig. of F

ESTEEM 107.44454 10.75791 9.98749 1 361 .002
INTEXT 47.36159 12.60679 3.75683 1 360 .053
NEUROTIC 4.23502 19.72942 .21466 1 359 .643

TABLE 7.29 Tests of Covariates, Femininity, Masculinity (Adjusted for Femininity), and Interaction

IV DV
Univariate 

F df
Stepdown 

F df A

Partial 
H2

CL around 
Partial H2 per A

Lower Upper

Covariates ESTEEM 20.48a 3/361 20.48** 3/361 .02 .15 .07 .22
INTEXT 1.13 3/361 0.50 3/360 .02 .00 .00 .02
NEUROTIC 21.95a 3/361 12.16** 3/359 .01 .09 .03 .17

Femininity ESTEEM 9.99a 1/361 9.99** 1/361 .02 .03 .00 .08
INTEXT 5.83a 1/361 3.76 1/360 .02 .01 .00 .05
NEUROTIC 1.28 1/361 0.21 1/359 .01 .00 .00 .02

Masculinity ESTEEM 49.60a 1/361 49.60** 1/361 .02 .12 .06 .20
INTEXT 20.57a 1/361 10.93** 1/360 .02 .03 .00 .08
NEUROTIC 1.70 1/361 0.05 1/359 .01 .00 .00 .01

Femininity by ESTEEM 0.67 1/361 0.67 1/361 .02 .00 .00 .03
masculinity INTEXT 0.00 1/361 0.03 1/360 .01 .00 .00 .00
interaction NEUROTIC 0.07 1/361 0.25 1/359 .01 .00 .00 .03

*Significance level cannot be evaluated but would reach p 6 .02 in univariate context.

**p 6 .01.
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TABLE 7.30 Adjusted Marginal Means for Esteem Adjusted for Three Covariates and INTEXT 
Adjusted for ESTEEM Plus Three Covariates (Syntax and Selected Output from IBM SPSS 
MANOVA)

MANOVA  ESTEEM,ATTROLE,NEUROTIC,INTEXT,CONTROL,SEL2 BY FEM,MASC(1,2)
/PRINT=PARAMETERS(ESTIM)
/ANALYSIS=ESTEEM WITH CONTROL,ATTROLE,SEL2

   /DESIGN=CONSPLUS FEM /DESIGN=FEM,CONSPLUS MASC
/ANALYSIS=INTEXT WITH CONTROL,ATTROLE,SEL2,ESTEEM
/DESIGN=FEM, CONSPLUS,MASC.

Estimates for ESTEEM adjusted for 3 covariates
--- Individual univariate .9500 confidence intervals

CONSPLUS FEM

Parameter Coeff. Std. Err. t-Value Sig. t Lower -95% CL- Upper

1 16.7151721 .34268 48.77769 .00000 16.04128 17.38906
2 15.3543164 .21743 70.61815 .00000 14.92674 15.78189

Estimates for ESTEEM adjusted for 3 covariates
--- Individual univariate .9500 confidence intervals

CONSPLUS MASC

Parameter Coeff. Std. Err. t-Value Sig. t Lower -95% CL- Upper

2 16.9175545 .22684 74.57875 .00000 16.47146 17.36365
3 14.2243700 .31940 44.53415 .00000 13.59625 14.85249

Estimates for INTEXT adjusted for 4 covariates
--- Individual univariate .9500 confidence intervals

CONSPLUS MASC

Parameter Coeff. Std. Err. t-Value Sig. t Lower -95% CL- Upper

2 11.0058841 .25416 43.30276 .00000 10.50606 11.50571
3 12.4718467 .35617 35.01620 .00000 11.77141 13.17228

Note: Coeff. = adjusted marginal mean; first parameter = low, second parameter = high.

TABLE 7.31 Marginal Means for INTEXT Adjusted for Three Covariates Only (Syntax and Selected 
Output from IBM SPSS MANOVA)

MANOVA ESTEEM,ATTROLE,NEUROTIC,INTEXT,CONTROL,SEL2 BY FEM,MASC(1,2)
/PRINT=PARAMETERS(ESTIM)
/ANALYSIS=INTEXT WITH CONTROL,ATTROLE,SEL2, ESTEEM
/DESIGN=CONSPLUS FEM.
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Estimates for INTEXT adjusted for 4 covariates
--- Individual univariate .9500 confidence intervals

CONSPLUS FEM

Parameter Coeff. Std. Err. t-Value Sig. t Lower -95% CL- Upper

1 11.1014711 .35676 31.11753 .00000 10.39989 11.80305
2 11.9085923 .22495 52.93984 .00000 11.46623 12.35096

Note: Coeff. = adjusted marginal mean; first parameter = low, second parameter = high.

TABLE 7.31 Continued

TABLE 7.32 Data Set Output from NoncF3.sps for Effect Size (r2) With 95% Confidence Limits

TABLE 7.33 Checklist for Multivariate Analysis of Covariance

1. Issues
a. Unequal sample sizes and missing data
b. Normality of sampling distributions
c. Outliers
d. Homogeneity of variance–covariance matrices
e. Linearity
f. Homogeneity of regression

(1) Covariates
(2) DVs for stepdown analysis

g. Reliability of covariates (and DVs for stepdown)
h. Multicollinearity and singularity

2. Major analyses: Planned comparisons or omnibus F; when significant: Importance of DVs
a.  Within-cell correlations, stepdown F, univariate F
b. Effect size with its confidence interval for significant stepdown F
c. Adjusted marginal and/or cell means for significant F, and standard deviations or standard errors or 

confidence intervals
(continued )
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TABLE 7.33 Continued

3. Multivariate effect size(s) with confidence interval(s) for planned comparisons or omnibus F.
4. Additional analyses

a. Assessment of covariates
b. Interpretation of IV–  covariates interaction (if homogeneity of regression violated for stepdown 

analysis)
c. Post hoc comparisons

Results

A 2 × 2 between-  subjects multivariate analysis of covariance 

was performed on three dependent variables associated with 

personality of respondents: self-esteem, introversion–

extraversion, and neuroticism. Adjustment was made for three 

covariates: attitude toward role of women, locus of control, 

and socioeconomic status. Independent variables were masculinity 

(high and low) and femininity (high and low).

IBM SPSS MANOVA was used for the analyses with the sequential 

adjustment for nonorthogonality. Order of entry of IVs was 

femininity, then masculinity. Total N = 369 was reduced to 

368 with the deletion of a case missing a score on locus of 

control. There were no univariate or multivariate within-  cell 

outliers at a = .001. Results of evaluation of assumptions 

of normality, homogeneity of variance–  covariance matrices, 

linearity, and multicollinearity were satisfactory. Covariates 

were judged to be adequately reliable for covariance analysis.

With the use of Wilks’ criterion, the combined DVs were 

significantly related to the combined covariates, approximate 

F(9, 873) = 10.86, p < .01, to femininity, F(3, 359) = 4.67, 

p < .01, and to masculinity, F(3, 359) = 20.59, p < .001 but 
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not to the interaction, F(3, 359) = 0.31, p > .05. There was 

a modest association between DVs and covariates, partial h2 = 

.10 with confidence limits from .06 to .29. A somewhat larger 

association was found between combined DVs and the main effect 

of masculinity, partial h2 = .15 with confidence limits from 

.08 to .21, but the association between the main effect of 

femininity and the combined DVs was smaller, partial h2 = 

.04 with confidence limits from .00 to .08. Effect size for 

the nonsignificant interaction was .00 with confidence limits 

from .00 to .01. [F is from Table 7.25; partial h2 and their 

confidence limits are found through Smithson’s NoncF3.sps for 

main effects, interaction, and covariates.]

To investigate more specifically the power of the covariates 

to adjust dependent variables, multiple regressions were run for 

each DV in turn, with covariates acting as multiple predictors. 

Two of the three covariates, locus of control and attitudes 

toward women’s role, provided significant adjustment to self- 

esteem. The B value of .98 (confidence interval from .71 to 

1.25) for locus of control was significantly different from zero, 

t(361) = 7.21, p <.001, as was the B value of .09 (confidence 

interval from .03 to .14) for attitudes toward women’s role, 

t(361)= 3.21, p < .01. None of the covariates provided adjustment 

to the introversion–  extraversion scale. For neuroticism, only 

locus of control reached statistical significance, with B = 

.1.53 (confidence interval from 1.16 to 1.91), t(361) = 8.04, 

p < .001. For none of the DVs did socioeconomic status provide 

significant adjustment. [Information about relationships for 

individual DVs and CVs is from Table 7.26.]
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Effects of masculinity and femininity on the DVs after 

adjustment for covariates were investigated in univariate and 

Roy–  Bargmann stepdown analysis, in which self-  esteem was given 

the highest priority, introversion–  extraversion second priority 

(so that adjustment was made for self-  esteem as well as for 

the three covariates), and neuroticism third priority (so that 

adjustment was made for self-esteem and introversion–extraversion 

as well as for the three covariates). Homogeneity of regression 

was satisfactory for this analysis, and DVs were judged to be 

sufficiently reliable to act as covariates. Results of this 

analysis are summarized in Table 7.29. An experimentwise error 

rate of 5% for each effect was achieved by apportioning alpha 

according to the values shown in the last column of the table.

After adjusting for differences on the covariates, self- 

esteem made a significant contribution to the composite of the 

DVs that best distinguishes between women who were high or low 

in femininity, stepdown F(1, 361) = 9.99, p < .01, partial 

h2 = .03 with confidence limits from .00 to .08. With self-  esteem 

scored inversely, women with higher femininity scores showed 

greater self-  esteem after adjustment for covariates (adjusted 

mean self-  esteem = 15.35, SE = 0.22) than those scoring lower 

on femininity (adjusted mean self-  esteem = 16.72, SE = 0.34). 

Univariate analysis revealed that a statistically significant 

difference was also present on the introversion–  extraversion 

measure, with higher-  femininity women more extraverted, 

univariate F(1, 361) = 5.83, a difference already accounted for 

by covariates and the higher-  priority DV. [Adjusted means are 

from Tables 7.30 and 7.31; partial h2 and confidence limits are 

from Table 7.32.]
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Lower- versus higher-masculinity women differed in self- 

esteem, the highest-  priority DV, after adjustment for covariates, 

stepdown F(1, 361) = 49.60, p < .01, partial h2 = .12 with 

confidence limits from .06 to .20. Greater self-  esteem was found 

among higher-  masculinity women (adjusted mean = 14.22, SE = 0.32) 

than among lower-  masculinity women (adjusted mean = 16.92, SE = 

0.23). The measure of introversion and extraversion, adjusted 

for covariates and self-  esteem, was also related to differences 

in masculinity, stepdown F(1, 360) = 10.93, p < .01, partial 

h2 = .03 with confidence limits from .00 to .08. Women scoring 

higher on the masculinity scale were more extraverted (adjusted 

mean extraversion 12.47, SE = 0.36) than those showing lower 

masculinity (adjusted mean extraversion = 11.01, SE = 0.25).

High-  masculinity women, then, are characterized by greater 

self-esteem and extraversion than low-masculinity women when 

adjustments are made for differences in socioeconomic status, 

attitudes toward women’s role, and locus of control. High- 

femininity women show greater self-esteem than low-femininity 

women with adjustment for those covariates.

Pooled within-  cell correlations among dependent variables 

and covariates are shown in Table 7.19. The only relationships 

accounting for more than 10% of variance are between self- 

esteem and neuroticism (r = .36), locus of control and self- 

esteem (r = .35), and between neuroticism and locus of control 

(r = .39). Women who are high in neuroticism tend to have lower 

self-  esteem and are more likely to attribute reinforcements to 

external sources.
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7.7 Comparison of Programs

IBM SPSS, SAS, and SYSTAT all have highly flexible and full-  featured MANOVA programs, as 
seen in Table 7.34. One-  way between-  subjects MANOVA is also available through discriminant 
function programs, as discussed in Chapter 9.

7.7.1 IBM SPSS Package

IBM SPSS has two programs, MANOVA (available only through syntax) and GLM. Features of the 
two programs are quite different, so that you may want to use both programs for an analysis.

Both programs offer several methods of adjustment for unequal n and several statistical criteria 
for multivariate effects. In repeated-  measures designs, the sphericity test offered by both programs 
evaluates the sphericity assumption; if the assumption is rejected (i.e., if the test is significant), one 
of the alternatives to repeated-measures ANOVA—MANOVA, for instance—is appropriate. There 
are also the Greenhouse–  Geisser,  Huynh–  Feldt,and lower-  bound epsilons for adjustment of df for 
sphericity. IBM SPSS MANOVA and GLM do the adjustment and provide significance levels for 
the effects with adjusted df.

IBM SPSS MANOVA has several features that make it superior to any of the other programs 
reviewed here. It is the only program that performs  Roy–  Bargmann stepdown analysis as an option 
(Section 7.5.3.2). Use of other programs requires a separate ANCOVA run for each DV after the one 
of highest priority. IBM SPSS MANOVA also is the only program that has special syntax for pooling 
covariates to test homogeneity of regression for MANCOVA and stepdown analysis (Section 
7.6.1.6). If the assumption is violated, the manuals describe procedures for ANCOVA with separate 
regression estimates, if that is your choice. Full simple effects analyses are easily specified using the 
MWITHIN instruction (Section 8.5.2). IBM SPSS MANOVA also is easier to use for user-  specified 
comparisons. Bivariate collinearity and homogeneity of variance–  covariance matrices are readily 
tested in IBM SPSS MANOVA through within-  cell correlations and homogeneity of dispersion 
matrices, respectively. Multicollinearity is assessed through the determinant of the within-  cells cor-
relation matrix (cf. Section 4.1.7).

Both programs provide complete descriptive statistics for unadjusted means and standard 
deviations; however, adjusted means for marginal and cell effects are more easily specified in IBM 
SPSS GLM through the EMMEANS instruction. IBM SPSS MANOVA provides adjusted cell 
means easily, but marginal means require rather convoluted CONSPLUS instructions, as seen in 
Section 7.6. IBM SPSS GLM provides leverage values (that are easily converted to Mahalanobis 
distance) to assess multivariate outliers.

For between-  subjects designs, both programs offer Bartlett’s test of sphericity, which 
tests the null hypothesis that correlations among DVs are zero; if they are, univariate F (with 
Bonferroni adjustment) is used instead of stepdown F to test the importance of DVs (Section 
7.5.3.1).

A principal components analysis can be performed on the DVs through IBM SPSS MANOVA, 
as described in the manuals. In the case of multicollinearity or singularity among DVs (see Chapter 4), 
principal components analysis can be used to produce composite variables that are orthogonal to one 
another. However, the program still performs MANOVA on the raw DV scores, not the component 
scores. If MANOVA for component scores is desired, use the results of PCA and the COMPUTE
facility to generate component scores for use as DVs.



TABLE 7.34 Comparison of Programs for Multivariate Analysis of Variance and Covariancea

Feature

IBM
SPSS
GLM

IBM
SPSS
MANOVA

SAS
GLM

SYSTAT 
ANOVA, 
GLM, and 
MANOVAf

Input

Variety of strategies for unequal n Yes Yes Yes Yes

Specify tolerance EPS No SINGULAR Yes

Specify exact tests for multivariate effects No No MSTAT=
EXACT

No

Output

Standard source table for Wilks’ lambda No PRINT = 
SIGNIF
(BRIEF)

No No

Cell covariance matrices No Yes No No

Cell covariance matrix determinants No Yes No No

Cell correlation matrices No Yes No No

Cell SSCP matrices No Yes No No

Cell SSCP determinants No Yes No No

Unadjusted marginal means for factorial design Yes Yes Yes No

Unadjusted cell means Yes Yes Yes No

Unadjusted cell standard deviations Yes Yes Yes No

Confidence interval around unadjusted cell 
means No Yes No No

Adjusted cell means EMMEANS PMEANS LSMEANS Medium
output

Standard errors for adjusted cell means EMMEANS No LSMEANS Medium
output

Adjusted marginal means EMMEANS Yesb LSMEANS No

Standard errors for adjusted marginal means EMMEANS No LSMEANS No

Wilks’ lambda with approximate F statistic Yes Yes Yes Yes

Criteria other than Wilks’ Yes Yes Yes Yes

Multivariate influence/leverage statistics by cell No No No Data file

Canonical (discriminant function) statisticsc No Yes Yes Yes

Univariate F tests Yes Yes Yes Yes

Averaged univariate F tests No Yes No No

Stepdown F tests (DVs) No Yes No No

Sphericity test Yes Yes No Yesg

Adjustment for failure of sphericity Yes Yes Yes No

Tests for univariate homogeneity of variance Yes Yes Yesc Yes

Test for homogeneity of covariance matrices Box’s M Box’s M No No
(continued )
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Feature

IBM
SPSS
GLM

IBM
SPSS
MANOVA

SAS
GLM

SYSTAT 
ANOVA, 
GLM, and 
MANOVAf

Output (continued )

Principal component analysis of residuals No Yes No Yes

Hypothesis SSCP matrices Yes No Yes No

Hypothesis covariance matrices No Yes No No

Inverse of hypothesis SSCP matrices No No Yes Yes

Pooled within-  cell error SSCP matrix Yes Yes Yes Yes

Pooled within-cell covariance matrix No Yes No Yes

Pooled within-cell correlation matrix No Yes Yes Yes

Total SSCP matrix No No No Yes

Determinants of pooled within-  cell correlation 
matrix No Yes No No

Covariance matrix for adjusted cell means No No Data file No

Effect size for univariate tests ETASQ CINTERVAL No No

Power analysis OPOWER POWER Noe No

SMCs with effects for each DV No No No Yes

Confidence intervals for multivariate tests No Yes No No

Post hoc tests with adjustment POSTHOC Yesd Yes Yes

Specific comparisons Yes Yes Yes Yes

Tests of simple effects (complete) No Yes No No

Homogeneity of regression No Yes No Yes

ANCOVA with separate regression estimates No Yes No No

Regression coefficient for each covariate PARAMETER Yes No Long
output

Regression coefficient for each cell Yes No Yes No

R2 for model Yes No Yes No

Coefficient of variation No No Yes No

Normalized plots for each DV and covariate No Yes No No

Predicted values and residuals for each case Data file Yes Yes Data file

Confidence limits for predicted values No No Yes No

Residuals plots No Yes No No

aAdditional features are discussed in Chapter 6 (ANCOVA).
bAvailable through CONSPLUS procedure, see Section 7.6.
cDiscussed in more detail in Chapter 9.
dBonferroni and Scheffé confidence intervals.
eAvailable in a separate program: GLMPOWER.
fMANOVA, added to SYSTAT in Version 11, differs from GLM only in its menu access.
gNot available in “long” output.

TABLE 7.34 Continued
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7.7.2 SAS System

MANOVA in SAS is done through the PROC GLM. This general linear model program, like 
IBM SPSS GLM, has great flexibility in testing models and specific comparisons. Four types of 
adjustments for unequal n are available, called TYPE I through TYPE IV estimable functions
(cf. 6.5.4.2); this program is considered by some to have provided the archetypes of the choices 
available for unequal-n adjustment. Adjusted cell and marginal means are printed out with the 
LSMEANS instruction. SAS tests multivariate outliers by adding leverage values (which may 
be converted to Mahalanobis distance) to the data set (cf. Section 6.6.1.4). Exact tests of multivariate 
effects may be requested in place of the usual F approximation.

SAS GLM provides Greenhouse–  Geisser and  Huynh–  Feldt adjustments to degrees of free-
dom and significance tests for effects using adjusted df. There is no explicit test for homogeneity of 
regression, but because this program can be used for any form of multiple regression, the assump-
tion can be tested as a regression problem where the interaction between the covariate(s) and IV(s) 
is an explicit term in the regression equation (Section 6.5.3).

There is abundant information about residuals, as expected from a program that can be used 
for multiple regression. Should you want to plot residuals, however, a run through the PLOT proce-
dure is required. As with most SAS programs, the output requires a fair amount of effort to decode 
until you become accustomed to the style.

7.7.3 SYSTAT System

In SYSTAT, the GLM, ANOVA, and MANOVA programs may be used for simple, fully factorial 
MANOVA; however, GLM and MANOVA are recommended for more complex designs for their 
numerous features and flexibility, and because they are not much more difficult to set up.

Model 1 adjustment for unequal n is provided by default, along with a strong argument as 
to its benefits. Other options are available, however, by specification of error terms or a series of 
sequential regression analyses. Several criteria are provided for tests of multivariate hypotheses, 
along with a great deal of flexibility in specifying these hypotheses. Leverage values are saved in 
a data set by request and may be converted to Mahalanobis distance as per Equation 4.3 to assess 
multivariate outliers.

The program provides cell least squares means and their standard errors, adjusted for covari-
ates, if any. Other univariate statistics are not provided in the program, but they can be obtained 
through the STATS module.

Like IBM SPSS MANOVA, principal components analysis can be done on the pooled within-
cell correlation matrix. But also like the IBM SPSS program, the MANOVA is performed on the 
original scores.
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8.1 General Purpose and Description

Profile analysis is a special application of multivariate analysis of variance (MANOVA) to a situ-
ation where there are several dependent variables (DVs), all measured on the same scale.1 The set 
of DVs can either come from one DV measured several different times, or several different DVs all 
measured at one time. There is also a popular extension of the analysis where several different DVs 
are measured at several different times, called the doubly multivariate design.

The more common application is in research where subjects are measured repeatedly on the 
same DV. For example, math achievement tests are given at various points during a semester to test 
the effects of alternative educational programs such as traditional classroom versus computer-  assisted 
instruction. Used this way, profile analysis offers a multivariate alternative to the univariate F test for 
the within-  subjects effect and its interactions (see Chapter 3).2  The choice between profile analysis 
and univariate repeated-  measures ANOVA depends on sample size, power, and whether statistical 
assumptions of repeated-  measures ANOVA are met. These issues are discussed fully in Section 8.5.1.

Less commonly, profile analysis is used to compare profiles of two or more groups measured 
on several different scales, all at one time. For example, psychoanalysts and behavior therapists are 
both given, say, the Profile of Mood States (POMS). The DVs are the various scales of the POMS, 
tension-  anxiety, vigor, anger-  hostility, and so on, all measured on the same scale. The analysis asks 
if the two groups have the same pattern of means on the subscales.

Rapidly growing in popularity is the use of repeated-  measures MANOVA for doubly multi-
variate designs where several DVs, not all measured on the same scale, are measured repeatedly. For 
example, math competence is measured several times during a semester, each time by both a grade 
on a math test (one DV) and a scale of math anxiety (a second DV). A discussion of doubly mul-
tivariate analysis and a complete example are presented in Sections 8.5.3. and 8.6.2, respectively.

Current computer programs allow the application of profile analysis to complex designs 
where, for instance, groups are classified along two or more dimensions to create two or more 
between-  subjects IVs, as in ANOVA. For example, POMS profiles are examined for both male and 
female psychoanalysts and behavior therapists; or changes in math competence during a semester 

8 Profile Analysis: The 
Multivariate Approach 
to Repeated Measures

1The term profile analysis is also applied to techniques for measuring resemblance among profile patterns through cluster 
analysis rather than the MANOVA strategy described in this chapter.
2The term profile analysis is used for convenience here as synonymous with “taking the multivariate approach to repeated 
measures.”
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as a result of either traditional education or computer-  assisted instruction are evaluated for both 
elementary and junior high school students.

Zander and Dahlgren (2010) used classic profile analysis to compare WISC III score profiles 
of a Swedish census of 520 youngsters averaging about 10 years of age who were diagnosed with 
autistic disorder (N = 85), Asperger’s disorder (N = 341), and pervasive developmental disorders 
not otherwise specified (N = 94). The WISC score profiles were the Verbal Comprehension Index 
(Information, Similarities, Vocabulary, and Comprehension), the Perceptual Organization Index 
(Picture Completion, Block Design, Picture Arrangement, and Object Assembly), the Distractibility 
Index (Arithmetic and Digit Span), and the newly developed Processing Speed Index (Coding and 
Symbol Search). Overall, children with Asperger’s disorder performed in the average range for 
children in Sweden, while those with autistic disorder and pervasive development disorders scored 
much lower. However, the shapes of the profiles of the three groups were similar to each other.

Park, Rosengren, Horn, Smith, and Hsiao-  Wecksler (2011) studied the effects of two different 
kinds of protective clothing on various aspects of firefighter movement at baseline, pre-  firefighting, 
and post-  firefighting (the fatigue condition). Of the 44 firefighters tested, 21 were randomly assigned 
to wear standard protective clothing and 23 enhanced protective clothing. Repeated measurements 
were made with two levels of walking speed (normal and fast) and two levels of obstacle-  crossing
(obstacles present or absent). The DVs were levels of mobility, balance, and gait, assessed using sev-
eral gait parameters. (Note that three movement errors were also assessed but tested with different 
analyses.) The repeated-  measures MANOVA thus had one between-  subjects IV (type of protective 
clothing) and three within-  subjects IVs (testing condition, walking speed, and obstacle-  crossing).
There were significant main effects for testing condition, walking speed, and obstacle presence, but 
not for type of protective clothing, on several of the DVs.

8.2 Kinds of Research Questions

The major question for profile analysis is whether groups have different profiles on a set of measures. 
To apply profile analysis, all measures must have the same range of possible scores, with the same 
score value having the same meaning on all the measures. There is restriction on the scaling of the 
measures because in two of the major tests of profile analysis (parallelism and flatness) the numbers 
that are actually tested are difference3 scores between DVs measured on adjacent occasions or some 
other transformation of the set of DVs. Difference scores are called segments in profile analysis.

8.2.1 Parallelism of Profiles

Do different groups have parallel profiles? This is commonly known as the test of parallelism and 
is the primary question addressed by profile analysis. When using the profile approach to univariate 
repeated-  measures ANOVA, the parallelism test is the test of interaction. For example, do tradi-
tional and computer-  assisted instructions lead to the same pattern of gains in achievement over the 
course of testing? Or, do changes in achievement depend on the method of instruction used? Using 
the therapist example, do psychoanalysts and behavior therapists have the same pattern of highs and 
lows on the various mood states measured by the POMS?

3Although difference scores are notoriously unreliable, their use here is just as a statistical convenience (as any other trans-
formation would be). The difference scores are not interpreted per se.
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8.2.2 Overall Difference Among Groups

Whether or not groups produce parallel profiles, does one group, on average, score higher on the 
collected set of measures than another? For example, does one method of instruction lead to greater 
overall math achievement than the other method? Or does one type of therapist have reliably higher 
scores on the set of states measured by the POMS than the other?

In garden-  variety univariate ANOVA, this question is answered by test of the “groups” 
hypothesis; in profile analysis jargon, this is the “levels” hypothesis. It addresses the same question 
as the between-subjects main effect in repeated-measures ANOVA.

8.2.3 Flatness of Profiles

The third question addressed by profile analysis concerns the similarity of response to all DVs, 
independent of groups. Do all the DVs elicit the same average response? In profile jargon, this tests 
the “flatness” hypothesis. This question is typically relevant only if the profiles are parallel. If the 
profiles are not parallel, then at least one of them is necessarily not flat. Although it is conceivable 
that nonflat profiles from two or more groups could cancel each other out to produce, on average, a 
flat profile, this result is often not of research interest.

In the instructional example, the flatness test evaluates whether achievement changes over 
the period of testing. In this context the flatness test evaluates the same hypothesis as the within-
subjects main effect in repeated-  measures ANOVA. Using the therapist example, if psychoanalysts 
and behavior therapists have the same pattern of mood states on the POMS (i.e, if they have parallel 
profiles), one might ask whether therapists, as a whole, are notably high or low on any of the states.

8.2.4 Contrasts Following Profile Analysis

With more than two groups or more than two measures, differences in parallelism, flatness, and/
or level can result from a variety of sources. For example, if a group of client-  centered therapists 
is added to the therapist study, and the parallelism or levels hypothesis is rejected, it is not obvious 
whether it is the behavior therapists who differ from the other two groups, the psychoanalysts who 
differ from the client-  centered therapists, or exactly which group differs from which other group or 
groups. Contrasts following profile analysis are discussed in Section 8.5.2.

8.2.5 Parameter Estimates

Parameters are estimated whenever statistically significant differences are found between groups or 
measures. For profile analysis, the major description of results is typically a plot of profiles in which 
the means for each of the DVs are plotted for each of the groups. In addition, if the null hypothesis 
regarding levels is rejected, assessment of group means and group standard deviations, standard 
errors, or confidence intervals is helpful. And if the null hypothesis regarding flatness is rejected 
and the finding is of interest, a plot of scores combined over groups is instructive, along with stan-
dard deviations or standard errors. Profile plots are demonstrated in Sections 8.4 and 8.6.

8.2.6 Effect Size

As with all statistical techniques, estimates of effect size are appropriate for all effects of interest. Such 
effect size measures and confidence intervals around them are demonstrated in Sections 8.4 and 8.6.
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8.3 Limitations to Profile Analysis

8.3.1 Theoretical Issues

Choice of DVs is more limited in profile analysis than in usual applications of multivariate statis-
tics, because DVs must be commensurate except in the doubly multivariate application. That is, they 
must all have been subjected to the same scaling techniques.

In applications where profile analysis is used as an alternative to univariate repeated-  measures
ANOVA, this requirement is met because all DVs are literally the same measure. In other applica-
tions of profile analysis, however, careful consideration of the measurement of the DVs is required 
to assure that the units of measurement are the same. One way to produce commensurability is to 
use standardized scores, such as z-scores, instead of raw scores for the DVs. In this case, each DV 
is standardized using the pooled within-  groups standard deviation (the square root of the error mean 
square for the DV) provided by univariate one-  way between-  subjects ANOVA for the DV. There is 
some danger in generalizing results with this approach, however, because sample standard devia-
tions are used to form z-scores. Similar problems arise when factor or component scores are used as 
measures, based on factor or component analysis of sample data. More commonly, commensurate 
DVs are subscales of standardized tests, in which subtests are scaled in the same manner.

Differences among profiles are causally attributed to differences in treatments among groups if, 
and only if, groups are formed by random assignment, levels of IVs manipulated, and proper experi-
mental controls maintained. Causality, as usual, is not addressed by the statistical test. Generalizability, 
as well, is influenced by sampling strategy, not by choice of statistical tests. That is, the results of pro-
file analysis generalize only to the populations from which cases are randomly sampled.

As described in Section 8.2 and derived in Section 8.4, the DVs in profile analysis are dif-
ferences (segments) between the scores for adjacent levels of the within-  subjects IV, or some other 
transformation of them. Creating difference scores is one of the ways to equate the number of DVs 
and the degrees of freedom for the within-  subjects IV. Although different programs use different 
transformations, the resulting omnibus analysis is insensitive to them. Technically, then, limitations 
should be assessed with regard to segments or otherwise transformed DVs; however, it is reasonable 
(and a lot simpler) to assess the DVs in their original form. That is, for purposes of assessing limita-
tions, scores for the levels of the within-  subjects IV are treated as the set of DVs.

8.3.2 Practical Issues

8.3.2.1 Sample Size, Missing Data, and Power

The sample size in each group is an important issue in profile analysis, as in MANOVA, because 
there should be more research units in the smallest group than there are DVs. This is recommended 
both because of considerations of power and for evaluation of the assumption of homogeneity of 
variance–  covariance matrices (cf. Sections 7.3.2.1 and 7.3.2.4). In the choice between univariate 
repeated-  measures ANOVA and profile analysis, sample size per group is often the deciding factor.

Unequal sample sizes typically provide no special difficulty in profile analysis because each 
hypothesis is tested as if in a one-  way design and, as discussed in Section 6.5.4.2, unequal n cre-
ates difficulties in interpretation only in designs with more than one between-  subjects IV. However, 
unequal n sometimes has implications for evaluating homogeneity of variance–  covariance matrices, 
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as discussed in Section 8.3.2.4. If some measures are missing from some cases, the usual problems 
and solutions discussed in Chapter 4 are modified for profile analysis, because all measures are 
commensurate and indeed may be the same measure. Imputation of missing values is discussed in 
Section 8.5.5.

As always, larger sample sizes produce greater power, all else being equal. There also are 
power implications in the choice between the univariate and multivariate approaches to repeated 
measures. Generally, there is greater power in the multivariate approach, given the adjustment for 
violation of sphericity that is often required for the univariate approach, but surprises do occur. 
Section 7.3.2.1 discusses issues of power and software to estimate sample sizes.

8.3.2.2 Multivariate Normality

Profile analysis is as robust to violation of normality as other forms of MANOVA (cf. Section 
7.3.2.2). So, unless there are fewer cases than DVs in the smallest group and highly unequal n, 
deviation from normality of sampling distributions is not expected. In the unhappy event of small, 
unequal samples, however, a look at the distributions of DVs for each group is in order. If distribu-
tions of DVs show marked, highly significant skewness, some normalizing transformations might 
be investigated (cf. Chapter 4).

8.3.2.3 Absence of Outliers

As in all MANOVA, profile analysis is extremely sensitive to outliers. Tests for univariate and 
multivariate outliers, detailed in Chapter 4, are applied to DVs. These tests are demonstrated in 
Section 8.6.1.

8.3.2.4 Homogeneity of Variance–Covariance Matrices

If sample sizes are equal, evaluation of homogeneity of variance–  covariance matrices is not neces-
sary. However, if sample sizes are notably discrepant, Box’s M test is available through IBM SPSS 
MANOVA as a preliminary test of the homogeneity of the variance–  covariance matrices. Box’s M is 
too sensitive for use at routine levels, but if the test of homogeneity is rejected at highly significant 
levels, the guidelines in Section 7.3.2.4 are appropriate.

Univariate homogeneity of variance is also assumed, but the robustness of ANOVA gener-
alizes to profile analysis. Unless sample sizes are highly divergent or there is evidence of strong 
heterogeneity (variance ratio of 10:1 or larger) of the DVs (cf. Section 6.3.2.5), this assumption is 
probably safely ignored.

8.3.2.5 Linearity

For the parallelism and flatness tests, linearity of the relationships among DVs is assumed. This 
assumption is evaluated by examining scatterplots between all pairs of DVs through IBM SPSS 
PLOT, or SAS CORR or PLOT. Because the major consequence of failure of linearity is loss of 
power in the parallelism test, violation is somewhat mitigated by large sample sizes. Therefore, with
many symmetrically distributed DVs and large sample sizes, the issue may be ignored. On the other 
hand, if distributions are notably skewed in different directions, check a few scatterplots for vari-
ables with the most discrepant distributions to assure that the assumption is not too badly violated.
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8.3.2.6 Absence of Multicollinearity and Singularity

Section 7.3.2.8 discusses multicollinearity and singularity for MANOVA. Criteria for logical mul-
ticollinearity are quite different, however, for the multivariate approach to repeated measures. 
Correlations among DVs are expected to be quite high when they are the same measure taken from 
the same cases over time. Therefore, only statistical multicollinearity poses difficulties, and even 
then only if tolerance (1 –   SMC) is less than .001 for the measures combined over groups.

8.4 Fundamental Equations for Profile Analysis

Table 8.1 is a hypothetical data set appropriate for using profile analysis as an alternative to repeated-
measures ANOVA. The three groups (the IV) whose profiles are compared are belly dancers, politi-
cians, and administrators (or substitute your favorite scapegoat). The five respondents in each of 
these occupational groups participate in four leisure activities (the DVs) and, during each, are asked 
to rate their satisfaction on a 10-point scale. The leisure activities are reading, dancing, watching 
TV, and skiing. The profiles are illustrated in Figure 8.1, where mean ratings of each group for each 
activity are plotted.

TABLE 8.1 Small Sample of Hypothetical Data for Illustration of Profile Analysis

Activity

Group Case No. Read Dance TV Ski
Combined
Activities

Belly dancers 1 7 10 6 5 7.00
2 8 9 5 7 7.25
3 5 10 5 8 7.00
4 6 10 6 8 7.50
5 7 8 7 9 7.75

Mean 6.60 9.40 5.80 7.40 7.30
Politicians 6 4 4 4 4 4.00

7 6 4 5 3 4.50
8 5 5 5 6 5.25
9 6 6 6 7 6.25

10 4 5 6 5 5.00
Mean 5.00 4.80 5.20 5.00 5.00

Administrators 11 3 1 1 2 1.75
12 5 3 1 5 3.50
13 4 2 2 5 3.25
14 7 1 2 4 3.50
15 6 3 3 3 3.75

Mean 5.00 2.00 1.80 3.80 3.15
Grand mean 5.53 5.40 4.27 5.40 5.15
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Profile analysis tests of parallelism and flatness are multivariate and involve sum-of-squares
and cross-  products matrices. But the levels test is a univariate test, equivalent to the between-
subjects main effect in repeated-measures ANOVA.

8.4.1 Differences in Levels

For the example, the levels test examines differences between the means of the three occupational 
groups combined over the four activities. Are the group means of 7.30, 5.00, and 3.15 significantly 
different from each other?

The relevant equation for partitioning variance is adapted from Equation 3.8 as follows:

a
i
a

j
(Yij - GM)2 = npa

j
(Yj - GM)2 + pa

i
a

j
(Yij - Yj)

2 (8.1)

where n is the number of subjects in each group and p is the number of measures, in this 
case the number of ratings made by each respondent.

The partition of variance in Equation 8.1 produces the total, within-  groups, and between-  groups 
sums of squares, respectively, as in Equation 3.9. Because the score for each subject in the levels test is 
the subject’s average score over the four activities, degrees of freedom follow Equations 3.10 through 
3.13, with N equal to the total number of subjects and k equal to the number of groups.

For the hypothetical data of Table 8.1:

SSbg = (5)(4)3(7.30 - 5.15)2 + (5.00 - 5.15)2 + (3.15 - 5.15)24
and
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FIGURE 8.1 Profiles of leisure-time ratings 
for the three occupations.
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SSwg = (4)3(7.00 - 7.30)2 + (7.25 - 7.30)2 + g + (3.75 - 3.15)24
dfbg = k - 1 = 2

dfwg = N - k = 12

The levels test for the example produces a standard ANOVA source table for a one-  way 
univariate test, as summarized in Table 8.2. There is a statistically significant difference between 
occupational groups in average rating of satisfaction during the four leisure activities.

Standard univariate h2 is used to evaluate the effect size for occupational groups:

h2 =
SSbg

SSbg + SSwg
=

172.90

172.90 + 23.50
= .88 (8.2)

The confidence interval, found through Smithson’s (2003) procedure described earlier, ranges from 
.61 to .92.

8.4.2 Parallelism

Tests of parallelism and flatness are conducted through hypotheses about adjacent segments of the 
profiles. The test of parallelism, for example, asks if the difference (segment) between reading and 
dancing is the same for belly dancers, politicians, and administrators. How about the difference 
between dancing and watching TV?

The most straightforward demonstration of the parallelism test begins by converting the data 
matrix into difference scores.4 For the example, the four DVs are turned into three differences, as 
shown in Table 8.3. The difference scores are created from adjacent pairs of activities, but in this 
example, as in many uses of profile analysis, the order of the DVs is arbitrary. In profile analysis it is 
often true that segments are formed from arbitrarily transformed DVs and have no intrinsic meaning. 
This sometimes creates difficulty in interpreting statistical findings of computer software and may lead 
to the decision to apply some other transformation, such as polynomial (to produce a trend analysis).

In Table 8.3, the first entry for the first case is the difference between READ and DANCE
scores, that is, 7 - 10 = -3. The second score is the difference in ratings between DANCE and TV: 
10 - 6 = 4, and so on.

A one-  way MANOVA on the segments tests the parallelism hypothesis. Because each seg-
ment represents a slope between two original DVs, if there is a multivariate difference between 
groups then one or more slopes are different and the profiles are not parallel.

TABLE 8.2 ANOVA Summary Table for Test of Levels 
Effect for Small-  Sample Example of Table 8.1

Source of Variance SS df MS F

Between groups 172.90 2 86.45 44.14*

Within groups 23.50 12 1.96

*p 6 .001.

4Other transformations are equally valid but generally more complex.
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Using procedures developed in Chapter 7, the total sum-of-squares and cross-  products matrix 
(Stotal) is partitioned into the between-  groups matrix (Sbg) and the within-  groups or error matrix 
(Swg).

5 To produce the within-  groups matrix, from each person’s score matrix, Yikm, the mean 
matrix for that group, Mk, is subtracted. The resulting difference matrix is multiplied by its transpose 
to create the sum-of-squares and cross-  products matrix. For the first belly dancer,

(Y111 - M1) = £ -3

4

1

§ - £ -2.8

3.6

-1.6

§ = £ -0.2

0.4 §
2.6

and

(Y111 - M1)(Y111 - M1)� = £ -0.2

0.4

2.6

§ [-0.2 0.4 2.6]

= £ 0.04 -0.08 -0.52

-0.08 0.16 1.04

-0.52 1.04 6.76

§

TABLE 8.3 Scores for Adjacent Segments for Small-  Sample 
Hypothetical Data

Segment

Group Case No.
Read vs. 
Dance

Dance
vs. TV

TV vs. 
Ski

Belly dancers 1 -3 4 1
2 -1 4 -2
3 -5 5 -3
4 -4 4 -2
5 -1 1 -2

Mean -2.8 3.6 -1.6
Politicians 6 0 0 0

7 2 -1 2
8 0 0 -1
9 0 0 -1

10 -1 -1 1
Mean 0.2 -0.4 0.2

Administrators 11 2 0 -1
12 2 2 -4
13 2 0 -3
14 6 -1 -2
15 3 0 0

Mean 3.0 0.2 -2.0
Grand mean 0.13 1.13 -1.13

5Other methods of forming S matrices can be used to produce the same result.
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This is the sum-of-squares and cross-  products matrix for the first case. When these matrices 
are added over all cases and groups, the result is the error matrix, Swg:

Swg =
29.6 -13.2 6.4£ -13.2 15.2 -6.8

6.4 -6.8 26.0

§
To produce the between-  groups matrix, Sbg the grand matrix, GM, is subtracted from each 

mean matrix, Mk, to form a difference matrix for each group. The mean matrix for each group in 
the example is

M1 = £ -2.8

3.6

-1.6

§ M2 = £ 0.2

-0.4

0.2

§ M3 = £ 3.0

0.2

-2.0

§
and the grand mean matrix is

GM =
0.13£ 1.13 §

-1.13

The between-groups sum-of-squares and cross-products matrix Sbg is formed by multiplying 
each group difference matrix by its transpose, and then adding the three resulting matrices. After 
multiplying each entry by n = 5, to provide for summation over subjects,

Sbg = £ 84.133 -50.067 -5.133

-50.067 46.533 - 11.933

-5.133 -11.933 13.733

§
Wilks’ lambda (�) tests the hypothesis of parallelism by evaluating the ratio of the determinant of 
the within-  groups cross-  products matrix to the determinant of the matrix formed by the sum of the 
within- and between-groups cross-products matrices:

� =
� Swg �

� Swg + Sbg �
(8.3)

For the example, Wilks’ lambda for testing parallelism is

� =
6325.2826

6325.2826 + 76598.7334
= .076279

By applying the procedures of Section 7.4.1, one finds an approximate F(6, 20) = 8.74, 
p 6 .001, leading to rejection of the hypothesis of parallelism. That is, the three profiles of Figure 8.1 
are not parallel. Effect size is measured as partial h2:6

6Partial h2 is available through IBM SPSS GLM and through Smithson’s (2003) procedures discussed earlier. See Equation 7.11 
for definition of s.
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partial h2 = 1 - �1>s (8.4)

For this example, then,

partial h2 = 1 - .0762791>2 = .72

Seventy-  two percent of the variance in the segments as combined for this test is accounted for by the 
difference in shape of the profiles for the three groups. Confidence limits (per Smithson, 2003) are 
.33 to .78. Recall from Chapter 7 that segments are combined here to maximize group differences 
for parallelism. A different combination of segments is used for the test of flatness.

8.4.3 Flatness

Because the hypothesis of parallelism is rejected for this example, the test of flatness is irrelevant; 
the question of flatness of combined profiles shown in Figure 8.1 makes no sense because at least 
one of them (and in this case probably two) is not flat. The flatness test is computed here to con-
clude the demonstration of this example.

Statistically, the test is whether, with groups combined, the three segments shown in Table 8.3 
deviate from zero. That is, if segments are interpreted as slopes in Figure 8.1, are any of the slopes 
for the combined groups different from zero (nonhorizontal)? The test subtracts a set of hypoth-
esized grand means, representing the null hypothesis, from the matrix of actual grand means:

(GM - 0) = £ 0.13

1.13

-1.13

§ - £ 0

0 §
0

= £ 0.13

1.13

-1.13

§
The test of flatness is a multivariate generalization of the one-  sample t test demonstrated in 

Chapter 3. Because it is a one-  sample test, it is most conveniently evaluated through Hotelling’s T 2

or trace:7

T2 = N(GM - 0)�S- 1
wg (GM - 0) (8.5)

where N is the total number of cases and S- 1
wg  is the inverse of the within-  groups

sum-of-squares and cross-  products matrix developed in Section 8.4.2.

For the example,

T2 = (15)[0.13 1.13 -1.13]

.05517 .04738 - .00119£ .04738 .11520 .01847

- .00119 .01847 .04358

§ 0.13£ 1.13 §
-1.13

= 2.5825

From this is found F, with p - 1 and N - k - p + 2 degrees of freedom, where p is the number of 
original DVs (in this case 4), and k is the number of groups (3).

7This is sometimes referred to as Hotelling’s T.
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F =
N - k - p + 2

p - 1
(T 2) (8.6)

so that

F =
15 - 3 - 4 + 2

4 - 1
(2.5825) = 8.608

with 3 and 10 degrees of freedom, p 6 .01, and the test shows significant deviation from flatness.
A measure of effect size is found through Hotelling’s T2 that bears a simple relationship to 

lambda.

� =
1

1 + T2 =
1

1 + 2.5825
= .27913

Lambda, in turn, is used to find h2 (note that there is no difference between h2 and partial h2

because s = 1):

h2 = 1 - � = 1 - .27913 = .72

showing that 72% of the variance in this combination of segments is accounted for by nonflatness of the 
profile collapsed over groups. Smithson’s (2003) procedure finds confidence limits from .15 to .81.

8.4.4 Computer Analyses of Small-Sample Example

Tables 8.4 through 8.6 show syntax and selected output for computer analyses of the data presented 
in Table 8.1. Table 8.4 illustrates IBM SPSS MANOVA with brief output. IBM SPSS GLM is 
illustrated in Table 8.5. Table 8.6 demonstrates profile analysis through SAS GLM, with short

TABLE 8.4 Profile Analysis of Small-  Sample Example Through IBM SPSS MANOVA 
(Syntax and Partial Output)

MANOVA READ TO SKI BY OCCUP(1,3)
/WSFACTOR=ACTIVITY(4)
/WSDESIGN=ACTIVITY
/PRINT=SIGNIF(BRIEF)
/DESIGN.

Tests of Between-Subjects Effects.

Tests of Significance for T1 using UNIQUE sums of squares

Source of Variation SS DF MS F Sig of F

WITHIN+RESIDUAL 23.50 12 1.96
occup 172.90 2 86.45 44.14 .000

Multivariate Tests of Significance

Tests using UNIQUE sums of squares and WITHIN+RESIDUAL error term

Source of Variation Wilks Approx F Hyp. DF Error DF Sig of F

ACTIVITY .279 8.608 3.00 10.000 .004
occup BY ACTIVITY .076 8.736 6.00 20.000 .000
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printout requested. All programs are set up as repeated-  measures ANOVA, which automatically 
produces both univariate and multivariate results.

The three programs differ substantially in syntax and presentation of the three tests. To set up 
IBM SPSS MANOVA for profile analysis, the DVs (levels of the within-  subject effect) READ TO 
SKI are followed in the MANOVA statement by the keyword BY and the grouping variable with its 
levels—OCCUP(1,3). The DVs are combined for profile analysis in the WSFACTOR instruction 
and labeled ACTIVITY(4) to indicate four levels for the within-  subjects factor.

In the IBM SPSS MANOVA output, the levels test for differences among groups is the test of 
OCCUP in the section labeled Tests of Significance for T1.... This is followed by 
information about tests and adjustments for sphericity (not shown, cf. Section 8.5.1). The flatness 
and parallelism tests appear in the section labeled Tests using UNIQUE sums of squares 
and WITHIN+RESIDUAL for ACTIVITY and OCCUP by ACTIVITY, respectively. Output is 
limited in this example by the PRINT=SIGNIF(BRIEF) instruction. Without this statement, sepa-
rate source tables are printed for flatness and parallelism, each containing several multivariate tests 
(demonstrated in Section 8.6.1). Univariate tests for repeated-  measures factors (ACTIVITY and 
OCCUP by ACTIVITY) as well as tests for sphericity are also printed, but omitted here.

IBM SPSS GLM has a similar setup for repeated-  measures ANOVA. The EMMEANS
instructions request tables of adjusted means as parameter estimates.

Multivariate tests for all four criteria of Section 7.5.2 are shown for ACTIVITY (flatness) 
and ACTIVITY by OCCUP (parallelism). The test for levels, OCCUP, is shown in the section la-
beled Tests of Between-Subjects Effects. Parameter estimate tables for the three effects include 
means, standard errors, and 95% confidence intervals. Information on univariate tests of OCCUP 
and OCCUP by ACTIVITY, including trend analysis and sphericity tests, has been omitted here.

In SAS GLM, the class instruction identifies OCCUP as the grouping variable. The model
instruction shows the DVs on the left of an equation and the IV on the right. Profile analysis is distinguished 
from ordinary MANOVA by the instructions in the line beginning repeated, as seen in Table 8.6.

The results are presented in two multivariate tables and a univariate table. The first table, 
labeled ... Hypothesis of no ACTIVITY Effect, shows four fully labeled mul-
tivariate tests of flatness. The second table shows the same four multivariate tests of parallelism, 
labeled ... Hypothesis of no ACTIVITY*OCCUP Effect. The test of levels 
is the test for OCCUP in the third table, labeled Test of Hypotheses for Between 

TABLE 8.5 Profile Analysis of Small-  Sample Example Through IBM SPSS GLM 
(Syntax and Output)

GLM
read dance tv ski BY occup
/WSFACTOR = activity 4 Polynomial
/MEASURE = rating
/METHOD = SSTYPE(3)
/EMMEANS = TABLES(occup)
/EMMEANS = TABLES(activity)
/EMMEANS = TABLES(occup*activity)
/CRITERIA = ALPHA(.05)
/WSDESIGN = activity
/DESIGN = occup.



General Linear Model

Multivariate Testsc

Effect Value F
Hypothesis

df Error df Sig.

activity Pillai’s Trace .721 8.608a 3.000 10.000 .004
Wilks’ Lambda .279 8.608a 3.000 10.000 .004
Hotelling’s Trace 2.582 8.608a 3.000 10.000 .004
Roy’s Largest Root 2.582 8.608a 3.000 10.000 .004

activity * occup Pillai’s Trace 1.433 9.276 6.000 22.000 .000
Wilks’ Lambda .076 8.736a 6.000 20.000 .000
Hotelling’s Trace 5.428 8.142 6.000 18.000 .000
Roy’s Largest Root 3.541 12.982b 3.000 11.000 .001

a. Exact statistic
b. The statistic is an upper bound on F that yields a lower bound on the significance level.
c.

Design: Intercept+occup
Within Subjects Design: activity

Tests of Between-Subjects Effects

Measure: rating
Transformed Variable: Average

Source

Type III 
Sum of 
Squares df

Mean
Square F Sig.

Intercept 1591.350 1 1591.350 812.604 .000
occup 172.900 2 86.450 44.145 .000
Error 23.500 12 1.958

TABLE 8.5 Continued

(continued)

327
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Estimated Marginal Means

1. Occupation

Measure: rating

95% Confidence 
Interval

Occupation Mean Std. Error
Lower 
Bound

Upper
Bound

Belly dancer 7.300 .313 6.618 7.982
Politician 5.000 .313 4.318 5.682
Administrator 3.150 .313 2.468 3.832

2. activity

Measure: rating

95% Confidence 
Interval

activity Mean Std. Error
Lower 
Bound

Upper
Bound

1 5.533 .327 4.822 6.245
2 5.400 .236 4.886 5.914
3 4.267 .216 3.796 4.737
4 5.400 .380 4.572 6.228

3. Occupation * activity

Measure: rating

95% Confidence 
Interval

Occupation activity Mean Std. Error
Lower 
Bound

Upper
Bound

Belly dancer 1 6.600 .566 5.367 7.833
2 9.400 .408 8.511 10.289
3 5.800 .374 4.985 6.615
4 7.400 .658 5.966 8.834

Politician 1 5.000 .566 3.767 6.233
2 4.800 .408 3.911 5.689
3 5.200 .374 4.385 6.015
4 5.000 .658 3.566 6.434

Administrator 1 5.000 .566 3.767 6.233
2 2.000 .408 1.111 2.889
3 1.800 .374 .985 2.615
4 3.800 .658 2.366 5.234

TABLE 8.5 Continued
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TABLE 8.6 Profile Analysis of Small-  Sample Example Through SAS GLM (Syntax and Selected Output)

proc glm data=SASUSER.SSPROFIL;
class OCCUP;

   model READ DANCE TV SKI = OCCUP/NOUNI;
   repeated ACTIVITY 4 profile/short;
run;

Manova Test Criteria and Exact F Statistics for the Hypothesis of no ACTIVITY Effect
H = Type III SSCP Matrix for ACTIVITY

E = Error SSCP Matrix

S=1 M=0.5 N=4

Statistic Value F Value Num DF Den DF Pr > F

Wilks’ Lambda 0.27913735 8.61 3 10 0.0040
Pillai’s Trace 0.72086265 8.61 3 10 0.0040
Hotelling-Lawley Trace 2.58246571 8.61 3 10 0.0040
Roy’s Greatest Root 2.58246571 8.61 3 10 0.0040

(continued)
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TABLE 8.6 Continued

Manova Test Criteria and F Approximations for the Hypothesis of no ACTIVITY*OCCUP Effect
H = Type III SSCP Matrix for ACTIVITY*OCCUP

E = Error SSCP Matrix

S=2 M=0 N=4

Statistic Value F Value Num DF Den DF Pr > F

Wilks’ Lambda 0.07627855 8.74 6 20 <.0001
Pillai’s Trace 1.43341443 9.28 6 22 <.0001
Hotelling-Lawley Trace 5.42784967 8.73 6 11.714 0.0009
Roy’s Greatest Root 3.54059987 12.98 3 11 0.0006

NOTE: F Statistic for Roy’s Greatest Root is an upper bound.
NOTE: F Statistic for Wilks’ Lambda is exact.

The GLM Procedure
Repeated Measures Analysis of Variance

Tests of Hypotheses for Between Subjects Effects

Source DF Type III SS Mean Square F Value Pr > F

OCCUP 2 172.9000000 86.4500000 44.14 <.0001
Error 12 23.5000000 1.9583333
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Subjects Effects. Univariate tests of ACTIVITY and OCCUP by ACTIVITY are omit-
ted here. More extensive output is available if the SHORT instruction is omitted.

8.5 Some Important Issues

Issues discussed here are unique to profile analysis, or at least they affect profile analysis differ-
ently from traditional MANOVA. Issues such as choice among statistical criteria, for instance, are 
identical whether the DVs are analyzed directly (as in MANOVA) or converted into segments or 
some other transformation (as in profile analysis). Therefore, the reader is referred to Section 7.5 for 
consideration of these matters.

8.5.1  Univariate Versus Multivariate Approach 
to Repeated Measures

Research where the same cases are repeatedly measured with the same instrument is common in 
many sciences. Longitudinal or developmental studies, research that requires follow-up, studies 
where changes in time are of interest—  all involve repeated measurement. Further, many studies of 
short-  term phenomena have repeated measurement of the same subjects under several experimental 
conditions, resulting in an economical research design.

When there are repeated measures, a variety of analytical strategies are available, each with 
advantages and disadvantages. Choice among the strategies depends upon details of research design 
and conformity between the data and the assumptions of analysis.

Univariate repeated-  measures ANOVA with more than 1 df for the repeated-  measure IV 
requires sphericity. Although the test for homogeneity of covariance, a component of sphericity, 
is fairly complicated, the notion is conceptually simple. All pairs of levels of the within-  subjects 
variable need to have equivalent correlations. For example, consider a longitudinal study in which 
children are measured yearly from ages 5 to 10. If there is homogeneity of covariance, the correla-
tion between scores on the DV for ages 5 and 6 should be about the same as the correlation between 
scores between ages 5 and 7, or 5 and 8, or 6 and 10, and so on. In applications like these, however, 
the assumption is almost surely violated.

Things measured closer in time tend to be more highly correlated than things measured far-
ther away in time; the correlation between scores measured at ages 5 and 6 is likely to be much 
higher than the correlation between scores measured at ages 5 and 10. Thus, whenever time is a 
within-  subjects IV, the assumption of homogeneity of covariance is likely to be violated, leading 
to increased Type I error. Both packages routinely provide information about sphericity directly in 
their output: IBM SPSS GLM and MANOVA each show a sphericity test for the significance of 
departure from the assumption. The issue is moot when there are only two levels of the within-
subjects IV. In that case, sphericity is not an issue and univariate results match multivariate results.

If there is violation of sphericity, several alternatives are available, as also discussed in 
Section 6.5.4.1. The first is to use one of the significance tests that is adjusted for violation of the 
assumption, such as Greenhouse–Geisser or Huynh–Feldt.8 In all applicable programs in the three 

8See Keppel and Wickens (2004, pp. 378–  379) for a discussion on the differences between the two types of adjustments 
(referring to the Huynh–  Feldt procedure as the Box correction). Even greater insights are available through consultation with 
the original sources: Greenhouse and Geisser (1959) as well as Huynh and Feldt (1976).
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packages, both Greenhouse–  Geisser (G–  G) and Huynh–  Feldt (H–  F) values are provided, along 
with adjusted significance levels.

A second strategy, available through all three programs, is a more stringent adjustment of the 
statistical criterion leading to a more honest Type I error rate, but lower power. This strategy has the 
advantage of simplicity of interpretation (because familiar main effects and interactions are evalu-
ated) and simplicity of decision-  making (you decide on one of the strategies before performing the 
analysis and then take your chances with respect to power).

For all of the multivariate programs, however, results of profile analysis are also printed out, and 
you have availed yourself of the third strategy, whether you meant to or not. Profile analysis, called 
the multivariate approach to repeated measures, is a statistically acceptable alternative to repeated-
measures ANOVA. Other requirements such as homogeneity of variance–  covariance matrices and 
absence of multicollinearity and singularity must be met, but they are less likely to be violated.

Profile analysis requires more cases than univariate repeated-  measures ANOVA—  more cases 
than DVs in the smallest group. If the sample is too small, the choice between multivariate and uni-
variate approaches is automatically resolved in favor of the univariate approach, with adjustment for 
failure of sphericity, as necessary.

Sometimes, however, the choice is not so simple and you find yourself with two sets of results.
If the conclusions from both sets of results are the same, it often is easier to report the univariate 
solution, while noting that the multivariate solution is similar. But if conclusions differ between the 
two sets of results, you have a dilemma. Choice between conflicting results requires attention to 
the details of the research design. Clean, counterbalanced experimental designs “fit” better within 
the univariate model, while nonexperimental or contaminated designs often require the multivariate 
model that is more forgiving statistically, but more ambiguous to interpret.

The best solution, the fourth alternative, often is to perform trend analysis (or some other set 
of single df contrasts) instead of either profile analysis or repeated-  measures ANOVA if it makes 
conceptual sense within the context of the research design. Many longitudinal, follow-up, and other 
time-  related studies lend themselves beautifully to interpretation in terms of trends. Because statis-
tical tests of trends and other contrasts each use a single degree of freedom of the within-  subjects IV, 
there is no possibility of violation of sphericity. Furthermore, none of the assumptions of the multi-
variate approach needs to be met. IBM SPSS GLM automatically prints out a full trend analysis for 
a repeated-measures analysis.

A fifth alternative is straightforward MANOVA where DVs are treated directly (cf. Chapter 7), 
without transformation. The design becomes a one-  way between-  subjects analysis of the grouping 
variable with the repeated measures used simply as multiple DVs. There are two problems with 
conversion of repeated measures to MANOVA. First, because the design is now one-  way between-
subjects, MANOVA does not produce the interaction (parallelism) test most often of interest in a 
repeated-  measures design. Second, MANOVA allows a Roy–  Bargmann stepdown analysis, but not 
a trend analysis of DVs after finding a multivariate effect.

A final alternative is to use multilevel modeling (Chapter 15) in which the repeated measures 
form the first level in a hierarchical analysis. This approach, although fraught with complexities of 
random effects and maximum likelihood analysis, is highly flexible in dealing with missing data 
and varying intervals between measurements. Sphericity is not an issue because each analysis deals 
with only one comparison, that is, linear trend.

In summary, if the levels of the IV differ along a single dimension such as time or dosage and 
trend analysis makes sense, use it. Or, if the design is a clean experiment where cases have been 
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randomly assigned to treatment and there are expected to be no carryover effects, the univariate 
repeated-  measures approach is probably justified. (But just to be on the safe side, use a program 
that tests and adjusts for violation of sphericity.) If, however, the levels of the IV do not vary along 
a single dimension but violation of sphericity is likely, and if there are lots more cases than DVs, it 
is probably a good idea to choose either profile analysis or MANOVA.

8.5.2 Contrasts in Profile Analysis

When there are more than two levels of a significant effect in profile analysis, it is often desirable 
to perform contrasts to pinpoint sources of variability. For instance, because there is an overall dif-
ference between administrators, belly dancers, and politicians in their ratings of satisfaction with 
leisure time activities (see Section 8.4), contrasts are needed to discover which groups differ from 
which other groups. Are belly dancers the same as administrators? Politicians? Neither?

It is probably easiest to think of contrasts following profile analysis as coming from a regular 
ANOVA design with (at least) one grouping variable and one repeated measure, even when the 
application of the technique is to multiple, commensurate DVs. That is, the most interpretable con-
trasts following profile analysis are likely to be the ones that would also be appropriate after a mixed 
within- and between-subjects ANOVA.

There are, of course, numerous contrast procedures and the choice among them depends on 
what makes most sense in a given research setting. With a single control group, Dunnett’s procedure 
often makes most sense. Or if all pairwise comparisons are desired, the Tukey test is most appropri-
ate. Or if there are numerous repeated measures and/or normative data are available, a confidence 
interval procedure, such as that used in Section 8.6.1, may make the most sense. With relatively few 
repeated measures, a Scheffé type procedure is probably the most general (if also the most conser-
vative) and is the procedure illustrated in this section.

It is important to remember that the contrasts recommended here explore differences in original 
DV scores while the significance tests in profile analysis for parallelism and flatness typically evalu-
ate segments. Although there is a logical problem with following up a significance test based on seg-
ments with a contrast based on the original scores, performing contrasts on segments or some other 
transformation of the variables seems even worse because of difficulty in interpreting the results.

Contrasts in repeated-  measures ANOVA with both grouping variables and repeated measures 
is not the easiest of topics, as you probably recall. First, when parallelism (interaction) is significant, 
there is the choice between a simple-  effects analysis and an interaction-  contrasts analysis. Second, 
there is a need in some cases to develop separate error terms for some of the contrasts. Third, there 
is a need to apply an adjustment such as Scheffé to the F test to avoid too liberal a rejection of the 
null hypothesis. The researcher who is fascinated by these topics is referred to Tabachnick and 
Fidell (2007) for a detailed discussion of them. The present effort is to illustrate several possible ap-
proaches and to recommend guidelines for when each is likely to be appropriate.

The most appropriate contrast to perform depends on which effect or combination of 
effects—  levels, flatness, or parallelism—  is significant. If either levels or flatness is significant, but 
parallelism (interaction) is not, contrasts are performed on marginal means. If the test for levels is 
significant, contrasts are formed on marginal values for the grouping variable. If the test for flatness 
is significant, contrasts are formed on the repeated-  measures marginal values. Because contrasts 
formed on marginal values “fall out” of computer, runs for interaction contrasts; they are illustrated 
in Section 8.5.2.3.
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Sections 8.5.2.1 and 8.5.2.2 describe simple-  effects analyses, appropriate if parallelism is 
significant. In simple-  effects analysis, one variable is held constant at some value while mean dif-
ferences are examined on the levels of the other variable, as seen in Figure 8.2. For instance, the 
level of group is held constant at belly dancers while mean differences are examined among the 
leisure time activities [Figure 8.2(a)]. The researcher asks if belly dancers have mean differences in 
satisfaction with different leisure activities. Or, leisure activity is held constant at dance while mean 
differences are explored between administrators, politicians, and belly dancers [Figure 8.2(c)]. The 
researcher asks whether the three groups have different mean satisfaction while dancing.

Section 8.5.2.1 illustrates a simple-  effects analysis followed by simple contrasts [Figure 
8.2(c) and (d)] for the case where parallelism and flatness effects are both significant, but the lev-
els effect is not. Section 8.5.2.2 illustrates a simple-  effects analysis followed by simple contrasts 
[Figure 8.2(a) and (b)] for the case where parallelism and levels are both significant, but the flatness 
effect is not. This particular pattern of simple-  effects analysis is recommended because of the con-
founding inherent in analyzing simple effects.

The analysis is confounded because when the groups (levels) effect is held constant to analyze 
the repeated measure in a one-  way within-  subjects ANOVA, both the sum of squares for interac-
tion and the sum of squares for the repeated measure are partitioned. When the repeated measure is 
held constant so that the groups (levels) effect is analyzed in a one-  way between-  subjects ANOVA, 

Groups

Measures

(c)
Simple
effects

(d)
Simple
contrast

(b)
Simple
contrast

(a)
Simple
effects

FIGURE 8.2 Simple-  effects analysis exploring: (a) differences among 
measures for each group, followed by (b) a simple contrast between 
measures for one group; and (c) differences among groups for each 

measure, followed by (d) a simple contrast between groups for one measure.
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Groups

Measures

FIGURE 8.3 Interaction-contrasts analyses exploring 
small (2 * 2) interactions formed by partitioning 

a large (3 * 4) interaction.

both the sum of squares for interaction and the sum of squares for the group effect are partitioned. 
Because in simple-  effects analyses the interaction sum of squares is confounded with one or the 
other of the main effects, it seems best to confound it with a nonsignificant main effect where pos-
sible. This recommendation is followed in Sections 8.5.2.1 and 8.5.2.2.

Section 8.5.2.3 describes an interaction-  contrasts analysis. In such an analysis, an interaction 
between two IVs is examined through one or more smaller interactions (Figure 8.3). For instance, 
the significant interaction between the three groups on four leisure activities in the example might 
be reduced to examination of the difference between two groups on only two of the activities. One 
could, for instance, ask if there is a significant interaction in satisfaction between belly dancers and 
administrators while watching TV versus dancing. Or, one could pool the results for administrator 
and politician and contrast them with belly dancer for one side of the interaction, while pooling 
the results for the two sedentary activities (watching TV and reading) against the results for the 
two active activities (dancing and skiing) as the other side of the interaction. The researcher asks 
whether there is an interaction between dancers and the other professionals in their satisfaction 
while engaged in sedentary versus active leisure time activities.

An interaction-  contrasts analysis is not a confounded analysis; only the sum of squares for 
interaction is partitioned. Thus, it is appropriate whenever the interaction is significant and regard-
less of the significance of the other two effects. However, because simple effects are generally easier 
to understand and explain, it seems better to perform them when possible. For this reason, we rec-
ommend an interaction-  contrasts analysis to explore the parallelism effect only when both the levels 
and flatness effects are also significant.

8.5.2.1  Parallelism and Flatness Significant, Levels Not Significant 
(Simple-Effects Analysis)

When parallelism and flatness are both significant, a simple-  effects analysis is recommended where 
differences among means for groups are examined separately at each level of the repeated measure 
[Figure 8.2(c)]. For the example, differences in means among politicians, administrators, and belly 
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TABLE 8.7 Syntax for Simple-  Effects Analysis of Occupation, Holding Activity Constant

Program Syntax Section of Output Name of Effect

IBM SPSS
Compare
Means

ONEWAY
dance BY occup
/MISSING ANALYSIS.

ANOVA Between 
Groups

IBM SPSS
MANOVA

MANOVA read TO ski BY occup(1,3)
/WSFACTOR=activity(4)
/WSDESIGN=MWITHIN activity(1)
MWITHIN activity(2)
MWITHIN activity(3)
MWITHIN activity(4)
/RENAME=READ, DANCE, TV, SKI
/DESIGN.

Tests involving
’MWITHIN
ACTIVITY(2)..
etc.

occup BY
MWITHIN
ACTIV-
ITY(2),
etc.

SAS GLM proc glm data=SASUSER.SSPROFIL;
class OCCUP;

   model DANCE = OCCUP;
run;

Dependent
Variable:
DANCE
Source
Type III SS

OCCUP

dancers are sought first in the reading variable, then in dance, then in TV, and finally in skiing. (Not 
all these effects need to be examined, of course, if they are not of interest.)

Table 8.7 shows syntax and location of output for IBM SPSS ONEWAY, GLM, and 
MANOVA, and SAS GLM for performing simple-  effects analysis on groups with repeated mea-
sures held constant.

The syntax of Table 8.7 shows simple effects of occupation only for one DV, DANCE (except 
for IBM SPSS MANOVA, which is set up to do all simple effects at once). Parallel syntax produces 
simple effects for the other DVs. To evaluate the significance of the simple effects, a Scheffé adjust-
ment (see Section 3.2.6) is applied to unadjusted critical F under the assumptions that these tests are 
performed post hoc and that the researcher wants to control for familywise Type I error. For these 
contrasts the Scheffé adjustment is

Fs = (k - 1)F(k - 1), k(n - 1) (8.7)

where k is the number of groups and n is the number of subjects in each group. For the example, 
using a = .05.

Fs = (3 - 1)F(2,12) = 7.76

By this criterion, there are not statistically significant mean differences between the groups 
when the DV is READ, but there are statistically significant differences when the DV is DANCE,
TV, or SKI.
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Because there are three groups, these findings are still ambiguous. Which group or groups are 
different from which other group or groups? To pursue the analysis, simple contrasts are performed 
[Figure 8.2(d)]. Contrast coefficients are applied to the levels of the grouping variable to determine 
the source of the difference. For the example, contrast coefficients compare the mean for belly danc-
ers with the mean for the other two groups combined for DANCE. Syntax and location of output 
from the three programs are shown in Table 8.8.

The CONTRAST procedure is used for both programs. For this analysis, the sum of squares 
and mean square for the contrast is 120.000, error mean square is .83333, and F is 144.00 (with 
t = 12.00). This F exceeds the Fs adjusted critical value of 7.76; it is no surprise to find there is 
a statistically significant difference between belly dancers and others in their satisfaction while 
engaging in DANCE.

8.5.2.2  Parallelism and Levels Significant, Flatness Not Significant 
(Simple-Effects Analysis)

This combination of findings occurs rarely, because if parallelism and levels are significant, flatness 
is nonsignificant only if profiles for different groups are mirror images that cancel each other out.

The simple-  effects analysis recommended here examines mean differences among the vari-
ous DVs in series of one-  way within-  subjects ANOVAs with each group in turn held constant 
[Figure 8.2(a)]. For the example, mean differences between READ, DANCE, TV, and SKI are 
sought first for belly dancers, then for politicians, and then for administrators. The researcher 
inquires whether each group, in turn, is more satisfied during some activities than during others.

Table 8.9 shows the syntax and location of output for belly dancers (OCCUP=1) for the three 
programs. IBM SPSS GLM requires separate runs for each occupation. SAS GLM and IBM SPSS 
MANOVA permit analyses by OCCUP, so that the results are printed out for simple effects for all 
levels of occupation at one time.

For these simple effects, the Scheffé adjustment to critical F is

Fs = ( p - 1)F( p - 1),k (p - 1)(n - 1) (8.8)

where p is the number of repeated measures, n is the number of subjects in each group, and k is the 
number of groups. For the example

Fs = (4 - 1)F(3, 36) = 8.76

The F value for simple effects of activity for belly dancers (7.66) does not exceed adjusted 
critical F in the output of IBM SPSS and SAS GLM, which use an error term based only on a single 
OCCUP (df = 12). However, IBM SPSS MANOVA uses an error term based on all occupations 
(df = 36), producing F = 10.71, leading to ambiguous conclusions. In any event, the effect is signifi-
cant as a planned comparison, or probably with a less stringent adjustment for family Type I error rate.

A statistically significant finding is also ambiguous in this case because there are more than 
two activities. Contrast coefficients are therefore applied to the levels of the repeated measure to 
examine the pattern of differences in greater detail [Figure 8.2(b)].

Table 8.10 shows syntax and location of output for a simple contrast for the three programs. 
The contrast that is illustrated compares the pooled mean for the two sedentary activities (READ



TABLE 8.8 Syntax for Simple Comparisons on Occupations, Holding Activity Constant

Program Syntax Section of Output Name of Effect

IBM SPSS 
Compare Means

ONEWAY
dance BY occup
/CONTRAST= 2 −1 −1
/MISSING ANALYSIS.

Contrast Tests Assume equal 
variancesa

IBM SPSS 
MANOVA

MANOVA dance BY occup(1,3)
/PARTITION(occup)

    /CONTRAST(occup)=SPECIAL (1 1    1,
2  -1  -1,
0 1  -1)

/DESIGN=occup(1).

Tests of
Significance for
dance using...

OCCUP(1)

SAS GLM proc glm data=SASUSER.SSPROFIL;
class OCCUP;

   model DANCE = OCCUP;
   contrast ‘BD VS. OTHERS’ OCCUP 2 −1 −1;
run;

Dependent
Variable: DANCE

Contrast

BD VS. OTHERS

at is given rather than F; recall that t2 = F
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TABLE 8.9 Syntax for Simple Effects of Activity, Holding Occupation Constant

Program Syntax Section of Output Name of Effect

IBM SPSS
GLM

SELECT IF (occup = 1).
GLM
read dance tv ski
/WSFACTOR = activity 4 Polynomial
/METHOD = SSTYPE(3)
/CRITERIA = ALPHA(.05)
/WSDESIGN = activity.

Tests of Within-

Subjects Effects

ACTIVITY

IBM SPSS
MANOVA

MANOVA read TO ski BY occup(1,3)
/WSFACTOR=activity(4)
/PRINT=SIGNIF(BRIEF)
/DESIGN=MWITHIN occup(1), MWITHIN occup(2),

MWITHIN occup(3).

AVERAGED Tests
of Signficance
for MEAS.1
using ....

MWITHIN
OCCUP(1),
etc.

SAS GLM proc glm data=SASUSER.SSPROFIL;
by OCCUP;
class OCCUP;

   model READ DANCE TV SKI = /nouni;
   repeated ACTIVITY 4 /short;
run;

OCCUP=1
Source

ACTIVITY
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TABLE 8.10 Syntax for Simple Comparisons on Activity, Holding Occupation Constant

Program Syntax Section of Output Name of Effect

IBM SPSS GLM SELECT IF (occup = 1).
GLM
read dance tv ski

  /WSFACTOR activity 4 SPECIAL ( 1   1    1 1
                     -1   1 -1 1
                     -1   0    1 0
                    0 -1    0 1)

Tests of Within-

Subjects

Contrasts

activity L1

  /METHOD = SSTYPE(3)
/CRITERIA = ALPHA(.05)

  /WSDESIGN = activity.

IBM SPSS
MANOVA

MANOVA    read TO tv ski BY occup (1,3)
/WSFACTOR=activity(4)
/PARTITION(activity)

    /CONTRAST(activity)=SPECIAL ( 1   1    1 1,
                   -1   1 -1 1,
                       -1   0    1 0,
                    0 -1    0 1)

/WSDESIGN=activity(1)
/RENAME=overall, sedvsact, readvstv, danvssk/
/PRINT=SIGNIF(BRIEF)
/DESIGN=MWITHIN occup(1).

Tests of
Significance
for SEDVSACT
using...

MWITHIN
OCCUP(1)
BY
ACTIVITY(1)

SAS GLM proc glm data=SASUSER.SSPROFIL;
where OCCUP=1:

    model READ DANCE TV SKI =;
     manova m = −1*READ + 1*DANCE − 1*TV + 1*ski
       H=INTERCEPT;
run;

MANOVA Test...no
Overall Intercept 
Effect

Wilks’
Lambda

340



Profile Analysis: The Multivariate Approach to Repeated Measures 341

and TV) against the pooled mean for the two active activities (DANCE and SKI) for (you guessed 
it) belly dancers.

The F value of 15.365 produced by SAS and IBM SPSS GLM exceeds Fs of 8.76 as well as 
unadjusted critical F and indicates that belly dancers have statistically significant mean differences 
in their satisfaction during active versus sedentary activities. The F value of 16.98 produced by IBM 
SPSS MANOVA also exceeds critical F. The difference in F values again is produced by different 
error terms. Only IBM SPSS MANOVA uses an error term based on all three occupations, with 
dferror = 12 rather than 4.

8.5.2.3 Parallelism, Levels, and Flatness Significant (Interaction Contrasts)

When all three effects are significant, an interaction-  contrasts analysis is often most appropri-
ate. This analysis partitions the sum of squares for interaction into a series of smaller interactions 
(Figure 8.3). Smaller interactions are obtained by deleting or combining groups or measures with 
use of appropriate contrast coefficients.

For the example, illustrated in Table 8.11, the means for administrators and politicians are com-
bined and compared with the mean of belly dancers, while the means for TV and READ are combined 
and compared with the combined mean of DANCE and SKI. The researcher asks whether belly danc-
ers and others have the same pattern of satisfaction during sedentary versus active leisure activities.

The F value for the contrast is 15.37 for IBM SPSS and SAS GLM and 15.21 for IBM SPSS 
MANOVA due to minor differences in algorithms.

Interaction contrasts also need Scheffé adjustment to critical F to hold down the rate of fami-
lywise error. For an interaction, the Scheffé adjustment is

Fs = (p - 1)(k - 1)F(p - 1)(k - 1),k(p - 1)(n - 1) (8.9)

where p is the number of repeated measures, k is the number of groups, and n is the number of sub-
jects in each group. For the example

Fs = (4 - 1)(3 - 1)F(6,36) = 14.52

Because the F value for the interaction contrast exceeds Fs, there is an interaction between 
belly dancers versus others in their satisfaction during sedentary versus active leisure time activities. 
A look at the means in Table 8.1 reveals that belly dancers favor active leisure time activities to a 
greater extent than others.

8.5.2.4 Only Parallelism Significant

If the only significance is in the interaction of groups with repeated measures, any of the analyses in 
Section 8.5.2 is appropriate. The decision between simple-  effects analysis and interaction contrasts 
is based on which is more informative and easier to explain. Writers and readers seem likely to have 
an easier time explaining results of procedures in Section 8.5.2.2.9

9If you managed to read this far, go have a beer.



TABLE 8.11 Syntax for Interaction Contrasts, Belly Dancers Versus Others and Active Versus Sedentary Activities

Program Syntax
Location of 
Output

Name of 
Effect

IBM SPSS 
GLM

GLM
read dance tv ski BY occup
/METHOD = SSTYPE(3)
/CRITERIA = ALPHA(.05)
/INTERCEPT = INCLUDE
/DESIGN = occup
/MMATRIX = “sed vs. act” read -1 dance 1 tv -1 ski 1
/LMATRIX = “bd vs. other” occup 2 -1 -1.

Test Results Contrast

IBM SPSS
MANOVA

MANOVA read TO ski BY occup(1,3)
/WSFACTOR=activity(4)
/WSDESIGN=activity

   /CONTRAST(activity)=SPECIAL ( 1 1 1 1,
-1 1 -1 1,
-1 0 1 0,
0 -1  0 1)/

/WSDESIGN=activity(1)/
   /RENAME=OVERALL, SEDVSACT, READVSTV, DANVSSK/

/PARTITION(occup)/
   /CONTRAST(occup)=SPECIAL ( 1 1 1,

2 -1 -1,
0 1 -1)/

/PRINT=SIGNIF(BRIEF)/ERROR=WITHIN/
/DESIGN=occup(1) VS WITHIN.

Tests involving
'ACTIVITY(1)'
Within-Subject
Effect

OCCUP(1) BY
ACTIVITY(1)

SAS GLM proc glm data=SASUSER.SSPROFIL;
class OCCUP;
model READ DANCE TV SKI = OCCUP;
contrast ’BD VS. OTHERS’ OCCUP 2 −1 −1;
manova m = −1*READ + 1*DANCE −1*TV + 1*SKI;

run;

Manova Test
.... no Overall
BD VS. OTHERS
Effect

Wilks’
Lambdaa

aThis is a multivariate test, but produces the same F ratio and df as other programs.
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8.5.3 Doubly Multivariate Designs

In a doubly multivariate design, noncommensurate DVs are repeatedly measured. For example, 
children in classrooms with either traditional or computer-  assisted instructions are measured at sev-
eral points over the semester on reading achievement, general information, and math achievement. 
There are two ways to conceptualize the analysis. If treated in a singly multivariate fashion, this 
is a between-  within design (groups by time) with multiple DVs. The time effect, however, has the 
assumption of sphericity. To circumvent the assumption, the analysis becomes doubly multivariate 
where both the within-  subjects part of the design and the multiple DVs are analyzed multivariately. 
The between-  subject effect is singly multivariate; the within-  subject effects and interactions are 
doubly multivariate.

The number of cases needed is determined by the between-  subjects effect, using the same 
criteria as in MANOVA (Section 7.3.2.1). Because of the within-  subjects IV, however, it is probably 
wise to have a few additional subjects in each group, especially if there is reason to suspect hetero-
geneity of the variance–  covariance matrices.

For IBM SPSS GLM and MANOVA, the procedure is not difficult. Syntax for the two pro-
grams is similar, but output looks quite different (a complete example of a doubly multivariate 
analysis through IBM SPSS MANOVA is in Section 8.6.2). The SAS manual has an example of a 
doubly multivariate design in the GLM chapter.

Consider a study with repeatedly measured noncommensurate DVs. The between-  subjects 
(levels) IV is three weight-  loss programs (PROGRAM): a control group (CONTROL), a group that 
diets (DIET), and a group that both diets and exercises (DIET-EX). The major DV is weight loss 
(WTLOSS) and a secondary DV is self-  esteem (ESTEEM). The DVs are measured at the end of 
the first, second, and third months of treatment. The within-  subject IV (flatness) treated multivari-
ately, then, is MONTH that the measures are taken. That is, the commensurate DVs are MONTH1, 
MONTH2, and MONTH3.

Table 8.12 shows syntax and location of output for both multivariate and univariate tests of 
effects in IBM SPSS GLM and MANOVA, as well as SAS GLM. Syntax is fairly simple through 
the IBM SPSS programs; SAS requires special syntax in the form of matrices or combinations 
of DVs for each of the three effects: parallelism, flatness, and levels. IBM SPSS GLM sets up 
the repeated-  measures effects as a univariate trend analysis for each DV by default. The syntax 
in Table 8.12 requests univariate (and for IBM SPSS MANOVA stepdown) trend analysis for 
each DV for the remaining programs as well. Other options for coding univariate effects may be 
used if trend analysis is inappropriate for the within-  subjects IV and interaction. Decomposing 
univariate effects into trend analysis or other specific comparisons avoids the need to assume 
sphericity.

All three programs provide identical multivariate tests of the three effects: doubly multivariate 
for parallelism and flatness and singly multivariate for levels. All programs also show a full trend 
analysis of the flatness (trend of marginal means of month) and parallelism (trend of month by pro-
gram) effects for each DV using the syntax of Table 8.12. IBM SPSS GLM shows cell and marginal 
means adjusted for unequal n (but not for stepdown analysis). SAS shows adjusted cell means, but 
marginal means must be found by averaging cell means.

IBM SPSS MANOVA provides stepdown analysis, as well as univariate tests, for the levels 
effect (program) as well as the trend analysis for the flatness and parallelism effects. Means adjusted 
for unequal n and/or stepdown analysis require separate CONSPLUS runs, as per Section 7.6.



344 TABLE 8.12 Syntax and Location of Output for Doubly   Multivariate ANOVA

a. MULTIVARIATE EFFECTS

Parallelism Flatness Levels

Program Syntax
Section of 

Output
Name of 

Effect
Section of 

Output
Name of 

Effect
Section of 

Output
Name of 

Effect

IBM SPSS 
GLM

GLM
wtloss1 wtloss2 wtloss3 esteeml

     esteem2 esteem3 BY program
/WSFACTOR = month 3 Polynomial
/MEASURE = wtloss esteem
/METHOD = SSTYPE(3)
/EMMEANS = TABLES(program)
/EMMEANS = TABLES(month)
/EMMEANS =
TABLES(program*month)
/CRITERIA = ALPHA(.05)
/WSDESIGN = month
/DESIGN = program.

Multivariate 

Tests

Within 
Subjects: month*
program

Multivariate 

Tests

Within 
Subjects: 
month

Multivariate 

Tests

Between 
Subjects: 
program

IBM SPSS 
MANOVA

MANOVA wtlossl TO esteem3 BY
program(1,3)

/WSFACTOR=month(3)
/MEASURES= wtloss, esteem
/TRANSFORM(wtloss1 to esteem3) =

polynomial
/RENAME = WTLOSS WTLIN WTQUAD
  ESTEEM ESTLIN ESTQUAD
/WSDESIGN=MONTH
/PRINT=SIGNIF(UNIV, STEPDOWN)
/DESIGN=PROGRAM.

EFFECT...
PROGRAM
BY MONTH

Multivariate
Tests of 
Significance

EFFECT...
MONTH

Multivariate
Tests of 
Significance

EFFECT...
PROGRAM

Multivariate
Tests of 
Significance
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TABLE 8.12 Continued

a. MULTIVARIATE EFFECTS (continued )

Parallelism Flatness Levels

Program Syntax
Section of 

Output
Name of 

Effect
Section of 

Output
Name of 

Effect
Section of 

Output
Name of 

Effect

SAS
GLM

proc glm data=SASUSER.SSDOUBLE;
class PROGRAM;
model WTL0SS1 WTL0SS2 WTL0SS3
  ESTEEM1 ESTEEM2 ESTEEM3=PR0GRAM;
/*Test for LEVELS effect */
manova h=PR0GRAM
m=WTL0SS1+WTL0SS2+WTL0SS3,
ESTEEM1+ESTEEM2+ESTEEM3/summary;

/*Test for FLATNESS effect*/
manova h=intercept
      m = (−1  0 1  0 0 0, 
                    1 −2 1  0 0 0, 
                     0  0 0 −1 0 1,
                   0 0 0 1 −2 1)/summary;
/*Test for PARALLELISM effect */
manova h=PR0GRAM
      m =(−1      0  1  0 0 0,
          1 −2 1 0       0  0,
          0      0 0 −1 0  1,
          0      0 0     1 −2 1)/summary;
lsmeans PROGRAM;
run;

MANOVA Test 
Criteria...
No Overall 
PROGRAM 
Effect

(Final 
portion of 
output)

Statistic MANOVA Test 
Criteria...
No Overall 
Intercept
Effect

Statistic MANOVA Test 
Statistic
Criteria...
No Overall 
PROGRAM
Effect

(First portion 
of output)

Statistic

(continued)



b. UNIVARIATE AND TREND EFFECTS AND MEANS

Parallelism Flatness Levels Means (Unadjusted 
for stepdown 

Analysis)
Program

Section of 
Output

Name of 
Effect

Section of 
Output

Name of 
Effect

Section of 
Output

Name of 
Effect

IBM SPSS 
GLM

Univariate 

Tests

month * 
program

Univariate 

Tests

month Tests of Between-

Subjects Effects

program Estimated Marginal 

Means

IBM SPSS 
MANOVA

EFFECT...
PROGRAM BY 
MONTH

Univariate
F-tests...

WTLIN
WTQUAD
ESTLIN
ESTQUAD

EFFECT...
MONTH

WTLIN
WTQUAD
ESTLIN
ESTQUAD

Univariate
F-tests...

EFFECT...
PROGRAM

Univariate
F-tests...

WTLOSS
ESTEEM

See CONSPLUS 
procedure of 
Section 7.6, 
Table 7.21.

SAS
GLM

MANOVA Test 
Criteria...
No Overall 
PROGRAM 
Effect
(Final portion of 
output)

Dependent 
Variable:
MVAR1 (Wtloss

linear)
MVAR2 (Wtloss

quadratic)
MVAR3 (Esteem

linear)
MVAR4 (Esteem

quadratic)

MANOVA Test 
Criteria...
No Overall 
Intercept 
Effect

Dependent
Variable:
MVAR1 (Wtloss

linear)
MVAR2 (Wtloss

quadratic)
MVAR3 (Esteem

linear)
MVAR4 (Esteem

quadratic)

MANOVA Test 
Criteria...
No Overall 
PROGRAM
Effect

(First portion of 
output)

Dependent
Variable:

MVAR1
(Wtloss)
MVAR2
(Esteem)

Least
Squares
Means

aNote: Italicized labels do not appear in output.

TABLE 8.12 Continued
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Separate runs are required for each DV, except the first, to create a stepdown analysis, if 
any program other than IBM SPSS MANOVA is used. This is done by declaring the higher pri-
ority DV(s) to be covariates in a mixed within-  between ANOVA. Because the covariate as well 
as the DV is measured at each time period, this is the case of a covariate that varies over levels 
of the within-  subjects IV (see Section 6.5.4.1). However, as seen in Table 6.8, this requires a 
rearrangement of the data set so that there are as many lines per case as there are levels of the 
within-subjects IV.

8.5.4 Classifying Profiles

A procedure typically available in programs designed for discriminant analysis is the classification 
of cases into groups on the basis of a best-  fit statistical function. The principle of classification is 
often of interest in research where profile analysis is appropriate. If it is found that groups differ on 
their profiles, it could be useful to classify new cases into groups according to their profiles.

For example, given a profile of scores for different groups on a standardized test such as the 
Illinois Test of Psycholinguistic Abilities, one might use the profile of a new child to see if that 
child more closely resembles a group of children who have difficulty reading or a group who does 
not show such difficulty. If statistically significant profile differences were available before the age 
at which children are taught to read, classification according to profiles could provide a powerful 
diagnostic tool.

Note that this is no different from using classification procedures in discriminant analysis 
(Chapter 9). It is simply mentioned here because choice of profile analysis as the initial vehicle for 
testing group differences does not preclude use of classification. To use a discriminant program for 
classification, one simply defines the levels of the IV as “groups” and the DVs as “predictors.”

8.5.5 Imputation of Missing Values

Issues of Section 4.1.3.2 apply to repeated-  measures MANOVA. However, many of the procedures 
for imputing missing values described in that section do not take into account the commensurate na-
ture of measures in profile analysis or, for that matter, any design with repeated measures. Multiple 
imputation through SOLAS MDA is applicable to longitudinal data (or any other repeated mea-
sures) but is difficult to implement. Or, if you happen to have BMDP5V (Dixon, 1992), the program 
imputes and prints out missing values for univariate repeated-  measures analysis, which may then 
be added to the data set for multivariate analysis. None of the other procedures of Table 4.2 takes 
advantage of commensurate measurement.

A popular method (e.g., Myers & Well, 2002) is to replace the missing value with a value 
estimated from the mean for that level of the repeated factor and for that case. The following equa-
tion takes into account both the mean for the case and the mean for the level of A, the commensurate 
factor, as well as the mean for the group, B.

Y*ij =
sS�i + aA�j - B�

(a - 1)(s - 1)
(8.10)

where Y*ij = predicted score to replace missing score

s = the number of cases in the group
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S'
i = the sum of the known values for that case

a = the number of levels of A, the within-subjects factor

A'
j = the sum of the known values of A

B'  = the sum of all known values for the group

Say that the final score, s15, in a4, is missing from Table 8.1. The remaining scores for that case 
(in a1, a2, and a3) sum to 6 + 3 + 3 = 12. The remaining scores for a4 in b3 (administrators) sum 
to 2 + 5 + 5 + 4 = 16. The remaining scores for group b3 sum to 60. Plugging these values into 
Equation 8.10,

Y*15,4 =
5(12) + 4(16) - 60

(3)(4)
= 5.33

This procedure may produce an error term that is a bit too small because the estimated value is often 
too consistent with the other values. A more conservative a level is recommended for all tests if the 
proportion of missing values imputed is greater than 5%.

8.6 Complete Examples of Profile Analysis

Two complete examples of profile analysis are presented. The first is an analysis of subtests of the 
WISC (the commensurate measure) for three types of learning-  disabled children. The second is a 
study of mental rotation of either a letter or a symbol over five sessions, using as DVs the slope and 
intercept of reaction time calculated over four angles of rotation.

8.6.1 Profile Analysis of Subscales of the WISC

Variables are chosen from among those in the learning disabilities data bank described in Appendix B, 
Section B.2, to illustrate the application of profile analysis. Three groups are formed on the basis 
of the preference of learning-  disabled children for age of playmates (AGEMATE): children whose 
parents report that they have (1) preference for playmates younger than themselves, (2) preference 
for playmates older than themselves, and (3) preference for playmates the same age as themselves 
or no preference. Data are in PROFILE.*.

DVs are the 11 subtests of the Wechsler Intelligence Scale for Children given either in its 
original or revised (WISC-R) form, depending on the date of administration of the test. The sub-
tests are information (INFO), comprehension (COMP), arithmetic (ARITH), similarities (SIMIL), 
vocabulary (VOCAB), digit span (DIGIT), picture completion (PICTCOMP), picture arrangement 
(PARANG), block design (BLOCK), object assembly (OBJECT), and CODING.

The primary question is whether profiles of learning-  disabled children on the WISC subscales 
differ if the children are grouped on the basis of their choice of age of playmates (the parallelism 
test). Secondary questions are whether preference for age of playmates is associated with overall 
IQ (the levels test), and whether the subtest pattern of the combined group of learning-  disabled 
children is flat (the flatness test), as it is for the population on which the WISC was standardized.
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8.6.1.1 Evaluation of Assumptions

Assumptions and limitations of profile analysis are evaluated as described in Section 8.3.2.

8.6.1.1.1 Unequal Sample Sizes and Missing Data
From the sample of 177 learning-  disabled children given the WISC or WISC-R, a preliminary 

run of SAS MEANS (Table 8.13) is used to reveal the extent and pattern of missing data. Missing 
data are sought among the DVs (subtests, levels of the within-  subjects IV) for cases grouped by 
AGEMATE as indicated in the by AGEMATE instruction. Nine cases cannot be grouped according 
to preferred age of playmates, leaving 168 cases with group identification. Four children are identified 
as missing data through the SAS MEANS run. Because so few cases have missing data, and the miss-
ing variables are scattered over groups and DVs, it is decided to delete them from analysis, leaving N =  
164. Other strategies for dealing with missing data are discussed in Chapter 4 and in Section 8.5.5.

Of the remaining 164 children, 45 are in the group preferring younger playmates, 54 older 
playmates, and 65 same age playmates or no preference. This leaves 4.5 times as many cases as DVs 
in the smallest group, posing no problems for multivariate analysis.

8.6.1.1.2 Multivariate Normality
Groups are large and not notably discrepant in size. Therefore, the central limit theorem 

should assure acceptably normal sampling distributions of means for use in profile analysis. The 
data step in Table 8.14 deletes cases with missing data and no group identification and provides 
a new, complete data file labeled PROFILEC to be used in all subsequent analyses. SAS MEANS
output for those data shows all of the DVs to be well behaved; summary statistics for the first group, 
the one that prefers younger playmates, for example, are in Table 8.14. Skewness and kurtosis val-
ues are acceptable for all DVs in all groups.

The levels test is based on the average of the DVs. However, this should pose no problem; 
since the individual DVs are so well behaved, there is no reason to expect problems with the average 
of them. Had the DVs shown serious departures from normality, an “average” variable could have 
been created through a transformation and tested through the usual procedures of Section 4.2.2.1.

8.6.1.1.3 Linearity
Considering the well-  behaved nature of these DVs and the known linear relationship among 

subtests of the WISC, no threats to linearity are anticipated.

8.6.1.1.4 Outliers
As seen in the univariate summary statistics of Table 8.14 for the first group, one standard 

score (ARITH) has z = (19 –   9.22)/2.713 = 3.6, suggesting a univariate outlier. No other stan-
dard scores are greater than |3.3|. A SAS REG run with leverage values saved is done as per Table 
6.15 and reveals no multivariate outliers with a criterion of p = .001 (not shown). The decision is 
made to retain the univariate outlier since the subtest score of 19 is acceptable, and trial analyses 
with and without the outlier removed made no difference in the results (cf. Section 4.1.4.3).

8.6.1.1.5 Homogeneity of Variance–Covariance Matrices
Evidence for relatively equal variances is available from the full SAS MEANS run of Table 8.14, 

where variances are given for each variable within each group. All the variances are quite close in 
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TABLE 8.13 Identification of Missing Data (Syntax and Output from SAS MEANS)

proc sort data=SASUSER.PROFILE;
by AGEMATE;

run;
proc means vardef=DF

N NMISS;
  var INFO COMP ARITH SIMIL VOCAB DIGIT PICTCOMP PARANG BLOCK OBJECT CODING;

by AGEMATE;
run;

Preferred age of playmates=.

The MEANS Procedure

Variable Label N

N

Miss

INFO Information 9 0
COMP Comprehension 9 0
ARITH Arithmetic 9 0
SIMIL Similarities 9 0
VOCAB Vocabulary 9 0
DIGIT Digit Span 9 0
PICTCOMP Picture Completion 9 0
PARANG Picture Arrangement 9 0
BLOCK Block Design 9 0
OBJECT Object Assembly 9 0
CODING Coding 9 0

Preferred age of playmates=1

Variable Label N

N

Miss

INFO Information 46 0
COMP Comprehension 46 0
ARITH Arithmetic 46 0
SIMIL Similarities 46 0
VOCAB Vocabulary 46 0
DIGIT Digit Span 45 1
PICTCOMP Picture Completion 46 0
PARANG Picture Arrangement 46 0
BLOCK Block Design 46 0
OBJECT Object Assembly 46 0
CODING Coding 46 0
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The MEANS Procedure

Variable Label N

N

Miss

INFO Information 55 0
COMP Comprehension 55 0
ARITH Arithmetic 55 0
SIMIL Similarities 55 0
VOCAB Vocabulary 55 0
DIGIT Digit Span 55 0
PICTCOMP Picture Completion 55 0
PARANG Picture Arrangement 55 0
BLOCK Block Design 55 0
OBJECT Object Assembly 55 0
CODING Coding 54 1

   Preferred age of playmates=3 

Variable Label N

N

Miss

INFO Information 67 0
COMP Comprehension 65 2
ARITH Arithmetic 67 0
SIMIL Similarities 67 0
VOCAB Vocabulary 67 0
DIGIT Digit Span 67 0
PICTCOMP Picture Completion 67 0
PARANG Picture Arrangement 67 0
BLOCK Block Design 67 0
OBJECT Object Assembly 67 0
CODING Coding 67 0

 Preferred age of playmates=2

TABLE 8.13 Continued

TABLE 8.14 Univariate Summary Statistics Through SAS MEANS for Complete Data 
(Syntax and Selected Output)

data SASUSER.PROFILEC;
  set SASUSER.PROFILE;
  if AGEMATE=. or DIGIT=. or COMP=. or CODING=. then delete;
run;
proc means data=SASUSER.PROFILEC vardef=DF
   N MIN MAX MEAN VAR STD SKEWNESS KURTOSIS; ;
  var INFO COMP ARITH SIMIL VOCAB DIGIT PICTCOMP PARANG BLOCK OBJECT CODING;

by AGEMATE;
run;

(continued)
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Preferred age of playmates=1

The MEANS Procedure

Variable Label N Minimum Maximum Mean Variance

INFO Information 45 4.0000000 19.0000000 9.0666667 11.0636364
COMP Comprehension 45 3.0000000 18.0000000 9.5111111 8.3919192
ARITH Arithmetic 45 5.0000000 19.0000000 9.2222222 7.3585859
SIMIL Similarities 45 5.0000000 19.0000000 9.8666667 10.6181818
VOCAB Vocabulary 45 2.0000000 19.0000000 10.2888889 12.1191919
DIGIT Digit Span 45 3.0000000 16.0000000 8.5333333 7.2090909
PICTCOMP Picture Completion 45 5.0000000 17.0000000 11.2000000 7.1181818
PARANG Picture Arrangement 45 5.0000000 15.0000000 10.0888889 5.6282828
BLOCK Block Design 45 3.0000000 19.0000000 10.0444444 8.8616162
OBJECT Object Assembly 45 3.0000000 14.0000000 10.4666667 6.8000000
CODING Coding 45 4.0000000 14.0000000 8.6444444 6.3707071

Variable Label Std Dev Skewness Kurtosis

INFO Information 3.3262045 0.5904910 0.4696812
COMP Comprehension 2.8968809 0.8421902 1.6737862
ARITH Arithmetic 2.7126714 1.0052275 2.6589394
SIMIL Similarities 3.2585552 0.7760773 0.4300328
VOCAB Vocabulary 3.4812630 0.5545930 0.8634583
DIGIT Digit Span 2.6849750 0.5549781 0.5300003
PICTCOMP Picture Completion 2.6679921 −0.2545848 −0.1464723
PARANG Picture Arrangement 2.3724002 0.2314390 −0.1781970
BLOCK Block Design 2.9768467 0.3011471 1.3983036
OBJECT Object Assembly 2.6076810 −0.8214876 0.3214474
CODING Coding 2.5240260 0.2440899 −0.5540206

TABLE 8.14 Continued
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value across groups; for no variable is there a between-  group ratio of largest to smallest variance ap-
proaching 10:1.

8.6.1.1.6 Multicollinearity and Singularity
Standardization of the WISC subtests indicates that although subtests are correlated, particu-

larly within the two sets comprising verbal and performance IQ, there is no concern that SMCs 
would be so large as to create statistical multicollinearity or singularity. In any event, SAS GLM 
prevents such variables from entering an analysis.

8.6.1.2 Profile Analysis

Syntax and major output for profile analysis of the 11 WISC subtests for the three groups as 
produced by SAS GLM appear in Table 8.15. Significance tests are shown, in turn, for flatness 
(SUBTEST), parallelism (SUBTEST*AGEMATE), and levels (AGEMATE).

The parallelism test, called the test of the SUBTEST*AGEMATE effect, shows sig-
nificantly different profiles for the three AGEMATE groups. The various multivariate tests of 
parallelism produce slightly different probability levels for a, all less than 0.05. The test shows 
that there are statistically significant differences among the three AGEMATE groups in their 
profiles on the WISC. The profiles are illustrated in Figure 8.4. Mean values for the plots are 
found in the cell means portion of the output in Table 8.15, produced by the statement means 
AGEMATE. Effect sizes for all three tests—  SUBTEST, SUBTEST*AGEMATE, and AGEMATE, 
respectively—  are found through Smithson’s (2003) NoncF2.sas procedures; partial syntax and 
results are in Table 8.16.

For interpretation of the nonparallel profiles, a contrast procedure is needed to determine 
which WISC subtests separate the three groups of children. Because there are so many subtests, 
however, the procedure of Section 8.5.2 is unwieldy. The decision is made to evaluate profiles in 
terms of subtests on which group averages fall outside the confidence interval of the pooled profile. 
Table 8.17 shows marginal means and standard deviations for each subtest to derive these confi-
dence intervals.

In order to compensate for multiple testing, a wider confidence interval is developed for each 
test to reflect an experimentwise 95% confidence interval. Alpha rate is set at .0015 for each test to 
account for the 33 comparisons available—  3 groups at each of 11 subtests—  generating a 99.85% 
confidence interval. Because an N of 164 produces a t distribution similar to z, it is appropriate to 
base the confidence interval on z = 3.19.

For the first subtest, INFO,

P(Y - zsm 6 m 6 Y + zsm) = 99.85 (8.11)

P(9.55488 - 3.19(3.03609)>2164) 6 m 6 9.55488 + 3.19(3.03609)>2164 = 99.85

P(8.79860 6 m 6 10.31116) = 99.85

Because none of the group means on INFO falls outside this interval for the INFO subtest, 
profiles are not differentiated on the basis of the information subtest of the WISC. It is not necessary 
to calculate intervals for any variable for which none of the groups deviates from the 95% confi-
dence interval, because they cannot deviate from a wider interval. Therefore, intervals are calculated 



TABLE 8.15 Syntax and Selected Output from SAS GLM Profile Analysis of 11 WISC Subtests

proc glm data=SASUSER.PROFILEC;
class AGEMATE;

  model INFO COMP ARITH SIMIL VOCAB DIGIT
     PICTCOMP PARANG BLOCK OBJECT CODING = AGEMATE/nouni;

repeated SUBTEST 11 / summary;
means AGEMATE;

run;

Manova Test Criteria and Exact F Statistics for the Hypothesis of no SUBTEST Effect
H = Type III SSCP Matrix for SUBTEST

E = Error SSCP Matrix

S=1 M=4 N=75

Statistic Value F Value Num DF Den DF Pr > F

Wilks’ Lambda 0.53556008 13.18 10 152 <.0001
Pillai’s Trace 0.46443992 13.18 10 152 <.0001
Hotelling-Lawley Trace 0.86720415 13.18 10 152 <.0001
Roy’s Greatest Root 0.86720415 13.18 10 152 <.0001

Manova Test Criteria and F Approximations for the Hypothesis of no SUBTEST*AGEMATE Effect
H = Type III SSCP Matrix for SUBTEST*AGEMATE

E = Error SSCP Matrix

S=2 M=3.5 N=75

Statistic Value F Value Num DF Den DF Pr > F

Wilks’ Lambda 0.78398427 1.97 20 304 0.0087
Pillai’s Trace 0.22243093 1.91 20 306 0.0113
Hotelling-Lawley Trace 0.26735297 2.02 20 253.32 0.0070
Roy’s Greatest Root 0.23209691 3.55 10 153 0.0003

NOTE: F Statistic for Roy’s Greatest Root is an upper bound.
NOTE: F Statistic for Wilks’ Lambda is exact.

354



The GLM Procedure

Level of ----------INFO--------- ----------COMP--------- ---------ARITH---------
AGEMATE N Mean Std Dev Mean Std Dev Mean Std Dev

1 45 9.0666667 3.32620450 9.5111111 2.89688094 9.22222222 2.71267135
2 54 10.1851852 3.27410696 10.4259259 2.87212926 8.79629630 2.25187243
3 65 9.3692308 2.54072597 10.1230769 2.88047138 9.13846154 2.49297089

Level of ---------SIMIL--------- ---------VOCAB--------- ---------DIGIT---------
AGEMATE N Mean Std Dev Mean Std Dev Mean Std Dev

1 45 9.8666667 3.25855517 10.2888889 3.48126298 8.53333333 2.68497503
2 54 11.2037037 2.98031042 11.4629630 2.80641424 9.01851852 2.53645675
3 65 10.7538462 3.44615170 10.3692308 2.75323237 8.73846154 2.62367183

Level of --------PICTCOMP------- ---------PARANG-------- ---------BLOCK---------
AGEMATE N Mean Std Dev Mean Std Dev Mean Std Dev

1 45 11.2000000 2.66799209 10.0888889 2.37240023 10.0444444 2.97684668
2 54 9.7962963 3.33296644 10.7037037 2.95008557 10.2962963 2.89195129
3 65 11.1538462 2.77956139 10.3846154 2.59622507 10.6461538 2.45859951

Level of ---------OBJECT-------- ---------CODING--------
AGEMATE N Mean Std Dev Mean Std Dev

1 45 10.4666667 2.60768096 8.64444444 2.52402596
2 54 10.9074074 2.87650547 8.81481481 2.97203363
3 65 11.0769231 2.92781751 8.20000000 2.80735641

The GLM Procedure
Repeated Measures Analysis of Variance

Tests of Hypotheses for Between Subjects Effects

Source DF Type III SS Mean Square F Value Pr > F

AGEMATE 2 49.611331 24.805665 0.81 0.4456
Error 161 4916.226807 30.535570

TABLE 8.15 Continued
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only for SIMIL, COMP, VOCAB, and PICTCOMP. Applying Equation 8.11 to these variables, 
significant profile deviation is found for vocabulary and picture completion. (The direction of dif-
ferences is given in the Results section that follows.)

The first omnibus test produced by SAS GLM is the SUBTEST effect, for which the flat-
ness hypothesis is rejected. All multivariate criteria show essentially the same result, but Hotelling’s 
criterion, with approximate F(10, 152) = 13.18, p 6 .001, is most appropriately reported because it 
is a test of a single group (all groups combined).

Although not usually of interest when the hypothesis of parallelism is rejected, the flatness 
test, labeled SUBTEST, is interesting in this case because it reveals differences between learning-
disabled children (our three groups combined) and the sample used for standardizing the WISC, for 
which the profile is necessarily flat. (The WISC was standardized so that all subtests produce the 
same mean value.) Any sample that differs from a flat profile, that is, has different mean values on 
various subtests, diverges from the standard profile of the WISC.

Appropriate contrasts for the flatness test in this example are simple one-  sample z tests (cf. 
Section 3.1.1) against the standardized population values for each subtest with mean = 10.0 and 
standard deviation = 3.0. In this case we are less interested in how the subtests differ from one 
another than in how they differ from the normative population. (Had we been interested in differ-
ences among subtests for this sample, the contrasts procedures of Section 8.5.2 could have been 
applied.)

As a correction for post hoc inflation of experimentwise Type I error rate, individual alpha for 
each of the 11 z tests is set at .0045, meeting the requirements of as per Equation 7.12. Because most 
z tables (cf. Table C.1) are set up for testing one-  sided hypotheses, critical a is divided in half to find 
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FIGURE 8.4 Profiles of WISC scores for three AGEMATE groups.



TABLE 8.16 Effect Sizes (rsq) with Lower and Upper Confidence Limits (rsqlow and rsqupp) for Profile Analysis of WISC-R Subtests: 
Partial Syntax and Output

.

.

.
rsq = df1 * F / (df2 + df1 * F);
rsqlow = ncplow / (ncplow + df1 + df2 + 1);
rsqupp = ncpupp / (ncpupp + df1 + df2 + 1)
cards;

13.180 10 152 .95
   1.970 20 304 .95
   0.810 2 151 .95

;
proc print;
run;

The SAS System

Obs F df1 df2 conf prlow prupp ncplow ncpupp rsq rsqlow rsqupp

1 13.180 10 152 0.95 0.975 0.025 74.900 181.205 0.46441 0.31484 0.52644
2 1.970 20 304 0.95 0.975 0.025 2.534 47.014 0.11474 0.00774 0.12638
3 0.810 2 151 0.95 0.975 0.025 0.000 8.836 0.01061 0.00000 0.05427
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TABLE 8.17 Syntax and Output for Marginal Means and Standard Deviations for Each Subtest: 
All Groups Combined

proc means data=SASUSER.PROFILEC vardef=DF MEAN STD;
var INFO COMP ARITH SIMIL VOCAB DIGIT PICTCOMP PARANG BLOCK

    OBJECT CODING ;
run;

The Means Procedure

Variable Label Mean Std Dev

INFO Information 9.5548780 3.0360877
COMP Comprehension 10.0548780 2.8869349
ARITH Arithmetic 9.0487805 2.4714440
SIMIL Similarities 10.6585366 3.2699394
VOCAB Vocabulary 10.7073171 3.0152488
DIGIT Digit Span 8.7743902 2.6032689
PICTCOMP Picture Completion 10.7195122 2.9980541
PARANG Picture Arrangement 10.4085366 2.6557358
BLOCK Block Design 10.3658537 2.7470551
OBJECT Object Assembly 10.8536585 2.8202682
CODING Coding 8.5243902 2.7857024

critical z for rejecting the hypothesis of no difference between our sample and the population; the 
resulting criterion z is

aew = 1 - (1 - .0045)11 6 .05

For the first subtest, INFO, the mean for our entire sample (from Table 8.17) is 9.55488. 
Application of the z test results in

z =
Y - m

s>2N
=

9.55488 - 10

3.0>2164
= -1.900

For INFO, then, there is no significant difference between the learning disabled group and the 
normative population. Results of these individual z tests appear in Table 8.18.

The final significance test is for AGEMATE (levels), in the section labeled Tests of 
Hypotheses for Between Subjects Effects and shows no statistically sig-
nificant differences among groups on the average of the subtests, F(2, 161) = 0.81, p = .4456. This, 
also, typically is of no interest when parallelism is rejected.

A checklist for profile analysis appears in Table 8.19. Following is an example of a Results 
section in APA journal format.
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TABLE 8.18 Results of z Tests Comparing Each Subtest With 
WISC Population Mean (Alpha = .0045, Two-Tailed Test)

Subtest
Mean for 

Entire Sample
z for Comparison

with Population Mean

Information 9.55488 −1.90
Similarities 10.65854 2.81
Arithmetic 9.04878 −4.06*

Comprehension 10.05488 0.23
Vocabulary 10.70732 3.02*

Digit span 8.77439 −5.23*

Picture completion 10.71951 3.07*

Picture arrangement 10.40854 1.74
Block design 10.36585 1.56
Object assembly 10.85366 3.64*

Coding 8.52439 −6.30*

*p 6 .0045.

TABLE 8.19 Checklist for Profile Analysis

1. Issues

a. Unequal sample sizes and missing data

b. Normality of sampling distributions

c. Outliers

d. Homogeneity of variance–covariance matrices

e. Linearity

f. Multicollinearity and singularity

2. Major analysis

a. Tests for parallelism. If significant: Figure showing profile for deviation 
from parallelism

b. Test for differences among levels, if appropriate. If significant: 
Marginal means for groups and standard deviations or standard errors 
or confidence intervals

c. Test for deviation from flatness, if appropriate. If significant: 
Means for measures and standard deviations or standard errors 
or confidence intervals

d. Effect sizes with confidence limits for all three tests

3. Additional analyses

a. Planned comparisons

b. Post hoc comparisons appropriate for significant effect(s)

(1) Comparisons among groups

(2) Comparisons among measures

(3) Comparisons among measures within groups

c. Power analysis for nonsignificant effects
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Results

A profile analysis was performed on 11 subtests of the 

Wechsler Intelligence Scale for Children (WISC): information, 

similarities, arithmetic, comprehension, vocabulary, digit span, 

picture completion, picture arrangement, block design, object 

assembly, and coding. The grouping variable was preference for 

age of playmates, divided into children who (1) prefer younger 

playmates, (2) prefer older playmates, and (3) those who have no 

preference or prefer playmates the same age as themselves.

SAS MEANS and REG were used for data screening. Four children 

in the original sample, scattered through groups and DVs, had 

missing data on one or more subtest, reducing the sample size 

to 164. No univariate or multivariate outliers were detected 

among these children, with p = .001. After deletion of cases 

with missing data, assumptions regarding normality of sampling 

distributions, homogeneity of variance—covariance matrices, 

linearity, and multicollinearity were met.

SAS GLM was used for the major analysis. Using Wilks’ 

criterion, the profiles, seen in Figure 8.4, deviated significantly 

from parallelism, F(20, 304) = 1.97, p =  .009, partial h2 = .11 

with confidence limits from .01 to .13. For the levels test, no 

statistically significant differences were found among groups when 

scores were averaged over all subtests, F(2, 161) =  0.81, p =  .45, 

partial h2 =.01 with confidence limits from 0 to 0. When averaged 

over groups, however, subtests were found by Hotelling’s criterion 

to deviate significantly from flatness, F(10, 152) =  13.18,

p < .001, partial h2 = .46, with confidence limits from .31 to .53.

To evaluate deviation from parallelism of the profiles, 

confidence limits were calculated around the mean of the profile 
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for the three groups combined. Alpha error for each confidence 

interval was set at .0015 to achieve an experimentwise error rate 

of 5%. Therefore, 99.85% limits were evaluated for the pooled 

profile. For two of the subtests, one or more groups had means 

that fell outside these limits. Children who preferred older 

playmates had a significantly higher mean on the vocabulary 

subtest (mean = 11.46) than that of the pooled groups (where the 

99.85% confidence limits were 9.956 to 11.458); children who 

preferred older playmates had significantly lower scores on the 

picture completion subtest (mean = 9.80) than that of the pooled 

groups (99.85% confidence limits were 9.973 to 11.466).

Deviation from flatness was evaluated by identifying which 

subtests differed from those of the standardization population 

of the WISC, with mean = 10 and standard deviation = 3 for each 

subtest. Experimentwise a =.05 was achieved by setting for 

each test at .0045. As seen in Table 8.18, learning-  disabled 

children had significantly lower scores than the WISC normative 

population in arithmetic, digit span, and coding. On the other 

hand, these children had significantly higher than normal 

performance on vocabulary, picture completion, and object 

assembly. Thus, learning-  disabled children who prefer older 

playmates are characterized by having higher vocabulary and lower 

picture completion scores than the average of learning disabled 

children. As a group, the learning disabled children in this 

sample had lower scores on arithmetic, digit span, and coding 

than children-at-large, but higher scores on vocabulary, picture 

completion, and object assembly.

Thus, learning-  disabled children who prefer older playmates 

are characterized by having higher vocabulary and lower picture 
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completion scores than the average of learning disabled children. 

As a group, the learning disabled children in this sample 

had lower scores on arithmetic, digit span, and coding than 

children-at-large, but higher scores on vocabulary, picture 

completion, and object assembly.

8.6.2 Doubly Multivariate Analysis of Reaction Time

This analysis is on a data set from mental rotation experiments conducted by Damos (1989), 
described in greater detail in Appendix B. The between-  subjects IV (levels) is whether the target ob-
ject was the letter G or a symbol. The within-  subjects IV treated multivariately consists of the first four 
testing sessions. The two noncommensurate DVs are the (1) slope and (2) intercept calculated from 
reaction times over four angles of rotation. Thus, intercept is the average reaction time and slope is the 
change in reaction time as a function of angle of rotation. Data files are DBLMULT.*. The major ques-
tion is whether practice effects over the four sessions are different for the two target objects.

8.6.2.1 Evaluation of Assumptions

8.6.2.1.1 Unequal Sample Sizes, Missing Data, Multivariate Normality, and Linearity
Sample sizes in this data set are equal: 10 cases per group and there are no missing data among 

the eight DVs (two measures over four occasions). Groups are small but equal in size and there are 
a few more cases than DVs in each group. Therefore, there is no concern about deviation from mul-
tivariate normality. Indeed, the IBM SPSS DESCRIPTIVES output of Table 8.20 shows very small 
skewness and kurtosis values. These well-  behaved variables also pose no threat to linearity.

8.6.2.1.2 Outliers
The SAVE instruction in the syntax of Table 8.20 adds standardized scores for each variable 

and each case to the IBM SPSS data file. This provides a convenient way to look for univariate out-
liers, particularly when sample sizes are small. A criterion a = .01 is used, so that any case with a 
z-score 7 |2.58| is considered an outlier on that variable. Only one score approaches that criterion: 
case number 13 has a z-score of 2.58 on the slope measure for the second session.

Multivariate outliers are sought through IBM SPSS REGRESSION, as per Table 7.12. Criterion 
x2 with 8 df at a = .01 is 20.09. By this criterion, none of the cases is a multivariate outlier; the larg-
est Mahalanobis distance in either group is 8.09. Therefore, all cases are retained for analysis.

8.6.2.1.3 Homogeneity of Variance–Covariance Matrices
Table 8.20 shows the ratio of variances for all eight variables to be well within acceptable 

limits, particularly for this equal-n data set. Indeed, all variance ratios are 2.5:1 or less.

8.6.2.1.4 Homogeneity of Regression
IBM SPSS MANOVA is used to test homogeneity of regression for the stepdown analysis, 

in which the second DV, slope, is adjusted for the first, intercept. Table 8.21 shows the syntax and 
final portion of output for the test. The last source of variance is the one that tests homogeneity of 
regression. The assumption is supported with p = .138 because it is 7 .05.
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TABLE 8.20 Descriptive Statistics for the Eight DVs (IBM SPSS DESCRIPTIVES Syntax and Output)

SPLIT FILE
SEPARATE BY group.

DESCRIPTIVES
VARIABLES=slope1 intrcpt1 slope2 intrcpt2 slope3 intrcpt3 slope4 intrcpt4
/SAVE
/STATISTICS=MEAN STDDEV VARIANCE KURTOSIS SKEWNESS.

Descriptives

Group identification = Letter G

Descriptive Statisticsa

N Mean Std. Variance Skewness Kurtosis

Statistic Statistic Statistic Statistic Statistic Std. Error Statistic Std. Error

SLOPE1 10 642.62 129.889 16871.090 1.017 .687 .632 1.334

INTRCPT1 10 200.70 42.260 1785.917 .160 .687 −.077 1.334

SLOPE2 10 581.13 97.983 9600.605 .541 .687 −.034 1.334

INTRCPT2 10 133.75 46.921 2201.560 .644 .687 −.940 1.334

SLOPE3 10 516.87 64.834 4203.427 .159 .687 −.354 1.334

INTRCPT3 10 90.46 30.111 906.651 .421 .687 −1.114 1.334

SLOPE4 10 505.39 67.218 4518.283 −.129 .687 −.512 1.334

INTRCPT4 10 72.39 26.132 682.892 .517 .687 −.694 1.334

Valid N (listwise) 10

a. Group identification = Letter G
(continued)



Group identification = Symbol

Descriptive Statisticsa

N Mean Std. Variance Skewness Kurtosis

Statistic Statistic Statistic Statistic Statistic Std. Error Statistic Std. Error

SLOPE1 10 654.50 375.559 141044.9 −.245 .687 1.015 1.334

INTRCPT1 10 40.85 49.698 2469.870 .514 .687 −1.065 1.334

SLOPE2 10 647.53 153.991 23713.180 2.113 .687 5.706 1.334

INTRCPT2 10 24.30 29.707 882.521 1.305 .687 1.152 1.334

SLOPE3 10 568.22 59.952 3594.241 −.490 .687 .269 1.334

INTRCPT3 10 22.95 29.120 847.957 .960 .687 −.471 1.334

SLOPE4 10 535.82 50.101 2510.106 −.441 .687 −.781 1.334

INTRCPT4 10 22.46 26.397 696.804 1.036 .687 .003 1.334

Valid N (listwise) 10

a. Group identification = Symbol

TABLE 8.20 Continued

364
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8.6.2.1.5 Reliability of DVs
Intercept acts as a covariate for slope in the stepdown analysis. There is no reason to doubt 

the reliability of intercept as a measure, because it is a derived value based on a measure (response 
time) recorded electronically on equipment checked periodically.

8.6.2.1.6 Multicollinearity and Singularity
Correlations among DVs are expected to be high, particularly within slope and intercept sets, 

but not so high as to threaten statistical multicollinearity. Correlations between slopes and intercepts 
are not expected to be substantial. The determinant of the variance–  covariance matrix in the main 
analysis provides assurance that there is no statistical multicollinearity (p 7 .00001) as seen in the 
main analysis in Table 8.21.

8.6.2.2 Doubly Multivariate Analysis of Slope and Intercept

IBM SPSS MANOVA is chosen for the main analysis, which includes a full trend analysis on the 
repeated measures effects: flatness (the main effect of session) and parallelism (the session by group 
interaction). The program also provides a stepdown analysis without the need for reconfiguring the 
data set (cf. Section 6.5.4.1).

Table 8.22 shows syntax and output for the omnibus analysis and stepdown trend analy-
ses. ERROR(COR) requests residual (pooled within-  cell) correlation matrix; HOMOGENEITY 
(BOXM) provides the determinant of the pooled within-  cell variance–  covariance matrix. The 
RENAME instruction makes the output easier to read. INT_LIN is the linear trend of the group by 

TABLE 8.21 Syntax and Selected IBM SPSS MANOVA Output for Test of Homogeneity of Regression

SPLIT FILE
OFF.

MANOVA
INTRCPT1 INTRCPT2 INTRCPT3 INTRCPT4 SLOPE1 SLOPE2 SLOPE3 SLOPE4

BY GROUP(1, 2)
/PRINT=SIGNIF(BRIEF)
/ANALYSIS = SLOPE1 SLOPE2 SLOPE3 SLOPE4
/DESIGN = POOL(INTRCPT1 INTRCPT2 INTRCPT3 INTRCPT4) GROUP

       POOL(INTRCPT1 INTRCPT2 INTRCPT3 INTRCPT4) BY GROUP.

Multivariate Tests of Significance
Tests using UNIQUE sums of squares and WITHIN+RESIDUAL error term
Source of Variation Wilks Approx F Hyp. DF Error DF Sig of F

POOL(INTRCPT1 INTRC 
PT2 INTRCPT3 INTRCPT 
4)

.054 2.204 16.00 22.023 .043

GROUP .570 1.320 4.00 7.000 .350
POOL(INTRCPT1 INTRC 
PT2 INTRCPT3 INTRCPT 
4) BY GROUP

.091 1.644 16.00 22.023 .138
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TABLE 8.22 Doubly Multivariate Analysis of Slope and Intercept 
(IBM SPSS MANOVA Syntax and Selected Output)

MANOVA
INTRCPT1 INTRCPT2 INTRCPT3 INTRCPT4 SLOPE1 SLOPE2 SLOPE3 SLOPE4
  BY GROUP(1, 2)
/WSFACTOR = SESSION(4)
/MEASURES = INTERCPT, SLOPE
/TRANSFORM(INTRCPT1 TO SLOPE4) = POLYNOMIAL
/RENAME=INTERCPT INT_LIN INT_QUAD INT_CUBIC

SLOPE SL_LIN SL_QUAD SL_CUBIC
/WSDESIGN = SESSION
/PRINT=SIGNIF(UNIV, STEPDOWN, EFSIZE) ERROR(CORR) HOMOGENEITY(BOXM)
/DESIGN = GROUP.

Determinant of pooled Covariance matrix of dependent vars. = 7.06128136E+23 
LOG(Determinant) = 54.91408

WITHIN+RESIDUAL Correlations with Std. Devs. on Diagonal

INTERCPT SLOPE

INTERCPT 64.765
SLOPE .187 232.856

EFFECT.. GROUP
Multivariate Tests of Significance (S = 1, M = 0, N = 7 1/2)
Test Name Value Exact F Hypoth. DF Error DF Sig. of F

Pillais .73049 23.03842 2.00 17.00 .000
Hotellings 2.71040 23.03842 2.00 17.00 .000
Wilks .26951 23.03842 2.00 17.00 .000
Roys .73049
Note.. F statistics are exact.

Multivariate Effect Size

TEST NAME Effect Size

(All)  .730

Univariate F-tests with (1,18) D. F.

Variable Hypoth. SS Error SS Hypoth. MS Error MS F Sig. of F

INTERCPT 186963.468 75501.1333 186963.468 4194.50740 44.57340 .000
SLOPE 32024.7168 975990.893 32024.7168 54221.7163 .59063 .452

Variable ETA Square

INTERCPT .71234
SLOPE .03177

Roy-Bargman Stepdown F—tests

Variable Hypoth. MS Error MS Stepdown F Hypoth. DF Error DF Sig. of F

INTERCPT 186963.468 4194.50740 44.57340 1 18 .000
SLOPE 63428.5669 55404.9667 1.14482 1 17 .300
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EFFECT.. GROUP (Cont.)

Tests involving 'SESSION' Within-  Subject Effect.

EFFECT.. GROUP BY SESSION
Multivariate Tests of Significance (S = 1, M = 2 , N = 5 1/2)

Test Name Value Exact F Hypoth. DF Error DF Sig. of F

Pillais .82070 9.91711 6.00 13.00 .000
Hotellings 4.57713 9.91711 6.00 13.00 .000
Wilks .17930 9.91711 6.00 13.00 .000
Roys .82070
Note.. F statistics are exact.

Multivariate Effect Size

TEST NAME     Effect Size

(All)             .821

Univariate F-tests with (1,18) D. F.

Variable Hypoth. SS Error SS Hypoth. MS Error MS F Sig. of F

INT_LIN 34539.9233 11822.7068 34539.9233 656.81704 52.58683 .000
INT_QUAD 1345.75055 4783.30620 1345.75055 265.73923 5.06418 .037
INT_CUBI 63.15616 2160.40148 63.15616 120.02230 .52620 .478
SL_LIN 412.00434 677335.981 412.00434 37629.7767 .01095 .918
SL_QUAD 7115.88944 165948.577 7115.88944 9219.36538 .77184 .391
SL_CUBIC 1013.73020 35227.3443 1013.73020 1957.07469 .51798 .481

Variable ETA Square

INT_LIN .74499
INT_QUAD .21957
INT_CUBI .02840
SL_LIN .00061
SL_QUAD .04112
SL_CUBIC .02797

Roy-Bargman Stepdown F—tests

Variable Hypoth. MS Error MS Stepdown F Hypoth. DF Error DF Sig. of F
INT_LIN 34539.9233 656.81704 52.58683 1 18 .000
INT_QUAD 209.21632 195.44139 1.07048 1 17 .315
INT_CUBI 2.36753 45.37427 .05218 1 16 .822
SL_LIN 6198.06067 39897.8795 .15535 1 15 .699
SL_QUAD 710.44434 1472.26563 .48255 1 14 .499
SL_CUBIC 917.69207 255.81569 3.58732 1 13 .081

TABLE 8.22 Continued

(continued)
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EFFECT.. SESSION

Multivariate Tests of Significance (S = 1, M = 2, N = 5 1/2)
Test Name Value Exact F Hypoth. DF Error DF Sig. of F

Pillais .88957 17.45295 6.00 13.00 .000
Hotellings 8.05521 17.45295 6.00 13.00 .000
Wilks .11043 17.45295 6.00 13.00 .000
Roys .88957
Note.. F statistics are exact.

Multivariate Effect Size

TEST NAME     Effect Size

(All)          .890

Univariate F-tests with (1,18) D. F.

Variable Hypoth. SS Error SS Hypoth. MS Error MS F Sig. of F

INT_LIN 58748.6922 11822.7068 58748.6922 656.81704 89.44453 .000
INT_QUAD 5269.58732 4783.30620 5269.58732 265.73923 19.82992 .000
INT_CUBI 40.83996 2160.40148 40.83996 120.02230 .34027 .567
SL_LIN 207614.672 677335.981 207614.672 37629.7767 5.51730 .030
SL_QUAD 755.44788 165948.577 755.44788 9219.36538 .08194 .778
SL_CUBIC 7637.13270 35227.3443 7637.13270 1957.07469 3.90232 .064

Variable ETA Square

INT_LIN .83247
INT_QUAD .52419
INT_CUBI .01855
SL_LIN .23461
SL_QUAD .00453
SL_CUBIC .17817

Roy-Bargman Stepdown F—tests

Variable Hypoth. MS Error MS Stepdown F Hypoth. DF Error DF Sig. of F

INT_LIN 58748.6922 656.81704 89.44453 1 18 .000
INT_QUAD 26.62826 195.44139 .13625 1 17 .717
INT_CUBI 1.74540 45.37427 .03847 1 16 .847
SL_LIN 70401.2193 39897.8795 1.76454 1 15 .204
SL_QUAD 6294.30308 1472.26563 4.27525 1 14 .058
SL_CUBIC 96.64789 255.81569 .37780 1 13 .549

TABLE 8.22 Continued
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session interaction for intercept, INT_QUAD is the quadratic trend of the interaction for intercept, 
SL_CUBIC is the cubic trend of the group by session interaction for slope, and so on. EFSIZE in 
the PRINT paragraph requests effect sizes along with univariate and stepdown results.

The three sections labeled Multivariate Tests of Significance (for GROUP, 
GROUP BY SESSION, and SESSION) show that all three effects are statistically significant, 
p 6 .0005. Because parallelism is rejected, with a strong SESSION BY GROUP interaction, multivari-
ate F(6, 13) = 9.92, flatness and levels effects are not interpreted. Table 8.23 shows effect sizes and 
their confidence limits through Smithson’s (2003) procedure for all three effects: parallelism, flatness, 
and levels, respectively.

The trend analysis for the two DVs is in the section labeled Roy-  Bargman Stepdown 
F-tests in the EFFECT ... GROUP BY SESSION section of Table 8.22. With a = .0083
to compensate for inflated Type I error rate with the six DVs, only the linear trend of the interaction 
for intercept is statistically significant, F(1, 18) = 52.29. Effect size is calculated using Equation 3.26:

partial h2 34539.92

34539.92 + 11822.71
= .74

Note that the univariate effect size can be used because this trend is in the first-  priority DV. 
Table 8.24 shows a summary of the stepdown trend analysis of the group by session interaction, 
in a form suitable for publication.

Figure 8.5 plots the profiles over the four sessions for the two groups. Figure 8.5 shows that 
reaction time intercept is much longer for the symbol than for the letter G, but rather rapidly declines 

TABLE 8.23 Effect Sizes (r2) with Lower and Upper Confidence Limits (lr2 and ur2) for Doubly 
Multivariate Analysis of Reaction Time

TABLE 8.24 Stepdown Tests of the Trend Analysis of the Group by Session Interaction

Univariate
F

Stepdown
F

Partial
H2

99.17% CL 
around 

Partial H2

IV Trend df df Lower Upper

Intercept Linear 52.59a 1/18 52.59** 1/18 .74 .32 .87
Quadratic 5.06 1/18 1.07 1/17 .06 .00 .42
Cubic 0.53 1/18 0.05 1/16 .00 .00 .11

Slope Linear 0.01 1/18 0.16 1/15 .01 .00 .29
Quadratic 0.77 1/18 0.48 1/14 .03 .00 .41
Cubic 0.52 1/18 3.59 1/13 .22 .00 .59

aSignificance level cannot be evaluated but would reach p 6 .0083 in univariate context.

**p 6 .0083.
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FIGURE 8.5 Intercept of reaction time over 
four angles of rotation as a function of 

session and target object.

over the four sessions, while reaction time intercept for the letter G stays low and fairly stable over 
the four sessions. Thus, the linear trend of the interaction indicates that the linear trend is greater for 
the symbol than for the letter.

Table 8.25 summarizes cell means and standard deviations from Table 8.20.

TABLE 8.25 Intercept and Slope Over Four Angles of 
Rotation of Reaction Time for Two Target Objects for 
the First Four Sessions

Target 
Object

Session

1 2 3 4

Intercept

Letter G
M 200.70 133.75 90.46 72.39

SD 42.46 46.92 30.11 26.13

Symbol
M 40.85 24.30 22.95 22.46

SD 49.70 29.71 29.12 24.12

Slope
Letter G

M 642.62 581.13 516.87 505.39
SD 129.89 97.98 64.83 67.22

Symbol
M 654.50 647.53 568.22 535.82

SD 375.56 153.99 59.95 50.10
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The pooled within-  cell correlation matrix (correlation in the section labeled  
WITHIN+RESIDUAL Correlations with Std. Devs. On Diagonal) shows that, 
indeed, the correlation between measures of intercept and slope is small.

Table 8.26 is a checklist for the doubly multivariate analysis. It is followed by a Results sec-
tion, in journal format, for the analysis just described.

TABLE 8.26 Checklist for Doubly Multivariate Analysis of Variance

1. Issues

a. Unequal sample sizes and missing data

b. Normality of sampling distributions

c. Outliers

d. Homogeneity of variance–covariance matrices

e. Linearity

f. In stepdown analysis, when DVs act as covariates

(1) Homogeneity of regression

(2) Reliability of DVs

g. Multicollinearity and singularity

2. Major analyses: Planned comparisons or omnibus F, when significant

a. Parallelism. If significant: Importance of DVs

(1)  Within-cell correlations, stepdown F, univariate F

(2) Effect size with confidence limits for significant stepdown F

(3)  Profile plot and table of cell means or adjusted cell means and standard 
deviations, standard errors, or confidence intervals.

b. Test for differences among levels, if appropriate. If significant: Importance of DVs

(1)  Within-cell correlations, stepdown F, univariate F

(2) Effect size with confidence limits for significant stepdown F

(3)  Marginal or adjusted marginal means and standard deviations, standard 
errors, or confidence intervals

c. Test for deviation from flatness, if appropriate. If significant: Importance of DVs

(1)  Within-cell correlations, stepdown F, univariate F

(2) Effect size with confidence limits for significant F

(3)  Marginal or adjusted marginal means and standard deviations, standard 
errors, or confidence intervals

d. Effect sizes and confidence intervals for tests of parallelism, levels, and flatness

3. Additional analyses

a. Post hoc comparisons appropriate for significant effect(s)

(1) Comparisons among groups

(2) Comparisons among measures

(3) Comparisons among measures within groups

b. Power analysis for nonsignificant effects
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Results

A doubly multivariate analysis of variance was performed 

on two measures of reaction time: intercept and slope of 

the regression line over four angles of rotation. Intercept 

represents overall reaction time; slope represents change in 

reaction time as a function of angle of rotation. Two target 

objects formed the between-  subjects IV: the letter G and a 

symbol. The within-  subjects IV treated multivariately was the 

first four sessions of the entire set of 20 sessions. Trend 

analysis was planned for the main effect of sessions as well as 

the group by session interaction. N = 10 for each of the groups.

No data were missing, nor were there univariate or 

multivariate outliers at a = .01. Results of evaluation of 

assumptions of doubly   multivariate analysis of variance were 

satisfactory. Cell means and standard deviations for the two DVs 

over all combinations of group and session are in Table 8.25.

The group by session interaction (deviation from parallelism) 

was strong and statistically significant multivariate 

F(6, 13) = 9.92, p >.005, partial h2 = .82 with confidence limits 

from .37 to .86. Reaction-  time changes over the four sessions 

differed for the two target types. Although group and session 

main effects also were statistically significant they are not 

interpreted in the presence of the strong interaction. Partial 

h2 for the group main effect was .73 with confidence limits from 

.40 to .82. For the session main effect, partial h2 = .89 with 

confidence limits from .58 to .91.

A Roy–  Bargmann stepdown analysis was performed on the trend 

analysis of the DVs, with the three trends of intercept as the 

first DV and the three trends of slope adjusted for intercept 
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as the second. Intercept was judged sufficiently reliable as a 

covariate for slope to warrant stepdown analysis. Homogeneity 

of regression was achieved for the stepdown analysis. An 

experimentwise error rate of 5% was achieved by setting 

a = .0083 for each of the six components (three trends each of 

intercept and slope). Table 8.24 shows the results of the trend 

analysis.

The only significant stepdown effect for the group by session 

interaction was the linear trend of intercept, F(1, 18) = 52.59,

p >.005, partial h2 = .74 with confidence limits from .32 to .87. 

Figure 8.5 plots the profiles for the two groups (letter G and 

symbol) over the four sessions. Mean reaction time (intercept) 

is much longer for the symbol than for the letter G, but rapidly 

declines over the four sessions. Reaction time for the letter G 

stays low and fairly stable over the four sessions. There is no 

evidence that change in reaction time as a function of angle of 

rotation (slope) is different for the two target objects.

Thus, reaction time to the letter G is quite fast, and does 

not change with practice. Reaction time is much slower for the 

symbol, but improves with practice. The change in reaction time 

associated with differing rotation of the target object does not 

depend on type of object or practice.

8.7 Comparison of Programs

Programs for MANOVA are covered in detail in Chapter 7. Therefore, this section is limited to 
those features of particular relevance to profile analysis. IBM SPSS and SYSTAT each have two 
programs useful for profile analysis. SAS has an additional program that can be used for profile 
analysis, but it is limited to equal-n designs. The SAS manual shows by example how to set up dou-
bly multivariate designs. SYSTAT has an example available in online help files. IBM SPSS GLM 
syntax for doubly multivariate designs is shown in the manual, but no such help is available for 
IBM SPSS MANOVA, unless you happen to have an old (1986) SPSSx manual handy. All programs 
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provide output for within-  subjects effects in both univariate and multivariate form. All programs 
also provide information useful for deciding between multivariate and univariate approaches, with 
Greenhouse–  Geisser and Huynh–  Feldt adjustments for violation of sphericity in the univariate ap-
proach. Features of the programs appear in Table 8.27.

8.7.1 IBM SPSS Package

Profile analysis in IBM SPSS MANOVA or GLM is run like any other repeated-  measures design. 
Output includes both univariate and multivariate tests for all within-  subjects effects (flatness) and 
mixed interactions (parallelism).

The MEASURES command allows the multiple DVs to each be given a generic name in 
doubly multivariate designs, making the output more readable. Also, several repeated-  measures 
analyses can be specified within a single run.

The MWITHIN feature in IBM SPSS MANOVA provides for testing simple effects when 
repeated measures are analyzed. The full output for IBM SPSS MANOVA consists of three 
separate source tables, one each for parallelism, levels, and flatness. Specification of PRINT= 
SIGNIF(BRIEF) is used to simplify the multivariate output. The determinant of the within-  cells 
correlation matrix is used as an aid in deciding whether or not further investigation of multicol-
linearity is needed. This is the only program that provides stepdown analysis for a doubly multi-
variate design, along with straightforward syntax for testing homogeneity of regression. Adjusted 
means are not easily obtained, however, as demonstrated in Section 7.6.

IBM SPSS GLM provides more easily interpreted output, with means adjusted for unequal n
(but not stepdown analysis in a doubly multivariate design) readily available. Although the deter-
minant of the variance–  covariance matrix is not available, the program protects against statistical 
multicollinearity and singularity.

Both IBM SPSS programs permit the residuals plots, which provide evidence of skewness 
and outliers. And Box’s M test is available in both of them as an ultrasensitive test of homogeneity 
of variance–  covariance matrices. But tests of linearity and homoscedasticity are not directly avail-
able within IBM SPSS GLM or MANOVA and a test for multivariate outliers requires use of IBM 
SPSS REGRESSION separately for each group.

8.7.2 SAS System

Profile analysis is available through the general linear model (GLM) procedure of SAS or through 
ANOVA if the groups have equal sample sizes. The two procedures use very similar syntax conven-
tions and provide the same output. In GLM and ANOVA, profile analysis is treated as a special case 
of repeated-  measures ANOVA. An explicit statement that generates the segments between adjacent 
levels of the within-  subjects factor is available: profile.

Both univariate and multivariate results are provided by default, with the multivariate output 
providing the tests of parallelism and flatness. However, the output is not particularly easy to read. 
Each multivariate effect appears separately but instead of a single table for each effect, there are 
multiple sections filled with cryptic symbols. These symbols are defined above the output for that 
effect. Only the test of levels appears in a familiar source table. Specification of short within the 
repeated statement provides condensed output for the multivariate tests of flatness and parallel-
ism, but the tests for each effect are still separated.
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TABLE 8.27 Comparison of Programs for Profile Analysisa

IBM
SPSS
MANOVA

IBM
SPSS GLM

SAS
GLM and 
ANOVA

SYSTAT 
GLM and 
ANOVA

Input

Variety of strategies for unequal n Yes Yes Yesb No

Special specification for doubly multivariate 
analysis Yes Yes Yes No

Special specification for simple effects Yes No No No

Output

Single source table for Wilks’ lambda PRINT= 
SIGNIF
(BRIEF)

Yes No No

Specific comparisons Yes Yes Yes Yes

Within-cells correlation matrix Yes Yes Yes Yes

Determinant of within-cells
variance–covariance matrix Yes No No No

Cell means and standard deviations PRINT=
CELLINFO
(MEANS)

EMMEANS LSMEANS Medium
output

Marginal means OMEANS EMMEANS LSMEANS No

Marginal standard deviations or 
standard Errors

No Yes STDERR No

Confidence intervals around cell means Yes Yes No No

Wilks’ lambda and F for parallelism Yes Yes Yes Yes

Pillai’s criterion Yes Yes Yes Yes

Additional statistical criteria Yes Yes Yes Yes

Test for homogeneity of 
covariance/sphericity

Yes No No No

Greenhouse–Geisser epsilon and adjusted p Yes Yes Yes Yes

Huynh–Feldt epsilon and adjusted p Yes Yes Yes Yes

Predicted values and residuals for each case Yes Yes Yes Data file

Residuals plot Yes No No No

Homogeneity of variance–covariance 
matrices

Box’s M Box’s M No No

Test for multivariate outliers No No Data file Data file

Effect sizes (strength of association) EFSIZE ETASQ No No

aAdditional features of these programs appear in Chapter 7 (MANOVA).
bSAS ANOVA requires equal n.
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8.7.3 SYSTAT System

The GLM and MANOVA programs in SYSTAT handle profile analysis through the REPEAT for-
mat. (SYSTAT ANOVA also does profile analysis, but with few features and less flexibility.) There 
are three forms for printing output—  long, medium, and short. The short form is the default option. 
The long form provides such extras as error correlation matrices and canonical analysis, as well as 
cell means and standard errors for the DVs. Additional statistics are available through the STATS 
program, but the data set must be sorted by groups. SYSTAT GLM automatically prints out a full 
trend analysis on the within-  subjects variable. There is no example in the manual to follow for a 
doubly multivariate analysis.

Multivariate outliers are found by applying the discriminant procedure detailed in the SYSTAT 
manual. Leverage values for each group, which can be converted to Mahalanobis distances, are 
saved to a file. Additional assumptions are not directly tested through the GLM procedure although 
assumptions such as linearity and homogeneity of variance can be evaluated through STATS and 
GRAPH. No test for homogeneity of variance–  covariance matrices is available.
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9.1 General Purpose and Description

The goal of discriminant analysis is to predict group membership from a set of predictors. For 
example, can a differential diagnosis among a group of nondisabled children, a group of children 
with learning disability, and a group with emotional disorder be made reliably from a set of psycho-
logical test scores? The three groups are nondisabled children, children with learning disabilities, 
and children with emotional disorders. The predictors are a set of psychological test scores such as 
the Illinois Test of Psycholinguistic Ability, subtests of the Wide Range Achievement Test, Figure 
Drawing tests, and the Wechsler Intelligence Scale for Children.

Discriminant analysis (DISCRIM) is MANOVA turned around. In MANOVA, we ask whether 
group membership is associated with statistically significant mean differences on a combination of 
DVs. If the answer to that question is yes, then the combination of variables can be used to predict 
group membership—  the DISCRIM perspective. In univariate terms, a significant difference among 
groups implies that given a score, you can predict (imperfectly, no doubt) which group it comes from.

Semantically, however, confusion arises between MANOVA and DISCRIM because in 
MANOVA the IVs are the groups and the DVs predictors while in DISCRIM the IVs are the predic-
tors and the DVs are the groups. We have tried to avoid confusion here by always referring to IVs as 
predictors and to DVs as groups or grouping variables.1

Mathematically, MANOVA and DISCRIM are the same, although the emphases often differ. 
The major question in MANOVA is whether group membership is associated with statistically sig-
nificant mean differences in combined DV scores, analogous in DISCRIM to the question of whether 
predictors can be combined to predict group membership reliably. In many cases, DISCRIM is car-
ried to the point of actually putting cases into groups in a process called classification.

Classification is a major extension of DISCRIM over MANOVA. Most computer programs 
for DISCRIM evaluate the adequacy of classification. How well does the classification procedure 
do? How many learning-  disabled kids in the original sample, or a cross-  validation sample, are clas-
sified correctly? When errors occur, what is their nature? Are learning-  disabled kids more often 
confused with nondisabled kids or with kids suffering emotional disorders?

A second difference involves interpretation of differences among the predictors. In MANOVA, 
there is frequently an effort to decide which DVs are associated with group differences, but rarely 
an effort to interpret the pattern of differences among the DVs as a whole. In DISCRIM, there is 

9 Discriminant Analysis

1Many texts also refer to IVs or predictors as discriminating variables and to DVs or groups as classification variables. 
However, there are also discriminant functions and classification functions to contend with, so the terminology becomes 
quite confusing. We have tried to simplify it by using only the terms predictors and groups.
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often an effort to interpret the pattern of differences among the predictors as a whole in an attempt 
to understand the dimensions along which groups differ.

Complexity arises with this attempt, however, because with more than two groups there 
may be more than one way to combine the predictors to differentiate among groups. There may, 
in fact, be as many dimensions that discriminate among groups as there are degrees of freedom for 
the groups or the number of predictors (whichever is smaller). For example, if there are only two 
groups, there is only one linear combination of predictors that best separates them. Figure 9.1(a) 
illustrates the separation of two group centroids (multivariate version of means), Y1 and Y2 on a 
single axis, X, which represents the best linear combination of predictors that separate Groups 1 and 2. 
A line parallel to the imaginary line that connects the two centroids represents the linear combina-
tion of Xs, or the first discriminant function2 of X. Once a third group is added, however, it may not 
fall along that line. To maximally separate the three groups, it may be necessary to add a second lin-
ear combination of Xs, or a second discriminant function. In the example in Figure 9.1(b), the first 
discriminant function separates the centroid of the first group from the centroids of the other two 
groups but does not distinguish the centroids for the second and third groups. The second discrimi-
nant function separates the centroid of the third group from the other two but does not distinguish 
between the first two groups.

On the other hand, the group means might fall along a single straight line even with three (or 
more) groups. If that is the case, only the first discriminant function is necessary to describe the 
differences among groups. The number of discriminant functions necessary to describe the group 
separation may be smaller than the maximum number available (which is the number of predictors 
or the number of groups minus 1, whichever is less). With more than two groups, then, discriminant 
analysis is a truly multivariate technique that is interpreted as such, with multiple Ys representing 
groups and multiple Xs representing predictors.
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FIGURE 9.1 (a) Plot of two group centroids, Y
–

1 and Y
–

2, on a scale representing the 
linear combinations of X. (b) Plot of two linear combinations of X required to 

distinguish among three group centroids, Y
–

1, Y
–

2, and Y
–

3.

2Discriminant functions are also known as roots, canonical variates, principal components, dimensions, etc., depending on 
the statistical technique in which they are developed.
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In our example of three groups of children (nondisabled, learning-  disabled, and emotionally 
disordered), given a variety of psychological measures, one way of combining the psychological 
test scores may tend to separate the nondisabled group from the two groups with disorders, while a 
second way of combining the test scores may tend to separate the group with learning disabilities 
from the group with emotional disorders. The researcher attempts to understand the “message” in 
the two ways of combining test scores to separate groups differently. What is the meaning of the 
combination of scores that separates nondisabled from disabled kids, and what is the meaning of 
the different combination of scores that separates kids with one kind of disorder from kids with 
another? This attempt is facilitated by the statistics available in many of the canned computer pro-
grams for DISCRIM that are not printed in some programs for MANOVA.

Thus, there are two facets of DISCRIM, and one or both may be emphasized in any given 
research application. The researcher may simply be interested in a decision rule for classifying 
cases where the number of dimensions and their meaning is irrelevant. Or the emphasis may be on 
interpreting the results of DISCRIM in terms of the combinations of predictors—  called discrimi-
nant functions—  that separate various groups from each other.

A DISCRIM version of covariate analysis (MANCOVA) is available, because DISCRIM can 
be set up in a sequential manner. When sequential DISCRIM is used, the covariate is simply a pre-
dictor that is given top priority. For example, a researcher might consider the score on the Wechsler 
Intelligence Scale for Children a covariate and ask how well the Wide Range Achievement Test, the 
Illinois Test of Psycholinguistic Ability, and Figure Drawings differentiate between nondisabled, 
learning-  disabled, and emotionally disordered children after differences in IQ are accounted for.

If groups are arranged in a factorial design, it is frequently best to rephrase research ques-
tions so that they are answered within the framework of MANOVA. (However, DISCRIM can in 
some circumstances be directly applied to factorial designs as discussed in Section 9.6.6.) Similarly, 
DISCRIM programs make no provision for within-  subjects variables. If a within-  subjects analysis 
is desired, the question is also rephrased in terms of MANOVA or profile analysis. Hence, the em-
phasis in this chapter is on one-  way between-  subjects DISCRIM.

Marlow and Pastor (2011) extended an earlier study that successfully determined the sex of 
skeletal remains of 153 individuals from parameters of the second cervical vertebra; the second 
study used skeletal remains from a different population and also predicted sex from damaged verte-
bra where the best predictor from the earlier study could not be assessed. The discriminant functions 
from both studies achieved approximately 80% accuracy in the prediction for both male and female 
remains. However, with the exception of one predictor, the significant predictors in the second study 
were different from those of the first, pointing to a necessity to develop population-  specific dis-
criminant functions for new samples. Prediction of sex was somewhat diminished but still possible 
when the second cervical vertebra was damaged.

Gyurcsik, Brawley, Spink, Glazebrook, and Anderson (2011) studied pain acceptance, 
pain intensity, confidence in overcoming barriers caused by disease, and expectations of positive 
outcomes for physical activity among 118 women with arthritis of at least 6–  10 years duration. 
(Note that frequency and duration of physical activity were also assessed but analyzed separately.) 
The sample was recruited online and their responses reported online. Groups were created by a 
median split on pain acceptance scores that measured both a willingness to pursue activities despite 
pain and to experience pain without attempting to control it. Pain intensity was assessed using a 
10-point scale (averaged over “a typical day,” during a flare, when not flared-up, and “at present”). 
Participants rated their confidence to overcome barriers (self-  regulatory efficacy) such as pain, joint 



380 C H A P T E R  9

stiffness/swelling, and fatigue on a 10-point scale. Outcome expectations were rated for likelihood 
of achieving an outcome (such as less pain or easier movement) due to physical activity and the 
value attached to each outcome. A hierarchical discriminant function strategy was used to determine 
if the two groups (low and high pain acceptance) were different in pain intensity and then, control-
ling for pain intensity, if confidence in overcoming barriers and expectations of positive outcomes 
for physical activity also predicted group membership. In the first analysis, pain intensity was a 
predictor of pain acceptance; higher intensity was associated with lower acceptance. In the second 
analysis, both pain intensity and confidence in overcoming barriers contributed to group separation; 
expectations of positive outcomes for physical activity contributed less.

9.2 Kinds of Research Questions

The primary goals of DISCRIM are to find the dimension or dimensions along which groups differ, 
and to find classification functions to predict group membership. The degree to which these goals 
are met depends, of course, on the choice of predictors. Typically, the choice is made either on the 
basis of theory about which variables should provide information about group membership or on the 
basis of pragmatic considerations such as expense, convenience, or unobtrusiveness.

It should be emphasized that the same data are profitably analyzed through either MANOVA 
or DISCRIM programs, and frequently through both, depending on the kinds of questions you want 
to ask. If group sizes are very unequal, and/or distributional assumptions are untenable, logistic 
regression also answers most of the same questions. In any event, statistical procedures are readily 
available within canned computer programs for answering the following types of questions gener-
ally associated with DISCRIM.

9.2.1 Significance of Prediction

Can group membership be predicted reliably from the set of predictors? For example, can we do bet-
ter than chance in predicting if the children are learning-  disabled, emotionally disordered, or non-
disabled on the basis of the set of psychological test scores? This is the major question of DISCRIM 
that the statistical procedures described in Section 9.6.1 are designed to answer. The question is 
identical to the question about “main effects of IVs” for a one-  way MANOVA.

9.2.2 Number of Significant Discriminant Functions

Along how many dimensions do groups differ reliably? For the three groups of children in our 
example, two discriminant functions are possible, and neither, one, or both may be statistically 
significant. For example, the first function may separate the nondisabled group from the other two 
while the second, which would separate the group with learning disability from the group with emo-
tional disorders, is not statistically significant. This pattern of results indicates that the predictors 
can differentiate nondisabled from disabled kids, but cannot separate learning-  disabled kids from 
kids with emotional disorders.

In DISCRIM, the first discriminant function provides the best separation among groups. Then a 
second discriminant function, orthogonal to the first, is found that best separates groups on the basis of 
associations not used in the first discriminant function. This procedure of finding successive orthogonal 
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discriminant functions continues until all possible dimensions are evaluated. The number of possible 
dimensions is either one fewer than the number of groups or equal to the number of predictor variables, 
whichever is smaller. Typically, only the first one or two discriminant functions reliably discriminate 
among groups; remaining functions provide no additional information about group membership and are 
better ignored. Tests of significance for discriminant functions are discussed in Section 9.6.2.

9.2.3 Dimensions of Discrimination

How can the dimensions along which groups are separated be interpreted? Where are groups 
located along the discriminant functions, and how do predictors correlate with the discriminant 
functions? In our example, if two significant discriminant functions are found, which predictors 
correlate highly with each function? What pattern of test scores discriminates between nondisabled 
children and the other two groups (first discriminant function)? And what pattern of scores discrimi-
nates between children with learning disabilities and children with emotional disorders (second 
discriminant function)? These questions are discussed in Section 9.6.3.

9.2.4 Classification Functions

What linear equation(s) can be used to classify new cases into groups? For example, suppose we 
have the battery of psychological test scores for a group of new, undiagnosed children. How can we 
combine (weight) their scores to achieve the most reliable diagnosis? Procedures for deriving and 
using classification functions are discussed in Sections 9.4.2 and 9.6.7.3

9.2.5 Adequacy of Classification

Given classification functions, what proportion of cases is correctly classified? When errors occur, 
how are cases misclassified? For instance, what proportion of learning-  disabled children is correctly 
classified as learning-  disabled, and among those who are incorrectly classified, are they more often 
put into the group of nondisabled children or into the group of emotionally disordered children?

Classification functions are used to predict group membership for new cases and to check the 
adequacy of classification for cases in the same sample through cross-  validation. If the researcher 
knows that some groups are more likely to occur, or if some kinds of misclassification are especially 
undesirable, the classification procedure can be modified. Procedures for deriving classification 
functions and modifying them are discussed in Section 9.4.2; procedures for testing them are dis-
cussed in Section 9.6.7.

9.2.6 Effect Size

What is the degree of relationship between group membership and the set of predictors? If the first 
discriminant function separates the nondisabled group from the other two groups, how much does 
the variance for groups overlap the variance in combined test scores? If the second discriminant 

3Discriminant analysis provides classification of cases into groups where group membership is known, at least for the sample 
from which the classification equations are derived. Cluster analysis is a similar procedure except that group membership is 
not known. Instead, the analysis develops groups on the basis of similarities among cases.
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function separates learning-  disabled from emotionally disordered children, how much does the 
variance for these groups overlap the combined test scores for this discriminant function? This is 
basically a question of percent of variance accounted for and, as seen in Section 9.4.1, is answered 
through canonical correlation (Chapter 12). A canonical correlation is a multiple-  multiple correla-
tion because there are multiple variables on both sides of the regression equation. A multiple cor-
relation has multiple predictor variables (IVs) and a single criterion (DV). A canonical correlation 
has multiple criteria as well—  the df for the groups provide the multiple criteria in discriminant 
analysis. A canonical correlation is found for each discriminant function that, when squared, indi-
cates the proportion of variance shared between groups and predictors on that function. Confidence 
limits can be found for these effect size measures. An effect size and its confidence limits also are 
available for the overall discriminant analysis, identical to that available for omnibus MANOVA. 
Finally, an effect size and associated confidence interval may be found for group contrasts. Sec-
tion 9.6.5 discusses all of these measures of effect size.

9.2.7 Importance of Predictor Variables

Which predictors are most important in predicting group membership? Which test scores are help-
ful for separating nondisabled children from children with disorders, and which are helpful for 
separating learning-  disabled children from emotionally disordered children?

Questions about importance of predictors are analogous to those of importance of DVs in 
MANOVA, to those of IVs in multiple regression, and to those of IVs and DVs in canonical cor-
relation. One procedure in DISCRIM is to interpret the correlations between the predictors and the 
discriminant functions, as discussed in Section 9.6.3.2. A second procedure is to evaluate predictors 
by how well they separate each group from all the others, as discussed in Section 9.6.4. (Or impor-
tance can be evaluated as in MANOVA, Section 7.5.3.)

9.2.8 Significance of Prediction With Covariates

After statistically removing the effects of one or more covariates, can one reliably predict group 
membership from a set of predictors? In DISCRIM, as in MANOVA, the ability of some predic-
tors to promote group separation can be assessed after adjustment for prior variables. If scores on 
the Wechsler Intelligence Scale for Children (WISC) are considered the covariate and given the 
first entry in DISCRIM, do scores on the Illinois Test of Psycholinguistic Ability (ITPA), the Wide 
Range Achievement Test, and Figure Drawings contribute to the prediction of group membership 
when they are added to the equation?

Rephrased in terms of sequential discriminant analysis, the question becomes, Do scores on the 
ITPA, the Wide Range Achievement Test, and Figure Drawings provide significantly better classifica-
tion among the three groups than that afforded by scores on the WISC alone? Sequential DISCRIM is 
discussed in Section 9.5.2. Tests for contribution of added predictors are given in Section 9.6.7.3.

9.2.9 Estimation of Group Means

If predictors discriminate among groups, it is important to report just how the groups differ on 
those variables. The best estimate of central tendency in a population is the sample mean. If, for 
example, the ITPA discriminates between groups with learning disabilities and emotional disorders, 
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it is worthwhile to compare and report the mean ITPA score for learning-  disabled children and the 
mean ITPA score for emotionally disordered children.

9.3 Limitations to Discriminant Analysis

9.3.1 Theoretical Issues

Because DISCRIM is typically used to predict membership in naturally occurring groups rather 
than groups formed by random assignment, questions such as why we can reliably predict group 
membership or what causes differential membership are often not asked. If, however, group mem-
bership has occurred by random assignment, inferences of causality are justifiable as long as proper 
experimental controls have been instituted. The DISCRIM question then becomes, Does treatment 
following random assignment to groups produce enough difference in the predictors that we can 
now reliably separate groups on the basis of those variables?

As implied, limitations to DISCRIM are the same as limitations to MANOVA. The usual 
difficulties of generalizability apply to DISCRIM. But the cross-  validation procedure described in 
Section 9.6.7.1 gives some indication of the generalizability of a solution.

9.3.2 Practical Issues

Practical issues for DISCRIM are basically the same as for MANOVA. Therefore, they are dis-
cussed here only to the extent of identifying the similarities between MANOVA and DISCRIM and 
identifying the situations in which assumptions for MANOVA and DISCRIM differ.

Classification makes fewer statistical demands than does inference. If classification is the 
primary goal, then most of the following requirements (except for outliers and homogeneity of 
variance–  covariance matrices) are relaxed. If, for example, you achieve 95% accuracy in classifica-
tion, you hardly worry about the shape of distributions. Nevertheless, DISCRIM is optimal under 
the same conditions where MANOVA is optimal; and, if the classification rate is unsatisfactory, it 
may be because of violation of assumptions or limitations. And, of course, deviation from assump-
tions may distort tests of statistical significance just as in MANOVA.

9.3.2.1 Unequal Sample Sizes, Missing Data, and Power

As DISCRIM is typically a one-  way analysis, no special problems are posed by unequal sample 
sizes in groups.4 In classification, however, a decision is required as to whether you want the a priori 
probabilities of assignment to groups to be influenced by sample size. That is, do you want the 
probability with which a case is assigned to a group to reflect the fact that the group itself is more 
(or less) probable in the sample? Section 9.4.2 discusses this issue, and use of unequal a priori prob-
abilities is demonstrated in Section 9.7. Regarding missing data (absence of scores on predictors for 
some cases), consult Section 6.3.2.1 and Chapter 4 for a review of problems and potential solutions.

As discussed in Section 7.3.2.1, the sample size of the smallest group should exceed the 
number of predictor variables. Although sequential and stepwise DISCRIM avoid the problems 

4Actually a problem does occur if rotation is desired because discriminant functions may be nonorthogonal with unequal n
(cf. Chapter 13), but rotation of axes is uncommon in discriminant analysis.
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of multicollinearity and singularity by a tolerance test at each step, overfitting (producing re-
sults so close to the sample that they do not generalize to other samples) occurs with all forms 
of DISCRIM if the number of cases does not notably exceed the number of predictors in the 
smallest group.5

Issues of power, also, are the same as for MANOVA if tests of statistical significance are to be 
applied. Section 7.3.2.1 discusses these issues and methods for determining sample size to obtain 
the desired power.

9.3.2.2 Multivariate Normality

When using statistical inference in DISCRIM, the assumption of multivariate normality is that 
scores on predictors are independently and randomly sampled from a population, and that the 
sampling distribution of any linear combination of predictors is normally distributed. No tests are 
currently feasible for testing the normality of all linear combinations of sampling distributions of 
means of predictors.

However, DISCRIM, like MANOVA, is robust to failures of normality if violation is caused 
by skewness rather than outliers. Recall that a sample size that would produce 20 df for error in the 
univariate ANOVA case should ensure robustness with respect to multivariate normality, as long as 
sample sizes are equal and two-  tailed tests are used. (Calculation of df for error in the univariate 
case is discussed in Section 3.2.1.)

Because tests for DISCRIM typically are two-  tailed, this requirement poses no difficulty. 
Sample sizes, however, are often not equal for applications of DISCRIM because naturally occur-
ring groups rarely occur or are sampled with equal numbers of cases in groups. As differences in 
sample size among groups increase, larger overall sample sizes are necessary to assure robustness. 
As a conservative recommendation, robustness is expected with 20 cases in the smallest group if 
there are only a few predictors (say, five or fewer).

If samples are both small and unequal in size, assessment of normality is a matter of judg-
ment. Are predictors expected to have normal sampling distributions in the population being 
sampled? If not, the transformation of one or more predictors (cf. Chapter 4) may be worthwhile.

9.3.2.3 Absence of Outliers

DISCRIM, like MANOVA, is highly sensitive to inclusion of outliers. Therefore, run a test for uni-
variate and multivariate outliers for each group separately, and transform or eliminate significant 
outliers before DISCRIM (see Chapter 4).

9.3.2.4 Homogeneity of Variance–Covariance Matrices

In inference, when sample sizes are equal or large, DISCRIM, like MANOVA (Section 7.3.2.4), is 
robust to violation of the assumption of equality of within-  group variance–  covariance (dispersion) 
matrices. However, when sample sizes are unequal and small, results of significance testing may be 
misleading if there is heterogeneity of the variance–  covariance matrices.

Although inference is usually robust with respect to heterogeneity of variance–  covariance 
matrices with decently sized samples, classification is not. Cases tend to be overclassified into 

5Also, highly unequal sample sizes are better handled by logistic regression (Chapter 10) than by discriminant analysis.
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groups with greater dispersion. If classification is an important goal of analysis, test for homogene-
ity of variance–covariance matrices.

Homogeneity of variance–  covariance matrices is assessed through procedures of Section 
7.3.2.4 or by inspection of scatterplots of scores on the first two discriminant functions produced 
separately for each group. These scatterplots are available through IBM SPSS DISCRIMINANT. 
Rough equality in overall size of the scatterplots is evidence of homogeneity of variance–  covariance 
matrices. Anderson’s test, available in SAS DISCRIM (pool=test) assesses homogeneity 
of variance–  covariance matrices, but is also sensitive to nonnormality. This test is demonstrated in 
Section 9.7.1.5. Another overly sensitive test, Box’s M, is available in IBM SPSS MANOVA and 
DISCRIMINANT.

If heterogeneity is found, one can transform predictors, use separate covariance matrices 
during classification, use quadratic discriminant analysis (shown in Section 9.7), or use nonpara-
metric classification. Transformation of predictors follows procedures of Chapter 4. Classification 
on the basis of separate covariance matrices, the second remedy, is available through IBM SPSS 
DISCRIMINANT and SAS DISCRIM. Because this procedure often leads to overfitting, it should 
be used only when the sample is large enough to permit cross-  validation (Section 9.6.7.1). Quadratic 
discrimination analysis, the third remedy, is available in SAS DISCRIM (cf. Section 9.7). This pro-
cedure avoids overclassification into groups with greater dispersion, but performs poorly with small 
samples (Norušis, 1990).

SAS DISCRIM uses separate matrices and computes quadratic discriminant functions with 
the instruction pool=no. With the instruction pool=test, SAS DISCRIM uses the pooled 
variance–  covariance matrix only if heterogeneity of variance–  covariance matrices is not significant 
(Section 9.7.2). With small samples, nonnormal predictors, and heterogeneity of variance–  covariance 
matrices, SAS DISCRIM offers a fourth remedy—  nonparametric classification methods—  which 
avoids overclassification into groups with greater dispersion and is robust to nonnormality.

Therefore, transform the variables if there is significant departure from homogeneity, samples 
are small and unequal, and inference is the major goal. If the emphasis is on classification and dis-
persions are unequal, use (1) separate covariance matrices and/or quadratic discriminant analysis 
if samples are large and variables are normal and (2) nonparametric classification methods if vari-
ables are nonnormal and/or samples are small.

9.3.2.5 Linearity

The DISCRIM model assumes linear relationships among all pairs of predictors within each group. 
The assumption is less serious (from some points of view) than others, however, in that violation 
leads to reduced power rather than increased Type I error. The procedures in Section 6.3.2.6 may be 
applied to test for, and improve, linearity and to increase power.

9.3.2.6 Absence of Multicollinearity and Singularity

Multicollinearity or singularity may occur with highly redundant predictors, making matrix inver-
sion unreliable. Fortunately, most computer programs for DISCRIM protect against this possibility 
by testing tolerance. Predictors with insufficient tolerance are excluded.

Guidelines for assessing multicollinearity and singularity for programs that do not include 
tolerance tests, and for dealing with multicollinearity or singularity when it occurs, are in Sec-
tion 7.3.2.8. Note that analysis is done on predictors, not “DVs” in DISCRIM.
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9.4  Fundamental Equations for Discriminant 
Analysis

Hypothetical scores on four predictors are given for three groups of learning-  disabled children for 
demonstration of DISCRIM. Scores for three cases in each of the three groups are shown in Table 9.1.

The three groups are MEMORY (children whose major difficulty seems to be with tasks 
related to memory), PERCEPTION (children who show difficulty in visual perception), and 
COMMUNICATION (children with language difficulty). The four predictors are PERF (Performance 
Scale IQ of the WISC), INFO (Information subtest of the WISC), VERBEXP (Verbal Expression 
subtest of the ITPA), and AGE (chronological age in years). The grouping variable, then, is type of 
learning disability, and the predictors are selected scores from psychodiagnostic instruments and age.

Fundamental equations are presented for two major parts of DISCRIM: discriminant 
functions and classification equations. Syntax and selected output for this example appear in 
Section 9.4.3 for IBM SPSS DISCRIMINANT and SAS DISCRIM.

9.4.1 Derivation and Test of Discriminant Functions

The fundamental equations for testing the significance of a set of discriminant functions are the same as 
for MANOVA, discussed in Chapter 7. Variance in the set of predictors is partitioned into two sources: 
variance attributable to differences between groups and variance attributable to differences within 
groups. Through procedures shown in Equations 7.1 through 7.3, cross-  products matrices are formed.

Stotal = Sbg + Swg (9.1)

The total cross-  products matrix (Stotal) is partitioned into a cross-  products matrix asso-
ciated with differences between groups (Sbg) and a cross-  products matrix of differences 
within groups (Swg).

TABLE 9.1 Hypothetical Small Data Set for Illustration of 
Discriminant Analysis Group

Predictors

Group PERF INFO VERBEXP AGE

87 5 31 6.4
MEMORY 97 7 36 8.3

112 9 42 7.2

102 16 45 7.0
PERCEPTION 85 10 38 7.6

76 9 32 6.2

120 12 30 8.4
COMMUNICATION 85 8 28 6.3

99 9 27 8.2
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For the example in Table 9.1, the resulting cross-  product matrices are

Sbg = ≥ 314.89 -71.56 -180.00 14.49

-71.56 32.89 8.00 -2.22

-180.00 8.00 168.00 -10.40

14.49 -2.22 -10.40 074

¥
Swg = ≥1286.00 220.00 348.33 50.00

220.00 45.33 73.67 6.37

348.33 73.67 150.00 9.73

50.00 6.37 9.73 5.49

¥
Determinants6 for these matrices are

 � Swg � = 4.70034789 * 1013

� Sbg + Swg � = 448.63489 * 1013

Following procedures in Equation 7.4, Wilks’ lambda7 for these matrices is

� =
� Swg �

� Sbg + Swg �
= .010477

To find the approximate F ratio, as per Equation 7.5, the following values are used:

p = 4 the number of predictor variables

dfbg = 2 the number of groups minus one, or k – 1

dfwg = 6  the number of groups times the quantity (n – 1) where n is the number of 
cases per group. Because n is often not equal for all groups in DISCRIM, 
an alternative equation for dfwg is N – k, where N is the total number of 
cases in all groups—  9 in this case.

Thus we obtain

s = min ( p, k - 1) = min (4, 2) = 2

y = (.010477)1/2 = .102357

df2 = (2) c 6 -
4 - 2 + 1

2
d - c 4(2) - 2

2
d = 6

df1 = 4(2) = 8

Approximate F(8, 6) = a 1 - .102357

.102357
b a 6

8
b = 6.58

6A determinant, as described in Appendix A, can be viewed as a measure of generalized variance of a matrix.
7Alternative statistical criteria are discussed in Section 9.6.1.1. Note that bg and wg are used in place of effect and error, 
respectively, in these equations.
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Critical F with 8 and 6 df at a = .05 is 4.15. Because the obtained F exceeds critical F, we 
conclude that the three groups of children can be distinguished on the basis of the combination of 
the four predictors.

This is a test of overall relationship between groups and predictors. It is the same as the over-
all test of a main effect in MANOVA. In MANOVA, this result is followed by an assessment of the 
importance of the various DVs to the main effect. In DISCRIM, however, when an overall relation-
ship is found between groups and predictors, the next step is to examine the discriminant functions 
that compose the overall relationship.

The maximum number of discriminant functions is either (1) the number of predictors or 
(2) the degrees of freedom for groups, whichever is smaller. Because there are three groups (and 
four predictors) in this example, there are potentially two discriminant functions contributing to the 
overall relationship. And, because the overall relationship is statistically significant, at least the first 
discriminant function is very likely to be significant, and both may be significant.

Discriminant functions are like regression equations; a discriminant function score for a case 
is predicted from the sum of the series of predictors, each weighted by a coefficient. There is one set 
of discriminant function coefficients for the first discriminant function, a second set of coefficients 
for the second discriminant function, and so forth. Subjects get separate discriminant function scores 
for each discriminant function when their own scores on predictors are inserted into the equations.

To solve for the (standardized) discriminant function score for the ith function, Equation 9.2 
is used.

Dzi = di1z1 + di2 z2 + g + dip zp (9.2)

A child’s standardized score on the ith discriminant function (Di) is found by multiply-
ing the standardized score on each predictor (z) by its standardized discriminant func-
tion coefficient (di) and then adding the products for all predictors.

Discriminant function coefficients are found in the same manner as are coefficients for 
canonical variates (to be described in Section 12.4.2). In fact, DISCRIM is basically a problem 
in canonical correlation with group membership on one side of the equation and predictors on 
the other, where successive canonical variates (here called discriminant functions) are computed. 
In DISCRIM, di, are chosen to maximize differences between groups relative to differences within 
groups.

Just as in multiple regression, Equation 9.2 can be written either for raw scores or for stan-
dardized scores. A discriminant function score for a case, then, can also be produced by multiplying 
the raw score on each predictor by its associated unstandardized discriminant function coefficient, 
adding the products over all predictors, and adding a constant to adjust for the means. The score 
produced in this way is the same Di as produced in Equation 9.2. The mean of each discriminant 
function over all cases is zero, because the mean of each predictor, when standardized, is zero. The 
standard deviation of each Di is 1.

Just as Di can be calculated for each case, a mean value of Di can be calculated for each 
group. The members of each group considered together have a mean score on a discriminant func-
tion that is the distance of the group, in standard deviation units, from the zero mean of the discrimi-
nant function. Group means on Di are typically called centroids in reduced space, the space having 
been reduced from that of the p predictors to a single dimension, or discriminant function.
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A canonical correlation is found for each discriminant function. Canonical correlations are 
found by solving for the eigenvalues and eigenvectors of a correlation matrix, in a process described 
in Chapters 12 and 13. An eigenvalue is a form of a squared canonical correlation which, as is usual 
for squared correlation coefficients, represents overlapping variance among variables, in this case 
between predictors and groups. Successive discriminant functions are evaluated for significance, as 
discussed in Section 9.6.2. Also discussed in Sections 9.6.3.1 and 9.6.3.2 are structure matrices of 
loadings and group centroids.

If there are only two groups, discriminant function scores can be used to classify cases into 
groups. A case is classified into one group if its Di score is above zero, and into the other group if 
the Di score is below zero. With numerous groups, classification is possible from the discriminant 
functions, but it is simpler to use the procedure in the following section.

9.4.2 Classification

To assign cases into groups, a classification equation is developed for each group. Three classifica-
tion equations are developed for the example in Table 9.1, where there are three groups. Data for 
each case are inserted into each classification equation to develop a classification score for each 
group for the case. The case is assigned to the group for which it has the highest classification score.

In its simplest form, the basic classification equation for the jth group ( j = 1, 2, . . . , k) is

Cj = cj0 + cj1X1 + cj2 X2 + g + cjp Xp (9.3)

A score on the classification function for group j (Cj) is found by multiplying the raw 
score on each predictor (X) by its associated classification function coefficient (cj) sum-
ming over all predictors, and adding a constant cj0.

Classification coefficients, cj are found from the means of the p predictors and the pooled 
within-  group variance–  covariance matrix, W. The within-  group covariance matrix is produced 
by dividing each element in the cross-  product matrix, Swg by the within-  group degrees of freedom, 
N – k. In matrix form,

Cj = W- 1Mj (9.4)

The column matrix of classification coefficients for group j (Cj = cj1, cj2,c , cjp ) is 
found by multiplying the inverse of the within-  group variance–  covariance matrix W- 1

by a column matrix of means for group j on the p variables (Mj = Xj1, Xj2,c , Xjp ).

The constant for group j, cj0, is found as follows:

cj0 = a- 1

2
bC�jMj (9.5)

The constant for the classification function for group j (cj0) is formed by multiplying 
–1/2 times the transpose of the column matrix of classification coefficients for group j
(C�j ) times the column matrix of means for group j (Mj).
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For the sample data, each element in the Swg matrix from Section 9.4.1 is divided by dfwg = dferror = 6 
to produce the within-group variance–covariance matrix:

Wwg = ≥214.33 36.67 58.06 8.33

36.67 7.56 12.28 1.06

58.06 12.28 25.00 1.62

8.33 1.06 1.62 0.92

¥
The inverse of the within-  group variance–  covariance matrix is

W -1 = ≥ 0.04362 -0.20195 0.00956 -0.17990

-0.21095 1.62970 -0.37037 0.60623

0.00956 -0.37037 0.20071 -0.01299

-0.17990 0.60623 -0.01299 2.05006

¥
Multiplying W- 1 by the column matrix of means for the first group gives the matrix of classifica-
tion coefficients for that group, as per Equation 9.4.

C1 = W-1≥98.67

7.00

36.33

7.30

¥ = ≥ 1.92

-17.56

5.55

0.99

¥
Then, the constant for Group 1, according to Equation 9.5, is

c1,0 = (-1>2)[1.92. -17.56, 5.55, 0.99]≥98.67

7.00

36.33

7.30

¥ = -137.83

(Values used in these calculations were carried to several decimal places before rounding.) When 
these procedures are repeated for Groups 2 and 3, the full set of classification equations is produced, 
as shown in Table 9.2.

TABLE 9.2 Classification Function Coefficients for Sample 
Data of Table 9.1

Group 1: 
MEMORY

Group 2: 
PERCEP

Group 3: 
COMMUN

PERF 1.92420 0.58704 1.36552
INFO -17.56221 -8.69921 -10.58700
VERBEXP 5.54585 4.11679 2.97278
AGE 0.98723 5.01749 2.91135
(CONSTANT) -137.82892 -71.28563 -71.24188
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In its simplest form, classification proceeds as follows for the first case in Group 1. Three 
classification scores, one for each group, are calculated for the case by applying Equation 9.3:

C1 = -137.83 + (1.92)(87) + (-17.56)(5) + (5.55)(31) + (0.99)(6.4) = 119.80

C2 = -71.29 + (0.59)(87) + (-8.70)(5) + (4.12)(31) + (5.02)(6.4) = 96.39

C3 = -71.24 + (1.37)(87) + (-10.59)(5) + (2.97)(31) + (2.91)(6.4) = 105.69

Because this child has the highest classification score in Group 1, the child is assigned to 
Group 1, a correct classification in this case.

This simple classification scheme is most appropriate when equal group sizes are expected 
in the population. If unequal group sizes are expected, the classification procedure can be modi-
fied by setting a priori probabilities to group size. The classification equation for group j (Cj ) 
then becomes

Cj = cj0 + a
p

i = 1
cji Xi + ln (nj>N) (9.6)

where nj is the size of group j and N is the total sample size.

It should be reemphasized that the classification procedures are highly sensitive to hetero-
geneity of variance–  covariance matrices. Cases are more likely to be classified into the group with 
the greatest dispersion, that is, into the group for which the determinant of the within-  group covari-
ance matrix is greatest. Section 9.3.2.4 provides suggestions for dealing with this problem.

Uses of classification procedures are discussed in more detail in Section 9.6.7.

9.4.3 Computer Analyses of Small-Sample Example

Syntax and selected output for computer analyses of the data in Table 9.1, using the simplest 
methods, are in Tables 9.3 and 9.4 for IBM SPSS DISCRIMINANT and SAS DISCRIM, 
respectively.

IBM SPSS DISCRIMINANT (Table 9.3) assigns equal prior probability for each group by 
default. The TABLE instruction requests a classification table. The output summarizing the 
Canonical Discriminant Functions appears in two tables. The first shows Eigenvalue, % 
of Variance, and Cumulative % of variance accounted for by each function, and Canonical 

TABLE 9.3 Syntax and Selected IBM SPSS DISCRIMINANT Output for Discriminant Analysis 
of Sample Data in Table 9.1

DISCRIMINANT
/GROUPS=GROUP(1 3)
/VARIABLES=PERF INFO VERBEXP AGE
/ANALYSIS ALL
/PRIORS EQUAL
/STATISTICS = TABLE
/CLASSIFY=NONMISSING POOLED.

(continued )
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Summary of Canonical Discriminant Functions

Elgenvalues

Function Eigenvalue
% of 

Variance
Cumulative 

%
Canonical 
Correlation

1 13.486a 70.7 70.7 .965
2 5.589a 29.3 100.0 .921

a. First 2 canonical discriminant functions were used in the analysis.

Wilks’ Lambda

Test of Function(s)
Wilks’ 

Lambda
Chi-

square df Sig.

1 through 2 .010 20.514 8 .009
2 .152 8.484 3 .037

Standardized Canonical Discriminant Function Coefficients

Function

1 2

Performance IQ -2.504 -1.474
Information 3.490 -.284
Verbal expression -1.325 1.789
AGE .503 .236

Structure Matrix

Function

1 2

Information .228* .066
Verbal expression -.022 .446*
Performance IQ -.075 -.173*
AGE -.028 -.149*

Pooled within-  groups correlations between discriminating 
variables and standardized canonical discriminant functions 
Variables ordered by absolute size of correlation within function

* Largest absolute correlation between each variable and 
any discriminant function

TABLE 9.3 Continued 
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Correlation for each discriminant function. Squared canonical correlations, the effect sizes for the 
discriminant functions, are (.965)2 = .93 and (.921)2 = .85, respectively. The first discriminant func-
tion accounts for 70.7% of the between-  group (explained) variance in the solution while the second 
accounts for the remaining between-  group variance. The Wilks’ Lambda table shows the “peel off” 
significance tests of successive discriminant functions. For the combination of both discrimination 
functions, 1 through 2, all functions tested together, Chi square = 20.514. After the first function 
is removed, the test of function 2 shows that Chi square = 8.484 is still statistically significant at 
a = .05 because Sig. = .0370. This means that the second discriminant function is significant as 
well as the first. If not, the second would not have been marked as one of the discriminated func-
tions remaining in the analysis.

Standardized Canonical Discriminant Function Coefficients (Equation 9.2) are given 
for deriving discriminant function scores from standardized predictors. Correlations (loadings) be-
tween predictors and discriminant functions are given in the Structure Matrix. These are ordered 
so that predictors loading on the first discriminant function are listed first, and those loading on the 
second discriminant function next. Then Functions at Group Centroids are shown, indicating the 
average discriminant score (aka centroid or multivariate mean) for each group on each function.

In the Classification Results table, produced by the TABLE instruction in the STATISTICS
paragraph, rows represent actual group membership and columns represent predicted group 

TABLE 9.3 Continued 

Functions at Group Centroids

Function

Group 1 2

Memory -4.102 .691
Perception 2.981 1.942
Communication 1.122 -2.633

Unstandardized canonical discriminant 
functions evaluated at group means

Classification Statistics

Classification Resultsa

Predicted Group Membership

Group Memory Perception Communication Total

Original Count Memory 3 0 0 3
Perception 0 3 0 3
Communication 0 0 3 3

% Memory 100.0 .0 .0 100.0
Perception .0 100.0 .0 100.0
Communication .0 .0 100.0 100.0

a. 100.0% of original grouped cases correctly classified.
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membership. Within each cell, the number and percent of cases correctly classified are shown. For 
this example, all of the diagonal cells show perfect classification (100.0%).

Syntax for SAS DISCRIM (Table 9.4) requests a manova table of the usual multivariate 
output. The request for can provides canonical correlations, loading matrices, and much more.

SAS DISCRIM output (Table 9.4) begins with a summary of input and degrees of freedom, fol-
lowed by a summary of GROUPs, their Frequency (number of cases), Weight (sample sizes in 
this case), Proportion of cases in each group, and Prior Probability (set equal by de-
fault). This is followed by the multivariate results as per SAS GLM, produced by requesting manova.
Following the request for can, information about canonical correlation and eigenvalues for each of the 
discriminant functions follows, with information matching that of IBM SPSS. SAS, however, explicitly 
includes squared canonical correlations. Significance tests of successive discriminant functions are of 
the “peel off” variety, as per IBM SPSS. SAS DISCRIM uses F tests rather than the x2 tests used by 
IBM SPSS. Also, the column labeled Likelihood Ratio is the Wilks’ Lambda of IBM 
SPSS. Results are consistent with those of IBM SPSS, however. The structure matrix then appears in a 
table labeled Pooled within Canonical Structure, also produced by request-
ing can (a great deal of additional output produced by that request is omitted here). The Class 
Means on Canonical Variables are the group centroids of IBM SPSS.

Equations for classification functions and classification coefficients (Equation 9.6) are given 
in the following matrix, labeled Linear Discriminant Function for GROUP.
Finally, results of classification are presented in the table labeled Number of Observations 
and Percent Classified into GROUP where, as usual, rows represent actual group 
and columns represent predicted group. Cell values show number of cases classified and percentage 
correct. Number of erroneous classifications for each group is presented, and prior probabilities are 
repeated at the bottom of this table.

TABLE 9.4 Syntax and Selected SAS DISCRIM Output for Discriminant Analysis of Small-  Sample 
Data of Table 9.1

proc discrim data=SASUSER.SS_DISC manova can;

class GROUP;

     var PERF INFO VERBEXP AGE;

run;

The DISCRIM Procedure

Observations 9 DF Total 8
Variables 4 DF Within Classes 6
Classes 3 DF Between Classes 2

Class Level Information

GROUP

Variable

Name Frequency Weight Proportion

Prior

Probability

1 _1 3 3.0000 0.333333 0.333333
2 _2 3 3.0000 0.333333 0.333333
3 _3 3 3.0000 0.333333 0.333333



Multivariate Statistics and F Approximations

S=2 M=0.5 N=0.5

Statistic Value

F

Value

Num

DF

Den

DF Pr > F

Wilks’ Lambda 0.01047659 6.58 8 6 0.0169
Pillai’s Trace 1.77920446 8.06 8 8 0.0039
Hotelling-Lawley Trace 19.07512732 8.18 8 2.8235 0.0627
Roy’s Greatest Root 13.48590176 13.49 4 4 0.0136

NOTE: F Statistic for Roy’s Greatest Root is an upper bound.

NOTE: F Statistic for Wilks’ Lambda is exact.

Canonical Discriminant Analysis

 

Canonical

Correlation

Adjusted

Canonical

Correlation

Approximate

Standard

Error

Squared

Canonical

Correlation

1 0.964867 0.944813 0.024407 0.930967
2 0.920998 . 0.053656 0.848237

Test of HO: The canonical correlations in 

the current row and all that follow are zeroEigenvalues of Inv(E)*H

= CanRsq/(1-CanRsq)

  Eigenvalue Difference Proportion Cumulative

Likelihood

Ratio

Approximate

F Value

Num

DF

Den

DF PR > F

1 13.4859 7.8967 0.7070 0.7070 0.01047659 6.58 8 6 0.0169
2 5.5892   0.2930 1.0000 0.15176290 7.45 3 4 0.0409

TABLE 9.4 Continued 

(continued )

395
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TABLE 9.4 Continued 

Pooled Within Canonical Structure

Variable Can1 Can2

PERF −0.075459 −0.173408
INFO 0.227965 0.066418
VERBEXP −0.022334 0.446298
AGE −0.027861 −0.148606

Class Means on Canonical Variables

GROUP Can1 Can2

1 −4.102343810 0.690967850
2 2.980678873 1.941686409
3 1.121664938 −2.632654259

Linear Discriminant Function

Constant = -.5 X
_
'
j

COV
-1

X
_

j
Coefficient Vector = COV

-1
X
_

j

Linear Discriminant Function for GROUP

Variable 1 2 3

Constant −137.81247 −71.28575 −71.24170
PERF 1.92420 0.58704 1.36552
INFO −17.56221 −8.69921 −10.58700
VERBEXP 5.54585 4.11679 2.97278
AGE 0.98723 5.01749 2.91135

Classification Summary for Calibration Data: SASUSER.SS_DISC 

Resubstitution Summary using Linear Discriminant Function

Generalized Squared Distance Function

D
2

j
(X
_
) = (X-X

_

j
)' COV

-1
(X-X

_

j
)

Posterior Probability of Membership in Each GROUP

Pr(j|x) = exp(-.5 D
2

j
(X)) / SUM

k
exp(-.5 D

2

j
(X))
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9.5 Types of Discriminant Analyses

The three types of discriminant analyses—  standard (direct), sequential, and statistical (stepwise)—
are analogous to the three types of multiple regressions discussed in Section 5.5. Criteria for 
choosing among the three strategies are the same as those discussed in Section 5.5.4 for multiple 
regression.

9.5.1 Direct Discriminant Analysis

In standard (direct) DISCRIM, like standard multiple regression, all predictors enter the equa-
tions at once and each predictor is assigned only the unique association it has with groups. 
Variance shared among predictors contributes to the total relationship, but not to any one 
predictor.

The overall test of relationship between predictors and groups in direct DISCRIM is the same 
as the test of main effect in MANOVA, where all discriminant functions are combined and DVs 
are considered simultaneously. Direct DISCRIM is the model demonstrated in Section 9.4.1. All the 
computer programs described later in Table 9.16 perform direct DISCRIM; the use of some of them 
for that purpose is shown in Tables 9.3 and 9.4.

TABLE 9.4 Continued 

From GROUP 1 2 3 Total

1 3 0 0 3
100.00 0.00 0.00 100.00

2 0 3 0 3
0.00 100.00 0.00 100.00

3 0 0 3 3
0.00 0.00 100.00 100.00

Total 3 3 3 9
33.33 33.33 33.33 100.00

Priors 0.33333 0.33333 0.33333

Error Count Estimates for GROUP

1 2 3 Total

Rate 0.0000 0.0000 0.0000 0.0000
Priors 0.3333 0.3333 0.3333

Number of Observations and Percent Classified into GROUP
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9.5.2 Sequential Discriminant Analysis

Sequential (or, as some prefer to call it, hierarchical) DISCRIM is used to evaluate contributions to 
prediction of group membership by predictors as they enter the equations in an order determined by 
the researcher. The researcher assesses improvement in classification when a new predictor is added 
to a set of prior predictors. Does classification of cases into groups improve reliably when the new 
predictor or predictors are added (cf. Section 9.6.7.3)?

If predictors with early entry are viewed as covariates and an added predictor is viewed as 
a DV, DISCRIM is used for analysis of covariance. Indeed, sequential DISCRIM can be used to 
perform stepdown analysis following MANOVA (cf. Section 7.5.3.2) because stepdown analysis is 
a sequence of ANCOVAs.

Sequential DISCRIM also is useful when a reduced set of predictors is desired and there is 
some basis for establishing a priority order among them. If, for example, some predictors are easy 
or inexpensive to obtain and they are given early entry, a useful, cost-  effective set of predictors may 
be found through the sequential procedure.

Neither IBM SPSS DISCRIMINANT nor SAS DISCRIM8 provides convenient methods for 
entering predictors in priority order. Instead, the sequence is set up by running a separate discriminant 
analysis for each step, the first with the highest priority variable, the second with the two highest pri-
ority variables entering simultaneously, and so on. One or more variables may be added at each step. 
However, the test for the significance of improvement in prediction is tedious in the absence of very 
large samples (Section 9.6.7.3). If you have only two groups and sample sizes are approximately equal, 
you might consider performing sequential discriminant analysis through IBM SPSS REGRESSION or 
interactive SAS REGRESS where the DV is a dichotomous variable representing group membership, 
with groups coded 0 and 1. If classification is desired, preliminary multiple regression analysis with 
fully flexible entry of predictors could be followed by discriminant analysis to provide classification.

If you have more than two groups or your group sizes are very unequal, sequential logistic 
regression is the procedure of choice, and, as seen in Chapter 10, most programs classify cases.

9.5.3 Stepwise (Statistical) Discriminant Analysis

When the researcher has no reasons for assigning some predictors higher priority than others, 
statistical criteria can be used to determine order of entry in preliminary research. That is, if a 
researcher wants a reduced set of predictors but has no preferences among them, stepwise DISCRIM 
can be used to produce the reduced set. Entry of predictors is determined by user-  specified statisti-
cal criteria, of which several are available as discussed in Section 9.6.1.2.

Stepwise DISCRIM has the same controversial aspects as stepwise procedures in general 
(see Section 5.5.3). Order of entry may be dependent on trivial differences in relationships among 
predictors in the sample that do not reflect population differences. However, this bias is reduced if 
cross-  validation is used (cf. Sections 9.6.7.1 and 9.7.2). Costanza and Afifi (1979) recommend a 
probability to enter a criterion more liberal than .05. They suggest a choice in the range of .15 to 
.20 to ensure the entry of important variables.

In SAS, stepwise discriminant analysis is provided through a separate program—  STEPDISC.
Three entry methods, as well as additional statistical criteria for two of them, are available 
8Sequential discriminant analysis is available in BMDP4M (shown in Tabachnick & Fidell, 1989) and, interactively, through 
SYSTAT DISCRIM (shown in Tabachnick & Fidell, 2007).
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(cf. Section 9.6.1.2). IBM SPSS DISCRIMINANT has several methods for statistical discriminant 
analysis, summarized in Table 9.17.

9.6 Some Important Issues

9.6.1 Statistical Inference

Section 9.6.1.1 contains a discussion of criteria for evaluating the overall statistical significance of a 
set of predictors for predicting group membership. Section 9.6.1.2 summarizes methods for directing
the progression of stepwise discriminant analysis and statistical criteria for entry of predictors.

9.6.1.1 Criteria for Overall Statistical Significance

Criteria for evaluating overall statistical significance in DISCRIM are the same as those in 
MANOVA. The choice among Wilks’ lambda, Roy’s greatest characteristic root (gcr), Hotelling’s 
trace, and Pillai’s criterion is based on the same considerations as discussed in Section 7.5.2. 
Different statistics are available in different programs, as noted in Section 9.8.

Two additional statistical criteria, Mahalanobis’ D2 and Rao’s V, are especially relevant to 
stepwise DISCRIM. Mahalanobis’ D2 is based on distance between pairs of group centroids which 
is then generalizable to distances over multiple pairs of groups. Rao’s V is another generalized 
distance measure that attains its largest value when there is greatest overall separation among groups.

These two criteria are available both to direct the progression of stepwise discriminant 
analysis and to evaluate the reliability of a set of predictors to predict group membership. Similar 
to Wilks’ lambda, Mahalanobis’ D2 and Rao’s V are based on all discriminant functions rather than 
one. Note that lambda, D2, and V are descriptive statistics; they are not, themselves, inferential 
statistics, although inferential statistics are applied to them.

9.6.1.2 Stepping Methods

Related to the criteria for statistical inference is the choice among methods to direct the progression 
of entry of predictors in stepwise discriminant analysis. Different methods of progression maximize 
group differences along different statistical criteria.

Selection of stepping method depends on the availability of programs and the choice of 
statistical criterion. If, for example, the statistical criterion is Wilks’ lambda, it is beneficial to 
choose the stepping method that minimizes �. (In IBM SPSS DISCRIMINANT, � is the least 
expensive method and is recommended in the absence of contrary reasons.) Or, if the statistical 
criterion is “change in Rao’s V,” the obvious choice of stepping method is RAO.

Statistical criteria also can be used to modify stepping. For example, the user can modify 
minimum F for a predictor to enter, minimum F to avoid removal, and so on. SAS allows forward, 
backward, and “stepwise” stepping (cf. Section 5.5.3). Either partial R2 or significance level is 
chosen for variables to enter (forward stepping) or stay (backward stepping) in the model. Tolerance 
(the proportion of variance for a potential predictor that is not already accounted for by predictors in 
the equation) can be modified in SAS and IBM SPSS stepwise programs. Comparison of programs 
with respect to these stepwise statistical criteria is provided in Table 9.17.
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9.6.2 Number of Discriminant Functions

A number of discriminant functions are extracted in discriminant analysis with more than two 
groups. The maximum number of functions is the lesser of either degrees of freedom for groups 
or, as in canonical correlation, principal components analysis and factor analysis, equal to the 
number of predictors. As in these other analyses, some functions often carry no worthwhile 
information. It is frequently the case that the first one or two discriminant functions account for 
the lion’s share of discriminating power, with no additional information forthcoming from the 
remaining functions.

Many of the programs evaluate successive discriminant functions. For the IBM SPSS 
DISCRIMINANT example of Table 9.3, note that eigenvalues, percents of variance, and canonical 
correlations are given for each discriminant function for the small-  sample data of Table 9.1. With 
both functions included, the x2(8) of 20.514 indicates a relationship between groups and predictors 
that is highly unlikely to be due to chance. With the first discriminant function removed, there is still 
a reliable relationship between groups and predictors as indicated by x2(3) = 8.484, p = .037. This 
finding indicates that the second discriminant function is also reliable.

How much between-  group variability is accounted for by each discriminant function? The %
of Variance Values (in the Eigenvalues table) associated with discriminant 
functions indicate the relative proportion of between-  group variability accounted for by each func-
tion. In the small-sample example of Table 9.3, 70.70% of the between-  group variability is ac-
counted for by the first discriminant function and 29.30% by the second. These values appear as 
Proportions in the eigenvalue section of SAS DISCRIM output.

IBM SPSS DISCRIMINANT offers the most flexibility with regard to number of discriminant 
functions (through syntax mode only). The user can choose the number of functions, the critical 
value for proportion of variance accounted for (with succeeding discriminant functions dropped 
once that value is exceeded), or the significance level of additional functions. SAS DISCRIM and 
CANDISC (but not STEPDISC) provide tests of successive functions.

9.6.3 Interpreting Discriminant Functions

If a primary goal of analysis is to discover and interpret the combinations of predictors (the 
discriminant functions) that separate groups in various ways, then the next two sections are relevant. 
Section 9.6.3.1 reveals how groups are spaced out along the various discriminant functions; and 
Section 9.6.3.2 discusses correlations between predictors and the discriminant functions.

9.6.3.1 Discriminant Function Plots

Groups are spaced along the various discriminant functions according to their centroids. Recall 
from Section 9.4.1 that centroids are mean discriminant scores for each group on a function. 
Discriminant functions form axes and the centroids of the groups are plotted along the axes. If 
there is a big difference between the centroid of one group and the centroid of another along a 
discriminant function axis, the discriminant function separates the two groups. If there is not a big 
distance, the discriminant function does not separate the two groups. Many groups can be plotted 
along a single axis.

An example of a discriminant function plot is illustrated in Figure 9.2 for the data of 
Section 9.4. Centroids are obtained from the section called Functions at Group Centroids and
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Class Means on Canonical Variables means in Table 9.3. They are also available in SAS 
DISCRIM with a request for canonical information (Table 9.4).

The plot emphasizes the utility of both discriminant functions in separating the three 
groups. On the first discriminant function (X axis), the MEMORY group is some distance from 
the other two groups, but the COMMUNICATION and PERCEPTION groups are close together. 
On the second function (Y axis), the COMMUNICATION group is far from the MEMORY and 
PERCEPTION groups. It takes both discriminant functions, then, to separate the three groups 
from each other.

If there are four or more groups and, therefore, more than two statistically significant discrim-
inant functions, then pairwise plots of axes are used. One discriminant function is the X axis and 
another is the Y axis. Each group has a centroid for each discriminant function; paired centroids are 
plotted with respect to their values on the X and Y axes. Because centroids are only plotted pairwise, 
three significant discriminant functions require three plots (function 1 vs. function 2; function 1 vs. 
function 3; and function 2 vs. function 3), and so on.

IBM SPSS DISCRIMINANT provides a plot of group centroids for the first pair of discrimi-
nant functions. Cases as well as means are plotted, making separations among groups harder to see 
than with simpler plots, but facilitating evaluation of classification.

Plots of centroids on additional pairs of statistically significant discriminant functions have 
to be prepared by hand, or discriminant scores can be passed to a “plotting” program such as IBM 
SPSS PLOT. SAS passes the discriminant scores to plotting programs.

With factorial designs (Section 9.6.6), separate sets of plots are required for each significant 
main effect and interaction. Main effect plots have the same format as Figure 9.2, with one centroid 
per group per margin. Interaction plots have as many centroids as cells in the design.
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FIGURE 9.2 Centroids of three learning disability 
groups on the two discriminant functions derived 

from sample data of Table 9.1.



402 C H A P T E R  9

9.6.3.2 Structure Matrix of Loadings

Plots of centroids tell you how groups are separated by a discriminant function, but they do not 
reveal the meaning of the discriminant function. A variety of matrices exist to reveal the nature of the 
combination of predictors that separate the groups. Matrices of standardized discriminant (canonical) 
functions are basically regression weights, the weights you would apply to the score of each case 
to find a standardized discriminant score for that case (Equation 9.2). These suffer from the same 
difficulties in interpretation as standardized regression coefficients, discussed in Section 5.6.1.

The structure matrix (aka loading matrix) contains correlations between predictors and 
discriminant functions. The meaning of the function is inferred by a researcher from this pattern 
of correlations (loadings). Correlations between predictors and functions are called loadings in 
discriminant function analysis, canonical correlation analysis (Chapter 12), and factor analysis 
(see Chapter 13). If predictors X1, X2, and X3 load (correlate) highly with the function but predictors
X4 and X5 do not, the researcher attempts to understand what X1, X2, and X3 have in common 
with each other that is different from X4 and X5; the meaning of the function is determined by this 
understanding. (Read Section 13.6.5 for further insights into the art of interpreting loadings.)

Mathematically, the matrix of loadings is the pooled within-  group correlation matrix 
multiplied by the matrix of standardized discriminant function coefficients.

A = RwD (9.7)

The structure matrix of correlations between predictors and discriminant functions, A,
is found by multiplying the matrix of within-  group correlations among predictors, Rw

by a matrix of standardized discriminant function coefficients, D (standardized using 
pooled within-group standard deviations).

For the example of Table 9.1, the Structure Matrix appears as the middle matrix 
in Table 9.3. Structure matrices are read in columns; the column is the discriminant Function 
(1 or 2), the rows are predictors (information to age), and the entries in the column are correla-
tions. For this example, the first discriminant function correlates most highly with Information
(WISC Information scores, r = .228), while the second function correlates most highly 
with Verbal expression (ITPA Verbal Expression scale, r = .446). The structure matrix is available 
in SAS DISCRIM with the canonical instruction and is labeled Pooled Within 
Canonical Structure as seen in Table 9.4.

These findings are related to discriminant function plots (e.g., Figure 9.2) for full interpretation.
The first discriminant function is largely a measure of INFOrmation, and it separates the group with 
MEMORY problems from the groups with PERCEPTION and COMMUNICATION problems. The 
second discriminant function is largely a measure of VERBEXP (verbal expression) and it separates 
the group with COMMUNICATION problems from the groups with PERCEPTION and MEMORY 
problems. Interpretation in this example is reasonably straightforward because only one predictor 
is highly correlated with each discriminant function; interpretation is much more interesting when 
several predictors correlate with a discriminant function.

Consensus is lacking regarding how high correlations in a structure matrix must be to be 
interpreted. By convention, correlations in excess of .33 (10% of variance) may be considered eli-
gible while the lower ones are not. Guidelines suggested by Comrey and Lee (1992) are included 
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in Section 13.6.5. However, the size of loadings depends both on the value of the correlation in the 
population and on the homogeneity of scores in the sample taken from it. If the sample is unusu-
ally homogeneous with respect to a predictor, the loadings for the predictor are lower and it may 
be wise to lower the criterion for determining whether or not to interpret the predictor as part of a 
discriminant function.

Caution is always necessary in interpreting loadings, however, because they are full, not partial 
or semipartial, correlations. The loading could be substantially lower if correlations with other 
predictors were partialed out. For a review of this material, read Section 5.6.1. Section 9.6.4 deals 
with methods for interpreting predictors after variance associated with other predictors is removed, 
if that is desired.

In some cases, rotation of the structure matrix may facilitate interpretation, as discussed in 
Chapter 13. IBM SPSS DISCRIMINANT and MANOVA allow rotation of discriminant functions. 
But rotation of discriminant structure matrices is considered problematic and hence not recom-
mended for the novice.

9.6.4 Evaluating Predictor Variables

Another tool for evaluating contribution of predictors to separation of groups is available through 
SAS and IBM SPSS GLM in which means for predictors for each group are contrasted with means 
for other groups pooled. For instance, if there are three groups, means on predictors for Group 1 are 
contrasted with pooled means from Groups 2 and 3; then means for Group 2 are contrasted with 
pooled means from Groups 1 and 3; and finally means for Group 3 are contrasted with pooled 
means from Groups 1 and 2. This procedure is used to determine which predictors are important for 
isolating one group from the rest.

Twelve GLM runs are required in the example of Table 9.1: four for each of the three con-
trasts. Within each of the three contrasts, which isolates the means from each group and contrasts 
them with the means for the other groups, there are separate runs for each of the four predictors, in 
which each predictor is adjusted for the remaining predictors. In these runs, the predictor of inter-
est is labeled the DV and remaining predictors are labeled CVs. The result is a series of tests of the 
significance of each predictor after adjusting for all other predictors in separating out each group 
from the remaining groups.

In order to avoid overinterpretation, it is probably best to consider only predictors with F
ratios “significant” after adjusting error for the number of predictors in the set. The adjustment is 
made on the basis of Equation 7.12 of Section 7.5.3.1. This procedure is demonstrated in the com-
plete example of Section 9.7. Even with this adjustment, there is danger of inflation of Type I error 
rate because multiple nonorthogonal contrasts are performed. If there are numerous groups, further 
adjustment might be considered such as multiplication of critical F by k – 1 where k is the number 
of groups. Or, interpretation can proceed very cautiously, de-emphasizing statistical justification.

The procedures detailed in this section are most useful when the number of groups is small and 
the separations among groups are fairly uniform on the discriminant function plot for the first two 
functions. Other kinds of discriminant function plots might be suggested if there are numerous groups, 
some closely clustered (e.g., Groups 1 and 2 might be pooled and contrasted with pooled Groups 3, 4, 
and 5). Or, with a very large number of groups, the procedures of Section 9.6.3 may suffice.

If there is logical basis for assigning priorities to predictors, a sequential rather than standard 
approach to contrasts can be used. Instead of evaluating each predictor after adjustment for all other 
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predictors, it is evaluated after adjustment by only higher priority predictors. This strategy is accom-
plished through a series of IBM SPSS MANOVA runs, in which Roy–  Bargmann stepdown F tests 
(cf. Chapter 7) are evaluated for each contrast.

All the procedures for evaluation of DVs in MANOVA apply to evaluation of predictor 
variables in DISCRIM. Interpretation of stepdown analysis, univariate F, pooled within-  group 
correlations among predictors, or standardized discriminant function coefficients is as appropriate 
(or inappropriate) for DISCRIM as for MANOVA. These procedures are summarized in Section 7.5.3.

9.6.5 Effect Size

Three types of effect sizes are of interest in discriminant analysis: a type that describes variance 
associated with the entire analysis and two types that describe variance associated with individual 
predictors. The h2 (or partial h2 that can be found from Wilks’ lambda or from associated F and 
df using Smithson’s (2003) procedure provides the effect size for the entire analysis. Smithson’s 
procedure also can be used to find the confidence intervals around these F values, as seen in complete
examples of Chapters 6 through 8. SAS DISCRIM provides the required values of F and df in the 
section labeled Multivariate Statistics and F Approximations.

IBM SPSS DISCRIMINANT uses x2 rather than F to evaluate statistical significance but 
provides � for calculating effect size.

Calculating partial h2 from � in Table 9.3,

partial h2 = 1 - �1>3 = 1 - .011>3 = 1 - .215 = .78

Steiger and Fouladi’s (1992) software can be used to provide confidence intervals around the 
measure. The Confidence Interval is chosen as the Option and Maximize Accuracy
is chosen as the Algorithm. Using the R2 value of .78, Figure 9.3(a) shows setup values of nine 
observations, six variables (including four predictors and two variables for the group df, considered 
the criterion), and a probability value of .95. As seen in Figure 9.3(b), the R2 program provides 95% 
confidence limits from .00 to .88.

Separate effect sizes for each discriminant function are available as squared canonical cor-
relations. IBM SPSS DISCRIMINANT shows canonical correlations in the output section labeled 
Eigenvalues (see Table 9.3). Thus, the squared canonical correlations for the two functions are, 
respectively, (.965)2 = .93 and (.921)2 = .85. For SAS, the squared values are given directly in the 
first section of output labeled Canonical Discriminant Analysis. Steiger’s 
program may also be used to find confidence limits for these values.

The structure matrix provides loadings in the form of correlations of each predictor with 
each discriminant function. These correlations, when squared, are effect sizes, indicating the pro-
portion of variance shared between each predictor and each function. The structure matrix in SAS 
DISCRIM is labeled Pooled Within Canonical Structure. For the small-
sample example, then, the effect size (r2 ) for INFO at discriminant function 1 is (.228)2 = .05; 5% 
of variance is shared between the information subtest and the first discriminant function.

Another form of effect size is h2 that can be found when contrasts are run between each group 
and the remaining groups, with each predictor adjusted for all other predictors (Section 9.6.4). The 
contrasts conveniently are provided with F values and associated df, so that confidence limits also 
are available through Smithson’s (2003) procedure. This is demonstrated in Section 9.7.
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9.6.6 Design Complexity: Factorial Designs

The notion of placing cases into groups is easily extended to situations where groups are formed by 
differences on more than one dimension. An illustration of factorial arrangement of groups is the com-
plete example of Section 7.6.2, where women are classified by femininity (high or low) and also by 
masculinity (high or low) on the basis of scores on the Bem Sex Role Inventory (BSRI). Dimensions 
of femininity and masculinity (each with two levels) are factorially combined to form four groups: 
high-  high, high-  low, low-  high, and low-  low. Unless you want to classify cases, factorial designs are 
best analyzed through MANOVA. If classification is your goal, however, some issues require attention.

A two-  stage analysis is often best. First, questions about the statistical significance of separa-
tion of groups by predictors are answered through MANOVA. Second, if classification is desired 
after MANOVA, it is found through DISCRIM programs.

(a)

(b)

FIGURE 9.3 Confidence limits around R2 using 
Steiger and Fouladi’s (1992) software: 

(a) setup and (b) results.
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Formation of groups for DISCRIM depends on the outcome of MANOVA. If the interaction 
is statistically significant, groups are formed for the cells of the design. That is, in a two-by-two 
design, four groups are formed and used as the grouping variable in DISCRIM. Note that main 
effects as well as interactions influence group means (cell means) in this procedure, but for most 
purposes, classification of cases into cells seems reasonable.

If an interaction is not statistically significant, classification is based on significant main 
effects. For example, interaction is not statistically significant in the data of Section 7.6.2, but the 
main effects of both masculinity and femininity are statistically significant. One DISCRIM run is 
used to produce the classification equations for main effect of masculinity and a second run is used 
to produce the classification equations for main effect of femininity. That is, classification of main 
effects is based on marginal groups.

9.6.7 Use of Classification Procedures

The basic technique for classifying cases into groups is outlined in Section 9.4.2. Results of clas-
sification are presented in tables such as the Classification results of IBM SPSS (Table 9.3), or 
Number of Observations and Percents Classified into GROUP
of SAS (Table 9.4) where actual group membership is compared to predicted group membership. 
From these tables, one finds the percent of cases correctly classified and the number and nature of 
errors of classification.

But how good is the classification? When there are equal numbers of cases in every group, 
it is easy to determine the percent of cases that should be correctly classified by chance alone to 
compare to the percent correctly classified by the classification procedure. If there are two equally 
sized groups, 50% of the cases should be correctly classified by chance alone (cases are ran-
domly assigned into two groups and half of the assignments in each group are correct), while three 
equally sized groups should produce 33% correct classification by chance, and so forth. However, 
when there are unequal numbers of cases in the groups, computation of the percent of cases that 
should be correctly classified by chance alone is a bit more complicated.

The easier way to find it9 is to first compute the number of cases in each group that should 
be correct by chance alone and then add across the groups to find the overall expected percent 
correct. Consider an example where there are 60 cases: 10 in Group 1, 20 in Group 2, and 30 in 
Group 3. If prior probabilities are specified as .17, .33, and .50, respectively, the programs will 
assign 10, 20, and 30 cases to the groups. If 10 cases are assigned at random to Group 1, .17 of 
them (or 1.7) should be correct by chance alone. If 20 cases are randomly assigned to Group 2, 
.33 (or 6.6) of them should be correct by chance alone, and if 30 cases are assigned to Group 3, 
.50 of them (or 15) should be correct by chance alone. Adding 1.7, 6.6, and 15 gives 23.3 cases 
correct by chance alone, 39% of the total. The percent correct using classification equations has 
to be substantially larger than the percent expected correct by chance alone if the equations are 
to be useful.

Some of the computer programs offer sophisticated additional features that are helpful in 
many classification situations.

9The harder way to find it is to expand the multinomial distribution, a procedure that is more technically correct but produces 
identical results to those of the simpler method presented here.
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9.6.7.1  Cross-Validation and New Cases

Classification is based on classification coefficients derived from samples and they usually work 
too well for the sample from which they were derived. Because the coefficients are only estimates 
of population classification coefficients, it is often most desirable to know how well the coefficients 
generalize to a new sample of cases. Testing the utility of coefficients on a new sample is called 
cross-  validation. One form of cross-  validation involves dividing a single large sample randomly in 
two parts: deriving classification functions on one part and testing them on the other. A second form 
of cross-  validation involves deriving classification functions from a sample measured at one time, 
and testing them on a sample measured at a later time. In either case, cross-  validation techniques 
are especially well developed in the SAS DISCRIM and IBM SPSS DISCRIMINANT programs.

For a large sample randomly divided into parts, you simply omit information about actual 
group membership for some cases (hide it in the program) as shown in Section 9.7.2. IBM SPSS 
DISCRIMINANT does not include these cases in the derivation of classification functions, but does 
include them in the classification phase. In SAS DISCRIM, the withheld cases are put in a separate 
data file. The accuracy with which the classification functions predict group membership for cases 
in this data file is then examined. This “calibration” procedure is demonstrated in Section 9.7.2. 
(Note that SAS refers to this as calibration, not cross-  validation. The latter term is used to label what 
other programs call jackknifing; cf. Section 9.6.7.2.)

When the new cases are measured at a later time, classifying them is somewhat more com-
plicated unless you use SAS DISCRIM (in the same way that you would for cross-  validation/
calibration). This is because other computer programs for DISCRIM do not allow classification of 
new cases without repeated entry of the original cases to derive the classification functions. You 
“hide” the new cases, derive the classification functions from the old cases, and test classification on 
all cases. Or, you can input the classification coefficients along with raw data for the new cases and 
run the data only through the classification phase. Or, it may be easiest to write your own program 
based on the classification coefficients to classify cases as shown in Section 9.4.2.

9.6.7.2 Jackknifed Classification

Bias enters classification if the coefficients used to assign a case to a group are derived, in part, from the 
case. In jackknifed classification, the data from the case are left out when the coefficients used to assign 
it to a group are computed. Each case has a set of coefficients that are developed from all other cases. 
Jackknifed classification gives a more realistic estimate of the ability of predictors to separate groups.

SAS DISCRIM and IBM SPSS DISCRIMINANT provide for jackknifed classification (SAS 
calls it crossvalidate; IBM SPSS calls it Leave-one-out classification). When the procedure 
is used with all predictors forced into the equation (i.e., direct or sequential with all predictors included), 
bias in classification is eliminated. When it is used with stepwise entry of predictors (where they may 
not all enter), bias is reduced. An application of jackknifed classification is shown in Section 9.7.

9.6.7.3 Evaluating Improvement in Classification

In sequential DISCRIM, it is useful to determine if classification improves as a new set of predictors 
is added to the analysis. McNemar’s repeated-  measures chi square provides a simple, straightforward 
(but tedious) test of improvement. Cases are tabulated one by one, by hand, as to whether they are 
correctly or incorrectly classified before the step and after the step where the predictors are added.
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Early Step Classification

Correct Incorrect

Later Step
Classification

Correct (A) B

Incorrect C (D)

Cases that have the same result at both steps (either correctly classified—  cell A—  or incor-
rectly classified—cell D) are ignored because they do not change. Therefore, x2 for change is

x2 =
( � B - C � - 1)2

B + C
df = 1 (9.8)

Ordinarily, the researcher is only interested in improvement in x2, that is, in situations where 
B 7 C because more cases are correctly classified after the addition of predictors. When B 7 C
and x2 is greater than 3.84 (critical value of x2 with 1 df at a = .05), the added predictors reliably 
improve classification.

With very large samples, hand tabulation of cases is not reasonable. An alternative, but pos-
sibly less desirable, procedure is to test the significance of the difference between two lambdas, as 
suggested by Frane (1977). Wilks’ lambda from the step with the larger number of predictors, �2 is 
divided by lambda from the step with fewer predictors, �1 to produce �D

�D =
�2

�1
(9.9)

Wilks’ lambda for testing the significance of the difference between two lambdas (�D)
is calculated by dividing the smaller lambda (�2) by the larger lambda (�1).

�D is evaluated with three degree-  of-freedom parameters: p, the number of predictors after 
addition of predictors; dfbg, the number of groups minus 1; and the dfwg, at the step with the added 
predictors. Approximate F is found according to procedures in Section 9.4.1.

For example, suppose the small-  sample data10 were analyzed with only AGE as a predictor 
(not shown), yielding Wilks’ lambda of .882. Using this, one can test whether addition of INFO, 
PERF, and VERBEXP for the full analysis (�2 = .010) reliably improves classification of cases 
over that achieved with only AGE in the equation (�1 = .882).

�D =
.010

.882
= .0113

where

dfp = p = 4

dfbg = k - 1 = 2

dfwg = N - k = 6

10This procedure is inappropriate for such a small sample, but is shown here for illustrative purposes.
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Finding approximate F from Section 9.4.1,

s = min ( p, k - 1) = 2

y = .01131>2 = .1063
df1 = (4)(2) = 8

df2 = (2) c 6 -
4 - 2 + 1

2
d - c 4(2) - 2

2
d = 6

Approximate F(8, 6) = a 1 - .1063

.1063
b a 6

8
b = 6.40

Because critical F(8, 6) is 4.15 at a = .05, there is statistically significant improvement in clas-
sification into the three groups when INFO, PERF, and VERBEXP scores are added to AGE scores.

9.7 Complete Example of Discriminant Analysis

The example of direct discriminant analysis in this section explores how role-  dissatisfied house-
wives, role-  satisfied housewives, and employed women differ in attitudes. The sample of 465 women 
is described in Appendix B, Section B.1. The grouping variable is role-  dissatisfied housewives 
(UNHOUSE), role-  satisfied housewives (HAPHOUSE), and working women (WORKING). Data 
are in DISCRIM.*.

Predictors are internal versus external locus of control (CONTROL), satisfaction with 
current marital status (ATTMAR), attitude toward women’s role (ATTROLE), and attitude 
toward housework (ATTHOUSE). Scores are scaled so that low values represent more positive 
or “desirable” attitudes. A fifth attitudinal variable, attitude toward paid work, was dropped from 
analysis because data were available only for women who had been employed within the past 
5 years and use of this predictor would have involved nonrandom missing values (cf. Chapter 4). 
The example of DISCRIM, then, involves prediction of group membership from the four 
attitudinal variables.

The direct discriminant analysis allows us to evaluate the distinctions among the three groups 
on the basis of attitudes. We explore the dimensions on which the groups differ, the predictors 
contributing to differences among groups on these dimensions, and the degree to which we can 
accurately classify members into their own groups. We also evaluate efficiency of classification 
with a cross-validation sample.

9.7.1 Evaluation of Assumptions

The data are first evaluated with respect to practical limitations of DISCRIM.

9.7.1.1 Unequal Sample Sizes and Missing Data

In a screening run through SAS Interactive Data Analysis (cf. Section 4.2.2.1), seven cases had 
missing values among the four attitudinal predictors. Missing data were scattered over predictors 
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and groups in apparently random fashion, so that deletion of the cases was deemed appropriate.11

The full data set includes 458 cases, once cases with missing values are deleted.
During classification, unequal sample sizes are used to modify the probabilities with which 

cases are classified into groups. Because the sample is randomly drawn from the population of 
interest, sample sizes in groups are believed to represent some real process in the population that 
should be reflected in classification. For example, knowledge that over half the women are employed 
implies that greater weight should be given to the WORKING group.

9.7.1.2 Multivariate Normality

After deletion of cases with missing data, there are still over 80 cases per group. Although SAS 
MEANS run reveals skewness in ATTMAR, sample sizes are large enough to suggest normality of 
sampling distributions of means. Therefore, there is no reason to expect distortion of results due to 
failure of multivariate normality.

9.7.1.3 Linearity

Although ATTMAR is skewed, there is no expectation of curvilinearity between this and the remain-
ing predictors. At worst, ATTMAR in conjunction with the remaining continuous, well-  behaved 
predictors may contribute to a mild reduction in association.

9.7.1.4 Outliers

To identify univariate outliers, z-scores associated with minimum and maximum values on each of 
the four predictors are investigated through SAS MEANS for each group separately, as per Sec-
tion 4.2.2. There are some questionable values on ATTHOUSE, with a few exceptionally positive 
(low) scores. These values are about 4.5 standard deviations below their group means, making them 
candidates for deletion or alteration. However, the cases are retained for the search for multivariate 
outliers.

Multivariate outliers are sought through SAS REG by subsets (groups) and a request for an 
output table containing leverage statistics, as seen in Table 9.5. Data first are sorted by WORKSTAT, 
which then becomes the by variable in the proc reg run. Leverage values (H) are saved in 
a file labeled DISC_OUT. Table 9.5 shows a portion of the output data file for the working women 
(WORKSTAT=1).

Outliers are identified as cases with too large a Mahalanobis’ D2 for their own group, evaluated 
as x2 with degrees of freedom equal to the number of predictors. Critical x2 with 4 df at a = .001
is 18.467; any case with D2 7 18.467 is an outlier. Translating this critical value to leverage hii for 
the first group using the variation on Equation 4.3:

hii =
Mahalanobis distance

N - 1
+

1

N
=

18.467

240
+

1

241
= .081

In Table 9.5, CASESEQ 346 (H = .0941) and CASESEQ 407 (H = .0898) are identified as outliers
in the group of WORKING women. No additional outliers were found.

11Alternative strategies for dealing with missing data are discussed in Chapter 4.
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TABLE 9.5 Identification of Multivariate Outliers (SAS SORT and REG Syntax and Selected 
Portion of Output File from SAS REG)

proc sort data = Sasuser.Discrim;
   by WORKSTAT;
run;

proc data=Sasuser.Discrim;
by WORKSTAT;

   model CASESEQ= CONTROL ATTMAR ATTROLE ATTHOUSE/ selection=

RSQUARE COLLIN;
output out=SASUSER.DISC_OUT H=H;
run;
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TABLE 9.6 Syntax and Selected Output from SAS DISCRIM to Check Homogeneity 
of Variance–Covariance Matrices

proc discrim data=Sasuser.Discrim short noclassify
pool=test slpool=.001;

class workstat;
   var CONTROL ATTMAR ATTROLE ATTHOUSE;

priors proportional;
   where CASESEQ^=346 and CASESEQ^=407;
run;

Test of Homogeneity of Within Covariance Matrices

Notation: K    = Number of Groups

P    = Number of Variables

N        = Total Number of Observations - Number of Groups

N(i) = Number of Observations in the i'th Group - 1

V      =
|
_
| |Within SS Matrix(i)|

N(i)/2

|Pooled SS Matrix|
N/2

RHO    = 1.0 - SUM
1

N(i)
-

1

N

2P
2
 + 3P - 1

6(P+1)(K-1)

DF    = .5(K_1)P(P+1)

Under the null hypothesis:   -2 RHO ln 
N
PN/2

V

|
_
| N(i) 

PN(i)/2

is distributed approximately as Chi-  Square(DF).

Chi-Square DF Pr > ChiSq

50.753826 20 0.0002

Since the Chi-  Square value is significant at the 0.001 
level, the within covariance matrices will be used in the 
discriminant function.
Reference: Morrison, D.F. (1976) Multivariate Statistical 
Methods p252.
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The multivariate outliers are the same cases that have extreme univariate scores on 
ATTHOUSE. Because transformation is questionable for ATTHOUSE (where it seems unreason-
able to transform the predictor for only two cases), it is decided to delete the outliers.

Therefore, of the original 465 cases, 7 are lost due to missing values and 2 are both univariate 
and multivariate outliers, leaving a total of 456 cases for analysis.

9.7.1.5 Homogeneity of Variance–Covariance Matrices

A SAS DISCRIM run, Table 9.6, deletes the outliers in order to evaluate homogeneity of variance–
covariance matrices. Most output has been omitted here. The instruction to produce the test of 
homogeneity of variance–covariance matrices is pool=test.

This test shows significant heterogeneity of variance–  covariance matrices. The program uses 
separate matrices in the classification phase of discriminant analysis if pool=test is specified 
and the test shows significant heterogeneity.

9.7.1.6 Multicollinearity and Singularity

Because SAS DISCRIM, used for the major analysis, protects against multicollinearity through 
checks of tolerance, no formal evaluation is necessary (cf. Chapter 4). However, the SAS REG 
syntax of Table 9.5 that evaluates multivariate outliers also requests collinearity information, shown 
in Table 9.7. No problems with multicollinearity are noted.

TABLE 9.7 SAS REG Output Showing Collinearity Information for All Groups Combined 
(Syntax Is in Table 9.5)

Collinearity Diagnostics

Number Eigenvalue
Condition

Index

1 4.83193 1.00000
2 0.10975 6.63518
3 0.03169 12.34795
4 0.02018 15.47559
5 0.00645 27.37452

Collinearity Diagnostics

------------------Proportion of Variation------------------
Number Intercept CONTROL ATTMAR ATTROLE ATTHOUSE

1 0.00036897 0.00116 0.00508 0.00102 0.00091481
2 0.00379 0.00761 0.94924 0.02108 0.00531
3 0.00188 0.25092 0.04175 0.42438 0.10031
4 0.00266 0.61843 0.00227 0.01676 0.57008
5 0.99129 0.12189 0.00166 0.53676 0.32339



414 C H A P T E R  9

9.7.2 Direct Discriminant Analysis

Direct DISCRIM is performed through SAS DISCRIM with the four attitudinal predictors all 
forced in the equation. The program instructions and some of the output appear in Table 9.8. Simple 
statistics are requested to provide predictor means, helpful in interpretation. The anova and 
manova instructions request univariate statistics on group differences separately for each of the 
variables and a multivariate test for the difference among groups. Pcorr requests the pooled 
within-  groups correlation matrix, and crossvalidate requests jackknifed classification. 
The priors proportional instruction specifies prior probabilities for classification 
proportional to sample sizes.

When all four predictors are used, the F of 6.274 (with 8 and 900 df based on Wilks’ lambda) 
is highly significant. That is, there is statistically significant separation of the three groups based 
on all four predictors combined, as discussed in Section 9.6.1.1. Partial h2 and associated 95% 
confidence limits are found through Smithson’s (2003) NoncF2.sas procedure (as in Table 8.16), 
yielding h2 = .05 with limits from .02 to .08.

Canonical correlations (in the section of output following multivariate analysis) for each dis-
criminant function (.267 and .184), although small, are relatively equal for the two discriminant 
functions. The adjusted values are not very much different with this relatively large sample. The 
“peel down” test shows that both functions significantly discriminate among the groups. That is, 
even after the first function is removed, there remains significant discrimination, Pr > F = 
0.0014. Because there are only two possible discriminant functions, this is a test of the second 
one. Steiger’s R2 program (demonstrated in Section 5.6.2.4) may be used to find confidence limits 
around the Squared Canonical Correlations of .07 and .02. With six variables 
(four predictors and 2 df for groups) and 456 observations, the limits for the first discriminant func-
tion are .03 to .11, and for the second function they are .00 to .06.

The loading matrix (correlations between predictors and discriminant functions) appears in 
the section of output labeled Pooled Within Canonical Structure. Class 
means on canonical variables are centroids on the discriminant functions for the groups, discussed 
in Sections 9.4.1 and 9.6.3.1.

A plot of the placement of the centroids for the three groups on the two discriminant functions 
(canonical variables) as axes appears in Figure 9.4. The points that are plotted are given in Table 9.9 
as Class means on canonical variables.

TABLE 9.8 Syntax and Partial Output from SAS DISCRIM Analysis of Four Attitudinal Variables

proc discrim data=Sasuser.Discrim simple anova manova pcorr can
crossvalidate pool=test;

class workstat;
var CONTROL ATTMAR ATTROLE ATTHOUSE;
priors proportional;
where CASESEQ^=346 and CASESEQ^=407;

run;



Pooled Within-  Class Correlation Coefficients / Pr > |r|

Variable CONTROL ATTMAR ATTROLE ATTHOUSE

CONTROL 1.00000 0.17169 0.00912 0.15500
Locus-of-control 0.0002 0.8463 0.0009

ATTMAR 0.17169 1.00000 −0.07010 0.28229
Attitude toward current marital status 0.0002 0.1359 <.0001

ATTROLE 0.00912 −0.07010 1.00000 −0.29145
Attitudes toward role of women 0.8463 0.1359 <.0001

ATTHOUSE 0.15500 0.28229 −0.29145 1.00000
Attitudes toward housework 0.0009 <.0001 <.0001

Simple Statistics

Total-Sample

Variable Label N Sum Mean Variance
Standard 
Deviation

CONTROL Locus-of-control 456 3078 6.75000 1.60769 1.2679
ATTMAR Attitude toward current marital Status 456 10469 22.95833 72.73892 8.5287
ATTROLE Attitudes toward role of women 456 16040 35.17544 45.68344 6.7590
ATTHOUSE Attitudes toward housework 456 10771 23.62061 18.30630 4.2786

WORKSTAT = 1

Variable Label N Sum Mean Variance
Standard 
Deviation

CONTROL Locus-of-control 239 1605 6.71548 1.53215 1.2378
ATTMAR Attitude toward current marital status 239 5592 23.39749 72.76151 8.5300
ATTROLE Attitudes toward role of women 239 8093 33.86192 48.38842 6.9562
ATTHOUSE Attitudes toward housework 239 5691 23.81172 19.85095 4.4554

TABLE 9.8 Continued 

(continued )
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WORKSTAT = 2

Variable Label N Sum Mean Variance
Standard 
Deviation

CONTROL Locus-of-control 136 902.00000 6.63235 1.71569 1.3098
ATTMAR Attitude toward current marital status 136 2802 20.60294 43.87081 6.6235
ATTROLE Attitudes toward role of women 136 5058 37.19118 41.71133 6.4584
ATTHOUSE Attitudes toward housework 136 3061 22.50735 15.08143 3.8835

Simple Statistics

WORKSTAT = 3

Variable Label N Sum Mean Variance
Standard 
Deviation

CONTROL Locus-of-control 81 571.00000 7.04938 1.57253 1.2540
ATTMAR Attitude toward current marital status 81 2075 25.61728 106.03920 10.2975
ATTROLE Attitudes toward role of women 81 2889 35.66667 33.17500 5.7598
ATTHOUSE Attitudes toward housework 81 2019 24.92593 15.66944 3.9585

Univariate Test Statistics

F Statistics, Num DF=2, Den DF=453

Variable Label

Total 
Standard 
Deviation

Pooled 
Standard 
Deviation

Between 
Standard 
Deviation R-Square 

R-Square 
/ (1-RSq) F Value Pr > F

CONTROL Locus-of-control 1.2679 1.2625 0.1761 0.0129 0.0131 2.96 0.0530
ATTMAR Attitude toward 

current marital 
status

8.5287 8.3683 2.1254 0.0415 0.0433 9.81 <.0001

ATTROLE Attitudes toward 
role of women

6.7590 6.6115 1.7996 0.0474 0.0497 11.26 <.0001

ATTHOUSE Attitudes toward 
housework

4.2786 4.2061 1.0184 0.0379 0.0393 8.91 0.0002

TABLE 9.8 Continued 
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TABLE 9.8 Continued 

Average R-Square

Unweighted         0.0348993
Weighted by Variance 0.0426177

Multivariate Statistics and F Approximations

S=2 M=0.5 N=224

Statistic Value F Value Num DF Den DF Pr > F

Wilks’ Lambda 0.89715033 6.27 8 900 <.0001
Pillai’s Trace 0.10527259 6.26 8 902 <.0001
Hotelling-Lawley Trace 0.11193972 6.29 8 640.54 <.0001
Roy’s Greatest Root 0.07675307 8.65 4 451 <.0001

NOTE: F Statistic for Roy’s Greatest Root is an upper bound.
NOTE: F Statistic for Wilks’ Lambda is exact.

Canonical Discriminant Analysis

Canonical 
Correlation

Adjusted 
Canonical 

Correlation

Approximate 
Standard 

Error

Squared 
Canonical 

Correlation

1 0.266987 0.245497 0.043539 0.071282
2 0.184365 0.182794 0.045287 0.033991

Eigenvalues of Inv(E)*H
= CanRsq/(1-CanRsq)

Test of H0: The canonical 
correlations in the current 

row and all that follow are zero

  Eigenvalue Difference Proportion Cumulative
Likelihood 

Ratio
Approximate 

F Value Num DF Den DF Pr > F

1 0.0768 0.0416 0.6857 0.6857 0.89715033 6.27 8 900 <.0001
2 0.0352   0.3143 1.0000 0.96600937 5.29 3 451 0.0014

(continued )
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Canonical Discriminant Analysis

Pooled Within Canonical Structure

Variable Label Can1 Can2

CONTROL Locus-of-control 0.281678 0.444939
ATTMAR Attitude toward current 

marital status
0.718461 0.322992

ATTROLE Attitudes toward role 
of women

−0.639249 0.722228

ATTHOUSE Attitudes toward housework 0.679447 0.333315

Class Means on Canonical Variables

WORKSTAT Can1 Can2

1 0.1407162321 −.1505321835
2 −.4160079128 0.0539321812
3 0.2832826750 0.3536100644

The DISCRIM Procedure
Classification Summary for Calibration Data: SASUSER.DISCRIM
Resubstitution Summary using Quadratic Discriminant Function

Generalized Squared Distance Function

D
2

j
 (X) = (X-X

_

j
)' COV

j

-1

(X-

_

X
j

) + ln |COV
j
| - 2 ln PRIOR

j

Posterior Probability of Membership in Each WORKSTAT

Pr(j|X) = exp(-.5D
2

j
(X)) / SU

k
M exp(-.5 D

2

k
(X))

Number of Observations and Percent Classified into WORKSTAT

From WORKSTAT 1 2 3 Total

1 184 48 7 239
76.99 20.08 2.93 100.00

2 73 59 4 136
53.68 43.38 2.94 100.00

3 59 12 10 81
72.84 14.81 12.35 100.00

Total 316 119 21 456
69.30 26.10 4.61 100.00

Priors 0.52412 0.29825 0.17763

TABLE 9.8 Continued 
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TABLE 9.8 Continued 

Error Count Estimates for WORKSTAT

1 2 3 Total

Rate 0.2301 0.5662 0.8765 0.4452
Priors 0.5241 0.2982 0.1776  

Classification Summary for Calibration Data: SASUSER.DISCRIM
Cross-validation Summary using Quadratic

Discriminant Function

Generalized Squared Distance Function

D
2

j
(X) = (X-X

_

(X)j
)' COV

-1

(X)j
(X-X

_

(X)j
) + ln |COV

 (X)j 
| - 2 ln PRIOR

j

Posterior Probability of Membership 
in Each WORKSTAT

Pr(j|X) = exp(-.5D
2

j
(X)) / SU

k
M exp(-.5 D

2

k
(X))

Number of Observations and Percent 
Classified into WORKSTAT

From WORKSTAT 1 2 3 Total

1 179 50 10 239
74.90 20.92 4.18 100.00

2 78 53 5 136
57.35 38.97 3.68 100.00

3 60 13 8 81
74.07 16.05 9.88 100.00

Total 317 116 23 456
69.52 25.44 5.04 100.00

Priors 0.52412 0.29825 0.17763  

Error Count Estimates for WORKSTAT

  1 2 3 Total

Rate 0.2510 0.6103 0.9012 0.4737
Priors 0.5241 0.2982 0.1776  
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Table 9.8 shows the classification functions used to classify cases into the three groups (see 
Equation 9.3) and the results of that classification, with and without jackknifing (see Section 9.6.7). 
In this case, classification is made on the basis of a modified equation in which unequal prior prob-
abilities are used to reflect unequal group sizes by the use of prior proportional in the 
syntax. Classification is based on the quadratic discriminant function to compensate for heterogeneity 
of various covariance matrices.

A total of 55% (1–  Error Count Rate of 0.4452) of cases are correctly 
classified by normal procedures, and 52% by jackknifed procedures. How do these compare with 
random assignment? Prior probabilities, specified as .52 (WORKING), .30 (HAPHOUSE), and 
.18 (UNHOUSE), put 237 cases (.52 * 456) in the WORKING group, 137 in the HAPHOUSE
group, and 82 in the UNHOUSE group. If cases are randomly assigned to the WORKING group, 
123 (.52 * 237 ) should be correct, while 41.1 (.30 * 137 ) and 14.8 (.18 * 82 ) should be correct 
by chance in the HAPHOUSE and UNHOUSE groups, respectively. Over all three groups, 178.9 out 
of the 456 cases, or 39%, should be correct by chance alone. Both classification procedures correctly 
classify substantially more than that.

An additional SAS DISCRIM run for cross-  validation is shown in Table 9.9. SAS DISCRIM 
has no direct procedure of forming and using a cross-  validation sample. Instead, other procedures 
must be used to split the file into the “training” cases, used to develop (calibrate) the classification 
equations, and the “testing” cases, used to validate the classification.

First a new data set is created: data SASUSER.DISCRIMX. The original data set is identified 
as set SASUSER.DISCRIM. Then outliers and cases with missing data are omitted. Finally, a variable 
is created on which to split the data set, here called TEST1, which is set to zero, and then changed 
to 1 for 25% of the cases. Then an additional two files are created on the basis of TEST1 with set 
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TABLE 9.9 Cross-  Validation of Classification of Cases by Four Attitudinal Variables 
(Syntax for SAS DATA: Syntax and Selected Output from SAS DISCRIM)

data Sasuser.Discrimx;
set SASUSER.DISCRIM;

   if ATTHOUSE=2 or ATTHOUSE=. or ATTMAR=. or ATTROLE=.
or CONTROL=. then delete;

TEST1=0;
   if uniform(11738) <= .25 then TEST1=1;
run;

data Sasuser.Disctrng;
set Sasuser.Discrimx;
where TEST1=0;

data Sasuser.Disctest;
set Sasuser.Discrimx;
where TEST1=1;

run;

proc discrim data=SASUSER.Disctrng outstat=INFO pool=test;
class WORKSTAT;

   var CONTROL ATTMAR ATTROLE ATTHOUSE;
priors proportional;

run;

proc discrim data=INFO testdata=SASUSER.Disctest pool=test;
class WORKSTAT;

   var CONTROL ATTMAR ATTROLE ATTHOUSE;
priors proportional;

run;

The DISCRIM Procedure
Classification Summary for Calibration

Data: SASUSER.DISCTRNG
Resubstitution Summary using Quadratic

Discriminant Function

Generalized Squared Distance Function

D
2

j
 (X) = (X-X

_

j
)' COV

j

-1

(X-
_
X
j
) + ln |COV

j
| - 2 ln PRIOR

j

Posterior Probability of Membership in Each WORKSTAT
2 2

Pr(j|X) = 
exp(-.5 D (X)) / SUM exp(-.5 D (X))

j k k
(continued )



Number of Observations and Percent Classified into WORKSTAT

From WORKSTAT 1 2 3 Total

1 129 32 11 172
75.00 18.60 6.40 100.00

2 49 46 7 102
48.04 45.10 6.86 100.00

3 45 9 11 65
69.23 13.85 16.92 100.00

Total 223 87 29 339
65.78 25.66 8.55 100.00

Priors 0.50737 0.30088 0.19174  

Error Count Estimates for WORKSTAT

  1 2 3 Total

Rate 0.2500 0.5490 0.8308 0.4513
Priors 0.5074 0.3009 0.1917  

Classification Summary for Test Data: SASUSER.DISCTEST
Classification Summary using Quadratic Discriminant Function

Generalized Squared Distance Function

D
2

j
 (X) = (X-X

_

j
)' COV

j

-1

(X-
_

j
X) + ln |COV

j
| - 2 ln PRIOR

j

Posterior Probability of Membership in Each WORKSTAT

Pr(j|X) = exp(-.5 D
2

j
(X)) / SU

k
M exp(-.5 D

2

k
(X))

Number of Observations and Percent Classified into WORKSTAT

From WORKSTAT 1 2 3 Total

1 40 16 11 67
59.70 23.88 16.42 100.00

2 17 15 2 34
50.00 44.12 5.88 100.00

3 10 2 4 16
62.50 12.50 25.00 100.00

Total 67 33 17 117
57.26 28.21 14.53 100.00

Priors 0.50737 0.30088 0.19174  

Error Count Estimates for WORKSTAT

  1 2 3 Total

Rate 0.4030 0.5588 0.7500 0.5164
Priors 0.5074 0.3009 0.1917  

TABLE 9.9 Continued 
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SASUSER.DISCRIMX: a calibration (training) file, through data SASUSER.DISCTRNG,
and a cross-  validation (test) file through data SASUSER.DISCTEST. Finally, a discriminant 
analysis on the training file (with 339 cases) is run which saves the calibration information in a file 
called INFO, and then applies the calibration information to the test file (with 117 cases). Again, the 
quadratic classification procedure is used.

A summary of information appropriate for publication appears in Table 9.10. In the table are 
the loadings, univariate F for each predictor, and pooled within-  group correlations among predictors.

SAS DISCRIM has no contrast procedure, nor does it provide F or t ratios for predictor variables 
adjusted for all other variables. However, the information is available to produce contrasts with 
separate analyses of covariance for each variable in GLM. In each analysis of covariance, the vari-
able of interest is declared the DV and the remaining variables are declared covariates. The process 
is demonstrated for the 12 contrast runs needed in Tables 9.11 through 9.13; means on each pre-
dictor adjusted for all other predictors for each group are contrasted with the pooled means for the 
other two groups. WORKING women are contrasted with the pooled means for HAPHOUSE and 
UNHOUSE to determine which predictors distinguish WORKING women from others in Table 9.11. 
Table 9.12 has the HAPHOUSE group contrasted with the other two groups; 13 shows the UNHOUSE
group contrasted with the other two groups. Note that df for error = N - k - c - 1 = 450.

Based on familywise a = .05, ai = .0125 , the predictor that most clearly distinguishes the 
WORKING group from the other two is ATTROLE after adjustment for the other predictors. The 
HAPHOUSE group differs from the other two groups on the basis of ATTMAR after adjustment 
for the remaining predictors. The UNHOUSE group does not differ from the other two when each 
predictor is adjusted for all others. Separate runs without covariates would be needed if there is 
interest in which predictors separate each group from the others without adjustment for the other 
predictors. Table 9.14 summarizes the results of Smithson’s procedure for finding effect sizes and 
98.75% confidence limits for all 12 runs.

A checklist for a direct discriminant function analysis appears in Table 9.15. It is followed by 
an example of a Results section, in journal format, for the analysis just described.

TABLE 9.10 Results of Discriminant Analysis of Attitudinal Variables Predictor Variable

Predictor 
Variable

Correlations 
of Predictor 

Variables with 
Discriminant

Functions
Univariate 
F(2, 453)

Pooled Within-Group Correlations 
Among Predictors

1 2 ATTMAR ATTROLE ATTHOUSE

CONTROL .28 .44 2.96 .17 .01 .16
ATTMAR .72 .32 9.81 -.07 .28
ATTROLE −.64 .72 11.26 -.29
ATTHOUSE .68 .33 8.91

Canonical R .27 .18
Eigenvalue .08 .04



TABLE 9.11 Syntax and Highly Abbreviated Output of SAS GLM Contrasting the WORKING 
Group With the Other Two Groups

proc glm data=Sasuser.Discrim;
class WORKSTAT;

   model ATTHOUSE = WORKSTAT CONTROL ATTMAR ATTROLE ;
where CASESEQ^=346 and CASESEQ^=407;

   contrast WORKING VS. OTHERS’ WORKSTAT -2 1 1 ;
run;

proc glm data=Sasuser.Discrim;
class WORKSTAT;

   model ATTROLE = WORKSTAT ATTHOUSE CONTROL ATTMAR ;
where CASESEQ^=346 and CASESEQ^=407;

   contrast WORKING VS. OTHERS’ WORKSTAT -2 1 1 ;
run;

proc glm data=Sasuser.Discrim;
class WORKSTAT;

   model ATTMAR = WORKSTAT CONTROL ATTHOUSE ATTROLE ;
where CASESEQ^=346 and CASESEQ^=407;

   contrast WORKING VS. OTHERS’ WORKSTAT -2 1 1 ;
run;

proc glm data=Sasuser.Discrim;
class WORKSTAT;

   model CONTROL = WORKSTAT ATTROLE ATTHOUSE ATTMAR ;
where CASESEQ^=346 and CASESEQ^=407;

   contrast ’WORKING VS. OTHERS’ WORKSTAT -2 1 1 ;
run;

Dependent Variable: ATTHOUSE Attitudes toward housework

Contrast DF
Contrast 

SS
Mean 

Square
F

Value Pr > F

WORKING VS. OTHERS 1 12.32545468 12.32545468 0.83 0.3626

Dependent Variable: ATTROLE Attitudes toward role of women

Contrast DF
Contrast 

SS
Mean 

Square
F

Value Pr > F

WORKING VS. OTHERS 1 676.9471257 676.9471257 16.87 <.0001

Dependent Variable: ATTMAR Attitude toward current marital 
status

Contrast DF
Contrast 

SS
Mean 

Square
F

Value Pr > F

WORKING VS. OTHERS 1 13.99801413 13.99801413 0.22 0.6394

Dependent Variable: CONTROL Locus-of-control

Contrast DF
Contrast 

SS
Mean 

Square
F

Value Pr > F

WORKING VS. OTHERS 1 1.20936265 1.20936265 0.79 0.3749
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TABLE 9.12 Syntax and Highly Abbreviated Output of SAS DISCRIM Contrasting 
the HAPHOUSE GROUP With the Other Two Groups

proc glm data=Sasuser.Discrim;
class WORKSTAT;

   model ATTHOUSE = WORKSTAT CONTROL ATTMAR ATTROLE ;
where CASESEQ^=346 and CASESEQ^=407;

   contrast ’HAPHOUSE VS. OTHERS’ WORKSTAT 1 -2 1 ;
run;

proc glm data=Sasuser.Discrim;
class WORKSTAT;

   model ATTROLE = WORKSTAT ATTHOUSE CONTROL ATTMAR ;
where CASESEQ^=346 and CASESEQ^=407;

   contrast ’HAPHOUSE VS. OTHERS’ WORKSTAT 1 -2 1 ;
run;

proc glm data=Sasuser.Discrim;
class WORKSTAT;

   model ATTMAR = WORKSTAT CONTROL ATTHOUSE ATTROLE ;
where CASESEQ^=346 and CASESEQ^=407;

   contrast ’HAPHOUSE VS. OTHERS’ WORKSTAT 1 -2 1 ;
run;

proc glm data=Sasuser.Discrim;
class WORKSTAT;

   model CONTROL = WORKSTAT ATTROLE ATTHOUSE ATTMAR ;
where CASESEQ^=346 and CASESEQ^=407;

   contrast ’HAPHOUSE VS. OTHERS’ WORKSTAT 1 -2 1 ;
run;

Dependent Variable: ATTHOUSE Attitudes toward housework

Contrast DF Contrast SS Mean Square F Value Pr > F

HAPHOUSE VS. OTHERS 1 60.74947570 60.74947570 4.09 0.0436

Dependent Variable: ATTROLE Attitudes toward role of women

Contrast DF Contrast SS Mean Square F Value Pr > F

HAPHOUSE VS. OTHERS 1 218.5434340 218.5434340 5.45 0.0201

Dependent Variable: ATTMAR Attitude toward current 
marital status

Contrast DF Contrast SS Mean Square F Value Pr > F

HAPHOUSE VS. OTHERS 1 615.1203307 615.1203307 9.66 0.0020

Dependent Variable: CONTROL Locus-of-control

Contrast DF Contrast SS Mean Square F Value Pr > F

HAPHOUSE VS. OTHERS 1 1.18893484 1.18893484 0.78 0.3789
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TABLE 9.13 Syntax and Highly Abbreviated Output of SAS DISCRIM Contrasting 
the UNHOUSE GROUP With the Other Two Groups

proc glm data=Sasuser.Discrim;
class WORKSTAT;

   model ATTHOUSE = WORKSTAT CONTROL ATTMAR ATTROLE ;
where CASESEQ^=346 and CASESEQ^=407;

   contrast ’UNHOUSE VS. OTHERS’ WORKSTAT 1 1 -2 ;
run;

proc glm data=Sasuser.Discrim;
class WORKSTAT;

   model ATTROLE = WORKSTAT ATTHOUSE CONTROL ATTMAR ;
where CASESEQ^=346 and CASESEQ^=407;

   contrast ’UNHOUSE VS. OTHERS’ WORKSTAT 1 1 -2 ;
run;

proc glm data=Sasuser.Discrim;
class WORKSTAT;

   model ATTMAR = WORKSTAT CONTROL ATTHOUSE ATTROLE ;
where CASESEQ^=346 and CASESEQ^=407;

   contrast ’UNHOUSE VS. OTHERS’ WORKSTAT 1 1 -2 ;
run;

proc glm data=Sasuser.Discrim;
class WORKSTAT;

   model CONTROL = WORKSTAT ATTROLE ATTHOUSE ATTMAR ;
where CASESEQ^=346 and CASESEQ^=407;

   contrast ’UNHOUSE VS. OTHERS’ WORKSTAT 1 1 -2 ;
run;

Dependent Variable: ATTHOUSE Attitudes toward housework

Contrast DF Contrast SS Mean Square F Value Pr > F

UNHOUSE VS. OTHERS 1 92.00307841 92.00307841 6.20 0.0131

Dependent Variable: ATTROLE Attitudes toward role of women

Contrast DF Contrast SS Mean Square F Value Pr > F

UNHOUSE VS. OTHERS 1 45.69837169 45.69837169 1.14 0.2865

Dependent Variable: ATTMAR Attitude toward current 
marital status

Contrast DF Contrast SS Mean Square F Value Pr > F

UNHOUSE VS. OTHERS 1 354.1278220 354.1278220 5.56 0.0188

Dependent Variable: CONTROL Locus-of-control

Contrast DF Contrast SS Mean Square F Value Pr > F

UNHOUSE VS. OTHERS 1 3.27205950 3.27205950 2.13 0.1447
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TABLE 9.14 Effect Sizes and 98.75% Confidence Limits for Contrasts of Each Group With the Two 
Other Groups Pooled for Each Predictor Adjusted for the Three Other Predictors

Predictor (adjusted for all others)

Contrast

Attitude
toward 

housework

Attitude
toward role 
of women

Attitude
toward 

marriage
Locus-of-
control

Working women 
vs. others

Effect Size 
98.75% CL

.00 .
.00–.03

.04
.01–.09

.00
.00–.02

.00
.00–.02

Role-satisfied 
housewives vs. others

Effect Size 
98.75% CL

.01
.00–.04

.01
.00–.05

.02
.00–.07

.01
.00–.02

Role-dissatisfied 
housewives vs. others

Effect Size 
98.75% CL

.01
.00–.05

.01
.00–.03

.01
.00–.05

.01
.00–.03

TABLE 9.15 Checklist for Direct Discriminant Analysis

1. Issues

a. Unequal sample sizes and missing data

b. Normality of sampling distributions

c. Outliers

d. Linearity

e. Homogeneity of variance–covariance matrices

f. Multicollinearity and singularity

2. Major analysis

a. Significance of discriminant functions. If significant:

(1) Variance accounted for and confidence limits for each significant function

(2) Plot(s) of discriminant functions

(3) Structure matrix

b. Effect size and confidence limits for solution

c. Variables separating each group with effect sizes and confidence limits

3. Additional analyses

a. Group means and standard deviations for high-  loading variables

b. Pooled within-  group correlations among predictor variables

c. Classification results

(1) Jackknifed classification

(2)  Cross-validation

d. Change in Rao’s V (or stepdown F) plus univariate F for predictors
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Results

A direct discriminant analysis was performed using four 

attitudinal variables as predictors of membership in three 

groups. Predictors were locus of control, attitude toward marital 

status, attitude toward role of women, and attitude toward 

housework. Groups were working women, role-  satisfied housewives, 

and role-dissatisfied housewives.

Of the original 465 cases, 7 were dropped from analysis 

because of missing data. Missing data appeared to be randomly 

scattered throughout groups and predictors. Two additional 

cases were identified as multivariate outliers with p < .001 

and were also deleted. Both of the outlying cases were in 

the working group; they were women with extraordinarily 

favorable attitudes toward housework. For the remaining 456 

cases (239 working women, 136 role-  satisfied housewives, and 

81 role-  dissatisfied housewives), evaluation of assumptions 

of linearity, normality, multicollinearity, or singularity 

were satisfactory. Statistically significant heterogeneity of 

variance–covariance matrices (p < .10) was observed, however, so 

a quadratic procedure was used by SAS PROC DISCRIM for analysis.

Two discriminant functions were calculated, with a combined 

F(8, 900) = 6.27, p < .01, ŋ2 = .05 with 95% confidence limits 

from .02 to .08. After removal of the first function, there was 

still strong association between groups and predictors, F(3, 451) 

= 5.29, p < .01. Canonical R2 = .07 with 95% confidence limits 

from .03 to .11 for the first discriminant function and .03 with 

limits from .00 to .06 for the second discriminant function. 

Thus, the two functions accounted for about 7% and 3% of the 

total relationship between predictors and between groups. The 
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two discriminant functions account for 69% and 31%, respectively, 

of the between-  group variability. [F values, squared canonical 

correlations, and percents of variance are from Table 9.8; 

cf. Section 9.6.2.] As shown in Figure 9.4, the first discriminant 

function maximally separates role-  satisfied housewives from the 

other two groups. The second discriminant function discriminates 

role-  dissatisfied housewives from working women, with role 

satisfied housewives falling between these two groups.

The structure (loading) matrix of correlations between 

predictors and discriminant functions, as seen in Table 9.10, 

suggests that the best predictors for distinguishing between role-

satisfied housewives and the other two groups (first function) are 

attitudes toward current marital status, toward women’s role, and 

toward housework. Role-  satisfied housewives have more favorable 

attitudes toward marital status (mean = 20.60, SD = 6.62) than 

working women (mean = 23.40, SD = 8.53) or role-  dissatisfied 

housewives (mean = 25.62, SD = 10.30), and more conservative 

attitudes toward women’s role (mean = 37.19, SD = 6.46) than 

working women (mean = 33.86, SD = 6.96) or dissatisfied housewives 

(mean = 35.67, SD = 5.76). Role-  satisfied women are more favorable 

toward housework (mean = 22.51, SD = 3.88) than either working 

women (mean = 23.81, SD = 4.55) or role-  dissatisfied housewives 

(mean = 24.93, SD = 3.96). [Group means and standard deviations are 

shown in Table 9.8.] Loadings less than .50 are not interpreted.

One predictor, attitudes toward women’s role, has a loading in 

excess of .50 on the second discriminant function, which separates 

role-dissatisfied housewives from working women. Role-dissatisfied 

housewives have more conservative attitudes toward the role of 

women than working women (means have already been cited).
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Twelve contrasts were performed where each group, in turn, 

was contrasted with the other two groups, pooled, to determine 

which predictors reliably separate each group from the other 

two groups after adjustment for the other predictors. Table 

9.14 shows effect sizes for the 12 contrasts and their 98.75% 

confidence limits (keeping overall confidence level at .95). 

When working women were contrasted with the pooled groups of 

housewives, after adjustment for all other predictors only 

attitude toward women’s role significantly separates working 

women from the other two groups, F(1, 450) = 16.87, p < .05.

Role-  satisfied housewives differ from the other two groups on 

attitudes toward marital status, F(1, 450) = 9.66, p < .05.

The group of role-  dissatisfied housewives does not differ 

from the other two groups on any predictor after adjustment for 

all other predictors.

Thus, the three groups of women differ most notably on 

their attitudes toward the proper role of women in society. 

Working women have the most liberal attitudes, followed by role-

dissatisfied housewives, with role-  satisfied housewives showing 

the most conservative attitudes. Role-  satisfied housewives also 

have more positive attitudes toward marriage than the combination 

of the other two groups.

Pooled within-  group correlations among the four predictors 

are shown in Table 9.8. Of the six correlations, four would show 

statistical significance at .01 if tested individually. There is a 

small positive relationship between locus of control and attitude 

toward marital status, with r(454) = .17 indicating that women 

who are more satisfied with their current marital status are less 

likely to attribute control of reinforcements to external sources. 



Discriminant Analysis 431

Attitude toward housework is positively correlated with locus of 

control, r(454)=.16, and attitude toward marital status, r(454) = 

.28, and negatively correlated with attitude toward women’s role, 

r(454) = -.29. This indicates that women with negative attitudes 

toward housework are likely to attribute control to external 

sources, to be dissatisfied with their current marital status, and 

to have more liberal attitudes toward women’s role.

With the use of a jackknifed (one case at a time deleted) 

quadratic classification procedure for the total usable sample 

of 456 women, 240 (53%) were classified correctly, compared 

with 178.9 (39%) who would be correctly classified by chance 

alone. The 53% classification rate was achieved by classifying a 

disproportionate number of cases as working women. Although 52% of 

the women actually were employed, the classification scheme, using 

sample proportions as prior probabilities, classified 70% of the 

women as employed [317/456 from Cross-validation classification 

matrix in Table 9.8]. This means that the working women were more 

likely to be correctly classified (75% correct classifications) than 

either the role-  satisfied housewives (39% correct classifications) 

or the role-  dissatisfied housewives (10% correct classifications).

The stability of the classification procedure was checked 

by a cross-  validation run. Approximately 25% of the cases were 

withheld from calculation of the classification functions in 

this run. For the 75% of the cases from whom the functions were 

derived, there was a 54% correct classification rate. For the 

cross-  validation cases, classification was 55%. This indicates a 

high degree of consistency in the classification scheme, although 

there is some gain in correct classification for working women at 

the expense of role-  satisfied housewives.
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9.8 Comparison of Programs

There are numerous programs for discriminant analysis in statistical packages, some general and 
some special purpose. IBM SPSS has a general-  purpose discriminant analysis program that performs 
direct, sequential, or stepwise DISCRIM with classification. In addition, IBM SPSS MANOVA per-
forms DISCRIM, but not classification. SAS has two programs, with a separate one for stepwise 
analysis. SYSTAT has a single DISCRIM program. Finally, if the only question is reliability of 
predictors to separate groups, any of the MANOVA programs discussed in Chapter 7 is appropriate. 
Table 9.16 compares features of direct discriminant programs. Features for stepwise discriminant 
function are compared in Table 9.17.

9.8.1 IBM SPSS Package

IBM SPSS DISCRIMINANT, features of which are described in Tables 9.16 and 9.17, is the basic 
program in this package for DISCRIM. The program provides direct (standard), sequential, or step-
wise entry of predictors with numerous options, but some features are available only in syntax 
mode. Strong points include several types of plots and plenty of information about classification. 
Territorial maps are handy for classification using discriminant function scores if there are only a 
few cases to classify. In addition, a test of homogeneity of variance–  covariance matrices is provided 
through plots and, should heterogeneity be found, classification may be based on separate matrices. 
Other useful features are evaluation of successive discriminant functions and default availability of 
structure matrices.

IBM SPSS MANOVA can also be used for DISCRIM and has some features unobtainable in 
any of the other DISCRIM programs. IBM SPSS MANOVA is described rather fully in Table 7.34, 
but some aspects especially pertinent to DISCRIM are featured in Table 9.16. MANOVA offers a va-
riety of statistical criteria for testing the significance of the set of predictors (cf. Section 7.6.1). Many 
matrices can be printed out, and these, along with determinants, are useful for the more sophisticated 
researcher. Successive discriminant functions (roots) are evaluated, as in IBM SPSS DISCRIMINANT.

IBM SPSS MANOVA provides discriminant functions for more complex designs such as fac-
torial arrangements with unequal sample sizes. The program is limited, however, in that it includes 
no classification phase. Further, only standard DISCRIM is available, with no provision for step-
wise or sequential analysis other than Roy–  Bargmann stepdown analysis as described in Chapter 7.

9.8.2 SAS System

In SAS, there are three separate programs to deal with different aspects of discriminant analysis, 
with surprisingly little overlap between the stepwise and direct programs. However, the older direct 
program, CANDISC, has been replaced by DISCRIM and is not reviewed here. Both of the SAS 
programs for discriminant analysis are especially rich in output of SSCP, correlation, and covari-
ance matrices.

The most comprehensive program is DISCRIM, but it does not perform stepwise or sequential 
analysis. This program is especially handy for classifying new cases or performing cross-  validation 
(Section 9.6.7.1) and in testing and dealing with violation of homogeneity of variance–  covariance 
matrices. DISCRIM offers alternate inferential tests, dimension reduction analysis, and all of the 
standard matrices of discriminant results.
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TABLE 9.16 Comparison of Programs for Direct Discriminant Analysis

Feature
SAS
DISCRIM

IBM SPSS 
DISCRIMINANT

IBM SPSS 
MANOVAa

SYSTAT 
DISCRIM

Input

Optional matrix input Yes Yes Yes No

Missing data options No Yes No No

Restrict number of discriminant 
functions NCAN Yes No No

Specify cumulative percentage of 
sum of eigenvalues No Yes No No

Specify significance level of 
functions to retain No Yes ALPHA No

Factorial arrangement of groups No No Yes CONTRASTS

Specify tolerance SINGULAR Yes No Yes

Rotation of discriminant 
functions No Yes Yes No

Quadratic discriminant analysis POOL=NO No No Yes

Optional prior probabilities Yes Yes N.A.b Yes

Specify separate covariance 
matrices for classification POOL=NO Yes N.A. No

Threshold for classification Yes No N.A. No

Nonparametric classification 
method Yes No N.A. No

Output

Wilks’ lambda with approx. F Yes Yes Yes Yes

x2 No Yes No No

Generalized distance between 
groups (Mahalanobis’ D2) Yes Yes No No

Hotelling’s trace criterion Yes No Yes Yes

Roy’s gcr (maximum root) Yes No Yes No

Pillai’s criterion Yes No Yes Yes

Tests of successive dimensions 
(roots) Yes Yes Yes Noc

Univariate F ratios Yes Yes Yes Yes

Group means Yes Yes Yes Medium
output

Total and within-group
standardized group means Yes No No No

Group standard deviation Yes Yes Yes No
(continued )
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Feature
SAS
DISCRIM

IBM SPSS 
DISCRIMINANT

IBM SPSS 
MANOVAa

SYSTAT 
DISCRIM

Output (continued )

Total, within-group and between-
group standard deviations Yes No No No

Standardized discriminant 
function (canonical) 
coefficients Yes Yes Yes

Medium
output

Unstandardized (raw) 
discriminant function 
(canonical) coefficients Yes Yes Yes

Medium
output

Group centroids Yes Yes No Yes

Pooled within-groups (residual) 
SSCP matrix Yes No Yes No

Between-groups SSCP matrix Yes No No No

Hypothesis SSCP matrix No No Yes No

Total SSCP matrix Yes No No No

Group SSCP matrices Yes No No No

Pooled within-groups (residual) 
correlation matrix Yes Yes Yes Long output

Determinant of within-group
correlation matrix No No Yes No

Between-groups correlation 
matrix Yes No No No

Group correlation matrices Yes No No Long output

Total correlation matrix Yes No No Long output

Total covariance matrix Yes Yes No Long output

Pooled within-groups (residual) 
covariance matrix Yes Yes Yes Long output

Group covariance matrices Yes Yes No No

Between-group covariance matrix Yes No No No

Determinants of group covariance 
matrices Yes No Yes No

Homogeneity of variance–
covariance matrices Yes Yes Yes Yes

F matrix, pairwise 
group comparison No Yes Nod Yes

Canonical correlations Yes Yes Yes Yes

Adjusted canonical correlations Yes No No No

TABLE 9.16 Continued 
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Feature
SAS
DISCRIM

IBM SPSS 
DISCRIMINANT

IBM SPSS 
MANOVAa

SYSTAT 
DISCRIM

Eigenvalues Yes Yes Yes Yes

SMCs for each variable R-Squared No No No

SMC divided by tolerance for 
each variable

RSQ>
(1 - RSQ) No No No

Structure (loading) matrix 
(pooled within-groups) Yes Yes No No

Total structure matrix Yes No No No

Between structure matrix Yes No No No

Individual discriminant 
(canonical variate) scores Data file Yes No Yes

Classification features

Classification of cases Yes Yes N.A.b Yes

Classification function 
coefficients Yese Yes N.A.

Medium
output

Classification matrix Yes Yes N.A. Yes

Posterior probabilities for 
classification Data file Yes N.A. Long output

Mahalanobis’ D2 or leverage for 
cases (outliers) No Yesf N.A. Long output

Jackknifed (leave-one-out)
classification matrix Yes Yes N.A. Yes

Classification with a cross-
validation sample Yes Yes N.A. Yes

Plots

All groups scatterplot No Yes N.A. Yes

Centroid included in all groups 
scatterplot No Yes N.A. No

Separate scatterplots by group No Yes N.A. No

Territorial map No Yes N.A. No

aAdditional features reviewed in Section 7.7.
bIBM SPSS MANOVA does not classify cases.
cAvailable in GLM with PRINT-  LONG. See Chapter 7 for additional features.
dCan be obtained through CONTRAST procedure.
eLabeled Linear Discriminant Function.

fOutliers in the solution.

TABLE 9.16 Continued 
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TABLE 9.17 Comparison of Programs for Stepwise and Sequential Discriminant Analysis

Feature
IBM SPSS 
DISCRIMINANT

SAS
STEPDISC

SYSTAT 
DISCRIM

Input

Optional matrix input Yes Yes Yes

Missing data options Yes No No

Specify contrast No No Yes

Factorial arrangement of groups No No CONTRAST

Suppress intermediate steps No No No

Suppress all but summary table NOSTEP SHORT No

Optional methods for order of entry/removal 3 5 2

Forced entry by level (sequential) No No Yes

Force some variables into model Yes INCLUDE FORCE

Specify tolerance Yes SINGULAR Yes

Specify maximum number of steps Yes Yes No

Specify number of variables in final stepwise 
model

No STOP= No

Specify F to enter/remove FIN/FOUT No FEnter/Fremove

Specify significance of F to enter/remove PIN/POUT SLE/SLS Enter/Remove

Specify partial R2 to enter/remove No PR2E/PR2S No

Restrict number of discriminant functions Yes No No

Specify cumulative percentage of sum of 
eigenvalues

Yes No No

Specify significance level of functions to retain Yes No No

Rotation of discriminant functions Yes No No

Prior probabilities optional Yes N.A.a Yes

Specify separate covariance matrices for 
classification

Yes N.A. No

Output

Wilks’ lambda with approximate F Yes Yes Medium output

x2 Yes No No

Mahalanobis’ D2 (between groups) Yes No No

Rao’s V Yes No No

Pillai’s criterion No Yes Medium output

Tests of successive dimensions (roots) Yes No No

Univariate F ratios Yes STEP 1 F Yesb
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Feature
IBM SPSS 
DISCRIMINANT

SAS
STEPDISC

SYSTAT 
DISCRIM

Group means Yes Yes Medium output

Group standard deviations Yes Yes No

Total and pooled within-  group standard 
deviations

No Yes No

Standardized discriminant function (canonical) 
coefficients

Yes No Medium output

Unstandardized discriminant function 
(canonical) coefficients

Yes No Medium output

Group centroids Yes No Yesc

Pooled within-group correlation matrix Yes Yes Long output

Total correlation matrix No Yes Long output

Total covariance matrix Yes Yes Long output

Total SSCP matrix No Yes No

Pooled within-group covariance matrix Yes Yes Long output

Pooled within-group SSCP matrix No Yes No

Group covariance matrices Yes Yes Long output

Group correlation matrices No Yes Long output

Group SSCP matrices No Yes No

Between-group correlation matrix No Yes No

Between-group covariance matrix No Yes No

Between-group SSCP matrix No Yes No

Homogeneity of variance–covariance matrices Yes No Yes

F matrix, pairwise group comparison Yes No Yes

Canonical correlations, each discriminant 
function

Yes No Yes

Canonical correlations, average No Yes No

Eigenvalues Yes No Yes

Structure (loading) matrix Yes No No

Partial R2 (or tolerance) to enter/remove, 
each step

Yes Yes Yes

F to enter/remove, each step Yes Yes Yes

Classification features

Classification of cases Yes N.A.a Yes

Classification function coefficients Yes N.A. Medium output

Classification matrix Yes N.A. Yes

TABLE 9.17 Continued 

(continued )
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Feature
IBM SPSS 
DISCRIMINANT

SAS
STEPDISC

SYSTAT 
DISCRIM

Classification features (continued )

Individual discriminant (canonical variate) 
scores

Yes N.A. Long output

Posterior probabilities for classification Yes N.A. Long output

Mahalanobis’ D2 for cases (outliers) Yesd N.A. Long output

Jackknifed classification matrix CROSS VALIDATE N.A. Yes

Classification with a cross-  validation sample Yes N.A. Yes

Classification information at each step No N.A. No

Plots

Plot of group centroids alone No N.A. No

All groups scatterplot Yes N.A. Yes

Separate scatterplots by group Yes N.A. No

Territorial map Yes N.A. No

aSAS STEPDISC does not classify cases (see SAS DISCRIM, Table 9.16).
bF-to-enter prior to first step.
cCanonical scores of group means.
dOutliers in the solution.

TABLE 9.17 Continued 

Stepwise (but not sequential) analysis is accomplished through STEPDISC. As seen in 
Table 9.17, very few additional amenities are available in this program. There is no classification, 
nor is there information about the discriminant functions. On the other hand, this program offers 
plenty of options for entry and removal of predictors.

9.8.3 SYSTAT System

SYSTAT DISCRIM is the discriminant analysis program. The program deals with all varieties of 
DISCRIM. Automatic (forward and backward) and interactive stepping are available, as well as a 
contrast procedure to control entry of variables. The contrast procedure also is useful for comparing 
means of one group with pooled means of the other groups. Jackknifed classification is produced by 
default, and cross-  validation may be done as well. Dimension reduction analysis is no longer avail-
able, but can be obtained by rephrasing the problem as MANOVA and running it through GLM with 
PRINT=LONG. Such a strategy also is well suited to factorial arrangements of unequal-n groups.

Scatterplot matrices (SYSTAT SPLOM) may be used to evaluate homogeneity of variance–
covariance matrices; quadratic discrimination analysis is available through DISCRIM should the 
assumption be violated. Several univariate and multivariate inferential tests also are available. 
SYSTAT DISCRIM can be used to assess outliers through Mahalanobis’ distance of each case to 
each group centroid.
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10.1 General Purpose and Description

Logistic regression allows one to predict a discrete outcome such as group membership from a set 
of variables that may be continuous, discrete, dichotomous, or a mix. Because of its popularity in 
the health sciences, the discrete outcome in logistic regression is often disease/no disease. For ex-
ample, can presence or absence of hay fever be diagnosed from geographic area, season, degree of 
nasal stuffiness, and body temperature?

Logistic regression is related to, and answers the same questions as, discriminant analysis, the 
logit form of multiway frequency analysis with a discrete DV, and multiple regression analysis with 
a dichotomous DV. However, logistic regression is more flexible than the other techniques. Unlike 
discriminant analysis, logistic regression has no assumptions about the distributions of the predic-
tor variables; in logistic regression, the predictors do not have to be normally distributed, linearly 
related to the DV, or of equal variance within each group. Unlike multiway frequency analysis, the 
predictors do not need to be discrete; the predictors can be any mix of continuous, discrete, and 
dichotomous variables. Unlike multiple regression analysis, which also has distributional require-
ments for predictors, logistic regression cannot produce negative predicted probabilities.

There may be two or more outcomes (groups—  levels within the DV) in logistic regression. 
If there are more than two outcomes, they may or may not have order (e.g., no hay fever, moderate 
hay fever, severe hay fever). Logistic regression emphasizes the probability of a particular outcome 
for each case. For example, it evaluates the probability that a given person has hay fever, given 
that person’s pattern of responses to questions about geographic area, season, nasal stuffiness, and 
temperature.

Logistic regression analysis is especially useful when the distribution of responses on the DV 
is expected to be nonlinear with one or more of the IVs. For example, the probability of heart dis-
ease may be little affected (say 1%) by a 10-point difference among people with low blood pressure 
(e.g., 110 vs. 120) but may change quite a bit (say 5%) with an equivalent difference among people 
with high blood pressure (e.g., 180 vs. 190). Thus, the relationship between heart disease and blood 
pressure is not linear.

Tsunokai and McGrath (2011) studied the willingness of older adults to date across racial 
boundaries. The sample of 1,335 adults aged 45 and over was drawn from a nationwide multilevel 
sample of persons seeking relationships through Match.com. Several demographic characteristics 
were available on the Web site to serve as covariates: age, relationship status, region of the country, 
sexual orientation, education, political orientation, and religious affiliation. Six logistic regressions 
were run, three for whites willing to date African-  Americans, Latinos, and Asians and three for 
African-  Americans willing to date whites, Latinos, and Asians. Among whites, people had greater 

10 Logistic Regression
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likelihood of dating across a racial boundary if they were younger, more highly educated, lived 
outside the South, had no religious affiliation, and held politically liberal views. Among African-
Americans, people had a greater likelihood of crossing a racial boundary if they were older; many of 
the other covariates were not significantly related to cross-  racial dating or had a complex relation-
ship with the likelihood of cross-  racial dating.

Lee et al. (2011) used the Bayley Scale of Infant Development to assess the mental and psy-
chomotor development of healthy 6–  month-  old infants of 763 mothers who had never smoked. 
Infants were subdivided into those who had been subjected to secondhand smoke during the pre-   or 
postnatal period and those who had not. Infants were also divided into those who had normal scores 
and those who exhibited a moderate delay in mental or in psychomotor development. Logistic 
regression analyses (adjusted for residential area, maternal age, pre-  pregnancy body mass index, 
education, income, infant sex, parity, birth weight, and type of feeding) revealed a 2.36 increase in 
the odds of a moderate delay in mental development as a result of mother’s exposure to prenatal sec-
ondhand smoke. No significant differences were found for postnatal secondhand smoke exposure or 
for psychomotor development.

Lind, Glasø, Pallesen, and Einarsen (2009) studied personality profiles among 435 employees 
of nursing homes, 42 of whom identified themselves as targets of bullying. The employees com-
pleted the official Norwegian translation of the NEO-  Five Factor Inventory that yielded scores for 
Neuroticism, Extroversion, Openness, Agreeableness, and Conscientiousness. Logistic regression 
revealed that those who were targets of bullying had higher scores on Conscientiousness and lower 
scores on Agreeableness. However, results were not strong and were dependent on the cutoff used 
to identify targets of bullying.

Because the model produced by logistic regression is nonlinear, the equations used to 
describe the outcomes are slightly more complex than those for multiple regression. The outcome 
variable, Yn, is the probability of having one outcome or another based on a nonlinear function of the 
best linear combination of predictors; with two outcomes:

Yni =
eu

1 + eu (10.1)

where Yni is the estimated probability that the ith case (i = 1, . . . , n) is in one of the cat-
egories and u is the usual linear regression equation:

u = A + B1X1 + B2X2 + g+ BkXk (10.2)

with constant A, coefficients Bj, and predictors, Xj for k predictors ( j = 1, . . . , k).

This linear regression equation creates the logit or log of the odds:

lna Yn

1 - Yn
b = A + aBj Xij (10.3)

That is, the linear regression equation is the natural (loge ) of the probability of being in one 
group divided by the probability of being in the other group. The procedure for estimating coef-
ficients is maximum likelihood, and the goal is to find the best linear combination of predictors 
to maximize the likelihood of obtaining the observed outcome frequencies. Maximum likelihood 
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estimation is an iterative procedure that starts with arbitrary values of coefficients for the set of 
predictors and determines the direction and size of change in the coefficients that will maximize 
the likelihood of obtaining the observed frequencies. Then residuals for the predictive model based 
on those coefficients are tested and another determination of direction and size of change in coeffi-
cients is made, and so on, until the coefficients change very little, that is, convergence is reached. In 
effect, maximum likelihood estimates are those parameter estimates that maximize the probability 
of finding the sample data that actually have been found (Hox, 2002).

Logistic regression, like multiway frequency analysis, can be used to fit and compare models. 
The simplest (and worst-  fitting) model includes only the constant and none of the predictors. The most 
complex (and “best”-fitting) model includes the constant, all predictors, and, perhaps, interactions 
among predictors. Often, however, not all predictors (and interactions) are related to the outcome. 
The researcher uses goodness-of-fit tests to choose the model that does the best job of prediction with 
the fewest predictors.

10.2 Kinds of Research Questions

The goal of analysis is to correctly predict the category of the outcome for individual cases. The 
first step is to establish that there is a relationship between the outcome and the set of predictors. If 
a relationship is found, one usually tries to simplify the model by eliminating some predictors while 
still maintaining strong prediction. Once a reduced set of predictors is found, the equation can be 
used to predict outcomes for new cases on a probabilistic basis.

10.2.1 Prediction of Group Membership or Outcome

Can outcome be predicted from the set of variables? For example, can hay fever be predicted from 
geographic area, season, degree of nasal stuffiness, and body temperature? Several tests of rela-
tionship are available in logistic regression. The most straightforward compares a model with the 
constant plus predictors with a model that has only the constant. A statistically significant difference 
between the models indicates a relationship between the predictors and the outcome. This procedure 
is demonstrated in Section 10.4.2

An alternative is to test a model with only some predictors against the model with all predic-
tors (called a full model). The goal is to find a nonsignificant x2 indicating no statistically signifi-
cant difference between the model with only some predictors and the full model. The use of these 
and the other goodness-of-fit tests is discussed in Section 10.6.1.1.

10.2.2 Importance of Predictors

Which variables predict the outcome? How do variables affect the outcome? Does a particular 
variable increase or decrease the probability of an outcome, or does it have no effect on outcome? 
Does inclusion of information about geographic area improve prediction of hay fever, and is a 
particular area associated with an increase or decrease in the probability that a case has hay fever? 
Several methods of answering these questions are available in logistic regression. One may, for 
instance, ask how much the model is harmed by eliminating a predictor, or one may assess the 
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statistical significance of the coefficients associated with each of the predictors, or one may ask 
how much the odds of observing an outcome are changed by a predictor. These procedures are 
discussed in Sections 10.4 and 10.6.8.

10.2.3 Interactions among Predictors

As in multiway frequency (logit) analysis, a model can also include interactions among the predictor 
variables: two-  way interactions and, if there are many predictor variables, higher-  order interactions. 
For example, knowledge of geographic area and season, in combination, might be useful in the pre-
diction of hay fever; or knowledge of degree of nasal stuffiness combined with fever. Geographic 
area may be associated with hay fever only in some seasons; stuffiness might only matter with no 
fever. Other combinations such as between temperature and geographic areas may, however, not be 
helpful. If there are interactions among continuous variables (or powers of them), multicollinearity 
is avoided by centering the variables (Section 5.6.6).

Like individual predictors, interactions may complicate a model without significantly improv-
ing the prediction. Decisions about including interactions are made in the same way as decisions 
about including individual predictors. Section 10.6.7 discusses decisions about whether inclusion of 
interactions also presumes inclusion of their individual components.

10.2.4 Parameter Estimates

The parameter estimates in logistic regression are the coefficients of the predictors included in a 
model. They are related to the A and B values of Equation 10.2. Section 10.4.1 discusses methods 
for calculating parameter estimates. Section 10.6.3 shows how to use parameter estimates to cal-
culate and interpret odds. For example, what are the odds that someone has hay fever in the spring, 
given residence in the Midwest, nasal stuffiness, and no fever?

10.2.5 Classification of Cases

How good is a statistically significant model at classifying cases for whom the outcome is known? 
For example, how many people with hay fever are diagnosed correctly? How many people without 
hay fever are diagnosed correctly? The researcher establishes a cutpoint (say, .5) and then asks, 
for instance: How many people with hay fever are correctly classified if everyone with a predicted 
probability of .5 or more is diagnosed as having hay fever? Classification of cases is discussed in 
Section 10.6.6.

10.2.6 Significance of Prediction with Covariates

The researcher may consider some of the predictors to be covariates and others to be independent 
variables. For example, the researcher may consider stuffiness and temperature covariates, and geo-
graphic area and season independent variables in an analysis that asks if knowledge of geographic 
area and season added to knowledge of physical symptoms significantly improves prediction over 
knowledge of physical symptoms alone. Section 10.5.2 discusses sequential logistic regression, and 
a complete example of Section 10.7.3 demonstrates sequential logistic regression.
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10.2.7 Effect Size

How strong is the relationship between outcome and the set of predictors in the chosen model? 
What proportion of variance in outcome is associated with the set of predictors? For example, what 
proportion of the variability in hay fever is accounted for by geographic area, season, stuffiness, and 
temperature?

The logic of assessing effect size is different in routine statistical hypothesis testing from 
situations where models are being evaluated. In routine statistical hypothesis testing, one might 
not report effect size for a nonsignificant effect. However, in model testing, the goal is often to 
find nonsignificance, to find effect size for a model that is not significantly different from a full 
model. However, when samples are large, there may be a statistically significant deviation from 
the full model, even when a model does a fine job of prediction. Therefore, effect size is also re-
ported with a model that deviates significantly from chance. Measures of effect size are discussed 
in Section 10.6.2.

10.3 Limitations to Logistic Regression Analysis

Logistic regression is relatively free of restrictions and, with the capacity to analyze a mix of all 
types of predictors (continuous, discrete, and dichotomous), the variety and complexity of data sets 
that can be analyzed are almost unlimited. The outcome variable does have to be discrete, but a con-
tinuous variable can be converted into a discrete one when there is a reason to do so.

10.3.1 Theoretical Issues

The usual cautions about causal inference apply, as in all analyses in which one variable is an out-
come. To say that the probability of correctly diagnosing hay fever is related to geographic area, 
season, nasal stuffiness, and fever is not to imply that any of those variables cause hay fever.

As a flexible alternative to both discriminant analysis and the logit form of multiway fre-
quency analysis, the popularity of logistic regression analysis is growing. The technique has the 
sometimes useful property of producing predicted values that are probabilities between 0 and 1. 
However, when assumptions regarding the distributions of predictors are met, discriminant analysis 
may be a more powerful and efficient analytic strategy. On the other hand, discriminant analy-
sis sometimes overestimates the size of the association with dichotomous predictors (Hosmer & 
Lemeshow, 2000). Multiple regression is likely to be more powerful than logistic regression when 
the outcome is continuous and the assumptions regarding it and the predictors are met. When all the 
predictors are discrete, multiway frequency analysis offers some convenient screening procedures 
that may make it the more desirable option.

As in all research, the importance of selecting predictors on the basis of a well-  justified, 
theoretical model cannot be overemphasized. In logistic regression, as in other modeling strategies, 
it is tempting (and often common in the research community) to amass a large number of predic-
tors and then, on the basis of a single data set, eliminate those that are not statistically significant. 
This is a practice widely adopted in the research community, but is especially dangerous in logistic 
regression because the technique is often used to address life-  and-  death issues in medical policy and 
practice (Harlow, 2002).
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10.3.2 Practical Issues

Although assumptions regarding the distributions of predictors are not required for logistic regression, 
multivariate normality and linearity among the predictors may enhance power because a linear com-
bination of predictors is used to form the exponent (see Equations 10.1 and 10.2). Also, it is assumed 
that continuous predictors are linear with the logit of the DV. Other limitations are mentioned below.

10.3.2.1 Ratio of Cases to Variables

A number of problems may occur when there are too few cases relative to the number of predictor 
variables. Logistic regression may produce extremely large parameter estimates and standard errors, 
and, possibly, failure of convergence when combinations of discrete variables result in too many 
cells with no cases. If this occurs, collapse categories, delete the offending category, or delete the 
discrete variable if it is not important to the analysis. Alternatively, SAS offers exact logistic regres-
sion which, unlike a maximum likelihood solution, is not sensitive to data sparseness.

A maximum likelihood solution also is impossible when outcome groups are perfectly separated. 
Complete separation of groups by a dichotomous predictor occurs when all cases in one outcome group 
have a particular value of a predictor (e.g., all those with hay fever have sniffles) while all those in 
another group have another value of a predictor (e.g., no hay fever and no sniffles). This is likely to be a 
result of too small a sample rather than a fortuitous discovery of the perfect predictor that will general-
ize to the population. Complete separation of groups also can occur when there are too many variables 
relative to the few cases in one outcome (Hosmer & Lemeshow, 2000). This is essentially a problem 
of overfitting, as occurs with a small case-to-variable ratio in multiple regression (cf. Section 5.3.2.1).

Extremely high parameter estimates and standard errors are indications that a problem exists. 
These estimates also increase with succeeding iterations (or the solution fails to converge). If this 
occurs, increase the number of cases or eliminate one or more predictors. Overfitting with small 
samples is more difficult to spot in logistic regression than in multiple regression because there is no 
form of “adjusted R2” which, when very different from unadjusted R2 in multiple regression, signals 
an inadequate sample size.

10.3.2.2 Adequacy of Expected Frequencies and Power

When a goodness-of-fit test is used that compares observed with expected frequencies in cells 
formed by combinations of discrete variables, the analysis may have little power if expected fre-
quencies are too small. If you plan to use such a goodness-of-fit test, evaluate expected cell frequen-
cies for all pairs of discrete variables, including the outcome variable. Recall from garden-variety 
x2 (Section 3.6) that expected frequencies = [(row total) (column total)]/grand total. It is best if all 
expected frequencies are greater than one, and that no more than 20% are less than five. Should 
either of these conditions fail, the choices are: (1) accept lessened power for the analysis, (2) col-
lapse categories for variables with more than two levels, (3) delete discrete variables to reduce the 
number of cells, or (4) use a goodness-of-fit criterion that is not based on observed versus expected 
frequencies of cells formed by categorical variables, as discussed in Section 10.6.1.1.

As with all statistical techniques, power increases with sample size. Some statistical soft-
ware available for determining sample size and power specifically for a logistic regression analysis 
includes NCSS PASS (Hintze, 2011) and nQuery Advisor (Elashoff, 2000). The Internet is a never-
ending but ever-  changing source of free power programs.
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10.3.2.3 Linearity in the Logit

Logistic regression assumes a linear relationship between continuous predictors and the logit trans-
form of the DV (see Equation 10.3), although there are no assumptions about linear relationships 
among predictors themselves.

There are several graphical and statistical methods for testing this assumption; the Box–
Tidwell approach (Hosmer & Lemeshow, 2000) is among the simplest. In this approach, terms, 
composed of interactions between each predictor and its natural logarithm, are added to the logis-
tic regression model. The assumption is violated if one or more of the added interaction terms are 
statistically significant. Violation of the assumptions leads to transformation (Section 4.1.6) of the 
offending predictor(s). Tests of linearity of the logit are demonstrated in Section 10.7.

10.3.2.4 Absence of Multicollinearity

Logistic regression, like all varieties of multiple regression, is sensitive to extremely high correla-
tions among predictor variables, signaled by exceedingly large standard errors for parameter esti-
mates and/or failure of a tolerance test in the computer run. To find a source of multicollinearity 
among the discrete predictors, use multiway frequency analysis (cf. Chapter 16) to find very strong 
relationships among them. To find a source of multicollinearity among the continuous predictors, 
replace the discrete predictors with dichotomous dummy variables and then use the procedures of 
Section 4.1.7. Delete one or more redundant variables from the model to eliminate multicollinearity.

10.3.2.5 Absence of Outliers in the Solution

One or more of the cases may be very poorly predicted by the solution; a case that actually is in one 
category of outcome may show a high probability for being in another category. If there are enough 
cases like this, the model has poor fit. Outlying cases are found by examination of residuals, which 
can also aid in interpreting the results of the logistic regression analysis. Section 10.4.4 discusses 
how to examine residuals to evaluate outliers.

10.3.2.6 Independence of Errors

Logistic regression assumes that responses of different cases are independent of each other. That is, 
it is assumed that each response comes from a different, unrelated, case. Thus, logistic regression 
basically is a between-  subjects strategy.

However, if the design is repeated measures, say the levels of the outcome variable are formed 
by the time period in which measurements are taken (before and after some treatment) or the levels 
of outcome represent experimental versus control subjects who have been matched on a 1 to 1 basis 
(called a matched case-  control study), the usual logistic regression procedures are inappropriate 
because of correlated errors.

The effect of non-  independence in logistic regression is to produce overdispersion, a condition in 
which the variability in cell frequencies is greater than expected by the underlying model. This results 
in an inflated Type I error rate for tests of predictors. One remedy is to do multilevel modeling with a 
categorical DV in which such dependencies are considered part of the model (cf. Section 15.5.4).

There are two fixes which provide conservative tests of predictors to compensate for the in-
creased Type I error rate due to non-  independence. A simple remedy for overdispersion in a logistic 
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regression model is to rescale the Wald standard errors for each parameter (Section 10.4.1) by a vari-
ance inflation factor. This is done by multiplying the calculated standard error by (x2>df )1>2, where 
x2 and df are from the deviance or Pearson goodness-of-fit statistics (available in SAS LOGISTIC
and in IBM SPSS NOMREG, which also can be instructed to do the scaling). Indeed, one indication 
that overdispersion is a problem is a large discrepancy between the Pearson and deviance test statis-
tics. The larger of the two values is to be used to compute the variance inflation factor.

SAS LOGISTIC permits a more sophisticated remedy if all predictors are discrete, by scaling 
the standard errors through the scale instruction plus an aggregate instruction that speci-
fies the variable indicating the matching identifier, for example, individual or pair number. This 
provides the appropriate standard errors for tests of parameters, but the deviance and Pearson x2 test 
cannot be used to evaluate goodness of fit of the model.

Also, special procedures are available in both statistical packages for matched case-  control 
studies, as described in Section 10.6.9. Within-  subjects (repeated measures) analysis also is available 
through SAS CATMOD, but, again, predictors must be discrete. SAS GENMOD permits both discrete 
and continuous predictors for repeated-  measures analysis. IBM SPSS COMPLEX SAMPLES may be 
used for repeated-  measures designs with a dichotomous DV when cases are defined as clusters.

10.4 Fundamental Equations for Logistic Regression

Table 10.1 shows a hypothetical data set in which falling down (0 = not falling, 1 = falling) on a ski 
run is tested against the difficulty of the run (on an ordered scale from 1 to 3, treated as if continuous)
and the season (a categorical variable where 1 = autumn, 2 = winter, and 3 = spring). Data from 

TABLE 10.1 Small Sample of 
Hypothetical Data for Illustration 
of Logistic Regression Analysis

Fall Difficulty Season

1 3 1
1 1 1
0 1 3
1 2 3
1 3 2
0 2 2
0 1 2
1 3 1
1 2 3
1 2 1
0 2 2
0 2 3
1 3 2
1 2 2
0 3 1



Logistic Regression 447

15 skiers are presented. Logistic regression uses procedures similar to both multiple regression and 
multiway frequency analysis. Like multiple regression, the prediction equation includes a linear 
combination of the predictor variables. For example, with three predictors and no interactions:

Yni =
eA + B1X1 + B2 X2 + B3 X3

1 + eA + B1X1 + B2 X2 + B3 X3
(10.4)

The difference between multiple regression and logistic regression is that the linear portion of the 
equation (A + B1X1 + B2X2 + B3X3), the logit, is not the end in itself, but is used to find the odds of 
being in one of the categories of the DV given a particular combination of scores on the Xs. Similar 
to multiway frequency analysis, models are evaluated by assessing the (natural log) likelihood for 
each model. Models are then compared by calculating the difference between their log-  likelihoods.

In this section the simpler calculations are illustrated in detail, while those involving calculus 
or matrix inversion are merely described and left to computer software for solution. At the end of the 
section, the most straightforward program in each package (IBM SPSS LOGISTIC REGRESSION
and SAS LOGISTIC) is demonstrated for the small data set. Additional programs for analysis of 
more complex data sets are described in Section 10.8.

Before analysis, discrete variables are recoded into a series of dichotomous (dummy) vari-
ables, one fewer than there are categories. Thus, two dichotomous variables, called season(1) and 
season(2), are created to represent the three categories of season. Following the convention of most 
software, season(1) is coded 1 if the season is autumn, and 0 otherwise; season(2) is coded 1 if win-
ter, and 0 otherwise. Spring is identified by codes of 0 on both dummy variables.

10.4.1 Testing and Interpreting Coefficients

Solving for logistic regression coefficients A and B and their standard errors involves calculus, 
in which values are found using maximum likelihood methods. These values, in turn, are used to 
evaluate the fit of one or more models (cf. Section 10.4.2). If an acceptable model is found, the sta-
tistical significance of each of the coefficients is evaluated1 using the Wald test where the squared 
coefficient is divided by its squared standard error:

Wj =
B2

j

SEB2
j

(10.5)

A squared parameter estimate divided by its squared standard error is a x2 statistic. Table 10.2 shows 
these coefficients, their standard errors, and the Wald test obtained from statistical software. None 
of the predictors is statistically significant in this tiny data set.

The logistic regression equation is

Prob( fall) = Yni =
e- 1.776 + (1.010)(DIFF)+ (0.927)(SEAS1)+ (- 0.418)(SEAS2)

1 + e- 1.776 + (1.010)(DIFF)+ (0.927)(SEAS1)+ (- 0.418)(SEAS2)

1It is convenient for didactic purposes to first illustrate coefficients and then show how they are used to develop 
goodness-of-fit tests for models.
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Because the equation is solved for the outcome “falling,” coded 1,2 the derived probabilities are also 
for falling. Since none of the coefficients is significant, the equation would normally not be applied 
to any cases. However, for illustration, the equation is applied below to the first case, a skier who 
actually did fall on a difficult run in the autumn. The probability is

Prob( fall) = Yni =
e- 1.776 + (1.010)(3) + (0.927)(1) + (- 0.418)(0)

1 + e- 1.776 + (1.010)(3) + (0.927)(1) + (- 0.418)(0)

=
e2.181

1 + e2.181

=
8.855

9.855
= .899

Prediction is quite good for this case, since the probability of falling is .899 (with a residual of 
1 − .899 = .101, where 1 represents the actual outcome: falling). Section 10.6.3 discusses further 
interpretation of coefficients.

10.4.2 Goodness of Fit

For a candidate model, a model log-  likelihood is calculated, based on summing the individual log-
likelihoods associated with the predicted and actual outcomes for each case:

log@likelihood = a
N

i = 1
3Yi ln (Yni) + (1 - Yi) ln (1 - Yni)4 (10.6)

Table 10.3 shows the actual outcome (Y) and predicted probability of falling for the 15 cases 
in the small-  sample example, along with the values needed to calculate log-  likelihood.

Two models are compared by computing the difference in their log-  likelihoods (times −2) and 
using chi-  square. The bigger model is the one to which predictors have been added to the smaller 
model. Models must be nested to be compared; all the components of the smaller model must also 
be in the bigger model.

2Some texts and software solve the equation for the outcome coded 0 by default, in the example above “not falling.”

TABLE 10.2 Coefficients, Standard Errors, and Wald Test Derived for 
Small-Sample Example

Term Coefficient Standard Wald Error Test (χ2)

(CONSTANT) −1.776 1.89 0.88
DIFFICULTY 1.010 0.90 1.27
SEASON(1) 0.927 1.59 0.34
SEASON(2) −0.418 1.39 0.91
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x2 = [(-2 * [(log-likelihood for smaller model) - (-2 * log-likelihood for the bigger model)] (10.7)

When the bigger model contains all predictors and the smaller model contains only the intercept, 
a conventional notation for Equation 10.7 is:

x2 = 23LL(B) - LL(0)4
For this example, the log-  likelihood for the smaller model that contains only the constant is 

-10.095. When all predictors are in the bigger model, the log-  likelihood, as shown in Table 10.3, 
is -8.740. The difference between log-  likelihoods is multiplied by two to create a statistic that is 
distributed as chi-  square. In the example, the difference (times two) is:

x2 = 23(-8.740) - (-10.095)4 = 2.71

Degrees of freedom are the difference between degrees of freedom for the bigger and smaller 
models. The constant-  only model has 1 df (for the constant) and the full model has 4 df (1 df for 
each individual effect and one for the constant); therefore x2 is evaluated with 3 df. Because x2 is 
not statistically significant at a = .05, the model with all predictors is no better than one with no 
predictors, an expected result because of the failure to find any statistically significant predictors. 
Additional goodness-of-fit statistics are described in Section 10.6.1.1.

TABLE 10.3 Calculation of Log-Likelihood for Small-Sample Example

Outcome
Predicted 

Probability
Individual 

Log-Likelihood
Model Log-
Likelihood

Y Yn 1 - Yn Y ln Yn (1 - Y ) ln (1 - Yn) a 3Y ln Yn + (1 - Y) ln (1 - Yn )4
1 .899 .101 -0.106 0 -0.106
1 .540 .460 -0.616 0 -0.616
0 .317 .683 0 -0.381 -0.381
1 .516 .439 -0.578 0 -0.578
1 .698 .302 -3.360 0 -0.360
0 .457 .543 0 -0.611 -0.611
0 .234 .766 0 -0.267 -0.267
1 .899 .101 -0.106 0 -0.106
1 .451 .439 -0.578 0 -0.578
1 .764 .236 -0.267 0 -0.269
0 .457 .543 0 -0.611 -0.611
0 .561 .439 0 -0.823 -0.823
1 .698 .302 -0.360 0 -0.360
1 .457 .543 -0.783 0 -0.783
0 .899 .101 0 -2.293 -2.293

SUM = -8.74a

a-2 * log-likelihood = 17.48.
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10.4.3 Comparing Models

This goodness-of-fit x2 process is also used to evaluate predictors that are eliminated from the 
full model, or predictors (and their interactions) that are added to a smaller model. In general, 
log-  likelihood decreases/increases as predictors are added/deleted. The question in comparing 
models is, Does the log-  likelihood decrease/increase significantly with the addition/deletion of 
predictor(s)?

For example, the -2 * log-  likelihood for the small-  sample example with difficulty removed is 
18.87. Compared to the full model, x2 is, using Equation 10.7,

x2 = (18.87 - 17.48) = 1.39

with 1 df, indicating no significant enhancement to prediction of falling by knowledge of difficulty 
of the ski run.

10.4.4 Interpretation and Analysis of Residuals

As shown in Section 10.4.2, the first case has a residual of .101; the predicted probability of falling, 
.899, was off by .101 from the actual outcome of falling for that case of 1.00. Residuals are calcu-
lated for each case and then standardized to assist in the evaluation of the fit of the model to each 
case.

There are several schemes for standardizing residuals. The one used here is common among 
software packages, and defines a standardized residual for a case as:

std residuali =
(Yi - Yni)>Yni(1 - Yni)

21 - hi

(10.8)

where

hi = Yni(1-Yni) x�i (X�VX)- 1xi (10.9)

and where xi is the vector of predictors for the case, X is the data matrix for the whole 
sample including the constant, and V is a diagonal matrix with general element:

Yni (1-Yni)

Table 10.4 shows residuals and standardized residuals for each case in the small-  sample 
example. There is a very large residual for the last case, a skier who did not fall, but had a predicted 
probability of falling of about .9. This is the case the model predicts most poorly. With a standard-
ized residual (z) = 3.326 in a sample of this size, the case is an outlier in the solution.
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10.4.5 Computer Analyses of Small-Sample Example

Syntax and selected output for computer analyses of the data in Table 10.1 appear in Tables 10.5 and 
10.6: SAS LOGISTIC in Table 10.5 and IBM SPSS LOGISTIC REGRESSION in Table 10.6.

As seen in Table 10.5, SAS LOGISTIC uses the CLASS instruction to designate categorical 
predictors; param=glm produces internal coding which matches that of hand calculations and 
default IBM SPSS coding. FALL (event='1') indicates that the level of the DV to be considered an 
event (falling down) is coded 1. The Response Profile in the output shows the coding and 
numbers of cases for each outcome group. Three Model Fit Statistics are given for 
the Intercept Only model and the full model (Intercept and Covariates),
including −2 Log L, which is -2 times the log-  likelihood of Section 10.4.2. Under Testing 
Global Null Hypotheses: BETA=0 are three x2 goodness-of-fit tests for the overall 
model. The Likelihood Ratio test is the test of the full model versus the constant-  only
model (cf. Section 10.4.2).

Analysis of Type 3 Effects shows tests of significance for each of the 
predictors, combining the df for SEASON into a single test. The Analysis of Maximum 
Likelihood Estimates provides B weights (Parameter Estimates) for 
predicting the probability of not falling (code of 0 for FALL; SAS solves for the 0 code), the 
Standard Error of B, and Wald Chi-  Square together with its Pr(obability). 
Standardized (parameter), Estimates, and Odds Ratios along with their 95% 
confidence limits are also provided. SAS LOGISTIC additionally provides several measures of 
effect size for the set of predictors: Somers’ D, Gamma, Tau-a, and Tau-c (see Section 10.6.2).

TABLE 10.4 Residuals and Standardized Residuals 
for Small-Sample Example

Outcome Residual Standardized Residual

1 .101 0.375
1 .460 1.403
0 -.317 -0.833
1 .439 1.034
1 .302 0.770
0 -.457 -1.019
0 -.234 -0.678
1 .101 0.375
1 .439 1.034
1 .236 0.646
0 -.457 -1.019
0 -.561 -1.321
1 .302 0.770
1 .543 1.213
0 -.899 3.326
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TABLE 10.5 Syntax and Selected Output from SAS LOGISTIC Analysis of Small-  Sample Example

proc logistic data=SASUSER.SSLOGREG;
    class season / param=glm;

model FALL(event=’1’)=DIFFCLTY SEASON;
run;

The LOGISTIC Procedure

Response Profile

Ordered
Value FALL

Total
Frequency

1 0 6
2 1 9

Probability modeled is FALL=0.

Class Level Information

Design Variables

Class Value 1 2 3

SEASON 1 1 0 0
  2 0 1 0
  3 0 0 1

Model Fit Statistics

Criterion
Intercept

Only
Intercept and 
Covariates

AIC 22.190 25.481
SC 22.898 28.313
−2 Log L 20.190 17.481

Testing Global Null Hypothesis: BETA=0

Test Chi-  Square DF Pr > ChiSq

Likelihood Ratio 2.7096 3 0.4386
Score 2.4539 3 0.4837
Wald 2.0426 3 0.5636

Type 3 Analysis of Effects

Effect DF
Wald

Chi-Square Pr > ChiSq

DIFFCLTY 1 1.2726 0.2593
SEASON 2 0.8322 0.6596
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TABLE 10.5 Continued

Analysis of Maximum Likelihood Estimates

Parameter   DF Estimate
Standard

Error
Wald

Chi-Square Pr > ChiSq

Intercept   1 1.7768 1.8898 0.8841 0.3471
DIFFCLTY   1 −1.0108 0.8960 1.2726 0.2593
SEASON 1 1 0.9275 1.5894 0.3406 0.5595
SEASON 2 1 −0.4185 1.3866 0.0911 0.7628
SEASON 3 0 0 .      . .

Odds Ratio Estimates

Effect
Point

Estimate
95% Wald 

Confidence Limits

DIFFCLTY   2.748 0.475 15.911
SEASON 1 vs 3 2.528 0.112 56.978
SEASON 2 vs 3 0.658 0.043 9.967

Association of Predicted Probabilities 
and Observed Responses

Percent Concordant 72.2 Somers’ D 0.556
Percent Discordant 16.7 Gamma 0.625
Percent Tied 11.1 Tau-a 0.286
Pairs 54 c 0.778

IBM SPSS LOGISTIC REGRESSION (accessed in the menu system as Binary Logistic 
Regression) uses the last category of the DV (falling = 1) as the event. The ENTER instruction 
assures that all of the predictors enter the logistic regression equation simultaneously on Step 
Number 1. Indicator coding is used for categorical predictors; the last category is the reference by 
default.

The first two tables of output show the coding for the outcome and predictor variables. After 
information about the constant-  only model (not shown), overall x2 tests are given for the step, 
the block (only interesting for sequential logistic regression), and the model in the table labeled 
Omnibus Tests of Model Coefficients. Note that the test of the model matches the test for the 
difference between the constant-  only and full model in SAS.

The Model Summary table provides −2 Log-  Likelihood (cf. Table 10.3 footnote). Effect 
size measures (R Square) are discussed in Section 10.6.2. The Classification Table follows, show-
ing the results of classifying all cases with predicted values below .5 as 0 (not falling) and all cases 
above .5 as 1 (falling). Of the skiers who did not fall, 66.67% are correctly classified by the model; 
of those who did fall, 88.89% are correctly classified. The Variables in the Equation table provides 
B coefficients, standard errors of B (S.E.), a Wald test (B2/S.E.2) for each coefficient, and eB.
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TABLE 10.6 Syntax and Selected Output from IBM SPSS LOGISTIC 
REGRESSION Analysis of Small-Sample Example

LOGISTIC REGRESSION VARIABLES FALL
/METHOD=ENTER DIFFCLTY SEASON
/CONTRAST (SEASON)=Indicator
/CRITERIA=PIN(.05) POUT(.10) ITERATE(20) CUT(.5).

Logistic Regression

Case Processing Summary

Unweighted Casesa N Percent

Selected Cases Included in Analysis 15 100.0
Missing Cases 0 .0
Total 15 100.0

Unselected Cases 0 .0
Total 15 100.0

a. If weight is in effect, see classification table for the total 
number of cases.

Dependent Variable Encoding

Original Value Internal Value

0 0
1 1

Categorical Variables Codings

Parameter coding

Frequency (1) (2)

SEASON 1 5 1.000 .000
2 6 .000 1.000
3 4 .000 .000

Block 1: Method = Enter

Omnibus Tests of Model Coefficients

Chi-square df Sig.

Step 1 Step 2.710 3 .439
Block 2.710 3 .439
Model 2.710 3 .439
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10.5 Types of Logistic Regression

As in multiple regression and discriminant analysis, there are three major types of logistic 
regression: direct (standard), sequential, and statistical. Logistic regression programs tend to have 
more options for controlling equation-  building than discriminant programs, but fewer options than 
multiple regression programs.

TABLE 10.6 Continued

Model Summary

Step
−2 Log 

likelihood
Cox & Snell 
R Square

Nagelkerke 
R Square

1 17.481a .165 .223

a. Estimation terminated at iteration number 4 because 
parameter estimates changed by less than .001.

Classification Tablea

Predicted

FALL
Percentage 

CorrectObserved 0 1

Step 1 FALL 0 4 2 66.7
1 1 8 88.9

Overall Percentage 80.0

a. The cut value is .500

Variables in the Equation

B S.E. Wald df Sig. Exp(B)

Step 1a DIFFCLTY 1.011 .896 1.273 1 .259 2.748
SEASON .832 2 .660
SEASON(1) .928 1.589 .341 1 .560 2.528
SEASON(2) −.418 1.387 .091 1 .763 .658
Constant −1.777 1.890 .884 1 .347 .169

a. Variable(s) entered on step 1: DIFFCLTY, SEASON.
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10.5.1 Direct Logistic Regression

In direct logistic regression, all predictors enter the equation simultaneously (as long as tolerance is 
not violated, cf. Chapter 4). As with multiple regression and discriminant analyses, this is the method 
of choice if there are no specific hypotheses about the order or importance of predictor variables. The 
method allows evaluation of the contribution made by each predictor over and above that of the other 
predictors. In other words, each predictor is evaluated as if it entered the equation last.

This method has the usual difficulties with interpretation when predictors are correlated. 
A predictor that is highly correlated with the outcome by itself may show little predictive capability 
in the presence of the other predictors [cf. Section 5.5.1, Figure 5.2(b)].

SAS LOGISTIC and IBM SPSS LOGISTIC REGRESSION produce direct logistic regression 
analysis by default (Tables 10.5 and 10.6).

10.5.2 Sequential Logistic Regression

Sequential logistic regression is similar to sequential multiple regression and sequential discriminant 
analysis in that the researcher specifies the order of entry of predictors into the model. IBM SPSS 
LOGISTIC REGRESSION allows sequential entry of one or more predictors by the use of successive 
ENTER instructions. In SAS LOGISTIC you can specify sequential entry of predictors, to 
enter in the order listed in the model instruction, but only one predictor at a time. You also have to 
specify selection=forward and select large significance values (e.g., .9) for slentry
and slstay to ensure that all of your variables enter the equation and stay there.

Another option with any logistic regression program is simply to do multiple runs, one for each 
step of the proposed sequence. For example, one might start with a run predicting hay fever from degree 
of stuffiness and temperature. Then, in a second run, geographic area and season are added to stuffi-
ness and temperature. The difference between the two models is evaluated to determine if geographic 
area and season significantly add to the prediction above that afforded by symptoms alone, using the 
technique described in Section 10.4.3 and illustrated in the large-  sample example of Section 10.7.3.

Table 10.7 shows sequential logistic regression for the small-  sample example through IBM 
SPSS LOGISTIC REGRESSION. Difficulty is given highest priority because it is expected to be 
the strongest predictor of falling. The sequential process asks if season adds to prediction of falling 
beyond that of difficulty of the ski run.

Block x2(2, N = 15) = 0.906, p 7 .05 at Block 2, indicating no significant improvement with 
addition of SEASON as a predictor. Note that this improvement in fit statistic is the difference between 
−2 Log Likelihood for Block 1 (18.387) and −2 Log Likelihood for the full model (17.481). The 
classification table, model summary, and the logistic regression equation at the end of the second block, 
with all predictors in the equation, are the same in direct and sequential logistic regression (not shown).

10.5.3 Statistical (Stepwise) Logistic Regression

In statistical logistic regression, inclusion and removal of predictors from the equation are based 
solely on statistical criteria. Thus, statistical logistic regression is best seen as a screening or 
hypothesis-  generating technique, as it suffers from the same problems as statistical multiple 
regression and discriminant analysis (Sections 5.5.3 and 9.5.3). When statistical analyses are used, it 
is very easy to misinterpret the exclusion of a predictor; the predictor may be very highly correlated
with the outcome but not included in the equation because it was “bumped” out by another predictor
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TABLE 10.7 Syntax and Selected Sequential Logistic Regression Output 
from IBM SPSS LOGISTIC REGRESSION Analysis of Small-  Sample Example

LOGISTIC REGRESSION VAR=FALL
/METHOD=ENTER DIFFCLTY /METHOD=ENTER SEASON
/CONTRAST (SEASON)=INDICATOR
/CRITERIA-PIN(.05) POUT(.10) ITERATE(20) CUT(.5).

Block 1: Method = Enter

Omnibus Tests of Model Coefficients

Chi-square df Sig.

Step 1 Step 1.804 1 .179
Block 1.804 1 .179
Model 1.804 1 .179

Model Summary

Step
−2 Log 

likelihood
Cox & Snell 
R Square

Nagelkerke 
R Square

1 18.387a .113 .153

a. Estimation terminated at iteration number 4 because 
parameter estimates changed by less than .001.

Variables in the Equation

B S.E. Wald df Sig. Exp(B)

Step DIFFCLTY 1.043 .826 1.593 1 .207 2.837
1a Constant −1.771 1.783 .986 1 .321 .170

a. Variable(s) entered on step 1: DIFFCLTY.

Block 2: Method = Enter

Omnibus Tests of Model Coefficients

Chi-square df Sig.

Step 1 Step .906 2 .636
Block .906 2 .636
Model 2.710 3 .439

Model Summary

Step
−2 Log 

likelihood
Cox & Snell 
R Square

Nagelkerke 
R Square

1 17.481 .165 .223
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or by a combination of predictors. The practice of basing decisions on data-  driven rather than 
theory-  driven models is especially hazardous in logistic regression, with its frequent application to 
life-  and-  death biomedical issues. At the very least, sequential logistic regression should be part of 
a cross-  validation strategy to investigate the extent to which sample results may be more broadly 
generalized. Hosmer and Lemeshow (2000) recommend a criterion for inclusion of a variable that is 
less stringent than .05; they suggest that something in the range of .15 or .20 is more appropriate to 
ensure entry of variables with coefficients different from zero.

Both computer packages reviewed offer statistical logistic regression and allow specification 
of alternative stepping methods, and criteria. IBM SPSS LOGISTIC REGRESSION offers forward 
or backward statistical regression, either of which can be based on either the Wald or maximum 
likelihood-ratio statistic, with user-specified tail probabilities.

SAS LOGISTIC allows specification of forward, backward, or “stepwise” stepping. (In for-
ward selection, a variable once in the equation stays there; if stepwise is chosen, variables once in 
the equation may leave.) The researcher can specify the maximum number of steps in the process, 
the significance level for entry or for staying in the model, variables to be included in all models, 
and maximum number of variables to be included. The researcher can also specify the removal or 
entry of variables based on the residual chi-  square.

You may want to consider including interactions as potential predictors if you do statistical 
model building. Hosmer and Lemeshow (2000) discuss issues surrounding the use of interactions 
and appropriate scaling of continuous variables for them (pp. 70–  74).

10.5.4 Probit and Other Analyses

Probit analysis is highly related to logistic regression and is often used to analyze dose-  response 
data in biomedical applications. For example, what is the median dosage of aspirin required to pre-
vent future heart attacks in half the population of heart attack victims?

Both probit analysis and logistic regression focus on proportions of cases in two or more 
categories of the DV. Both are akin to multiple regression in that the DV (a proportion in both) is 
predicted from a set of variables that are continuous or coded to be dichotomous. Both produce an 
estimate of the probability that the DV is equal to 1 given a set of predictor variables.

The difference between logistic regression and probit analysis lies in the transformation applied 
to the proportions forming the DV that, in turn, reflects assumptions about the underlying distribution 
of the DV. Logistic regression uses a logit transform of the proportion, as seen in Equation 10.3 (where 
the proportion is expressed as Yn). Probit analysis uses the probit transform where each observed 
proportion is replaced by the value of the standard normal curve (z value) below which the observed 
proportion is found. Thus, logistic regression assumes an underlying qualitative DV (or ordered DV in 
some applications) and probit analysis assumes an underlying normally distributed DV.

Both transformations produce a value of zero when the proportion is .5, for probit because 
half of the cases in a normal distribution fall below z = 0. For the logit transform,

ln a .5

1 - .5
b = 0

It is at the extremes that the values differ; with a proportion of .95, for example, the probit (z) =
1.65 and the logit is 2.94. However, the shapes of the logit and probit distributions are quite similar 
and, as long as proportions are not extreme, the results of the two types of analyses are very similar. 
Nevertheless, the assumption that the underlying distribution is normal makes probit analysis a bit 
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more restrictive than logistic regression. Thus, logistic regression is considered better than probit 
analysis if there are too many cases with very high or very low values so that an underlying normal 
distribution is untenable.

Probit coefficients represent how much difference a unit change in the predictor makes in 
the cumulative normal probability of the outcome (i.e., the effect of the predictor on the z value for 
the outcome). This probability of outcome depends on the levels of the predictors; a unit change at the 
mean of a predictor has a different effect on the probability of the outcome than a unit change at an 
extreme value of the predictor. Therefore, a reference point for the predictors is necessary and is usually 
set at the sample means of all predictors.

The two procedures also differ in their emphasis with respect to results. Logistic regression 
emphasizes odds ratios. Probit analysis often focuses on effective values of predictors for various 
rates of response, for example, median effective dose of a medication, lethal dose, and so on.

Both software packages have PROBIT modules that provide likelihood-  ratio x2 tests of models 
and parameter estimates for predictors. IBM SPSS PROBIT is the more complete, with confidence inter-
vals for expected dosages (lethal or whatever), comparisons of effective doses for different groups, and 
expected doses for different agents. SAS PROBIT permits transforms other than probit, including logit 
and Gompertz (for a nonsymmetrical gombit model), and prints confidence intervals for effective doses.

SAS LOGISTIC permits Poisson regression, useful when the DV is in the form of counts 
that are separated either in time or space. For example, the number of books checked out from the 
university library might be predicted by major and semester. Note that multiway frequency analysis 
(Chapter 16) is based on Poisson regression.

10.6 Some Important Issues

10.6.1 Statistical Inference

Logistic regression has two types of inferential tests: tests of models and tests of individual 
predictors.

10.6.1.1 Assessing Goodness of Fit of Models

There are numerous models in logistic regression: a constant-   (intercept-) only model that includes 
no predictors, an incomplete model that includes the constant plus some predictors, a full model that 
includes the constant plus all predictors (including, possibly, interactions and variables raised to a 
power), and a perfect (hypothetical) model that would provide an exact fit of expected frequencies 
to observed frequencies if only the right set of predictors were measured.

As a consequence, there are numerous comparisons: between the constant-  only model and 
the full model, between the constant-  only model and an incomplete model, between an incomplete 
model and the full model, between two incomplete models, between a chosen model and the perfect 
model, between . . . well, you get the picture.

Not only are there numerous possible comparisons among models but also there are numer-
ous tests to evaluate goodness of fit. Because no single test is universally preferred, the computer 
programs report several tests for differences among the models. Worse, sometimes a good fit is indi-
cated by a nonsignificant result (when, e.g., an incomplete model is tested against a perfect model) 
whereas other times a good fit is indicated by a significant result (when, e.g., the full model is tested 
against a constant-only model).
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Sample size also is relevant because if sample size is very large, almost any difference between
models is likely to be statistically significant even if the difference has no practical importance and 
classification is wonderful with either model. Therefore, the analyst needs to keep both the effects 
of sample size (big = more likely to find significance) and the way the test works (good fit = signifi-
cant, or good fit = not significant) in mind while interpreting results.

10.6.1.1.1  Constant-Only versus Full Model
A common first step in any analysis is to ask if the predictors, as a group, contribute to predic-

tion of the outcome. In logistic regression, this is the comparison of the constant-  only model with a 
model that has the constant plus all predictors. If no improvement is found when all predictors are 
added, the predictors are unrelated to outcome.

The log-  likelihood technique for comparing the constant-  only model with the full model is 
shown in Section 10.4.2, Equation 10.7. Both computer programs do a log-  likelihood test, but use 
different terms to report it. Table 10.8 summarizes the test as it is presented in the two programs.

One hopes for a statistically significant difference between the full model and the constant-  
(intercept-) only model at a level of at least p 7 .05. SAS LOGISTIC provides a second statistic 
labeled Score that is interpreted in the same way as the difference between log-  likelihoods.

These same procedures are used to test the adequacy of an incomplete model (only some 
predictors) against the constant-  only model by inclusion of some but not all predictors in the syntax.

10.6.1.1.2 Comparison with a Perfect (Hypothetical) Model
The perfect model contains exactly the right set of predictors to duplicate the observed fre-

quencies. Either the full model (all predictors) or an incomplete model (some predictors) can be 
tested against the perfect model in several different ways. However, these statistics are based on 
differences between observed and expected frequencies and assume adequate expected cell frequen-
cies between pairs of discrete predictors, as discussed in Section 10.3.2.2. In this context, the set of 
predictors is sometimes called the covariate pattern where covariate pattern refers to combinations 
of scores on all predictors, both continuous and discrete.

With these statistics a nonsignificant difference is desired. A nonsignificant difference 
indicates that the full or incomplete model being tested is not significantly different from the per-
fect model. Put another way, a nonsignificant difference indicates that the full or incomplete model 
adequately duplicates the observed frequencies at the various levels of outcome.

TABLE 10.8 Summary of Software Labels for the Test 
of Constant-  Only vs. Full Model

Program Label for X2 Test

IBM SPSS LOGISTIC
REGRESSION

Model Chi square in the table labeled
Omnibus Test of Model Coefficients

SAS LOGISTIC Likelihood Ratio Chi 
Square in the table labeled
Testing Global Null 
Hypotheses
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10.6.1.1.3 Deciles of Risk
Deciles-of-risk statistics evaluate goodness of fit by creating ordered groups of subjects and 

then comparing the number actually in each group with the number predicted into each group by the 
logistic regression model.

Subjects are first put in order by their estimated probability on the outcome variable. Then 
subjects are divided into 10 groups according to their estimated probability; those with estimated 
probability below .1 (in the lowest decile) form one group, and so on, up to those with estimated 
probability .9 or higher (in the highest decile).3 The next step is to further divide the subjects 
into two groups on the outcome variable (e.g., didn’t fall, did fall) to form a 2 * 10 matrix of 
observed frequencies. Expected frequencies for each of the 20 cells are obtained from the model. 
If the logistic regression model is good, then most of the subjects with outcome 1 are in the higher 
deciles of risk and most with outcome 0 in the lower deciles of risk. If the model is not good, 
then subjects are roughly evenly spread among the deciles of risk for both outcomes 1 and 0. 
Goodness of fit is formally evaluated using the Hosmer–  Lemeshow statistics where a good model 
produces a nonsignificant chi-  square. The Hosmer–  Lemeshow statistics is available in IBM SPSS
LOGISTIC REGRESSION with a request for GOODFIT. The program also produces the observed 
versus expected frequencies for each decile of risk, separately for each outcome group, reported as 
Contingency Table for Hosmer and Lemeshow Test.

10.6.1.2 Tests of Individual Variables

Three types of tests are available to evaluate the contribution of an individual predictor to a model: 
(1) the Wald test, (2) evaluation of the effect of omitting a predictor, and (3) the score (Lagrange 
multiplier) test. For all these tests, a significant result indicates a predictor that is reliably associated 
with outcome.

The Wald test is the simplest; it is the default option, called Wald in IBM SPSS and WALD
Chi Square in SAS. As seen in Section 10.4.1, this test is the squared logistic regression 
coefficient divided by its squared standard error.4 However, several sources express doubt about 
use of the Wald statistic. For instance, Menard (2001) points out that when the absolute value of the 
regression coefficient is large, the estimated standard error tends to become too large, resulting in 
increased Type II error, making the test too conservative.

The test that compares models with and without each predictor (sometimes called the 
likelihood-  ratio test) is considered superior to the Wald test, but is highly computer intensive. 
Each predictor is evaluated by testing the improvement in model fit when that predictor is 
added to the model or, conversely, the decrease in model fit when that predictor is removed 
(using Equation 10.7). Both basic programs require runs of models with and without each pre-
dictor to produce the likelihood-  ratio test to assess the statistical significance of improvement 
in fit when a predictor is included in the model. However, the test is available in IBM SPSS 
NOMREG.

The score test is reported in SAS and may be advantageous in stepwise logistic regression.

3Sometimes subjects are divided into 10 groups by putting the first NN10 subjects in the first group, the second NN10 in the 
second group, and so on; however, Hosmer and Lemeshow (2000) report that the other procedure is preferable.
4SYSTAT LOGIT reports a t-ratio that is the parameter estimated divided by its standard error.
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10.6.2 Effect Size for a Model

A number of measures have been proposed in logistic regression as an analog to R2 in multiple 
linear regression. None of these has the same variance interpretation as R2 for linear regression, 
but all approximate it. One option (but only for a two-  category outcome model) is to calculate R2

directly from actual outcome scores (1 or 0) and predicted scores, which may be saved from any of 
the logistic regression programs. A bivariate regression run provides r. Or, an ANOVA may be run 
with predicted scores as the DV and actual outcome as a grouping variable, with h2 as the measure 
of effect size (Equation 3.25).

McFadden’s r2 (Maddala, 1983) is a transformation of the likelihood-  ratio statistic intended 
to mimic an R2 with a range of 0 to 1.

McFadden>s r2 = 1 -
LL(B)

LL(0)
(10.10)

where LL(B) is the log-  likelihood of the full model and LL(0) is the log-  likelihood of the constant-
only model. SAS and IBM SPSS LOGISTIC programs provide log-  likelihoods in the form of 
-2 log-likelihood. For the small-sample example,

McFadden>s r2 = 1 -
-8.74

-10.095
= .134

However, McFadden’s r2 tends to be much lower than R2 for multiple regression with values 
in the .2 to .4 range considered highly satisfactory (Hensher & Johnson, 1981). McFadden’s r2 is 
provided by IBM SPSS NOMREG.

IBM SPSS LOGISTIC REGRESSION and NOMREG also provide R2 measures devised by 
Nagelkerke as well as Cox and Snell (Nagelkerke, 1991). The Cox and Snell measure is based on 
log-  likelihoods and takes into account sample size.

R2
CS = 1 - exp c - 2

N
3LL(B) - LL(0)4 d (10.11)

For the small-sample example,

R2
CS = 1 - exp c -

2

15
3-8.74-(-10.095)4 d = 1 - .835 = .165

Cox and Snell R2, however, cannot achieve a maximum value of 1.
The Nagelkerke measure adjusts Cox and Snell’s so that a value of 1 could be achieved.

R2
N =

R2
CS

R2
MAX

(10.12)

where R2
MAX = 1 - exp 32(N- 1)LL(0)4 .

For the small-sample example,

R2
MAX = 1 - exp 32(15- 1)(-10.095)4 = 1 - .26 = .74
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and

R2
N =

.165

.74
= .223

Steiger and Fouladi’s (1992) software can be used to provide confidence intervals around the 
measures (cf. Figure 9.3), although they cannot be interpreted as explained variance. For example, 
the R2

N value used is .233, N = 15, number of variables (including predictors and criterion) = 4, and 
probability value is set to .95. The number of predictors is considered to be 3 rather than 2 to take 
into account the 2 df for the SEASON variable. Using these values, the 95% confidence interval for 
R2 ranges from 0 to .52. Inclusion of zero indicates lack of statistical significance at a = .05. Note 
that the probability level of .40819 approximates the chi-  square significance level of .439 in the 
output of Tables 10.5 and 10.6.

SAS LOGISTIC also provides a number of measures of association: Somers’ D, 
Gamma, Tau-a, and -c. These are various methods of dealing with concordant and discordant 
pairs of outcomes and are best understood in the context of a two-  category outcome and a single two- 
category predictor. A pair of outcomes is concordant if the response with the larger value also has the 
higher probability of occurring. The four correlation measures (which need to be squared to be inter-
preted as effect size) differ in how they deal with the number of concordant and discordant pairs and 
how they deal with tied pairs. All are considered rank order correlations (cf. on-disk documentation).

The final SAS measure, c, is the area under the receiver operating characteristic (ROC) curve 
when the response is binary. Aficionados of the Theory of Signal Detectability will recognize this 
as a form of d�. This may be interpreted as the probability of a correct classification of a randomly 
selected pair of cases from each outcome category. It varies from .5 (indicating chance prediction) 
to 1.0 (indicating perfect prediction).

Another measure of effect size is the odds ratio (Section 10.6.3), appropriate for a 2 * 2 con-
tingency table in which one dimension represents an outcome and the other represents a predictor 
(such as treatment).

10.6.3 Interpretation of Coefficients Using Odds

The odds ratio is the change in odds of being in one of the categories of outcome when the value of 
a predictor increases by one unit. The coefficients, B, for the predictors are the natural logs of the 
odds ratios; odds ratio = eB.  Therefore, a change of one unit on the part of a predictor multiples the 
odds by eB. For example, in Table 10.6 the odds of falling on a ski run increases by a multiplica-
tive factor of 2.75 as the difficulty level of the run increases from 1 to 2 (or 2 to 3); the odds that a 
skier will fall are almost three times greater on a ski run rated 2 as on a ski run rated 1.

Odds ratios greater than 1 reflect the increase in odds of an outcome of 1 (the “response” 
category) with a one-  unit increase in the predictor; odds ratios less than one reflect the decrease in 
odds of that outcome with a one-  unit change. For example, an odds ratio of 1.5 means that the odds 
of the outcome labeled 1 are 1.5 greater with a one-  unit increase in a predictor. That is, the odds are 
increased by 50%. An odds ratio of 0.8 indicates that the odds of an outcome labeled 1 are 0.8 less 
with a one unit increase in the predictor; the odds are decreased by 20%.

As in linear regression, coefficients are interpreted in the context of the other predictor vari-
ables. That is, the odds of falling as a function of difficulty level are interpreted after adjusting for 
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all other predictors. (Usually only statistically significant coefficients are interpreted; this example 
is only for illustrative purposes.)

The odds ratio has a clear, intuitive meaning for a 2 * 2 table; it is the odds of an outcome for 
cases in a particular category of a predictor divided by the odds of that outcome for the other cat-
egory of the predictor. Suppose the outcome is hyperactivity in a child and the predictor is familial 
history of hyperactivity:

Familial History 
of Hyperactivity

Yes No

Hyperactivity
Yes 15 9

No 5 150

odds ratio =
15>5
9>150

= 50

The odds of hyperactivity in children with a familial history are 50 times greater than the odds of 
hyperactivity among those without a familial history. Odds are 3:1 for hyperactivity in a child with 
familial history; odds are 9:150 for hyperactivity in a child without familial history. Therefore, the 
ratio of odds is 3/0.06 = 50. This also may be expressed as the reciprocal, 1/50 = 0.02. The inter-
pretation for this reciprocal odds ratio is that odds of hyperactivity in children without a familial 
history are 0.02 times as great as the odds of hyperactivity among those with familial history of 
hyperactivity (i.e., there is a reduction in the overall odds from .06 when there is no familial history 
of hyperactivity). Both interpretations are equally correct; a good choice is the one that is easiest to 
communicate. For example, if there is a treatment to reduce the occurrence of disease, it is the re-
duction in disease that may be of greatest interest. This issue is further discussed in Section 10.6.4.

Odds ratios are produced directly by IBM SPSS LOGISTIC REGRESSION and SAS 
LOGISTIC. It is called Odds Ratio in SAS LOGISTIC, and it is called Exp(B) by IBM SPSS
LOGISTIC REGRESSION and NOMREG.

Keep in mind that the odds ratios are for the outcome coded 1 in IBM SPSS and for the out-
come coded 0 in SAS5 (unless you respecify the reference category). Using default SAS coding, the 
odds ratio for the example is 0.02. Interpretation of odds ratios, therefore, depends on how the out-
come is coded. You need to take care that the outcome variable is coded in a direction that reflects 
your eventual desired interpretation.

The coding of categorical predictors also is important, as indicated in Section 10.6.4. For ex-
ample, in IBM SPSS you may want to specify that the reference category for a categorical predictor 
variable such as familial history is first (0, “no family history of hyperactivity”), rather than last (the 
default, “family history of hyperactivity”). With the default option in place, IBM SPSS reports an 
odds ratio of 50. With the reference category on the predictor changed, the value is reported as 0.02. 
The reverse is true for SAS. Declaring the predictor to be a categorical (class) variable with 

5Both IBM SPSS and SAS convert codes for predictor and outcome variables to 0, 1. The output indicates conversions from 
your original coding, if any.
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default outcome coding results in an odds ratio of 50; default coding of both the predictor and the 
outcome results in an odds ratio of 0.02.

The odds ratio is interpretable as an effect size; the closer the odds ratio is to 1, the smaller the 
effect. As for any other effect size, it is desirable to report confidence limits around the estimated
value. Both IBM SPSS and SAS provide confidence limits around odds ratios—  SAS by default 
and IBM SPSS by request. Chinn (2000) shows how to convert an odds ratio to Cohen’s d, which 
in turn can be converted into h2 (Cohen, 1988). First, d = ln(odds ratio)1.81. In this example, 
ln(50)/1.81 = 3.91/1.81 = 2.16. The conversion from d to h2 is

h2 =
d2

d2 + 4
=

2.162

2.162 + 4
+

4.67

8.67
= .54

Relative risk is a similar measure, used in biomedical research when the predictor is treat-
ment and the outcome is disease or some other application when the predictor clearly precedes the 
outcome. The difference is that the ratios are formed on the basis of column totals. In the example 
(arguably inappropriate for this type of analysis), RR (the relative risk ratio) is

RR =
15>(15 + 5)

9> (9 + 150)
=

0.750

0.057
= 13.16

The risk (probability) of developing hyperactivity with a family history of it is 75%; the risk 
of developing hyperactivity without a family history of it is less than 6%; the relative risk of hyper-
activity is 13 times greater for those with a family history than for those without a family history of 
hyperactivity. Typically, odds ratios are used for retrospective studies (e.g., observing a sample of 
hyperactive children and nonhyperactive children and reviewing their family history), whereas RR
is used for prospective, experimental studies in which a sample at risk is assigned to treatment ver-
sus control and the outcome is then observed. For example, a sample of hyperactive children might 
be assigned to educational therapy versus waiting list control, and presence of reading disability 
assessed after a period of one year. If the first row is very rare (e.g., the presence of hyperactivity in 
the example), the difference between odds ratio and RR becomes small.

10.6.4 Coding Outcome and Predictor Categories

The way that outcome categories are coded determines the direction of the odds ratios as well as 
the sign of the B coefficient. The interpretation is simplified, therefore, if you pay close attention 
to coding your categories. Most software programs solve the logistic regression equation for the 
dichotomous outcome category coded 1 in a scheme of 0 and 1 coding, but some may solve for 
the category coded 0. For example, SAS solves for the category with the lowest ordered value. If 
the odds ratio is 4 in a problem run through the first type of program, it will be 0.25 in the second 
type of program.

A convenient way of setting up the coding follows the jargon of SYSTAT LOGIT; for the 
outcome, the category coded 1 is the “response” category (e.g., illness) and the category coded 
0 is the “reference” category (wellness).6 It is often helpful, then, to think of the response group in 

6Hosmer and Lemeshow (2000) recommend coding all dichotomous variables 0 and 1.
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comparison to the reference group, for example, compare people who are ill to those who are well. 
The solution tells you the odds of being in the response group given some value on a predictor. If you 
also give higher codes to the category of a predictor most likely associated with “response,” interpre-
tation is facilitated because the parameter estimates are positive. For example, if people over 60 are 
more likely to be ill, code both “wellness” and “under 60” 0 and both “illness” and “over 60” 1.

This recommendation is extended to predictors with multiple discrete levels where dummy vari-
ables are formed for all but one level of the discrete predictor (e.g., Season1 and Season2 for the three 
seasons in the small-  sample example). Each dummy variable is coded 1 for one level of a predictor 
and 0 for the other levels. If possible, code levels likely to be associated with the “reference” group 
0 and code levels likely to be associated with the “response” group 1. IBM SPSS sets the last category 
as the reference category by default. However, SAS LOGISTIC routinely sets the first category as the 
reference. You might want to consider using param=glm and (event=’1’) with categorical 
predictor variables in SAS (as per Table 10.5) if that eases interpretation. Odds ratios are calculated 
in the standard manner, and the usual interpretation is made of each dummy variable (e.g., Season1).

Other coding schemes may be used, such as orthogonal polynomial coding (trend analysis) 
but interpretation via odds ratios is far more difficult. However, in some contexts, significance tests 
for trends may be more interesting than odds ratios.

There are other methods of coding discrete variables, each with its own impact on interpre-
tation. For example, dichotomous (1, -1) coding might be used. Or discrete categories might be 
coded for trend analysis, or whatever. Hosmer and Lemeshow (2000) discuss the desirability of 
various coding schemes and the effects of them on parameter estimates (pp. 48–  56). Further discus-
sion of coding schemes available in the computer packages is in Section 10.8.

10.6.5 Number and Type of Outcome Categories

Logistic regression analysis can be applied with two or more categories of outcome, and, when there 
are more than two categories of outcome, they may or may not have order. That is, outcomes with 
more than two categories can be either nominal (without order) or ordinal (with order). Logistic 
regression is more appropriate than multiple regression when the distribution of responses over a 
set of categories seriously departs from normality, making it difficult to justify using an ordered 
categorical variable as if it were continuous.

When there are more than two categories the analysis is called multinomial or polychotomous 
logistic regression or MLOGIT, and there is more than one logistic regression model/equation. 
In fact, like discriminant analysis, there are as many models (equations) as there are degrees of 
freedom for the outcome categories; the number of models is equal to the number of categories 
minus one.

When the outcome is ordered, the first equation finds the probability that a case is above the 
first (lowest) category. The second equation finds the probability that the case is above the second 
category, and so forth, as seen in Equation 10.13,

P(Y 7 j) =
eu

1 + eu (10.13)

where u is the linear regression equation as in Equation 10.1, Y is the outcome, and j
indicates the category.
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An equation is solved for each category except the last, since there are no cases above the last 
category. (SAS LOGISTIC bases the equations on the probability that a case is below rather than 
above a category, so it is the lowest category that is omitted.)

When there are more than two categories of outcome, but they are not ordered, each equation 
predicts the probability that a case is (or is not) in a particular category. Equations are built for all 
categories except the last. Logistic regression with this type of outcome is illustrated in the large 
sample example of Section 10.7.3.

With the exception of IBM SPSS LOGISTIC REGRESSION, which analyzes only two- 
category outcomes, the programs handle multiple-  category outcomes but have different ways of 
summarizing the results of multiple models. Multiple-  category outcomes are handled IBM SPSS 
NOMREG, available since Version 9.0, and PLUM, available since Version 10.0.

IBM SPSS NOMREG assumes unordered categories; IBM SPSS PLUM assumes ordered 
categories. Classification and prediction success tables (cf. Section 10.6.6) are used to evaluate the 
success of the equations taken together.

SAS LOGISTIC treats categories in all multinomial models as ordered; there is no provision 
for unordered categories. The logistic regression coefficients for individual predictors are for the 
combined set of equations. Classification and prediction success tables and effect size measures 
are used to evaluate the set of equations as a whole. Parameter estimates for unordered models may 
be approximated by running analyses using two categories at a time. For example, if there are three 
groups, an analysis is done with groups 1 and 3, and another analysis with groups 2 and 3.

Of course, it is always possible to reduce a multinomial/polychotomous model to a   two- 
category model if that is of research interest. Simply recode the data so that one category 
becomes the response category and all of the others are combined into the “reference” category. 
Section 10.7.3 demonstrates analysis by IBM SPSS NOMREG with unordered outcome categories.

Table 10.9 shows the analysis of a data set through SAS LOGISTIC, which assumes that 
response categories are ordered. This is an analysis of the frequency with which psychothera-
pists reported that they had been sexually attracted to the therapists in their own psychotherapy.7

Higher numbered categories represent greater frequency of sexual attraction (0 = not at all, etc.). 
Predictors are age, sex, and theoretical orientation (psychodynamic or not) of the therapist in their 
own psychotherapy.

TheScore Test for the Proportional Odds Assumption (cf. Chapter 11) 
shows that the odds ratios between adjacent outcome categories are not significantly different 
(p = 0.1664). The Likelihood Ratio test in the Testing Global Null... table 
shows a significant difference between the constant-  only model and the full model, indicating a 
good model fit with the set of three predictors (covariates).

The following table in the output shows Wald tests for the three predictors, indicating that 
SEX and THEORETical orientation, but not AGE, significantly predict response category. 
Estimates for Parameters show direction of relationships between predictor and out-
come variables (recall that SAS LOGISTIC solves for the probability that a response is below a par-
ticular category). Thus, the negative value for SEX indicates that male therapists are associated with 
lower numbered categories (less frequently sexually attracted to their own therapists); the positive 
value for theoretical orientation indicates that psychodynamically oriented therapists are associated 

7Most psychotherapists undergo psychotherapy themselves as part of their training.
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TABLE 10.9 Logistic Regression with Ordered Categories (Syntax and SAS LOGISTIC Output)

proc logistic data=SASUSER.LOGMULT;
   model ATTRACT = AGE SEX THEORET;
run;

Response Profile

Ordered 

Value ATTRACT

Total 

Frequency

1 0 232
2 1 31
3 2 52
4 3 26
5 4 23

NOTE: 112 observation(s) were deleted due to missing values for 

the response or explanatory variables.

Model Convergence Status

Convergence criterion (GCONV=1E-8) satisfied.

Score Test for the Proportional Odds Assumption

Chi-Square DF Pr > ChiSq

12.9147 9 0.1665

Model Fit Statistics

Criterion
Intercept 

Only

Intercept 
and 

Covariates

AIC 836.352 805.239
SC 851.940 832.519
−2 Log L 828.352 791.239

The LOGISTIC Procedure

Testing Global Null Hypothesis: BETA=0

Test Chi-Square DF Pr > ChiSq

Likelihood Ratio 37.1126 3 <.0001
Score 35.8860 3 <.0001
Wald 33.7303 3 <.0001
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Analysis of Maximum Likelihood Estimates

Parameter DF Estimate

Standard 

Error

Wald

Chi-Square Pr > ChiSq

Intercept0 1 0.0653 0.7298 0.0080 0.9287
Intercept1 1 0.4940 0.7302 0.4577 0.4987
Intercept2 1 1.4666 0.7352 3.9799 0.0460
Intercept3 1 2.3372 0.7496 9.7206 0.0018
AGE 1 −0.00112 0.0116 0.0094 0.9227
SEX 1 −1.1263 0.2307 23.8463 <.0001
THEORET 1 0.7555 0.2222 11.5619 0.0007

Odds Ratio Estimates

Effect

Point 

Estimate

95% Wald 

Confidence Limits

AGE 0.999 0.977 1.022
SEX 0.324 0.206 0.510
THEORET 2.129 1.377 3.290

Association of Predicted Probabilities and Observed Responses

Percent Concordant 62.5 Somers’ D 0.317
Percent Discordant 30.8 Gamma 0.340

Percent Tied       6.7 Tau-a 0.177
Pairs 36901 c 0.659

TABLE 10.9 Continued

with higher numbered categories (more frequently sexually attracted to their own therapists). Note 
that AGE is not a significant predictor in this model in which categories are ordered and parameter 
estimates are combined over all categories. Again, measures of association between the set of pre-
dictors and attraction are small.

10.6.6 Classification of Cases

One method of assessing the success of a model is to evaluate its ability to predict correctly the out-
come category for cases for whom the outcome is known. Classification in logistic regression is the 
same as classification in discriminant analysis except that, in logistic regression, it is available for 
two-  category outcomes only. Just as in statistical hypothesis testing, there are two types of errors: 
classifying a nondiseased individual as diseased (a Type I error or false alarm) and classifying a truly 
diseased individual as nondiseased (a Type II error or miss). In biomedical applications, there are 
also names for the other two cells in the confusion matrix; the percentage of correct classification of 
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diseased individuals as diseased is called sensitivity while the percentage of correct classification of 
nondiseased individuals is called specificity. (Note that these are not the same as the columns in the 
SAS classification table labeled False POS and False NEG, cf. Section 10.7.2.)

For different research projects, the costs associated with the two types of errors may be 
different. A Type II error is very costly, for instance, when there is an effective treatment, but the 
case will not receive it if classified nondiseased. A Type I error is very costly, for instance, when 
there is considerable risk associated with treatment, particularly for a nondiseased individual. Some 
of the computer programs allow different cutoffs for asserting “diseased” or “nondiseased.” Because 
extreme cutoffs could result in everyone or no one being classified as diseased, intermediate values 
for cutoffs are recommended, but these can be chosen to reflect the relative costs of Type I and 
Type II errors. However, the only way to improve the overall accuracy of classification is to find a 
better set of predictors.

Because the results of logistic regression analysis are in terms of probability of a particular 
outcome (e.g., having hay fever), the cutoff chosen for assignment to a category is critical in evalu-
ating the success of the model.

Classification is available only for two-  category outcomes through SAS LOGISTIC through 
the CTABLE instruction (see Section 10.7.2). However, the program does allow specification of the 
cutoff criterion, and prints results for many additional cutoff criteria. The classification procedure in 
SAS LOGISTIC includes jackknifing (cf. Section 9.6.7.2).

IBM SPSS LOGISTIC REGRESSION, which analyzes data with two-  outcome categories 
only, prints a classification table by default; assignment is based on a cutoff probability criterion 
of .5. Although the criterion cannot be changed in IBM SPSS, the CLASSPLOT instruction 
produces a histogram of predicted probabilities, showing whether incorrectly classified cases 
had probabilities near the criterion. IBM SPSS LOGISTIC REGRESSION also has a SELECT
instruction, by which certain cases are selected for use in computing the equations. Classification is 
then performed on all of the cases in a form of cross validation. This offers a less biased estimate of 
the classification results. IBM SPSS NOMREG classifies cases into the category with the highest 
predicted probability.

IBM SPSS ROC Curve takes a visual approach to sensitivity and specificity. Figure 10.1 
shows the receiver operating characteristic (ROC) curve for the small-  sample example, which re-
quires that predicted probabilities be saved to the data set during the LOGISTIC REGRESSION 
analysis. The predicted probabilities are then plotted, showing how false positives (1-Specificity) 
increase with sensitivity. As the criterion for falling is lowered (e.g., more skiers are predicted to 
fall), there are more correct classifications of those who fall, but also more incorrect classifications 
of those who do not fall. This is the basic conundrum in diagnosis: the greater the probability of 
correct detections of disease, the greater the probability of false alarms.

10.6.7 Hierarchical and Nonhierarchical Analysis

The distinction between hierarchical and nonhierarchical logistic regression is the same as in 
multiway frequency analysis. When interactions among predictors are included in a model,8 the 
model is hierarchical if all main effects and lower order interactions of those predictors are also 
included in the model.

8Hosmer and Lemeshow (2000) discuss issues surrounding the use of interactions in a model, particularly the problem of 
adjusting for confounding variables (covariates) in the presence of interactions (pp. 70–  74).
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LOGISTIC REGRESSION VARIABLES FALL
/METHOD=ENTER DIFFCLTY SEASON
/CONTRAST (SEASON)=Indicator
/SAVED=PRED
/CRITERIA=PIN(0.05) POUT(0.10) ITERATE(20) CUT(0.5).

ROC PRE_1 BY FALL(1)
/PLOT=CURVE(REFERENCE)
/PRINT=SE
/CRITERIA=CUTOFF(INCLUDE) TESTPOS(LARGE) DISTRIBUTION(FREE) CI(95)
/MISSING=EXCLUDE.

Area Under the Curve
Test Result Variable(s):Predicted probability

Asymptotic 95% Confidence Interval

Area Std. Errora Asymptotic Sig.b Lower Bound Upper Bound

.778 .142 .077 .499 1.000

The test result variable(s): Predicted probability has at least one tie between the positive actual 
state group and the negative actual state group. Statistics may be biased.

a. Under the nonparametric assumption

b. Null hypothesis: true area = 0.5

FIGURE 10.1 Receiver operating characteristic (ROC) curve for predicting falling.

In most programs, interactions are specified in the MODEL instruction, using a convention 
in which interaction components are joined by asterisks (e.g., X1*X2). However, SAS LOGISTIC
requires creation of a new variable in the DATA step to form an interaction, which is then used like 
any other variable in the model instruction.
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All of the reviewed programs allow nonhierarchical models, although Steinberg and Colla 
(1991) advise against including interactions without their main effects.

10.6.8 Importance of Predictors

The usual problems of evaluating the importance of predictors in regression apply to logistic regres-
sion. Further, there is no comparable measure to sr2

i  in logistic regression. One strategy is to evalu-
ate odds ratios: The statistically significant predictors that change the odds of the outcome the most 
are interpreted as the most important. That is, the farther the odds ratio from 1, the more influential 
the predictor.

Another strategy is to calculate standardized regression coefficients comparable to the b
weights in multiple regression. These are not available in most statistical packages; the standardized 
estimates offered by SAS LOGISTIC are only partially standardized and more likely to wander out-
side the bounds of -1 and 1 than fully standardized coefficients (Menard, 2001, p. 55). The simplest 
way to get standardized regression coefficients is to standardize the predictors before the analysis, 
and then interpret the coefficients that are produced as standardized.

10.6.9 Logistic Regression for Matched Groups

Although usually logistic regression is a between-  subjects analysis, there is a form of it called 
conditional logistic regression for matched subjects or case-  control analysis. Cases with disease 
are matched by cases without disease on variables such as age, gender, socioeconomic status, and 
so forth. There may be only one matched control subject for each disease subject, or more than 
one matched control for each disease subject. When there is only one matched control subject, the 
outcome has two categories (disease and control), while multiple matched control subjects lead to 
multiple outcome categories (disease, control1, control2, etc.). The model is, as usual, based on the 
predictors that are included, but there is no constant (or intercept).

SAS LOGISTIC uses a conditional logistic regression procedure for case-  control studies with 
a single control by specifying noint (no intercept) and requires that each matched pair be trans-
formed into a single observation, where the response variable is the difference in scores between 
each case and its control. IBM SPSS NOMREG also uses a procedure in which the outcome is the 
difference between each case and its control and the intercept is suppressed.

10.7 Complete Examples of Logistic Regression

Data for these analyses are from the data set described in Appendix B. Two complete examples 
are demonstrated. The first is a simple direct logistic regression analysis, in which work status 
(employed vs. housewives) is the two-  category outcome that is predicted from four attitudinal 
variables through SAS LOGISTIC.

The second analysis is more complex, involving three categories of outcome and sequen-
tial entry of predictors. The goal in the second analysis is to predict membership in one of three 
categories of outcome formed from work status and attitude toward that status. Variables are 
entered in two sets: demographic and then attitudinal. The major question is whether attitudinal 
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variables significantly enhance prediction of outcome after prediction by demographic variables. 
Demographic variables include a variety of continuous, discrete, and dichotomous variables: 
marital status (discrete), presence of children (dichotomous), religious affiliation (discrete), race 
(dichotomous), socioeconomic level (continuous), age (continuous), and attained educational 
level (continuous). The attitudinal variables used for both analyses are all continuous; they are 
locus of control, attitude toward current marital status, attitude toward role of women, and at-
titude toward housework. (Note that prediction of outcome in these three categories on the basis 
of attitudinal variables alone is addressed in the large sample discriminant analysis of Chapter 9.) 
This analysis is run through IBM SPSS NOMREG. Data files for both analyses are LOGREG.*. 
Linearity in the logit is tested separately for each analysis.

10.7.1 Evaluation of Limitations

10.7.1.1 Ratio of Cases to Variables and Missing Data

Sections 10.7.2 and 10.7.3 show no inordinately large parameter estimates or standard errors. 
Therefore, there is no reason to suspect a problem with too many empty cells or with outcome 
groups perfectly predicted by any variable. Table 10.10 shows an IBM SPSS MVA run to 
investigate the pattern missing data and evaluate its randomness after declaring that values 
of zero on SEL are to be considered missing. All variables to be used in either analysis are 
investigated, with categorical variables identified. The EM algorithm is chosen for imputing 
missing values, and a full data set is saved to a file labeled LOGREGC.SAV. Separate variance 
t tests, in which the grouping variable is missing versus nonmissing, are requested for all 
quantitative (continuous) variables that are missing 1% or more of their values. Although there 
is some concern about the bias associated with the IBM SPSS MVA implementation of EM, the 
number of missing values here (about 5%) is low enough that parameter estimates are expected 
to be appropriate even though standard errors are inflated. Results of inferential statistics will 
be interpreted with caution.

TABLE 10.10 Analysis of Missing Values through IBM SPSS MVA (Syntax and Selected Output)

RECODE AGE SEL (0 = SYSMIS).
MVA

CONTROL ATTMAR ATTROLE SEL ATTHOUSE AGE EDUC WORKSTAT MARITAL CHILDREN
RELIGION RACE
/MAXCAT = 25
/CATEGORICAL = WORKSTAT MARITAL CHILDREN RELIGION RACE
/NOUNIVARIATE
/TTEST PROB PERCENT=1
/CROSSTAB PERCENT=1
/MPATTERN DESCRIBE=CONTROL ATTMAR ATTROLE SEL ATTHOUSE AGE EDUC WORKSTAT
MARITAL CHILDREN RELIGION
/EM (TOLERANCE=0.001 CONVERGENCE=0.0001 ITERATIONS=25
OUTFILE='C:\DATA\BOOK.5TH\LOGISTIC\LOGREGC.SAV').

(continued )
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MVA

Separate Variance t Testsa
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t .6 . 3.3 1.8 -1.1 .0 -.1
df 4.5 . 4.2 3.0 4.2 4.2 4.0
P(2-tail) .582 . .027 .164 .336 .995 .914
# Present 459 460 460 449 459 456 460
# Missing 5 0 5 4 5 5 5
Mean(Present) 6.7495 22.9804 35.2065 52.7016 23.5251 4.3947 13.2391
Mean(Missing) 6.6000 . 28.6000 28.5000 25.0000 4.4000 13.4000

t 0 -.6 -.4 . -.3 -2.3 0.8

S
E

L

df 11.4 10.3 11.8 . 11.5 11.5 11.2
P(2-tail) .996 .532 .686 . .786 .40 .463
# Present 452 449 453 453 452 449 453
# Missing 12 11 12 0 12 12 12
Mean(Present) 6.7478 22.9287 35.1170 52.4879 23.5310 4.3541 13.2605
Mean(Missing) 6.7500 25.0909 35.8333 . 23.9167 5.9167 12.5000

For each quantitative variable, pairs of groups are formed by indicator variables (present, 
missing).
a. Indicator variables with less than 1% missing are not displayed.

Crosstabulations of Categorical Versus Indicator Variables
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ATTMAR Present Count 460 242 137 81
Percent 98.9 98.4 100.0 98.8

Missing % SysMis 1.1 1.6 .0 1.2
SEL Present Count 453 243 132 78

Percent 97.4 98.8 96.4 95.1
Missing % SysMis 2.6 1.2 3.6 4.9

Indicator variables with less than 1% missing are not displayed.

TABLE 10.10 Continued
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Missing Patterns (cases with missing values)
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37 1 8.3 − S 7.00 11.00 39.00 . 21.00 4.00 9.00 Role-satisfied housewives Broken Yes Catholic
95 1 8.3 S 5.00 14.00 32.00 . 16.00 8.00 16.00 Role-satisfied housewives Married No Protestant

118 1 8.3 S 7.00 16.00 45.00 . 28.00 8.00 10.00 Role-satisfied housewives Single No Catholic
159 1 8.3 S 7.00 11.00 45.00 . 22.00 5.00 11.00 Working Married Yes Protestant
196 1 8.3 - S 8.00 35.00 38.00 . 29.00 8.00 6.00 Role-dissatisfied housewives Broken Yes Catholic
219 1 8.3 S 6.00 39.00 37.00 . 25.00 5.00 16.00 Role-dissatisfied housewives Broken No Protestant
265 1 8.3 S 6.00 25.00 27.00 . 30.00 2.00 16.00 Working Married No Jewish
314 1 8.3 S 5.00 35.00 32.00 . 23.00 8.00 13.00 Role-satisfied housewives Broken Yes Protestant
341 1 8.3 - S 10.00 35.00 40.00 . 27.00 3.00 9.00 Role-dissatisfied housewives Broken Yes Protestant
448 1 8.3 S 5.00 35.00 35.00 . 22.00 8.00 13.00 Role-satisfied housewives Broken No Protestant
457 1 8.3 S 8.00 20.00 29.00 . 16.00 8.00 16.00 Working Married Yes Catholic
300 2 16.7 A S 7.00 .00 31.00 . 28.00 4.00 15.00 Role-dissatisfied housewives Broken Yes Protestant
135 1 8.3 A 6.00 .00 30.00 7.00 21.00 4.00 12.00 Working Single No Protestant
280 1 8.3 A 7.00 .00 29.00 61.00 28.00 6.00 12.00 Working Broken Yes Jewish
317 1 8.3 + A 7.00 .00 21.00 7.00 24.00 2.00 18.00 Working Broken No None-or-

other
113 1 8.3 A 6.00 .00 32.00 39.00 24.00 6.00 10.00 Working Broken Yes Catholic
83 1 8.3 - A 5.00 21.00 50.00 81.00 16.00 8.00 8.00 Role-satisfied housewives Married Yes .00
80 1 8.3 A 6.00 29.00 26.00 62.00 23.00 4.00 15.00 Role-satisfied housewives Married Yes .00

437 1 8.3 A 6.00 16.00 36.00 52.00 27.00 7.00 12.00 Working Married Yes .00
208 1 8.3 S 8.00 13.00 39.00 13.00 20.00 . 13.00 Role-dissatisfied housewives Married Yes Protestant
209 1 8.3 S 8.00 42.00 29.00 25.00 25.00 . 13.00 Working Married Yes Protestant
206 1 8.3 S 5.00 29.00 28.00 53.00 24.00 . 15.00 Role-dissatisfied housewives Married No Protestant
207 1 8.3 S 8.00 31.00 39.00 87.00 29.00 . 14.00 Working Married Yes Catholic
253 1 8.3 A 9.00 44.00 32.00 45.00 1.00 1.00 13.00 Working Single No A
303 1 8.3 A .00 18.00 40.00 62.00 23.00 4.00 13.00 Role-satisfied housewives Married Yes Protestant

- indicates an extreme low value, while + indicates an extreme high value. The range used is (Q1 - 1.5*IQR, Q3 + 1.5*IQR).
a. Cases and variables are sorted on missing patterns.

(continued )

475



476 C H A P T E R  1 0

EM Estimated Statistics

EM Correlationsa
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CONTROL 1
ATTMAR .195 1
ATTROLE .006 -.093 1
SEL -.128 -.027 -.202 1
ATTHOUSE .182 .306 -.303 -.017 1
AGE -.121 -.058 .240 .117 -.079 1
EDUC -.100 -.060 -.371 .349 .093 .001 1

a. Little’s MCAR test: Chi-Square = 38.257, DF = 35, Sig = .324.

TABLE 10.10 Continued

The Separate Variance t Tests show, for the two quantitative variables with 1% or more values 
missing (ATTMAR and SEL), the relationship between missingness and other quantitative variables. 
For example, there is a suggestion that whether data are missing on ATTMAR might be related to 
ATTROLE, t(4.2) = 3.3, p = .027. However, an adjustment for familywise Type I error rate for the 6 t
tests for each variable places criterion a = .008 for each test. Using this criterion, there is no worrisome 
relationship between missing data on ATTMAR or SEL and any of the other quantitative variables.

The relationship between missingness on ATTMAR and SEL and the categorical variables 
is in the section labeled Crosstabulations of Categorical Versus Indicator Variables. Only the 
table for WORKSTAT is shown, and there is no great difference among groups in percentages miss-
ing for the two variables.

The Missing Patterns table shows, for each case with at least one missing value, the 
variable(s) on which data are missing, variables on which the case has an extreme value as indicated 
by a quartile criterion, and the values for that case on all other variables. Note that three of the cases 
are missing values on RELIGION, a categorical variable. These missing values are not imputed.

The most critical part of the output is Little’s MCAR test, which appears at the bottom of the 
EM Correlations table. This shows that there is no significant deviation from a pattern of values 
that are “missing completely at random,” x2 = 38.257, p = .324. Thus, there is support for imputa-
tion of missing values using the EM algorithm. Note that had MCAR been violated (p 6 .001), 
multiple imputation rather than EM would have been appropriate (cf. Section 5.7.4). Remaining 
analyses use the data set with EM imputed values.

10.7.1.2 Multicollinearity

Analyses in Sections 10.7.2 and 10.7.3 show no problem with convergence, nor are the standard 
errors for parameters exceedingly large. Therefore, no multicollinearity is evident.
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10.7.1.3 Outliers in the Solution

Sections 10.7.2 and 10.7.3 show adequate model fits. Therefore, there is no need to search for 
outliers in the solution.

10.7.2  Direct Logistic Regression with Two-Category Outcome 
and Continuous Predictors

For this analysis, the three categories of WORKSTAT are recoded into two, employed women and 
housewives (whether satisfied or dissatisfied). Table 10.11 shows the syntax to create a new file, 
LOGREG from the original file, LOGREGCC.

10.7.2.1 Limitation: Linearity in the Logit

The main analysis has four continuous attitudinal variables. Interactions between each predic-
tor and its natural log are added to test the assumption. SAS Interactive Data Analysis is used 
to create interactions between continuous variables and their natural logarithms (not shown) 
and add them to the data set, which is saved as LOGREGIN. In Table 10.12, a two-  category 
direct logistic regression analysis is performed with the four original continuous variables 
and four interactions as predictors, using the new data set which also has recoded values for 
WORKSTAT.

The only hint of violation is for ATTROLE, with Pr > ChiSq = .0125. However, a reasonable 
criterion for determining significance for this test with nine terms is a = .05>9 = .006. Therefore, 
the model is run as originally proposed.

10.7.2.2 Direct Logistic Regression with Two-  Category Outcome

Table 10.13 shows the results of the main direct logistic regression analysis with two outcomes. The 
instructions for the SAS LOGISTIC run include a request for 95% confidence intervals around odds 
ratios (CLODDS=WALD) and tables showing success of prediction (CTABLE).

The sample is split into 245 working women (coded 0) and 217 housewives (coded 1). The 
comparison of the constant-  only model with the full model (Likelihood Ratio) shows a 
highly significant probability value, x2(4, N = 440) = 23.24, p 6 .0001, indicating that the 
predictors, as a set, significantly predict work status.

TABLE 10.11 SAS DATA Syntax for Recoding WORKSTAT 
into Two Categories

data Sasuser.Logreg;
set Sasuser.Logregcc;

   if WORKSTAT=1 then WORKSTAT=0;
   if WORKSTAT=3 or WORKSTAT=2 then WORKSTAT=1;
run;
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TABLE 10.12 Direct Logistic Regression to Test Linearity in the Logit (SAS Data and Logistic 
Syntax and Selected Logistic Output)

proc logistic data=Sasuser.logregin;
MODEL WORKSTAT = CONTROL ATTMAR ATTROLE ATTHOUSE CONTROL*L_

CONTRO ATTMAR*L_ATTMAR ATTROLE*L_ATTROL ATTHOUSE*L_ATTHOU;
run;

The LOGISTIC Procedure

Analysis of Maximum Likelihood Estimates

Parameter DF Estimate Standard
Error

Wald
Chi-Square

Pr > ChiSq

Intercept 1 12.8777 7.4039 3.0252 0.0820
CONTROL 1 1.9703 2.1771 0.8191 0.3655
ATTMAR 1 0.2215 0.2344 0.8922 0.3449
ATTROLE 1 −1.5562 0.6231 6.2373 0.0125
ATTHOUSE 1 −0.8194 0.6315 1.6840 0.1944
CONTROL*L_CONTRO 1 −0.6862 0.7396 0.8608 0.3535
ATTMAR*L_ATTMAR 1 −0.0475 0.0549 0.7480 0.3871
ATTROLE*L_ATTROL 1 0.3263 0.1362 5.7389 0.0166
ATTHOUSE*L_ATTHOU 1 0.1905 0.1529 1.5535 0.2126

The table of parameters shows that the only successful predictor is attitude toward role of 
women; working women and housewives differ significantly only in how they view the proper 
role of women. Nonsignificant coefficients are produced for locus of control, attitude toward 
marital status, and attitude toward housework. The negative coefficient for attitude toward the 
role of women means that working women (coded 0: see Probability modeled 
is WORKSTAT = 0) have lower scores on the variable, indicating more liberal attitudes. 
Adjusted Odds Ratios are omitted here because they duplicate the nonadjusted ones. 
(Note that these findings are consistent with the results of the contrast of working women vs. the 
other groups in Table 9.12 of the discriminant analysis.) Somers’ D indicates about 7% (.2632 =
.07) of shared variance between work status and the set of predictors. Using Steiger and Fouladi’s 
(1992) software (cf. Figure 9.3), the 95% confidence interval ranges from .03 to .12. Thus, the gain 
in prediction is unimpressive.

SAS LOGISTIC uses jackknife classification in the Classification Table. At a 
Prob Level of 0.500, the correct classification rate is 57.8%. Sensitivity is the proportion of 
cases in the “response” category (working women coded 0) correctly predicted. Specificity is the 
proportion of cases in the “reference” category (housewives) correctly predicted.

Because of difficulties associated with the Wald test (cf. Section 10.6.1.2), an additional run 
is prudent to evaluate the predictors in the model. Another SAS LOGISTIC run (Table 10.14) evalu-
ates a model without attitude toward women’s role. Applying Equation 10.7, the difference between 
that model and the model that includes ATTROLE is
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TABLE 10.13 Syntax and Output of SAS LOGISTIC for Logistic Regression Analysis of Work 
Status with Attitudinal Variables

proc logistic data=Sasuser.Logregin;
model WORKSTAT = CONTROL ATTMAR ATTROLE ATTHOUSE / CTABLE 

CLODDS=WALD;
run;

Response Profile

Ordered 
Value WORKSTAT

Total 
Frequency

1 0 245
2 1 217

Probability modeled is WORKSTAT=0.

Model Fit Statistics

Criterion
Intercept 

Only

Intercept 
and 

Covariates

AIC 640.770 625.534
SC 644.906 646.212
−2 Log L 638.770 615.534

Testing Global Null Hypothesis: BETA=0

Test Chi-Square DF Pr > ChiSq

Likelihood Ratio 23.2361 4 0.0001
Score 22.7390 4 0.0001
Wald 21.7497 4 0.0002

Analysis of Maximum Likelihood Estimates

Parameter DF Estimate
Standard 

Error
Wald 

Chi-Square Pr > ChiSq

Intercept 1 3.1964 0.9580 11.1321 0.0008
CONTROL 1 −0.0574 0.0781 0.5415 0.4618
ATTMAR 1 0.0162 0.0120 1.8190 0.1774
ATTROLE 1 −0.0681 0.0155 19.2971 <.0001
ATTHOUSE 1 −0.0282 0.0238 1.3996 0.2368

Odds Ratio Estimates

Point 95% Wald
Effect Estimate Confidence Limits

CONTROL 0.944 0.810 1.100
ATTMAR 1.016 0.993 1.041
ATTROLE 0.934 0.906 0.963
ATTHOUSE 0.972 0.928 1.019

(continued )
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Association of Predicted Probabilities and Observed Responses

Percent Concordant 62.9 Somers' D 0.263
Percent Discordant 36.6 Gamma 0.264
Percent Tied     0.5 Tau-a 0.131
Pairs 53165 c 0.632

Classification Table

Correct Incorrect Percentages
Prob 
Level Event

Non-
Event Event

Non-
Event Correct

Sensi-
tivity

Speci-
ficity

False 
POS

False 
NEG

0.200 245 0 217 0 53.0 100.0 0.0 47.0 .
0.220 244 0 217 1 52.8 99.6 0.0 47.1 100.0
0.240 244 0 217 1 52.8 99.6 0.0 47.1 100.0
0.260 244 2 215 1 53.2 99.6 0.9 46.8 33.3
0.280 243 3 214 2 53.2 99.2 1.4 46.8 40.0
0.300 241 5 212 4 53.2 98.4 2.3 46.8 44.4
0.320 237 9 208 8 53.2 96.7 4.1 46.7 47.1
0.340 232 10 207 13 52.4 94.7 4.6 47.2 56.5
0.360 231 15 202 14 53.2 94.3 6.9 46.7 48.3
0.380 226 25 192 19 54.3 92.2 11.5 45.9 43.2
0.400 220 34 183 25 55.0 89.8 15.7 45.4 42.4
0.420 207 48 169 38 55.2 84.5 22.1 44.9 44.2
0.440 197 67 150 48 57.1 80.4 30.9 43.2 41.7
0.460 189 74 143 56 56.9 77.1 34.1 43.1 43.1
0.480 180 90 127 65 58.4 73.5 41.5 41.4 41.9
0.500 164 103 114 81 57.8 66.9 47.5 41.0 44.0
0.520 151 117 100 94 58.0 61.6 53.9 39.8 44.5
0.540 142 129 88 103 58.7 58.0 59.4 38.3 44.4
0.560 127 138 79 118 57.4 51.8 63.6 38.3 46.1
0.580 114 153 64 131 57.8 46.5 70.5 36.0 46.1
0.600 90 164 53 155 55.0 36.7 75.6 37.1 48.6
0.620 71 185 32 174 55.4 29.0 85.3 31.1 48.5
0.640 53 196 21 192 53.9 21.6 90.3 28.4 49.5
0.660 39 201 16 206 51.9 15.9 92.6 29.1 50.6
0.680 28 208 9 217 51.1 11.4 95.9 24.3 51.1
0.700 16 214 3 229 49.8 6.5 98.6 15.8 51.7
0.720 9 215 2 236 48.5 3.7 99.1 18.2 52.3
0.740 7 216 1 238 48.3 2.9 99.5 12.5 52.4
0.760 2 216 1 243 47.2 0.8 99.5 33.3 52.9
0.780 1 216 1 244 47.0 0.4 99.5 50.0 53.0
0.800 1 216 1 244 47.0 0.4 99.5 50.0 53.0
0.820 0 216 1 245 46.8 0.0 99.5 100.0 53.1
0.840 0 217 0 245 47.0 0.0 100.0 . 53.0

TABLE 10.13 Continued
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TABLE 10.14 Syntax and Selected SAS LOGISTIC Output for Model That Excludes ATTROLE

proc logistic data=Sasuser.Logregin;
   model WORKSTAT = CONTROL ATTMAR ATTHOUSE;
run;

The LOGISTIC Procedure

Model Fit Statistics

Criterion
Intercept 

Only

Intercept 
and 

Covariates

AIC 640.770 644.002
SC 644.906 660.544
−2 Log L 638.770 636.002

x2 = 636.002 - 615.534 = 20.468

with df = 1, p 6 .01, reinforcing the finding of the Wald test that attitude toward women’s role 
significantly enhances prediction of work status. Note also that Table 10.14 shows no statistically 
significant difference between the model with the three remaining predictors and the constant-  only
model, confirming that these predictors are unrelated to work status.

Table 10.15 summarizes the statistics for the predictors. Table 10.16 contains a checklist for 
direct logistic regression with a two-  category outcome. A Results section follows that might be 
appropriate for submission to a journal.

TABLE 10.15 Logistic Regression Analysis of Work Status 
as a Function of Attitudinal Variables

Variables B
Wald Chi-

Square
Odds
Ratio

95% Confidence 
Interval for 
Odds Ratio

Lower Upper

Locus of control -0.06 0.54 0.94 0.81 1.10

Attitude toward 
marital status 0.02 1.82 1.02 0.99 1.04

Attitude toward 
role of women -0.07 19.30 0.93 0.91 0.96

Attitude toward 
housework -0.03 1.40 0.97 0.93 1.02

(Constant) 3.20 11.13
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TABLE 10.16 Checklist for Standard Logistic Regression with 
Dichotomous Outcome

1. Issues

a. Ratio of cases to variables and missing data

b. Adequacy of expected frequencies (if necessary)

c. Outliers in the solution (if fit inadequate)

d. Multicollinearity

e. Linearity in the logit

2. Major analysis

a. Evaluation of overall fit. If adequate:

(1) Significance tests for each predictor

(2) Parameter estimates

b. Effect size for model

c. Evaluation of models without predictors

3. Additional analyses

a. Odds ratios

b. Classification or prediction success table

Results

A direct logistic regression analysis was performed on 

work status as outcome and four attitudinal predictors: locus 

of control, attitude toward current marital status, attitude 

toward women’s role, and attitude toward housework. Analysis 

was performed using SAS LOGISTIC. Twenty-  two cases with missing 

values on continuous predictors were imputed using the EM 

algorithm through SPSS MVA after finding no statistically 

significant deviation from randomness using Little’s MCAR test, 

p = .331. After deletion of three cases with missing values, 

data from 462 women were available for analysis: 217 housewives 

and 245 women who work outside the home more than 20 hours a week 

for pay.



Logistic Regression 483

A test of the full model with all four predictors against 

a constant-  only model was statistically significant, x2(4, N = 

440) = 23.24, p < .001, indicating that the predictors, as a set, 

significantly distinguished between working women and housewives. 

The variance in work status accounted for is small, however, with 

Somers’ D = .263, with a 95% confidence interval for the effect 

size of .07 ranging from .02 to .12 using Steiger and Fouladi’s 

(1992) R2 software. Classification was unimpressive, with 67% of 

the working women and 48% of the housewives correctly predicted, 

for an overall success rate of 58%.

Table 10.15 shows regression coefficients, Wald statistics, 

odds ratios, and 95% confidence intervals for odds ratios for 

each of the four predictors. According to the Wald criterion, 

only attitude toward role of women significantly predicted work 

status, x2(1, N = 440) = 19.30, p < .001. A model run with 

attitude toward role of women omitted was not significantly 

different from a constant-  only model; however, this model was 

significantly different from the full model, x2(1, N = 440) = 

20.47, p < .001. This confirms the finding that attitude toward 

women’s role is the only statistically significant predictor 

of work status among the four attitudinal variables. However, 

the odds ratio of .93 shows little change in the likelihood of 

working on the basis of a one-  unit change in attitude toward 

women’s role.

Thus, attitude towards the proper role of women in society 

distinguishes between women who do and do not work outside the 

home at least 20 hours per week, but the distinction is not a 

very strong one.
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10.7.3  Sequential Logistic Regression 
with Three Categories of Outcome

The sequential analysis is done through two major runs, one with and one without attitudinal 
predictors.

10.7.3.1 Limitations of Multinomial Logistic Regression

10.7.3.1.1 Adequacy of Expected Frequencies
Only if a goodness-of-fit criterion is to be used to compare observed and expected frequen-

cies, is there a limitation to logistic regression. As discussed in Section 10.3.2.2, the expected 
frequencies for all pairs of discrete predictors must meet the usual “chi-  square” requirements. (This 
requirement is only for this section on sequential analysis because the predictors in the direct analy-
sis are all continuous.)

After filtering out cases with missing data on RELIGION, Table 10.17 shows the results of 
an IBM SPSS CROSSTABS run to check the adequacy of expected frequencies for all pairs of dis-
crete predictors. (Only the first seven tables are shown, the remaining three are omitted.) Observed 
(COUNT) and EXPECTED frequencies are requested.

The last crosstabs in the table show one expected cell frequency under 5: 2.7 for single, 
nonwhite women. This is the only expected frequency that is less than 5, so that in no two-  way 
table do more than 20% of the cells have frequencies less than 5, nor are any expected frequen-
cies less than 1. Therefore, there is no restriction on the goodness-of-fit criteria used to evaluate 
the model.

10.7.3.1.2 Linearity in the Logit
An IBM SPSS NOMREG run to test for linearity of the logit is shown in Table 10.18. 

Interactions between continuous variables and their natural logarithms are formed, for example, 
as LIN_SEL=SEL*LN(SEL). The NOMREG instruction identifies workstat as the DV; marital, 
children, religion, and race as categorical “factors” (discrete predictors, following the BY
instruction); and the remaining variables as covariates (continuous predictors, following the WITH
instruction). The added interactions are included as covariates. The MODEL includes main effects 
by default; interactions among original predictors may be included by request.

Table 10.18 shows no serious violation of the assumption of linearity of the logit.

10.7.3.2 Sequential Multinomial Logistic Regression

Table 10.19 shows the results of logistic regression analysis through IBM SPSS NOMREG pre-
dicting the three categories of outcome (working, role-  satisfied housewives, and role-  dissatisfied 
housewives) from the set of seven demographic variables. This is a baseline model, which is 
used to evaluate improvement in the model when attitudinal predictors are added. That is, we are 
interested in evaluating the predictive ability of attitudinal variables after adjusting for demo-
graphic differences. Only minimal output—  goodness of fit and classification—  is requested for 
this baseline model.
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TABLE 10.17 Syntax and Partial Output of IBM SPSS CROSSTABS for Screening 
All Two-  Way Tables for Adequacy of Expected Frequencies

USE ALL.
COMPUTE FILTER_$=(RELIGION < 9).
VARIABLE LABEL FILTER_$ 'RELIGION < 9 (FILTER)'.
VALUE LABELS FILTER_$ 0 'NOT SELECTED' 1 'SELECTED'.
FORMAT FILTER_$ (F1.0).
FILTER BY FILTER_$.
EXECUTE.
CROSSTABS

/TABLES=MARITAL CHILDREN RELIGION RACE BY WORKSTAT
/FORMAT= AVALUE TABLES
/CELLS= COUNT EXPECTED.

CROSSTABS
/TABLES=CHILDREN RELIGION RACE BY MARITAL
/FORMAT= AVALUE TABLES
/CELLS= COUNT EXPECTED.

Crosstabs

Current marital status * Current work status Crosstabulation

Current work status

Working
Role-satisfied 
housewives

Role-dissatisfied 
housewives Total

Current 
marital 
status

Single Count 24 3 4 31
Expected Count 16.4 9.1 5.5 31.0

Married Count 168 127 64 359
Expected Count 190.4 104.9 63.7 359.0

Broken Count 53 5 14 72
Expected Count 38.2 21.0 12.8 72.0

Total Count 245 135 82 462
Expected Count 245.0 135.0 82.0 462.0

Presence of children * Current work status Crosstabulation

Current work status

Working Role-satisfied 
housewives

Role-dissatisfied 
housewives

Total

Presence 
of children

No Count 57 13 12 82
Expected Count 43.5 24.0 14.6 82.0

Yes Count 188 122 70 380
Expected Count 201.5 111.0 67.4 380.0

Total Count 245 135 82 462
Expected Count 245.0 135.0 82.0 462.0

(continued )



TABLE 10.17 Continued

Religious affiliation * Current work status Crosstabulation

Current work status

Working
Role-satisfied 
housewives

Role-dissatisfied 
housewives Total

Religious 
affiliation

None-or-other Count 46 21 9 76
Expected Count 40.3 22.2 13.5 76.0

Catholic Count 63 29 27 119
Expected Count 63.1 34.8 21.1 119.0

Protestant Count 92 52 31 175
Expected Count 92.8 51.1 31.1 175.0

Jewish Count 44 33 15 92
Expected Count 48.8 26.9 16.3 92.0

Total Count 245 135 82 462
Expected Count 245.0 135.0 82.0 462.0

RACE * Current work status Crosstabulation

Current work status

Working
Role-satisfied 
housewives

Role-dissatisfied 
housewives Total

RACE White Count 218 131 73 422
Expected Count 223.8 123.3 74.9 422.0

Non-white Count 27 4 9 40
Expected Count 21.2 11.7 7.1 40.0

Total Count 245 135 82 462
Expected Count 245.0 135.0 82.0 462.0

486
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Presence of children * Current marital status Crosstabulation

Current marital status

Single Married Broken Total

Presence 
of children

No Count 29 38 15 82
Expected Count 5.5 63.7 12.8 82.0

Yes Count 2 321 57 380
Expected Count 25.5 295.3 59.2 380.0

Total Count 31 359 72 462
Expected Count 31.0 359.0 72.0 462.0

Religious affiliation * Current marital status Crosstabulation

Current marital status

Single Married Broken Total

Religious 
affiliation

None-or-other Count 9 48 19 76
Expected Count 5.1 59.1 11.8 76.0

Catholic Count 4 98 17 119
Expected Count 8.0 92.5 18.5 119.0

Protestant Count 9 136 30 175
Expected Count 11.7 136.0 27.3 175.0

Jewish Count 9 77 6 92
Expected Count 6.2 71.5 14.3 92.0

Total Count 31 359 72 462
Expected Count 31.0 359.0 72.0 462.0

RACE * Current marital status Crosstabulation

Current marital status

Single Married Broken Total

RACE White Count 28 330 64 422
Expected Count 28.3 327.9 65.8 422.0

Non-white Count 3 29 8 40
Expected Count 2.7 31.1 6.2 40.0

Total Count 31 359 72 462
Expected Count 31.0 359.0 72.0 462.0

TABLE 10.17 Continued
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TABLE 10.18 Syntax and Selected Output of IBM SPSS NOMREG for Test of Linearity 
of the Logit for a Logistic Regression Analysis of Work Status With Demographic 
and Attitudinal Variables

NOMREG
WORKSTAT BY MARITAL CHILDREN RELIGION RACE WITH
CONTROL ATTMAR ATTROLE SEL ATTHOUSE AGE EDUC
LIN_CTRL LIN_ATMR LIN_ATRL LIN_ATHS LIN_SEL LIN_AGE LIN_EDUC
/CRITERIA = CIN(95) DELTA(0) MXITER(100) MXSTEP(5) LCONVERGE(0)
PCONVERGE(1.0E-6) SINGULAR(1.0E-8)
/MODEL
/PRINT = LRT.

Likelihood Ratio Tests

Effect

−2 Log 
Likelihood of 

Reduced 
Model Chi-Square df Sig.

Intercept 781.627a .000 0 .
CONTROL 783.778 2.151 2 .341
ATTMAR 785.478 3.851 2 .146
ATTROLE 489.738 8.111 2 .017
SEL 786.633 5.006 2 .082
ATTHOUSE 784.800 3.173 2 .205
AGE 784.032 2.405 2 .300
EDUC 782.310 .683 2 .711
LIN_CTRL 783.700 2.073 2 .355
LIN_ATMR 785.861 4.234 2 .120
LIN_ATRL 789.239 7.612 2 .022
LIN_ATHS 784.925 3.298 2 .192
LIN_SEL 787.330 5.703 2 .058
LIN_AGE 783.332 1.705 2 .426
LIN_EDUC 782.214 .587 2 .746
MARITAL 794.476 12.849 4 .012
CHILDREN 785.607 3.980 2 .137
RELIGION 789.446 7.819 6 .252
RACE 494.095 12.468 2 .002

The chi-  square statistic is the difference in -2 log-likelihoods between the 
final model and a reduced model. The reduced model is formed by omitting 
an effect from the final model. The null hypothesis is that all parameters of 
that effect are 0.

a. This reduced model is equivalent to the final model because omitting 
the effect does not increase the degrees of freedom.
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TABLE 10.19 Syntax and Selected Output of IBM SPSS NOMREG for Logistic Regression Analysis 
of Work Status With Demographic Variables Only

NOMREG
WORKSTAT BY CHILDREN RELIGION RACE MARITAL WITH
SEL AGE EDUC
/CRITERIA = CIN(95) DELTA(0) MXITER(100) MXSTEP(5) LCONVERGE(0)
PCONVERGE(1.0E-6) SINGULAR(1.0E-8)
/MODEL
/PRINT = CLASSTABLE FIT STEP MFI.

Model Fitting Information

Model
−2 Log 

Likelihood Chi-Square df Sig.

Intercept Only 910.459
Final 832.404 78.055 20 .000

Goodness-of-Fit

Chi-Square df Sig.

Pearson 892.292 864 .245
Deviance 816.920 864 .872

Classification

Predicted

Observed Working
Role-satisfied 
housewives

Role-dissatisfied 
housewives

Percent 
Correct

Working 200 43 2 81.6%
Role-satisfied housewives 86 48 1 35.6%
Role-dissatisfied 

housewives 59 23 0 .0%
Overall Percentage 74.7% 24.7% .6% 53.7%

The model provides an acceptable fit to the data. Goodness-of-Fit statistics (comparing 
observed with expected frequencies) with all predictors in the model show good fit with p = .872 by 
the Deviance criterion and with p = .245 for the Pearson criterion. Correct classification on the 
basis of demographic variables alone is 54% overall: with 82% for working women (the largest 
group) but no correct classifications for role-  dissatisfied housewives.



490 C H A P T E R  1 0

TABLE 10.20 Syntax and Selected Output of IBM SPSS NOMREG for Logistic Regression Analysis 
of Work Status With Demographic and Attitudinal Variables

NOMREG
WORKSTAT (BASE=FIRST ORDER=ASCENDING) BY MARITAL CHILDREN RELIGION

  RACE WITH CONTROL ATTMAR ATTROLE SEL ATTHOUSE AGE EDUC
/CRITERIA = CIN(95) DELTA(0) MXITER(100) MXSTEP(5) LCONVERGE(0)
PCONVERGE(1.0E-6) SINGULAR(1.0E-8)
/MODEL
/PRINT = CLASSTABLE FIT PARAMETER SUMMARY LRT CPS MFI .

Nominal Regression

Case Processing Summary

N
Marginal 

Percentage

Work status Working 245 53.0%
Role-satisfied 
housewives

135 29.2%

Role-dissatisfied 
housewives

82 17.7%

Current Single 31 6.7%
marital status Married 359 77.7%

Broken 72 15.6%
Presence of No 82 17.7%
children Yes 380 82.3%
Religious None-or-other 76 16.5%
affiliation Catholic 119 25.8%

Protestant 175 37.9%
Jewish 92 19.9%

RACE White 422 91.3%
Non-white 40 8.7%

Valid 462 100.0%
Missing 0
Total 462
Subpopulation 462a

a. The dependent variable has only one value observed in 462 (100.0%) 
subpopulations.

Table 10.20 shows the results of logistic regression analysis through IBM SPSS NOMREG
predicting the three categories of outcome (working, role-  satisfied housewives, and role-  dissatisfied 
housewives) from the set of seven demographic and four attitudinal variables. For purposes of 
single-df tests (comparisons among groups), the reference (BASE) group is set to the first category, 
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Model Fitting Information

Model
−2 Log 

Likelihood Chi-Square df Sig.

Intercept Only 926.519
Final 806.185 120.334 28 .000

Goodness-of-Fit

Chi-Square df Sig.

Pearson 930.126 894 .195
Deviance 806.246 894 .983

Pseudo R-Square

Cox and Snell .229
Nagelkerke .265
McFadden .130

Likelihood Ratio Tests

Effect
−2 Log Likelihood 
of Reduced Model Chi-Square df Sig.

Intercept 806.246a .000 0 .
CONTROL 807.098 .851 2 .653
ATTMAR 809.404 3.157 2 .206
ATTROLE 824.412 18.166 2 .000
SEL 813.061 6.814 2 .033
ATTHOUSE 814.700 8.453 2 .015
AGE 810.898 4.651 2 .098
EDUC 813.287 7.040 2 .030
MARITAL 821.474 15.228 4 .004
CHILDREN 810.283 4.036 2 .133
RELIGION 813.149 6.903 6 .330
RACE 817.969 11.723 2 .003

The chi-  square statistic is the difference in -2 log-  likelihoods between the final 
model and a reduced model. The reduced model is formed by omitting an effect 
from the final model.The null hypothesis is that all parameters of that effect are 0.

a. This reduced model is equivalent to the final model because omitting the effect 
does not increase the degrees of freedom.

TABLE 10.20 Continued

(continued )



Parameter Estimates

95% Confidence 
Interval for Exp(B)

Work 
Statusa B Std. Error Wald df Sig. Exp(B)

Lower 
Bound

Upper
Bound

Role-
satisfied 
housewives

Intercept -4.120 1.853 4.945 1 .026
CONTROL -.016 .101 .025 1 .874 .984 .808 1.199
ATTMAR -.012 .019 .384 1 .536 .988 .953 1.025
ATTROLE .088 .022 16.479 1 .000 1.092 1.047 1.140
SEL .015 .006 6.612 1 .010 1.015 1.004 1.027
ATTHOUSE -.029 .031 .911 1 .340 .971 .915 1.031
AGE -.091 .063 2.118 1 .146 .913 .808 1.032
EDUC -.126 .067 3.526 1 .060 .882 .773 1.006
[MARITAL=1.00] .551 .884 .388 1 .533 1.735 .307 9.821
[MARITAL=2.00] 1.758 .536 10.761 1 .001 5.803 2.029 16.591
[MARITAL=3.00] 0b . . 0 . . . .
[CHILDREN=.00] -.811 .419 3.744 1 .053 .445 .196 1.011
[CHILDREN=1.00] 0b . . 0 . . . .
[RELIGION=1.00] .226 .399 .321 1 .571 .798 .365 1.743
[RELIGION=2.00] -.620 .371 2.786 1 .095 .538 .260 1.114
[RELIGION=3.00] -.494 .328 2.272 1 .132 .610 .321 1.160
[RELIGION=4.00] 0b . . 0 . . . .
[RACE=l.00] 1.789 .598 8.938 1 .003 5.983 1.852 19.330
[RACE=2.00] 0b . . 0 . . . .

a. This reference category is: Working.
b. This parameter is set to zero because it is redundant.

TABLE 10.20 Continued

492
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Parameter Estimates

95% Confidence 
Interval for Exp(B)

Work 
Statusa B Std. Error Wald df Sig. Exp(B)

Lower 
Bound

Upper
Bound

Role-
dissatisfied 
housewives

Intercept -4.432 1.994 4.940 1 .026
CONTROL .088 .108 .657 1 .418 1.092 .883 1.350
ATTMAR .025 .018 1.958 1 .162 1.025 .990 1.061
ATTROLE .049 .024 4.143 1 .042 1.050 1.002 1.101
SEL .005 .006 .709 1 .400 1.005 .993 1.018
ATTHOUSE .084 .036 5.381 1 .020 1.087 1.013 1.167
AGE -.135 .070 3.712 1 .054 .874 .761 1.002
EDUC -.164 .074 4.864 1 .027 .849 .734 .982
[MARITAL=1.00] -.280 .746 .141 1 .707 .756 .175 3.258
[MARITAL=2.00] .439 .400 1.202 1 .273 1.551 .708 3.399
[MARITAL=3.00] 0b . . 0 . . . .
[CHILDREN=.00] -.352 .456 .595 1 .441 .704 .288 1.719
[CHILDREN=1.00] 0b . . 0 . . . .
[RELIGION=1.00] -.445 .501 .787 1 .375 .641 .240 1.712
[RELIGION=2.00] -.218 .422 .268 1 .604 1.244 .544 2.844
[RELIGION=3.00] -.023 .393 .003 1 .954 1.023 .473 2.211
[RELIGION=4.00] 0b . . 0 . . . .
[RACE=l.00] .658 .481 1.875 1 .171 1.932 .753 4.957
[RACE=2.00] 0b . . 0 . . . .

a. This reference category is: Working.
b. This parameter is set to zero because it is redundant.

(continued )
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working women. Parameter estimates, effect-  size statistics (SUMMARY), likelihood-  ratio tests 
(LRT), and case processing summary (CPS) are requested in this final model, in addition to statis-
tics requested in the base model.

Table 10.20 shows the number of respondents in each of the three outcomes and in each category 
of discrete predictors. Goodness-of-Fit statistics (comparing observed with expected frequencies) 
with all predictors in the model show an excellent fit with p = .1983 by the Deviance criterion and 
with p = .195 for the Pearson criterion. Using the Nagelkerke measure with the Steiger and Fouladi 
(1992) software, R2 = .265 with a 95 confidence interval ranging from .15 to .29. Note that the num-
ber of variables is considered to be 28 (i.e., the df for the Final Model Chi-Square test).

Likelihood-  ratio tests show three of the predictors to significantly add to prediction of work 
status using a critical value for each test that sets a = .0045 to compensate for inflation in family-
wise error rate associated with the 11 predictors, as well as possible bias introduced by use of EM
imputation. Critical values for the predictors depend on their df: 10.81 for 2 df, 15.089 for 4 df, and 
18.81 for 6 df. Thus, attitudes toward role of women, marital status, and race significantly distin-
guish among the three groups of women.

Two tables of Parameter Estimates are shown, one for each degree of freedom for out-
come. The first table compares working women with role-  satisfied housewives, while the second 
compares working with role-  dissatisfied women. Using a criterion a = .0045 (to compensate for 
inflated Type I error rate with 11 predictors and bias associated with EM imputation), the critical 
value for x2 with 1 df = 8.07. By this criterion, attitudes toward role of women, marital status, and 
race significantly separate working women from role-  satisfied housewives.  Role-  satisfied women 
score higher (i.e., more conservatively) than working women on their attitudes toward the role of 
women in society. The odds of being married are almost 6 times greater for role-  satisfied women 
than for working women, as are the odds of being Caucasian. No predictor significantly separates 
working women from role-  dissatisfied housewives. Parameter estimates and odds ratios with their 
95% confidence limits are in Tables 10.21 and 10.22 in a form suitable for reporting.

The classification table shows that 60% of the cases now are correctly classified: ranging 
from 81% of the working women (about the same number as in the base model) but now 11% of the 
role-  dissatisfied housewives (increasing from no correct classifications for that group).

Predicted

Observed Working
Role-satisfied 

housewives
Role-dissatisfied 

housewives
Percent 
Correct

Working 199 39 7 81.2%

Role-satisfied
housewives 65 68 2 50.4%

Role dissatisfied
housewives 57 16 9 11.0%

Overall Percentage 69.5% 26.6% 3.9% 59.7%

TABLE 10.20 Continued
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Evaluation of the addition of attitudinal variables as a set is most easily accomplished by 
calculating the difference between the two models. When both demographic and attitudinal 
predictors are included, x2 = 120.273 with 28 df; when demographic predictors alone are included, 
x2 = 78.055 with 20 df. Applying Equation 10.7 to evaluate improvement in fit,

x2 = 120.273 - 78.055 = 42.22

with df = 8, p 6 .05. This indicates statistically significant improvement in the model with the 
addition of attitudinal predictors.

The remaining issue, interpretation of the statistically significant effects, is difficult through 
IBM SPSS NOMREG because of the separation of effects for both outcome and predictors into 
single degree of freedom dummy variables. For categorical predictors, group differences are 
observed in proportions of cases in each category of predictor for each category of outcome. This 
information is available from the screening run of Table 10.17. For example, we see that 69% 
(168/245) of the working women are currently married, while 94% and 78% of the role-  satisfied 
and role-  dissatisfied housewives, respectively, are currently married.

TABLE 10.21 Logistic Regression Analysis of Work Status as a Function of Attitudinal Variables: 
Working Women Versus Role-Satisfied Housewives

Variables B
Wald 
X2-test

Odds
Ratio

95% Confidence
Interval for Odds 

Ratio

Lower Upper

Locus of control -0.02 0.03 0.98 0.81 1.20

Attitude toward marital status -0.01 0.38 0.99 0.95 1.03

Attitude toward role of women 0.09 16.48 1.09 1.05 1.14

Socioeconomic level 0.02 6.61 1.02 1.00 1.03

Attitude toward housework -0.03 0.91 0.97 0.92 1.03

Age -0.09 2.12 0.91 0.81 1.03

Educational level -0.13 3.53 0.88 0.77 1.01

Single vs. broken marriage 0.55 0.39 1.74 0.32 9.82

Married vs. broken marriage 1.76 10.73 5.80 2.03 16.59

Presence vs. absence of children -0.81 3.74 0.45 0.20 1.01

Protestant vs. no or other religion -0.23 0.32 0.80 0.37 4.17

Catholic vs. no or other religion -0.62 2.79 0.54 0.26 1.11

Jewish vs. no or other religion -0.49 2.27 0.61 0.32 1.16

Caucasian vs. non-white 1.79 8.94 5.98 1.85 19.33

(Constant) -4.12 4.95
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For continuous predictors, interpretation is based on mean differences for significant predic-
tors for each category of outcome. Table 10.23 shows IBM SPSS DESCRIPTIVES output giving 
means for each category of outcome on the statistically significant predictor, ATTROLE, after 
splitting the file into WORKSTAT groups.

TABLE 10.22 Logistic Regression Analysis of Work Status as a Function of Attitudinal 
and Demographic Variables: Working Women Versus Role-Dissatisfied Housewives

95% Confidence 
Interval for Odds 

Ratio

Variables B
Wald 
X2-test

Odds
Ratio Lower Upper

Locus of control 0.09 0.66 1.09 0.87 1.35

Attitude toward marital status 0.03 1.96 1.03 0.99 1.06

Attitude toward role of women 0.05 4.14 1.05 1.00 1.10

Attitude toward housework 0.08 5.38 1.09 1.01 1.17

Socioeconomic level 0.01 0.71 1.01 0.99 1.02

Age -0.14 3.71 0.87 0.76 1.00

Educational level -0.16 4.86 0.85 0.73 0.98

Single vs. broken marriage -0.28 0.14 0.76 0.18 3.26

Married vs. broken marriage 0.44 1.20 1.55 0.71 3.40

Presence vs. absence of children -0.35 0.60 0.70 0.29 1.72

Protestant vs. no or other religion -0.45 0.79 0.64 0.24 1.71

Catholic vs. no or other religion 0.22 0.27 1.24 0.54 2.84

Jewish vs. no or other religion 0.02 0.00 1.02 0.47 2.21

Caucasian vs. non-white 0.66 1.88 1.93 0.75 4.96

(Constant) -4.32 4.94

TABLE 10.23 Syntax and Partial Output of IBM SPSS DESCRIPTIVES 
Showing Group Means for Atthouse

SORT CASES BY WORKSTAT.
SPLIT FILE
SEPARATE BY WORKSTAT.

DESCRIPTIVES
VARIABLES=ATTROLE
/STATISTICS=MEAN STDDEV.
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Table 10.24 summarizes results of the sequential analysis. Table 10.25 shows contingency 
tables for statistically significant discrete predictors. Table 10.26 provides a checklist for se-
quential logistic regression with more than two outcomes. A Results section in journal format 
follows.

Descriptives

Current work status = Working

Descriptive Statisticsa

N Mean
Std. 

Deviation

Attitudes toward 
role of women 245 33.8122 6.96577

Valid N (listwise) 245

a. Current work status = Working.

TABLE 10.23 Continued

Current work status = Role-satisfied housewives

Descriptive Statisticsa

N Mean
Std. 

Deviation

Attitudes toward 
role of women 135 37.2000 6.31842

Valid N (listwise) 135

a. Current work status = Role-satisfied housewives.

Current work status = Role-dissatisfied housewives

Descriptive Statisticsa

N Mean
Std. 

Deviation

Attitudes toward 
role of women 82 35.6098 5.74726

Valid N (listwise) 82

a. Current work status = Role-dissatisfied housewives.
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TABLE 10.24 Logistic Regression Analysis of Work Status 
as a Function of Demographic and Attitudinal Variables

Variables X2 to Remove df Model X2

Demographic
Marital status 15.23* 4
Presence of children 4.04 2
Religion 6.90 6
Race 11.72* 2
Socioeconomic level 6.81 2
Age 4.65 2
Educational level 7.04 2

All demographic variables 78.06

Attitudinal
Locus of control 0.85 2
Attitude toward marital status 3.16 2
Attitude toward role of women 18.17* 2
Attitude toward housework 8.45 2

All variables 120.27

*p < .0045.

TABLE 10.25 Marital Status and Race 
as a Function of Work Status

Work Statusa

1 2 3 Total

Marital Status
Single 24 3 4 31
Married 168 127 64 359
Broken 53 5 14 72
Total 245 135 82 462

Race
White 218 131 73 422
Nonwhite 27 4 9 40
Total 245 135 82 462

a1 = Working; 2 =  Role-satisfied housewives;
3 = Role-dissatisfied housewives.
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TABLE 10.26 Checklist for Sequential Logistic Regression 
With Multiple Outcomes

1. Issues

a. Ratio of cases to variables and missing data

b. Adequacy of expected frequencies (if necessary)

c. Outliers in the solution (if fit inadequate)

d. Multicollinearity

e. Linearity in the logit

2. Major analyses

a. Evaluation of overall fit at each step.

(1)   Significance tests for each predictor at each step of 
interest

(2)  Parameter estimates at each step of interest

(3)  Effect size at each step of interest

b. Evaluation of improvement in model at each step

3. Additional analyses

a. Odds ratios

b. Classification and/or prediction success table

c. Interpretation in terms of means and/or percentages

d. Evaluation of models without individual predictors

Results

A sequential logistic regression analysis was performed 

through SPSS NOMREG to assess prediction of membership in one 

of three categories of outcome (working women, role-  satisfied 

housewives, and role-  dissatisfied housewives), first on the basis 

of seven demographic predictors and then after addition of four 

attitudinal predictors. Demographic predictors were children 

(presence or absence), race (Caucasian or other), socioeconomic 

level, age, religious affiliation (Protestant, Catholic, Jewish, 

none/other), and marital status (single, married, broken). 

Attitudinal predictors were locus of control, attitude toward 
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marital status, attitude toward role of women, and attitude 

toward housework.

Values for 22 cases with missing data on continuous 

predictors were imputed using the EM algorithm through SPSS 

MVA after finding no statistically significant deviation from 

randomness using Little’s MCAR test, p = .331. After deletion 

of three cases with missing values on religious affiliation, 

data from 462 women were available for analysis: 217 housewives 

and 245 women who work outside the home more than 20 hours a 

week for pay. Evaluation of adequacy of expected frequencies for 

categorical demographic predictors revealed no need to restrict 

tests of the model. No serious violation of linearity in the 

logit was observed.

There was a good model fit (discrimination among groups) 

on the basis of the seven demographic predictors alone, 

x2(864, N = 462) = 816.92, p = .87, using a deviance criterion. 

After addition of the four attitudinal predictors, x2(894, 

N = 462) = 806.25, p = .98, Nagelkerke R2 = .27 with a 95% 

confidence interval ranging from .15 to .29 (Steiger and 

Fouladi, 1992). Comparison of log-  likelihood ratios (see Table 

10.24) for models with and without attitudinal variables showed 

statistically significant improvement with the addition of 

attitudinal predictors, x2(8, N = 462) = 42.22, p < .05.

Overall classification was unimpressive. On the basis of 

seven demographic variables alone, correction classification 

rates were 82% for working women, 36% for role-  satisfied, and 0% 

for role-  dissatisfied women; the overall correct classification 

rate was 54%. The improvement to 60% with the addition of four 

attitudinal predictors reflected success rates of 81%, 50%, 
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and 11% for the three groups, respectively. Clearly, cases were 

overclassified into the largest group: working women.

Table 10.24 shows the contribution of the individual 

predictors to the model by comparing models with and without each 

predictor. Two predictors from the demographic and one from the 

attitudinal set statistically significant enhanced prediction, 

p < .0045. Outcome was predictable from marital status, race, and 

attitude toward role of women.

Tables 10.20 and 10.21 show regression coefficients and 

chi-  square tests of them as well as odds ratios and the 95% 

confidence intervals around them. Role-  satisfied housewives were 

more likely than working women to have conservative attitudes 

toward the proper role of women. The odds of being currently 

married and of being Caucasian are almost 6 times as great for 

role-  satisfied women as for working women.

Table 10.25 shows the relationship between work status and 

the two categorical demographic predictors. Working women are 

less likely to be currently married (69%) than are role-  satisfied 

housewives (94%) or role-  dissatisfied housewives (78%). Role-

satisfied housewives are more likely to be Caucasian (97%) than 

are working women or role-  dissatisfied housewives (89% for both 

groups).

Mean group differences in attitudes toward role of women 

were not large. However, role-  satisfied housewives had more 

conservative attitudes (mean = 37.2) than role-  dissatisfied 

housewives (mean = 35.6) or working women (mean = 33.8).

Thus, the three groups of women are distinguished on the 

basis of three predictors. Intact marriage is most common among 

role-  satisfied housewives and least common among working women. 
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Role-  satisfied women are also more likely to be Caucasian 

than the other two groups and have more conservative attitudes 

toward the proper role of women in society. The most liberal 

attitudes toward role of women are held by women who work for pay 

outside the home for at least 20 hours per week; however, these 

attitudinal differences are not large.

10.8 Comparison of Programs

Only the programs in the three reviewed packages that are specifically designed for logistic regres-
sion are discussed here. All of the major packages also have programs for nonlinear regression, 
which perform logistic regression if the researcher specifies the basic logistic regression equation.

The logistic regression programs differ in how they code the outcome: some base probabili-
ties and other statistics on outcome coded “1” (i.e., success, disease) and some base statistics on 
outcomes coded “0.” The manuals are also sometimes inconsistent and confusing in their labeling of 
predictors where the terms independent variable, predictor, and covariate are used interchangeably. 
Table 10.27 compares five programs from the three major packages.

10.8.1 IBM SPSS Package

IBM SPSS LOGISTIC REGRESSION9 handles only dichotomous outcomes and bases statistics on 
the outcome coded “1.” IBM SPSS NOMREG (nominal regression) and PLUM are the programs 
that handle multiple outcome categories.

IBM SPSS LOGISTIC REGRESSION offers the most flexible procedures for controlling the 
entry of predictors. All can be entered in one step, or sequential steps can be specified where one 
or more predictors enter at each step. For statistical logistic regression both forward and backward 
stepping are available based on either the Wald or likelihood-  ratio statistics at the user’s option. The 
user also has a choice among several criteria for terminating the iterative procedure used to find the 
optimal solution: change in parameter estimates, maximum number of iterations, percent change in 
log-  likelihood, probability of score statistics for predictor entry, probability of Wald or likelihood-
ratio statistic to remove a variable, and the epsilon value used for redundancy checking.

IBM SPSS LOGISTIC REGRESSION has a simple SELECT instruction to select a subset of 
cases on which to compute the logistic regression equation; classification is then performed on all 
cases as a test of the generalizability of the equation.

This program provides a comprehensive set of residuals statistics which can be displayed or 
saved, including predicted probability, predicted group, difference between observed and predicted 
values (residuals), deviance, the logit of the residual, studentized residual, normalized residual, lever-
age value, Cook’s influence, and difference in betas as a result of leaving that case out of the logistic 

9The PROBIT program can also do logistic regression.
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Feature

IBM SPSS 
LOGISTIC

REGRESSION
IBM SPSS 
NOMREG

IBM SPSS 
PLUM

SAS
LOGISTIC

SYSTAT 
LOGISITC

Input

Accepts discrete predictors without recoding Yes Yes Yes CLASS Yes

Alternative coding schemes for discrete predictors 8 No No Yes 2

Accepts tabulated data No No No Yes Yes

Specify reference category and order for parameter estimates Yes Yes NA Yes No

Specify inclusion of intercept in model Yes Yes Yes Yes Yes

Specify how covariate patterns are defined No Yes No No No

Specify exact logical regression No No No Yes No

Specify stepping methods and criteria Yes Yes No Yes Yes

Specify sequential order of entry and test of predictors Yes No No Yes Interactive

Specify a case-  control design (conditional) No No No STRATA Yes

Can specify size of confidence limits for odds ratio Yes Yes N.A. No No

Specify cutoff probability for classification table No No N.A. Yes No

Accepts multiple unordered outcome categories No Yes No No Yes

Deals with multiple ordered outcome categories No No Yes Yes No

Can specify equal odds model N.A. No No No No

Can specify discrete choice models No No No No Yes

Can specify repeated-  measures outcome variable Nod No No Yesc No

Can specify Poisson regression No No No Yes No

Syntax to select a subset of cases for classification only  Yes No No No SP

Score new data sets without refitting model No No No Yes No

Specify quasi-  maximum likelihood covariance matrix No No No No Yes

Specify case weights No No No Yes Yes

Specify start values No No No No Yes

Specify link function for response probabilities No No LINK Yes No

TABLE 10.27 Comparison of Programs for Logistic Regression

(continued )
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Feature

IBM SPSS 
LOGISTIC

REGRESSION
IBM SPSS 
NOMREG

IBM SPSS 
PLUM

SAS
LOGISTIC

SYSTAT 
LOGISITC

Input (continued )

Can restrict printing of diagnostics to outliers Yes No No No No

Add delta to observed cell frequencies No DELTA Yes No No

Specify log-likelihood convergence criterion LCON LCONVERGE LCONVERGE No CONVERG

Specify maximum number of iterations ITERATE MXITER MXITER MAXITER No

Specify maximum step-halving allowed No MXSTEP MXSTEP MAXSTEP No

Parameter estimates convergence criterion BCON PCONVERGE PCONVERGE CONVERGE Yes

Additional convergence criteria No Yes Yes Yes No

Specify tolerance No SINGULAR SINGULAR SINGULAR TOL

Epsilon value used for redundancy checking EPS No No No No

Specify scale component No No Yes No No

Specify correction for overdispersion No Yes No Yes No

Regression output

Log-likelihood (or -2 log-  likelihood) for full model Yes Yes Yes Yes Yes

Log-likelihood (or -2 log-likelihood) for constant-only model Yes Yes Yes Yes Yes

Deviance and Pearson goodness-of-fit statistics No Yes Yes SCALE No

Hosmer–Lemeshow goodness-of-fit x2 Yes Yes Yes Yes Yes

Goodness-of-fit x2: constant-  only versus full model Yes Yes Yes Yes Yes

Goodness-of-fit x2: based on observed versus expected 
frequencies

Yes Pearson Pearson No Yes

Akaike information index (AIC) No No No Yes Yes

Schwartz criterion No No No Yes Yes

Score statistic No No No Yes Yes

Improvement in goodness-of-fit since last step Yes N.A. No Yes No

TABLE 10.27 Continued
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Feature

IBM SPSS 
LOGISTIC

REGRESSION
IBM SPSS 
NOMREG

IBM SPSS 
PLUM

SAS
LOGISTIC

SYSTAT 
LOGISITC

Regression output (continued )

Goodness-of-fit x2 tests for individual predictors in 
specified model

Yes(LR) Yes No No No

Wald tests for predictors combined over multiple categories Yes No No CLASS Yesc

Regression coefficient B B Estimate Parameter
estimate

ESTIMATE

Standard error of the regression coefficient S.E. Std. Error Std. Error Yes Yes

Regression coefficient divided by standard error No No No No t-ratio

Squared regression coefficient divided by squared standard 
error

Wald Wald Wald Wald 
 Chi-Square

No

Probability value for coefficient divided by standard error Sig Sig Sig Pr > ChiSq p-value

Partially standardized regression coefficient No No No Yes No

eB (odds ratio) Exp(B) Exp(B) No Odds ratio Odds Ratio

McFadden’s rho squared tor model No Yes No No Yes

Cox and Snell pseudo R2 for model Yes Yes Yes No No

Nagelkerke pseudo R2 for model Yes Yes Yes No No

Association measures between observed responses and 
predicted probabilities

No No No Yes No

Partial correlations between outcome and each predictor 
variable (R)

Yes No No No No

Correlations among regressions coefficients Yes Yes Yes Yes No

Covariances among regression coefficients No Yes Yes Yes No

Classification table Yes Yes No Yesb Yes

Prediction success table No No No Yesb Yes

Histograms of predicted probabilities for each group CLASSPLOT No No No No
(continued )

TABLE 10.27 Continued
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Feature

IBM SPSS 
LOGISTIC

REGRESSION
IBM SPSS 
NOMREG

IBM SPSS 
PLUM

SAS
LOGISTIC

SYSTAT 
LOGISITC

Regression output (continued )

Quantile table No No No No QNTL

Derivative tables Noe No No No Yes

Plot of predicted probability as a function of the logit Yes No No No No

Diagnostics saved to file

Predicted probability of success for each case Yes No Yes Yes Yes

Options for predicted probabilities No No No Yes No

Raw residual for each case Yes No Noa No No

Standardized (Pearson) residual for each case Yes Yesa Yesa Yesb Yes

Sensitivity/specificity analysis Yese Yese No CTABLE Yes

Variance of Standardized (Pearson) residual for each case No No No No Yes

Standardized (normed) residual for each case Yes No No No Yes

Studentized residual for each case Yes No No No No

Logit residual for each case Yes No No No No

Predicted log odds for each pattern of predictors No No No No No

Deviance for each case Yes No No Yesb Yes

Diagonal of the hat matrix (leverage) Yes No No Yesb Yes

Cook’s distance for each case Yes No No Yesb No

Cumulative residuals No No No No No

Total x2 for pattern of predictors (covariates) No No No No No

Deviance residual for each case Yes No No Yesb Yes

Change in Pearson x2 for each case Yes No No Yesb Yes

Change in betas for each case Yes No Yes Yesb Yes

Confidence interval displacement diagnostics for each case No No No Yesb No
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Feature

IBM SPSS 
LOGISTIC

REGRESSION
IBM SPSS 
NOMREG

IBM SPSS 
PLUM

SAS
LOGISTIC

SYSTAT 
LOGISITC

Special diagnostics for ordered response variables No No No Yes No

Predicted category for each case Yes Yes Yes No Yes

Estimated response probability for each case in each 
category

No Yes Yes No Yes

Predicted category probability for each case No Yes Yes No Yes

Actual category probability for each case No Yes Yes No No

Area under receiver operating characteristic (ROC) curve Yese Yese No No Yes

Plot of ROC curve Yese Yese No No Yes

aAvailable for each cell (covariate pattern).
bFor two-  category outcome analysis only.
cDiscrete predictors only, also available in SAS CATMOD.
dMay be done through IBM SPSS COMPLEX SAMPLES LOGISTIC REGRESSION.
eDone through ROC Curve using saved predicted probabilities.

TABLE 10.27 Continued

507



508 C H A P T E R  1 0

regression equation. The listing can be restricted to outliers with user-  specified criteria for determining 
an outlier. Saving predicted probabilities permits plotting ROC curves in a separate ROC Curve module.

IBM SPSS NOMREG handles multinomial models (multiple outcome categories) and, since 
Version 12, does statistical analysis and offers a variety of diagnostics. Extensive diagnostic values 
are saved to the data set, such as estimated response probabilities for each case in each category, 
predicted category for each case, and predicted and actual category probabilities for each case. 
Discrete predictors are specified as “factors” and continuous predictors as “continuous.” The default 
model includes main effects of all predictors, but full factorial models may be specified as well 
as just about any desired customized model of main effects, interactions, and forced or statistical 
entry of them. The program assumes that the multiple outcome categories are unordered, and gives 
regression coefficients for each outcome category (except the one designated BASE, by default the 
last category) versus the base category. Three R2 measures are routinely printed; Pearson and devi-
ance goodness-of-fit statistics are available. IBM SPSS NOMREG also has a scaling instruction in 
the event of overdispersion. Saving predicted probabilities permits plotting ROC curves in a sepa-
rate ROC Curve module, which is run separately for each outcome category versus the remaining 
categories.

SPSS PLUM is the newest logistic regression program and analyzes models with ordered 
multi-  category outcomes. PLUM (accessed in the menu system as Ordinal Regression) has most of 
the features of NOMREG as well as a few others. Classification tables are not produced but they 
may be constructed by cross-  tabulating predicted with actual categories for each case.

PLUM offers several alternative link functions, including Cauchit (for outcomes with many 
extreme values), complementary log-  log (makes higher categories more probable), negative log-  log
(makes lower categories more probable), and probit (assumes a normally distributed latent vari-
able). The user also is given an opportunity to scale the results to one or more of the predictors to 
adjust for differences in variability over predictor categories. PLUM has a test for parallel lines, to 
evaluate whether the parameters are the same for all categories.

10.8.2 SAS System

SAS LOGISTIC handles multiple as well as dichotomous response categories, but assumes mul-
tiple categories are ordered. There is no default coding of categorical predictors; the coding is user 
specified before invoking PROC LOGISTIC. Statistics for dichotomous outcomes are based on the 
category coded “0,” unless otherwise specified.

This is the most flexible of the logistic regression programs in that alternative (to logit) link 
functions can be specified, including normit (inverse standardized normal probability integral 
function) and complementary log-  log functions. The program also does Poisson regression. SAS 
LOGISTIC also provides correction for overdispersion when predictors are discrete, in which the 
variance in cell frequencies is greater than that assumed by the underlying model, a common condi-
tion when there are repeated measures.

SAS LOGISTIC has the basic goodness-of-fit statistics, as well as exclusive ones such as 
Akaike’s Information Criterion and the Schwartz Criterion. Strength of association between the set 
of predictors and the outcome is assessed using Somers’ D, Gamma, Tau-a, or Tau-c, a more exten-
sive set of strength of association statistics than the other programs.

Classification is done with jackknifing. A cutoff criterion may be specified, but results are 
shown for a variety of cutoff criteria as well. Results include number correct for each category as 
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well as percentages for sensitivity, specificity, false positives, and false negatives. Classification is 
available only for analyses with a two-  category outcome. Exact logistic regression is available for 
SAS LOGISTIC since Version 8. This permits analysis of smaller data sets than can be legitimately 
analyzed with the usual asymptotic procedures.

A full set of regression diagnostics is available, accessible through saved files or through an 
“influence plot” to find outliers in the solution. The plot consists of a case-by-case listing of the 
values of regression statistics along with a plot of deviations from those statistics. Through IPLOT 
an additional set of plots can be produced in which the value of each statistic is plotted as a function 
of case numbers.

10.8.3 SYSTAT System

LOGIT is the major program for logistic regression analysis in SYSTAT. While logistic regression 
can also be performed through the NONLIN (nonlinear estimation) module, it is much more painful 
to do so.

SYSTAT LOGIT is highly flexible in the types of models permitted. For dichotomous out-
comes, the statistics are based on the category coded “1.” With more than two categories of out-
come, the categories are considered unordered. Two types of coding (including the usual dummy 
variable 0, 1 coding) are permitted for discrete predictor variables. A case-  control model can be 
specified. This is the only program that allows specification of quasi-  maximum likelihood covari-
ance, which corrects problems created by misspecified models. And only this program provides 
prediction success tables in addition to classification tables.

The basic output is rather sparse, but includes the test of the full model against the constant-
only model, with McFadden’s r2 as a measure of strength of association, and the odds ratio and 
its confidence interval for each predictor component. Hosmer–  Lemeshow goodness-of-fit tests are 
available through options. Stepping options are plentiful. Although improvement in fit at each step 
is not given, it can be hand-  calculated easily from the log-  likelihood ratio that is available at each 
step. Plenty of diagnostics are available for each case. However, they must be saved into a file for 
viewing; they are not available as part of printout of results.
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11.1 General Purpose and Description

Survival/failure analysis is a family of techniques dealing with the time it takes for something to 
happen: a cure, a failure, an employee leaving, a relapse, a death, and so on. The term survival anal-
ysis is based on medical applications in which time to relapse or death is studied between groups 
who have received different medical treatments. Is survival longer for a group receiving one chemo-
therapy rather than another? Does survival time also depend on the age, gender, or marital status of 
the patient? In manufacturing, the less propitious term failure analysis is used in which time until a 
manufactured component fails is recorded. Does time to failure depend on the material used? Does 
it depend on the temperature of the room where the component is fabricated? Does it still depend 
on material used if room temperature is controlled? We generally use the more optimistic survival 
analysis in this chapter.

One interesting feature of the analysis is that survival time (the DV) often is unknown for a 
number of cases at the conclusion of the study. Some of the cases are still in the study but have not 
yet failed: some employees have not yet left, some components are still functioning, some patients 
are still apparently well, or some patients are still living. For other cases, the outcome is simply un-
known because they have withdrawn from the study or are for some reason lost to follow-up. Cases 
whose DV values—  survival time—  are unknown for whatever reason are referred to as censored.

Within the family of survival-  analysis techniques, different procedures are used depending 
on the nature of the data and the kinds of questions that are of greatest interest. Life tables describe 
the survival (or failure) times for cases, and often are accompanied by a graphical representation of 
the survival rate as a function of time, called a survivor function. Survivor functions are frequently 
plotted side-by-side for two or more groups (e.g., treated and untreated patients) and statistical tests 
are used to test the differences between groups in survival time.

Another set of procedures is used when the goal is to determine if survival time is influenced 
by some other variables (e.g., is longevity within a company influenced by age or gender of an 
employee?). These are basically regression procedures in which survival time is predicted from a 
set of variables, where the set may include one or more treatment variables. However, the analysis 
accommodates censored cases and, like logistic regression and multiway frequency analysis, uses 
a log-  linear rather than a linear model, which tends to be more forgiving in terms of assumptions 
about censoring. As in logistic regression, analysis can be direct or sequential in which differences 
between models that do and do not include a treatment variable are studied.

A potential source of confusion is that all of the predictors, including the treatment IV, if 
there is one, are called covariates. In most previous analyses, the word “covariates” was used for 
variables that enter a sequential equation early and the analysis adjusts for their relationship with 

11 Survival/Failure Analysis
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the DV before variables of greater interest enter. There is a sequential survival analysis in which the 
term covariates is used in the traditional way, but covariates is also used for the IVs even when the 
analysis is not sequential.1

This chapter emphasizes those techniques within the survival-  analysis repertoire that address 
group differences in survival, whether those differences arise from experimental or naturally occur-
ring treatments.

Shirom, Toker, Alkaly, Jacobson, and Balicer (2011) studied the 20-year survival of 820 em-
ployees who were healthy in 1988; among those, 53 had died by 2008. Workplace factors such as 
workload, control, peer social support, and supervisor social support were investigated, after con-
trolling for known physiological and health behavior risk factors. Cox regression analyses revealed 
one main effect and two significant interactions. The risk of mortality was lower among respondents 
who reported higher levels of peer social support. There was an interaction of gender with level 
of control such that higher levels of control reduced the risk of death for men but increased it for 
women. The effect of peer social support interacted with age in that it was mainly confined to em-
ployees in the 38–  43 age range.

Zosuls et al. (2009) used Kaplan–  Meier survival analysis to examine gender differences in 
the time until a child first used a gender label and then the time from the first label until a second 
gender label was used. A total of 82 children (36 boys and 46 girls) and their parents participated 
in the study. The children were all first-  born with no known neurological or sensory abnormalities 
from English-  speaking, middle-  class families. The time period began at 47 weeks and concluded 
at 96 weeks. Biweekly diaries of language development were used to identify age at first word, the 
time at which the first and second gender labels emerged, and achievement of a 50-word vocabulary. 
A total of 32% of the children had not produced a gender label by the end of the study and were, 
thus, right-  censored. Kaplan–  Meier survival analysis revealed a gender difference in production of 
first gender label; median survival time for girls to produce their first gender label was 82 weeks 
while for boys it was 92 weeks. However, both boys and girls tended to produce a second gender 
label within 2–  3 weeks of the first. Cox proportional hazard analysis revealed no gender differences 
in age at first word or age to achieve a 50-word vocabulary. However, girls produced their first 
gender label approximately five weeks after achieving a 50-word vocabulary while for boys it was 
15 weeks. The authors concluded that a category for gender develops earlier in girls.

Gurses (2011) used survival analyses to study the effects of natural resources wealth (par-
ticularly oil) and elite support for democracy on the duration of a democratic episode in 79 coun-
tries between 1960 and 1999. Democratization was defined as an increase of a certain size in the 
equality of power between government and population rather than a change to a fully democratic 
society. Fuel exports and ores and metals exports were used to indicate degree of natural resources 
wealth. Control variables known to relate to democracies were employed (e.g., manufacturing ex-
ports, agrarian exports, income inequality, illiteracy, ethnolinguistic fractionalization, religious 
fractionalization). Among the 79 countries, 20 democratic episodes failed within the time frame. 
Elite support of a democratic episode decreases the risk of failure by 9%. Natural resources wealth 
(particularly oil) also decreased the risk of failure of a democratic episode. The author suggests that 
natural resources wealth ameliorates the likelihood of wealth redistribution from rich to poor and 
thus strengthens democracy.

1It is interesting that the living cases are the censored ones.
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A comprehensive treatment of survival/failure analysis is provided by Singer and Willett 
(2003) in their highly readable text on this and other techniques for modeling longitudinal data. 
Allison (1995) provides a lucid description of the many faces of survival analysis as well as practi-
cal guidelines for using SAS to do survival analysis.

11.2 Kinds of Research Questions

The primary goal of one type of survival analysis is to describe the proportion of cases surviving at 
various times, within a single group or separately for different groups. The analysis extends to sta-
tistical tests of group differences. The primary goal of the other type of survival analysis is to assess 
the relationship between survival time and a set of covariates (predictors), with treatment consid-
ered one of the covariates, to determine whether treatment differences are present after statistically 
controlling for the other covariates.

11.2.1 Proportions Surviving at Various Times

What is the survival rate at various points in time? For example, what proportion of employees last 
three months? What proportion of components fail within the first year? Life tables describe the 
proportion of cases surviving (and failing) at various times. For example, it may be found that 19% 
of employees have left by the end of three months, 35% by the end of six months, and so on. A sur-
vivor function displays this information graphically. Section 11.4 demonstrates survivor functions 
and several statistics associated with them.

11.2.2 Group Differences in Survival

If there are different groups, are their survival rates different? Do employees who are in a program 
to lessen attrition stay longer than those who are not in such a program? Several tests are available 
to evaluate group differences; one is demonstrated in Section 11.4.5. If statistically significant group 
differences are found, separate life tables and survivor functions are developed for each group.

11.2.3 Survival Time With Covariates

11.2.3.1 Treatment Effects

Do survival times differ among treatment groups after controlling for other variable(s)? For ex-
ample, does average employee longevity differ for treated and control groups after adjusting for dif-
ferences in age at employment and starting salary? Several tests of the relationship between survival 
and level of treatment are available in the regression forms of survival analysis. Test statistics for 
treatment effects are discussed in Section 11.6.4.1, and tests of treatment differences after control-
ling for other covariates are described in Section 11.5.2.

11.2.3.2 Importance of Covariates

Which covariates are associated with survival time? If covariates affect survival time, do they in-
crease it or decrease it? Does longevity on a job depend on age when employed? Do employees who 
start when they are older stay longer or shorter than those who start when they are younger? Does the 
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beginning salary matter? Do higher starting salaries tend to keep employees on the job longer? Tests 
of these questions are essentially tests of regression coefficients, as demonstrated in Section 11.6.4.2.

11.2.3.3 Parameter Estimates

The parameter estimates in survival analysis are the regression coefficients for the covariates. 
Because the regression is log-  linear, the coefficients often are expressed as odds. For example, 
what are the odds that someone will stay on the job four years, given that the job was started at age 
30 with an annual salary of $40,000? Section 11.6.5 shows how to interpret regression coefficients 
in terms of odds.

11.2.3.4 Contingencies Among Covariates

Some covariates may be related to differences among treatment groups when considered alone, but 
not after adjustment for other covariates. For example, salary level may modify treatment effects on 
job longevity when considered by itself, but not after adjusting for differences in age at entry into 
the job. These contingencies are examined through sequential survival analysis as demonstrated in 
Section 11.5.2.2.

11.2.3.5 Effect Size and Power

How strong is the association between failure/survival and the set of covariates? On a scale of 0 to 1, 
how well does the combination of age and salary predict longevity on the job? None of the reviewed 
statistical packages provides this information directly, but Section 11.6.3 shows how to calculate a 
form of R2 from output provided by several programs and discusses issues related to power.

11.3 Limitations to Survival Analysis

11.3.1 Theoretical Issues

One problem with survival analysis is the nature of the outcome variable, time itself. Events must 
occur before survival or failure time can be analyzed: Components must fail, employees must leave, 
patients must succumb to the illness. However, the purpose of treatment often is to delay this occur-
rence or prevent it altogether. The more successful the treatment, then, the less able the researcher 
is to collect data in a timely fashion.

Survival analysis is subject to the usual cautions about causal inference. For example, a differ-
ence in survival rates among groups cannot be attributed to the treatment unless assignment to levels 
of treatment and implementation of those levels, with control, are properly experimental.

11.3.2 Practical Issues

In the descriptive use of survival analysis, assumptions regarding the distributions of covariates 
and survival times are not required. However, in the regression forms of survival analysis in which 
covariates are assessed, multivariate normality, linearity, and homoscedasticity among covariates, 
although not required, often enhance the power of the analysis to form a useful linear equation of 
predictors.
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11.3.2.1 Sample Size and Missing Data

Some statistical tests in survival analyses are based on maximum likelihood methods. Typically, these 
tests are trustworthy only with larger samples. Eliason (1993) suggests a sample size of 60 if 5 or fewer 
parameters for covariates (including treatment) are to be estimated. Larger sample sizes are needed 
with more covariates. Different sample sizes among treatment groups pose no special difficulty.

Missing data can occur in a variety of ways in survival analysis. The most common is that the 
case survives to the end of the study so time to failure is not yet known. Or a case may withdraw 
or be lost to follow-up before the end of the study, although it was intact when last seen. These are 
called right-  censored cases. Alternatively, the critical event may have occurred at an uncertain time 
before monitoring began. For example, you know that a disease process began before the first ob-
servation time, but you don’t know exactly when. These are called left-  censored cases and are much 
less common. Section 11.6.2 discusses various forms of censoring.

Missing data can also occur in the usual fashion if some covariate scores are missing for some 
of the cases. Section 4.1.3 discusses issues associated with missing data: randomness, amount, and 
solutions.

11.3.2.2 Normality of Sampling Distributions, Linearity, and Homoscedasticity

Although the assumptions of multivariate normality, linearity, and homoscedasticity (Chapter 4) are 
not necessary for survival analysis, meeting them often results in greater power, better prediction, 
and less difficulty in dealing with outliers. It is, therefore, useful and relatively easy to assess the 
distribution of each covariate by statistical or graphical methods, as described in Section 4.1.5, prior 
to analysis.

11.3.2.3 Absence of Outliers

Those few cases that are very discrepant from others in their group have undue influence on results 
and must be dealt with. Outliers can occur among covariates singly or in combination. Outliers af-
fect the inferential tests of the relationships between survival time and the set of covariates (includ-
ing covariates representing treatment groups). Methods of detecting outliers and remedies for them 
are discussed in Section 4.1.4.

11.3.2.4 Differences Between Withdrawn and Remaining Cases

It is assumed in survival analysis that censored cases, ones lost to study, do not differ systematically 
from those whose fate is known at the conclusion of the study. If the assumption is violated, it is 
essentially a missing data problem with nonrandom loss of cases. If the study started as an experi-
ment, it is no longer an experiment if cases with missing data are systematically different from cases 
with complete data because cases available for analysis at the end of the study are no longer the 
product of random assignment to treatment groups.

11.3.2.5 Change in Survival Conditions over Time

It is assumed that the same things that affect survival at the beginning of the study affect survival 
at the end of the study and that other conditions have not changed. For example, in the experiment 
to lessen employee attrition, it is assumed that the factors that influence attrition at the beginning 
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of observation also influence it at the end. This assumption is violated if other working conditions 
change during the study and they affect survival.

11.3.2.6 Proportionality of Hazards

One of the most popular models for evaluating effects of predictors on survival, the Cox proportional 
hazards model, assumes that the shape of the survival function over time is the same for all cases 
and, as an extension, for all groups. Otherwise, there is an interaction between groups and time in 
survival rates, or between other covariates and time. Section 11.6.1 shows how to test this assump-
tion and discusses evaluation of differences between groups when the assumption is violated.

11.3.2.7 Absence of Multicollinearity

Survival analysis with covariates is sensitive to extremely high correlations among covariates. As in 
multiple regression, multicollinearity is signaled by extremely high standard errors for parameter esti-
mates and/or failure of a tolerance test in the computer analysis. The source of multicollinearity may be 
found through multiple regression procedures in which each covariate, in turn, is treated as a DV with 
the remaining covariates treated as IVs. Any covariate with a squared multiple correlation (SMC) in ex-
cess of .90 is redundant and deleted from further analysis. Section 11.7.1.6 demonstrates evaluation of 
multicollinearity through IBM SPSS FACTOR; Section 4.1.7 provides further discussion of this issue.

11.4 Fundamental Equations 
for Survival Analysis

Table 11.1 shows a hypothetical data set for evaluating how long a belly dancer continues to take 
classes (survives) as a function of treatment and, later, age. In this example, the DV, months, is 
the number of months until a dancer dropped out of class during a 12-month follow-up period. 
Dancing is the censoring variable that indicates whether she has dropped out at the end of the study 

TABLE 11.1 Small Sample of Hypothetical Data for 
Illustration of Survival Analysis

Case Months Dancing Treatment Age

1 1 1 0 16
2 2 1 0 24
3 2 1 0 18
4 3 1 0 27
5 4 1 0 25
6 5 1 0 21
7 7 1 1 26
8 8 1 1 36
9 10 1 1 38

10 10 1 1 45
11 11 1 0 55
12 12 0 1 47
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TABLE 11.2 Survivor Functions for Dancers With and Without Preinstructional Night Out

Interval 
(month) Entered Censoreda Dropped

Proportion 
Dropped

Proportion 
Surviving

Cumulative 
Proportion 
Surviving

Control Group With No Preinstructional Night Out

0.0–1.2 7 0 1 .1429 .8571 1.000
1.2–2.4 6 0 2 .3333 .6667 .8571
2.4–3.6 4 0 1 .2500 .7500 .5714
3.6–4.8 3 0 1 .3333 .6667 .4286
4.8–6.0 2 0 1 .5000 .5000 .2857
6.0–7.2 1 0 0 .0000 1.0000 .1429
7.2–8.4 1 0 0 .0000 1.0000 .1429
8.4–9.6 1 0 0 .0000 1.0000 .1429
9.6–10.8 1 0 0 .0000 1.0000 .1429
10.8–12.00 1 0 1 1.0000 .0000 .0000

Treatment Group With Preinstructional Night Out

0.0–1.2 5 0 0 .0000 1.0000 1.000
1.2–2.4 5 0 0 .0000 1.0000 1.000
2.4–3.6 5 0 0 .0000 1.0000 1.000
3.6–4.8 5 0 0 .0000 1.0000 1.000
4.8–6.0 5 0 0 .0000 1.0000 1.000
6.0–7.2 5 0 1 .2000 .8000 1.000
7.2–8.4 4 0 1 .2500 .7500 .8000
8.4–9.6 3 0 0 .0000 1.0000 .6000
9.6–10.8 3 0 2 .6667 .3333 .6000
10.8–12.00 1 1 0 .0000 1.0000 .2000

aNote that in Table 11.1, codes for dancing are 1 = No, 0 = Yes. Codes in this table for censored are the reverse.

(1 = dropped out, 0 = still dancing). No cases were withdrawn from the study. Therefore, only the 
last case is censored because her total survival time remains unknown at the end of the year-  long
follow-up period. The 12 cases belong to one of two groups (0 = control, 1 = treatment). Treatment 
consists of a preinstructional night out with dinner at a mid-  Eastern restaurant, live music, and belly 
dancers: 7 cases are in the control group and 5 in the treatment group. Age when beginning to belly 
dance is included as a covariate for later analyses.

11.4.1 Life Tables

Life tables are built around time intervals; in this example (Table 11.2), the intervals are of width 
1.2 months. The survivor function, P, is the cumulative proportion of cases surviving to the begin-
ning of the i + 1st interval, estimated as:

Pi + 1 = piPi (11.1)
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where:

pi = 1- qi

qi =
di

ri

and

where di = number responding (dropping out) in the interval and

ri = ni -
1

2
ci

where ni = number entering the interval
ci = number censored in the interval (lost to follow up for reasons other than 

dropping out).

In words, the proportion of cases surviving to the (i + 1)st interval is the proportion who survived to 
the start of ith interval times the probability of surviving to the end of the ith interval (by not drop-
ping out or being censored during that interval).

For the first interval (0 to 1.2), all 7 dancers in the control group enter the interval; thus, the 
cumulative proportion surviving to the beginning of the first interval is 1. During the first interval, 
no cases are censored but one case in the control group drops out. Therefore,

r1 = 7 -
1

2
(0) = 7

q1 =
1

7
= .1429

p1 = 1 - .1429 = .8571

That is, 85.71% (.8571)(7) = 6 of the cases have survived the first interval.
For the second interval (1.2 to 2.4), the cumulative proportion surviving to the beginning of 

the interval is

P2 = p1P1 = (.8571)(1) = .8571

The six remaining dancers enter the interval, none is censored but two drop out, so that:

r2 = 6 -
1

2
(0) = 6

q2 =
2

6
= .3333

p2 = 1 - .3333 = .6667
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For the third interval (2.4 to 3.6), the cumulative proportion surviving to the beginning of the 
interval is

P3 = p2P2 = (.6667)(.8571) = .5714

and so on.
In the control group, then, over half the cases have dropped out by the middle of the third 

month (beginning of fourth interval), and only 14% survive to the start of the sixth month. All have 
stopped taking classes by the end of the study. In the treatment group, over half the cases survive to 
the middle of the ninth month (beginning of the ninth interval), and one is still taking classes at the 
end of the study.

Various statistics and standard errors for them are developed to facilitate inferential tests of 
survival functions, as described below.

11.4.2 Standard Error of Cumulative Proportion Surviving

The standard error of a cumulative proportion of cases surviving an interval is approximately:

s.e.(Pi) _ PiBa
i-1

j=1

qj

rj pj
(11.2)

For the control group in the second interval (month 1.20–  2.40):

s.e.(P2) _ .8571 A
.1429

7(.8571)
_ .1323

11.4.3 Hazard and Density Functions

The hazard (also sometimes called the failure rate) is the rate of not surviving to the midpoint of an 
interval, given survival to the start of the interval.

li =
2qi

hi(1 + pi)
(11.3)

where hi = the width of the ith interval.

For the dancers in the control group in the second interval, the hazard is:

l2 =
2(.3333)

1.2(1 + .6667)
= .3333

That is, the drop-  out rate is one-  third by the middle of the second interval for cases surviving to the 
beginning of the second interval. Of the 6 cases entering the second interval, the expected rate of 
drop-out is (.3333)(6) = 2 of them by the middle of that interval.
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The approximate standard error of the hazard is:

s.e.(li) _ liA1 - (hili
>2)2

riqi

(11.4)

The standard error of the hazard for the control group in the second interval, then, is:

s.e.(l2) _ .3333A1 - (1.2(.3333>2))2

6(.3333)
_ .2309

The probability density is the probability of not surviving to the midpoint of an interval, given 
survival to the start of the interval:

fi =
Piqi

hi
(11.5)

For the control group in the second interval:

f2 =
.8571(.3333)

1.2
= .2381

For any of one of the 6 dancers in the control group who are still dancing at 1.2 months, the prob-
ability of dropping out by 1.8 months is .2381.

The approximate standard error of density is

s.e.( fi) _
Piqi

hi B
pi

riqi

+ a
i- 1

j = 1

qj

rj pj
(11.6)

For the control group in the second interval, the approximate standard error of density is

s.e.( f2) _
.8571(.3333)

1.2 A
.6667

6(.3333)
+

.1429

7(.8571)
_ .1423

Note the distinction between the hazard function and the probability density function. The hazard 
function is the instantaneous rate of dropping out at a specific time (e.g., 1.8 months which is the 
midpoint of the second interval), among cases who survived to at least the beginning of that time 
interval (e.g., 1.2 months). The probability density function is the probability of a given case drop-
ping out at a specified time point.

11.4.4 Plot of Life Tables

Life table plots are simply the cumulative proportion surviving (Pi), plotted as a function of each 
time interval. Referring to Table 11.2, for example, the first point plotted is the interval beginning 
at 0 months, and the cumulative proportion surviving is 1.0 for both the groups. At the beginning of 
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the second interval, 1.2 months, the cumulative proportion surviving is still 1.0 for those dancers in 
the treatment group but is .8571 for dancers in the control group, and so on. Figure 11.1 shows the 
resulting survival function.

11.4.5 Test for Group Differences

Group differences in survival are tested through x2 with degrees of freedom equal to the number 
of groups minus 1. Of the several tests that are available, the one demonstrated here is labeled 
Log-  Rank in SAS LIFETEST and IBM SPSS KM. When there are only two groups, the overall 
test is

x2 =
v2

j

Vj
(11.7)

x2 equals the squared value of the observed minus expected frequencies of number of 
survivors summed over all intervals for one of the groups (v2

j) under the null hypothesis 
of no group differences, divided by Vj, the variance of the group.

The degree of freedom for this test is (number of groups -1). When there are only two 
groups, the value in the numerator is the same for both groups, but opposite in sign. The value 
in the denominator is also the same for both groups. Therefore, computations for either group 
produce the same x2.
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The value, vi, of observed minus expected frequencies is calculated separately for each inter-
val for one of the groups. For the control group of dancers (the group coded 0):

v0 = a
k

i = 1
(d0i - n0idTi>nTi) (11.8)

The difference between observed and expected frequencies for a group, v0, is the 
summed differences over the intervals between the number of survivors in each inter-
val, d0, minus the ratio of the number of cases at risk in the interval (n0i) times the total 
number of survivors in that interval summed over all groups (dTi) divided by the total 
number of cases at risk in that interval summed over all groups (nTi).

For example, using the control group, in the first interval there are 6 survivors (out of a possible 7 at 
risk), and a total of 11 survivors (out of a possible 12 at risk) for the two groups combined. Therefore,

v01 = 6 - 7(11)>12 = -0.417

For the second interval, there are 4 survivors (out of a possible 6 at risk) in the control group, and a 
total of 9 survivors (out of a possible 11 at risk) for the two groups combined. Therefore,

v02 = 4 - 6(9)>11 = -0.909

and so on.

The sum over all the 10 intervals for the control group is -2.854. (For the treated group it is 2.854.) 
The variance, V, for a group is

V0 = a
k

i = 1
3(nTin0i - n2

0i)dTisTi4 > 3n2
Ti(nTi - 1)4 (11.9)

The variance for the control group, V0, is the sum over all intervals of the difference between 
the total number of survivors in an interval (nTi) times the number of survivors in the control 
group in the interval (n0i) minus the squared number of survivors in the control group in 
the interval; this difference is multiplied by the product of the total number of survivors in 
the interval (dTi) times sTi (= nTi - dTi); all of this is divided by the squared total number 
of survivors in the interval (nTi) times the total number of survivors in the interval minus 1.

In jargon, the total number of cases that have survived to an interval (nTi) is called the risk set.
The variance for the control group, V0, for the first interval is

V01 = [(12 # 5 - 25)11(1)]>[144(12 - 1)] = 385>1584 = 0.24306

and for the second interval:

V02 = [(11 # 5 - 25)9(2)]>[121(11-1)] = 540>1210 = 0.4462

and so on. The value, summed over all 10 intervals is 2.1736. (This also is the value for the second 
group when there are only two groups.)
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Using these values in Equation 11.7:

x2 =
(-2.854)2

2.1736
= 3.747

Table C.4 shows that the critical value of x2 with 1 df at a = .05 is 3.84. Therefore, the groups are 
not significantly different by the log-  rank test. Matrix equations are more convenient to use if there 
are more than two groups. (The matrix procedure is not at all convenient to use if there are only two 
groups because the procedure requires inversion of a singular variance–  covariance matrix.)

11.4.6 Computer Analyses of Small-Sample Example

Tables 11.3 and 11.4 show syntax and selected output for computer analyses of the data in Table 
11.1 for IBM SPSS SURVIVAL and SAS LIFETEST, respectively. Syntax and output from IBM 
SPSS SURVIVAL are in Table 11.3. The DV (MONTHS), and the grouping variable (TREATMNT)
and its levels, are shown in the TABLE instruction. The dropout variable and the level indicating 
dropout are indicated by the STATUS=DANCING(1) instruction as per Table 11.1. IBM SPSS 
requires explicit instruction as to the setup of time intervals and a request for a survival (or hazard) 
plot. The COMPARE instruction requests a test of equality of survival functions for the two groups.

Life tables are presented for each group, control group first, showing the Number of cases 
Entering the Interval, the number Withdrawing from the study during Interval (censored), and 
the number of cases who quit classes in each interval in a column labeled Number of Terminal 
Events. The remaining columns of proportions and their standard errors are as described in Sections 
11.4.1 through 11.4.3, with some change in notation. Number Exposed to Risk is the Number
Entering Interval minus the Number Withdrawing during Interval. Terminal events are drop-
outs. Note that Cumulative Proportion Surviving at End of Interval is the cumulative proportion 
surviving at the end of an interval rather than at the beginning of an interval as in Table 11.2.

Median survival times are given for each group. The survival function comparing the two groups 
is then shown. The two groups are compared using the Wilcoxon (Gehan) test. With x2(1, N = 12) =
4.840, p = .028, this test shows a significant difference in survival between groups. Finally, a summary 
table shows the overall censoring rates for the two groups, as well as a mean score for each group.

Table 11.4 shows syntax and output for SAS LIFETEST. This program requires an explicit request 
for actuarial tables (method=life), as well as specification of the time intervals and a request for 
survival plot(s). The strata TREATMNT instruction identifies the grouping variable (IV). The time
MONTHS*DANCING(0) instruction identifies MONTHS as the time variable and DANCING as 
the response variable, with 0 indicating the data that are censored (the DV value is not known).

TABLE 11.3 Syntax and Output for Small-  Sample Example Through IBM SPSS SURVIVAL

SURVIVE
TABLE=MONTHS BY TREATMNT (0 1)
/INTERVAL=THRU 12 BY 1.2
/STATUS=DANCING(1)
/PRINT=TABLE
/PLOTS (SURVIVAL)=MONTHS BY TREATMNT
/COMPARE=MONTHS BY TREATMNT.
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TABLE 11.3 Continued

Life Table

First-order 
Controls

Interval 
Start 
Time

Number 
Entering 
Interval

Number 
Withdrawing 

during 
Interval

Number 
Exposed 
to Risk

Number 
of 

Terminal 
Events

Proportion 
Terminating

Proportion 
Surviving

Cumulative 
Proportion 
Surviving 
at End of 
Interval

Std. Error 
of 

Cumulative 
Proportion 
Surviving 
at End of 
Interval

Probability 
Density

Std. Error 
of 

Probability 
Density

Hazard 
Rate

Std. 
Error 

of 
Hazard 
Rate

TREATMENT 0 0 7 0 7.000 1 .14 .86 .86 .13 .119 .110 .13 .13
1.2 6 0 6.000 2 .33 .67 .57 .19 .238 .142 .33 .23
2.4 4 0 4.000 1 .25 .75 .43 .19 .119 .110 .24 .24
3.6 3 0 3.000 1 .33 .67 .29 .17 .119 .110 .33 .33
4.8 2 0 2.000 1 .50 .50 .14 .13 .119 .110 .56 .52
6 1 0 1.000 0 .00 1.00 .14 .13 .000 .000 .00 .00
7.2 1 0 1.000 0 .00 1.00 .14 .13 .000 .000 .00 .00
8.4 1 0 1.000 0 .00 1.00 .14 .13 .000 .000 .00 .00
9.6 1 0 1.000 0 .00 1.00 .14 .13 .000 .000 .00 .00

10.8 1 0 1.000 1 1.00 .00 .00 .00 .119 .110 1.67 .00

1 0 5 0 5.000 0 .00 1.00 1.00 .00 .000 .000 .00 .00
1.2 5 0 5.000 0 .00 1.00 1.00 .00 .000 .000 .00 .00
2.4 5 0 5.000 0 .00 1.00 1.00 .00 .000 .000 .00 .00
3.6 5 0 5.000 0 .00 1.00 1.00 .00 .000 .000 .00 .00
4.8 5 0 5.000 0 .00 1.00 1.00 .00 .000 .000 .00 .00
6 5 0 5.000 1 .20 .80 .80 .18 .167 .149 .19 .18
7.2 4 0 4.000 1 .25 .75 .60 .22 .167 .149 .24 .24
8.4 3 0 3.000 0 .00 1.00 .60 .22 .000 .000 .00 .00
9.6 3 0 3.000 2 .67 .33 .20 .18 .333 .183 .83 .51

10.8 1 0 1.000 0 .00 1.00 .20 .18 .000 .000 .00 .00

(continued )
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Median Survival Times

First-order Controls Med Time

TREATMNT 0 3.000
1 9.900

First-order Control: TREATMNT

0.0

0 2 4 6
Time since beginning to dance

Survival Function

8 10 12
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treated

control

Comparisons for Control Variable: TREATMNT

Overall Comparisonsa

Wilcoxon 
(Gehan)
Statistics df Sig.

4.480 1 .028

a. Comparisons are exact.

TABLE 11.3 Continued
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TABLE 11.4 Syntax and Output for Small-  Sample Example Through SAS LIFETEST

proc lifetest data=SASUSER.SURVIVAL
      plots=(s) method=life interval=0 to 12 BY 1.2;

time MONTHS*DANCING(0);
strata TREATMNT;

run;
The LIFETEST Procedure

Stratum 1: TREATMNT = 0

Life Table Survival Estimates

Interval 
[Lower, Upper)

Number
Failed

Number
Censored

Effective
Sample
Size

Conditional
Probability
of Failure

Conditional
Probability
Standard
Error Survival Failure

0 1.2 1 0 7.0 0.1429 0.1323 1.0000 0
1.2 2.4 2 0 6.0 0.3333 0.1925 0.8571 0.1429
2.4 3.6 1 0 4.0 0.2500 0.2165 0.5714 0.4286
3.6 4.8 1 0 3.0 0.3333 0.2722 0.4286 0.5714
4.8 6 1 0 2.0 0.5000 0.3536 0.2857 0.7143
6 7.2 0 0 1.0 0 0 0.1429 0.8571

7.2 8.4 0 0 1.0 0 0 0.1429 0.8571
8.4 9.6 0 0 1.0 0 0 0.1429 0.8571
9.6 10.8 0 0 1.0 0 0 0.1429 0.8571

10.8 12 1 0 1.0 1.0000 0 0.1429 0.8571

Evaluated at the Midpoint of the Interval

Interval 
[Lower, Upper)

Survival
Standard
Error

Median
Residual
Lifetime

Median
Standard
Error PDF

PDF
Standard
Error Hazard

Hazard
Standard
Error

0 1.2 0 3.0000 1.5875 0.1190 0.1102 0.128205 0.127825
1.2 2.4 0.1323 2.4000 1.4697 0.2381 0.1423 0.333333    0.23094
2.4 3.6 0.1870 2.4000 1.2000 0.1190 0.1102 0.238095 0.235653
3.6 4.8 0.1870 1.8000 1.0392 0.1190 0.1102 0.333333 0.326599
4.8 6 0.1707 1.2000 0.8485 0.1190 0.1102 0.555556 0.523783
6 7.2 0.1323 . . 0 . 0 .

7.2 8.4 0.1323 . . 0 . 0 .
8.4 9.6 0.1323 . . 0 . 0 .
9.6 10.8 0.1323 . . 0 . 0 .

10.8 12 0.1323 . . 0.1190 0.1102 1.666667 0

(continued )
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Stratum 2: TREATMNT = 1

Life Table Survival Estimates

Interval 
[Lower, Upper)

Number
Failed

Number 
Censored

Effective
Sample
Size

Conditional 
Probability 
of Failure

Conditional
Probability
Standard
Error Survival Failure

0 1.2 0 0 5.0 0 0 1.0000 0
1.2 2.4 0 0 5.0 0 0 1.0000 0
2.4 3.6 0 0 5.0 0 0 1.0000 0
3.6 4.8 0 0 5.0 0 0 1.0000 0
4.8 6 0 0 5.0 0 0 1.0000 0

6 7.2 1 0 5.0 0.2000 0.1789 1.0000 0
7.2 8.4 1 0 4.0 0.2500 0.2165 0.8000 0.2000
8.4 9.6 0 0 3.0 0 0 0.6000 0.4000
9.6 10.8 2 0 3.0 0.6667 0.2722 0.6000 0.4000
10.8 12 0 0 1.0 0 0 0.2000 0.8000
12 . 0 1 0.5 0 0 0.2000 0.8000

Evaluated at the Midpoint of the Interval

Interval 
[Lower, Upper)

Survival
Standard
Error

Median
Residual
Lifetime

Median
Standard
Error PDF

PDF
Standard
Error Hazard

Hazard
Standard
Error

0 1.2 0 9.9000 0.6708 0 . 0 .
1.2 2.4 0 8.7000 0.6708 0 . 0 .
2.4 3.6 0 7.5000 0.6708 0 . 0 .
3.6 4.8 0 6.3000 0.6708 0 . 0 .
4.8 6 0 5.1000 0.6708 0 . 0 .
6 7.2 0 3.9000 0.6708 0.1667 0.1491 0.185185 0.184039

7.2 8.4 0.1789 3.0000 0.6000 0.1667 0.1491 0.238095 0.235653
8.4 9.6 0.2191 2.1000 0.5196 0 . 0 .
9.6 10.8 0.2191 0.9000 0.5196 0.3333 0.1826 0.833333 0.51031

10.8 12 0.1789 . . 0 . 0 .
12 . 0.1789 . . . . . .

Summary of the Number of Censored and Uncensored Values
Stratum TREATMNT Total Failed Censored Percent Censored

1 0 7 7 0 0.00
2 1 5 4 1 20.00

Total 12 11 1 8.3333
Testing Homogeneity of Survival Curves for MONTHS over Strata

TABLE 11.4 Continued
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Rank Statistics

TREATMNT Log-Rank Wilcoxon

0 2.8539 27.000
1 −2.8539 −27.000

Covariance Matrix for the Log-  Rank Statistics

TREATMNT 0 1

0 2.17360 −2.17360
1 −2.17360 2.17360

Covariance Matrix for the Wilcoxon Statistics

TREATMNT 0 1

0 148.000 −148.000
1 −148.000 148.000

Test of Equality over Strata

Test Chi-  Square DF
Pr > 

Chi-Square

Log-Rank 3.7472 1 0.0529
Wilcoxon 4.9257 1 0.0265
−2Log(LR) 3.1121 1 0.0777
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TABLE 11.4 Continued
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Output is somewhat different from that of IBM SPSS, partly because some statistics 
are evaluated at the median rather than at the beginning of each interval. Number Failed
corresponds to Number of Terminal Events in IBM SPSS and Number Censored to Number 
Withdrawing during Interval.Effective Sample Size corresponds to Number 
Exposed to Risk (or Number Entering this Interval).Conditional Probability 
of failure is the proportion not surviving within an interval (Proportion Terminating in IBM 
SPSS); proportion surviving is 1 minus that value. The column labeled Survival is the cumula-
tive proportion surviving to the beginning of an interval; the column labeled Failure is 1 minus 
that value.

SAS LIFETEST shows Median Residual Lifetime (and its standard error), which 
is the amount of time elapsed before the number of at-risk cases is reduced to half. PDF refers to 
the probability density function, Probability Density in IBM SPSS. These statistics are followed by 
the usual summary table of censored and failed values. Then the matrices used in calculating group 
differences are shown (see Equations 11.7 through 11.9), and finally a table shows the results of 
three chi-square tests. The Wilcoxon test corresponds to a GENERALIZED WILCOXON 
(BRESLOW) test, as discussed in Section 11.6.4.1. The high-  resolution survival function graph is 
then shown, produced in a separate window from the printed output in SAS.

11.5 Types of Survival Analyses

There are two major types of survival analyses: life tables (including proportions of survivors at 
various times and survivor functions, with tests of group differences) and prediction of survival 
time from one or more covariates (some of which may represent group differences). Life tables are 
estimated by either the actuarial or the product-  limit (Kaplan–  Meier) method. Prediction of survival 
time from covariates most often involves the Cox proportional-  hazards model (Cox regression).

11.5.1  Actuarial and Product-Limit Life Tables 
and Survivor Functions

The actuarial method for calculating life tables and testing differences among groups is illustrated in 
Section 11.4. An alternative for forming life tables and testing differences among groups is the product- 
limit method. The product-  limit method does not use a specified interval size but rather calculates sur-
vival statistics each time an event is observed. The two methods produce identical results when there is 
no censoring, and intervals contain no more than one time unit. The product-  limit method (also known 
as the Kaplan–  Meier method) is the most widely used, particularly in bio-  medicine (Allison, 1995). It 
has the advantage of producing a single statistic, such as mean or median, that summarizes survival time.

SAS LIFETEST offers a choice of either the actuarial or product-  limit method. IBM SPSS
has SURVIVAL for actuarial tables and KM for product-  limit. Table 11.5 shows IBM SPSS KM 
syntax and output for a product-  limit analysis of the small-  sample data.

The output is organized by time at which events occur rather than by time interval. For example, 
there are two lines of output for the two control dancers who dropped out during the second month and 
for the two treated dancers who dropped out in the tenth month. Both mean and median survival time 
are given, along with their standard errors and 95% confidence intervals. The survival-  function chart 
differs slightly from that of the actuarial method in Table 11.3 by including information about cases 
that are censored. Group differences are tested through the Log Rank test, among others that can be 
requested, rather than the Wilcoxon test produced by IBM SPSS SURVIVAL.



Survival/Failure Analysis 529

11.5.2 Prediction of Group Survival Times From Covariates

Prediction of survival (or failure) time from covariates is similar to logistic regression 
(Chapter 10) but with provision for censored data. This method also differs in analyzing the time 
between events rather than predicting the occurrence of events. Cox proportional hazards (Cox 
regression) is the most popular method. Accelerated failure-  time models are also available for 
the more sophisticated user.

TABLE 11.5 Syntax and Output for IBM SPSS Kaplan–  Meier Analysis of Small-  Sample Data

KM
MONTHS BY TREATMNT
/STATUS=DANCING(1)
/PRINT TABLE MEAN
/PLOT SURVIVAL
/TEST LOGRANK
/COMPARE OVERALL POOLED.

Kaplan-Meier

Case Processing Summary

Censored

Treatment Total N N of Events N Percent

control 7 7 0 .0%
treated 5 4 1 20.0%
Overall 12 11 1 8.3%

Survival Table

Cumulative Proportion 

Surviving at the Time
N of 

Cumulative 

Events

N of 

Cumulative 

EventsTreatment Time Status Estimate Std. Error

control 1 1.000 dropped out .857 .132 1 6
2 2.000 dropped out . . 2 5
3 2.000 dropped out .571 .187 3 4
4 3.000 dropped out .429 .187 4 3
5 4.000 dropped out .286 .171 5 2
6 5.000 dropped out .143 .132 6 1
7 11.000 dropped out .000 .000 7 0

treated 1 7.000 dropped out .800 .179 1 4
2 8.000 dropped out .600 .219 2 3
3 10.000 dropped out . . 3 2
4 10.000 dropped out .200 .179 4 1
5 12.000 still dancing . . 4 0

(continued )
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Means and Medians for Survival Time

Treatment

Meana Median

95% Confidence Interval 95% Confidence Interval

Estimate
Std. 
Error Lower Bound Upper Bound Estimate

Std. 
Error Lower Bound Upper Bound

control 4.000 1.272 1.506 6.494 3.000 1.309 .434 5.566
treated 9.400 .780 7.872 10.928 10.000 .894 8.247 11.753
Overall 6.250 1.081 4.131 8.369 5.000 2.598 .000 10.092

a. Estimation is limited to the largest survival time if it is censored.

Overall Comparisons

Chi-Square df Sig.

Log Rank (Mantel-Cox) 3.747 1 .053

Test of equality of survival distributions for the 
different levels of Treatment.

TABLE 11.5  Continued
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As in other forms of regression (cf. Chapter 5), analysis of survival can be direct, sequential, 
or statistical. A treatment IV, if present, is analyzed the same as any other discrete covariate. When 
there are only two levels of treatment, the treated group is usually coded 1 and the control group 0. 
If there are more than two levels of treatment, dummy variable coding is used to represent group 
membership, as described in Section 5.2. Successful prediction on the basis of this IV indicates 
significant treatment effects.

11.5.2.1 Direct, Sequential, and Statistical Analysis

The three major analytic strategies in survival analysis with covariates are direct (standard), sequen-
tial (hierarchical), and statistical (stepwise or setwise). Differences among the strategies involve 
what happens to overlapping variability due to correlated covariates (including treatment groups) 
and who determines the order of entry of covariates into the equation.

In the direct, or simultaneous, model all covariates enter the regression equation at one 
time and each is assessed as if it entered last. Therefore, each covariate is evaluated as to what it 
adds to prediction of survival time that is different from the prediction afforded by all the other 
covariates.

In the sequential (sometimes called hierarchical) model, covariates enter the equation in an 
order specified by the researcher. Each covariate is assessed by what it adds to the equation at its 
own point of entry. Covariates are entered one at a time or in blocks. The analysis proceeds in steps, 
with information about the covariates in the equation given at each step. A typical strategy in sur-
vival analysis with an experimental IV is to enter all the nontreatment covariates at the first step, and 
then enter the covariate(s) representing the treatment variable at the second step. Output after the 
second step indicates the importance of the treatment variable to prediction of survival after statisti-
cal adjustment for the effects of other covariates.

Statistical regression (sometimes generically called stepwise regression) is a controversial 
procedure in which order of entry of variables is based solely on statistical criteria. The meaning of 
the variables is not relevant. Decisions about which variables are included in the equation are based 
solely on statistics computed from the particular sample drawn; minor differences in these statistics 
can have a profound effect on the apparent importance of a covariate, including the one representing 
treatment groups. The procedure is typically used during early stages of research, when nontreat-
ment covariates are being assessed for their relationship with survival. Covariates which contribute 
little to prediction are then dropped from subsequent research into the effects of treatment. As with 
logistic regression, data-  driven strategies are especially dangerous when important decisions are 
based on results that may not generalize beyond the sample chosen. Cross-  validation is crucial if 
statistical/stepwise techniques are used for any but the most preliminary investigations.

Both of the reviewed programs provide direct analysis. IBM SPSS COXREG also provides 
both sequential and stepwise analysis. SAS LIFEREG provides only direct analysis, but SAS 
PHREG provides direct, sequential, stepwise, and setwise analysis (in which models including all 
possible combinations of covariates are evaluated).

11.5.2.2 Cox Proportional-Hazards Model

This method models event (failure, death) rates as a log-  linear function of predictors, called covari-
ates. Regression coefficients give the relative effect of each covariate on the survivor function. Cox 
modeling is available through IBM SPSS COXREG and SAS PHREG.
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Table 11.6 shows the results of a direct Cox regression analysis through SAS PHREG using 
the small-  sample data of Table 11.1. Treatment (a dichotomous variable) and age are considered 
covariates for purposes of this analysis. This analysis assumes proportionality of hazard (that the 
shapes of survivor functions are the same for all levels of treatment). Section 11.6.1 shows how to 
test the assumption and evaluate group differences if it is violated. The time variable (months) and 
the response variable (dancing, with 0 indicating censored data) are identified in a model instruc-
tion and are predicted by two covariates: age and treatment.

Model Fit Statistics are useful for comparing models, as in logistic regression analysis 
(Chapter 10). Three tests are available to evaluate the hypothesis that all regression coefficients are 
zero. For example, the Likelihood Ratio test indicates that the combination of age and treatment 
significantly predicts survival time, x2(2, N = 12) = 19.32, p 6 .0001. (Note that this is a large-
sample test and cannot be taken too seriously with only 12 cases.) Significance tests for the individual 
predictors also are shown as Chi-Square tests. Thus, age significantly predicts survival time, after 
adjusting for differences in treatment, x2(1, N = 12) = 6.60, p = .01. However, treatment does 
not predict survival time, after adjusting for differences in age, x2(1, N = 12) = 2.70, p = .10.
Thus, this analysis shows no significant treatment effect. Regression coefficients (Parameter 
Estimate) for significant effects and Hazard Ratio may be interpreted as per Section 11.6.5.

Sequential Cox regression analysis through IBM SPSS COXREG is shown in Table 11.7. Age en-
ters the prediction equation first, followed by treatment. Block 0 shows the model fit, –2 Log Likelihood,
corresponding to –2 Log L in SAS, useful for comparing models (cf. Section 10.6.1.1).

Step one (Block1) shows a significant effect of age alone, by both the Wald test (the 
squared z test with the coefficient divided by its standard error, p = .006) and the likelihood ratio 
test 3x2(1, N = 12) = 15.345, p 6 .0014 . However, the results for treatment differ for the two 
criteria. The Wald test gives the same result as reported for the direct analysis above in which 
treatment is adjusted for differences in age and is not statistically significant. The likelihood ratio 
test, on the other hand, shows a significant change with the addition of treatment as a predictor, 
x2(1, N = 12) = 3.98, p 6 .05. With a sample size this small, it is probably safer to rely on the 
Wald test indicating no statistically significant treatment effect.

11.5.2.3 Accelerated Failure-Time Models

These models replace the general hazard function of the Cox model with a specific distribution 
(exponential, normal, or some other). However, greater user sophistication is required to choose 
the distribution. Accelerated failure-  time models are handled by SAS LIFEREG. IBM SPSS has no 
program for accelerated failure-  time modeling.

Table 11.8 shows an accelerated failure-  time analysis corresponding to the Cox model of 
Section 11.5.2.2 through SAS LIFEREG, using the default Weibull distribution.

It is clear in this analysis that both age and treatment significantly predict survival (Pr>Chi
is less than .05), leading to the conclusion that treatment significantly affects survival in belly 
dance classes, after adjusting for differences in age at which instruction begins. The Type III 
Analysis of Effects is useful only when a categorical predictor has more than 1 df.

Choice of distributions in accelerated failure-  time models has implications for hazard 
functions, so that modeling based on different distributions may lead to different interpretations. 
Distributions available in SAS LIFEREG are Weibull, normal, logistic, gamma, exponential, 
log-  normal, and log-  logistic. Table 11.9 summarizes the various distributions available in SAS 
LIFEREG for modeling accelerated failure time.
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TABLE 11.6 Syntax and Output for Direct Cox Regression Analysis Through SAS PHREG

proc phreg data=SASUSER.SURVIVE;
model months*dancing(0) = age treatmnt;
run;

The PHREG Procedure

Model Information

Data Set SASUSER.SURVIVE
Dependent Variable MONTHS
Censoring Variable DANCING
Censoring Value(s) 0
Ties Handling BRESLOW

Summary of the Number of Event and Censored Values

Total Event Censored
Percent 
Censored

12 11 1 8.33

Model Fit Statistics

Criterion
Without 

Covariates
With 

Covariates

_2 LOG L 40.740 21.417
AIC 40.740 25.417
SBC 40.740 26.213

Testing Global Null Hypothesis: BETA=0

Test Chi-Square DF Pr > ChiSq

Likelihood Ratio 19.3233 2 <.0001
Score 14.7061 2 0.0006
Wald 6.6154 2 0.0366

Analysis of Maximum Likelihood Estimates

Variable DF
Parameter 
Estimate

Standard 
Error

Chi-
Square

Pr > 
ChiSq

Hazard 
Ratio

AGE 1 −0.22989 0.08945 6.6047 0.0102 0.795
TREATMNT 1 −2.54137 1.54632 2.7011 0.1003 0.079
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TABLE 11.7 Syntax and Output for Sequential Cox Regression 
Analysis Through IBM SPSS COXREG

COXREG
  months /STATUS=dancing(1)
  /CONTRAST (treatmnt)=Indicator
  /METHOD=ENTER age /METHOD=ENTER treatmnt
  /CRITERIA=PIN(.05) POUT(.10) ITERATE(20) .

Cox Regression

Case Processing Summary

N Percent

Cases available Eventa 11 91.7%
in analysis Censored 1 8.3%

Total 12 100.0%
Cases dropped Cases with 

missing values
0 .0%

Cases with 
negative time

0 .0%

Censored cases 
before the earliest 
event in a stratum

0 .0%

Total 0 .0%

Total 12 100.0%

a. Dependent Variable: Time since beginning to dance

Categorical Variable Codingsc

Frequency (1)b

TREATMNT a .00=control 7 1
1.00=treated 5 0

a. Indicator Parameter Coding
b. The (0, 1) variable has been recoded, so its coefficients 
will not be the same as for indicator (0, 1) coding.
c. Category variable: TREATMNT (Treatment)

Block 0: Beginning Block

Omnibus Tests of Model Coefficients

–2 Log 
Likelihood

40.740
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Block 1: Method = Enter

Omnibus Tests of Model Coefficientsa

–2 Log 
Likelihood

Overall (score) Change From Previous Step Change From Previous Block

Chi-square df Sig. Chi-square df Sig. Chi-square df Sig.

25.395 11.185 1 .001 15.345 1 .000 15.345 1 .000

a. Beginning Block Number 1. Method = Enter

Variables in the Equation

B SE Wald df Sig. Exp(B)

AGE −.199 .072 7.640 1 .006 .819

Variables not in the Equationa

Score df Sig.

TREATMNT 3.477 1 .062

a. Residual Chi Square = 3.477 with 1 df Sig. = .062

Block 2: Method = Enter

Omnibus Tests of Model Coefficientsa

–2 Log 
Likelihood

Overall (score) Change From Previous Step Change From Previous Block

Chi-square df Sig. Chi-square df Sig. Chi-square df Sig.

21.417 14.706 2 .001 3.978 1 .046 3.978 1 .046

a. Beginning Block Number 2. Method = Enter

TABLE 11.7 Continued



536 C H A P T E R  1 1

Variables in the Equation

B SE Wald df Sig. Exp(B)

AGE −.230 .089 6.605 1 .010 .795
TREATMNT 2.542 1.546 2.701 1 .100 12.699

Covariate Means

Mean

AGE 31.500
TREATMNT .583

TABLE 11.7 Continued

Use of the exponential distribution assumes that the percentage for the hazard rate remains 
the same within a particular group of cases over time. For example, a hazard rate of .1 per month 
indicates that 10% of the remaining cases fail in each succeeding month. Thus, the hazard rate does 
not depend on time.

The Weibull distribution, on the other hand, permits the hazard rate for a particular group of 
cases to change over time. For example, the probability of failure of a hard disk is much higher in 
the first few months than in later months. Thus, the failure rate depends on time, either increasing or 
decreasing. The exponential model is a special case of the Weibull model. Because the exponential 
model is nested within the Weibull model, you can test the difference between results based on the 
two of them (as shown by Allison, 1995, p. 89).

The log-  normal distribution is basically an inverted U-shaped distribution in which the hazard 
function rises to a peak and then declines as time goes by. This function is often associated with 
repeatable events, such as marriage or residential moves. (SAS LIFEREG also permits specification 
of a normal distribution, in which there is no log-  transform of the response variable, time.)

The log-  logistic distribution also is an inverted U-shaped distribution when the scale parameter
(s) is less than 1, but behaves like the Weibull distribution when s Ú 1. It is a proportional-  odds
model, meaning that the change in log-  odds is constant over time. A logistic distribution (without 
log-  transform of time) may be specified in SAS LIFEREG.

The gamma model (the one available in SAS LIFEREG is the generalized gamma model) 
is the most general model. Exponential, Weibull, and log-  normal models are all special cases of 
it. Because of this relationship, differences between gamma and these other three models can be 
evaluated through likelihood ratio chi-  square statistics (Allison, 1995, p. 89).

The gamma model can also have shapes that other models cannot, such as a U shape in which 
the hazard decreases over time to a minimum and then increases. Human mortality (and perhaps 
hard disks) over the whole life span follow this distribution (although hard disks are likely to be-
come obsolete in both size and speed before the increase in hazard occurs). Because there is no 
more general model than the gamma, there is no test of its adequacy as an underlying distribution. 
And because the model is so general, it will always provide at least as good a fit as any other model.



Survival/Failure Analysis 537

TABLE 11.8 Syntax and Output for Accelerated Failure-  Time Model Through SAS LIFEREG

proc lifereg data=SASUSER.SURVIVE;
model MONTHS*DANCING(0)= AGE TREATMNT;

run;

The LIFEREG Procedure

Model Information

Data Set SASUSER.SURVIVE
Dependent Variable Log(MONTHS)
Censoring Variable DANCING
Censoring Value(s) 0
Number of Observations 12
Noncensored Values 11
Right Censored Values 1
Left Censored Values 0
Interval Censored Values 0
Name of Distribution Weibull
Log Likelihood −4.960832864

Number of Observations Read 12
Number of Observations Used 12

Algorithm converged. 

Type III Analysis of Effects

Effect DF
Wald

Chi-Square Pr > ChiSq

AGE 1 15.3318 <.0001
TREATMNT 1 5.6307 0.0176

Analysis of Parameter Estimates

Parameter DF Estimate
Standard

Error
95% Confidence 

Limits
Chi-

Square
Pr > 

ChiSq

Intercept 1 0.4355 0.2849 −0.1229 0.9939 2.34 0.1264
AGE 1 0.0358 0.0091 0.0179 0.0537 15.33 <.0001
TREATMNT 1 0.5034 0.2121 0.0876 0.9192 5.63 0.0176
Scale 1 0.3053 0.0744 0.1894 0.4923
Weibull
Shape 1 3.2751 0.7984 2.0311 5.2811
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TABLE 11.9 Distributions Available for Accelerated Failure-  Time Models in SAS LIFEREG

Model
Distribution

Shape of 
Hazard
Function Parameters Syntax Comments

Exponential Constant over 
time

1 (location); 
scale
constrained to 1.

D=EXPONENTIAL Simplest model, 
hazard rate does 
not depend on time

Weibull Increases or 
decreases
over time

2 (location and 
scale)

D=WIEBULL Most commonly used 
model

Log-normal Single-peaked 2 (location and 
scale)

D=LNORMAL Often appropriate for 
repeatable events

Normal Single-peaked 2 (location and 
scale)

D=NORMAL As per log-normal,
but without log 
transform of 
response

Log-logistic Decreases
over time or 
single-peaked

2 (location and 
scale)

D=LLOGISTIC Has properties of 
Weibull or log-
normal
depending on scale 
parameter

Logistic Decreases
over time or 
single-peaked

2 (location and 
scale)

D=LOGISTIC As per log-logistic,
but without log 
transform of 
response

Gamma Decreases
over time, 
increases
over time, or 
constant over 
time

3 (location, 
scale, and 
shape)

D=GAMMA Nonparsimonious,
computer intensive

However, considerations of parsimony limit its use, as well as the more practical considerations of 
greater computation time and failure to converge on a solution.

Choice of models is made on the basis of logic, graphical fit, or, in the case of nested models,
goodness-of-fit tests. For example, the expected failure rate of mechanical equipment should 
logically increase over time, indicating that a Weibull distribution is most appropriate. Exponential, 
log-  normal, or log-  logistic models could easily be ruled out on the basis of logic alone.

Allison (1995) provides guidance for producing graphs of appropriate transformations to 
Kaplan–  Meier estimates. A resulting linear plot indicates that the distribution providing the transfor-
mation is the appropriate one. Allison also illustrates procedures for applying goodness-of-fit statistics 
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to statistically evaluate competing models. As seen in Table 11.8, accelerated failure-  time analyses 
produce x2 log-  likelihood values (in which negative values closer to zero indicate better fits of data to 
models). Thus, twice the difference between nested models provides a likelihood-  ratio x2 statistic. Of 
the nested models, gamma is the most general, followed by Weibull, then exponential, and finally   log- 
normal. That is, log-  normal is nested within exponential, which in turn is nested within Weibull, etc.

For example, Table 11.8 shows a log-  likelihood = -4.96 with a Weibull distribution (default 
for SAS LIFEREG). A run with gamma specified (not shown) produces a log-  likelihood = -3.88.
The likelihood ratio is

23(-3.88) - (-4.96)4 = 2.16

with df = 1 (because there is only one nesting “step” between Weibull and gamma). With critical 
x2(df = 1) = 3.84 at a = .05, there is no significant difference between the Weibull and gamma 
models. Therefore, the Weibull model is preferred because it is the more parsimonious.

On the other hand, the log-  likelihood for the exponential model (not shown) is -12.43. 
Comparing this with that of the Weibull model,

23(-4.96) - (-12.43)4 = 14.94, df = 1,

clearly a significant difference at a = .05. The Weibull model remains the one of choice, because 
the exponential model is significantly worse.

11.5.2.4 Choosing a Method

The most straightforward way to analyze survival data with covariates is Cox regression. It is 
more robust than accelerated failure-  time methods (Allison, 1995) and requires no choice among 
the distributions in Table 11.9 on the part of the researcher. However, the Cox model does have the 
assumption of proportionality of hazards over time, as described in the following section.

11.6 Some Important Issues

Issues in survival analysis include testing the assumption of proportionality of hazards, dealing 
with censored data, assessing effect size of models and individual covariates, choosing among the 
variety of statistical tests for differences among treatment groups and contributions of covariates, 
and interpreting hazard ratios.

11.6.1 Proportionality of Hazards

When Cox regression is used to analyze differences between levels of a discrete covariate such as 
treatment, it is assumed that the shapes of the survival functions are the same for all groups over time. 
That is, the time until failures begin to appear may be longer for one group than another, but once 
failures start, they proceed at the same rate for all groups. When the assumption is met, the lines for the 
survival functions for different groups are roughly parallel, as seen in Figure 11.1 and Tables 11.3 and 
11.4. Although inspection of the plots is helpful, a formal test of the assumption is also required.

The assumption is similar to homogeneity of regression in ANCOVA, which requires that the rela-
tionship between the DV and the covariate(s) is the same for all levels of treatment. The proportionality 
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of hazards assumption is that the relationship between survival rate and time is the same for all levels of 
treatment (or any other covariate). In ANCOVA, violation of homogeneity of regression signals interac-
tion between the covariate(s) and levels of treatment. In survival analysis, violation of proportionality 
signals interaction between time and levels of treatment (or any other covariate). To test the assumption, 
a time variable is constructed, and its interaction with levels of treatment (and other covariates) is tested.

Both treatment and age are covariates in the examples of Cox regression in Tables 11.6 and 
11.7. The question is whether either (or both) of these covariates interact with time; if so, there 
is violation of the proportionality of hazards. To test the assumption, a time variable, either 
continuous or discrete, is created and tested for interaction with each covariate. Table 11.10 shows 
a test for proportionality of hazards through SAS PHREG. The model includes two new predictors: 
MONTHTRT and MONTHAGE. These are defined in the following instructions as interactions 
between each covariate and the natural logarithm of the time variable, MONTHS, for example, 
MONTHTRT=TREATMNT*LOG(MONTHS). The logarithmic transform is recommended to 
compensate for numeric problems if the time variable takes on large values (Cantor, 1997).

The proportionality assumption is met in this example where neither MONTHAGE nor 
MONTHTRT is significant. Therefore, the Cox regression analyses of Tables 11.6 and 11.7 provide 
appropriate tests of treatment effects. If there is violation of the assumption, the test for treatment 
effects requires inclusion of the interaction(s) along with the other covariate(s) in either direct or 
sequential regression. That is, the test of differences due to treatment is conducted after adjustment 
for the interaction(s) along with other covariates.

Another remedy is to use a covariate that interacts with time as a stratification variable if it 
is discrete (or transformed into discrete) and not of direct interest. For example, suppose there is a 
significant interaction between age and time and age is not of research interest. Age can be divided 
into at least two levels and then used as a stratification variable in a Cox regression.

IBM SPSS COXREG has a built-in procedure for creating and testing time-  dependent 
covariates. The procedure is demonstrated in Section 11.7.1.5.

TABLE 11.10 Syntax and Partial Output for Proportionality Test Through SAS PHREG

Proc phreg data=SASUSER.SURVIVAL2;
Model MONTHS*DANCING(0)=AGE TREATMNT MONTHAGE MONTHTRT;
MONTHTRT=TREATMNT*LOG(MONTHS); MONTHAGE=AGE*LOG(MONTHS);

run;

The PHREG Procedure

Analysis of Maximum Likelihood Estimates

Variable DF
Parameter 
Estimate

Standard 
Error

Wald 
Chi-

Square
Pr > 
ChiSq

Hazard 
Ratio

AGE 1 −0.22563 0.21790 1.0722 0.3004 0.798
TREATMNT 1 −3.54911 8.57639 0.1713 0.6790 0.029
MONTHAGE 1 −0.0001975 0.12658 0.0000 0.9988 1.000
MONTHTRT 1 0.47902 3.97015 0.0146 0.9040 1.614
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11.6.2 Censored Data

Censored cases are those for whom the time of the event being studied (dropout, death, failure, 
graduation) is unknown or only vaguely known. If failure has not occurred by the end of the study 
(e.g., the part is still functioning, the dancer is still in classes, and so on), the case is considered 
right-  censored. Or, if you know that failure occurred before a particular time (e.g., a tumor is already 
developed when the case enters your study), the case is considered left-  censored. Or, if you know 
only that failure occurred sometime within a wide time interval, the case is considered interval- 
censored. A data set can contain a mix of cases with several forms of censoring.

11.6.2.1  Right-Censored Data

 Right-  censoring is the most common form of censoring and occurs when the event being studied 
has not occurred by the time data collection ceases. When the term “censoring” is used generically 
in some texts and computer programs, it refers to right-  censoring.

Sometimes right-  censoring is under the control of the researcher. For example, the researcher 
decides to monitor cases until some predetermined number has failed, or until every case has 
been followed for three years. Cases are censored, then, because the researcher terminates data 
collection before the event occurs for some cases. Other times the researcher has no control over 
right-  censoring. For example, a case might be lost because a participant refuses to continue to the 
end of the study or dies for some reason other than the disease under study. Or, survival time may 
be unknown because the entry time of a case is not under the control of the researcher. For example, 
cases are monitored until a predetermined time, but the time of entry into the study (e.g., the time of 
surgery) varies randomly among cases so that total survival time is unknown. That is, all you know 
about the time of occurrence of an event (failure, recovery) is that it occurred after some particular 
time; that is, it is greater than some value (Allison, 1995).

Most methods of survival analysis do not distinguish among types of right-  censoring, but 
cases that are lost from the study may pose problems because it is assumed that there are no 
systematic differences between them and the cases that remain (Section 11.3.2.4). This assumption 
is likely to be violated when cases voluntarily leave the study. For example, students who drop out 
of a graduate program are unlikely to have graduated (had they stayed) as soon as students who 
continued. Instead, those who drop out are probably among those who would have taken longer to 
graduate. About the only solution to the problem is to try to include covariates that are related to this 
form of censoring.

All of the programs reviewed here deal with right-  censored data, but none distinguishes 
among the various types of right-  censoring. Therefore, results are misleading if assumptions about 
censoring are violated.

11.6.2.2 Other Forms of Censoring

A case is left-  censored if the event of interest occurred before an observed time, so that you know 
only that survival time is less than the total observation time. Left-  censoring is unlikely to occur in 
an experiment, because random assignment to conditions is normally made only for intact cases. 
However, left-  censoring can occur in a nonexperimental study. For example, if you are studying the 
failure time of a component, some components may have failed before you start your observations, 
so you don’t know their total survival time.
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With interval censoring, you know the interval within which the event occurred, but not the exact 
time within the interval. Interval censoring is likely to occur when events are monitored infrequently. 
Allison (1995) provides as an example annual testing for HIV infection in which a person who tested 
negative at year 2, but tested positive at year 3, is interval-  censored between 2 and 3.

SAS LIFEREG handles right-, left-, and interval-  censoring by requiring two time variables, 
upper time and lower time. For right-  censored cases, the upper time value is missing; for left- 
censored cases, the lower time value is missing. Interval-  censoring is indicated by different values 
for the two variables.

11.6.3 Effect Size and Power

Cox and Snell (1989) provide a measure of effect size for logistic regression that is demonstrated for 
survival analysis by Allison (1995). It is based on G2, a likelihood-ratio chi-square statistic (Section 
11.6.4.2), that can be calculated from SAS PHREG and LIFEREG and IBM SPSS COXREG.

Models are fit both with and without covariates, and a difference G2 is found by:

G2 = [(-2 log-likelihood for smaller model) - (-2 log-likelihood for larger model)] (11.10)

Then, R2 is found by

R2 = 1 - e(- G2/n) (11.11)

When applied to experiments, the R2 of greatest interest is the association between survival 
and treatment, after adjustment for other covariates. Therefore, the smaller model is the one that 
includes covariates but not treatment, and the larger model is the one that includes covariates and
treatment.

For the example of Table 11.7 (the sequential analysis in which treatment is adjusted for 
age), -2 log-  likelihood with age alone is 25.395 and -2 log-  likelihood with age and treatment 
is 21.417, so that

G2 = 25.395 - 21.417 = 3.978

for treatment. (Note that this value is also provided by IBM SPSS COXREG, as Change from 
Previous Block.)

Applying Equation 11.11:

R2 = 1 - e(- 3.978>12) = 1 - .7178 = .28

Steiger and Fouladi’s (1992) software may be used to find confidence limits around this value 
(cf. Figure 9.3). The number of variables (including the criterion but not the covariate) is 2, with N = 12. 
The software provides a 95% confidence limit ranging from 0 to .69.

Allison (1995) points out that this R2 is not the proportion of variance in survival that is 
explained by the covariates, but merely represents relative association between survival and the 
covariates tested, in this case treatment after adjustment for age.

Power in survival analysis is, as usual, enhanced by larger sample sizes and covariates with 
stronger effects. Amount of censoring and patterns of entry of cases into the study also affect power, 
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as does the relative size of treatment groups. Unequal sample sizes reduce power while equal sample 
sizes increase it. Estimating sample sizes and power for survival analysis is not included in the soft-
ware discussed in this book except for NCSS PASS (Hintze, 2011), which provides power and sample 
size estimates for a survival test, based on Lachin and Foulkes (1986). Another, stand-  alone, program 
provides power analysis for several types of survival analyses: nQuery Advisor 4.0 (Elashoff, 2000).

11.6.4 Statistical Criteria

Numerous statistical tests are available for evaluating group differences due to treatment effects 
from an actuarial life table or product-  limit analysis, as discussed in Section 11.6.4.1. Tests for 
evaluating the relationships among survival time and various covariates (including treatment) are 
discussed in Section 11.6.4.2.

11.6.4.1 Test Statistics for Group Differences in Survival Functions

Several statistical tests are available for evaluating group differences, and there is inconsistent label-
ing among programs. The tests differ primarily in how cases are weighted, with weighting based 
on the time that groups begin to diverge during the course of survival. For example, if the groups 
begin to diverge right away (untreated cases fail quickly but treated cases do not), statistics based on 
heavier weighting of cases that fail quickly show greater group differences than statistics for which 
all cases are weighted equally. Table 11.11 summarizes statistics for differences among groups that 
are available in the programs.

SAS LIFETEST provides three tests: The Log-  Rank and Wilcoxon statistics and the 
likelihood-ratio test, labeled -2Log(LR), which assumes an exponential distribution of failures in each 
of the groups. IBM SPSS KM offers three statistics as part of the Kaplan–  Meier analysis: the Log Rank 

TABLE 11.11 Tests for Differences Among Groups in Actuarial and Product-  Limits Methods

Nomenclature

SAS a IBM SPSS IBM SPSS
Test LIFETEST SURVIVAL KM Comments

1 Log-Rank N.A. Log Rank Equal weight to all observations

2 Tarone N.A. Tarone-
Ware

Slightly greater weight to early 
observations, between test 1 and test 3

3 Wilcoxon N.A. Breslow Greater weight to early observations

4 N.A. Wilcoxon 
(Gehan)

N.A. Differs slightly from test 3

5 -2Log(LR) N.A. N.A. Assumes an exponential distribution 
of failures in each group

aAdditional SAS tests are listed in Table 11.24.
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test, the Tarone-  Ware statistic, and the Breslow statistic, which is equivalent to the Wilcoxon
statistic of SAS. IBM SPSS SURVIVAL provides an alternative form of the Wilcoxon test, the Gehan
statistic, which appears to use weights intermediate between Breslow (Wilcoxon) and Tarone-  Ware.

11.6.4.2 Test Statistics for Prediction From Covariates

Log-  likelihood chi-  square tests (G2 as described in Section 11.6.3) are used both to test the 
hypothesis that all regression coefficients for covariates are zero in a Cox proportional hazards model 
and to evaluate differences in models with and without a particular set of covariates, as illustrated in 
Section 11.6.3. The latter application, using Equation 11.10, most often evaluates the effects of treat-
ment after adjustment for other covariates. All of these likelihood-  ratio statistics are large sample 
tests and are not to be taken seriously with small samples such as the example of Section 11.4.

Statistics are also available to test regression coefficients separately for each covariate. These 
Wald tests are z tests where the coefficient is divided by its standard error. When the test is applied to the 
treatment covariate, it is another test of the effect of treatment after adjustment for all other covariates.

IBM SPSS COXREG provides all of the required information in a sequential run, as 
illustrated in Table 11.7. The last step (in which treatment is included) shows Chi-Square for
Change (-2 Log Likelihood) from Previous Block as the likelihood ratio test of treatment as 
well as Wald tests for both treatment and age, the covariates.

SAS PHREG provides Model Chi-  Square which is overall G2 with and without all 
covariates. A likelihood-  ratio test for models with and without treatment (in which other covariates 
are included in both models) requires a sequential run followed by application of Equation 11.10 to 
the models with and without treatment. SAS LIFEREG, on the other hand, provides no overall 
chi-  square likelihood-  ratio test but does provide chi-  square tests for each covariate, adjusted for all 
others, based on the squares of coefficients divided by their standard errors. A log-  likelihood value 
for the whole model is also provided, so that two runs, one with and the other without treatment, 
provide the statistics necessary for Equation 11.10.

11.6.5 Predicting Survival Rate

11.6.5.1 Regression Coefficients (Parameter Estimates)

Statistics for predicting survival from covariates require calculating regression coefficients for each 
covariate where one or more of the “covariates” may represent treatment. The regression coeffi-
cients give the relative effect of each covariate on the survival function, but the size depends on the 
scale of the covariate. These coefficients may be used to develop a regression equation for risk as a 
DV. An example of this is in Section 11.7.2.2.

11.6.5.2 Hazard Ratios

Because survival analysis is based on a linear combination of effects in the exponent (like logistic regres-
sion, Chapter 10) rather than a simple linear combination of effects (like multiple regression, Chapter 5), 
effects are most often interpreted as hazard or risk ratios. How does a covariate change the risk of fail-
ure? For example, how does a one-  year increase in age change the risk of dropping out of dance classes?

Hazards are found from a regression coefficient (B) as eB. However, for correct interpreta-
tion, you also have to consider the direction of coding for survival. In the small-  sample example 
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(Table 11.1), dropping out is coded 1 and “surviving” (still dancing) is coded 0. Therefore, a posi-
tive regression coefficient means that an increase in age increases the likelihood of dropping out 
while a negative regression coefficient means that an increase in age decreases the likelihood of 
dropping out. Treatment is also coded 1, 0 where 1 is used for the group that had a preinstruction 
night out on the town and 0 for the control group. For this variable, a change in the value of the 
treatment covariate from 0 to 1 means that the dancer is more likely to drop out following a night 
out if the regression coefficient is positive, and less likely to drop out following a night out if the 
regression coefficient is negative. This is because a positive regression coefficient leads to a hazard 
(risk) ratio greater than one while a negative coefficient leads to a hazard (risk) ratio less than one.

Programs for Cox proportional-  hazards models show both the regression coefficients and 
hazard ratios (see Tables 11.6 and 11.7). Regression coefficients are labeled B or Estimate. Hazard 
ratios are labeled Exp (B) or Hazard Ratio.

Table 11.7 shows that age is significantly related to survival as a belly dancer. The negative re-
gression coefficient (and hazard ratio less than 1) indicates that older dancers are less likely to drop 
out. Recall that eB = 0.79; this indicates that the risks of dropping out are decreased by about 21% 
[(1–.79(100)] with each year of increasing age. The hazard of dropping out for a 25-year-  old, for 
instance, is only 79% of that for a 24-year-  old. (If the hazard ratio were .5 for age, it would indicate 
that the risk of dropping out is halved with each year of increasing age.)

In some tests, the treatment covariate fails to reach statistical significance, but if we attribute 
this to lack of power with such a small sample, rather than a lack of treatment effectiveness, we can 
interpret the hazard ratio for illustrative purposes. The hazard ratio of .08 (e- 2.542) for treatment 
indicates that treatment decreases the risk of dropping out by 92%.

11.6.5.3 Expected Survival Rates

More complex methods are required for predicting expected survival rates at various time periods for 
particular values of covariates, as described using SAS procedures by Allison (1995, pp. 171–  172). 
For example, what is the survivor function for 25-year-  olds in the control group? This requires creat-
ing a data set with the particular covariate values of interest, for example, 0 for treatment and 25 for 
age. The model is run with the original data set, and then a print procedure applied to the newly 
created data set. Table 11.12 shows syntax and partial output for prediction runs for two cases: a 
25-year-  old dancer in the control group and 30-year-  old dancer in the treated group.

The likelihood of survival, column s, for a 25-year-  old in the control condition drops quickly 
after the first month and is very low by the fifth month; on the other hand, the likelihood of survival 
for a 30-year-  old in the treated condition stays pretty steady through the fifth month.

11.7 Complete Example of Survival Analysis

These experimental data are from a clinical trial of a new drug (D-penicillamine) versus a placebo 
for treatment of primary biliary cirrhosis (PBC) conducted at the Mayo Clinic between 1974 and 
1984. The data were copied to the Internet from Appendix D of Fleming and Harrington (1991), 
who describe the data set as follows:

A total of 424 PBC patients, referred to Mayo Clinic during that 10-year interval, met eligibility crite-
ria for the randomized placebo controlled trial of the drug D-penicillamine. The first 312 cases in the 
data set participated in the randomized trial and contain largely complete data. (p. 359)
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Thus, differences in survival time following treatment with either the experimental drug or 
the placebo are examined in the 312 cases, with nearly complete data, who participated in the trial. 
Coding for drug is 1 = D-penicillamine and 2 = placebo. Additional covariates are those in the Mayo 
model for “assessing survival in relation to the natural history of primary biliary cirrhosis” (Markus 
et al., 1989, p. 1710). These include age (in days), serum bilirubin in mg/dl, serum albumin in gm/dl, 
prothrombin time in seconds, and presence of edema. Edema has three levels treated as continuous:

TABLE 11.12 Predicted Survivor Functions for 25-Year-  Old Control Dancers and 30-Year-  Old 
Treated Dancers (Syntax and Partial Output Using SAS PHREG)

data surv;
  set SASUSER.SURVIVE;
data covals;

input TREATMNT AGE;
datalines;

0 25
1 30
run;
proc phreg data=SASUSER.SURVIVE;

model MONTHS*DANCING(0)= AGE TREATMNT;
baseline out=predict covariates=covals survival=s
lower=lcl upper=ucl / nomean;

run;
proc print data=predict;
run;

Model Fit Statistics

Criterion
Without 

Covariates
With 

Covariates

−2 LOG L 40.740 21.417
AIC 40.740 25.417
SBC 40.740 26.213

Testing Global Null Hypothesis: BETA=0

Test Chi-Square DF Pr > ChiSq

Likelihood Ratio 19.3233 2 <.0001
Score 14.7061 2 0.0006
Wald 6.6154 2 0.0366

Analysis of Maximum Likelihood Estimates

Variable DF
Parameter 
Estimate

Standard 
Error

Chi-
Square

Pr > 
ChiSq

Hazard 
Ratio

AGE 1 −0.22989 0.08945 6.6047 0.0102 0.795
TREATMNT 1 −2.54137 1.54632 2.7011 0.1003 0.079
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(1) no edema and no diuretic therapy for edema, coded 0.00; (2) edema present without diuretics or 
edema resolved by diuretics, coded 0.50; and (3) edema despite diuretic therapy, coded 1.00. Codes 
for STATUS are 0 = censored, 1 = liver transplant, and 2 = event (nonsurvival).

Remaining variables in the data set are sex, presence versus absence of ascites, presence or 
absence of hepatomegaly, presence or absence of spiders, serum cholesterol in mg/dl, urine copper 
in ug/day, alkaline phosphatase in U/liter, SGOT in U/ml, triglyceride in mg/dl, platelets per cubic 
ml/100, and histologic stage of disease. These variables were not used in the present analysis.

The primary goal of the clinical trial is to assess the effect of the experimental drug on survival 
time after statistically adjusting for the other covariates. A secondary goal is to assess the effects of 
the other covariates on survival time. Data files are SURVIVAL.*.

11.7.1 Evaluation of Assumptions

11.7.1.1 Accuracy of Input, Adequacy of Sample Size, Missing Data, and Distributions

IBM SPSS DESCRIPTIVES is used for a preliminary look at the data, as seen in Table 11.13. The 
SAVE request produces standard scores for each covariate for each case used to assess univariate 
outliers.

The values for most of the covariates appear reasonable; for example, the average age is about 50. 
The sample size of 312 is adequate for survival analysis, and cases are evenly split between experimen-
tal and placebo groups (mean = 1.49 with coding of 1 and 2 for the groups).

Obs TREATMNT AGE MONTHS s lcl ucl

1 0 25 0 1.00000 . .
2 0 25 1 0.94707 0.83814 1
3 0 25 2 0.78242 0.55207 1
4 0 25 3 0.61716 0.33466 1
5 0 25 4 0.46688 0.19552 1
6 0 25 5 0.31702 0.09016 1
7 0 25 7 0.00000 0.00000 1
8 0 25 8 0.00000 0.00000 1
9 0 25 10 0.00000 0.00000 1
10 0 25 11 0.00000 0.00000 1
11 1 30 0 1.00000 . .
12 1 30 1 0.99864 0.99201 1
13 1 30 2 0.99390 0.96734 1
14 1 30 3 0.98803 0.93913 1
15 1 30 4 0.98117 0.90688 1
16 1 30 5 0.97174 0.86293 1
17 1 30 7 0.69716 0.35039 1
18 1 30 8 0.09552 0.00078 1
19 1 30 10 0.00003 0.00000 1
20 1 30 11 0.00000 0.00000 1

TABLE 11.12 Continued
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TABLE 11.13 Description of Covariates Through IBM SPSS DESCRIPTIVES (Syntax and Output)

DESCRIPTIVES
VARIABLES=AGE ALBUMIN BILIRUBI DRUG EDEMA PROTHOM
/SAVE
/STATISTICS=MEAN STDDEV MIN MAX KURTOSIS SKEWNESS.

Descriptives

Descriptive Statistics

N Minimum Maximum Mean Std. Skewness Kurtosis

Statistic Statistic Statistic Statistic Statistic Statistic Std. Error Statistic Std. Error

Age in days 312 9598.00 28650.00 18269.44 3864.805 .168 .138 −.534 .275
Albumin in gm/dl 312 1.96 4.64 3.5200 .41989 −.582 .138 .946 .275
Serum bilirubin in mg/dl 312 .30 28.00 3.2561 4.53032 2.848 .138 8.890 .275
Experimental drug 312 1.00 2.00 1.4936 .50076 .026 .138 −2.012 .275
Edema presence 312 .00 1.00 .1106 .27451 2.414 .138 4.604 .275
Prothrombin time in 
seconds 312 9.00 17.10 10.7256 1.00432 1.730 .138 6.022 .275
Valid N (listwise) 312
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None of the covariates has missing data. However, except for age and drug (the treatment), all of the 
covariates are seriously skewed, with z-scores for skewness ranging from (-.582)>0.138 = -4.22 for 
serum albumin to (2.85)/0.138 = 20.64 for bilirubin. Kurtosis values listed in Table 11.13 pose no 
problem in this large sample (cf. Section 11.3.2.2). Decisions about transformation are postponed 
until outliers are assessed.

11.7.1.2 Outliers

Univariate outliers are assessed by finding z = (Y - Y )>S for each covariate’s lowest and highest 
scores. The /SAVE instruction in the IBM SPSS DESCRIPTIVES run of Table 11.13 adds a column 
to the data file of z-scores for each case on each covariate. An IBM SPSS DESCRIPTIVES run on 
these standard scores shows minimum and maximum values (Table 11.14).

Using |z| = 3.3 as the criterion (cf. Section 11.3.2.3), the lowest albumin score is a univari-
ate outlier, as are the highest scores on bilirubin and prothrombin time. Considering the skewness 
in these distributions, the decision is made to transform them to deal with both outliers and the 
possibility of diminished predictability of survival time as a result of nonnormality of covariates. 
Tests of multivariate outliers are performed on the transformed variables.

A logarithmic transform of bilirubin [LBILIRUB = LG10(BILIRUBI)] diminishes its skew-
ness (although z 7 4.6) and kurtosis and brings outlying cases to within acceptable limits. However, 
various transformations (log, inverse, square root) of prothrombin time and albumin do not remove 
the outliers, so the decision is made to retain the original scales of these variables. An additional 
transform is performed on age (in days) into years of age: Y_AGE = (AGE/365.25) to facilitate 
interpretation. Table 11.15 shows descriptive statistics for transformed age and log of bilirubin.

Mahalanobis distance to assess multivariate outliers is computed through IBM SPSS 
REGRESSION and examined through IBM SPSS SUMMARIZE. Table 11.16 first shows the IBM 
SPSS REGRESSION syntax that saves the Mahalanobis distance for each case into a column of the 

TABLE 11.14 Description of Standard Scores Through IBM SPSS 
DESCRIPTIVES (Syntax and Selected Output)

DESCRIPTIVES
VARIABLES=zage zalbumin zbilirubi zdrug zedema zprothom
/STATISTICS=MIN MAX.

Descriptive Statistics

N Minimum Maximum

Zscore: Age in days 312 −2.24369 2.68592
Zscore: Albumin in gm/dl 312 −3.71524 2.66735
Zscore: Serum bilirubin in mg/dl 312 −.65251 5.46185
Zscore: Experimental drug 312 −.98568 1.01128
Zscore: Edema presence 312 −.40282 3.24008
Zscore: Prothrombin time in seconds 312 −1.71821 6.34692
Valid N (listwise) 312
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TABLE 11.15 Description of Transformed Covariates Through IBM SPSS DESCRIPTIVES (Syntax and Output)

DESCRIPTIVES
VARIABLES=LBILIRUBI Y_AGE
/SAVE
/STATISTICS=MEAN STDDEV MIN MAX KURTOSIS SKEWNESS.

Descriptives

Descriptive Statistics

N Minimum Maximum Mean Std. Skewness Kurtosis

Statistic Statistic Statistic Statistic Statistic Statistic Std. Error Statistic Std. Error

LBILIRUB 312 −.52 1.45 .2500 .44827 .637 .138 −.376 .275
Y_AGE 312 26.28 78.44 50.0190 10.58126 .168 .138 −.534 .275
Valid N (listwise) 312
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TABLE 11.16 Mahalanobis Distances and Covariate Scores for Multivariate Outliers 
(Syntax and Selected Output for IBM SPSS REGRESSION and SUMMARIZE)

REGRESSION
/MISSING LISTWISE
/STATISTICS COEFF OUTS R ANOVA
/CRITERIA=PIN(.05) POUT(.10)
/NOORIGIN
/DEPENDENT ID
/METHOD=ENTER ALBUMIN DRUG EDEMA PROTHOM LBILIRUB Y_AGE
/SAVE MAHAL.

USE ALL.
COMPUTE filter_$=(MAH_1>22.458).
VARIABLE LABEL filter_$ 'MAH_1>22.458 (FILTER)'.
VALUE LABELS filter_$ 0 'NOT SELECTED' 1 'SELECTED'.
FORMAT filter_$ (f1.0).
FILTER BY filter_$.
EXECUTE
SUMMARIZE

/TABLES=ALBUMIN DRUG EDEMA PROTHOM LBILIRUB Y_AGE MAH_1 ID
/FORMAT=VALIDLIST NOCASENUM TOTAL LIMIT=100
/TITLE='Case Summaries' /FOOTNOTE"
/MISSING=VARIABLE
/CELLS=COUNT.

Summarize

Case Summariesa

Albumin 
in gm/dl

Experimental 
drug

Edema
presence

Prothrombin 
time in seconds LBILIRUB Y_AGE

Mahalanobis
Distance ID

1 2.27 Placebo Edema despite therapy 11.00 −.10 56.22 23.28204 14.00
2 4.03 Placebo No edema 17.10 −.22 62.52 58.81172 107.00
3 3.35 Placebo No edema 15.20 1.39 52.69 28.79138 191.00
Total  N 3 3 3 3 3 3 3 3

a. Limited to first 100 cases.
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TABLE 11.17 Identification of Covariates Causing Multivariate Outliers 
(IBM SPSS REGRESSION Syntax and Selected Output)

USE ALL.
COMPUTE DUMMY = 0.
IF (id EQ 14) DUMMY=1.
REGRESSION

/MISSING LISTWISE
/STATISTICS COEFF OUTS R ANOVA
/NOORIGIN
/DEPENDENT dummy
/METHOD=ENTER albumin drug edema prothom lbilirub y_age.

Regression

Coefficientsa

Unstandardized 
Coefficients

Standardized 
Coefficients

Model B Std. Error Beta t Sig.

1 (Constant) .106 .051 2.079 .038
Albumin in gm/dl −.023 .009 −.168 −2.661 .008
Experimental drug .008 .006 .068 1.216 .225
Edema presence .041 .013 .200 3.069 .002

  Prothrombin time 
in seconds −.003 .004 −.046 −.740 .460

LBILIRUB −.021 .008 −.167 −2.630 .009
Y_AGE .000 .000 −.023 −.387 .699

a. Dependent Variable: DUMMY

data file as a variable labeled mah_1. The critical value of x2 with 6 df at a = .001 is 22.458. Cases 
with mah_1 greater than 22.458 are selected for printing through IBM SPSS SUMMARIZE with 
their case ID number, scores for the four continuous covariates for those cases, and Mahalanobis 
distance. Syntax for the selection of multivariate outliers is shown in Table 11.16 along with the 
output of IBM SPSS SUMMARIZE.

Three cases are multivariate outliers. Table 11.17 shows the results of a regression analysis on case 
number 14 to determine which covariates distinguish it from the remaining 311 cases. A dichotomous 
DV, labeled dummy, is created based on case identification number and then IBM SPSS REGRESSION 
is run to determine which variables significantly predict that dummy DV. Note that the selection based 
on Mahalanobis distance must be altered for each run so the file again includes all cases.

Covariates with levels of Sig. less than .05 contribute to the extremity of the multivariate outlier 
where a positive coefficient indicates a higher score on the variable for the case (because the outlier 
has a higher code (1) than the remaining cases (0) on the dummy DV). Case 14 differs from the 
remaining cases in the combination of low scores on albumin and the logarithm of bilirubin along with 
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a high score on edema. Table 11.16 shows the values of those scores: 2.27 on albumin as compared 
with a mean of 3.52 (seen in Table 11.13); 0.26 on the logarithm of bilirubin as compared with a mean 
of 0.49; and a score of 1 on edema as compared with a mean of 0.11. Similar regression analyses for 
the two remaining outliers (not shown) indicate that case 107 is an outlier because of a high score on 
prothrombin time (17.10), and case 191 is an outlier because of a high score on prothrombin time 
(15.20) and a low score on edema (0). The decision is made to eliminate these multivariate outlying 
cases from subsequent analyses and report details about them in the Results section. A rerun of syntax 
in Tables 11.13 and 11.14 with multivariate outliers removed (not shown) indicates that only one of 
the univariate outliers from Table 11.14 remains; the case with a z-score of -3.715 on albumin. It is 
decided to retain this case in subsequent analyses because it did not appear as a multivariate outlier and 
is not inordinately extreme considering the sample size.

11.7.1.3 Differences Between Withdrawn and Remaining Cases

Several cases were censored because they were withdrawn from this clinical trial for liver trans-
plantation. It is assumed that the remaining censored cases were alive at the end of the study. Table 
11.18 shows a regression analysis where status is used to form a dichotomous DV (labeled xplant)
where cases who were withdrawn for liver transplant have a value of 1 and the other cases have a 
value of 0. The six covariates serve as the IVs for the regression analysis. Note that the multivariate 
outliers are omitted from this and all subsequent analyses.

There is a significant difference between those undergoing liver transplantation and the remain-
ing cases; however, the difference is limited to age with a = .008 using a Bonferroni-  type correction 
for inflated Type I error associated with the six covariates. The negative coefficient indicates that liver 
transplants were done on younger cases, on average, and not surprisingly. Because age is the only 
variable distinguishing these cases from the remaining ones, the decision is made to leave them in the 
analysis, grouped with the other censored cases at the end of the test period.

11.7.1.4 Change in Survival Experience over Time

There is no indication in the data set or supporting documentation of a change in procedures over 
the 10-year period of the study. Other factors, such as pollution and economic climate, of course, re-
main unknown and uncontrolled potential sources of variability. Because of the random assignment 
of cases to drug conditions, however, there is no reason to expect that these environmental sources 
of variance differ for the two drug conditions.

11.7.1.5 Proportionality of Hazards

Proportionality of hazards is checked prior to Cox regression analysis, to determine if the assumption 
is violated. Table 11.19 shows the test for proportionality of hazards through IBM SPSS COXREG.
The TIME PROGRAM instruction sets up the internal time variable, T_ (a reserved name for the 
transformed time variable). Then COMPUTE is used to create T_COV_ as the natural logarithm 
(LN) of time. All of the covariate*T_COV_ interactions are included in the COXREG instruction.

Only the terms representing interaction of T_COV_ with covariates are used to evaluate 
proportionality of hazards. (Ignore the rest of the output for now, especially the drug result.) If 
a = .008 is used because of the number of time–  covariate interactions being evaluated, none of the 
covariates significantly interacts with time. Therefore, we consider the assumption met.
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TABLE 11.18 IBM SPSS REGRESSION for Differences Between Liver Transplant 
and Remaining Cases (Syntax and Selected Output)

USE ALL.
COMPUTE filter_$=(MAH_1 LE 22.458).
VARIABLE LABEL filter_$ 'MAH_1 LE 22.458 (FILTER)'.
VALUE LABELS filter_$ 0 'Not Selected' 1 'Selected'.
FORMAT filter_$ (f1.0).
FILTER BY filter_$.
EXECUTE.

COMPUTE XPLANT = 0.
IF    (STATUS EQ 1) XPLANT = 1.
REGRESSION

/MISSING LISTWISE
/STATISTICS COEFF OUTS R ANOVA
/CRITERIA=PIN(.05) POUT(.10)
/NOORIGIN
/DEPENDENT XPLANT
/METHOD=ENTER ALBUMIN DRUG EDEMA LBILIRUB PROTHOM Y_AGE.

Regression

ANOVAb

Model
Sum of 
Squares df

Mean
Square F Sig.

1 Regression 1.144 6 .191 3.449 .003a

Residual 16.688 302 .055
Total 17.832 308

a. Predictors: (Constant), Y_AGE, LBILIRUB, Experimental drug, Prothrombin time in seconds, 
Albumin in gm/dl, Edema presence

b. Dependent Variable: XPLANT

Coefficientsa

Unstandardized 
Coefficients

Standardized 
Coefficients

Model B Std. Error Beta t Sig.

1 (Constant) .536 .243 2.208 .028
Albumin in gm/dl .006 .037 .010 .164 .870
Experimental drug −.018 .027 −.037 −.662 .509
Edema presence −.015 .060 −.017 −.255 .799
LBILIRUB .075 .035 .139 2.143 .033

  Prothrombin time 
in seconds −.025 .017 −.092 −1.422 .156
Y_AGE −.004 .001 −.197 −3.351 .001

a. Dependent Variable: XPLANT
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TABLE 11.19 Test for Proportionality of Hazards Through IBM SPSS 
COXREG (Syntax and Selected Output)

TIME PROGRAM.
COMPUTE T_COV_ = LN(T_).
COXREG
DAYS /STATUS=STATUS(2)

/METHOD=ENTER ALBUMIN T_COV_*ALBUMIN DRUG T_COV_*DRUG EDEMA
T_COV_*EDEMA

PROTHOM T_COV_*PROTHOM LBILIRUB T_COV_*LBILIRUB Y_AGE T_COV_*Y_AGE
/CRITERIA=PIN(.05) POUT(.10)ITERATE(20).

Variables in the Equation

B SE Wald df Sig. Exp(B)

ALBUMIN −1.821 1.892 .927 1 .336 .162
DRUG 2.379 1.382 2.963 1 .085 10.798
EDEMA 5.685 2.390 5.657 1 .017 294.353
PROTHOM 1.449 .734 3.904 1 .048 4.261
LBILIRUB −.371 1.815 .042 1 .838 .690
Y_AGE .087 .075 1.349 1 .245 .1091
T_COV_*ALBUMIN .129 .272 .226 1 .635 1.138
T_COV_*DRUG −.319 .197 2.637 1 .104 .727
T_COV_*EDEMA −.778 .364 4.569 1 .033 .459
T_COV_*PROTHOM −.164 .106 2.387 1 .122 .849
T_COV_*LBILIRUB .339 .261 1.690 1 .194 1.404
T_COV_*Y_AGE −.008 .011 .542 1 .461 .992

11.7.1.6 Multicollinearity

Survival-  analysis programs protect against statistical problems associated with multicollinearity. 
However, the analysis is best served by a set of covariates that are not too highly related. Thus, it is 
worthwhile to investigate how highly each of the covariates is related to the remaining ones.

Squared multiple correlations (SMCs) are available through IBM SPSS FACTOR by specify-
ing principal axis factoring because this type of factor analysis begins with SMCs as initial commu-
nalities (Section 13.6.1). Table 11.20 shows the syntax and selected output for IBM SPSS FACTOR
for the set of covariates used in the survival analysis.

Redundant covariates are those with Initial Communalities (SMCs) in excess of .90. As seen 
in Table 11.20, there is no danger of either conceptual or statistical multicollinearity among this set, 
with the highest SMC = .314 for presence of edema.

11.7.2 Cox Regression Survival Analysis

IBM SPSS COXREG is used to evaluate the effects of drug and other covariates on survival time 
of patients with primary biliary cirrhosis of the liver. Table 11.21 shows the syntax and output for 
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TABLE 11.20 SMCs (Communalities) Produced by IBM SPSS FACTOR (Syntax and Selected Output)

SELECT IF mah_1 LE 22.458.
FACTOR

/VARIABLES ALBUMIN DRUG EDEMA PROTHOM LBILIRUB Y_AGE /MISSING LISTWISE
/ANALYSIS ALBUMIN DRUG EDEMA PROTHOM LBILIRUB Y_AGE
/PRINT INITIAL EXTRACTION
/CRITERIA MINEIGEN(1) ITERATE(25)
/EXTRACTION PAF
/ROTATION NOROTATE
/METHOD=CORRELATION.

Factor Analysis

Communalities

Initial Extraction

Albumin in gm/dl .239 .319

Experimental drug .026 .048

Edema presence .314 .472

Prothrombin time 
in seconds

.266 .356

LBILIRUB .264 .455

Y_AGE .105 .466

Extraction Method: Principal Axis Factoring.

the sequential Cox regression analysis in which covariates other than drug are entered first, as a set, 
followed by drug treatment. This permits a likelihood-  ratio test of the effect of drug treatment, after 
statistical adjustment for the other covariates.

11.7.2.1 Effect of Drug Treatment

The effect of drug treatment with D-penicillamine versus the placebo is evaluated as Change 
from Previous Block at Block 2. A value of Sig for Chi-  Square less than .05 is required for 
drug treatment to successfully predict survival time after adjusting for the other covariates. Here, 
x2(1) = 0.553, p = .457, revealing that drug treatment has no statistically significant effect on 
survival time of PBC patients after taking into account their age, serum albumin level, condition of 
edema, prothrombin time, and the logarithm of the level of serum bilirubin. That is, length of sur-
vival is unaffected by the D-penicillamine drug. Survival curves for the two groups are not shown 
because there is no statistically significant difference between groups.

11.7.2.2 Evaluation of Other Covariates

The output of Block1 of Table 11.21 reveals the relationship between survival time and the other 
covariates. None of these variables is experimentally manipulated in this study; however, as a group, 
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they form the Mayo model for predicting survival of PBC patients. Change from Previous Step
x2(5) of 192.857, p 6 .0005, shows that, as a set, the covariates reliably predict survival time. 
Applying Equation 11.11, the effect size of the set of covariates and survival time is

R2 = 1 - e(- 192.867>309) = .46

with a 95% confidence interval from .37 to .53 using Steiger and Fouladi’s (1992) R2 software (see 
Figure 9.3 for demonstration of the use of the software).

TABLE 11.21 Cox Regression Analysis for PBC Patients Through IBM SPSS COXREG 
(Syntax and Output)

SELECT IF mah_1 LE 22.458.
COXREG

DAYS /STATUS=STATUS(2)
/METHOD=ENTER ALBUMIN EDEMA PROTHOM LBILIRUB Y_AGE
/METHOD=ENTER DRUG
/CRITERIA=PIN(.05) POUT(.10) ITERATE(20).

Cox Regression

Case Processing Summary

N Percent

Cases available in 
analysis

Eventa 123 39.8%
Censored 186 60.2%
Total 309 100.0%

Cases dropped Cases with 
missing values 0 .0%
Cases with 
negative time 0 .0%
Censored cases 
before the earliest 
event in a stratum 0 .0%
Total 0 .0%

Total 309 100.0%

a. Dependent Variable: DAYS

Block 0: Beginning Block

Omnibus Tests of Model Coefficients

−2 Log
Likelihood

1255.756

(continued )
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Block1: Method = Enter

Omnibus Tests of Model Coefficientsa,b

−2 Log 
Likelihood

Overall (score) Change From Previous Step Change From Previous Block

Chi-  square df Sig. Chi-  square df Sig. Chi-  square df Sig.

1062.899 261.098 5 .000 192.857 5 .000 192.857 5 .000

a. Beginning Block Number 0, initial Log Likelihood function: –2 Log likelihood: –1255.756

b. Beginning Block Number 1. Method: Enter

Variables in the Equation

B SE Wald df Sig. Exp(B)

ALBUMIN −.884 .242 13.381 1 .000 .413
EDEMA .743 .311 5.712 1 .017 2.101
PROTHOM .307 .104 8.668 1 .003 1.359
LBILIRUB 1.988 .235 71.799 1 .000 7.298
Y_AGE .034 .009 15.592 1 .000 1.035

Variables not in the Equationa

Score df Sig.

DRUG .555 1 .456

a. Residual Chi Square = .555 with 1 df Sig. = .456

Block2: Method = Enter

Omnibus Tests of Model Coefficientsa,b

−2 Log 
Likelihood

Overall (score) Change From Previous Step Change From Previous Block

Chi-  square df Sig. Chi-  square df Sig. Chi-  square df Sig.

1062.346 261.200 6 .000 .553 1 .457 .553 1 .457

a. Beginning Block Number 0, initial Log Likelihood function: –2 Log likelihood: –1255.756
b. Beginning Block Number 2. Method: Enter

TABLE 11.21 Continued
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Variables in the Equation

B SE Wald df Sig. Exp(B)

ALBUMIN −.894 .241 13.735 1 .000 .409
EDEMA .742 .308 5.795 1 .016 2.100
PROTHOM .306 .104 8.736 1 .003 1.358
LBILIRUB 1.994 .234 72.305 1 .000 7.342
Y_AGE .036 .009 16.005 1 .000 1.036
DRUG .139 .187 .555 1 .456 1.150

Covariate Means

Mean

ALBUMIN 3.523
EDEMA .108
PROTHOM 10.690
LBILIRUB .249
Y_AGE 49.950
DRUG 1.489

TABLE 11.21 Continued

The contribution of each covariate, adjusted for all others, is evaluated in the section labeled 
Variables in the Equation for the first block. If a = .01 is used to adjust for inflated familywise 
error rate with five covariates, there are statistically significant differences due to age, serum albu-
min level, prothrombin time, and the logarithm of the level of serum bilirubin. (If a = .05 is used, 
instead, edema is also statistically significant.) Because STATUS is coded 2 for death and 0 or 1 for 
survival, negative coefficients are associated with longer survival time. Thus, higher serum albumin 
predicts longer survival, but shorter survival is associated with greater age (no surprise), greater 
prothrombin time, and higher levels of the logarithm of serum bilirubin. An overall risk score for 
survival time is

Risk = -.89 (albumin in g/dl) + .31 (prothrombin time in sec.)
+ 1.99 log10 (bilirubin in mg/dl) + .04 (age in years)

Exp(B) is the hazard ratio for each covariate (cf. Section 11.6.5) where a negative sign for 
the associated B value implies an increase in survival and a positive sign implies an increase in the 
probability of death. For each one-  point increase in serum albumin level, the risk of death decreases 
by about 60%: (1 -   0.409)100. For each one-  unit change in the edema measure, the risk of death 
more than doubles. For each one-  second increase in prothrombin time, the risk of death increases 
by about 36%. For each one-  point increase in the logarithm of serum bilirubin level, risk of death 
increases more than seven times. Finally, for each year of age, the risk of death increases by 3.5% 
(hazard ratio = 1.036). Table 11.22 summarizes the results of the analysis of nondrug covariates.
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TABLE 11.22 Cox Regression Analysis of Nondrug Variables on 
Survival Time of PBC Patients

Covariate B df Prob. Hazard Ratio

Serum albumin - 0.894 1 6.001 0.409
Edema 0.742 1   .016 2.101
Prothrombin time 0.306 1   .003 1.358
Logarithm (serum bilirubin) 1.994 1 6.001 7.342
Age in years 0.036 1 6.001 1.036

Figure 11.2 shows that the expected five-  year survival rate of a patient at the mean of all co-
variates (see end of Table 11.21) is a bit less than 80% (1,826.25 days). The 10-year survival rate is 
about 40%.

Table 11.23 is a checklist for predicting survival from covariates. An example of a Results 
section, in journal format, follows for the study just described.

COXREG
DAYS/STATUS=STATUS(2)
/METHOD=ENTER ALBUMIN EDEMA PROTHOM LBILIRUBY_AGE
/PLOT=SURVIVAL
/CRITERIA=PIN(.05)POUT(.10)ITERATE(20).

Survival Function at Mean of Covariates

0.8
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um
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FIGURE 11.2 Survival function at mean of five covariates: Serum albumin level, 
edema score, prothrombin time, logarithm of bilirubin level, and age in years.
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TABLE 11.23 Checklist for Predicting Survival From 
Covariates, Including Treatment

1. Issues

a. Adequacy of sample sizes and missing data

b. Normality of distributions

c. Absence of outliers

d. Differences between withdrawn and remaining cases

e. Changes in survival experience over time

f. Proportionality of hazards

g. Multicollinearity

2. Major analyses

a. Test of treatment effect, if significant

(1) Treatment differences in survival

(2) Parameter estimates, including hazard ratios

(3) Effect size and confidence limits

(4) Survival function showing groups separately

b. Effects of covariates, for significant ones

(1) Direction of effect(s)

(2) Parameter estimates, including hazard ratios

(3) Effect size and confidence limits

3. Additional analyses

a. Contingencies among covariates

b. Survival function based on covariates alone

Results

A Cox regression survival analysis was performed to assess 

the effectiveness of the drug D-penicillamine for primary 

biliary cirrhosis in a random clinical trial after adjusting 

for the effects of the five covariates found to be predictive of 

survival in the Mayo clinic model: age, degree of edema (mild, 

moderate, or severe), serum bilirubin in mg/dl, prothrombin 

time, and serum albumin in gm/dl. A logarithmic transform 

reduced skewness and the influence of outliers for bilirubin 
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level. However, three multivariate outliers remained. One case 

had an unusual combination of low scores on serum albumin 

and logarithm of bilirubin with severe edema, the second had 

an extremely high prothrombin time, and the third combined 

an extremely high prothrombin time with a low edema score. 

Three hundred nine cases remained after deletion of the three 

outliers, 186 censored either because they were alive at the end 

of the 10-year trial or had withdrawn from the trial for liver 

transplant. (Withdrawn cases differed from those who remained in 

the study only in that they were younger.) The cases were about 

evenly split between those who were given the drug and those 

given a placebo.

There was no statistically significant effect of drug 

treatment after adjusting for the five covariates, χ2(1) 

= 0.553, p = .46. Survival time, however, was fairly well 

predicted by the set of covariates, R2 = .46 with a 95% 

confidence interval from .37 to .53 using Steiger and Fouladi’s 

(1992) R2 software. All of the covariates except edema reliably 

predicted survival time at = .01: Risk = –.89 (albumin in g/

dl) + .31 (prothrombin time in sec.) + 1.99 log10 (bilirubin 

in mg/dl) + .04 (age in years). Table 11.22 shows regression 

coefficients, degrees of freedom, p values, and hazard ratios 

for each covariate. The greatest contribution was by the 

logarithm of serum bilirubin level; each increase of one point 

increases the risk of death about seven times. Risk of death is 

increased by 3.5% with each year of age, and by about 36% with 

each one-  point increase in prothrombin time. On the other hand, 

a one-  point increase in serum albumin level decreases the risk 

of death by about 60%.
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At the mean of the covariates, the 5-year survival rate is 

just under 80% and the 10-year survival rate is about 40%, as 

seen in Figure 11.2.

Thus, survival time is predicted by several covariates but 

not by drug treatment. Increases in risk are associated with 

high serum bilirubin level, age, and prothrombin level but risk 

decreases with high serum albumin level.

11.8 Comparison of Programs

IBM SPSS and SAS have two or more programs that do different types of analysis. SAS has one 
program for survival functions and two for regression-  type problems: one for proportional-  hazards
models and the other for various nonproportional-  hazards models. IBM SPSS has three programs as 
well: one for proportional-  hazards models and two for survival functions (one for actuarial and one 
for product-  limit methods). SYSTAT has a single program for survival analysis. Table 11.24 com-
pares programs for survival curves; Table 11.25 compares programs for prediction of survival from 
covariates.

11.8.1 SAS System

SAS has LIFETEST for life tables and survivor functions, and LIFEREG and PHREG for predict-
ing survival from covariates. SAS LIFETEST offers both actuarial and product-  limit methods for 
survivor functions; however, median survival for each group is only available for the product-  limit
method. LIFETEST is the only survivor function program that lets you specify the a level for 
survival confidence limits. A summary table is provided for each group.

SAS LIFEREG and PHREG are quite different programs. LIFEREG offers a variety of mod-
els; PHREG is limited to Cox proportional-  hazards models. LIFEREG does direct analyses only; 
PHREG does direct, sequential, and stepwise modeling and is the only program reviewed that does 
best-  subsets modeling. LIFEREG allows you to analyze discrete covariates with more than two 
levels, but PHREG does not. Instead, you need to dummy-  code discrete variables. However, the 
Test procedure in PHREG allows a simultaneous test of a hypothesis about a set of regression co-
efficients, so you can do a test of the null hypothesis that all dummy-  coded variables for a single 
covariate are zero.

The LIFEREG program permits separate analyses by groups, but no stratification variables. 
PHREG, on the other hand, allows you to specify a stratification variable which does the analy-
sis without making the proportional-  hazards assumption (cf. Section 11.6.1). PHREG also per-
mits you to specify time-  dependent covariates and has several options for dealing with tied data. 
PHREG provides the initial log-  likelihood estimate, without any covariates, as well as score and 
Wald chi-  square statistics for the full set of covariates in the model. PHREG provides hazard ratios 
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TABLE 11.24 Comparison of Programs for Life Tables and Survivor Functions

Feature
SAS

LIFETEST
IBM SPSS 

SURVIVAL
IBM SPSS 

KM
SYSTAT 

SURVIVAL

Input

Actuarial method Yes Yes No Yes

 Product-limit (Kaplan–Meier) method Yes No Yes Yes

Missing data options Yes Yes No No

Group comparisons STRATA COMPARE COMPARE STRATA

Ordered group comparisons No No Yes No

Pairwise comparisons among groups No Yes Yes No

Specify exact or approximate 
comparisons

N.A. Yes N.A. N.A.

Test strata pooled over groups No No STRATA No

Use tabular data as input No Yes No No

Specify a frequency variable to indicate 
number of cases

Yes No No No

Specify tolerance SINGULAR No No TOLERANCE

Specify a for survival confidence limits Yes No No No

Specify percentiles for combinations of 
groups and strata

No No Yes No

Specify confidence bands for the survivor 
function

SURVIVAL No No No

Specify interval-censoring Yes No No Yes

Specify left-censoring Yes No No No

Output

Mantel–Cox log-rank test LOGRANK No Yes KM only

Breslow test (generalized Wilcoxon) Yes No Yes No

 Peto–  Prentice test (generalized 
Wilcoxon)

PETO No No No

Modified  Peto–  Prentice Test MODPETO No No No

Tarone–Ware test TARONE No Yes KM only

Gehan (Wilcoxon)—Log Rank WILCOXON Yes No KM only

Fleming–Harrington G2 family of tests FLEMING No No No

Likelihood ratio test statistic Yes No No No

Number entering each interval Yes Yes N.A. KM only

Number lost (failed, dead, terminating) 
each interval

Yes Yes N.A. KM only

Number censored each interval Yes Yes No No

Number remaining /effective sample size Yes No Yes No

Proportion failures/cond. probability of 
failure

Yes Yes No No
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Feature
SAS

LIFETEST
IBM SPSS 

SURVIVAL
IBM SPSS 

KM
SYSTAT 

SURVIVAL

Output (continued )

Cumulative proportion surviving Yes Yes Yes No

Standard error of cumulative proportion 
surviving

No Yes Yes No

Cumulative proportion failure Yes No No No

Standard error of cumulative proportion 
failing

Yes No No No

Cumulative events No N.A. Yes No

Hazard and standard error Yes Yes No ACT only

Density (PDF) and standard error Yes Yes No ACT only

Median survival, each group KM only Yes Yes No

Standard error of median survival, each 
group

No No Yes No

Confidence interval for median survival No No Yes No

75th quantile surviving and standard 
error, each group

KM only No No No

25th quantile surviving and standard 
error, each group

KM only No No No

Other survival quantiles No No No KM only

Mean survival time Yes No Yes KM only

Standard error of mean survival time KM only No Yes No

Confidence interval for mean survival No No Yes No

Median Residual Lifetime, each interval ACT only No No No

Median standard error, each interval ACT only No No No

Summary table Yes No Yes No

Rank statistics and matrices for tests of 
groups

Yes No No No

Plots

Cumulative survival function SURVIVAL SURV SURVIVAL Yes (default)

Cumulative survival function on log scale LOGSURV LOGSURV LOGSURV TLOG

Cumulative survival function on a log–
log scale

LOGLOGS No No No

Cumulative hazard function HAZARD HAZARD HAZARD CHAZ

Cumulative hazard function on log scale No No No LHAZ

Cumulative density function PDF DENSITY No No

TABLE 11.24 Continued



566 C H A P T E R  1 1

TABLE 11.25 Comparison of Programs for Prediction of Survival Time from Covariates

Feature
SAS

LIFEREG
SAS

PHREG
IBM SPSS 
COXREG

SYSTAT 
SURVIVAL

Input

Specify a frequency variable to indicate 
number of cases

No Yes No Yes

Missing data options No No Yes No

Differential case weighting Yes Yes No No

Specify strata in addition to covariates No STRATA STRATA STRATA

Specify categorical covariates Yes No Yes No

Choice among contrasts for categorical 
covariates

No No Yes No

Test linear hypotheses about regression 
coefficients

No TEST No No

Specify time-dependent covariates No Yes Yes Yes

Specify interval-censoring Yes Yes No Yes

Specify left-censoring Yes Yes No No

Options for finding solution:

Maximum number of iterations MAXITER MAXITER ITERATE MAXIT

One or more convergence criteria CONVERGE Several LCON CONVERGE

Change in parameter estimates N.A. Yes BCON No

Tolerance SINGULAR SINGULAR No TOLERANCE

Specify start values Yes No No Yes

Hold scale and shape parameters fixed Yes No No No

Direct analysis Yes Yes ENTER Yes

Sequential analysis No Yes Yes No

Best-subsets analysis No SCORE No No

Types of stepwise analyses:

Forward stepping N.A. Yes FSTEP Yes

Backward stepping N.A. Yes BSTEP Yes

Interactive stepping N.A. Yes No Yes

Test statistics for removal in stepwise 
analysis

Conditional statistic N.A. No COND No

Wald statistic N.A. No WALD No

Likelihood ratio N.A. STOPRES LR No

Criteria for stepwise analysis

Maximum number of steps N.A. MAXSTEP No MAXSTEP

Probability of score statistic for entry N.A. SLENTRY PIN ENTER
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Feature
SAS

LIFEREG
SAS

PHREG
IBM SPSS 
COXREG

SYSTAT 
SURVIVAL

Input (continued )

Probability of statistic for removal N.A. SLSTAY POUT REMOVE

Force a number of covariates into model N.A. INCLUDE No FORCE

Specify pattern of covariate values for 
plots and tables

No No PATTERN No

Types of models (distribution functions, 
cf. Table 11.9):

Cox proportional hazards No Yes Yes Yes

Weibull Yes No No Yes

Nonaccelerated Weibull No No No Yes

Logistic Yes No No No

Log-logistic Yes No No Yes

Exponential Yes No No Yes

Nonaccelerated exponential No No No Yes

Normal Yes No No No

Log-normal Yes No No Yes

Gamma Yes No No Yes

Request no log transform of response NOLOG No No No

Request no intercept NOINT No No No

Specify survival analyses by groups Yes No No Yes

Special features to deal with tied data No Yes No No

Output

Number of observations and number 
censored

Yes Yes Yes Yes

Percent of events censored No Yes Yes No

Descriptive statistics for each covariate No Yes No No

Initial log-likelihood No Yes (–2) Yes (–2) No

Log-likelihood after each step N.A. Yes (–2) Yes (–2) Yes

Final log-likelihood Yes Yes (–2) Yes (–2) Yes

Overall (score) chi-square No Yes Yes No

Overall Wald chi-square No Yes No No

Chi-  square for change in likelihood from 
previous block

N.A. No Yes No

Chi-  square for change in likelihood from 
previous step

N.A. No Yes No

Residual chi-  square at each step N.A. Yes Yes No

TABLE 11.25 Continued

(continued )
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Feature
SAS

LIFEREG
SAS

PHREG
IBM SPSS 
COXREG

SYSTAT 
SURVIVAL

For each covariate in the equation:

Regression coefficient, B Estimate Parameter
Estimate

B Estimate

Standard error of regression coefficient Std Err Standard Error S.E. S.E.

Confidence interval for regression 
coefficient

No No No Yes

Wald statistic (or B/S.E. or x2) with df 
and significance level

Chi-Square Chi-Square Wald t-ratio

 Hazard (risk) ratio, eB No Risk Ratio Exp(B) No

Confidence interval for hazard ratio No Yes Yes No

Type III SS analysis (combining 
multiple df effects)

Yes No No No

Summary table for stepwise results N.A. Yes No No

Covariate means No No Yes Yes

For covariates not in the equation

Score statistic with df and significance 
level

N.A. Yes Score No

Estimate of partial correlation with 
response variable

N.A. No R No

t-ratio (or chi-  square to enter) and 
significance

N.A. No No Yes

Chi-  square (with df and significance 
level) for model if last entered term 
removed (or chi-  square to remove)

N.A. No Loss
Chi-Square

No

Correlation/covariance matrix of 
parameter estimates

Yes Yes Yes Yes

Baseline cumulative hazard table for each 
stratum

No No Yes No

Survival function(s) No No No Yes

Printed residuals No No No No

Print iteration history ITPRINT ITPRINT No Yes

Plots

Cumulative survival distribution No No SURVIVAL Yes (default)

Cumulative survival function on a log 
scale

No No No TLOG

Cumulative hazard function No No HAZARD CHAZ

Cumulative hazard function on a log scale No No No LHAZ

Log-minus-log-of-survival function No No LML No

TABLE 11.25 Continued
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Feature
SAS

LIFEREG
SAS

PHREG
IBM SPSS 
COXREG

SYSTAT 
SURVIVAL

Saved on request

Coefficients from final model No No Yes No

Survival table No No Yes No

For each case:

Survival function Yes Yes Yes No

Change in coefficient for each covariate 
if current case is removed

No DFBETA Yes No

Residuals and/or partial residuals for 
each covariate

No Yes Yes No

Estimates of linear predictors XBETA XBETA XBETA No

Standard errors of estimated linear 
predictors

STD STDXBETA No No

Linear combination of mean-corrected
covariate times regression coefficients

No No Yes No

Case weight No No No Yes

Time or log(time) of response No Yes No LOWER

Quantile estimates and standard errors QUANTILE No No No

TABLE 11.25 Continued

(risk ratios) and their standard errors for each covariate; LIFEREG provides neither. Both programs 
save predicted scores and their standard errors on request, but only PHREG also provides residu-
als, change in regression coefficients if a case is omitted from the analysis, and log(time) of the 
response. LIFEREG also shows a Type III analysis of effects useful when categorical predictors 
have more than two levels.

11.8.2 IBM SPSS Package

IBM SPSS has an unusual group of programs for survival analysis. There are separate programs for 
actuarial (SURVIVAL, Life Tables in the Survival menu) and product-  limit (KM, Kaplan–  Meier in 
the Survival menu) methods for survivor functions, but only one program for predicting survival 
from covariates (COXREG, Cox Regression in the Survival menu). Other (nonproportional) model-
ing methods are not implemented within the IBM SPSS package.

Both SURVIVAL and KM permit tests of group differences, as well as pairwise comparisons 
if there are more than two groups. KM also provides comparisons of groups when they are ordered. 
Only KM also allows testing of strata pooled over groups, with separate plots provided for each stra-
tum. SURVIVAL, but not KM, can use tabular data as input. KM provides median and mean survival 
times with standard errors and confidence intervals; SURVIVAL only provides median survival time. 
Both provide a variety of plots.
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COXREG permits specification of strata as well as discrete covariates and is the only program 
reviewed that provides a choice among contrasts for discrete covariates. Direct, sequential, and 
stepwise analyses are available. Model parameters and a survival table can be saved to a file, and an 
additional file can be requested for residuals, predicted scores, and other statistics.

11.8.3 SYSTAT System

SYSTAT has a single program, SURVIVAL, for all types of survival analyses, including life tables 
and survivor functions as well as proportional-   and nonproportional-  hazards models for predicting 
survival from covariates. Group differences in survivor functions can be specified; however, they 
are only tested if the product-  limit method is chosen. The program also does not allow much flex-
ibility in defining intervals for survivor functions based on the actuarial method. Mean survival 
times and their standard errors are provided for the product-  limit method only.2

Prediction of survival from covariates can be done using the widest variety of possible 
distribution functions of any single program reviewed here, and time-  dependent covariates can be 
specified. Direct and stepwise analyses are available, and this is the only program reviewed that 
implements interactive stepping. Covariate means are provided, but hazard ratios for each covariate 
and their confidence intervals are not. (Confidence intervals are given for regression coefficients, 
however.) The combining of life tables and prediction functions into a single program provides you 
with a variety of survivor plots in a modeling run. Information saved to file is rather sparse and does 
not include predicted scores or residuals.

2Is there perhaps a bias toward the product-  limit method here?
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12.1 General Purpose and Description

The goal of canonical correlation is to analyze the relationships between two sets of variables. It 
may be useful to think of one set of variables as IVs and the other set as DVs, or it may not. In any 
event, canonical correlation provides a statistical analysis for research in which each subject is 
measured on two sets of variables and the researcher wants to know if and how the two sets relate 
to each other.

Suppose, for instance, a researcher is interested in the relationship between a set of variables 
measuring medical compliance (willingness to buy drugs, to make return office visits, to use drugs, 
to restrict activity) and a set of demographic characteristics (educational level, religious affiliation, 
income, medical insurance). Canonical analysis might reveal that there are two statistically signifi-
cant ways that the two sets of variables are related. The first way is between income and insurance 
on the demographic side and purchase of drugs and willingness to make return office visits on the 
medical-  compliance side. Together, these results indicate a relationship between compliance and 
demography based on the ability to pay for medical services. The second way is between willingness 
to use drugs and restrict activity on the compliance side and religious affiliation and educational level 
on the demographic side, interpreted, perhaps, as a tendency to accede to authority (or not).

The easiest way to understand canonical correlation is to think of multiple regression. In 
regression, there are several variables on one side of the equation and a single variable on the other 
side. The several variables are combined into a predicted value to produce, across all subjects, the 
highest correlation between the predicted value and the single variable. The combination of variables 
can be thought of as a dimension among the many variables that predicts the single variable.

In canonical correlation, the same thing happens except that there are several variables on 
both sides of the equation. Sets of variables on each side are combined to produce, for each side, a 
predicted value that has the highest correlation with the predicted value on the other side. The com-
bination of variables on each side can be thought of as a dimension that relates the variables on one 
side to the variables on the other.

There is a complication, however. In multiple regression, there is only one combination of 
variables because there is only a single variable to predict on the other side of the equation. In 
canonical correlation, there are several variables on both sides and there may be several ways to 
recombine the variables on both sides to relate them to each other. In the example, the first way of 
combining the variables had to do with economic issues and the second way had to do with author-
ity. Although there are potentially as many ways to recombine the variables as there are variables in 
the smaller set, usually only the first two or three combinations are statistically significant and need 
to be interpreted.

12 Canonical Correlation
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Canonical correlation analysis is useful when the underlying dimensions representing the 
combinations of variables are unknown. Structural equations modeling (Chapter 14) may provide 
a more effective analysis when theory or prior research suggests the underlying dimensions 
(e.g., ability to pay for medical services and tendency to accede to authority). Thus, canonical 
analysis may be seen as an exploratory technique, with SEM as the parallel confirmatory 
technique.

A good deal of the difficulty with canonical correlation is due to jargon. First, there are variables, 
then there are canonical variates, and, finally, there are pairs of canonical variates. Variables refer 
to the variables measured in research (e.g., income). Canonical variates are linear combinations 
of variables, one combination on the IV side (e.g., income and medical insurance) and another 
combination on the DV side (e.g., purchase of drugs and willingness to make return office visits). 
These two combinations form a pair of canonical variates. However, there may be more than one 
significant pair of canonical variates (e.g., a pair associated with economics and a pair associated 
with authority).

Canonical analysis is one of the most general of the multivariate techniques. In fact, many 
other procedures—  multiple regression, discriminant analysis, MANOVA—  are special cases of it. 
But it is also the least used and most impoverished of the techniques, for reasons that are discussed 
in what follows. Although not the most popular of multivariate techniques, examples of canonical 
correlation are found across disciplines.

The responses of 195 men from two universities were studied by Fisher and Good (1998). 
The men were assessed for their perceptions of their parent–  child relationships (using the Inventory 
of Parent and Peer Attachment, the Parental Attachment Questionnaire, and the Conflictual 
Independence subscales of the Psychological Separation Inventory) and their masculine role 
conflicts (using both the Gender Role Conflict Scale and the Masculine Gender Role Stress Scale). 
Three significant pairs of canonical variates were found. The first pair suggested that men who 
reported less conflict with both parents also reported less gender role stress concerning being in 
a subordinate position to women and less stress associated with feeling intellectually and physi-
cally inferior. The second variate pair suggested that men who reported that both parents were 
sources of psychological security, that they had lower conflict with their mothers, and that their 
parents were loving and supportive of independence also reported higher conflict and stress related 
to performance but less conflict related to expression of emotions. The third variate pair suggested 
that men who reported their fathers as the primary source of security also reported lower masculine 
role conflict and lower concerns about performance failure and intellectual inadequacy.

Gebers and Peck (2003) examined the relationship between traffic citations and accidents 
in a subsequent three-  year period from those variables plus a variety of demographic variables 
in the prior three-  year period. Two canonical variate pairs were identified that, taken together, 
predicted subsequent traffic incidents (accidents and citations) better than prediction afforded 
by prior citations alone. Increasing traffic incidents were associated with more prior citations, 
more prior accidents, young age, and male gender. A cross-  validation sample confirmed the 
efficacy of the equations.

Wang, Chen, Tang, Lee, and Jian (2011) measured a cross-  sectional sample of 453 13- to 
16-year-  old adolescents in Taiwan on selected developmental assets and health-  promoting behaviors. 
Developmental assets included self-  esteem, future aspirations, responsible choices, family com-
munication, nonparental adult role models, peer role models and community involvement; 
health-  promoting behaviors included life appreciation, health responsibility, social support, stress 
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management, nutrition, and exercise. Two significant pairs of canonical variates were identified. 
The first pair accounted for 51.3% of the variance and showed that adolescents higher on the 
developmental assets also were higher on health-  promoting behaviors. The second canonical variate 
pair accounted for 9.6% of the variance and showed that those with better responsible choices also 
had better stress management behaviors.

12.2 Kinds of Research Questions

Although a large number of research questions are answered by canonical analysis in one of its 
specialized forms (such as discriminant analysis), relatively few intricate research questions are 
readily answered through direct application of computer programs currently available for canonical 
correlation. In part, this has to do with the programs themselves, and in part, it has to do with the 
kinds of questions researchers consider appropriate in a canonical correlation.

In its present stage of development, canonical correlation is best considered a descriptive tech-
nique or a screening procedure rather than a hypothesis–  testing procedure. The following sections, 
however, contain questions that can be addressed with the aid of IBM SPSS and SAS programs.

12.2.1 Number of Canonical Variate Pairs

How many significant canonical variate pairs are there in the data set? Along how many dimensions 
are the variables in one set related to the variables in the other? In the example: Is the pair associated 
with economic issues significant? And if so, is the pair associated with authority also significant? 
Because canonical variate pairs are computed in descending order of magnitude, the first one or two 
pairs are often significant and remaining ones are not. Significance tests for canonical variate pairs 
are described in Sections 12.4 and 12.5.1.

12.2.2 Interpretation of Canonical Variates

How are the dimensions that relate two sets of variables to be interpreted? What is the meaning in 
the combination of variables that compose one variate in conjunction with the combination compos-
ing the other in the same pair? In the example, all the variables that are important to the first pair of 
canonical variates have to do with money, so the combination is interpreted as an economic dimen-
sion. Interpretation of pairs of canonical variates usually proceeds from matrices of correlations 
between variables and canonical variates, as described in Sections 12.4 and 12.5.2.

12.2.3 Importance of Canonical Variates

There are several ways to assess the importance of canonical variates. The first is to ask how strongly 
the variate on one side of the equation relates to the variate on the other side of the equation; that 
is, how strong is the correlation between variates in a pair? A common measure is h2 = (1-Λ) as 
per MANOVA for the entire relationship among pairs of canonical variates. Alternatively, squared 
canonical correlations for each pair of variates are available as a series of measures of effect size, or, 
the average of the squared canonical correlations over the variates is available as a single measure. 
Richardson (2007) argues in favor of h2 = (1−Λ) as the least conservative of the measures.
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The second is to ask how strongly the variate on one side of the equation relates to the vari-
ables on its own side of the equation. The third is to ask how strongly the variate on one side of the 
equation relates to the variables on the other side of the equation.

For the example, what is the correlation between the economic variate on the compliance side 
and the economic variate on the demographic side? Then, how much variance does the economic 
variate on the demographic side extract from the demographic variables? Finally, how much vari-
ance does the economic variate on the demographic side extract from the compliance variables? 
These questions are answered by the procedures described in Sections 12.4 and 12.5.1. Confidence 
limits for canonical correlations are not readily available.

12.2.4 Canonical Variate Scores

Had it been possible to measure directly the canonical variates from both sets of variables, what 
scores would subjects have received on them? For instance, if directly measurable, what scores would 
the first subject have received on the economic variate from the compliance side and the economic 
variate from the demographic side? Examination of canonical variate scores reveals deviant cases, the 
shape of the relationship between two canonical variates, and the shape of the relationships between 
canonical variates and the original variables, as discussed briefly in Sections 12.3 and 12.4.

If canonical variates are interpretable, scores on them might be useful as IVs or DVs in other 
analyses. For instance, the researcher might use scores on the economic variate from the compliance 
side to examine the effects of publicly supported medical facilities. Canonical scores may also be 
useful for comparing canonical correlations in a manner that is generalized from the comparison of 
two sets of predictors (Section 5.6.2.5). Steiger (1980) and Steiger and Browne (1984) provide the 
basic rationale and examples of various procedures for comparing correlations.

12.3 Limitations

12.3.1 Theoretical Limitations1

Canonical correlation has several important theoretical limitations that help explain its scarcity 
in the literature. Perhaps the most critical limitation is interpretability; procedures that maximize 
correlation do not necessarily maximize interpretation of pairs of canonical variates. Therefore, 
canonical solutions are often mathematically elegant but uninterpretable. And, although it is com-
mon practice in factor analysis and principal components analysis (Chapter 13) to rotate a solution 
to improve interpretation, rotation of canonical variates is not common practice or even available in 
some computer programs.

The algorithm used for canonical correlation maximizes the linear relationship between 
two sets of variables. If the relationship is nonlinear, the analysis misses some or most of it. If a 
nonlinear relationship between dimensions in a pair is suspected, use of canonical correlation may 
be inappropriate unless variables are transformed or combined to capture the nonlinear component.

The algorithm also computes pairs of canonical variates that are independent of all other 
pairs. In factor analysis (Chapter 13), one has a choice between an orthogonal (uncorrelated) and 
an oblique (correlated) solution, but in canonical analysis, only the orthogonal solution is routinely 

1The authors are indebted to James Fleming for many of the insights of this section.
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available. In the example, if there was a possible relationship between economic issues and authority, 
canonical correlation might be inappropriate.

An important concern is the sensitivity of the solution in one set of variables to the variables 
included in the other set. In canonical analysis, the solution depends both on correlations among 
variables in each set and on correlations among variables between sets. Changing the variables in 
one set may markedly alter the composition of canonical variates in the other set. To some extent, 
this is expected given the goals of analysis; yet, the sensitivity of the procedure to apparently minor 
changes is a cause for concern.

It is especially important in canonical analysis to emphasize that the use of terms IV and DV 
does not imply a causal relationship. Both sets of measures are manipulated by nature rather than by 
an experimenter’s design, and there is nothing in the statistics that changes that arrangement—  this
is truly a correlational technique. Canonical analysis conceivably could be used when one set of 
measures is indeed experimentally manipulated, but it is surely the case the MANOVA could do a 
better, more interpretable job with such data.

Much of the benefit in studying canonical correlation analysis is in its introduction to the 
notion of dimensionality, and in providing a broad framework with which to understand other 
techniques in which there are multiple variables on both sides of a linear equation.

12.3.2 Practical Issues

12.3.2.1 Ratio of Cases to IVs

The number of cases needed for analysis depends on the reliability of the variables. For variables in 
the social sciences where reliability is often around .80, about 10 cases are needed for every variable. 
However, if reliability is very high, as, for instance, in political science where the variables are measures 
of the economic performance of countries, then a much lower ratio of cases to variables is acceptable.

Power considerations are as important in canonical correlation as in other techniques, but 
software is less likely to be available to provide aid in determining sample sizes for expected effect 
sizes and desired power.

12.3.2.2 Normality, Linearity, and Homoscedasticity

Although there is no requirement that the variables be normally distributed when canonical correlation 
is used descriptively, the analysis is enhanced if they are. However, inference regarding number of 
significant canonical variate pairs proceeds on the assumption of multivariate normality. Multivariate 
normality is the assumption that all variables and all linear combinations of variables are normally 
distributed. It is not itself an easily testable hypothesis (most tests available are too strict), but the 
likelihood of multivariate normality is increased if the variables are all normally distributed.

Linearity is important to canonical analysis in at least two ways. The first is that the analysis 
is performed on correlation or variance–  covariance matrices that reflect only linear relationships. 
If the relationship between two variables is nonlinear, it is not “captured” by these statistics. The 
second is that the canonical correlation maximizes the linear relationship between a variate from 
one set of variables and a variate from the other set. Canonical analysis misses potential nonlinear 
components of relationships between canonical variate pairs.

Finally, canonical analysis is best when relationships among pairs of variables are homosce-
dastic, that is, when the variance of one variable is about the same at all levels of the other variable.
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Normality, linearity, and homoscedasticity can be assessed through normal screening 
procedures or through the distributions of canonical variate scores produced by a preliminary 
canonical analysis. If routine screening is undertaken, variables are examined individually for 
normality through one of the descriptive programs such as IBM SPSS FREQUENCIES or SAS 
Interactive Data Analysis. Pairs of variables, both within sets and across sets, are examined for 
nonlinearity or heteroscedasticity through programs such as SAS PLOT or IBM SPSS GRAPH. 
If one or more of the variables is in violation of the assumptions, transformation is considered, as 
discussed in Chapter 4 and illustrated in Section 12.6.1.2.

Alternatively, distributions of canonical variate scores produced by a preliminary canonical 
analysis are examined for normality, linearity, and homoscedasticity, and, if found, screening of the 
original variables is not necessary. Scatterplots, where pairs of canonical variates are plotted against 
each other, are available through SAS CANCORR, or if canonical variates scores are written to a 
file for processing through a scatterplot program. The IBM SPSS CANCORR macro automatically 
adds canonical variate scores to the original data set. If, in the scatterplots, there is an evidence of 
failure of normality, linearity, and/or homoscedasticity, screening of the variables is undertaken. 
This procedure is illustrated in Section 12.6.1.2.

In the event of persistent heteroscedasticity, you might consider weighting cases based on 
variables producing unequal variance or adding a variable that accounts for unequal variance 
(cf. Section 5.3.2.4).

12.3.2.3 Missing Data

Levine (1977) gives an example of a dramatic change in a canonical solution with a change in pro-
cedures for handling missing data. Because canonical correlation is quite sensitive to minor changes 
in a data set, consider carefully the methods of Chapter 4 for estimating values or eliminating cases 
with missing data.

12.3.2.4 Absence of Outliers

Cases that are unusual often have undue impact on canonical analysis. The search for univariate and 
multivariate outliers is conducted separately within each set of variables. Refer Chapter 4 and Section 
12.6.1.3 for methods of detecting and reducing the effects of both univariate and multivariate outliers.

12.3.2.5 Absence of Multicollinearity and Singularity

For both logical and computational reasons, it is important that the variables in each set and across 
sets are not too highly correlated with each other. This restriction applies to values in Rxx, Ryy, and 
Rxy (see Equation 12.1). Refer Chapter 4 for methods of identifying and eliminating multicollinear-
ity and singularity in correlation matrices.

12.4 Fundamental Equations for Canonical 
Correlation

A data set that is appropriately analyzed through canonical correlation has several subjects, each 
measured on four or more variables. The variables form two sets with at least two variables in the 
smaller set. A hypothetical data set, appropriate for canonical correlation, is presented in Table 12.1. 
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Eight intermediate-   and advanced-  level belly dancers are rated on two sets of variables, the quality of 
their “top” shimmies (TS), “top” circles (TC), and the quality of their “bottom” shimmies (BS), and 
“bottom” circles (BC). Each characteristic of the dance is rated by two judges on a 7-point scale (with 
larger numbers indicating higher quality) and the ratings averaged. The goal of analysis is to discover 
patterns, if any, between the quality of the movements on top and the quality of movements on bottom.

You are cordially invited to follow (or dance along with) this example by hand and by 
computer. Examples of syntax and output for this analysis using several popular computer programs 
appear at the end of this section.

The first step in a canonical analysis is generation of a correlation matrix. In this case, 
however, the correlation matrix is subdivided into four parts: the correlations between the DVs 
(Ryy), the correlations between the IVs (Rxx), and the two matrices of correlations between DVs and 
IVs (Rxy and Ryx).

2 Table 12.2 contains the correlation matrices for the data in the example.
There are several ways to write the fundamental equation for canonical correlation—some 

more intuitively appealing than others. The equations are all variants on the following equation:

R = R- 1
yy RyxR

- 1
xx Rxy (12.1)

The canonical correlation matrix is a product of four correlation matrices, between DVs 
(inverted), between IVs (inverted), and between DVs and IVs.

It is conceptually helpful to compare Equation 12.1 with Equation 5.6 for regression. 
Equation 5.6 indicates that regression coefficients for predicting Y from a set of Xs are a product of 
(the inverse of) the matrix of correlations among the Xs and the matrix of correlations between the 
Xs and Y. Equation 12.1 can be thought of as a product of regression coefficients for predicting Xs
from Ys (R- 1

yy Ryx) and regression coefficients for predicting Ys from Xs (R- 1
xx Rxy).

2Although in this example the sets of variables are neither IVs nor DVs, it is useful to use the terms when explaining the 
procedure.

TABLE 12.1 Small Sample of Hypothetical Data 
for Illustration of Canonical Correlation Analysis

ID TS TC BS BC

1 1.0 1.0 1.0 1.0
2 7.0 1.0 7.0 1.0
3 4.6 5.6 7.0 7.0
4 1.0 6.6 1.0 5.9
5 7.0 4.9 7.0 2.9
6 7.0 7.0 6.4 3.8
7 7.0 1.0 7.0 1.0
8 7.0 1.0 2.4 1.0
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12.4.1 Eigenvalues and Eigenvectors

Canonical analysis proceeds by solving for the eigenvalues and eigenvectors of the matrix R of 
Equation 12.1. Eigenvalues are obtained by analyzing the matrix in Equation 12.1. Eigenvectors are 
obtained for the Y variables first and then calculated for the Xs using Equation 12.6 in Section 12.4.2. 
As discussed in Chapter 13 and in Appendix A, solving for the eigenvalues of a matrix is a process 
that redistributes the variance in the matrix, consolidating it into a few composite variates rather than 
many individual variables. The eigenvector that corresponds to each eigenvalue is transformed into 
the coefficients (e.g., regression coefficients, canonical coefficients) used to combine the original
variables into the composite variate.

Calculation of eigenvalues and corresponding eigenvectors is demonstrated in Appendix A 
but is difficult and not particularly enlightening. For this example, the task is accomplished with 
assistance from SAS CANCORR (see Table 12.4 where the eigenvalues are called canonical 
correlations). The goal is to redistribute the variance in the original variables into a very few pairs of 
canonical variates, each pair capturing a large share of variance and defined by linear combinations 
of IVs on one side and DVs on the other. Linear combinations are chosen to maximize the canonical 
correlation for each pair of canonical variates.

Although computing eigenvalues and eigenvectors is best left to the computer, the relation-
ship between a canonical correlation and an eigenvalue3 is simple, namely,

li = r2
ci (12.2)

Each eigenvalue,li, is equal to the squared canonical correlation, r2
ci, for the pair of 

canonical variates.

Once the eigenvalue is calculated for each pair of canonical variates, canonical correlation 
is found by taking the square root of the eigenvalue. Canonical correlation, rci, is interpreted as 

TABLE 12.2 Correlation Matrices for the Data Set 
in Table 12.1

Rxx Rxy

Ryx Ryy

TS TC BS BC

TS 1.000 -.161 .758 -.341
TC -.161 1.000 .110 .857

BS .758 .110 1.000 .051
BC -.341 .857 .051 1.000

3IBM SPSS and SAS use the terms Sq. Cor and Squared Canonical Correlation, respectively, in place 
of eigenvalue and use the term eigenvalue in a different way.
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an ordinary Pearson product-  moment correlation coefficient. When rci is squared, it represents, as 
usual, overlapping variance between two variables, or, in this case, variates. Because r2

ci = li, the 
eigenvalues themselves represent overlapping variance between pairs of canonical variates.

For the data set of Table 12.1, two eigenvalues are calculated––one for each variable in the 
smaller set (both sets in this case). The first eigenvalue is .83566, which corresponds to a canonical 
correlation of .91414. The second eigenvalue is .58137, so canonical correlation is .76247. That 
is, the first pair of canonical variates correlates .91414 and overlaps 83.57% in variance, and the 
second pair correlates .76247 and overlaps 58.14% in variance.

Note, however, that the variance in the original variables accounted for by the solution cannot 
exceed 100%. Rather, the squared canonical correlation from the second pair of canonical variates 
is the proportion of variance extracted from the residual after the first pair has been extracted.

Significance tests (Bartlett, 1941) are available to test whether one or a set of rcs differs from 
zero.4

x2 = - cN - 1 - a kx + ky + 1

2
b d ln �m (12.3)

The significance of one or more canonical correlations is evaluated as a chi-  square vari-
able, where N is the number of cases, kx is the number of variables in the IV set, ky
is the number in the DV set, and the natural logarithm of lambda, �, is defined in 
Equation 12.4. This chi square has (kx )(ky) df.

�m = q
m

i = 1
(1 - li) (12.4)

Lambda, �, is the product of differences between eigenvalues and unity, generated 
across m canonical correlations.

For the example, to test if the canonical correlations as a set differ from zero:

�2 = (1 - l1) (1 - l2) = (1 - .84) (1 - .58) = .07

x2 = - c 8-1- a 2 + 2 + 1

2
b d ln .07

= -(4.5)(-2.68)

= 12.04

This x2 is evaluated with (kx )(ky) = 4 df. The two canonical correlations differ from zero: 
x2(4, N = 8) = 12.04, p 6 .02. The results of this test are interpreted to mean that there is 
significant overlap in variability between the variables in the IV set and the variables in the DV set, 
that is, that there is some relationship between quality of top movements and of bottom movements. 
This result is often taken as evidence that at least the first canonical correlation is significant.

4Some researchers (e.g., Harris, 2001) prefer a strategy that concentrates only on the first eigenvalue. See Section 7.5.2 for 
a discussion of this issue.
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With the first canonical correlate removed, is there still a significant relationship between the 
two sets of variables?

�1 = (1 - .58) = .42

x2 = - c 8-1- a 2 + 2 + 1

2
b d ln .42

= -(4.5)(- .87)

= 3.92

This chi square has (kx - 1) (ky - 1) = 1 df and also differs significantly from zero: x2(1, N = 8) = 3.92,
p 6 .05. This result indicates that there is still significant overlap between the two sets of variables 
after the first pair of canonical variates is removed. It is taken as evidence that the second canonical 
correlation is also significant.

Significance of canonical correlations is also evaluated using the F distribution as, for 
example, in SAS CANCORR and IBM SPSS MANOVA.

12.4.2 Matrix Equations

Two sets of canonical coefficients (analogous to regression coefficients) are required for each 
canonical correlation, one set to combine the DVs and the other to combine the IVs. The canonical 
coefficients for the DVs are found as follows:

By = (R- 1>2
yy )�Bn y (12.5)

Canonical coefficients for the DVs are a product of (the transpose of the inverse of the 
square root of) the matrix of correlations between DVs and the normalized matrix of 
eigenvectors, Bn y, for the DVs.

For example:5

By = c 1.00 -0.03

-0.03 1.00
d c -0.45 0.89

0.89 0.47
d = c-0.48 0.88

0.90 0.44
d

Once the canonical coefficients are computed, coefficients for the IVs are found using the following 
equation:

Bx = R- 1
xx RxyB

*
y (12.6)

Coefficients for the IVs are a product of (the inverse of the square root of) the matrix of 
correlations between the IVs, the matrix of correlations between the IVs and DVs, and 
the matrix formed by the coefficients for the DVs—each divided by their corresponding 
canonical correlations.

5These calculations, like others in this section, were carried to several decimal places and then rounded back. The results agree 
with computer analyses of the same data but the rounded-  off figures presented here do not always check out to both decimals.
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For example:

Bx = c 1.03 0.17

0.17 1.03
d c 0.76 -0.34

0.11 0.86
d c -0.48> .91 0.89> .76

0.90> .91 0.44> .76
d = c -0.63 0.80

0.69 0.75
d

The two matrices of canonical coefficients are used to estimate scores on canonical variates:

X = ZxBx (12.7)

and

Y = ZyBy (12.8)

Scores on canonical variates are estimated as the product of the standardized scores on 
the original variates, Zx and Zy, and the canonical coefficients used to weight them, Bx
and By.

For example:

X = I-1.54 - 0.91

0.66 - 0.91

-0.22 0.76

-1.54 1.12

0.66 0.50

0.66 1.26

0.66 -0.91

0.66 -0.91

Y c -0.63 0.80

0.69 0.75
d = I 0.34 -1.91

-1.04 -0.15

0.66 0.39

1.73 -0.40

-0.07 0.90

0.45 1.47

-1.04 -0.15

-1.04 -0.15

Y
Y = I -1.36 -0.81

0.76 - 0.81

0.76 1.67

-1.36 1.22

0.76 -0.02

0.55 0.35

0.76 -0.81

-0.86 -0.81

Y c -0.48 0.88

0.90 0.44
d = I -0.07 -1.54

-1.09 0.31

1.14 1.39

1.75 -0.66

-0.38 0.66

0.05 0.63

-1.09 0.31

-0.31 -1.11

Y
The first belly dancer, in standardized scores (and appropriate costume), has a z-score 

of - 1.36 on TS, - 0.81 on TC, - 1.54 on BS, and - 0.91 on BC. When these z-scores are weighted 
by canonical coefficients, this dancer is estimated to have a score of 0.34 on the first canonical vari-
ate and a score of -1.91on the second canonical variate for the IVs (the Xs), and scores of - 0.07 
and - 1.54 on the first and second canonical variates, respectively, for the DVs (the Ys).
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The sum of canonical scores for all belly dancers on each canonical variate is zero, within 
rounding error. These scores, like factor scores (Chapter 13), are estimates of scores the dancers 
would receive if they were judged directly on the canonical variates.

Matrices of correlations between the variables and the canonical coefficients, called loading
matrices, are used to interpret the canonical variates.

Ax = RxxBx (12.9)

and

Ay = RyyBy (12.10)

Correlations between variables and canonical variates are found by multiplying the 
matrix of correlations between variables by the matrix of canonical coefficients.

For example:

Ax = c 1.00 -0.16

-0.16 1.00
d c -0.63 0.80

0.69 0.75
d = c -0.74 0.68

0.79 0.62
d

 Ay = c 1.00 0.05

0.05 1.00
d c -0.48 0.88

0.90 0.44
d = c -0.44 0.90

0.88 0.48
d

The loading matrices for these data are summarized in Table 12.3. Results are interpreted down the 
columns and across the sets of variables. For the first canonical variate pair (the first column), TS 
correlates -.74, TC .79, BS -.44, and BC .88. The first pair of canonical variates links low scores 
on TS and high scores on TC (in the first set of variables) with high scores on BC (in the second 
set), indicating that poor-  quality top shimmies and high-  quality top circles are associated with high-
quality bottom circles.

For the second canonical variate pair (the second column), TS correlates .68, TC .62, BS .90, 
and BC .48; the second canonical variate pair indicates that high scores on bottom shimmies are 
associated with high scores on both top circles and top shimmies. Taken together, these results 

TABLE 12.3 Loading Matrix for the Data Set in Table 12.1

Canonical Variate 
Pairs

Variable Sets First Second

First TS -0.74 0.68
TC 0.79 0.62

Second BS -0.44 0.90
BC 0.88 0.48
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First
Canonical

Variate
X

First
Canonical

Variate
Y

X1

X2

Y1

Y2

ax1

ax2

ay1

ay2

rc1

Xi � Variable in X set

Yi � Variable in Y set

axi
�  Loading of (correlation with) i th X variable on canonical variate X

ayi
�  Loading of (correlation with) i th Y variable on canonical variate Y

rc1
�  Canonical correlation for the first pair of canonical variates

FIGURE 12.1 Relationships among variables, canonical variates, and the 
first pair of canonical variates.

First
Canonical

Variate
X

First
Canonical

Variate
Y

TS

TC

BS

BC

�.74

.79

�.44

.88

.91

Second
Canonical

Variate
X

Second
Canonical

Variate
Y

TS

TC

BS

BC

.68

.62

.90

.48

.76

FIGURE 12.2 Loadings and canonical correlations for both canonical 
variate pairs for the data in Table 12.1.

suggest that ability to do bottom circles is related to the ability to do top circles but the inability to 
do top shimmies, whereas ability to do bottom shimmies is associated with ability to do both top 
movements well.

Figure 12.1 shows, in general, the relationships among variables, canonical variates, and the 
first pair of canonical variates.

Figure 12.2 shows the path diagrams for the two pairs of canonical variates in the small-
sample example.
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12.4.3 Proportions of Variance Extracted

How much variance does each of the canonical variates extract from the variables on its own side 
of the equation? The proportion of variance extracted from the IVs by the canonical variates of the 
IVs is

pvxc = a
kx

i = 1

a2
ixc

kx
(12.11)

and

pvyc = a
ky

i = 1

a2
iyc

ky
(12.12)

The proportion of variance extracted from a set of variables by a canonical variate of the 
set is the sum of the squared correlations divided by the number of variables in the set.

Thus, for the first canonical variate in the set of IVs,

pvx1
=

( - 0.74)2 + 0.792

2
= .58

and for the second canonical variate of the IVs,

pvx2
=

0.682 + 0.622

2
= .42

The first canonical variate extracts 58% of the variance in judgments of top movements, 
whereas the second canonical variate extracts 42% of the variance in judgments of top movements. 
In summing for the two variates, almost 100% of the variance in the IVs is extracted by the two 
canonical variates. As expected in summing the two variables, 100% of the variance in IVs is ex-
tracted by the two canonical variates. This happens when the number of variables on one side of the 
equation is equal to the number of canonical variates. The sum of the pv scores usually is less than 
1.00 if there are more variables than canonical variates.

For the DVs and the first canonical variate,

pvy1
=

( - 0.44)2 + 0.882

2
= .48

and for the second canonical variate,

pvy2
=

0.902 + 0.482

2
= .52

That is, the first canonical variate extracts 48% of the variance in judgments of bottom move-
ments, and the second canonical variate extracts 52% of variance in judgments of bottom move-
ments. Together, the two canonical variates extract almost 100% of the variance in the DVs.
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Often, however, one is interested in knowing how much variance the canonical variates 
from the IVs extract from the DVs, and vice versa. In canonical analysis, this variance is called 
redundancy.

rd = (pv)(r2
c)

The redundancy in a canonical variate is the proportion of variance it extracts from its 
own set of variables times the squared canonical correlation for the pair.

Thus, for example:

rdx1Sy = c 1 - 0.4422 + 0.882

2
d (.84) = 0.40

rdx2Sy = c 0.902 + 0.482

2
d (.58) = 0.30

rdy1Sx = c 1 - 0.7422 + 0.792

2
d (.84) = 0.48

and

rdy2Sx = c 0.682 + 0.622

2
d (0.58) = 0.24

So, the first canonical variate from the IVs extracts 40% of the variance in judgments of qual-
ity of bottom movements. The second canonical variate of the IVs extracts 30% of the variance in 
judgments of quality of bottom movements. Together the two variates extract 70% of the variance 
in the DVs.

The first and second canonical variates for the DVs extract 48% and 24% of the variance in 
judgments of quality of top movements, respectively. Together they extract 72% of the variance in 
judgments of quality of top movements.

12.4.4 Computer Analyses of Small-Sample Example

Tables 12.4 and 12.5 show analyses of this data set by SAS CANCORR and IBM SPSS CANCORR
(Macro), respectively.

In SAS CANCORR (Table 12.4), the one set of variables (DVs) is listed in the input statement that 
begins var, the other set (IVs) in the statement that begins with. Redundancy analysis also is available.

The first segment of output contains the canonical correlations for each of the canonical vari-
ates (labeled 1 and 2), including adjusted and squared correlations as well as standard errors for the 
correlations. The next part of the table shows the eigenvalues, the difference between eigenvalues, 
the proportion, and the cumulative proportion of variance in the solution accounted for by each ca-
nonical variate pair. The Test of HO: . . . table shows “peel off” significance tests for canonical 
variate pairs evaluated through F followed in the next table by several multivariate significance tests. 
Matrices of raw and standardized canonical coefficients for each canonical variate labeled 'VAR'



TABLE 12.4 Syntax and Selected SAS CANCORR Output for Canonical Correlation Analysis of Sample Data of Table 12.1

proc cancorr data=SASUSER.SSCANON;
var TS TC;
with BS BC;

run;

The CANCORR Procedure

Canonical Correlation Analysis

Canonical 
Correlation

Adjusted 
Canonical 

Correlation

Approximate 
Standard 

Error

Squared 
Canonical 

Correlation

1 0.914142 0.889541 0.062116 0.835656
2 0.762475 . 0.158228 0.581368

Test of H0: The canonical correlations in 
Eigenvalues of Inv(E)*H the current row and all that follow are zero 
  = CanRsq/(1-CanRsq)

Eigenvalue Difference Proportion Cumulative
Likelihood 

Ratio
Approximate 

F Value Num DF Den DF Pr > F

1 5.0848 3.6961 0.7855 0.7855 0.06879947 5.62 4 8 0.0187

2 1.3887 0.2145 1.0000 0.41863210 6.94 1 5 0.0462

Multivariate Statistics and F Approximations

S=2 M=−0.5 N=1

Statistic Value F Value Num DF Den DF Pr > F

Wilks’ Lambda 0.06879947 5.62 4 8 0.0187
Pillai’s Trace 1.41702438 6.08 4 10 0.0096
Hotelling-Lawley Trace 6.47354785 4.86 4 6 0.0433
Roy’s Greatest Root 5.08481559 12.71 2 5 0.0109

NOTE: F Statistic for Roy’s Greatest Root is an upper bound.
NOTE: F Statistic for Wilks’ Lambda is exact.

586



Canonical Correlation Analysis

Raw Canonical Coefficients for the VAR Variables

V1 V2

TS −0.229789498 0.2929561178
TC 0.2488132088 0.2703732438

Raw Canonical Coefficients for the WITH Variables

W1 W2

BS −0.169694016 0.3087617628
BC 0.3721067975 0.1804101724

Canonical Correlation Analysis

Standardized Canonical Coefficients for the VAR Variables

V1 V2

TS −0.6253 0.7972
TC 0.6861 0.7456

Standardized Canonical Coefficients for the WITH Variables

W1 W2

BS −0.4823 0.8775
BC 0.9010 0.4368

TABLE 12.4 Continued

(continued )587



Canonical Structure

Correlations Between the VAR Variables and Their Canonical Variables

V1 V2

TS −0.7358 0.6772
TC 0.7868 0.6172

Correlations Between the WITH Variables and Their Canonical Variables

W1 W2

BS −0.4363 0.8998
BC 0.8764 0.4816

Correlations Between the VAR Variables and the Canonical Variables of the WITH Variables

W1 W2

TS −0.6727 0.5163
TC 0.7193 0.4706

Correlations Between the WITH Variables 
and the Canonical Variables of the VAR Variables

V1 V2

BS −0.3988 0.6861
BC 0.8011 0.3672

TABLE 12.4 Continued

588
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and 'WITH' in the syntax follow; loading matrices are labeled Correlations Between 
the . . . Variables and Their Canonical Variables. The portion labeled 
Canonical Structure is a part of the redundancy analysis and shows another type of loading matri-
ces: the correlations between each set of variables and the canonical variates of the other set.

Table 12.5 shows the canonical correlation analysis as run through IBM SPSS CANCORR––a
macro available through syntax. (IBM SPSS MANOVA may also be used through syntax for a ca-
nonical analysis, but the output is much more difficult to interpret.) The INCLUDE instruction 
invokes the IBM SPSS CANCORR macro by running the syntax file: canonical correlation.sps.6

The rather compact output begins with correlation matrices for both sets of variables individu-
ally and together. Canonical Correlations are then given, followed by their peel down x2

tests. Standardized and raw canonical coefficients and loadings are then shown, in the same format 
as SAS. Correlations between one set of variables and the canonical variates of the other set are la-
beled Cross Loadings. A redundancy analysis is produced by default, showing for each set the 
proportion of variance associated with its own and the other set. Compare these values with results 
of Equations 12.11 through 12.13. The program writes canonical scores to the data file and writes a 
scoring program to another file.

TABLE 12.5 Syntax and Selected IBM SPSS CANCORR Output for 
Canonical Correlation Analysis on Sample Data in Table 12.1

INCLUDE 'Canonical correlation.sps'.
CANCORR SET1 = ts, tc /

SET2 = bs, bc /.

Run MATRIX procedure:

Correlations for Set-1
TS TC

TS 1.0000 −.1611
TC −.1611 1.0000

Correlations for Set-2
BS BC

BS 1.0000 .0511
BC .0511 1.0000

Correlations Between Set-1 and Set-2
BS BC

TS .7580 −.3408
TC .1096 .8570

Canonical Correlations
1 .914
2 .762

(continued )

6A copy of this syntax file is included with the SPSS data files for this book online.
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Test that remaining correlations are zero:

Wilk’s Chi-SQ DF Sig.
1 .069 12.045 4.000 .017
2 .419 3.918 1.000 .048

Standardized Canonical Coefficients for Set-1
1 2

TS −.625 .797
TC .686 .746

Raw Canonical Coefficients for Set-1
1 2

TS −.230 .293
TC .249 .270

Standardized Canonical Coefficients for Set-2
1 2

BS −.482 .878
BC .901 .437

Raw Canonical Coefficients for Set-2
1 2

BS −.170 .309
BC .372 .180

Canonical Loadings for Set-1
1 2

TS −.736 .677
TC .787 .617

Cross Loadings for Set-1
1 2

TS −.673 .516
TC .719 .471

Canonical Loadings for Set-2
1 2

BS −.436 .900
BC .876 .482

Cross Loadings for Set-2
1 2

BS −.399 .686
BC .801 .367

TABLE 12.5 Continued
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TABLE 12.5 Continued

Redundancy Analysis:

Proportion of Variance of Set-1 Explained by Its Own Can. Var.
Prop Var

CV1-1 .580
CV1-2 .420

Proportion of Variance of Set-1 Explained by Opposite Can.Var.
Prop Var

CV2-1 .485
CV2-2 .244

Proportion of Variance of Set-2 Explained by Its Own Can. Var.
Prop Var

CV2-1 .479
CV2-2 .521

Proportion of Variance of Set-2 Explained by Opposite Can. Var.
Prop Var

CV1-1 .400
CV1-2 .303

—END MATRIX—

12.5 Some Important Issues

12.5.1 Importance of Canonical Variates

As in most statistical procedures, establishing significance is usually the first step in evaluating a 
solution. Conventional statistical procedures apply to significance tests for the number of canonical 
variate pairs. The results of Equations 12.13 and 12.14, or a corresponding F test, are available in 
all programs reviewed in Section 12.7. But the number of statistically significant pairs of canonical 
variates is often larger than the number of interpretable pairs if N is at all sizable.

The only potential source of confusion is the meaning of the chain of significance tests. The 
first test is for all pairs taken together and is a test of independence between the two sets of vari-
ables. The second test is for all pairs of variates with the first and most important pair of canonical 
variates removed; the third is done with the first two pairs removed, and so forth. If the first test, but 
not the second, reaches significance, then only the first pair of canonical variates is interpreted.7 If 
the first and second tests are significant but the third is not, then the first two pairs of variates are 
interpreted, and so on. Because canonical correlations are reported out in descending order of im-
portance, usually only the first few pairs of variates are interpreted.

Once significance is established, amount of variance accounted for is of critical importance. 
Because there are two sets of variables, several assessments of variance are relevant. First, there is 

7It is possible that the first canonical variate pair is not, by itself, significant, but rather achieves significance only in combi-
nation with the remaining canonical variate pairs. To date, there is no significance test for each pair by itself.
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variance overlap between variates in a pair; second is a variance overlap between a variate and its 
own set of variables; and third is a variance overlap between a variate and the other set of variables.

The first, and easiest, is the variance overlap between each significant set of canonical variate 
pairs. As indicated in Equation 12.2, the squared canonical correlation is the overlapping variance 
between a pair of canonical variates. Most researchers do not interpret pairs with a canonical corre-
lation lower than .30, even if interpreted,8 because rc values of .30 or lower represent, squared, less 
than a 10% overlap in variance.

The next consideration is the variance a canonical variate extracts from its own set of vari-
ables. A pair of canonical variates may extract very different amounts of variance from their respec-
tive sets of variables. Equations 12.11 and 12.12 indicate that the variance extracted, pv, is the sum 
of squared loadings on a variate divided by the number of variables in the sets.9 Because canonical 
variates are independent of one another (orthogonal), pvs are summed across all significant variates 
to arrive at the total variance extracted from the variables by all the variates of the set.

The last consideration is the variance a variate from one set extracts from the variables in the 
other set, called redundancy (Stewart & Love, 1968; Miller & Farr, 1971). Equation 12.12 shows that 
redundancy is the proportion of variance extracted by a canonical variate times the canonical correla-
tion for the pair. A canonical variate from the IVs may be strongly correlated with the IVs, but weakly 
correlated with the DVs (and vice versa). Therefore, the redundancies for a pair of canonical variates 
are usually not equal. Because canonical variates are orthogonal, redundancies for a set of variables 
are also added across canonical variates to get a total for the DVs relative to the IVs, and vice versa.

12.5.2 Interpretation of Canonical Variates

Canonical correlation creates linear combinations of variables, canonical variates, that represent 
mathematically viable combinations of variables. However, although mathematically viable, they 
are not necessarily interpretable. A major task for the researcher is to discern, if possible, the mean-
ing of pairs of canonical variates.

Interpretation of significant pairs of canonical variates is based on the loading matrices, Ax and 
Ay (Equations 12.9 and 12.10, respectively). Each pair of canonical variates is interpreted as a pair, 
with a variate from one set of variables interpreted vis-à-vis the variate from the other set. A variate 
is interpreted by considering the pattern of variables highly correlated (loaded) with it. Because the 
loading matrices contain correlations, and because squared correlations measure overlapping vari-
ance, variables with correlations of .30 (9% of variance) and above are usually interpreted as part of 
the variate, and variables with loadings below .30 are not. Deciding on a cutoff for interpreting load-
ings is, however, somewhat a matter of taste, although guidelines are presented in Section 13.6.5.

12.6 Complete Example of Canonical Correlation

For an example of canonical correlation, variables are selected from among those made available by 
research described in Appendix B, Section B.1. The goal of analysis is to discover the dimensions, if any, 
along which certain attitudinal variables are related to certain health characteristics. Files are CANON.*.

Selected attitudinal variables (Set 1) include attitudes toward the role of women (ATTROLE), 
toward locus of control (CONTROL), toward current marital status (ATTMAR), and toward self 

8Significance depends, to a large extent, on N.
9This calculation is identical to the one used in factor analysis for the same purpose, as shown in Table 13.4.
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(ESTEEM). Larger numbers indicate increasingly conservative attitudes about the proper role of 
women, increasing feelings of powerlessness to control one’s fate (external as opposed to internal locus 
of control), increasing dissatisfaction with current marital status, and increasingly poor self-  esteem.

Selected health variables (Set 2) include mental health (MENHEAL), physical health 
(PHYHEAL), number of visits to health professionals (TIMEDRS), attitude toward the use of 
medication (ATTDRUG), and a frequency–  duration measure of the use of psychotropic drugs 
(DRUGUSE). Larger numbers reflect poorer mental and physical health, more visits, greater will-
ingness to use drugs, and more use of them.

12.6.1 Evaluation of Assumptions

12.6.1.1 Missing Data

A screening run through SAS MEANS, illustrated in Table 12.6, finds missing data for 6 of the 
465 cases. One woman lacks a score on CONTROL, and five lack scores on ATTMAR. With dele-
tion of these cases (less than 2%), remaining N = 459.

12.6.1.2 Normality, Linearity, and Homoscedasticity

SAS provides a particularly flexible scheme for assessing normality, linearity, and homoscedasticity 
between pairs of canonical variates. Canonical variate scores are saved to a data file, and then PROC
PLOT permits a scatterplot of them.

Figure 12.3 shows two scatterplots produced by PROC PLOT for the example using default 
size values for the plots. The CANCORR syntax runs a preliminary canonical correlation analysis 
and saves the canonical variate scores (as well as the original data) to a file labeled LSSCORES. 
The four canonical variates for the first set are labeled V1 through V4; the canonical variates for the 
second set are labeled W1 through W4. Thus, the Plot syntax requests scatterplots that are between 
the first and second pairs of canonical variates, respectively. V1 is canonical variate scores, first set, 
and first variate; W1 is canonical variate scores, second set, and first variate. V2 is canonical variate 
scores, first set, and second variate; W2 is canonical variate scores, second set, and second variate.

The shapes of the scatterplots reflect the low canonical correlations for the solution (see Section 
12.6.2), particularly for the second pair of variates where the overall shape is nearly circular except for a 
few extreme values in the lower third of the plot. There are no obvious departures from linearity or ho-
moscedasticity because the overall shapes do not curve and they are of about the same width throughout.

Deviation from normality is evident, however, for both pairs of canonical variates: on both 
plots, the 0–  0 point departs from the center of the vertical and horizontal axes. If the points are pro-
jected as a frequency distribution to the vertical or horizontal axes of the plots, there is further evi-
dence of skewness. For the first plot, there is a pileup of cases at low scores and a smattering of cases 
at high scores on both axes, indicating positive skewness. In plot 2, there are widely scattered cases 
with extremely low scores on W2, with no corresponding high scores, indicating negative skewness.

Departure from normality is confirmed by the output of SAS MEANS. By using Equation 4.4 to 
compute the standard error for skewness,

Ss = A
6

N
= A

6

465
= 0.1136

and Equation 4.5 to compute z for skewness, Table 12.7 shows extreme positive skewness for 
TIMEDRS(z = 3.248>0.1136 = 28.59) as well as strong skewness for PHYHEAL, ATTMAR, and 



TABLE 12.6 Syntax and Selected SAS MEANS Output for Initial Screening of Canonical Correlation Data Set

proc means data=SASUSER.CANON  vardef=DF
          N NMISS MIN MAX MEAN VAR STD SKEWNESS KURTOSIS;
   var TIMEDRS ATTDRUG PHYHEAL MENHEAL ESTEEM CONTROL ATTMAR
          DRUGUSE ATTROLE;
run;

The MEANS Procedure

Variable Label N
N

Miss Minimum Maximum

TIMEDRS Visits to health professionals 465 0 0 81.0000000
ATTDRUG Attitude toward use of medication 465 0 5.0000000 10.0000000
PHYHEAL Physical health symptoms 465 0 2.0000000 15.0000000
MENHEAL Mental health symptoms 465 0 0 18.0000000
ESTEEM Self-esteem 465 0 8.0000000 29.0000000
CONTROL Locus of control 464 1 5.0000000 10.0000000
ATTMAR Attitude toward current marital status 460 5 11.0000000 58.0000000
DRUGUSE Use of psychotropic drugs 465 0 0 66.0000000
ATTROLE Attitudes toward role of women 465 0 18.0000000 55.0000000

Variable Label Mean Variance Std Dev

TIMEDRS Visits to health professionals 7.9010753 119.8695032 10.9484932
ATTDRUG Attitude toward use of medication 7.6860215 1.3365499 1.1560925
PHYHEAL Physical health symptoms 4.9720430 5.7039581 2.3882961
MENHEAL Mental health symptoms 6.1225806 17.5862347 4.1935945
ESTEEM Self-esteem 15.8344086 15.5436411 3.9425425
CONTROL Locus of control 6.7478448 1.6015072 1.2655067
ATTMAR Attitude toward current marital status 22.9804348 73.1608364 8.5534108
DRUGUSE Use of psychotropic drugs 9.0021505 102.2737023 10.1130461
ATTROLE Attitudes toward role of women 35.1354839 45.6734149 6.7582109

Variable Label Skewness Kurtosis

TIMEDRS Visits to health professionals 3.2481170 13.1005155
ATTDRUG Attitude toward use of medication −0.1225099 −0.4470689
PHYHEAL Physical health symptoms 1.0313360 1.1235075
MENHEAL Mental health symptoms 0.6024595 −0.2921355
ESTEEM Self-esteem 0.4812032 0.2916191
CONTROL Locus of control 0.4895045 −0.3992646
ATTMAR Attitude toward current marital status 1.0035327 0.8119797
DRUGUSE Use of psychotropic drugs 1.7610005 4.2601383
ATTROLE Attitudes toward role of women 0.0498862 −0.4009358

594
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DRUGUSE. Logarithmic transformation of these variables results in variables that are far less skewed. The 
transformed variables are named LATTMAR, LDRUGUSE, LTIMEDRS, and LPHYHEAL. Moderate 
skewness also is noted for MENHEAL, ESTEEM, and CONTROL. However, histograms and normal 
probability plots through SAS UNIVARIATE (not shown) indicated no serious departure from normality.

A second SAS MEANS run provides univariate statistics for both transformed and untrans-
formed variables. Table 12.7 shows the SAS DATA step to delete the cases with missing data on 
CONTROL and ATTMAR and accomplish the logarithmic transforms for four of the variables. 
New values (along with old ones) are saved in a data set called CANONT. Only skewness and kur-
tosis are requested for the new variables.

Compare the skewness and kurtosis of ATTMAR and DRUGUSE in Table 12.6 with that of 
LATTMAR and LDRUGUSE in Table 12.7. SAS PLOT scatterplots based on transformed variables 
(not shown) confirm improvement in normality with transformed variables, particularly for the 
second pair of canonical variates.

12.6.1.3 Outliers

Standard scores are created by SAS STANDARD (Table 12.8) specifying MEAN=0 and STD=1.
These scores are saved into a new file labeled CANONS, which is then used by SAS MEANS to 
print minimum and maximum values for all of the variables to be used in the analysis.

Minimum and maximum standard scores are within a range of {3.29 with the exception of a 
large score on ESTEEM (z = 3.34), not disturbing in a sample of over 400 cases.

SAS REGRESSION is used to screen multivariate outliers by requesting that leverage values 
be saved in a new data file. Table 12.9 shows syntax to run the regression analysis on the first set of 
variables and save the H (leverage) values into a data file labeled CANLEV. Leverage values for the 
first few cases are shown in the table.
Critical value of Mahalanobis distance with four variables at a = .001 is 18.467. Using Equation 4.3 to 
convert this to a critical leverage value:

hii =
18.467

459 - 1
+

1

459
= 0.0425

There are no outliers in the segment of the data set shown in Table 12.9 or any other in either set of 
variables.

12.6.1.4 Multicollinearity and Singularity

SAS CANCORR protects against multicollinearity and singularity by setting a value for tolerance 
(sing) in the main analysis. It is not necessary to further check multicollinearity unless there is 
reason to expect large SMCs among variables in either set and there is a desire to eliminate logically 
redundant variables.

12.6.2 Canonical Correlation

The number and importance of canonical variates are determined using procedures from 
Section 12.5.1 (Table 12.10). RED requests redundancy statistics.

Significance of the relationships between the sets of variables is reported directly by 
SAS CANCORR, as shown in Table 12.10. With all four canonical correlations included, 
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FIGURE 12.3 SAS CANCORR and PLOT syntax and output showing 
scatterplots between first and second pairs of canonical variates.

proc cancorr data=SASUSER.CANON
out=WORK.LSSCORES
sing=1E-8;

  var ESTEEM CONTROL ATTMAR ATTROLE;
  with MENHEAL PHYHEAL TIMEDRS ATTDRUG DRUGUSE;
run;
proc plot data=WORK.LSSCORES;
    plot w1*v1;
    plot w2*v2;
run;

F(20, 1493.4) = 5.58, p 6 .001. With the first and second canonical correlations removed, F val-
ues are not significant; F(6, 904) = 0.60, p = .66. Therefore, only significant relationships are in 
the first two pairs of canonical variates and these are interpreted.

Canonical correlations (rc) and eigenvalues (r2
c) are also in Table 12.10. The first canonical 

correlation is .38 (.36 adjusted), representing 14% overlapping variance for the first pair of canoni-
cal variates (see Equation 12.2). The second canonical correlation is .27 (.26 adjusted), representing 
7% overlapping variance for the second pair of canonical variates. Although highly significant, 
neither of these two canonical correlations represents a substantial relationship between pairs of 
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FIGURE 12.3 Continued.

canonical variates. Interpretation of the second canonical correlation and its corresponding pair 
of canonical variates is marginal.

Loading matrices between canonical variates and original variables are in Table 12.11. 
Interpretation of the two significant pairs of canonical variates from loadings follows procedures 
mentioned in Section 12.5.2. Correlations between variables and variates (loadings) in excess of 
.3 are interpreted. Both the direction of correlations in the loading matrices and the direction of scales 
of measurement are considered when interpreting the canonical variates.

The first pair of canonical variates has high loadings on ESTEEM, CONTROL, and LATTMAR
(.596, .784, and .730, respectively) on the attitudinal set and on LPHYHEAL and MENHEAL 
(.408 and .968) on the health side. Thus, low self-  esteem, external locus of control, and dissatisfac-
tion with marital status are related to poor physical and mental health.

The second pair of canonical variates has high loadings on ESTEEM, LATTMAR, and ATTROLE
(.601, -.317 and .783) on the attitudinal side and LTIMEDRS, ATTDRUG, and LDRUGUSE (-.359, 
.559, and -.548) on the health side. Big numbers on ESTEEM, little numbers on LATTMAR, and 
big numbers on ATTROLE go with little numbers on LTIMEDRS, big numbers on ATTDRUG, and 
little numbers on LDRUGUSE. That is, low self-  esteem, satisfaction with marital status, and conserva-
tive attitudes toward the proper role of women in society go with few visits to physicians, favorable 
attitudes toward the use of drugs, and little actual use of them. (Figure that one out!)
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TABLE 12.7 SAS DATA and MEANS Syntax and Output Showing Skewness and Kurtosis

data SASUSER.CANONT;
set SASUSER.CANON;
if CONTROL =. or ATTMAR =. then delete;
LTIMEDRS = log10(TIMEDRS+1);
LPHYHEAL = log10(PHYHEAL);
LATTMAR = log10(ATTMAR);
LDRUGUSE = log10(DRUGUSE + 1);

run;
proc means data=SASUSER.CANONT vardef=DF
    N NMISS SKEWNESS KURTOSIS MEAN;
    var LTIMEDRS LPHYHEAL LATTMAR LDRUGUSE;
run;

The MEANS Procedure

Variable Label N
N

Miss Skewness Kurtosis Mean

LTIMEDRS log( TIMEDRS + 1) 459 0 0.2296331 −0.1861264 0.7413859
LPHYHEAL log( PHYHEAL) 459 0 −0.0061454 −0.6984603 0.6476627
LATTMAR log( ATTMAR) 459 0 0.2291448 −0.5893927 1.3337398
LDRUGUSE log( DRUGUSE + 1) 459 −0.1527641 −1.0922599 0.7637207
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TABLE 12.8 SAS STANDARD and MEANS Syntax and Output to Evaluate Univariate Outliers

proc standard data=SASUSER.CANONT out=SASUSER.CANONS
vardef=DF MEAN=0 STD=1;

    var LTIMEDRS LPHYHEAL LATTMAR LDRUGUSE
ATTDRUG MENHEAL ESTEEM CONTROL ATTROLE;

run;
proc means data=SASUSER. CANONS vardef=DF

N MIN MAX;
    var LTIMEDRS LPHYHEAL LATTMAR LDRUGUSE

ATTDRUG MENHEAL ESTEEM CONTROL ATTROLE;
run;

Variable Label N Minimum Maximum

LTIMEDRS log( TIMEDRS + 1) 459 −1.7788901 2.8131374
LPHYHEAL log( PHYHEAL) 459 −1.6765455 2.5558303
LATTMAR log( ATTMAR) 459 −1.8974189 2.7888035
LDRUGUSE log( DRUGUSE + 1) 459 −1.5628634 2.1739812
ATTDRUG Attitude toward use of medication 459 −2.3195715 2.0119310
MENHEAL Mental health symptoms 459 −1.4747464 2.8675041
ESTEEM Self-esteem 459 −1.9799997 3.3391801
CONTROL Locus of control 459 −1.3761468 2.5569253
ATTROLE Attitudes toward role of women 459 −2.5470346 2.9333009
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Loadings are converted to pv values by application of Equations 12.11 and 12.12. These values 
are shown in the output in sections labeled Standardized Variance of the . . . 
Variables Explained by Their Own Canonical Variables (Table 12.11). 
The values for the first pair of canonical variates are .38 for the first set of variables and .24 for 
the second set of variables. That is, the first canonical variate pair extracts 38% of variance from the 
attitudinal variables and 24% of variance from the health variables. The values for the second pair 
of canonical variates are .27 for the first set of variables and .15 for the second set; the second 

TABLE 12.9 SAS REG Syntax and Selected Portion of Data File for 
Identification of Multivariate Outliers for the First Set of Variables

proc reg data=SASUSER.CANONT;
    model SUBNO= ESTEEM CONTROL LATTMAR ATTROLE;

output out=SASUSER.CANONLEV H=H;
run;

SASUSER.CANONLEV

459
15 Int

LTIMEDRS LPHYHEAL LATTMAR LDRUGUSE
Int Int Int

H
Int

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

0.3010
0.6021
0.0000
1.1461
1.2041
0.6021
0.4771
0.0000
0.9031
0.6990
1.2041
0.0000
0.4771
1.1461
0.4771
0.4771
0.3010
0.4771
0.7782
0.7782
0.6021
0.6990
0.4771
0.0000
1.1461
0.9031
0.4771
1.1139
0.4771
0.7782
0.6990
0.8451
0.4771
0.6021

0.6990
0.6021
0.4771
0.3010
0.4771
0.6990
0.6990
0.6021
0.6990
0.4771
0.7782
0.4771
0.4771
0.7782
0.4771
0.4771
0.4771
0.8451
0.6021
0.8451
0.6021
0.3010
0.4771
0.6990
0.8541
0.9031
0.7782
0.9542
0.4771
0.8451
0.9031
0.9031
0.7782
0.6021

1.5563
1.3222
1.3010
1.3802
1.1761
1.4472
1.4314
1.2553
1.0792
1.7243
1.0414
1.2041
1.2304
1.3010
1.1761
1.0792
1.2553
1.0414
1.3222
1.4161
1.4150
1.3979
1.3222
1.5798
1.5051
1.3617
1.3222
1.3979
1.5441
1.2788
1.2788
1.2041
1.3222
1.2041

0.6021
0.0000
0.6021
0.7782
1.3979
0.6021
0.0000
0.0000
0.4771
1.0414
1.2788
0.3010
0.6021
1.4771
0.0000
0.3010
0.0000
1.1761
1.3010
0.9031
0.3010
0.6021
0.6021
0.9031
1.4314
1.1139
0.4771
1.5563
0.4471
1.3424
0.9031
0.4471
0.4771
0.0000

0.0163
0.0080
0.0111
0.0049
0.0121
0.0080
0.0100
0.0128
0.0114
0.0208
0.0150
0.0120
0.0184
0.0076
0.0102
0.0092
0.0090
0.0149
0.0066
0.0147
0.0096
0.0133
0.0037
0.0219
0.0123
0.0109
0.0098
0.0049
0.0094
0.0229
0.0039
0.0126
0.0241
0.0050



TABLE 12.10 Syntax and Selected Portion of SAS CANCORR Output Showing Canonical Correlations and Significance Levels 
for Sets of Canonical Correlations

proc cancorr data=SASUSER.CANONT RED
out=SASUSER.LSSCORNW
sing=1E-8;
var ESTEEM CONTROL LATTMAR ATTROLE;
with LTIMEDRS ATTDRUG LPHYHEAL MENHEAL LDRUGUSE;

run;

The CANCORR Procedure

Canonical Correlation Analysis

Canonical 
Correlation

Adjusted Canonical 
Correlation

Approximate 
Standard Error

Squared 
Canonical 

Correlation

1 0.378924 0.357472 0.040018 0.143583
2 0.268386 0.255318 0.043361 0.072031
3 0.088734 . 0.046359 0.007874
4 0.034287 . 0.046672 0.001176

Eigenvalues of Inv(E)*H 
= CanRsq/(1-CanRsq)

Test of H0: The canonical correlations in the 
current row and all that follow are zero

Eigenvalue Difference Proportion Cumulative
Likelihood 

Ratio
Approximate 

F Value Num DF Den DF Pr > F

1 0.1677 0.0900 0.6590 0.6590 0.78754370 5.58 20 1493.4 <.0001
2 0.0776 0.0697 0.3051 0.9642 0.91957989 3.20 12 1193.5 0.0002
3 0.0079 0.0068 0.0312 0.9954 0.99095995 0.69 6 904 0.6613
4 0.0012 0.0046 1.0000 0.99882441 0.27 2 453 0.7661
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TABLE 12.11 Selected SAS CANCORR Output of Loading Matrices for the Two Sets of Variables in the Example. Syntax Is in Table 12.10

Canonical Structure

Correlations Between the VAR Variables and Their Canonical Variables

V1 V2 V3 V4
ESTEEM Self-esteem 0.5958 0.6005 −0.2862 −0.4500
CONTROL Locus of control 0.7836 0.1478 −0.1771 0.5769
LATTMAR log( ATTMAR) 0.7302 −0.3166 0.4341 −0.4221
ATTROLE Attitudes toward role of women −0.0937 0.7829 0.6045 0.1133

Correlations Between the WITH Variables and Their Canonical Variables

W1 W2 W3 W4
LTIMEDRS log( TIMEDRS + 1) 0.1229 −0.3589 −0.8601 0.2490
ATTDRUG Attitude toward use of medication 0.0765 0.5593 −0.0332 0.4050
LPHYHEAL log( PHYHEAL) 0.4082 −0.0479 −0.6397 −0.5047
MENHEAL Mental health symptoms 0.9677 −0.1434 −0.1887 0.0655
LDRUGUSE log( DRUGUSE + 1) 0.2764 −0.5479 0.0165 −0.0051
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TABLE 12.12 Selected SAS CANCORR Output Showing Proportions of Variance and Redundancy 
for First and Second Set of Canonical Variates. Syntax Is in Table 12.10

Canonical Redundancy Analysis

Standardized Variance of the VAR Variables Explained by
Their Own 

Canonical Variables
The Opposite 

Canonical Variables

Canonical 
Variable 
Number Proportion

Cumulative 
Proportion

Canonical 
R-square Proportion

Cumulative 
Proportion

1 0.3777 0.3777 0.1436 0.0542 0.0542
2 0.2739 0.6517 0.0720 0.0197 0.0740
3 0.1668 0.8184 0.0079 0.0013 0.0753
4 0.1816 1.0000 0.0012 0.0002 0.0755

Standardized Variance of the WITH Variables Explained by
Their Own 

Canonical Variables
The Opposite 

Canonical Variables

Canonical 
Variable 
Number Proportion

Cumulative 
Proportion

Canonical 
R-square Proportion

Cumulative 
Proportion

1 0.2401 0.2401 0.1436 0.0345 0.0345
2 0.1529 0.3930 0.0720 0.0110 0.0455
3 0.2372 0.6302 0.0079 0.0019 0.0474
4 0.0970 0.7272 0.0012 0.0001 0.0475

canonical variate pair extracts 27% of variance from the attitudinal variables and 15% of variance 
from the health variables. Together, the two canonical variates account for 65% of variance (38% 
plus 27%) in the attitudinal set, and 39% of variance (24% and 15%) in the health set.

Redundancies for the canonical variates are found in SAS CANCORR in the sections labeled 
Variance of the ... Variables Explained by The Opposite Canonical 
Variables (Table 12.12). That is, the first health variate accounts for 5% of the variance in the at-
titudinal variables, and the second health variate accounts for 2% of the variance. Together, two health 
variates “explain” 7% of the variance in attitudinal variables. The first attitudinal variate accounts for 
3% and the second 1% of the variance in the health set. Together, the two attitudinal variates overlap 
the variance in the health set, 4%.

If a goal of analysis is production of scores on canonical variates, coefficients for them are 
readily available. Table 12.13 shows both standardized and unstandardized coefficients for produc-
tion of canonical variates. Scores on the variates themselves for each case are also produced by SAS 
CANCORR if an output file is requested (see syntax in Table 12.9). A summary table of information 
appropriate for inclusion in a journal article appears in Table 12.14.

A checklist for canonical correlation appears in Table 12.15. An example of a Results section, 
in journal format, follows for the complete analysis described in Section 12.6.



TABLE 12.13 Selected SAS CANCORR Output of Unstandardized and Standardized Canonical Variate Coefficients. Syntax Is in Table 12.10

Canonical Correlation Analysis

Raw Canonical Coefficients for the VAR Variables

V1 V2 W1 W2

ESTEEM Self-esteem 0.0619490461 0.1551478815 −0.158970745 −0.172696778
CONTROL Locus of control 0.465185442 0.0213951395 −0.086711685 0.6995969512
LATTMAR log( ATTMAR) 3.4017147794 −2.916036329 4.756204374 −2.413350645
ATTROLE Attitudes toward role of women −0.012933183 0.0919237888 0.1182827337 0.0303123963

Raw Canonical Coefficients for the WITH Variables

LTIMEDRS log( TIMEDRS + 1) −0.64318212 −0.925366063
ATTDRUG Attitude toward use of medication 0.0396639542 0.6733109169
LPHYHEAL log( PHYHEAL) 0.2081929915 2.1591824353
MENHEAL Mental health symptoms 0.2563584017 0.0085859621
LDRUGUSE log( DRUGUSE + 1) −0.122004514 −1.693255583

Raw Canonical Coefficients for the WITH Variables

W3 W4

LTIMEDRS log( TIMEDRS + 1) −2.0510523 1.8736861531
ATTDRUG Attitude toward use of medication −0.03925235 0.3880909448
LPHYHEAL log( PHYHEAL) −2.144723348 −5.73998122
MENHEAL Mental health symptoms 0.0368750419 0.0917261729
LDRUGUSE log( DRUGUSE + 1) 1.0486138709 −0.102427113
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Standardized Canonical Coefficients for the VAR Variables

V1 V2 V3 V4

ESTEEM Self-esteem 0.2446 0.6125 −0.6276 −0.6818
CONTROL Locus of control 0.5914 0.0272 −0.1102 0.8894
LATTMAR log( ATTMAR) 0.5241 −0.4493 0.7328 −0.3718
ATTROLE Attitudes toward role of women −0.0873 0.6206 0.7986 0.2047

Standardized Canonical Coefficients for the WITH Variables

W1 W2 W3 W4

LTIMEDRS log(TIMEDRS + 1) −0.2681 −0.3857 −0.8548 0.7809

ATTDRUG Attitude toward use of medication 0.0458 0.7772 −0.0453 0.4480
LPHYHEAL log( PHYHEAL) 0.0430 0.4464 −0.4434 −1.1868
MENHEAL Mental health symptoms 1.0627 0.0356 0.1529 0.3802
LDRUGUSE log(DRUGUSE + 1) −0.0596 −0.8274 0.5124 −0.0501

TABLE 12.13 Continued
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TABLE 12.14 Correlations, Standardized Canonical Coefficients, Canonical Correlations, Proportions 
of Variance, and Redundancies Between Attitudinal and Health Variables and Their Corresponding 
Canonical Variates

First Canonical Variate Second Canonical Variate

Correlation Coefficient Correlation Coefficient

Attitudinal set
Locus of control .78 .59 .15 .03
Attitude toward current marital status 

(logarithm)
.73 .52 -.32 -.45

Self-esteem .60 .25 .60 .61
Attitude toward role of women -.09 -.09 .78 .62

Proportion of variance .38 .27 Total = .65
Redundancy .05 .02 Total = .07

Health set
Mental health .97 1.06 -.14 .04
Physical health (logarithm) .41 .04 -.05 .45
Visits to health professionals (logarithm) .12 -.27 -.36 -.39
Attitude toward use of medication .08 .05 .56 .78
Use of psychotropic drugs (logarithm) .28 -.06 -.55 -.83

Proportion of variance .24 .15 Total = .39
Redundancy .03 .01 Total = .04

Canonical correlation etc. .38 .27

TABLE 12.15 Checklist for Canonical Correlation

1. Issues

a. Missing data

b. Normality, linearity, homoscedasticity

c. Outliers

d. Multicollinearity and singularity

2. Major analyses

a. Significance of canonical correlations

b. Correlations of variables and variates

c. Variance accounted for

(1) By canonical correlations

(2) By same-set canonical variates

(3) By other-  set canonical variates (redundancy)

3. Additional analyses

a. Canonical coefficients

b. Canonical variates scores
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Results

Canonical correlation was performed between a set of 

attitudinal variables and a set of health variables using SAS 

CANCORR. The attitudinal set included attitudes toward the role 

of women, toward locus of control, toward current marital status, 

and toward self-  worth. The health set measured mental health, 

physical health, visits to health professionals, attitude toward 

use of medication, and use of psychotropic drugs. Increasingly 

large numbers reflected more conservative attitudes toward 

women’s role, external locus of control, dissatisfaction with 

marital status, low self-  esteem, poor mental health, poor 

physical health, more numerous health visits, favorable attitudes 

toward drug use, and more drug use.

To improve linearity of relationship between variables and 

normality of their distributions, logarithmic transformations 

were applied to attitude toward marital status, visits to health 

professionals, physical health, and drug use. No within-  set 

multivariate outliers were identified at p < .001, although 

six cases were found to be missing data on locus of control or 

attitude toward marital status and were deleted, leaving N = 459. 

Assumptions regarding within-  set multicollinearity were met.

The first canonical correlation was .38 (14% overlapping 

variance); the second was .27 (7% overlapping variance). The 

remaining two canonical correlations were effectively zero. With 

all four canonical correlations included, F(20, 1493.4) = 5.58, 

p < .001, and with the first canonical correlation removed, 

F(12, 1193.5) = 3.20, p < .001. Subsequent F tests were not 

statistically significant. The first two pairs of canonical 
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variates, therefore, accounted for the significant relationships 

between the two sets of variables.

Data on the first two pairs of canonical variates appear 

in Table 12.14. Shown in the table are correlations between the 

variables and the canonical variates, standardized canonical 

variate coefficients, within-  set variance accounted for by the 

canonical variates (proportion of variance), redundancies, and 

canonical correlations. Total proportion of variance and total 

redundancy indicate that the first pair of canonical variates 

was moderately related, but the second pair was only minimally 

related; interpretation of the second pair is questionable.

With a cutoff correlation of .3, the variables in the 

attitudinal set that were correlated with the first canonical 

variate were locus of control, (log of) attitude toward marital 

status, and self-  esteem. Among the health variables, mental 

health and (log of) physical health correlated with the first 

canonical variate. The first pair of canonical variates indicates 

that those with external locus of control (.78), feelings of 

dissatisfaction toward marital status (.73), and lower self- 

esteem (.60) are associated with more numerous mental health 

symptoms (.97) and more numerous physical health symptoms (.41).

The second canonical variate in the attitudinal set was 

composed of attitude toward role of women, self-  esteem, and 

negative of (log of) attitude toward marital status, and the 

corresponding canonical variate from the health set was composed 

of negative of (log of) drug use, attitude toward drugs, and 

negative of (log of) visits to health professionals. Taken 

as a pair, these variates suggest that a combination of more 

conservative attitudes toward the role of women (.78), lower 
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self-  esteem (.60), but relative satisfaction with marital status 

(−.32) is associated with a combination of more favorable 

attitudes toward use of drugs (.56), but lower psychotropic drug 

use (−.55), and fewer visits to health professionals (−.36).

That is, women who have conservative attitudes toward the 

role of women and are happy with their marital status but have 

lower self-  esteem are likely to have more favorable attitudes 

toward drug use but fewer visits to health professionals and 

lower use of psychotropic drugs.

12.7 Comparison of Programs

One program is available in the SAS package for canonical analyses. IBM SPSS has two programs 
that may be used for canonical analysis. Table 12.16 provides a comparison of important features of 
the programs. If available, the program of choice is SAS CANCORR and, with limitations, the IBM 
SPSS CANCORR macro.

12.7.1 SAS System

SAS CANCORR is a flexible program with abundant features and ease of interpretation. Along 
with the basics, you can specify easily interpretable labels for canonical variates and the program 
accepts several types of input matrices.

Multivariate output is quite detailed, with several test criteria and voluminous redundancy 
analyses. Univariate output is minimal, however, and if plots are desired, case statistics such as 
canonical scores are written to a file to be analyzed by the SAS PLOT procedure. If requested, the 
program does separate multiple regressions with each variable predicted from the other set. You can 
also do separate canonical correlation analyses for different groups.

12.7.2 IBM SPSS Package

IBM SPSS has two programs for canonical analysis, both available only through syntax: IBM SPSS
MANOVA and a CANCORR macro (see Table 12.5). A complete canonical analysis is available 
through SPSS MANOVA, which provides loadings, proportions of variance, redundancy, and much 
more. But problems arise with reading the results, because MANOVA is not designed specifically 
for canonical analysis and some of the labels are confusing.
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TABLE 12.16 Comparison of IBM SPSS, SAS, and SYSTAT Programs for Canonical Correlation

Feature
IBM SPSS 
MANOVAa

IBM SPSS 
CANCORR

SAS
CANCORR

SYSTAT
SETCOR

Input

Correlation matrix Yes Yes Yes Yes

Covariance matrix No No Yes No

SSCP matrix No No Yes No

Number of canonical variates No Yes Yes No

Tolerance No No Yes No

Minimum canonical correlation Specify alpha No No No

Labels for canonical variates No No Yes No

Error df if residuals input No No Yes No

Specify partialing covariates No No Yes Yes

Output

Univariate:

Means Yes No Yes No

Standard deviations Yes No Yes No

Confidence intervals Yes No No No

Normal plots Yes No No No

Multivariate:

Canonical correlations Yes Yes Yes Yes

Eigenvalues Yes No Yes No

Significance test F x2 F x2

Lambda Yes No Yes RAO

Additional test criteria Yes No Yes Yes

Correlation matrix Yes Yes Yes Yes

Covariance matrix Yes No No No

Loading matrix Yes Yes Yes Yes

Loading matrix for opposite set No Yes Yes No

Raw canonical coefficients Yes Yes Yes Yes

Standardized canonical coefficients Yes Yes Yes Yes

Canonical variate scores No Data file Data file No

Proportion of variance Yes Yes Yes No

Redundancies Yes Yes Yes Yes

Stewart-Love Redundancy Index No No No Yes

Between-sets SMCs No No Yes No

Multiple-regression analyses DVs only No Yes DVs only

Separate analyses by groups No No Yes No

aAdditional features are listed in Sections 6.7 and 7.7.
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Canonical analysis is requested through MANOVA by calling one set of variables DVs and 
the other set covariates; no IVs are listed. Although IBM SPSS MANOVA provides a rather com-
plete canonical analysis, it does not calculate canonical variate scores, nor does it offer multivariate 
plots. Tabachnick and Fidell (1996) show an IBM SPSS MANOVA analysis of the small-  sample 
example of Table 12.1.

Syntax and output for the IBM SPSS CANCORR macro is much simpler and easier to inter-
pret. All of the critical information is available, however, with the peel-  down tests, and a full set of 
correlations, canonical coefficients, and loadings. A redundancy analysis is included by default, and 
canonical variate scores are written to the original data set for plotting.

12.7.3 SYSTAT System

Currently, canonical analysis is most readily done through SETCOR (SYSTAT Software Inc., 
2002). The program provides all of the basics of canonical correlation and several others. There is 
a test of overall association between the two sets of variables, as well as tests of prediction of each 
DV from the set of IVs. The program also provides analyses in which one set is partialed from the 
other set––useful for statistical adjustment of irrelevant sources of variance (as per covariates in 
ANCOVA) as well as representation of curvilinear relationships and interactions. These features 
are well explained in the manual. The Stewart–  Love canonical redundancy index also is provided. 
Canonical factors may be rotated.

Canonical analysis may also be done through the multivariate general linear model GLM pro-
gram in SYSTAT. But to get all the output, the analysis must be done twice, once with the first set 
of variables defined as the DVs, and a second time with the other set of variables defined as DVs. 
The advantages over SETCOR are that canonical variate scores may be saved in a data file, and that 
standardized canonical coefficients are provided.
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13.1 General Purpose and Description

Principal components analysis (PCA) and factor analysis (FA) are statistical techniques applied to a 
single set of variables when the researcher is interested in discovering which variables in the set form 
coherent subsets that are relatively independent of one another. Variables that are correlated with one 
another but largely independent of other subsets of variables are combined into factors.1 Factors are 
thought to reflect underlying processes that have created the correlations among variables.

Suppose, for instance, a researcher is interested in studying characteristics of graduate stu-
dents. The researcher measures a large sample of graduate students on personality characteristics, 
motivation, intellectual ability, scholastic history, familial history, health and physical characteris-
tics, etc. Each of these areas is assessed by numerous variables; the variables all enter the analysis 
individually at one time, and correlations among them are studied. The analysis reveals patterns of 
correlation among the variables that are thought to reflect underlying processes affecting the behav-
ior of graduate students. For instance, several individual variables from the personality measures 
combine with some variables from the motivation and scholastic history measures to form a factor 
measuring the degree to which a person prefers to work independently––an independence factor. 
Several variables from the intellectual ability measures combine with some others from scholastic 
history to suggest an intelligence factor.

A major use of PCA and FA in psychology is in development of objective tests for measure-
ment of personality and intelligence and the like. The researcher starts out with a very large number 
of items reflecting a first guess about the items that may eventually prove useful. The items are 
given to randomly selected subjects, and factors are derived. As a result of the first factor analy-
sis, items are added and deleted, a second test is devised, and that test is given to other randomly 
selected subjects. The process continues until the researcher has a test with numerous items forming 
several factors that represent the area to be measured. The validity of the factors is tested in research 
where predictions are made regarding differences in the behavior of persons who score high or low 
on a factor.

The specific goals of PCA or FA are to summarize patterns of correlations among observed 
variables, to reduce a large number of observed variables to a smaller number of factors, to pro-
vide an operational definition (a regression equation) for an underlying process by using observed 

13 Principal Components 
and Factor Analysis

1PCA produces components while FA produces factors, but it is less confusing in this section to call the results of both 
analyses factors.
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variables, or to test a theory about the nature of underlying processes. Some or all of these goals 
may be the focus of a particular research project.

PCA and FA have considerable utility in reducing numerous variables down to a few fac-
tors. Mathematically, PCA and FA produce several linear combinations of observed variables, 
where each linear combination is a factor. The factors summarize the patterns of correlations in 
the observed correlation matrix and can be used, with varying degrees of success, to reproduce the 
observed correlation matrix. But since the number of factors is usually far fewer than the number 
of observed variables, there is considerable parsimony in using the factor analysis. Further, when 
scores on factors are estimated for each subject, they are often more reliable than scores on indi-
vidual observed variables.

Steps in PCA or FA include selecting and measuring a set of variables, preparing the correla-
tion matrix (to perform either PCA or FA), extracting a set of factors from the correlation matrix, 
determining the number of factors, (probably) rotating the factors to increase interpretability, and, 
finally, interpreting the results. Although there are relevant statistical considerations to most of these 
steps, an important test of the analysis is its interpretability.

A good PCA or FA “makes sense”; a bad one does not. Interpretation and naming of factors 
depend on the meaning of the particular combination of observed variables that correlate highly 
with each factor. A factor is more easily interpreted when several observed variables correlate 
highly with it and those variables do not correlate with other factors.

Once interpretability is adequate, the last, and very large, step is to verify the factor structure 
by establishing the construct validity of the factors. The researcher seeks to demonstrate that scores 
on the latent variables (factors) covary with scores on other variables, or that scores on latent vari-
ables change with experimental conditions as predicted by theory.

One of the problems with PCA and FA is that there are no readily available criteria against 
which to test the solution. In regression analysis, for instance, the DV is a criterion and the correla-
tion between observed and predicted DV scores serves as a test of the solution—  similarly for the 
two sets of variables in canonical correlation. In discriminant function analysis, logistic regression, 
profile analysis, and multivariate analysis of variance, the solution is judged by how well it predicts 
group membership. But in PCA and FA, there is no external criterion such as group membership 
against which to test the solution.

A second problem with FA or PCA is that, after extraction, there is an infinite number of 
rotations available, all accounting for the same amount of variance in the original data, but with the 
factors defined slightly differently. The final choice among alternatives depends on the researcher’s 
assessment of its interpretability and scientific utility. In the presence of an infinite number of math-
ematically identical solutions, researchers are bound to differ regarding which is best. Because the 
differences cannot be resolved by appeal to objective criteria, arguments over the best solution 
sometimes become vociferous. However, those who expect a certain amount of ambiguity with 
respect to choice of the best FA solution will not be surprised when other researchers choose a dif-
ferent one. Nor will they be surprised when results are not replicated exactly, if different decisions 
are made at one, or more, of the steps in performing FA.

A third problem is that FA is frequently used in an attempt to “save” poorly conceived re-
search. If no other statistical procedure is applicable, at least data can usually be factor analyzed. 
Thus, in the minds of many, the various forms of FA are associated with sloppy research. The very 
power of PCA and FA to create apparent order from real chaos contributes to their somewhat tar-
nished reputations as scientific tools.
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There are two major types of FA: exploratory and confirmatory. In exploratory FA, one 
seeks to describe and summarize data by grouping together variables that are correlated. The vari-
ables themselves may or may not have been chosen with potential underlying processes in mind. 
Exploratory FA is usually performed in the early stages of research, when it provides a tool for con-
solidating variables and for generating hypotheses about underlying processes. Confirmatory FA is 
a much more sophisticated technique used in the advanced stages of the research process to test a 
theory about latent processes. Variables are carefully and specifically chosen to reveal underlying 
processes. Currently, confirmatory FA is most often performed through structural equation model-
ing (Chapter 14).

Before we go on, it is helpful to define a few terms. The first terms involve correlation matri-
ces. The correlation matrix produced by the observed variables is called the observed correlation 
matrix. The correlation matrix produced from factors, that is, correlation matrix implied by the 
factor solution, is called the reproduced correlation matrix. The difference between observed and 
reproduced correlation matrices is the residual correlation matrix. In a good FA, correlations in the 
residual matrix are small, indicating a close fit between the observed and reproduced matrices.

A second set of terms refers to matrices produced and interpreted as part of the solution. 
Rotation of factors is a process by which the solution is made more interpretable without changing 
its underlying mathematical properties. There are two general classes of rotation: orthogonal and 
oblique. If rotation is orthogonal (so that all the factors are uncorrelated with each other), a loading
matrix is produced. The loading matrix is a matrix of correlations between observed variables and 
factors. The sizes of the loadings reflect the extent of relationship between each observed variable 
and each factor. Orthogonal FA is interpreted from the loading matrix by looking at which observed 
variables correlate with each factor.

If rotation is oblique (so that the factors themselves are correlated), several additional matrices 
are produced. The factor correlation matrix contains the correlations among the factors. The load-
ing matrix from orthogonal rotation splits into two matrices for oblique rotation: a structure matrix 
of correlations between factors and variables and a pattern matrix of unique relationships (uncon-
taminated by overlap among factors) between each factor and each observed variable. Following 
oblique rotation, the meaning of factors is ascertained from the pattern matrix.

Lastly, for both types of rotations, there is a factor-  score coefficients matrix––a matrix of 
coefficients used in several regression-  like equations to predict scores on factors from scores on 
observed variables for each individual.

FA produces factors, while PCA produces components. However, the processes are similar 
except in preparation of the observed correlation matrix for extraction and in the underlying theory. 
Mathematically, the difference between PCA and FA is in the variance that is analyzed. In PCA, all 
the variances in the observed variables are analyzed. In FA, only shared variance is analyzed; at-
tempts are made to estimate and eliminate variance due to error and variance that is unique to each 
variable. The term factor is used here to refer to both components and factors unless the distinction 
is critical, in which case the appropriate term is used.

Theoretically, the difference between FA and PCA lies in the reason that variables are associ-
ated with a factor or component. Factors are thought to “cause” variables—  the underlying construct 
(the factor) is what produces scores on the variables. Thus, exploratory FA is associated with theory 
development and confirmatory FA is associated with theory testing. The question in exploratory FA is: 
What are the underlying processes that could have produced correlations among these variables? The 
question in confirmatory FA is: Are the correlations among variables consistent with a hypothesized 
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factor structure? Components are simply aggregates of correlated variables. In that sense, the vari-
ables “cause”—or produce—  the component. There is no underlying theory about which variables 
should be associated with which factors; they are simply empirically associated. It is understood that 
any labels applied to derived components are merely convenient descriptions of the combination of 
variables associated with them, and do not necessarily reflect some underlying process.

Tiffin, Kaplan, and Place (2011) gathered responses from 673 adolescents (age range 12–  18)
for an exploratory FA of a 75-item test of perceptions of family functioning. Items were derived 
from previous work that seemed to indicate a five-  factor structure and from feedback from both pro-
fessionals and other adolescents. The exploratory FA with varimax rotation revealed three signifi-
cant factors accounting for 73% of the variance. However, the first factor seemed to be a composite 
of three themes; the 75 items were pruned and a five-  factor structure was accepted with between 
five and seven items per factor. The five factors were labeled Nurture, Problem Solving, Expressed 
Emotion, Behavioral Boundaries, and Responsibility.

LaVeist, Isaac, and Williams (2009) used principle components analysis to reduce a 17-item
Medical Mistrust Index to 7 items. They used a nicely constructed telephone survey of 401 persons 
to identify the first principle component and then a follow-up interview of 327 of them three weeks 
later to investigate utilization of health services. Those who scored higher on the 7-item Medical 
Mistrust Index were more likely to fail to take medical advice, fail to keep a follow-up appointment, 
postpone receiving needed care, and fail to fill a prescription; they were not, however, more likely 
to fail to get needed medical care.

Kinoshita and Miyashita (2011) used maximum likelihood extraction and promax rotation to 
study difficulties felt by ICU nurses in providing end-of-life care. A total of 224 ICU nurses from 
the Kanto region of Japan participated in the first part of the study. The researchers hypothesized 
that the nurses would have difficulties in nine different areas, and generated 75 items to assess 
those areas. However, the FA revealed only five factors with a total of 28 items. Although promax 
rotation might have revealed correlated factors, the highest actual correlation between two factors 
was .51. The final five factors were called “the purpose of the ICU is recovery and survival”; “nursing 
system and model nurse for end-of-life care”; “building confidence in end-of-life care”; “caring for 
patients and families at end-of-life”; and “converting from curative care to end-of-life care”.

13.2 Kinds of Research Questions

The goal of research using PCA or FA is to reduce a large number of variables to a smaller num-
ber of factors, to concisely describe (and perhaps understand) the relationships among observed 
variables, or to test theory about underlying processes. Some of the specific questions that are fre-
quently asked are presented in Sections 13.2.1 through 13.2.5.

13.2.1 Number of Factors

How many reliable and interpretable factors are there in the data set? How many factors are needed 
to summarize the pattern of correlations in the correlation matrix? In the graduate student example, 
two factors are discussed: Are these both reliable? Are there any more factors that are reliable? 
Strategies for choosing an appropriate number of factors and for assessing the correspondence be-
tween observed and reproduced correlation matrices are discussed in Section 13.6.2.
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13.2.2 Nature of Factors

What is the meaning of the factors? How are the factors to be interpreted? Factors are interpreted by 
the variables that correlate with them. Rotation to improve interpretability is discussed in Section 
13.6.3; interpretation itself is discussed in Section 13.6.5.

13.2.3 Importance of Solutions and Factors

How much variance in a data set is accounted for by the factors? Which factors account for the 
most variance? In the graduate student example, does the independence or intellectual ability fac-
tor account for more of the variance in the measured variables? How much variance does each 
account for? In a good factor analysis, a high percentage of the variance in the observed variables 
is accounted for by the first few factors. And, because factors are computed in descending order of 
magnitude, the first factor accounts for the most variance, with later factors accounting for less and 
less of the variance until they are no longer reliable. Methods for assessing the importance of solu-
tions and factors are in Section 13.6.4.

13.2.4 Testing Theory in FA

How well does the obtained factor solution fit an expected factor solution? If the researcher had 
generated hypotheses regarding both the number and the nature of the factors expected of graduate 
students, comparisons between the hypothesized factors and the factor solution provide a test of the 
hypotheses. Tests of theory in FA are addressed, in preliminary form, in Sections 13.6.2 and 13.6.7.

More highly developed techniques are available for testing theory in complex data sets in the 
form of structural equation modeling, which can also be used to test theory regarding factor struc-
ture. These techniques are sometimes known by the names of the most popular programs for doing 
them––EQS and LISREL. Structural equation modeling is the focus of Chapter 14. Confirmatory 
FA is demonstrated in Section 14.7.

13.2.5 Estimating Scores on Factors

Had factors been measured directly, what scores would subjects have received on each of them? 
For instance, if each graduate student were measured directly on independence and intelligence, 
what scores would each student receive for each of them? Estimation of factor scores is the topic of 
Section 13.6.6.

13.3 Limitations

13.3.1 Theoretical Issues

Most applications of PCA or FA are exploratory in nature; FA is used primarily as a tool for reduc-
ing the number of variables or examining patterns of correlations among variables. Under these 
circumstances, both the theoretical and the practical limitations to FA are relaxed in favor of a frank 
exploration of the data. Decisions about number of factors and rotational scheme are based on prag-
matic rather than theoretical criteria.
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The research project that is designed specifically to be factor analyzed, however, differs from 
other projects in several important respects. Among the best detailed discussions of the differences 
is the one found in Comrey and Lee (1992), from which some of the following discussion is taken.

The first task of the researcher is to generate hypotheses about factors believed to underlie 
the domain of interest. Statistically, it is important to make the research inquiry broad enough to 
include five or six hypothesized factors so that the solution is stable. Logically, in order to reveal 
the processes underlying a research area, all relevant factors have to be included. Failure to measure 
some important factor may distort the apparent relationships among measured factors. Inclusion of 
all relevant factors poses a logical, but not statistical, problem to the researcher.

Next, one selects variables to observe. For each hypothesized factor, five or six variables, each 
thought to be a relatively pure measure of the factor, are included. Pure measures are called marker 
variables. Marker variables are highly correlated with one and only one factor and load on it regard-
less of extraction or rotation technique. Marker variables are useful because they define clearly the 
nature of a factor; adding potential variables to a factor to round it out is much more meaningful if 
the factor is unambiguously defined by marker variables to begin with.

The complexity of the variables is also considered. Complexity is indicated by the number of 
factors with which a variable correlates. A pure variable, which is preferred, is correlated with only 
one factor, whereas a complex variable is correlated with several. If variables differing in complex-
ity are all included in an analysis, those with similar complexity levels may “catch” each other in 
factors that have little to do with underlying processes. Variables with similar complexity may cor-
relate with each other because of their complexity and not because they relate to the same factor. 
Estimating (or avoiding) the complexity of variables is part of generating hypotheses about factors 
and selecting variables to measure them.

Several other considerations are required of the researcher planning a factor analytic study. 
It is important, for instance, that the sample chosen exhibits spread in scores with respect to the 
variables and the factors they measure. If all subjects achieve about the same score on some fac-
tor, correlations among the observed variables are low and the factor may not emerge in analysis. 
Selection of subjects expected to differ on the observed variables and underlying factors is an im-
portant design consideration.

One should also be wary of pooling the results of several samples, or the same sample with 
measures repeated in time, for factor analytic purposes. First, samples that are known to be dif-
ferent with respect to some criterion (e.g., socioeconomic status) may also have different factors. 
Examination of group differences is often quite revealing. Second, underlying factor structure may 
shift in time for the same subjects with learning or with experience in an experimental setting and 
these differences may also be quite revealing. Pooling results from diverse groups in FA may obscure 
differences rather than illuminate them. On the other hand, if different samples do produce the same 
factors, pooling them is desirable because of increase in sample size. For example, if men and women 
produce the same factors, the samples should be combined and the results of the single FA reported.

13.3.2 Practical Issues

Because FA and PCA are exquisitely sensitive to the sizes of correlations, it is critical that hon-
est correlations be employed. Sensitivity to outlying cases, problems created by missing data, and 
degradation of correlations between poorly distributed variables all plague FA and PCA. A review 
of these issues in Chapter 4 is important to FA and PCA. Thoughtful solutions to some of the 
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problems, including variable transformations, may markedly enhance FA, whether performed for 
exploratory or confirmatory purposes. However, the limitations apply with greater force to confir-
matory FA if done through FA rather than SEM programs.

13.3.2.1 Sample Size and Missing Data

Correlation coefficients tend to be less reliable when estimated from small samples. Therefore, it 
is important that sample size be large enough that correlations are reliably estimated. The required 
sample size also depends on magnitude of population correlations and number of factors: if there 
are strong correlations and a few, distinct factors, a smaller sample size is adequate.

MacCallum, Widaman, Zhang, and Hong (1999) show that samples in the range of 100–  200 are 
acceptable with well-  determined factors (i.e., most factors defined by many indicators, i.e., marker 
variables with loadings 7 .80) and communalities (squared multiple correlations among variables) in 
the range of .5. At least 300 cases are needed with low communalities, a small number of factors, and 
just three or four indicators for each factor. Sample sizes well over 500 are required under the worst 
conditions of low communalities and a larger number of weakly determined factors. Impact of sam-
ple size is reduced with consistently high communalities (all greater than .6) and well-  determined 
factors. In such cases, samples well below 100 are acceptable, although such small samples run the 
computational risk of failure of the solution to converge.

McCallum et al. recommend designing studies in which variables are selected to provide as high 
a level of communalities as possible (a mean level of at least .7) with a small range of variation, a small 
to moderate number of factors (say, three to five) and several indicators per factor (say, five to seven).

If cases have missing data, either the missing values are estimated or the cases deleted. Consult 
Chapter 4 for methods of finding and estimating missing values. Consider the distribution of missing 
values (is it random?) and remaining sample size when deciding between estimation and deletion. If 
cases are missing values in a nonrandom pattern or if sample size becomes too small, estimation is in 
order. However, beware of using estimation procedures (such as regression) that are likely to overfit 
the data and cause correlations to be too high. These procedures may “create” factors.

13.3.2.2 Normality

As long as PCA and FA are used descriptively as convenient ways to summarize the relationships 
in a large set of observed variables, assumptions regarding the distributions of variables are not in 
force. If variables are normally distributed, the solution is enhanced. To the extent that normality 
fails, the solution is degraded but may still be worthwhile.

However, multivariate normality is assumed when statistical inference is used to determine the 
number of factors. Multivariate normality is the assumption that all variables, and all linear combina-
tions of variables, are normally distributed. Although tests of multivariate normality are overly sensi-
tive, normality among single variables is assessed by skewness and kurtosis (see Chapter 4 and Section 
13.7.1.2). If a variable has substantial skewness and kurtosis, variable transformation is considered. 
Some SEM (Chapter 14) programs (e.g., Mplus and EQS) permit PCA/FA with nonnormal variables.

13.3.2.3 Linearity

Multivariate normality also implies that relationships among pairs of variables are linear. The analy-
sis is degraded when linearity fails, because correlation measures linear relationship and does not 
reflect nonlinear relationship. Linearity among pairs of variables is assessed through inspection of 
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scatterplots. Consult Chapter 4 and Section 13.7.1.3 for methods of screening for linearity. If non-
linearity is found, transformation of variables is considered.

13.3.2.4 Absence of Outliers Among Cases

As in all multivariate techniques, cases may be outliers either on individual variables (univariate) or 
on combinations of variables (multivariate). Such cases have more influence on the factor solution 
than other cases. Consult Chapter 4 and Section 13.7.1.4 for methods of detecting and reducing the 
influence of both univariate and multivariate outliers.

13.3.2.5 Absence of Multicollinearity and Singularity

In PCA, multicollinearity is not a problem because there is no need to invert a matrix. For most 
forms of FA and for estimation of factor scores in any form of FA, singularity or extreme multicol-
linearity is a problem. For FA, if the determinant of R and eigenvalues associated with some factors 
approach 0, multicollinearity or singularity may be present.

To investigate further, look at the SMCs for each variable where it serves as DV with all other 
variables as IVs. If any of the SMCs is one, singularity is present; if any of the SMCs is very large (near 
one), multicollinearity is present. Delete the variable with multicollinearity or singularity. Chapter 4 and 
Section 13.7.1.5 provide examples of screening for and dealing with multicollinearity and singularity.

13.3.2.6 Factorability of R

A matrix that is factorable should include several sizable correlations. The expected size depends, 
to some extent, on N (larger sample sizes tend to produce smaller correlations), but if no correlation 
exceeds .30, use of FA is questionable because there is probably nothing to factor analyze. Inspect
R for correlations in excess of .30, and, if none is found, reconsider use of FA.

High bivariate correlations, however, are not ironclad proof that the correlation matrix con-
tains factors. It is possible that the correlations are between only two variables and do not reflect the 
underlying processes that are simultaneously affecting several variables. For this reason, it is helpful 
to examine matrices of partial correlations where pairwise correlations are adjusted for effects of all 
other variables. If there are factors present, then high bivariate correlations become very low partial 
correlations. IBM SPSS and SAS produce partial correlation matrices.

Bartlett’s (1954) test of sphericity is a notoriously sensitive test of the hypothesis that the cor-
relations in a correlation matrix are zero. The test is available in IBM SPSS FACTOR but because of 
its sensitivity and its dependence on N, the test is likely to be significant with samples of substantial 
size even if correlations are very low. Therefore, use of the test is recommended only if there are 
fewer than, say, five cases per variable.

Several more sophisticated tests of the factorability of R are available through IBM SPSS and 
SAS. Both programs give significance tests of correlations, the anti-  image correlation matrix, and 
Kaiser’s (1970, 1974) measure of sampling adequacy. Significance tests of correlations in the corre-
lation matrix provide an indication of the reliability of the relationships between pairs of variables. 
If R is factorable, numerous pairs are significant. The anti-  image correlation matrix contains the 
negatives of partial correlations between pairs of variables with effects of other variables removed. 
If R is factorable, there are mostly small values among the off-  diagonal elements of the anti-  image
matrix. Finally, Kaiser’s measure of sampling adequacy is a ratio of the sum of squared correlations 
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to the sum of squared correlations plus sum of squared partial correlations. The value approaches 
1 if partial correlations are small. Values of .6 and above are required for good FA.

13.3.2.7 Absence of Outliers Among Variables

After FA, in both exploratory and confirmatory FA, variables that are unrelated to others in the set 
are identified. These variables are usually not correlated with the first few factors although they 
often correlate with factors extracted later. These factors are usually unreliable, both because they 
account for very little variance and because factors that are defined by just one or two variables are 
not stable. Therefore, one never knows whether these factors are “real.” Suggestions for determin-
ing reliability of factors defined by one or two variables are in Section 13.6.2.

If the variance accounted for by a factor defined by only one or two variables is high enough, 
the factor is interpreted with great caution or is ignored, as pragmatic considerations dictate. In con-
firmatory FA done through FA rather than SEM programs, the factor represents either a promising 
lead for future work or (probably) error variance, but its interpretation awaits clarification by more 
research.

A variable with a low squared multiple correlation with all other variables and low correla-
tions with all important factors is an outlier among the variables. The variable is usually ignored in 
the current FA and either deleted or given friends in future research. Screening for outliers among 
variables is illustrated in Section 13.7.1.7.

13.4 Fundamental Equations 
for Factor Analysis

Because of the variety and complexity of the calculations involved in preparing the correlation ma-
trix, extracting factors, and rotating them, and because, in our judgment, little insight is produced by 
demonstrations of some of these procedures, this section does not show them all. Instead, the rela-
tionships between some of the more important matrices are shown, with an assist from IBM SPSS 
FACTOR for underlying calculations.

Table 13.1 lists many of the important matrices in FA and PCA. Although the list is lengthy, 
it is composed mostly of matrices of correlations (between variables, between factors, and between 
variables and factors), matrices of standard scores (on variables and on factors), matrices of regres-
sion weights (for producing scores on factors from scores on variables), and the pattern matrix of 
unique relationships between factors and variables after oblique rotation.

Also in the table are the matrix of eigenvalues and the matrix of their corresponding eigenvec-
tors. Eigenvalues and eigenvectors are discussed here and in Appendix A, albeit scantily, because of 
their importance in factor extraction, the frequency with which one encounters the terminology, and 
the close association between eigenvalues and variance in statistical applications.

A data set appropriate for FA consists of numerous subjects each measured on several vari-
ables. A grossly inadequate data set appropriate for FA is in Table 13.2. Five subjects who were 
trying on ski boots late on a Friday night in January were asked about the importance of each of four 
variables to their selection of a ski resort. The variables were cost of ski ticket (COST), speed of ski 
lift (LIFT), depth of snow (DEPTH), and moisture of snow (POWDER). Larger numbers indicate 
greater importance. The researcher wanted to investigate the pattern of relationships among the 
variables in an effort to understand better the dimensions underlying choice of ski area.
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TABLE 13.1 Commonly Encountered Matrices in Factor Analyses

Label Name Rotation Sizea Description

R Correlation
matrix

Both orthogonal 
and oblique

p * p Matrix of correlations between variables

Z Variable matrix Both orthogonal 
and oblique

N * p Matrix of standardized observed variable 
scores

F Factor-score
matrix

Both orthogonal 
and oblique

N * m Matrix of standardized scores on factors or 
components

A Factor loading 
matrix

Pattern matrix

Orthogonal

Oblique

p * m Matrix of regression-  like weights used to 
estimate the unique contribution of each 
factor to the variance in a variable. If 
orthogonal, also correlations between 
variables and factors

B Factor-score
coefficients 
matrix

Both orthogonal 
and oblique

p * m Matrix of regression-  like weights used to 
generate factor scores from variables

C Structure matrixb Oblique p * m Matrix of correlations between variables 
and (correlated) factors

Φ Factor correlation 
matrix

Oblique m * m Matrix of correlations among factors

L Eigenvalue 
matrixc

Both orthogonal 
and oblique

m * m Diagonal matrix of eigenvalues, one per 
factore

V Eigenvector 
matrixd

Both orthogonal 
and oblique

p * m Matrix of eigenvectors, one vector per 
eigenvalue

aRow by column dimensions where

p = number of variables

N = number of subjects

m = number of factors or components.
bIn most textbooks, the structure matrix is labeled S. However, we have used S to represent the sum-of-squares and cross-
products matrix elsewhere and will use C for the structure matrix here.
cAlso called characteristic roots or latent roots.
dAlso called characteristic vectors.
eIf the matrix is of full rank, there are actually p rather than m eigenvalues and eigenvectors. Only m are of interest, however, 
so the remaining p - m are not displayed.

Notice the pattern of correlations in the correlation matrix as set off by the vertical and hori-
zontal lines. The strong correlations in the upper left and lower right quadrants show that scores on 
COST and LIFT are related, as are scores on DEPTH and POWDER. The other two quadrants show 
that scores on DEPTH and LIFT are unrelated, as are scores on POWDER and LIFT, and so on. 
With luck, FA will find this pattern of correlations, easy to see in a small correlation matrix but not 
in a very large one.
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13.4.1 Extraction

An important theorem from matrix algebra indicates that, under certain conditions, matrices can be 
diagonalized. Correlation and covariance matrices are among those that often can be diagonalized. 
When a matrix is diagonalized, it is transformed into a matrix with numbers in the positive diago-
nal2 and zeros everywhere else. In this application, the numbers in the positive diagonal represent 
variance from the correlation matrix that has been repackaged as follows:

L = V�RV (13.1)

Diagonalization of R is accomplished by post-   and pre-  multiplying it by the matrix V
and its transpose.

The columns in V are called eigenvectors, and the values in the main diagonal of L are called 
eigenvalues. The first eigenvector corresponds to the first eigenvalue, and so forth.

Because there are four variables in the example, there are four eigenvalues with their corre-
sponding eigenvectors. However, because the goal of FA is to summarize a pattern of correlations 
with as few factors as possible, and because each eigenvalue corresponds to a different potential fac-
tor, usually only factors with large eigenvalues are retained. In a good FA, these few factors almost 
duplicate the correlation matrix.

In this example, when no limit is placed on the number of factors, eigenvalues of 2.02, 1.94, 
.04, and .00 are computed for each of the four possible factors. Only the first two factors, with 

2The positive diagonal runs from upper left to lower right in a matrix.

TABLE 13.2 Small Sample of Hypothetical Data 
for Illustration of Factor Analysis

Variables

Skiers COST LIFT DEPTH POWDER

S1 32 64 65 67
S2 61 37 62 65
S3 59 40 45 43
S4 36 62 34 35
S5 62 46 43 40

Correlation Matrix

COST LIFT DEPTH POWDER

COST 1.000 -.953 -.055 -.130

LIFT -.953 1.000 -.091 -.036

DEPTH -.055 -.091 1.000 .990

POWDER −.130 −.036 .990 1.000
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values over 1.00, are large enough to be retained in subsequent analyses. FA is rerun specifying 
extraction of just the first two factors; they have eigenvalues of 2.00 and 1.91, respectively, as indi-
cated in Table 13.3.

Using Equation 13.1 and inserting the values from the example, we obtain

L = c - .283 .177 .658 .675

.651 - .685 .252 .207
d ≥ 1.000 - .953 - .055 - .130

- .953 1.000 - .091 - .036

- .055 - .091 1.000 .990

- .130 - .036 .990 1.000

¥ ≥ - .283 .651

.177 - .685

- .658 .252

.675 .207

¥
= c 2.00 .00

.00 1.91
d

(All values agree with computer output. Hand calculation may produce discrepancies due to 
rounding error.)

The matrix of eigenvectors pre-  multiplied by its transpose produces the identity matrix with 
ones in the positive diagonal and zeros elsewhere. Therefore, pre-   and post-  multiplying the correla-
tion matrix by eigenvectors does not change it so much as repackage it.

V�V = I (13.2)

For the example:

c - .283 .177 .658 .675

.651 - .685 .252 .207
d ≥ - .283 .651

.177 - .685

.658 .252

.675 .207

¥ = c 1.000 .000

.000 1.000
d

The important point is that because correlation matrices often meet requirements for diago-
nalizability, it is possible to use on them the matrix algebra of eigenvectors and eigenvalues with 
FA as the result. When a matrix is diagonalized, the information contained in it is repackaged. In 

TABLE 13.3 Eigenvectors and 
Corresponding Eigenvalues for 
the Example

Eigenvector 1 Eigenvector 2

-.283 .651
.177 -.685
.658 .252
.675 .207

Eigenvalue 1 Eigenvalue 2

2.00 1.91
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FA, the variance in the correlation matrix is condensed into eigenvalues. The factor with the largest 
eigenvalue has the most variance and so on, down to factors with small or negative eigenvalues that 
are usually omitted from solutions.

Calculations for eigenvectors and eigenvalues are extremely laborious and not particularly 
enlightening (although they are illustrated in Appendix A for a small matrix). They require solving 
p equations in p unknowns with additional side constraints and are rarely performed by hand. Once 
the eigenvalues and eigenvectors are known, however, the rest of FA (or PCA) more or less “falls 
out,” as is seen from Equations 13.3 to 13.6.

Equation 13.1 can be reorganized as follows:

R = VLV� (13.3)

The correlation matrix can be considered a product of three matrices—  the matrices of 
eigenvalues and corresponding eigenvectors.

After reorganization, the square root is taken of the matrix of eigenvalues.

R = V1L1LV� (13.4)
or

R = (V1L) (1LV�)

If V1L is called A and 1LV� is A� then

R = AA� (13.5)

The correlation matrix can also be considered a product of two matrices––each a com-
bination of eigenvectors and the square root of eigenvalues.

Equation 13.5 is frequently called the fundamental equation for FA.3 It represents the asser-
tion that the correlation matrix is a product of the factor loading matrix, A, and its transpose.

Equations 13.4 and 13.5 also reveal that the major work of FA (and PCA) is calculation of 
eigenvalues and eigenvectors. Once they are known, the (unrotated) factor loading matrix is found 
by straightforward matrix multiplication, as follows.

A = V1L (13.6)

For the example:

A = ≥ - .283 .651

.177 - .685

.658 .252

.675 .207

¥ c12.00 0

0 11.91
d = ≥ - .400 .900

.251 - .947

.932 .348

.956 .286

¥
3In order to reproduce the correlation matrix exactly, as indicated in Equations 13.4 and 13.5, all eigenvalues and eigenvec-
tors are necessary, not just the first few of them.
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The factor loading matrix is a matrix of correlations between factors and variables. The first 
column is correlations between the first factor and each variable in turn, COST (-.400), LIFT (.251), 
DEPTH (.932), and POWDER (.956). The second column is correlations between the second fac-
tor and each variable in turn, COST (.900), LIFT (-.947), DEPTH (.348), and POWDER (.286). A 
factor is interpreted from the variables that are highly correlated with it—  that have high loadings 
on it. Thus, the first factor is primarily a snow conditions factor (DEPTH and POWDER), while the 
second reflects resort conditions (COST and LIFT). Subjects who score high on the resort condi-
tions factor (Equation 13.11) tend to assign high value to COST and low value to LIFT (the negative 
correlation); subjects who score low on the resort conditions factor value LIFT more than COST.

Notice, however, that all the variables are correlated with both factors to a considerable ex-
tent. Interpretation is fairly clear for this hypothetical example, but most likely would not be for real 
data. Usually, a factor is most interpretable when a few variables are highly correlated with it and 
the rest are not.

13.4.2 Orthogonal Rotation

Rotation is ordinarily used after extraction to maximize high correlations between factors and vari-
ables and minimize low ones. Numerous methods of rotation are available (see Section 13.5.2) but 
the most commonly used, and the one illustrated here, is varimax. Varimax is a variance-maximizing
procedure. The goal of varimax rotation is to maximize the variance of factor loadings by making 
high loadings higher and low ones lower for each factor.

This goal is accomplished by means of a transformation matrix � (as defined in Equa-
tion 13.8), where

Aunrotated� = Arotated (13.7)

The unrotated factor loading matrix is multiplied by the transformation matrix to pro-
duce the rotated loading matrix.

For the example:

Arotated = ≥ - .400 .900

.251 - .947

.932 .348

.956 .286

¥ c .946 - .325

.325 .946
d = ≥ - .086 .981

- .071 - .977

.994 .026

.997 - .040

¥
Compare the rotated and unrotated loading matrices. Notice that in the rotated matrix the 

low correlations are lower and the high ones are higher than in the unrotated loading matrix. 
Emphasizing differences in loadings facilitates interpretation of a factor by making unambiguous 
the variables that correlate with it.

The numbers in the transformation matrix have a spatial interpretation.

� = c cos 	 -sin 	

sin 	 cos 	
d (13.8)

The transformation matrix is a matrix of sines and cosines of an angle 	.
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For the example, the angle is approximately 19°. That is, cos 19 L .946 and sin 19 L .325. 
Geometrically, this corresponds to a 19° swivel of the factor axes about the origin. Greater detail 
regarding the geometric meaning of rotation is in Section 13.5.2.3.

13.4.3 Communalities, Variance, and Covariance

Once the rotated loading matrix is available, other relationships are found, as in Table 13.4. The com-
munality for a variable is the variance accounted for by the factors. It is the squared multiple correla-
tion of the variable as predicted from the factors. Communality is the sum of squared loadings (SSL) 
for a variable across factors. In Table 13.4, the communality for COST is (- .086)2 + .9812 = .970.
That is, 97% of the variance in COST is accounted for by Factor 1 plus Factor 2.

The proportion of variance in the set of variables accounted for by a factor is the SSL for the 
factor divided by the number of variables (if rotation is orthogonal).4 For the first factor, the propor-
tion of variance is 3(- .086)2 + (- .071)2 + .9942 + .9972]>4 = 1.994>4 = .504 . Fifty percent 
of the variance in the variables is accounted for by the first factor. The second factor accounts for 
48% of the variance in the variables and, because rotation is orthogonal, the two factors together 
account for 98% of the variance in the variables.

The proportion of variance in the solution accounted for by a factor—  the proportion of 
covariance—  is the SSL for the factor divided by the sum of communalities (or, equivalently, the 
sum of the SSLs). The first factor accounts for 51% of the variance in the solution (1.994>3.915)
while the second factor accounts for 49% of the variance in the solution (1.919 >3.915). The two 
factors together account for all of the covariance.

TABLE 13.4 Relationships Among Loadings, Communalities, SSLs, 
Variance, and Covariance of Orthogonally Rotated Factors

Factor 1 Factor 2 Communalities (h2)

COST -.086 .981 aa2 = .970

LIFT -.071 -.977 aa2 = .960

DEPTH .994 .026 aa2 = .989

POWDER .997 -.040 aa2 = .996

SSLs aa2 = 1.994 aa2 = 1.919 3.915

Proportion of 
variance .50 .48 .98

Proportion of 
covariance .51 .49

4For unrotated factors only, the sum of the squared loadings for a factor is equal to the eigenvalue. Once loadings are rotated, 
the sum of squared loadings is called SSL and is no longer equal to the eigenvalue.



Principal Components and Factor Analysis 627

The reproduced correlation matrix for the example is generated using Equation 13.5:

R = ≥ - .086 .981

- .071 - .977

.994 .026

.997 - .040

¥ c - .086 - .071 .994 .997

.981 - .977 .026 - .040
d

= ≥ .970 - .953 - .059 - .125

- .953 .962 - .098 - .033

- .059 - .098 .989 .990

- .125 - .033 .990 .996

¥
Notice that the reproduced correlation matrix differs slightly from the original correlation 

matrix. The difference between the original and reproduced correlation matrices is the residual cor-
relation matrix:

Rres = R - R (13.9)

The residual correlation matrix is the difference between the observed correlation ma-
trix and the reproduced correlation matrix.

For the example, with communalities inserted in the positive diagonal of R:

Rres = ≥ .970 - .953 - .055 - .130

- .953 .960 - .091 - .036

- .055 - .091 .989 .990

- .130 - .036 .990 .996

¥ - ≥ .970 - .953 - .059 - .125

- .953 .960 - .098 - .033

- .059 - .098 .989 .990

- .125 - .033 .990 .996

¥

= ≥ .000 .000 .004 - .005

.000 .000 .007 - .003

.004 .007 .000 .000

- .005 - .003 .000 .000

¥
In a “good” FA, the numbers in the residual correlation matrix are small because there is little 

difference between the original correlation matrix and the correlation matrix generated from factor 
loadings.

13.4.4 Factor Scores

Scores on factors can be predicted for each case once the loading matrix is available.  Regression-
like coefficients are computed for weighting variable scores to produce factor scores. Because R- 1

is the inverse of the matrix of correlations among variables and A is the matrix of correlations be-
tween factors and variables, Equation 13.10 for factor score coefficients is similar to Equation 5.6 
for regression coefficients in multiple regression.
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B = R- 1A (13.10)

Factor score coefficients for estimating factor scores from variable scores are a product 
of the inverse of the correlation matrix and the factor loading matrix.

For the example:5

B = ≥ 25.485 22.689 -31.655 35.479

22.689 21.386 -24.831 28.312

-31.655 -24.831 99.917 -103.950

35.479 28.312 -103.950 109.567

¥ ≥ - .087 .981

- .072 - .978

.994 .027

.997 - .040

¥
= ≥0.082 0.537

0.054 -0.461

0.190 0.087

0.822 -0.074

¥
To estimate a subject’s score for the first factor, all of the subject’s scores on variables are standard-
ized and then the standardized score on COST is weighted by 0.082, LIFT by 0.054, DEPTH by 
0.190, and POWDER by 0.822, and the results are added. In matrix form,

F = ZB (13.11)

Factor scores are a product of standardized scores on variables and factor score coefficients.

For the example:

F = E -1.22 1.14 1.15 1.14

0.75 -1.02 0.92 1.01

0.61 -0.78 -0.36 -0.47

-0.95 0.98 -1.20 -1.01

0.82 -0.30 -0.51 -0.67

U ≥0.082 0.537

0.054 -0.461

0.190 0.087

0.822 -0.074

¥

= E 1.12 -1.16

1.01 0.88

-0.45 0.69

-1.08 -0.99

-0.60 0.58

U
5The numbers in B are different from the factor score coefficients generated by computer for the small data set. The differ-
ence is due to rounding error following inversion of a multicollinear correlation matrix. Note also that the A matrix contains 
considerable rounding error.
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The first subject has an estimated standard score of 1.12 on the first factor and -1.16 on the 
second factor, and so on for the other four subjects. The first subject strongly values both the snow 
factor and the resort factor, one positive and the other negative (indicating stronger importance 
assigned to speed of LIFT). The second subject values both the snow factor and the resort factor 
(with more value placed on COST than LIFT); the third subject places more value on resort condi-
tions (particularly COST) and less value on snow conditions, and so forth. The sum of standardized 
factor scores across subjects for a single factor is zero.

Predicting scores on variables from scores on factors is also possible. The equation for doing 
so is

Z = FA� (13.12)

Predicted standardized scores on variables are a product of scores on factors weighted 
by factor loadings.

For example:

Z = E 1.12 -1.16

1.01 0.88

-0.45 0.69

-1.08 -0.99

-0.60 0.58

U c - .086 - .072 .994 .997

.981 - .978 .027 - .040
d

= E -1.23 1.05 1.08 1.16

0.78 -0.93 1.03 0.97

0.72 -0.64 -0.43 -0.48

-0.88 1.05 -1.10 -1.04

0.62 -0.52 -0.58 -0.62

U
That is, the first subject (the first row of Z) is predicted to have a standardized score 

of -1.23 on COST, 1.05 on LIFT, 1.08 on DEPTH, and 1.16 on POWDER. Like the reproduced 
correlation matrix, these values are similar to the observed values if the FA captures the relationship 
among the variables.

It is helpful to see these values written out because they provide an insight into how scores on 
variables are conceptualized in factor analysis. For example, for the first subject,

-1.23 = - .086(1.12) + .981(-1.16)

1.05 = - .072(1.12) - .978(-1.16)

1.08 = .994(1.12) + .027(-1.16)

1.16 = .997(1.12) - .040(-1.16)
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Or, in algebraic form,

zCOST = a11F1 + a12F2

zLIFT = a21F1 + a22F2

zDEPTH = a31F1 + a32F2

zPOWDER = a41F1 + a42F2

A score on an observed variable is conceptualized as a properly weighted and summed com-
bination of the scores on factors that underlie it. The researcher believes that each subject has the 
same latent factor structure, but different scores on the factors themselves. A particular subject’s 
score on an observed variable is produced as a weighted combination of that subject’s scores on the 
underlying factors.

13.4.5 Oblique Rotation

All the relationships mentioned thus far are for orthogonal rotation. Most of the complexities 
of orthogonal rotation remain and several others are added when oblique (correlated) rotation 
is used. Consult Table 13.1 for a listing of additional matrices and a hint of the discussion to 
follow.

IBM SPSS FACTOR is run on the data from Table 13.2 using the default option for 
oblique rotation (cf. Section 13.5.2.2) to get values for the pattern matrix, A, and factor-score 
coefficients, B.

In oblique rotation, the loading matrix becomes the pattern matrix. Values in the pattern ma-
trix, when squared, represent the unique contribution of each factor to the variance of each variable 
but do not include segments of variance that come from overlap between correlated factors. For the 
example, the pattern matrix following oblique rotation is

A = ≥ - .079 .981

- .078 - .978

.994 .033

.977 - .033

¥
The first factor makes a unique contribution of - .0792 to the variance in COST, - .0782 to 

LIFT, .9942 to DEPTH, and .9972 to POWDER.
Factor-  score coefficients following oblique rotation are also found:

B = ≥ 0.104 0.584

0.081 -0.421

0.159 -0.020

0.856 0.034

¥
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Applying Equation 13.11 to produce factor scores results in the following values:

F = E -1.22 1.14 1.15 1.14

0.75 -1.02 0.92 1.01

0.61 -0.78 -0.36 -0.47

-0.95 0.98 -1.20 -1.01

0.82 -0.30 -0.51 -0.67

U ≥0.104 0.584

0.081 -0.421

0.159 -0.020

0.856 0.034

¥

= E 1.12 -1.18

1.01 0.88

-0.46 0.68

-1.07 -0.98

-0.59 0.59

U
Once the factor scores are determined, correlations among factors can be obtained. Among 

the equations used for this purpose is

� = a 1

N - 1
bF�F (13.13)

One way to compute correlations among factors is from cross-  products of standardized 
factor scores divided by the number of cases minus one.

The factor correlation matrix is a standard part of computer output following oblique rotation. 
For the example:

� =
1

4
c 1.12 1.01 -0.46 -1.07 -0.59

-1.18 0.88 0.68 -0.98 0.59
d E 1.12 -1.16

1.01 0.88

-0.45 0.69

-1.08 -0.99

-0.60 0.58

U
= c 1.00 -0.01

-0.01 1.00
d

The correlation between the first and second factor is quite low, -.01. For this example, there 
is almost no relationship between the two factors, although considerable correlation could have been 
produced had it been warranted. Usually, one uses orthogonal rotation in a case like this because com-
plexities introduced by oblique rotation are not warranted by such a low correlation among factors.

However, if oblique rotation is used, the structure matrix, C, is the correlations between vari-
ables and factors. These correlations assess the unique relationship between the variable and the 
factor (in the pattern matrix) plus the relationship between the variable and the overlapping variance 
among the factors. The equation for the structure matrix is
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C = A� (13.14)

The structure matrix is a product of the pattern matrix and the factor correlation matrix.

For example:

C = ≥ - .079 .981

- .078 - .978

.994 .033

.997 - .033

¥ c 1.00 - .01

- .01 1.00
d = ≥ - .069 .982

- .088 - .977

.994 .023

.997 - .043

¥
COST, LIFT, DEPTH, and POWDER correlate -.069, -.088, .994, and .997 with the first factor 
and .982, -.977, .023, and -.043 with the second factor, respectively.

There is some debate as to whether one should interpret the pattern matrix or the structure ma-
trix following oblique rotation. The structure matrix is appealing because it is readily understood. 
However, the correlations between variables and factors are inflated by any overlap between factors. 
The problem becomes more severe as the correlations among factors increase and it may be hard 
to determine which variables are related to a factor. On the other hand, the pattern matrix contains 
values representing the unique contributions of each factor to the variance in the variables. Shared 
variance is omitted (as it is with standard multiple regression), but the set of variables that composes 
a factor is usually easier to see. If factors are very highly correlated, it may appear that no variables 
are related to them because there is almost no unique variance once overlap is omitted.

Most researchers interpret and report the pattern matrix rather than the structure matrix. 
However, if the researcher reports either the structure or the pattern matrix and also 
, then the 
interested reader can generate the other using Equation 13.14 as desired.

In oblique rotation, R, is produced as follows:

R = CA� (13.15)

The reproduced correlation matrix is a product of the structure matrix and the transpose 
of the pattern matrix.

Once the reproduced correlation matrix is available, Equation 13.9 is used to generate the 
residual correlation matrix to diagnose adequacy of fit in FA.

13.4.6 Computer Analyses of Small-Sample Example

A two-  factor principal factor analysis (PFA) with varimax rotation using the example is shown for 
IBM SPSS FACTOR and SAS FACTOR in Tables 13.5 and 13.6.

For a PFA with varimax rotation, IBM SPSS FACTOR requires that you specify 
EXTRACTION PAF and ROTATION VARIMAX.6 IBM SPSS FACTOR (Table 13.5) begins by 
printing out SMCs for each variable, labeled Initial in the Communalities portion of the output. 
In the same table are final (Extraction) communalities. These show the portion of variance in each 
variable accounted for by the solution (h2 in Table 13.4).

6The defaults for IBM SPSS FACTOR are principal components analysis with no rotation.
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TABLE 13.5 Syntax and IBM SPSS FACTOR Output for Factor Analysis on Sample Data of Table 13.2

FACTOR
/VARIABLES COST LIFT DEPTH POWDER /MISSING LISTWISE
/ANALYSIS COST LIFT DEPTH POWDER
/PRINT INITIAL EXTRACTION ROTATION
/CRITERIA MINEIGEN(1) ITERATE(25)
/EXTRACTION PAF
/CRITERIA ITERATE(25)
/ROTATION VARIMAX
/METHOD=CORRELATION.

Communalities

Initial Extraction

COST .961 .970
LIFT .953 .960
DEPTH .990 .989
POWDER .991 .996

Extraction Method: Principal Axis Factoring.

Total Variance Explained

Initial Eigenvalues Extraction Sums of Squared Loadings Rotation Sums of Squared Loadings

Factor Total
% of 

Variance
Cumulative 

% Total
% of 

Variance
Cumulative 

% Total
% of 

Variance
Cumulative 

%

1 2.016 50.408 50.408 2.005 50.118 50.118 1.995 49.866 49.866
2 1.942 48.538 98.945 1.909 47.733 97.852 1.919 47.986 97.852
3 .038 .945 99.891
4 .004 .109 100.000

Extraction Method: Principal Axis Factoring.
(continued)
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Factor Matrixa

Factor

1 2

COST -.400 .900
LIFT .251 -.947
DEPTH .932 .348
POWDER .956 .286

Extraction Method: Principal Axis 
Factoring.

a. 2 factors extracted. 4 iterations required.

Rotated Factor Matrixa

Factor

1 2

COST -.086 -.981
LIFT -.071 .977
DEPTH .994 -.026
POWDER .997 .040

Extraction Method: Principal Axis
Factoring.
Rotation Method: Varimax with Kaiser
Normalization.

a. Rotation converged in 3 iterations.

Factor Transformation Matrix

Factor 1 2

1 .946 .325
2 .325 -.946

Extraction Method: Principal Axis 
Factoring.
Rotation Method: Varimax with Kaiser
Normalization.

TABLE 13.5 Continued



635

TABLE 13.6 Syntax and Selected SAS FACTOR Output for Factor Analysis of Sample Data of Table 13.2

proc factor data=SASUSER.SSFACTOR;
  method=prinit priors=smc nfactors=2 rotate=v;
  var cost lift depth powder;
run;

The FACTOR Procedure
Initial Factor Method: Iterated Principal Factor Analysis

Prior Communality Estimates: SMC

COST LIFT DEPTH POWDER

0.96076070 0.95324069 0.98999165 0.99087317

Preliminary Eigenvalues: Total = 3.89486621 Average = 0.97371655

Eigenvalue Difference Proportion Cumulative

1 2.00234317 0.09960565 0.5141 0.5141
2 1.90273753 1.89753384 0.4885 1.0026
3 0.00520369 0.02062186 0.0013 1.0040
4 −.01541817 −0.0040 1.0000

2 factors will be retained by the NFACTOR criterion.

WARNING: Too many factors for a unique solution.

Eigenvalues of the Reduced Correlation Matrix: Total = 3.91277649 Average = 0.97819412

Eigenvalue Difference Proportion Cumulative

1 2.00473399 0.09539900 0.5124 0.5124
2 1.90933499 1.90037259 0.4880 1.0003
3 0.00896240 0.01921730 0.0023 1.0026
4 −.01025490 −0.0026 1.0000

(continued)
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Initial Factor Method: Iterated Principal Factor Analysis

Factor Pattern

Factor1 Factor2

COST −0.40027 0.89978
LIFT 0.25060 −0.94706
DEPTH 0.93159 0.34773
POWDER 0.95596 0.28615

Variance Explained by Each Factor

Factor1 Factor2

2.0047340 1.9093350

Final Communality Estimates: Total = 3.914069

COST LIFT DEPTH POWDER

0.96982841 0.95972502 0.98877384 0.99574170

Rotation Method: Varimax

Orthogonal Transformation Matrix

1 2

1 0.94565 −0.32519
2 0.32519 0.94565

Rotated Factor Pattern

Factor1 Factor2

COST −0.08591 0.98104
LIFT −0.07100 −0.97708
DEPTH 0.99403 0.02588
POWDER 0.99706 −0.04028

Variance Explained by Each Factor

Factor1 Factor2

1.9946455 1.9194235

Final Communality Estimates: Total = 3.914069

COST LIFT DEPTH POWDER

0.96982841 0.95972502 0.98877384 0.99574170

TABLE 13.6 Continued
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The next table shows a great deal of information about variance accounted for by the fac-
tors. Initial Eigenvalues, % of Variance, and percent of variance cumulated over the four factors 
(Cumulative %) are printed out for the four initial factors. (Be careful not to confuse factors with 
variables.) The remainder of the table shows the percent of variance (sums of squared loadings—  see
Table 13.3) accounted for by the two factors extracted with eigenvalues greater than 1 (the default 
value), after extraction and after rotation.

For the two extracted factors, an unrotated Factor (loading) Matrix is then printed. The 
Rotated Factor Matrix, which matches loadings in Table 13.4, is given along with the Factor 
Transformation Matrix (Equation 13.8) for orthogonal varimax rotation with Kaiser’s normalization.

SAS FACTOR (Table 13.6) requires a bit more instruction to produce a PFA with orthog-
onal rotation for two factors. You specify the type (method=prinit), initial communalities 
(priors=smc), number of factors to be extracted (nfactors=2), and the type of rota-
tion (rotate=v). Prior Communality Estimates: SMCs are given, followed by 
Preliminary Eigenvalues for all four factors; also given is the Total of the eigen-
values and their Average. The next row shows Differences between successive eigenval-
ues. For example, there is a small difference between the first and second eigenvalues (0.099606) 
and between the third and fourth eigenvalues (0.020622), but a large difference between the sec-
ond and third eigenvalues (1.897534). Proportion and Cumulative proportion of variance 
are then printed for each factor. This is followed by corresponding information for the Reduced 
Correlation Matrix (after factoring). Information on the iterative process is not shown.

The Factor Pattern matrix contains unrotated factor loadings for the first two factors. 
(Note that the signs of the FACTOR2 loadings are the reverse of those of IBM SPSS.) SSLs for each 
factor are in the table labeled Variance explained by each factor. Both Final 
Communality Estimates (h2) and the Total h2 are then given. The Orthogonal 
Transformation Matrix for rotation (Equation 13.8) is followed by the rotated factor load-
ings in the Rotated Factor Pattern matrix. SSLs for rotated factors—  Variance 
explained by each factor—  appear below the loadings. Final Communality 
Estimates are then repeated.

13.5 Major Types of Factor Analyses

Numerous procedures for factor extraction and rotation are available. However, only those proce-
dures available in IBM SPSS and SAS packages are summarized here. Other extraction and rota-
tional techniques are described in Mulaik (1972), Harman (1976), Rummel (1970), Comrey and 
Lee (1992), and Gorsuch (1983), among others.

13.5.1 Factor Extraction Techniques

Among the extraction techniques available in the packages are principal components (PCA), prin-
cipal factors, maximum likelihood factoring, image factoring, alpha factoring, and unweighted and 
generalized (weighted) least squares factoring (see Table 13.7). Of these, PCA and principal factors 
are the most commonly used.

All the extraction techniques calculate a set of orthogonal components or factors that, in 
combination, reproduce R. Criteria used to establish the solution, such as maximizing variance 
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or minimizing residual correlations, differ from technique to technique. But differences in solu-
tions are small for a data set with a large sample, numerous variables, and similar communality 
estimates. In fact, one test of the stability of a FA solution is that it appears regardless of which 
extraction technique is employed. Table 13.8 shows solutions for the same data set after extraction 
with several different techniques, followed by varimax rotation. Similarities among the solutions 
are obvious.

None of the extraction techniques routinely provides an interpretable solution without rota-
tion. All types of extractions may be rotated by any of the procedures described in Section 13.5.2.

Lastly, when using FA the researcher should hold in abeyance well-  learned proscriptions 
against data snooping. It is quite common to use PCA or PFA as a preliminary extraction technique, 
followed by one or more of the other procedures, perhaps varying number of factors, communality 
estimates, and rotational methods with each run. Analysis terminates when the researcher decides 
on the preferred solution.

TABLE 13.7 Summary of Extraction Procedures

Extraction
Technique Program Goal of Analysis Special Features

Principal
components

IBM SPSS 
SAS

Maximize variance extracted by 
orthogonal components

Mathematically determined, empirical 
solution with common, unique, and 
error variance mixed into components

Principal
factors

IBM SPSS 
SAS

Maximize variance extracted by 
orthogonal factors

Estimates communalities to attempt to 
eliminate unique and error variance 
from variables

Image
factoring

IBM SPSS 
SAS
(Image
and Harris)

Provides an empirical factor 
analysis

Uses variances based on multiple 
regression of a variable with all other 
variables as communalities to generate 
a mathematically determined solution 
with error variance and unique 
variance eliminated

Maximum
likelihood 
factoring

SAS
IBM SPSS

Estimate factor loadings for 
population that maximize the 
likelihood of sampling the 
observed correlation matrix

Has significance test for factors; 
especially useful for confirmatory 
factor analysis

Alpha
factoring

IBM SPSS 
SAS

Maximize the generalizability 
of orthogonal factors

Unweighted
least squares

IBM SPSS 
SAS

Minimize squared residual 
correlations

Generalized
least squares

IBM SPSS 
SAS

Weights variables by shared 
variance before minimizing 
squared residual correlations
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13.5.1.1 PCA Versus FA

One of the most important decisions is the choice between PCA and FA. Mathematically, the dif-
ference involves the contents of the positive diagonal in the correlation matrix (the diagonal that 
contains the correlation between a variable and itself). In either PCA or FA, the variance that is 
analyzed is the sum of the values in the positive diagonal. In PCA, ones are in the diagonal and there 
is as much variance to be analyzed as there are observed variables; each variable contributes a unit 
of variance by contributing a 1 to the positive diagonal of the correlation matrix. All the variance is 
distributed to components, including error and unique variance for each observed variable. So if all 
components are retained, PCA duplicates exactly the observed correlation matrix and the standard 
scores of the observed variables.

In FA, on the other hand, only the variance that each observed variable shares with other ob-
served variables is available for analysis. Exclusion of error and unique variance from FA is based 
on the belief that such variance only confuses the picture of underlying processes. Shared variance 
is estimated by communalities, values between 0 and 1 that are inserted in the positive diagonal 

TABLE 13.8 Results of Different Extraction Methods on Same Data Set

Factor 1 Factor 2

Variables PCA PFA Rao Alpha PCA PFA Rao Alpha

Unrotated factor loadings

1 .58 .63 .70 .54 .68 .68 -.54 .76
2 .51 .48 .56 .42 .66 .53 -.47 .60
3 .40 .38 .48 .29 .71 .55 -.50 .59
4 .69 .63 .55 .69 -.44 -.43 .54 -.33
5 .64 .54 .48 .59 -.37 -.31 .40 -.24
6 .72 .71 .63 .74 -.47 -.49 .59 -.40
7 .63 .51 .50 .53 -.14 -.12 .17 -.07
8 .61 .49 .47 .50 -.09 -.09 .15 -.03

Rotated factor loadings (varimax)

1 .15 .15 .15 .16 .89 .91 .87 .92
2 .11 .11 .10 .12 .83 .71 .72 .73
3 -.02 .01 .02 .00 .81 .67 .69 .66
4 .82 .76 .78 .76 -.02 -.01 -.03 .01
5 .74 .62 .62 .63 .01 .04 .03 .04
6 .86 .86 .87 .84 .04 -.02 -.01 -.03
7 .61 .49 .48 .50 .20 .18 .21 .17
8 .57 .46 .45 .46 .23 .20 .20 .19

Note: The largest difference in communality estimates for a single variable between 
extraction techniques was 0.08.



640 C H A P T E R  1 3

7Maximum likelihood extraction manipulates off-  diagonal elements rather than values in the diagonal.

of the correlation matrix.7 The solution in FA concentrates on variables with high communality 
values. The sum of the communalities (sum of the SSLs) is the variance that is distributed among 
factors and is less than the total variance in the set of observed variables. Because unique and error 
variances are omitted, a linear combination of factors approximates, but does not duplicate, the ob-
served correlation matrix and scores on observed variables.

PCA analyzes variance; FA analyzes covariance (communality). The goal of PCA is to extract 
maximum variance from a data set with a few orthogonal components. The goal of FA is to repro-
duce the correlation matrix with a few orthogonal factors. PCA is a unique mathematical solution, 
whereas most forms of FA are not unique.

The choice between PCA and FA depends on your assessment of the fit between the models, 
the data set, and the goals of the research. If you are interested in a theoretical solution uncontami-
nated by unique and error variability and have designed your study on the basis of underlying con-
structs that are expected to produce scores on your observed variables, FA is your choice. If, on the 
other hand, you simply want an empirical summary of the data set, PCA is the better choice.

13.5.1.2 Principal Components

The goal of PCA is to extract maximum variance from the data set with each component. The 
first principal component is the linear combination of observed variables that maximally separates 
subjects by maximizing the variance of their component scores. The second component is formed 
from residual correlations; it is the linear combination of observed variables that extracts maximum 
variability uncorrelated with the first component. Subsequent components also extract maximum 
variability from residual correlations and are orthogonal to all previously extracted components.

The principal components are ordered, with the first component extracting the most variance 
and the last component the least variance. The solution is mathematically unique and, if all com-
ponents are retained, exactly reproduces the observed correlation matrix. Further, since the compo-
nents are orthogonal, their use in other analyses (e.g., as DVs in MANOVA) may greatly facilitate 
interpretation of results.

PCA is the solution of choice for the researcher who is primarily interested in reducing a large 
number of variables down to a smaller number of components. PCA is also useful as an initial step 
in FA where it reveals a great deal about maximum number and nature of factors.

13.5.1.3 Principal Factors

Principal factors extraction differs from PCA in that estimates of communality, instead of ones, 
are in the positive diagonal of the observed correlation matrix. These estimates are derived through 
an iterative procedure, with SMCs (squared multiple correlations of each variable with all other 
variables) used as the starting values in the iteration. The goal of analysis, like that for PCA, is to 
extract maximum orthogonal variance from the data set with each succeeding factor. Advantages 
to principal factors extraction are that it is widely used (and understood) and that it conforms to 
the factor analytic model in which common variance is analyzed with unique and error variance 
removed. Because the goal is to maximize variance extracted, however, principal factors extraction 
is sometimes not as good as other extraction techniques in reproducing the correlation matrix. Also, 
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communalities must be estimated and the solution is, to some extent, determined by those estimates. 
PFA is available through both IBM SPSS and SAS.

13.5.1.4 Image Factor Extraction

The technique is called image factoring because the analysis distributes among factors the variance 
of an observed variable that is reflected by the other variables, in a manner similar to the SMC. 
Image factor extraction provides an interesting compromise between PCA and principal factors. 
Like PCA, image extraction provides a mathematically unique solution because there are fixed val-
ues in the positive diagonal of R. Like principal factors, the values in the diagonal are communali-
ties with unique and error variability excluded.

Image scores for each variable are produced by multiple regression, with each variable, in 
turn, serving as a DV. A covariance matrix is calculated from these image (predicted) scores. The 
variances from the image score covariance matrix are the communalities for factor extraction. Care 
is necessary in interpreting the results of image analysis, because loadings represent covariances 
between variables and factors rather than correlations.

Image factoring is available through IBM SPSS, and SAS FACTOR (with two types—“image”
and Harris component analysis).

13.5.1.5 Maximum Likelihood Factor Extraction

The maximum likelihood method of factor extraction was developed originally by Lawley in the 
1940s (see Lawley & Maxwell, 1963). Maximum likelihood extraction estimates population values 
for factor loadings by calculating loadings that maximize the probability of sampling the observed 
correlation matrix from a population. Within constraints imposed by the correlations among vari-
ables, population estimates for factor loadings are calculated that have the greatest probability of 
yielding a sample with the observed correlation matrix. This method of extraction also maximizes 
the canonical correlations between the variables and the factors (see Chapter 12).

Maximum likelihood extraction is available through IBM SPSS FACTOR and SAS FACTOR.

13.5.1.6 Unweighted Least Squares Factoring

The goal of unweighted least squares factor extraction is to minimize squared differences between 
the observed and reproduced correlation matrices. Only off-  diagonal differences are considered; 
communalities are derived from the solution rather than estimated as part of the solution. Thus, 
unweighted least squares factoring can be seen as a special case of PFA in which communalities are 
estimated after the solution.

The procedure, originally called minimum residual, was developed by Comrey (1962) and 
later modified by Harman and Jones (1966). The latter procedure is available through IBM SPSS 
FACTOR and SAS FACTOR.

13.5.1.7 Generalized (Weighted) Least Squares Factoring

Generalized least squares extraction also seeks to minimize (off-  diagonal) squared differences be-
tween observed and reproduced correlation matrices, but in this case weights are applied to the 
variables. Variables that have substantial shared variance with other variables are weighted more 
heavily than variables that have substantial unique variance. In other words, variables that are not 
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as strongly related to other variables in the set are not as important to the solution. This method of 
extraction is available through IBM SPSS FACTOR and SAS FACTOR.

13.5.1.8 Alpha Factoring

Alpha factor extraction, available through IBM SPSS FACTOR and SAS FACTOR, grew out of 
psychometric research, where the interest is in discovering which common factors are found con-
sistently when repeated samples of variables are taken from a population of variables. The problem 
is the same as identifying mean differences that are found consistently among samples of subjects 
taken from a population of subjects—  a question at the heart of most univariate and multivariate 
statistics.

In alpha factoring, however, the concern is with the reliability of the common factors rather 
than with the reliability of group differences. Coefficient alpha is a measure derived in psychomet-
rics for the reliability (also called generalizability) of a score taken in a variety of situations. In 
alpha factoring, communalities that maximize coefficient alpha for the factors are estimated using 
iterative procedures (and sometimes exceed 1.0).

Probably, the greatest advantage to the procedure is that it focuses the researcher’s atten-
tion squarely on the problem of sampling variables from the domain of variables of interest. 
Disadvantages stem from the relative unfamiliarity of most researchers with the procedure and the 
reason for it.

13.5.2 Rotation

The results of factor extraction, unaccompanied by rotation, are likely to be hard to interpret re-
gardless of which method of extraction is used. After extraction, rotation is used to improve the 
interpretability and scientific utility of the solution. It is not used to improve the quality of the math-
ematical fit between the observed and reproduced correlation matrices because all orthogonally 
rotated solutions are mathematically equivalent to one another and to the solution before rotation.

Just as different methods of extraction tend to give similar results with a good data set, differ-
ent methods of rotation tend to give similar results if the pattern of correlations in the data is fairly 
clear. In other words, a stable solution tends to appear regardless of the method of rotation used.

A decision is required between orthogonal and oblique rotation. In orthogonal rotation, the 
factors are uncorrelated. Orthogonal solutions offer ease of interpreting, describing, and reporting 
results; yet they strain “reality” unless the researcher is convinced that underlying processes are 
almost independent. The researcher who believes that underlying processes are correlated uses an 
oblique rotation. In oblique rotation, the factors may be correlated with conceptual advantages but 
practical disadvantages in interpreting, describing, and reporting results.

Among the dozens of rotational techniques that have been proposed, only those available in 
both reviewed packages are included in this discussion (see Table 13.9). The reader who wishes 
to know more about these or other techniques is referred to Gorsuch (1983), Harman (1976), or 
Mulaik (1972). For the industrious, a presentation of rotation by hand is in Comrey and Lee (1992).

13.5.2.1 Orthogonal Rotation

Varimax, quartimax, and equamax—  three orthogonal techniques—  are available in both packages. 
Varimax is easily the most commonly used of all the rotations available.
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TABLE 13.9 Summary of Rotational Techniques

Rotational
Technique Program Type Goals of Analysis Comments

Varimax SAS
IBM SPSS

Orthogonal Minimize complexity of factors 
(simplify columns of loading 
matrix) by maximizing variance of 
loadings on each factor.

Most commonly 
used rotation; 
recommended as 
default option

Quartimax SAS
IBM SPSS

Orthogonal Minimize complexity of variables 
(simplify rows of loading matrix) 
by maximizing variance of 
loadings on each variable.

First factor tends 
to be general, with 
others subclusters 
of variables.

Equamax SAS
IBM SPSS

Orthogonal Simplify both variables and factors 
(rows and columns); compromise 
between quartimax and varimax.

May behave 
erratically

Orthogonal
with
gamma 
(orthomax)

SAS Orthogonal Simplify either factors or 
variables, depending on the value 
of gamma (Γ).

Gamma (Γ)
continuously
variable

Parsimax SAS Orthogonal Simplifies both variables and factors: 
(Γ) = (p*(m - 1))/p + m - 2.

Direct
oblimin

IBM SPSS Oblique Simplify factors by minimizing 
cross-products of loadings.

Continuous values 
of gamma, or 
delta, d (SPSS), 
available; 
allows wide 
range of factor 
intercorrelations

(Direct)
quartimin

IBM SPSS Oblique Simplify factors by minimizing 
sum of cross-  products of squared 
loadings in pattern matrix.

Permits fairly high 
correlations among 
factors. Achieved 
in SPSS by setting 
d = 0 with direct 
oblimin.

Orthoblique SAS (HK) 
IBM SPSS

Both
orthogonal
and oblique

Rescale factor loadings to yield 
orthogonal solution; non-rescaled
loadings may be correlated.

Promax SAS Oblique Orthogonal factors rotated to 
oblique positions.

Fast

Procrustes SAS Oblique Rotate to target matrix. Useful in 
confirmatory FA
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Just as the extraction procedures have slightly different statistical goals, so also the rotational 
procedures maximize or minimize different statistics. The goal of varimax rotation is to simplify 
factors by maximizing the variance of the loadings within factors, across variables. The spread in 
loadings is maximized—  loadings that are high after extraction become higher after rotation and 
loadings that are low become lower. Interpreting a factor is easier because it is obvious which 
variables correlate with it. Varimax also tends to reapportion variance among factors so that they 
become relatively equal in importance; variance is taken from the first factors extracted and distrib-
uted among the later ones.

Quartimax does for variables what varimax does for factors. It simplifies variables by 
increasing the dispersion of the loadings within variables, across factors. Varimax operates on the 
columns of the loading matrix; quartimax operates on the rows. Quartimax is not nearly as popular 
as varimax because one is usually more interested in simple factors than in simple variables.

Equamax is a hybrid between varimax and quartimax that tries simultaneously to simplify the 
factors and the variables. Mulaik (1972) reports that equamax tends to behave erratically unless the 
researcher can specify the number of factors with confidence.

Thus, varimax rotation simplifies the factors, quartimax the variables, and equamax both. 
They do so by setting levels on a simplicity criterion—  such as � (gamma)—of 1, 0, and 1>2 respec-
tively. Gamma can also be continuously varied between 0 (variables simplified) and 1 (factors sim-
plified) by using the orthogonal rotation that allows the user to specify � level. In SAS FACTOR,
this is done through orthomax with �. Parsimax in SAS uses a formula incorporating numbers of 
factors and variables to determine � (see Table 13.9).

Varimax is the orthogonal rotation of choice for many applications; it is the default option of 
packages that have defaults.

13.5.2.2 Oblique Rotation

An embarrasse de richesse awaits the researcher who uses oblique rotation (see Table 13.9). Oblique 
rotations offer a continuous range of correlations between factors. The amount of correlation per-
mitted between factors is determined by a variable called delta (d) by IBM SPSS FACTOR. The 
values of delta and gamma determine the maximum amount of correlation permitted among factors. 
When the value is less than zero, solutions are increasingly orthogonal; at about −4 the solution 
is orthogonal. When the value is zero, solutions can be fairly highly correlated. Values near 1 can 
produce factors that are very highly correlated. Although there is a relationship between values of 
delta or gamma and size of correlation, the maximum correlation at a given size of gamma or delta 
depends on the data set.

It should be stressed that factors do not necessarily correlate when an oblique rotation is 
used. Often, in fact, they do not correlate and the researcher reports the simpler orthogonal rota-
tion. The family of procedures used for oblique rotation with varying degrees of correlation in 
IBM SPSS is direct oblimin. In the special case where � or d = 0 (the default option for the pro-
grams), the procedure is called direct quartimin. Values of gamma or delta greater than zero permit 
high correlations among factors, and the researcher should take care that the correct number of fac-
tors is chosen. Otherwise, highly correlated factors may be indistinguishable one from the other. 
Some trial and error, coupled with inspection of the scatterplots of relationships between pairs of 
factors, may be required to determine the most useful size of gamma or delta. Or, one might simply 
trust the default value.



Principal Components and Factor Analysis 645

Orthoblique rotation uses the quartimax algorithm to produce an orthogonal solution on 
rescaled factor loadings; therefore, the solution may be oblique with respect to the original factor 
loadings.

In promax rotation, available through SAS and IBM SPSS, an orthogonally rotated solution 
(usually varimax) is rotated again to allow correlations among factors. The orthogonal loadings 
are raised to powers (usually powers of 2, 4, or 6) to drive small and moderate loadings to zero 
while larger loadings are reduced, but not to zero. Even though factors correlate, simple structure is 
maximized by clarifying which variables do and do not correlate with each factor. Promax has the 
additional advantage of being fast.

In Procrustean rotation, available in SAS, a target matrix of loadings (usually zeros and ones) 
is specified by the researcher, and a transformation matrix is sought to rotate extracted factors to the 
target, if possible. If the solution can be rotated to the target, then the hypothesized factor structure 
is said to be confirmed. Unfortunately, as Gorsuch (1983) reports, with Procrustean rotation, fac-
tors are often extremely highly correlated and sometimes a correlation matrix generated by random 
processes is rotated to a target with apparent ease.

13.5.2.3 Geometric Interpretation

A geometric interpretation of rotation is in Figure 13.1 where 13.1(a) is the unrotated and 13.1(b) 
the rotated solution to the example in Table 13.2. Points are represented in two-  dimensional space 
by listing their coordinates with respect to X and Y axes. With the first two unrotated factors as 
axes, unrotated loadings are COST (-.400, .900), LIFT (.251, -.947), DEPTH (.932, .348), and 
POWDER (.956, .286).

The points for these variables are also located with respect to the first two rotated factors as axes 
in Figure 13.1(b). The position of points does not change, but their coordinates change in the new 
axis system. COST is now (-.086, .981), LIFT (-.071, -.977), DEPTH (.994, .026), and POWDER
(.997, -.040). Statistically, the effect of rotation is to amplify high loadings and reduce low ones. 
Spatially, the effect is to rotate the axes so that they “shoot through” the variable clusters more closely.

Factor extraction yields a solution in which observed variables are vectors that run from the 
origin to the points indicated by the coordinate system. The factors serve as axes for the system. 
The coordinates of each point are the entries from the loading matrix for the variable. If there are 
three factors, then the space has three axes and three dimensions, and each observed variable is 
positioned by three coordinates. The length of the vector for each variable is the communality of 
the variable.

If the factors are orthogonal, the factor axes are all at right angles to one another and the 
coordinates of the variable points are correlations between the common factors and the observed 
variables. Correlations (factor loadings) are read directly from these graphs by projecting perpen-
dicular lines from each point to each of the factor axes.

One of the primary goals of PCA or FA, and the motivation behind extraction, is to 
discover the minimum number of factor axes needed to reliably position variables. A second 
major goal, and the motivation behind rotation, is to discover the meaning of the factors that 
underlie responses to observed variables. This goal is met by interpreting the factor axes that 
are used to define the space. Factor rotation repositions factor axes so as to make them maxi-
mally interpretable. Repositioning the axes changes the coordinates of the variable points but 
not the positions of the points with respect to each other.
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(a) Location of COST, LIFT, DEPTH, and POWDER
after extraction, before rotation

COST

DEPTH

POWDER

LIFT

Factor 2

Factor 1

(b) Location of COST, LIFT, DEPTH, and POWDER
vis-à-vis rotated axes

COST

DEPTH

POWDER

LIFT

Rotated
Factor 2

Rotated
Factor 1

19°

FIGURE 13.1 Illustration of rotation of axes to 
provide a better definition of factors vis-à-vis the 

variables with which they correlate.
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Factors are usually interpretable when some observed variables load highly on them and 
the rest do not. And, ideally, each variable loads on one, and only one, factor. In graphic terms, 
this means that the point representing each variable lies far out along one axis but near the origin 
on the other axes, that is, that coordinates of the point are large for one axis and near zero for the 
other axes.

If you have only one observed variable, it is trivial to position the factor axis—  variable point 
and axis overlap in a space of one dimension. However, with many variables and several factor axes, 
compromises are required in positioning the axes. The variables form a “swarm” in which variables 
that are correlated with one another form a cluster of points. The goal is to shoot an axis to the 
swarm of points. With luck, the swarms are about 90° away from one another so that an orthogonal 
solution is indicated. And with lots of luck, the variables cluster in just a few swarms with empty 
spaces between them so that the factor axes are nicely defined.

In oblique rotation the situation is slightly more complicated. Because factors may correlate 
with one another, factor axes are not necessarily at right angles. And, although it is easier to position
each axis near a cluster of points, axes may be very near each other (highly correlated), making 
the solution harder to interpret. See Section 13.6.3 for practical suggestions of ways to use graphic 
techniques to judge the adequacy of rotation.

13.5.3 Some Practical Recommendations

Although an almost overwhelmingly large number of combinations of extraction and rotation 
techniques is available, in practice differences among them are often trivial (Velicer & Jackson, 
1990; Fava & Velicer, 1992). The results of extraction are similar regardless of the method used 
when there are a large number of variables with some strong correlations among them, with the 
same, well-  chosen number of factors, and with similar values for communality. Further, differences 
that are apparent after extraction tend to disappear after rotation.

Most researchers begin their FA by using principal components extraction and varimax 
rotation. From the results, one estimates the factorability of the correlation matrix (Section 13.3.2.6), 
the rank of the observed correlation matrix (Sections 13.3.2.5 and 13.7.1.5), the likely number 
of factors (Section 13.6.2), and variables that might be excluded from subsequent analyses 
(Sections 13.3.2.7 and 13.7.1.7).

During the next few runs, researchers experiment with different numbers of factors, differ-
ent extraction techniques, and both orthogonal and oblique rotations. Some number of factors with 
some combination of extraction and rotation produces the solution with the greatest scientific util-
ity, consistency, and meaning; this is the solution that is interpreted.

13.6 Some Important Issues

Some of the issues raised in this section can be resolved through several different methods. Usually, 
different methods lead to the same conclusion; occasionally they do not. When they do not, results 
are judged by the interpretability and scientific utility of the solutions.
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13.6.1 Estimates of Communalities

FA differs from PCA in that communality values (numbers between 0 and 1) replace ones in the 
positive diagonal of R before factor extraction. Communality values are used instead of ones to 
remove the unique and error variance of each observed variable; only the variance a variable shares 
with the factors is used in the solution. But communality values are estimated, and there is some 
dispute regarding how that should be done.

The SMC of each variable as DV with the others in the sample as IVs is usually the starting 
estimate of communality. As the solution develops, communality estimates are adjusted by iterative 
procedures (which can be directed by the researcher) to fit the reproduced to the observed cor-
relation matrix with the smallest number of factors. Iteration stops when successive communality 
estimates are very similar.

Final estimates of communality are also SMCs, but now between each variable as DV and the fac-
tors as IVs. Final communality values represent the proportion of variance in a variable that is predictable 
from the factors underlying it. Communality estimates do not change with orthogonal rotation.

Image extraction and maximum likelihood extraction are slightly different. In image extrac-
tion, variances from the image covariance matrix are used as the communality values throughout. 
Image extraction produces a mathematically unique solution because communality values are not 
changed. In maximum likelihood extraction, number of factors instead of communality values are 
estimated and off-  diagonal correlations are “rigged” to produce the best fit between observed and 
reproduced matrices.

IBM SPSS and SAS provide several different starting statistics for communality estimation. 
IBM SPSS FACTOR permits user supplied values for principal factor extraction only, but otherwise 
uses SMCs. SAS FACTOR offers, for each variable, a choice of SMC: SMC adjusted so that the sum 
of the communalities is equal to the sum of the maximum absolute correlations, maximum absolute 
correlation with any other variable, user-  specified values, or random numbers between 0 and 1.

The seriousness with which estimates of communality should be regarded depends on the 
number of observed variables. If there are 20 or more variables, sample SMCs probably provide 
reasonable estimates of communality. Furthermore, with 20 or more variables, the elements in 
the positive diagonal are few compared with the total number of elements in R, and their sizes 
do not influence the solution very much. Actually, if the communality values for all variables in 
FA are of approximately the same magnitude, results of PCA and FA are very similar (Velicer & 
Jackson, 1990; Fava & Velicer, 1992).

If communality values equal or exceed 1, problems with the solution are indicated. There 
is too little data, or starting communality values are wrong, or the number of factors extracted is 
wrong; addition or deletion of factors may reduce the communality below 1. Very low communality 
values, on the other hand, indicate that the variables with them are unrelated to other variables in the 
set (Sections 13.3.2.7 and 13.7.1.7). SAS FACTOR has two alternatives for dealing with commu-
nalities greater than 1; HEYWOOD sets them to 1, and ULTRAHEYWOOD allows them to exceed 
1, but warns that doing so can cause convergence problems.

13.6.2 Adequacy of Extraction and Number of Factors

Because inclusion of more factors in a solution improves the fit between observed and reproduced 
correlation matrices, adequacy of extraction is tied to number of factors. The more factors extracted, 
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the better the fit and the greater the percent of variance in the data “explained” by the factor solu-
tion. However, the more factors extracted, the less parsimonious the solution. To account for all the 
variance (PCA) or covariance (FA) in a data set, one would normally have to have as many factors 
as observed variables. It is clear, then, that a trade-  off is required: One wants to retain enough fac-
tors for an adequate fit, but not so many that parsimony is lost.

Selection of the number of factors is probably more critical than selection of extraction and 
rotational techniques or communality values. In confirmatory FA, selection of the number of fac-
tors is really selection of the number of theoretical processes underlying a research area. You can 
partially confirm a hypothesized factor structure by asking if the theoretical number of factors 
adequately fits the data.

There are several ways to assess adequacy of extraction and number of factors. For a highly 
readable summary of these methods, not all currently available through the statistical packages, see 
Gorsuch (1983) and Zwick and Velicer (1986). Reviewed below are methods available through IBM 
SPSS and SAS.

A first quick estimate of the number of factors is obtained from the sizes of the eigenvalues 
reported as part of an initial run with principal components extraction. Eigenvalues repre-
sent variance. Because the variance that each standardized variable contributes to a principal 
components extraction is 1, a component with an eigenvalue less than 1 is not as important, from 
a variance perspective, as an observed variable. The number of components with eigenvalues 
greater than 1 is usually somewhere between the number of variables divided by 3 and the number 
of variables divided by 5 (e.g., 20 variables should produce between 7 and 4 components with 
eigenvalues greater than 1). If this is a reasonable number of factors for the data, if the number of 
variables is 40 or fewer, and if sample size is large, the number of factors indicated by this criterion 
is probably about right. In other situations, this criterion is likely to overestimate the number of 
factors in the data set.

A second criterion is the scree test (Cattell, 1966) of eigenvalues plotted against factors. 
Factors, in descending order, are arranged along the abscissa with eigenvalue as the ordinate. 
The plot is appropriately used with principal components or factor analysis at initial and later 
runs to find the number of factors. The scree plot is available through IBM SPSS and SAS 
FACTOR.

Usually the scree plot is negatively decreasing—  the eigenvalue is highest for the first factor 
and moderate but decreasing for the next few factors before reaching small values for the last 
several factors, as illustrated for real data through IBM SPSS in Figure 13.2. You look for the 
point where a line drawn through the points changes slope. In the example, a single straight line 
can comfortably fit the first four eigenvalues. After that, another line, with a noticeably different 
slope, best fits the remaining eight points. Therefore, there appear to be about four factors in the 
data of Figure 13.2.

Unfortunately, the scree test is not exact; it involves judgment of where the discontinuity in 
eigenvalues occurs and researchers are not perfectly reliable judges. As Gorsuch (1983) reports, 
results of the scree test are more obvious (and reliable) when sample size is large, communality 
values are high, and each factor has several variables with high loadings. Zoski and Jurs (1996) 
recommend a refinement to the visual scree test that involves computing the standard error of the 
eigenvalues for the last few components.

Horn (1965) proposed parallel analysis as an alternative to retaining all principal components 
with eigenvalues larger than 1. This is a three step process. First, a randomly generated data set 
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with the same number of cases and variables is generated. Next, PCA is repeatedly performed on 
the randomly generated data set and all eigenvalues noted for each analysis. Those eigenvalues are 
then averaged for each component and compared to the results from the real data set. Only compo-
nents from the real data set whose eigenvalues exceed the averaged eigenvalue from the randomly 
generated data set are retained. A major advantage to this procedure is to remind the user that even 
randomly generated data can have relationships based on chance that produce components with 
eigenvalues larger than 1, sometimes substantially so.

As an alternative, Velicer (1976) proposed the minimum average partial correlation (MAP) test. 
The first step is to perform PCA with one component. Partial correlation is used to take the variance 
of the first component from the variable intercorrelations before the mean squared coefficient of all 
partial correlations (the values off of the main diagonal) is computed. Then PCA is performed with 
two components, and the procedure is repeated. Mean squared partial correlations are computed for 
all solutions until the minimum squared partial correlation is identified. The number of components 
that produces the minimum mean squared partial correlation is the number of components to retain. 
Gorsuch (1983) points out that this procedure does not work well when some components have only 
a few variables that load on them.

Zwick and Velicer (1986) tested the scree test, Horn’s parallel test, and Velicer’s MAP test 
(among others) in simulation studies using a data set with a clear factor structure. Both the paral-
lel test and the minimum average partial test seemed to work well. These procedures have been 
extended successfully to PFA. O’Connor (2000) provides programs for conducting the parallel test 
and the minimum average partial test through both IBM SPSS and SAS.
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FIGURE 13.2 Scree output produced by IBM SPSS FACTOR. Note 
break in size of eigenvalues between the fourth and fifth factors.
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Once you have determined the number of factors, it is important to look at the rotated loading
matrix to determine the number of variables that load on each factor (see Section 13.6.5). If only one 
variable loads highly on a factor, the factor is poorly defined. If two variables load on a factor, then 
whether or not it is reliable depends on the pattern of correlations of these two variables with each 
other and with other variables in R. If the two variables are highly correlated with each other (say, 
r 7 .70) and relatively uncorrelated with other variables, the factor may be reliable. Interpretation of 
factors defined by only one or two variables is hazardous, however, under even the most exploratory 
factor analysis.

For principal components extraction and maximum likelihood extraction in confirmatory 
factor analysis done through FA rather than SEM programs there are significance tests for the 
number of factors. Bartlett’s test evaluates all factors together and each factor separately against 
the hypothesis that there are no factors. However, there is some dispute regarding use of these tests. 
The interested reader is referred to Gorsuch (1983) or one of the other newer FA texts for discussion 
of significance testing in FA.

There is a debate about whether it is better to retain too many or too few factors if the number
is ambiguous. Sometimes a researcher wants to rotate, but not interpret, marginal factors for 
statistical purposes (e.g., to keep some factors with communality values less than 1). Other times, 
the last few factors represent the most interesting and unexpected findings in a research area. These 
are good reasons for retaining factors of marginal reliability. However, if the researcher is interested 
in using only demonstrably reliable factors, the fewest possible factors are retained.

13.6.3 Adequacy of Rotation and Simple Structure

The decision between orthogonal and oblique rotation is made as soon as the number of reliable 
factors is apparent. In many factor analytic situations, oblique rotation seems more reasonable on 
the face of it than orthogonal rotation because it seems more likely that factors are correlated than 
that they are not. However, reporting the results of oblique rotation requires reporting the elements 
of the pattern matrix (A) and the factor correlation matrix (
) whereas reporting orthogonal rotation 
requires only the loading matrix (A). Thus, simplicity of reporting results favors orthogonal rota-
tion. Further, if factor scores or factorlike scores (Section 13.6.6) are to be used as IVs or DVs in 
other analyses, or if a goal of analysis is comparison of factor structure in groups, then orthogonal 
rotation has distinct advantages.

Perhaps the best way to decide between orthogonal and oblique rotation is to request oblique 
rotation with the desired number of factors and look at the correlations among factors. The oblique 
rotations available by default in IBM SPSS and SAS calculate factors that are fairly highly correlated
if necessary to fit the data. However, if factor correlations are not driven by the data, the solution 
remains nearly orthogonal.

Look at the factor correlation matrix for correlations around .32 and above. If correlations 
exceed .32, then there is 10% (or more) overlap in variance among factors, enough variance to 
warrant oblique rotation unless there are compelling reasons for orthogonal rotation. Compelling 
reasons include a desire to compare structure in groups, a need for orthogonal factors in other 
analyses, or a theoretical need for orthogonal rotation.

Once the decision is made between orthogonal and oblique rotation, the adequacy of rotation 
is assessed several ways. Perhaps, the simplest way is to compare the pattern of correlations in the 
correlation matrix with the factors. Are the patterns represented in the rotated solution? Do highly 
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correlated variables tend to load on the same factor? If you included marker variables, do they load 
on the predicted factors?

Another criterion is simple structure (Thurstone, 1947). If simple structure is present (and 
factors are not too highly correlated), several variables correlate highly with each factor and only 
one factor correlates highly with each variable. In other words, the columns of A, which define fac-
tors vis-à-vis variables, have several high and many low values while the rows of A, which define 
variables vis-à-vis factors, have only one high value. Rows with more than one high correlation 
correspond to variables that are said to be complex because they reflect the influence of more than 
one factor. It is usually best to avoid complex variables because they make interpretation of factors 
more ambiguous.

Adequacy of rotation is also ascertained through the PLOT instructions of the four programs. 
In the figures, factors are considered two at a time with a different pair of factors as axes for each 
plot. Look at the distance, clustering, and direction of the points representing variables relative to 
the factor axes in the figures.

The distance of a variable point from the origin reflects the size of factor loadings; vari-
ables highly correlated with a factor are far out on that factor’s axis. Ideally, each variable point 
is far out on one axis and near the origin on all others. Clustering of variable points reveals how 
clearly defined a factor is. One likes to see a cluster of several points near the end of each axis and 
all other points near the origin. A smattering of points at various distances along the axis indicates 
a factor that is not clearly defined, while a cluster of points midway between two axes reflects 
the presence of another factor or the need for oblique rotation. The direction of clusters after or-
thogonal rotation may also indicate the need for oblique rotation. If clusters of points fall between 
factor axes after orthogonal rotation, if the angle between clusters with respect to the origin is not 
90°, then a better fit to the clusters is provided by axes that are not orthogonal. Oblique rotation 
may reveal substantial correlations among factors. Several of these relationships are depicted in 
Figure 13.3.

13.6.4 Importance and Internal Consistency of Factors

The importance of a factor (or a set of factors) is evaluated by the proportion of variance or covari-
ance accounted for by the factor after rotation. The proportion of variance attributable to individual 
factors differs before and after rotation because rotation tends to redistribute variance among factors 
somewhat. Ease of ascertaining proportions of variance for factors depends on whether rotation was 
orthogonal or oblique.

After orthogonal rotation, the importance of a factor is related to the size of its SSLs (Sum 
of Squared Loadings from A after rotation). SSLs are converted to proportion of variance for a 
factor by dividing by p (the number of variables). SSLs are converted to proportion of covariance 
for a factor by dividing its SSL by the sum of SSLs or, equivalently, sum of communalities. These 
computations are illustrated in Table 13.4 and Section 13.7 for the example.

The proportion of variance accounted for by a factor is the amount of variance in the 
original variables (where each has contributed one unit of variance) that has been condensed 
into the factor. Proportion of variance is the variance of a factor relative to the variance in 
the variables. The proportion of covariance accounted for by a factor indicates the relative 
importance of the factor to the total covariance accounted for by all factors. Proportion of 
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covariance is the variance of a factor relative to the variance in the solution. The variance in the 
solution is likely to account for only a fraction of the variance in the original variables.

In oblique rotation, proportions of variance and covariance can be obtained from A before
rotation by the methods just described, but they are only rough indicators of the proportions of 
variance and covariance of factors after rotation. Because factors are correlated, they share 
overlapping variability, and assignment of variance to individual factors is ambiguous. After oblique 
rotation, the size of the SSL associated with a factor is a rough approximation of its importance—
factors with bigger SSLs are more important—  but proportions of variance and covariance cannot 
be specified.

Factor 2

Factor 1

(a) Need for oblique rotation

Factor 2

Factor 1

(b) Presence of another factor

Factor 2

Factor 1

(c) No simple structure,
unsuitable data

Factor 2

Factor 1

(d) Simple structure with
orthogonal rotation

FIGURE 13.3 Pairwise plots of factor loadings following orthogonal 
rotation and indicating: (a) need for oblique rotation; (b) presence of 

another factor; (c) unsuitable data; and (d) simple structure.
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An estimate of the internal consistency of the solution—  the certainty with which factor 
axes are fixed in the variable space—  is given by the squared multiple correlations of factor scores 
predicted from scores on observed variables. In a good solution, SMCs range between 0 and 
1; the larger the SMCs, the more stable the factors. A high SMC (say, .70 or better) means that 
the observed variables account for substantial variance in the factor scores. A low SMC means 
the factors are poorly defined by the observed variables. If an SMC is negative, too many factors 
have been retained. In oblique rotation, SMCs can exceed 1 and are, therefore, not an indication of 
factor stability.

IBM SPSS FACTOR prints these SMCs as the diagonal of the covariance matrix for estimated 
regression factor scores. In SAS FACTOR, SMCs are printed along with factor score coefficients 
by the SCORE option.

13.6.5 Interpretation of Factors

To interpret a factor, one tries to understand the underlying dimension that unifies the group of vari-
ables loading on it. In both orthogonal and oblique rotations, loadings are obtained from the loading 
matrix, A, but the meaning of the loadings is different for the two rotations.

After orthogonal rotation, the values in the loading matrix are correlations between variables 
and factors. The researcher decides on a criterion for meaningful correlation (usually .32 or larger), 
collects together the variables with loadings in excess of the criterion, and searches for a concept 
that unifies them.

After oblique rotation, the process is the same, but the interpretation of the values in A, the 
pattern matrix, is no longer straightforward. The loading is not a correlation but is a measure of the 
unique relationship between the factor and the variable. Because factors correlate, the correlations 
between variables and factors (available in the structure matrix, C) are inflated by overlap between 
factors. A variable may correlate with one factor through its correlation with another factor rather 
than directly. The elements in the pattern matrix have overlapping variance among factors “partialed 
out,” but at the expense of conceptual simplicity.

Actually, the reason for interpretation of the pattern matrix rather than the structure matrix is 
pragmatic—  it’s easier. The difference between high and low loadings is more apparent in the pat-
tern matrix than in the structure matrix.

As a rule of thumb, only variables with loadings of .32 and above are interpreted. The greater 
the loading, the more the variable is a pure measure of the factor. Comrey and Lee (1992) suggest 
that loadings in excess of .71 (50% overlapping variance) are considered excellent, .63 (40% 
overlapping variance) very good, .55 (30% overlapping variance) good, .45 (20% overlapping 
variance) fair, and .32 (10% overlapping variance) poor. Choice of the cutoff for size of loading to 
be interpreted is a matter of researcher preference. Sometimes there is a gap in loadings across the 
factors and, if the cutoff is in the gap, it is easy to specify which variables load and which do not. 
Other times, the cutoff is selected because one can interpret factors with that cutoff but not with a 
lower cutoff.

The size of loadings is influenced by the homogeneity of scores in the sample. If homogeneity 
is suspected, interpretation of lower loadings is warranted. That is, if the sample produces similar 
scores on observed variables, a lower cutoff is used for interpretation of factors.

At some point, a researcher usually tries to characterize a factor by assigning it a name 
or a label, a process that involves art as well as science. Rummel (1970) provides numerous 
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helpful hints on interpreting and naming factors. Interpretation of factors is facilitated by 
output of the matrix of sorted loadings where variables are grouped by their correlations with 
factors. Sorted loadings are produced routinely by REORDER in SAS FACTOR, and SORT 
in IBM SPSS.

The replicability, utility, and complexity of factors are also considered in interpretation. Is the 
solution replicable in time and/or with different groups? Is it trivial or is it a useful addition to sci-
entific thinking in a research area? Where do the factors fit in the hierarchy of “explanations” about 
a phenomenon? Are they complex enough to be intriguing without being so complex that they are 
uninterpretable?

13.6.6 Factor Scores

Among the potentially more useful outcomes of PCA or FA are factor scores. Factor scores are esti-
mates of the scores that subjects would have received on each of the factors had they been measured 
directly.

Because there are normally fewer factors than observed variables, and because factor 
scores are nearly uncorrelated if factors are orthogonal, use of factor scores in other analyses 
may be very helpful. Multicollinear matrices can be reduced to orthogonal components using 
PCA, for instance. Or, one could use PCA to reduce a large number of DVs to a smaller number 
of components for use as DVs in MANOVA. Alternatively, one could reduce a large number of 
IVs to a small number of factors for purposes of predicting a DV in multiple regression or group 
membership in discriminant analysis or logistic regression. If factors are few in number, stable, 
and interpretable, their use enhances subsequent analyses. In the context of a theoretical FA, fac-
tor scores are estimates of the values that would be produced if the underlying constructs could 
be measured directly.

Procedures for estimating factor scores range between simple minded (but frequently ade-
quate) and sophisticated. Comrey and Lee (1992) describe several rather simple-  minded techniques 
for estimating factor scores. Perhaps the simplest is to sum scores on variables that load highly on 
each factor. Variables with bigger standard deviations contribute more heavily to the factor scores 
produced by this procedure, a problem that is alleviated if variable scores are standardized first or if 
the variables have roughly equal standard deviations to begin with. For many research purposes, this 
“quick and dirty” estimate of factor scores is entirely adequate.

There are several sophisticated statistical approaches to estimating factors. All produce factor 
scores that are correlated, but not perfectly, with the factors. The correlations between factors and 
factor scores are higher when communalities are higher and when the ratio of variables to factors is 
higher. But as long as communalities are estimated, factor scores suffer from indeterminacy because 
there is an infinite number of possible factor scores that all have the same mathematical character-
istics. As long as factor scores are considered only estimates, however, the researcher is not overly 
beguiled by them.

The method described in Section 13.4 (especially Equations 13.10 and 13.11) is the 
regression approach to estimating factor scores. This approach results in the highest correlations 
between factors and factor scores. The distribution of each factor’s scores has a mean of 0 and 
a standard deviation of 1 (after PCA) or equal to the SMC between factors and variables (after 
FA). However, this regression method, like all others (see Chapter 5), capitalizes on chance 
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relationships among variables so that factor-  score estimates are biased (too close to “true” 
factor scores). Further, there are often correlations among scores for factors even if factors are 
orthogonal and factor scores sometimes correlate with other factors (in addition to the one they 
are estimating).

The regression approach to estimating factor scores is available through SAS and IBM SPSS. 
Both packages write component/factor scores to files for use in other analyses. SAS and IBM SPSS 
print standardized component/factor score coefficients.

IBM SPSS FACTOR provides two additional methods of estimating factor scores. In the 
Bartlett method, factor scores correlate only with their own factors and the factor scores are unbi-
ased (i.e., neither systematically too close nor too far away from “true” factor scores). The factor 
scores correlate with the factors almost as well as in the regression approach and have the same 
mean and standard deviation as in the regression approach. However, factor scores may still be cor-
related with each other.

The Anderson–  Rubin approach (discussed by Gorsuch, 1983) produces factor scores that 
are uncorrelated with each other even if factors are correlated. Factor scores have mean 0 and 
standard deviation 1. Factor scores correlate with their own factors almost as well as in the regres-
sion approach, but they sometimes also correlate with other factors (in addition to the one they are 
estimating) and they are somewhat biased. If you need uncorrelated scores, the Anderson–  Rubin 
approach is best; otherwise, the regression approach is probably best simply because it is best 
understood and most widely available.

13.6.7 Comparisons Among Solutions and Groups

Frequently, a researcher is interested in deciding whether or not two groups that differ in experience 
or characteristics have the same factors. Comparisons among factor solutions involve the pattern of 
the correlations between variables and factors, or both the pattern and magnitude of the correlations 
between them. Rummel (1970), Levine (1977), and Gorsuch (1983) have excellent summaries of 
several comparisons that might be of interest. Some of the simpler of these techniques are described 
in an earlier version of this book (Tabachnick & Fidell, 1989).

Tests of theory (in which theoretical factor loadings are compared with those derived from a 
sample) and comparisons among groups are currently the province of structural equation modeling. 
These techniques are discussed in Chapter 14.

13.7 Complete Example of FA

During the second year of the panel study described in Appendix B, Section B.1, participants 
completed the Bem Sex Role Inventory (BSRI; Bem, 1974). The sample included 351 middle-
class, English-  speaking women between the ages of 21 and 60 who were interviewed in person.

Forty-  four items from the BSRI were selected for this research, where 20 items measure 
femininity, 20 masculinity,8 and 5 social desirability. Respondents attribute traits (e.g., “gentle,” 

8Due to clerical error, one of the masculine items, “aggression,” was omitted from the questionnaires.
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“shy,” “dominant”) to themselves by assigning numbers between 1 (“never or almost never true of 
me”) and 7 (“always or almost always true of me”) to each of the items. Responses are summed 
to produce separate masculine and feminine scores. Masculinity and femininity are conceived as 
orthogonal dimensions of personality with both, any, or neither descriptive of any given individual. 
Files are FACTOR.*.

Previous factor analytic work had indicated the presence of between three and five factors 
underlying the items of the BSRI. Investigation of the factor structure for this sample of women is 
a goal of this analysis.

13.7.1 Evaluation of Limitations

Because the BSRI was neither developed through nor designed for factor analytic work, it 
meets only marginally the requirements listed in Section 13.3.1. For instance, marker variables 
are not included and variables from the feminine scale differ in social desirability as well as in 
meaning (e.g., “tender” and “gullible”), so some of these variables are likely to be complex.

13.7.1.1 Sample Size and Missing Data

Data are available initially from 369 women, 18 of whom had missing values on one or more vari-
ables. With those cases deleted as well as 11 outlying cases (see below), the FA is conducted on 
responses of 340 women. Using the guidelines of Section 13.3.2.1, over 300 cases provide a good 
sample size for factor analysis.

13.7.1.2 Normality

Distributions of the 44 variables are examined for skewness through SAS MEANS (cf. Chapter 12). 
Many of the variables are negatively skewed and a few are positively skewed. However, because 
the BSRI is already published and is in use, no deletion of variables or transformations of them is 
performed.

Because the variables fail in normality, significance tests are inappropriate. And because the 
direction of skewness is different for different variables, we also anticipate a weakened analysis due 
to lowering of correlations in R.

13.7.1.3 Linearity

The differences in skewness for variables suggest the possibility of curvilinearity for some pairs of 
variables. With 44 variables, however, examination of all pairwise scatterplots (about 1,000 plots) 
is impractical. Therefore, a spot check on a few plots is run through SAS PLOT. Figure 13.4 shows 
the plot expected to be among the worst—  between LOYAL (with strong negative skewness) and 
MASCULIN (with strong positive skewness). Although the plot is far from pleasing and shows 
departure from linearity as well as the possibility of outliers, there is no evidence of true curvilinear-
ity (Section 4.1.5.2). And again, transformations are viewed with disfavor, considering the variable 
set and the goals of analysis.
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13.7.1.4 Outliers

Multivariate outliers are identified using SAS REG (cf. Chapter 12) which adds a leverage variable 
to the data set, now labeled FACTORLEV. Eleven cases are identified as outliers using the criterion 
suggested by Lunneborg (1994) of critical hii = 21k>N2 = 0.25. The decision is made to delete the 
11 cases, and to run remaining analyses on the data set with 340 cases.

Because of the large number of outliers and variables, a case-by-case analysis (cf. Chapter 4) 
is not feasible. Instead, a stepwise discriminant analysis is used to identify variables that significantly 
discriminate between outliers and nonoutliers. First, a variable labeled DUMMY is added to the data 
set, in which each outlier is coded 1 and the remaining cases are labeled 0. Then DUMMY is declared 
the class (grouping) variable in the stepwise regression run through SAS STEPDISC, as seen in 
Table 13.10. Means in each group are requested for all variables. On the last step of the discriminant 
analysis, five variables (RELIANT, DEFBE, LEADERAB, SELFSUFF, and WARM) discriminate 
outliers as a group with p 6 .001

A reduced data set that includes only the 340 nonoutlying cases is created, called FACTORR
to be used for all subsequent analyses.
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FIGURE 13.4 Spot check for linearity among variables. 
Syntax and output from SAS PLOT.
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TABLE 13.10 Description of Variables Causing Multivariate Outliers Using SAS STEPDISC (Syntax and Selected Output)

proc stepdisc data=SASUSER.FACTORLEV;
class DUMMY;
var HELPFUL RELIANT DEFBEL YIELDING CHEERFUL INDPT ATHLET SHY ASSERT
STRPERS FORCEFUL AFFECT FLATTER LOYAL ANALYT FEMININE SYMPATHY MOODY SENSITIV UNDSTAND
COMPASS LEADERAB SOOTHE RISK DECIDE SELFSUFF CONSCIEN DOMINANT MASCULIN STAND HAPPY
SOFTSPOK WARM TRUTHFUL TENDER GULLIBLE LEADACT CHILDLIK INDIVID FOULLANG LOVCHIL
COMPETE AMBITIOU GENTLE;

run;

The STEPDISC Procedure
Simple Statistics

DUMMY = 0

Variable Label N Sum Mean Variance
Standard 
Deviation

reliant reliant 340 2027 5.96176 1.22862 1.1084
defbel defbel 340 2033 5.97941 1.52465 1.2348
leaderab leaderab 340 1574 4.62941 2.94780 1.7169
selfsuff selfsuff 340 1957 5.75588 1.52430 1.2346
warm warm 340 1928 5.67059 0.97081 0.9853

DUMMY = 1

Variable Label N Sum Mean Variance
Standard 
Deviation

reliant reliant 11 47.00000 4.27273 6.61818 2.5726
defbel defbel 11 46.00000 4.18182 5.56364 2.3587
leaderab leaderab 11 54.00000 4.90909 4.49091 2.1192
selfsuff selfsuff 11 70.00000 6.36364 0.85455 0.9244
warm warm 11 66.00000 6.00000 3.40000 1.8439

(continued)
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The STEPDISC Procedure
Stepwise Selection: Step 19

Statistics for Removal, DF = 1, 332

Variable label
Partial 
R-Square F Value Pr > F

reliant reliant 0.1152 43.22 <.0001
defbel defbel 0.0347 11.92 0.0006
yielding yielding 0.0324 11.11 0.0010
affect affect 0.0189 6.38 0.0120
loyal loyal 0.0230 7.81 0.0055
feminine feminine 0.0148 5.00 0.0260
leaderab leaderab 0.0716 25.59 <.0001
soothe soothe 0.0202 6.85 0.0093
risk risk 0.0130 4.36 0.0374
selfsuff selfsuff 0.0721 25.81 <.0001
dominant dominant 0.0095 3.20 0.0747
warm warm 0.0406 14.05 0.0002
leadact leadact 0.0683 24.34 <.0001
childlik childlik 0.0210 7.11 0.0081
individ individ 0.0063 2.09 0.1488
foullang foullang 0.0132 4.43 0.0360
lovchil lovchil 0.0298 10.21 0.0015
ambitiou ambitiou 0.0108 3.63 0.0576

TABLE 13.10 Continued
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13.7.1.5 Multicollinearity and Singularity

Nonrotated PCA run through SAS FACTOR reveals that the smallest eigenvalue is 0.126, not danger-
ously close to 0. The largest SMC between variables where each, in turn, serves as DV for the others is 
.76, not dangerously close to 1 (Table 13.11). Multicollinearity is not a threat in this data set.

13.7.1.6 Factorability of R

The SAS FACTOR correlation matrix (not shown) reveals numerous correlations among the 44 items, 
well in excess of .30; therefore, patterns in responses to variables are anticipated. Table 13.11 syntax 
produces Kaiser’s measures of sampling adequacy (msa), which are acceptable because all are 
greater than .6 (not shown). Most of the values in the negative anti-  image correlation matrix (also not 
shown) are small, another requirement for good FA.

13.7.1.7 Outliers Among Variables

SMCs among variables (Table 13.11) are also used to screen for outliers among variables, as 
discussed in Section 13.3.2.7. The lowest SMC among variables is .11. It is decided to retain 
all 44 variables although many are largely unrelated to others in the set. (In fact, 45% of the 
44 variables in the analysis have loadings too low on all the factors to assist interpretation in the 
final solution.)

13.7.2 Principal Factors Extraction With Varimax Rotation

Principal components extraction with varimax rotation through SAS FACTOR is used in an initial 
run to estimate the likely number of factors from eigenvalues.9 The first 13 eigenvalues are shown in 
Table 13.12. The maximum number of factors (eigenvalues larger than 1) is 11. However, retention 
of 11 factors seems unreasonable so sharp breaks in size of eigenvalues are sought using the scree 
test (Section 13.6.2).

Eigenvalues for the first four factors are all larger than two, and, after the sixth factor, 
changes in successive eigenvalues are small. This is taken as evidence that there are probably 
between four and six factors. The scree plot visually suggests breaks between four and six 
factors. These results are consistent with earlier research suggesting three to five factors on the 
BSRI.

A common factor extraction model that removes unique and error variability from each 
variable is used for the next several runs and the final solution. Principal factors are chosen from 
among methods for common factor extraction. Several PFA runs specifying four to six factors are 
planned to find the optimal number of factors.

The PFA run with five factors has five eigenvalues larger than 1 among rotated factors and 
the fifth factor has three loadings larger than .45, the criterion for interpretation chosen for this 
research. The first seven eigenvalues from the five-  factor solution are shown in Table 13.13.

As another test of adequacy of extraction and number of factors, it is noted (but not shown) 
that most values in the residual correlation matrix for the five-  factor orthogonal solution are near 
zero. This is further confirmation that a reasonable number of factors is five.

9Principal components extraction is chosen to estimate the maximum number of factors that might be interesting. PFA, 
which produces fewer eigenvalues greater than 1, is a reasonable alternative for estimation.
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TABLE 13.11 Syntax and Selected SAS Factor Output to Assess Multicollinearity

proc factor data=SASUSER.FACTORR prior=smc msa;
 var HELPFUL RELIANT DEFBEL YIELDING CHEERFUL INDPT ATHLET SHY ASSERT
STRPERS FORCEFUL AFFECT FLATTER LOYAL ANALYT FEMININE SYMPATHY MOODY SENSITIV UNDSTAND
COMPASS LEADERAB SOOTHE RISK DECIDE SELFSUFF CONSCIEN DOMINANT MASCULIN STAND HAPPY
SOFTSPOK WARM TRUTHFUL TENDER GULLIBLE LEADACT CHILDLIK INDIVID FOULLANG LOVCHIL
COMPETE AMBITIOU GENTLE;

run;

Prior Communality Estimates: SMC

helpful reliant defbel yielding cheerful indpt athlet shy

0.37160303 0.48940632 0.40430726 0.22938776 0.49962905 0.54110375 0.26006896 0.31873301

assert strpers forceful affect flatter loyal analyt feminine

0.56223304 0.61367020 0.56839062 0.55534755 0.28016976 0.38123886 0.23166431 0.38508982

sympathy moody sensitiv undstand compass leaderab soothe risk

0.43611044 0.36566060 0.47547415 0.61093141 0.64882134 0.76236310 0.43642100 0.41069381

decide selfsuff conscien dominant masculin stand happy softspok

0.49669066 0.65463203 0.39122820 0.56226427 0.35126516 0.55484492 0.54313590 0.38918408

warm truthful tender gullible leadact childlik individ foullang

0.61341943 0.34495670 0.58662165 0.28701425 0.75777345 0.29636797 0.37887704 0.11353506

lovchil compete ambitiou gentle
0.28560598 0.47864699 0.46940471 0.59198996



663

TABLE 13.12 Eigenvalues and Proportions of Variance for First 13 Components (SAS FACTOR PCA Syntax and Selected Output)

proc factor data=SASUSER.FACTORR simple corr scree;
var HELPFUL RELIANT DEFBEL YIELDING CHEERFUL INDPT ATHLET SHY ASSERT

STRPERS FORCEFUL AFFECT FLATTER LOYAL ANALYT FEMININE SYMPATHY MOODY SENSITIV UNDSTAND
COMPASS LEADERAB SOOTHE RISK DECIDE SELFSUFF CONSCIEN DOMINANT MASCULIN STAND HAPPY
SOFTSPOK WARM TRUTHFUL TENDER GULLIBLE LEADACT CHILDLIK INDIVID FOULLANG LOVCHIL
COMPETE AMBITIOU GENTLE;

run;

Eigenvalues of the Correlation Matrix: Total = 44 Average = 1

Eigenvalue Difference Proportion Cumulative

    1 8.13953452 2.95691419 0.1850 0.1850
    2 5.18262033 2.68422078 0.1178 0.3028
    3 2.49839956 0.39333457 0.0568 0.3596
    4 2.10506498 0.44826534 0.0478 0.4074
    5 1.65679964 0.27255495 0.0377 0.4451
    6 1.38424469 0.04304596 0.0315 0.4765
    7 1.34119873 0.11660683 0.0305 0.5070
    8 1.22459190 0.07627839 0.0278 0.5348
    9 1.14831351 0.06537346 0.0261 0.5609
10 1.08294005 0.06111883 0.0246 0.5855
11 1.02182122 0.05627173 0.0232 0.6088
12 0.96554949 0.04701065 0.0219 0.6307
13 0.91853885 0.01390491 0.0209 0.6516

.

.
11 factors will be retained by the MINEIGEN criterion.

(continued )
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TABLE 13.12 Continued

The decision between oblique and orthogonal rotation is made by requesting principal factor 
extraction with oblique rotation of five factors. Promax is the oblique method employed; power = 2
sets the degree of allowable correlation among factors. The highest correlation (.343) is between 
factors 2 and 3 (see Table 13.14).

The request for an output data set (outfile=SASUSER.FACSCORE) in the syntax 
produces factor scores, which are plotted in Figure 13.5. The generally oblong shape of the scatterplot 
of factor scores between these two factors confirms the correlation. This level of correlation can be 
considered borderline between accepting an orthogonal solution versus dealing with the complexities 
of interpreting an oblique solution. The simpler, orthogonal, solution is chosen.

The solution that is evaluated, interpreted, and reported is the run with principal factors 
extraction, varimax rotation, and five factors. In other words, after “trying out” oblique rotation, 
the decision is made to interpret the earlier run with orthogonal rotation. Syntax for this run is in 
Table 13.13.

Communalities are inspected to see if the variables are well defined by the solution. 
Communalities indicate the percent of variance in a variable that overlaps variance in the 
factors. As seen in Table 13.15, communality values for a number of variables are quite low 
(e.g., FOULLANG). Seven of the variables have communality values lower than .2 indicating 
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TABLE 13.13 Eigenvalues and Proportions of Variance for First Six Factors. Principal Factors 
Extraction and Varimax Rotation (SAS FACTOR Syntax and Selected Output)

proc factor data=SASUSER.FACTORR prior=smc nfact=5 method=prinit rotate=varimax plot;
var HELPFUL RELIANT DEFBEL YIELDING CHEERFUL INDPT ATHLET SHY ASSERT

STRPERS FORCEFUL AFFECT FLATTER LOYAL ANALYT FEMININE SYMPATHY MOODY SENSITIV UNDSTAND
COMPASS LEADERAB SOOTHE RISK DECIDE SELFSUFF CONSCIEN DOMINANT MASCULIN STAND HAPPY
SOFTSPOK WARM TRUTHFUL TENDER GULLIBLE LEADACT CHILDLIK INDIVID FOULLANG LOVCHIL
COMPETE AMBITIOU GENTLE;

run;

Eigenvalues of the Reduced Correlation Matrix: Total = 16.6698011 Average = 0.37885911

Eigenvalue Difference Proportion Cumulative

1 7.58593121 2.94049536 0.4551 0.4551
2 4.64543585 2.76137423 0.2787 0.7337
3 1.88406162 0.35565059 0.1130 0.8468
4 1.52841103 0.50167641 0.0917 0.9385
5 1.02673462 0.27278166 0.0616 1.0000
6 0.75395296 0.13981395 0.0452 1.0453
7 0.61413901 0.05512438 0.0368 1.0821
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TABLE 13.14 Syntax and Selected SAS FACTOR PFA Output of Correlations Among Factors Following Promax Rotation

proc factor data=SASUSER.FACTORR prior=smc nfact=5 method=prinit rotate=promax power=2
reorder out=SASUSER.FACSCORE;

var HELPFUL RELIANT DEFBEL YIELDING CHEERFUL INDPT ATHLET SHY ASSERT
STRPERS FORCEFUL AFFECT FLATTER LOYAL ANALYT FEMININE SYMPATHY MOODY SENSITIV UNDSTAND
COMPASS LEADERAB SOOTHE RISK DECIDE SELFSUFF CONSCIEN DOMINANT MASCULIN STAND HAPPY
SOFTSPOK WARM TRUTHFUL TENDER GULLIBLE LEADACT CHILDLIK INDIVID FOULLANG LOVCHIL
COMPETE AMBITIOU GENTLE;

run;

Inter-Factor Correlations

Factor1 Factor2 Factor3 Factor4 Factor5

Factor1 1.00000 0.17144 0.03217 0.04955 0.23476
Factor2 0.17144 1.00000 0.34331 0.14280 0.22937
Factor3 0.03217 0.34331 1.00000 0.20455 –0.02264
Factor4 0.04955 0.14280 0.20455 1.00000 –0.03207
Factor5 0.23476 0.22937 –0.02264 –0.03207 1.00000
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proc plot data=sasuser.facscore;
plot factor3*factor2;

run;

FIGURE 13.5 Scatterplot of factor scores with pairs of factors (2 and 3) 
as axes following oblique rotation.

considerable heterogeneity among the variables. It should be recalled, however, that factorial pu-
rity was not a consideration in development of the BSRI.

Adequacy of rotation (Section 13.6.3) is assessed, in part, by scatterplots with pairs of rotated 
factors as axes and variables as points, as partially shown in Figure 13.6. Ideally, variable points are 
at the origin (the unmarked middle of figures) or in clusters at the ends of factor axes. Scatterplots 
between factor 1 and factor 2 (the only one shown), between factor 2 and factor 4, and between factor 
3 and factor 4 seem reasonably clear. The scatterplots between other pairs of factors show evidence 
of correlation among factors as found during oblique rotation. Otherwise, the scatterplots are disap-
pointing but consistent with the other evidence of heterogeneity among the variables in the BSRI.

Simplicity of structure (Section 13.6.3) in factor loadings following orthogonal rotation is 
assessed from Rotated Factor Pattern table (see Table 13.16). In each column, there 
are a few high and many low correlations between variables and factors. There are also numerous 
moderate loadings so several variables will be complex (load on more than one factor) unless a 
fairly high cutoff for interpreting loadings is established. Complexity of variables (Section 13.6.5) 
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TABLE 13.15 Communality Values (Five Factors). Selected Output From SAS FACTOR PFA (See Table 13.13 for Syntax)

Final Communality Estimates: Total = 16.670574

helpful reliant defbel yielding cheerful indpt athlet shy

0.27989969 0.40324796 0.27517026 0.14762865 0.46884461 0.45362663 0.18445190 0.25460045

assert strpers forceful affect flatter loyal analyt feminine

0.47588701 0.57377345 0.48071231 0.48559859 0.21227516 0.29741719 0.15475733 0.16738890

sympathy moody sensitiv undstand compass leaderab soothe risk

0.43347916 0.31232603 0.42057011 0.55491827 0.67643224 0.58944801 0.39532766 0.32659884

decide selfsuff conscien dominant masculin stand happy softspok

0.39618000 0.66277946 0.34487215 0.52740913 0.20577933 0.42509594 0.51320831 0.33367049

warm truthful tender gullible leadact childlik individ foullang

0.62488952 0.17522560 0.51576382 0.27873614 0.54555466 0.20768568 0.24669893 0.05316525

lovchil compete ambitiou gentle

0.13540009 0.46497719 0.43043228 0.55866996
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Plot of Factor Pattern for Factor2 and Factor3
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FIGURE 13.6 Selected SAS FACTOR PFA output showing scatterplot of variable 
loadings with factors 1 and 2 as axes. (Syntax in Table 13.13.)
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TABLE 13.16 Factor Loadings for Principal Factors Extraction and Varimax 
Rotation of Five Factors. Selected SAS FACTOR Output (Syntax Appears in Table 13.13)

Rotated Factor Pattern

Factor1 Factor2 Factor3 Factor4 Factor5

compass compass 0.81668 –0.01671 0.04398 0.08225 –0.02214
undstand undstand 0.73038 –0.00708 –0.00988 0.14600 –0.00042
sympathy sympathy 0.64913 –0.10789 0.01231 0.01740 –0.00460
sensitiv sensitiv 0.64054 0.02520 0.02927 0.07249 –0.05949
warm warm 0.60918 0.16824 –0.04652 –0.12163 0.45664
soothe soothe 0.60373 0.02882 –0.00896 –0.02478 0.17122
gentle gentle 0.58373 0.19188 –0.25101 –0.10604 0.32690
tender tender 0.56803 0.19266 –0.11069 –0.12432 0.35817
affect affect 0.48900 0.14585 0.24264 –0.22048 0.34310
loyal loyal 0.45093 0.11644 0.13102 0.01516 0.25124
truthful truthful 0.32812 0.01592 0.11448 0.19525 0.12681
helpful helpful 0.32381 0.23344 0.13844 0.21628 0.23369
lovchil lovchil 0.26709 0.09035 –0.08345 –0.13418 0.17588
analyt analyt 0.22253 0.21688 0.17446 0.12667 –0.10826
compete compete –0.02619 0.65931 0.10250 –0.10947 0.08433
ambitiou ambitiou 0.07739 0.64616 0.00664 0.06766 0.04790
leaderab leaderab 0.11055 0.59325 0.41303 0.21812 0.08430
leadact leadact –0.01292 0.58378 0.40237 0.17552 0.10897
risk risk 0.14850 0.54482 0.07787 –0.01907 0.03592
decide decide 0.11026 0.46168 0.15703 0.37565 0.07143
individ individ 0.10359 0.40925 0.17666 0.18416 0.05797
athlet athlet –0.05591 0.34809 0.08364 –0.04645 0.22584
masculin masculin –0.20901 0.29630 0.14796 –0.04085 –0.22525
strpers strpers 0.10866 0.38036 0.63953 0.03088 0.08566
forceful forceful 0.01823 0.33443 0.59767 0.07952 –0.07078
assert assert 0.13242 0.34642 0.56971 0.11351 0.02987
dominant dominant –0.11815 0.47366 0.51036 0.09073 –0.14282
stand stand 0.25559 0.35940 0.41605 0.22860 0.07238
defbel defbel 0.27631 0.20395 0.38164 0.10563 0.02054
foullang foullang 0.08549 0.11060 –0.16580 0.00139 0.07832
shy shy –0.06372 –0.12686 –0.42860 –0.10852 –0.19741
softspok softspok 0.24469 –0.00175 –0.48667 0.10792 0.15907
selfsuff selfsuff 0.11528 0.38461 0.12977 0.69376 0.05850
reliant reliant 0.10525 0.30950 0.16698 0.50590 0.11210
indpt indpt 0.03392 0.41769 0.17277 0.49740 –0.02752
conscien conscien 0.32354 0.19952 0.02069 0.43232 0.11426
flatter flatter 0.14775 0.06476 0.19752 –0.29752 0.24232
childlik childlik –0.04596 0.05458 0.03482 –0.43488 –0.11072
gullible gullible 0.16064 0.10022 –0.15872 –0.46645 0.01086
happy happy 0.18789 0.11322 –0.01725 0.12670 0.66988
cheerful cheerful 0.17664 0.08527 0.06174 0.13179 0.63968
feminine feminine 0.26994 0.02034 0.00163 0.14409 0.27082
yielding yielding 0.19451 –0.02065 –0.22552 –0.02952 0.24008
moody moody 0.04974 0.02232 0.08758 –0.34425 –0.42799

(continued )
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is assessed by examining loadings for a variable across factors. With a loading cut of .45, only two 
variables—  WARM and INDPT—  load on more than one factor.

The importance of each factor (Section 13.4 and Section 13.6.4) is assessed by the percent 
of variance and covariance it represents. SSLs, called Variance Explained by Each 
Factor below the loadings in Table 13.16, are used in the calculations. It is important to use 
SSLs from rotated factors, because the variance is redistributed during rotation. Proportion of vari-
ance for a factor is SSL for the factor divided by number of variables. Proportion of covariance is 
SSL divided by sum of SSLs. Results, converted to percent, are shown in Table 13.17. Each of the 
factors accounts for between 5% and 14% of the variance in the set of variables, not an outstanding 
performance.

Internal consistency of the factors (Section 13.6.4) is assessed through SMCs, available in 
SAS FACTOR when factor scores are requested (out=SASUSER.FACSCPFA in the syntax of 
Table 13.13). These are found in the Squared Multiple Correlations of the 
Variables with Each Factor table, in which factors serve as DVs with variables as IVs. 
Factors that are well defined by the variables have high SMCs, whereas poorly defined factors have 
low SMCs. As can be seen in Table 13.18, all factors are internally consistent. (The off-  diagonal 
elements in these matrices are correlations among factor scores. Although uniformly low, the values 
are not zero. As discussed in Section 13.6.6, low correlations among scores on factors are often 
obtained even with orthogonal rotation.)

TABLE 13.17 Percents of Variance and Covariance 
Explained by Each of the Rotated Orthogonal Factors

Factors

1 2 3 4 5

SSL 4.93 3.99 2.98 2.47 2.29

Percent of variance 11.20 9.09 6.77 5.61 5.20

Percent of covariance 29.59 23.94 17.89 14.82 13.74

Variance Explained by Each Factor

Factor1 Factor2 Factor3 Factor4 Factor5

4.9338827 3.9884412 2.9812180 2.4732606 2.2937718

TABLE 13.16 Continued
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Factors are interpreted through their factor loadings (Section 13.6.5) from Table 13.16. It is 
decided to use a loading of .45 (20% variance overlap between variable and factor). With the use 
of the .45 cut, Table 13.19 is generated to further assist interpretation. In more informal presenta-
tions of factor analytic results, this table might be reported instead of Table 13.16. Factors are put 
in columns and variables with the largest loadings are put on top. In interpreting a factor, items 
near the top of the columns are given somewhat greater weight. Variable names are written out 
in full detail and labels for the factors (e.g., Dominance) are suggested at the top of each column. 
Table 13.20 shows a more formal summary table of factor loadings, including communalities as 
well as percents of variance and covariance.

Table 13.21 provides a checklist for FA. A Results section in journal format follows for the 
data analyzed in this section.

TABLE 13.18 SMCs for Factors With Variables as IVs. Selected Output 
from SAS FACTOR PFA with Orthogonal (Varimax) Rotation (Syntax in Table 13.13)

Squared Multiple Correlations of the Variables with Each Factor

Factor1 Factor2 Factor3 Factor4 Factor5

0.88645424 0.79508536 0.76857909 0.79094331 0.75327949

TABLE 13.19 Order (by Size of Loadings) in Which Variables Contribute to Factors

Factor 1: 
Empathy

Factor 2: 
Leadership

Factor 3: 
Dominance

Factor 4: 
Independence

Factor 5: 
Positive Affect

Compassionate
Understanding
Sympathetic
Sensitive
Warm
Eager to soothe hurt 
feelings
Gentle
Tender
Affectionate
Loyal
Not Childlike

Competitive
Ambitious
Has leadership ability
Acts as a leader
Willing to take risks
Makes decisions 
Dominant

Strong personality
Forceful
Assertive
Dominant
Not soft spoken

Self-sufficient
Self-reliant
Independent
Not gullible

Happy
Cheerful
Warm
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TABLE 13.20 Factor Loadings, Communalities (h2), and Percents of Variance and 
Covariance for Principal Factors Extraction and Varimax Rotation on BSRI Items

Item F1
a F2 F3 F4 F5 h2

Compassionate .82 .00 .00 .00 .00 .68
Understanding .73 .00 .00 .00 .00 .55
Sympathetic .65 .00 .00 .00 .00 .43
Sensitive .64 .00 .00 .00 .00 .42
Warm .61 .00 .00 .00 .46 .62
Eager to soothe hurt feelings .60 .00 .00 .00 .00 .40
Gentle .58 .00 .00 .00 .00 .56
Tender .57 .00 .00 .00 .00 .52
Affectionate .49 .00 .00 .00 .00 .49
Loyal .45 .00 .00 .00 .00 .30
Competitive .00 .66 .00 .00 .00 .46
Ambitious .00 .65 .00 .00 .00 .43
Leadership ability .00 .59 .00 .00 .00 .59
Acts like a leader .00 .58 .00 .00 .00 .55
Willing to take risks .00 .54 .00 .00 .00 .33
Makes decisions .00 .46 .00 .00 .00 .40
Strong personality .00 .00 .64 .00 .00 .57
Forceful .00 .00 .60 .00 .00 .48
Assertive .00 .00 .57 .00 .00 .48
Dominant .00 .47 .51 .00 .00 .53
Soft spoken .00 .00 −.49 .00 .00 .33
Self-sufficient .00 .00 .00 .69 .00 .66
Self-reliant .00 .00 .00 .51 .00 .40
Independent .00 .00 .00 .50 .00 .45
Gullible .00 .00 .00 −.47 .00 .28
Childlike .00 .00 .00 −.43 .00 .21
Happy .00 .00 .00 .00 .67 .51
Cheerful .00 .00 .00 .00 .64 .47
Truthful .00 .00 .00 .00 .00 .18
Helpful .00 .00 .00 .00 .00 .38
Loves children .00 .00 .00 .00 .00 .14
Analytical .00 .00 .00 .00 .00 .15
Individualistic .00 .00 .00 .00 .00 .25
Athletic .00 .00 .00 .00 .00 .18
Masculine .00 .00 .00 .00 .00 .21
Takes stand .00 .00 .00 .00 .00 .27
Defends beliefs .00 .00 .00 .00 .00 .43
Uses foul language .00 .00 .00 .00 .00 .05
Shy .00 .00 .00 .00 .00 .25
Conscientious .00 .00 .00 .00 .00 .34
Easily flattered .00 .00 .00 .00 .00 .21
Feminine .00 .00 .00 .00 .00 .17
Yielding .00 .00 .00 .00 .00 .15
Moody .00 .00 .00 .00 .00 .31

Percent of variance 11.20 9.09 6.77 5.61 5.20
Percent of covariance 29.59 23.94 17.89 14.82 13.74

aFactor labels: 

F1—Empathy; 

F2—Leadership;

F3—Dominance;

F4—Independence;

F5—Positive affect.
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TABLE 13.21 Checklist for Factor Analysis

1. Limitations

a. Outliers among cases

b. Sample size and missing data

c. Factorability of R

d.Normality and linearity of variables

e. Multicollinearity and singularity

f. Outliers among variables

2. Major analyses

a. Number of factors

b. Nature of factors

c. Type of rotation

d. Importance of factors

3. Additional analyses

a. Factor scores

b. Distinguishability and simplicity of factors

c. Complexity of variables

d. Internal consistency of factors

e. Outlying cases among the factors

10Outliers were compared as a group to nonoutliers through discriminant analysis. As a group, at p 6 .01, the 11 women 
were less self-  reliant and likely to defend beliefs and more warm, self-  sufficient, and reported more leadership ability than 
non-outlying women.

Results

Principal factors extraction with varimax rotation was 

performed through SAS FACTOR on 44 items from the BSRI for a sample 

of 340 women. Principal components extraction was used prior to 

principal factors extraction to estimate number of factors, presence 

of outliers, absence of multicollinearity, and factorability of the 

correlation matrices. With α = .001 cutoff level, 11 of 351 women 

produced scores that identified them as outliers; these cases were 

deleted from principal factors extraction.10
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Five factors were extracted. As indicated by SMCs, all 

factors were internally consistent and well defined by the 

variables; the lowest of the SMCs for factors from variables 

was .75. [Information on SMCs is from Table 13.18.] The reverse 

was not true, however; variables were, by and large, not well 

defined by this factor solution. Communality values, as seen 

in Table 13.15, tended to be low. With a cutoff of .45 for 

inclusion of a variable in interpretation of a factor, 16 of 

44 variables did not load on any factor. Failure of numerous 

variables to load on a factor reflects heterogeneity of items on 

the BSRI. However, only two of the variables in the solution, 

“warm” and “dominant,” were complex.

When oblique rotation was requested, factors interpreted 

as Leadership and Dominant correlated .34. However, because 

the correlation was modest and limited to one pair of factors, 

and because remaining correlations were fairly low, orthogonal 

rotation was chosen.

Loadings of variables on factors, communalities, and percents 

of variance and covariance are shown in Table 13.20. Variables 

are ordered and grouped by size of loading to facilitate 

interpretation. Loadings under .45 (20% of variance) are replaced 

by zeros. Interpretive labels are suggested for each factor in a 

footnote.

In sum, the five factors on the BSRI for this group 

of women are empathy (e.g., compassionate, understanding), 

leadership (e.g., competitive, ambitious), dominance (e.g., 

strong personality, forceful), independence (e.g., self-

sufficient, self-  reliant), and positive affect (e.g., happy, 

cheerful).
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13.8 Comparison of Programs

IBM SPSS, SAS, and SYSTAT each have a single program to handle both FA and PCA. The 
first two programs have numerous options for extraction and rotation and give the user con-
siderable latitude in directing the progress of the analysis. Features of three programs are de-
scribed in Table 13.22.

13.8.1 IBM SPSS Package

IBM SPSS FACTOR does a PCA or FA on a correlation matrix or a factor loading matrix, 
helpful to the researcher who is interested in higher-  order factoring (extracting factors from 
previous FAs). Several extraction methods and a variety of orthogonal rotation methods are 
available. Oblique rotation is done using direct oblimin, one of the best methods currently 
available (see Section 13.5.2.2).

Univariate output is limited to means, standard deviations, and number of cases per variable, 
so that the search for univariate outliers must be conducted through other programs. Similarly, there 
is no provision for screening for multivariate outliers among cases. But the program is very helpful 
in assessing factorability of R, as discussed in Section 13.3.2.6.

Output of extraction and rotation information is extensive. The residual and reproduced 
correlation matrices are provided as an aid to diagnosing adequacy of extraction and rotation.

IBM SPSS FACTOR is the only program reviewed that, under conditions requiring 
matrix inversion, prints out the determinant of the correlation matrix, helpful in signaling the 
need to check for multicollinearity and singularity (Sections 13.3.2.5 and 4.1.7). Determination 
of number of factors is aided by an optional printout of a scree plot (Section 13.6.2). Several 
estimation procedures for factor scores (Section 13.6.6) are available as output to a file.

13.8.2 SAS System

SAS FACTOR is another highly flexible, full-  featured program for FA and PCA. About the only 
weakness is in screening for outliers. SAS FACTOR accepts rotated loading matrices, as long 
as factor correlations are provided, and can analyze a partial correlation or covariance matrix 
(with specification of variables to partial out). There are several options for extraction, as well as 
orthogonal and oblique rotation. Maximum-  likelihood estimation provides a x2 test for number 
of factors. Standard errors may be requested for factor loadings with maximum-  likelihood esti-
mation and promax rotation. A target pattern matrix can be specified as a criterion for oblique 
rotation in confirmatory FA. Additional options include specification of proportion of variance 
to be accounted for in determining the number of factors to retain and the option to allow com-
munalities to be greater than 1.0. The correlation matrix can be weighted to allow the generalized 
least squares method of extraction.

Factor scores can be written to a data file. SMCs of factors as DVs with variables as IVs are 
given, to evaluate the reliability of factors.
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TABLE 13.22 Comparison of Factor Analysis Programs

Feature
IBM SPSS
FACTOR

SAS
FACTOR

SYSTAT
FACTOR

Input

Correlation matrix Yes Yes Yes

About origin No Yes No

Covariance matrix Yes Yes Yes

About origin No Yes No

SSCP matrix No No Yes

Factor loadings (unrotated pattern) Yes Yes Yes

Factor-score coefficients No Yes Data file

Factor loadings (rotated pattern) and factor 
correlations

No Yes Yes

Options for missing data Yes No Yes

Analyze partial correlation or covariance matrix No Yes No

Specify maximum number of factors FACTORS NFACT NUMBER

Extraction method (see Table 13.7)

PCA PC PRIN PCA

PFA PAF PRINIT IPA

Image (Little Jiffy, Harris) IMAGE Yesa No

Maximum likelihood ML ML MLA

Alpha ALPHA ALPHA No

Unweighted least squares ULS ULS No

Generalized least squares GLS Yes No

Specify communalities Yes Yes No

Specify minimum eigenvalues MINEIGEN MIN EIGEN

Specify proportion of variance to be accounted for No PROPORTION No

Specify maximum number of iterations ITERATE MAXITER ITER

Option to allow communalities 1 No HEYWOOD No

Specify tolerance No SING No

SPecify convergence criterion for extraction ECONVERGE CONV CONV

Specify convergence criterion for rotation RCONVERGE No No

Rotation method (see Table 13.9)

Varimax Yes Yes Yes

Quartimax Yes Yes Yes

Equamax Yes Yes Yes

Orthogonal with gamma No ORTHOMAX ORTHOMAX

Parsimax No Yes No

Direct oblimin Yes No Yes

(continued )
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Feature
IBM SPSS
FACTOR

SAS
FACTOR

SYSTAT
FACTOR

Input (continued)

Rotation method (see Table 13.9) (continued)

Direct quartimin DELTA = 0 No No

Orthoblique No HK No

Promax No Yes No

Procrustes No Yes No

Prerotation criteria No Yes No

Optional kaiser’s normalization Yes Yes Normalized 
only

Optional weighting by Cureton-  Mulaik technique No Yes No

Optional rescaling of pattern matrix to 
covariances

No Yes No

Weighted correlation matrix No WEIGHT No

Alternate methods for computing factor scores Yes No No

Output

Means and standard deviations Yes Yes No

Number of cases per variable (missing data) Yes No No

Significance of correlations Yes No No

Covariance matrix Yes Yes Yes

Initial communalities Yes Yes Yes

Final communalities Yes Yes Yes

Eigenvalues Yes Yes Yes

Difference between successive eigenvalues No Yes No

Standard error for each eigenvector element No No Yes

Percent of variance total variance explained by factors Yes No Yes

Cumulative percent of variance Yes No No

Percent of covariance No No Yes

Unrotated factor loadings Yes Yes Yes

Variance explained by factors for all loading 
matrices

No Yes Yes

Simplicity criterion, each rotation iteration d b No No

Rotated factor loadings (pattern) Yes Yes Yes

Rotated factor loadings (structure) Yes Yes Yes

Eigenvectors No Yes Yes

Standard error for each eigenvector element No No Yes

TABLE 13.22 Continued
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Feature
IBM SPSS
FACTOR

SAS
FACTOR

SYSTAT
FACTOR

Transformation matrix Yes Yes No

Factor-score coefficients Yes Yes Data filec

Standardized factor scores Data file Data file Data filec

Residual component scores No No Data filec

Sum of squared residuals (Q) No No Data filec

Probability for Q No No Data filec

Scree plot Yes Yes Yes

Plots of unrotated factor loadings No Yes No

Plots of rotated factor loadings Yes Yes Yes

Sorted rotated factor loadings Yes Yes Yes

x2 test for number of factors (with maximum 
likelihood estimation)

No Yes No

x2 test that all eigenvalues are equal No No Yes

x2 test that last n eigenvalues are equal No No Yes

Standard errors of factor loadings (with maximum 
likelihood estimation and promax solutions)

No Yes No

Inverse of correlation matrix Yes Yes No

Determinant of correlation matrix Yes No No

Partial correlations (anti-image matrix) AIC MSA No

Measure of sampling adequacy AIC, KMO MSA No

Anti-image covariance matrix AIC No No

Bartlett’s test of sphericity KMO No No

Residual correlation matrix Yes Yes Yes

Reproduced correlation matrix Yes No No

Correlations among factors Yes Yes Yes

aTwo types.
bOblique only.
cPCA only.

TABLE 13.22 Continued
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13.8.3 SYSTAT System

The current SYSTAT FACTOR program is less limited than earlier versions. Wilkinson (1990) 
advocated the use of PCA rather than FA because of the indeterminacy problem (Section 13.6.6). 
However, the program now does PFA (called IPA) as well as PCA and maximum likelihood 
(MLA) extraction. Four common methods of orthogonal rotation are provided, as well as 
provision for oblique rotation. SYSTAT FACTOR can accept correlation or covariance matrices 
as well as raw data.

The SYSTAT FACTOR program provides scree plots and plots of factor loadings and will 
optionally sort the loading matrix by size of loading to aid interpretation. Additional information 
is available by requesting that standardized component scores, their coefficients, and loadings be 
sent to a data file. Factor scores (from PFA or MLA) cannot be saved. Residual scores (actual minus 
predicted z-scores) also can be saved, as well as the sum of the squared residuals and a probability 
value for it.
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14.1 General Purpose and Description

Structural equation modeling (SEM) is a collection of statistical techniques that allow a set of 
relationships between one or more IVs, either continuous or discrete, and one or more DVs, 
either continuous or discrete, to be examined. Both IVs and DVs can be either factors or measured 
variables. Structural equation modeling is also referred to as causal modeling, causal analysis, 
simultaneous equation modeling, analysis of covariance structures, path analysis, or confirma-
tory factor analysis (CFA). The latter two are actually special types of SEM.

SEM allows questions to be answered that involve multiple regression analyses of factors. 
When exploratory factor analysis (EFA, Chapter 13) is combined with multiple regression analyses 
(Chapter 5), you have SEM. At the simplest level, a researcher posits a relationship between a single 
measured variable (say, success in graduate school) and other measured variables (say, undergradu-
ate GPA, gender, and average daily caffeine consumption). This simple model is a multiple regres-
sion presented in diagram form in Figure 14.1. All four of the measured variables appear in boxes 
connected by lines with arrows indicating that GPA, gender, and caffeine (the IVs) predict Graduate 
School Success (the DV). A line with two arrows indicates a correlation among the IVs. The pres-
ence of a residual indicates imperfect prediction.

A more complicated model of success in graduate school appears in Figure 14.2. In this model, 
Graduate School Success is a latent variable (a factor) that is not directly measured but rather as-
sessed indirectly using number of publications, grades, and faculty evaluations—  three measured 
variables. Graduate School Success is, in turn, predicted by gender (a measured variable) and by 
Undergraduate Success, a second factor which is assessed through undergraduate GPA, faculty rec-
ommendations, and GRE scores (three additional measured variables). For clarity in the text, initial 
capitals are used for names of factors and lowercase letters for names of measured variables.

Figures 14.1 and 14.2 are examples of path diagrams. These diagrams are fundamental to 
SEM because they allow the researcher to diagram the hypothesized set of relationships—  the 
model. The diagrams are helpful in clarifying a researcher’s ideas about the relationships among 
variables and they can be directly translated into the equations needed for the analysis.

14 Structural Equation 
Modeling
JODIE B. ULLMAN
California State University, San Bernardino
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version of this chapter, but who has also been responsible for shaping my thinking on SEM. This chapter was supported in 
part by NIDA grant DA 01070-38.
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FIGURE 14.2 Path diagram of a structural model.
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FIGURE 14.1 Path diagram of multiple regression.

Several conventions are used in developing SEM diagrams. Measured variables, also called 
observed variables, indicators, or manifest variables, are represented by squares or rectangles. 
Factors have two or more indicators and are also called latent variables, constructs, or unobserved
variables. Factors are represented by circles or ovals in path diagrams. Relationships between vari-
ables are indicated by lines; lack of a line connecting variables implies that no direct relationship 
has been hypothesized. Lines have either one or two arrows. A line with one arrow represents a 
hypothesized direct relationship between two variables, and the variable with the arrow pointing to 
it is the DV. A line with an arrow at both ends indicates an unanalyzed relationship, simply a covari-
ance between the two variables with no implied direction of effect.
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In the model of Figure 14.2, Success in Graduate School is a latent variable (factor) that is pre-
dicted by gender (a measured variable) and Undergraduate Success (a factor). Notice the line with 
the arrow at both ends connecting Undergraduate Success and gender. This line with an arrow at 
both ends implies that there is a relationship between the variables but makes no prediction regard-
ing the direction of effect. Also notice the direction of the arrows connecting the Graduate School 
Success construct (factor) to its indicators: The construct predicts the measured variables. The 
implication is that Graduate School Success drives, or creates, the number of publications, grades, 
and faculty evaluations of graduate students. It is impossible to measure this construct directly, so 
we do the next best thing and measure several indicators of success. We hope that we are able to tap 
into graduate students’ true level of success by measuring a lot of observable indicators. This is the 
same logic as in factor analysis (Chapter 13).1

In Figure 14.2, GPA, GRE, faculty recommendations, Graduate School Success, number of 
publications, grades, and faculty evaluations are all DVs. They all have one-  way arrows pointing 
to them. Gender and Undergraduate Success are IVs in the model. They have no one-  way arrows 
pointing to them. Notice that all the DVs, both observed and unobserved, have arrows labeled “E” 
or “D” pointing toward them. Es (errors) point to measured variables; Ds (disturbances) point to 
latent variables (factors). As in multiple regression, nothing is predicted perfectly; there is always 
residual or error. In SEM, the residual not predicted by the IV(s) is included in the diagram with 
these paths.

The part of the model that relates the measured variables to the factors is sometimes called 
the measurement model. In this example, the two constructs (factors), Undergraduate Success and 
Graduate School Success, and the indicators of these constructs (factors) form the measurement 
model. The hypothesized relationships among the constructs, in this example, the one path between 
Undergraduate Success and Graduate School Success, is called the structural model.

Note, both models presented so far include hypotheses about relationships among variables 
(covariances), but not about means or mean differences. Mean differences associated with group 
membership can also be tested within the SEM framework.

When experiments are analyzed, with proper data collection, the adequacy of the manipula-
tion can also be accounted for within the analysis (Feldman, Ullman, & Dunkel-  Schetter, 1998). 
Experiments with or without a mean structure can be analyzed through SEM. For an example from 
the literature of an experiment analyzed through SEM, consider Feldman et al. (1998). Feldman and 
colleagues used SEM to analyze an experiment that examined the effects of perceived similarity and 
perceived vulnerability on attributions of victim blame. Schumann et al. (2008), who employed SEM 
techniques to evaluate the effectiveness of a smoking cessation program, provide an example of a 
treatment program evaluation. Even in a simple experiment, researchers are often interested in pro-
cesses that are more complex than a standard analysis suggests. Consider the diagram in Figure 14.3.

At the start of a semester, students are randomly assigned to one of two treatment conditions: a 
study skills training group or a waiting-  list control. X1 is a dummy-  coded variable (cf. Section 1.2.1) 
that indicates the assigned group, where 0 = control, 1 = treatment. Final exam scores are recorded at 

1Now, thinking back to the chapters on factor analysis, MANOVA, discriminant analysis, and canonical correlation, what 
would the implication be if the arrows between the Graduate School Success factor and the measured indicators pointed the 
opposite way from the three indicators toward Graduate School Success? It would imply a principal component or linear 
combination.
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the end of the semester. ANOVA essentially tests path a. But is it reasonable to suggest that mere as-
signment to a group creates the change? Perhaps not. Maybe, instead, study skills training increases 
a student’s motivational level and higher motivation leads to a higher grade. Motivational level serves 
as an intervening variable between the treatment and the exam score (i.e., the treatment is associated 
with increased motivation and increased motivation is associated with increased exam scores). This is 
a different question than is posed in ANOVA or even ANCOVA or sequential regression. ANOVA asks 
simply, “Is there a difference between the treatment and control group on exam score?” ANCOVA 
asks, “Is there a difference between groups after the DV has been adjusted by a covariate (e.g., 
degree of motivation)?” These questions are distinct from the hypotheses illustrated in Figure 14.3 
that involve a process or an indirect effect. The indirect effect can be tested by testing the product of 
paths b and c. This example uses only measured variables and is called path analysis; however, indi-
rect effect hypotheses can be tested using both latent and observed variables.

The first step in a SEM analysis is specification of a model, so this is a confirmatory rather 
than an exploratory technique. The model is estimated, evaluated, and perhaps modified. The goal 
of the analysis might be to test a model, to test specific hypotheses about a model, to modify an 
existing model, or to test a set of related models.

There are a number of advantages to the use of SEM. When relationships among factors are 
examined, the relationships are free of measurement error because the error has been estimated 
and removed, leaving only common variance. Reliability of measurement can be accounted for 
explicitly within the analysis by estimating and removing the measurement error. Additionally, as 
was seen in Figure 14.2, complex relationships can be examined. When the phenomena of interest 
are complex and multidimensional, SEM is the only analysis that allows complete and simultaneous 
tests of all the relationships.

Unfortunately, there is a small price to pay for the flexibility that SEM offers. With the abil-
ity to analyze complex relationships among combinations of discrete and continuous variables—
both observed and latent—  comes more complexity and more ambiguity. Indeed, there is quite a 
bit of jargon and many choices of analytic techniques. But if you love to wallow in data, you will 
adore SEM!

X1

treatment
group

Y1

degree of
motivation

Y2

exam
score

b

a

c

E1

E2

FIGURE 14.3 Path diagram of an experiment.
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14.2 Kinds of Research Questions

The data set is an empirical covariance matrix and the model produces an estimated population 
covariance matrix. The major question asked by SEM is, “Does the model produce an estimated 
population covariance matrix that is consistent with the sample (observed) covariance matrix?” 
After the adequacy of the model is assessed, various other questions about specific aspects of the 
model are addressed.

14.2.1 Adequacy of the Model

Parameters (path coefficients, variances, and covariances of IVs) are estimated to create an estimated 
population covariance matrix. If the model is good, the parameter estimates will produce an esti-
mated matrix that is close to the sample covariance matrix. “Closeness” is evaluated primarily with 
the chi-  square test statistic and fit indices. For the Graduate School Success model of Figure 14.2, 
is the estimated population covariance matrix generated by the model consistent with the sample 
covariance matrix of the data? This is discussed in Sections 14.4.5 and 14.5.3.

14.2.2 Testing Theory

Each theory (model) generates its own covariance matrix. Which theory produces an estimated 
population covariance matrix that is most consistent with the sample covariance matrix? Models 
representing competing theories in a specific research area are estimated, pitted against each other, 
and evaluated as demonstrated in Section 14.5.4.1.

14.2.3  Amount of Variance in the Variables Accounted
for by the Factors

How much of the variance in the DVs, both latent and observed, is accounted for by the IVs? 
For example, how much variance in Graduate School Success is accounted for by gender and 
Undergraduate Success? Which of the variables included in the analysis account for the most vari-
ance? This question is answered through R2-type of statistics discussed in Section 14.5.5.

14.2.4 Reliability of the Indicators

How reliable is each of the measured variables? For the example, is the measure of faculty evalua-
tions reliable? Reliability of measured variables and internal consistency measures of reliability are 
derived from SEM analyses and are discussed in Section 14.5.5.

14.2.5 Parameter Estimates

Estimates of parameters are fundamental to SEM analyses because they are used to generate the 
estimated population covariance matrix for the model. What is the path coefficient for a specific 
path? For example, what is the path coefficient for predicting Graduate School Success from 
Undergraduate Success? Does the coefficient differ significantly from 0? Within the model, 
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what is the relative importance of various paths? For instance, is the path from Undergraduate 
Success more or less important to the prediction of Graduate School Success than the path from 
gender? Parameter estimates can also be compared across SEM models. When a single path 
is tested, it is called a test of a direct effect. Assessment of parameters is demonstrated in Sec-
tions 14.4.5, 14.6.1.3, and 14.6.2.4. An example of a SEM model is Madvig and Shultz (2008), 
who develop and cross-  validate models of postretirement behaviors and attitudes toward their 
former organization. Kottke (2011) illustrates an example of a special type of SEM model, a con-
firmatory factor analysis (CFA), the goal of which is to examine the relationship between a set 
of measured and latent variables. In her analysis she examines the structure of the Universality–
Diversity scale.

14.2.6 Intervening Variables

Does an IV directly affect a specific DV, or does the IV affect the DV through an intermediary, or 
mediating, variable? In the example of Figure 14.3, is the relationship between treatment group and 
exam score mediated by degree of motivation? Because motivation is an intervening variable, this 
is a test of indirect effects. Tests of indirect effects are demonstrated in Section 14.6.2. Myers et al. 
(2009) examine the roles of chronic stress and psychological stress and intervening variables in the 
relationship between HIV serostatus and alcohol and drug dependency.

14.2.7 Group Differences

Do two or more groups differ in their covariance matrices, regression coefficients, or means? For 
example, if the experiment described above (see Figure 14.3) is performed for both grade school 
and high school youngsters, does the same model fit both age groups? This analysis could be per-
formed with or without means (cf. Section 14.5.8). Multiple group modeling is briefly discussed in 
Section 14.5.7. Tsao, Stein, and Dobalian (2010) use longitudinal multiple modeling techniques to 
examine men and women’s pain and use and misuse of prescription analgesics.

14.2.8 Longitudinal Differences

Differences within and across people, across time can also be examined. This time interval 
can be years, days, or microseconds. For the example of the experiment: How, if at all, does 
treatment change performance and motivation at several different time points in the semester? 
Longitudinal modeling is not illustrated in this chapter. Although there are several different 
approaches, one exciting new approach to analyzing longitudinal data with three or more time 
points is called Latent Growth Curve Modeling. This approach is innovative because it allows 
tests of individual growth patterns. Several hypotheses are tested with this analysis. How does 
a dependent variable (latent or observed), say, adolescent drug use, change across multiple time 
points, say, the teenage and young adult years? Is the change linear? Quadratic? Do participants 
(teenagers) vary in their initial level of drug use? Do adolescents’ drug use patterns change at 
the same rate? The Schumann et al. example (2008) of an evaluation of a smoking cessation 
program also provides a nice example of a growth model. Spears, Stein and Koniak–  Griffin 
(2010) use latent growth modeling techniques to examine substance use in pregnant and parent-
ing adolescents.
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14.2.9 Multilevel Modeling

Independent variables collected at different nested levels of measurement (e.g., students nested 
within classrooms nested within schools) can be used to predict dependent variables at the same 
level or other levels of measurement. For example, using a multiple group model we could exam-
ine the effectiveness of an intervention given to classrooms of children from characteristics of the 
children, the classroom, and the school. In this example, children are nested within classrooms and 
classrooms are nested within schools. This is briefly discussed in Section 14.5.7 and is the topic 
of Chapter 15. Stein, Nyathmathi, Ullman and Bentler (2007) test a multilevel model to examine 
predictors of HIV/AIDS risk behaviors in a sample of homeless adults. The individuals are nested 
within couples.

14.2.10 Latent Class Analysis

Latent class analysis (LCA) creates latent groups (classes) of people from measured variables and 
then often uses these groups in other SEM analyses. One common application of LCA is to esti-
mate latent classes of people and then examine how the different groups change over time. Ahrens, 
Rich and Ullman (2011) employ LCA and latent growth modeling to evaluate the effectiveness of a 
program to build skills for bystander intervention and to examine the groups for which the program 
was most effective.

14.3 Limitations to Structural 
Equation Modeling

14.3.1 Theoretical Issues

SEM is a confirmatory technique in contrast to exploratory factor analysis. It is used most often 
to test a theory—  maybe just a personal theory—  but a theory nonetheless. Indeed, one cannot do 
SEM without prior knowledge of, or hypotheses about, potential relationships among variables. 
This is perhaps the largest difference between SEM and other techniques in this book and one of 
its greatest strengths. Planning, driven by theory, is essential to any SEM analysis. The guidelines 
for planning an exploratory factor analysis, as outlined in Section 13.3.1, are also applicable to 
SEM analyses.

Although SEM is a confirmatory technique, there are ways to test a variety of different mod-
els (models that test specific hypotheses, or perhaps provide better fit) after a model has been esti-
mated. However, if numerous modifications of a model are tested in hopes of finding the best-  fitting 
model, the researcher has moved to exploratory data analysis and appropriate steps need to be taken 
to protect against inflated Type I error levels. Searching for the best model is appropriate, provided 
significance levels are viewed cautiously and cross-  validation with another sample is performed 
whenever possible.

SEM has developed a bad reputation in some circles, in part because of the use of SEM for 
exploratory work without the necessary controls. It may also be due, in part, to the use of the term 
causal modeling to refer to SEM. There is nothing causal, in the sense of inferring causality, about 
the use of SEM. Attributing causality is a design issue, not a statistical issue.
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Unfortunately, SEM is often thought of as a technique strictly for nonexperimental or corre-
lational designs. This is overly limiting. SEM, like regression, can be applied to both experimental 
and nonexperimental designs. In fact, there are some advantages to using SEM in the analysis of 
experiments: Mediational processes can be tested and information regarding the adequacy of the 
manipulations can be included in the analysis (Feldman et al., 1998).

The same caveats regarding generalizing results apply to SEM as they do to the other tech-
niques in this book. Results can only be generalized to the type of sample that was used to estimate 
and test the SEM model.

14.3.2 Practical Issues

14.3.2.1 Sample Size and Missing Data

Covariances, like correlations, are less stable when estimated from small samples. SEM is based on 
covariances. Parameter estimates and chi-  square tests of fit are also very sensitive to sample size. 
SEM, then, like factor analysis, is a large sample technique. Velicer and Fava (1998) found that in 
exploratory factor analysis, size of the factor loadings, the number of variables, and the size of the 
sample were important elements in obtaining a good factor model. This can be generalized to SEM 
models. Models with strong expected parameter estimates and reliable variables may require fewer 
participants. Although SEM is a large sample technique, new test statistics have been developed that 
allow for estimation of models with as few as 60 participants (Bentler & Yuan, 1999). For estimat-
ing adequate sample size for power calculations, MacCallum, Brown, and Sugawara (1996) present 
tables of minimum sample sizes needed for tests of goodness of fit. These tables base sample size 
estimates on model degrees of freedom and effect size.

The Chapter 4 guidelines for the treatment of missing data apply to SEM analyses. However, 
as discussed in Chapter 4, problems are associated with either deleting or estimating missing data. 
An advantage of structural modeling is that the missing data mechanism can be included in the 
model. Some of the software packages now include procedures for estimating missing data, includ-
ing the EM algorithm. Treatment of missing data patterns through SEM is not demonstrated in this 
chapter, but the interested reader is referred to Allison (1987), Muthén, Kaplan, and Hollis (1987), 
and Bentler (1995).

14.3.2.2 Multivariate Normality and Outliers

Most of the estimation techniques used in SEM assume multivariate normality. To determine the 
extent and shape of nonnormally distributed data, screen the measured variables for outliers (both 
univariate and multivariate), and the skewness and kurtosis of the measured variables examined in 
the manner described in Chapter 4. All measured variables, regardless of their status as DVs or IVs, 
are screened together for outliers. (Some SEM packages test for the presence of multivariate outli-
ers, skewness, and kurtosis.) If significant skewness is found, transformations can be attempted; 
however, often variables are still highly skewed or highly kurtotic even after transformation. Some 
variables, such as drug use variables, are not expected to be normally distributed in the population, 
anyway. If transformations do not restore normality, or a variable is not expected to be normally 
distributed in the population, an estimation method can be selected that addresses the nonnormality 
(Sections 14.5.2, 14.6.1, and 14.6.2).
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14.3.2.3 Linearity

SEM techniques examine only linear relationships among variables. Linearity among latent vari-
ables is difficult to assess; however, linear relationships among pairs of measured variables can be 
assessed through inspection of scatterplots. If nonlinear relationships among measured variables 
are hypothesized, these relationships are included by raising the measured variables to powers, as 
in multiple regression. For example, if the relationship between Graduate School Success and aver-
age daily caffeine consumption is quadratic (a little caffeine is not enough, a few cups are good, but 
more than a few is detrimental), the square of average daily caffeine consumption is used.

14.3.2.4 Absence of Multicollinearity and Singularity

As with the other techniques discussed in the book, matrices need to be inverted in SEM. Therefore, 
if variables are perfect linear combinations of one another or are extremely highly correlated, 
the necessary matrices cannot be inverted. If possible, inspect the determinant of the covariance 
matrix. An extremely small determinant may indicate a problem with multicollinearity or singu-
larity. Generally, SEM programs abort and provide warning messages if the covariance matrix is 
singular. If you get such a message, check your data set. It often is the case that linear combinations 
of variables have been inadvertently included. Simply delete the variable causing the singularity. If 
true singularity is found, create composite variables and use them in the analysis.

14.3.2.5 Residuals

After model estimation, the residuals should be small and centered around zero. The frequency 
distribution of the residual covariances should be symmetrical. Residuals in the context of SEM 
are residual covariances not residual scores as discussed in other chapters. SEM programs provide 
diagnostics of residuals. Nonsymmetrically distributed residuals in the frequency distribution may 
signal a poor-  fitting model; the model is estimating some of the covariances well and others poorly. 
It sometimes happens that one or two residuals remain quite large although the model fits reason-
ably well and the residuals appear to be symmetrically distributed and centered around zero. When 
large residuals are found, it is often helpful to examine the Lagrange Multiplier (LM) test, discussed 
in Section 14.5.4.2, and consider adding paths to the model.

14.4 Fundamental Equations for Structural 
Equations Modeling

14.4.1 Covariance Algebra

The idea behind SEM is that the hypothesized model has a set of underlying parameters which cor-
respond to (1) the regression coefficients, and (2) the variances and covariances of the independent 
variables in the model (Bentler, 1995). These parameters are estimated from the sample data to be 
a “best guess” about population values. The estimated parameters are then combined by means of 
covariance algebra to produce an estimated population covariance matrix. This estimated popula-
tion covariance matrix is compared with the sample covariance matrix and, ideally, the difference is 
very small and not statistically significant.
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Covariance algebra is a helpful tool in calculating variances and covariances in SEM models; 
however, matrix methods are generally employed because covariance algebra becomes extremely 
tedious as models become increasingly complex. Covariance algebra is useful to demonstrate how 
parameter estimates are combined to produce an estimated population covariance matrix for a small 
example.

The three basic rules in covariance algebra appear below where c is a constant and Xi is a 
random variable:

1. COV (c, X1) = 0

2. COV (cX1, X2) = cCOV (X1, X2) (14.1)

3. COV (X1 + X2, X3) = COV (X1, X3) + COV (X2, X3)

By the first rule, the covariance between a variable and a constant is zero. By the second 
rule, the covariance between two variables where one is multiplied by a constant is the 
same as the constant multiplied by the covariance between the two variables. By the 
third rule, the covariance between the sum (or difference) of two variables and a third 
variable is the sum of the covariance of the first variable and the third and the covari-
ance of the second variable and the third.

Figure 14.3 is used to illustrate some of the principles of covariance algebra. (Ignore for now 
the difference between g and b; the difference is explained in Section 14.4.3.) In SEM, as in multi-
ple regression, we assume that the residuals do not correlate with each other or with other variables 
in the models. In this model, both degree of motivation (Y1) and exam score (Y2) are DVs. Recall 
that a DV in SEM is any variable with a single-  headed arrow pointing toward it. Treatment group 
(X1) with no single-  headed arrows pointing to it is an IV. To specify the model, a separate equation 
is written for each DV. For motivation, Y1,

Y1 = g11X1 + e1 (14.2)

Degree of motivation is a weighted function of treatment group plus error. Note that e1 in the 
equation corresponds to E1 in Figure 14.3 and for exam score, Y2,

Y2 = b21Y1 + g21X1 + e2 (14.3)

Exam score is a weighted function of treatment group plus a weighted function of 
degree of motivation plus error.

To calculate the covariance between X1 (treatment group) and Y1 (degree of motivation), the 
first step is substituting in the equation for Y1:

COV (X1, Y1) = COV (X1, g11X1 + e1) (14.4)

The second step is distributing the first term, in this case X1:

COV (X1, Y1) = COV (X1g11X1) + COV (X1e1) (14.5)
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The last term in this equation, COV (X1e1), is equal to zero by assumption because it is assumed that 
there are no covariances between errors and other variables. Now,

COV (X1, Y1) = g11COV (X1X1) (14.6)

by rule 2, and because the covariance of a variable with itself is just a variance,

COV (X1Y1) = g11sx1x1
(14.7)

The estimated population covariance between X1 and Y1 is equal to the path coefficient 
times the variance of X1.

This is the population covariance between X1 and Y1 as estimated from the model. If the model is 
good, the product of g11sx1x1

 produces a covariance that is very close to the sample covariance.
Following the same procedures, the covariance between Y1 and Y2 is:

COV (Y1, Y2) = COV (g11X1 + e1, b21Y1 + g21X1 + e2)

= COV (g11X1b21Y1) + COV (g11X1g21X1) + COV (g11X1e2)
(14.8)

+ COV (e1b21Y1) + COV (e1g21X1) + COV (e1e2)

= COV (g11b21sx1y1
) + COV (g11g21sx1y1

)

because, as can be seen in the diagram, the error terms e1 and e2 do not correlate with any other 
variables.

All of the estimated covariances in the model could be derived in the same manner; but as is 
apparent even in this small example, covariance algebra rapidly becomes somewhat tedious. The 
“take home point” of this example is that covariance algebra can be used to estimate parameters 
and then estimate a population covariance matrix from them. Estimated parameters give us the esti-
mated population covariance matrix.

14.4.2 Model Hypotheses

A truncated raw data set and corresponding covariance matrix appropriate for SEM analysis are 
presented in Table 14.1. This very small data set contains five continuous measured variables: 
(1) NUMYRS, the number of years a participant has skied, (2) DAYSKI, the total number of days a 
person has skied, (3) SNOWSAT, a Likert scale measure of overall satisfaction with the snow condi-
tions, (4) FOODSAT, a Likert scale measure of overall satisfaction with the quality of the food at the 
resort, and (5) SENSEEK, a Likert scale measure of degree of sensation seeking. Note that hypo-
thetical data are included for only 5 skiers although the analysis is performed with hypothetical data 
from 100 skiers. Matrix computations in SEM are tedious, at best, by hand. Therefore, MATLAB, 
a matrix manipulation program, is used to perform the calculations. Grab MATLAB or SYSTAT 
or SAS IML to perform matrix manipulations yourself as the example develops. Note also that the 
calculations presented here are rounded to two decimal places.

The hypothesized model for these data is diagrammed in Figure 14.4. Latent variables are 
represented with circles and measured variables are represented with squares. A line with an arrow 
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indicates a hypothesized direct relationship between the variables. Absence of a line implies no 
hypothesized direct relationship. The asterisks indicate parameters to be estimated. Shading indi-
cates that the variable is an IV. The variances of IVs are parameters of the model and are estimated 
or fixed to a particular value. The number 1 indicates that a parameter, either a path coefficient or a 
variance, has been set (fixed) to the value of 1. (At this point, don’t worry about why we “fix” paths 
and variances to certain values like 1. This will be discussed in Section 14.5.1.)

This example contains two hypothesized latent variables (factors): Love of Skiing (LOVESKI), 
and Ski Trip Satisfaction (SKISAT). The Love of Skiing (LOVESKI) factor is hypothesized to have 
two indicators, number of years skied (NUMYRS) and number of days skied (DAYSKI). Greater 
Love of Skiing predicts more numerous years skied and days skied. Note that the direction of the 
prediction matches the direction of the arrows. The Ski Trip Satisfaction (SKISAT) factor also has 
two indicators: snow satisfaction (SNOWSAT) and food satisfaction (FOODSAT). Higher Ski Trip 
Satisfaction predicts a higher degree of satisfaction with both the snow and the food. This model 
also hypothesizes that both Love of Skiing and degree of sensation seeking (SENSEEK) predict 
level of Ski Trip Satisfaction; greater levels of Love of Skiing and sensation seeking predict higher 
levels of Ski Trip Satisfaction. Also notice that no arrow directly connects Love of Skiing with 
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FIGURE 14.4 Hypothesized model for small-  sample example.

TABLE 14.1 Small Sample of Hypothetical Data 
for Structural Equation Modeling

Covariance Matrix

NUMYRS DAYSKI SNOWSAT FOODSAT SENSEEK

NUMYRS 1.00
DAYSKI .70 11.47
SNOWSAT .62 .62 1.87
FOODSAT .44 .44 .95 1.17
SENSEEK .30 .21 .54 .38 1.00
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2A chi-  square test statistic can be used in EFA when maximum likelihood factor extraction is employed.

degree of sensation seeking. There is no hypothesized relationship, either predictive or correla-
tional, between these variables. However, we can, and we will, test the hypothesis that there is a 
correlation between Love of Skiing and degree of sensation seeking.

As in the discussion of covariance algebra, these relationships are directly translated into 
equations and the model is then estimated. The analysis proceeds by specifying a model as in the 
diagram and then translating the model into a series of equations or matrices. Population parameters 
are then estimated that imply a covariance matrix. This estimated population covariance matrix is 
compared to the sample covariance matrix. The goal, as you might have guessed, is to estimate 
parameters that produce an estimated population covariance matrix that is not significantly dif-
ferent from the sample covariance matrix. This is similar to factor analysis (Chapter 13) where 
the reproduced correlation matrix is compared to the observed correlation matrix. One distinction 
between SEM and EFA is that in SEM the difference between the sample covariance matrix and the 
estimated population covariance matrix is evaluated with a chi-  square test statistic.2

14.4.3 Model Specification

One method of model specification is the Bentler–  Weeks method (Bentler & Weeks, 1980). In this 
method, every variable in the model, latent or measured, is either an IV or a DV. The parameters 
to be estimated are the (1) regression coefficients, and (2) the variances and the covariances of the 
independent variables in the model (Bentler, 1995). In Figure 14.4, the regression coefficients and 
covariances to be estimated are indicated with an asterisk (*). The variances to be estimated are 
indicated by shading the independent variable.

In the example, SKISAT, SNOWSAT, FOODSAT, NUMYRS, and DAYSKI are all DVs 
because they all have at least one line with a single-  headed arrow pointing to them. Notice that 
SKISAT is a latent variable and also a dependent variable. Whether or not a variable is observed 
makes no difference as to its status as a DV or IV. Although SKISAT is a factor, it is also a DV 
because it has arrows from both LOVESKI and SENSEEK. The seven IVs in this example are 
SENSEEK, LOVESKI, D2, E1, E2, E3, and E4.

Residual variables (errors) of measured variables are labeled E and errors of latent variables 
(called disturbances) are labeled D. It may seem odd that a residual variable is considered an IV but 
remember the familiar regression equation:

Y = Xb + e (14.9)

where Y is the DV and X and e  are both IVs.

In fact, the Bentler–  Weeks model is a regression model, expressed in matrix algebra:

H = BH + GJ (14.10)

where, if q is the number of DVs and r is the number of IVs, then H (eta) is a q * 1
vector of DVs, B (beta) is a q * q matrix of regression coefficients between DVs, G
(gamma) is a q * r matrix of regression coefficients between DVs and IVs, and J (xi) 
is an r * 1 vector of IVs.
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In the Bentler–  Weeks model, only independent variables have covariances and these covari-
ances are in � (phi), an r * r matrix. Therefore, the parameter matrices of the model are B, G, and 
�. Unknown parameters in these matrices need to be estimated. The vectors of dependent variables, 
H, and independent variables, J, are not estimated.

The diagram for the example is translated into the Bentler–  Weeks model, with r = 7 and 
q = 5, as below.

H = B H + G J

EV1 or h1

V2 or h2

V3 or h3

V4 or h4

F2 or h5

U = E 0 0 0 0 0

0 0 0 0 0

0 0 0 0 1

0 0 0 0 *

0 0 0 0 0

U EV1 or h1

V2 or h2

V3 or h3

V4 or h4

F2 or h5

U + E 0 * 1 0 0 0 0

0 * 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

* * 0 0 0 0 1

U GV5 or j1

F1 or j2

E1 or j3

E2 or j4

E3 or j5

E4 or j6

D2 or j7

W
Notice that H is on both sides of the equation. This is because DVs can predict one another 

in SEM. The diagram and matrix equations are identical. Notice that the asterisks in Figure 14.4 
directly correspond to the asterisks in the matrices and these matrix equations directly corre-
spond to simple regression equations. In the matrix equations, the number 1 indicates that we 
have “fixed” the parameter, either a variance or a path coefficient, to the specific value of 1. 
Parameters are generally fixed for identification purposes. Identification will be discussed in 
more detail in Section 14.5.1. Parameters can be fixed to any number; most often, however, 
parameters are fixed to 1 or 0. The parameters that are fixed to 0 are also included in the path 
diagram but are easily overlooked because the 0 parameters are represented by the absence of a 
line in the diagram.

Carefully compare the model in Figure 14.4 with this matrix equation. The 5 * 1 vector of 
values to the left of the equal sign, the eta (H) vector, is a vector of DVs listed in the order indi-
cated: NUMYRS (V1), DAYSKI (V2), SNOWSAT (V3), FOODSAT (V4), and SKISAT (F2). The 
next matrix, just to the right of the equal sign, is a 5 * 5 matrix of regression coefficients among 
the DVs. The DVs are in the same order as above. The matrix contains 23 zeros, one 1, and one *. 
Remember that matrix multiplication involves cross multiplying and then summing the elements 
in the first row of the beta (B) matrix with the first column in the eta (H) matrix, and so forth 
(consult Appendix A as necessary). The zeros in the first, second, and fifth rows of the beta matrix 
indicate that no regression coefficients are to be estimated between DVs for V1, V2, and F2. The 
1 at the end of the third row is the regression coefficient between F2 and SNOWSAT that was fixed 
to 1. The * at the end of the fourth row is the regression coefficient between F2 and V4 that is to 
be estimated.

Now look to the right of the plus sign. The 5 * 7 gamma matrix contains the regression 
coefficients that are used to predict the DVs from the IVs. The five DVs that are associated with 
the rows of this matrix are in the same order as above. The seven IVs that identify the columns are, 
in the order indicated, SENSEEK (V5), LOVESKI (F1), the four E (errors) for V1 to V4, and the 



Structural Equation Modeling 695

D (disturbance) of F2. The 7 * 1 vector of IVs is in the same order. The first row of the g (gamma) 
matrix times the j (Xi) vector produces the equation for NUMYRS. The * is the regression coeffi-
cient for predicting NUMYRS from LOVESKI (F1) and the 1 is the fixed regression coefficient for 
the relationship between NUMYRS and its E1. For example, consider the equation for NUMYRS 
(V1) reading from the first row in the matrices:

h1 = 0 # h1+ 0 # h2+ 0 # h3+ 0 # h4+ 0 # h5+0 # j1+* # j2+1 # j3+ 0 # j4+ 0 # j5+ 0 # j6+ 0 # j7

or, by dropping the zero-  weighted products, and using the diagram’s notation.

V1 = *F1 + E1

Continue in this fashion for the next four rows, to be sure you understand their relationship to 
the diagrammed model.

In the Bentler–  Weeks model, only IVs have variances and covariances and these are in �
(phi), an r * r matrix. For the example, with seven IVs:

V5 or j1 F1 or j2 E1 or j3 E2 or j4 E3 or j5 E4 or j6 D2 or j7

� = V5 or j1

F1 or j2

E1 or j3

E2 or j4

E3 or j5

E4 or j6

D2 or j7

G* 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 * 0 0 0 0

0 0 0 * 0 0 0

0 0 0 0 * 0 0

0 0 0 0 0 * 0

0 0 0 0 0 0 *

W
This 7 * 7 phi matrix contains the variances and covariances that are to be estimated for the IVs. 
The *s on the diagonal indicate the variances to be estimated for SENSEEK (V5), LOVESKI (F1), 
E1, E2, E3, E4, and D2. The 1 in the second row corresponds to the variance of LOVESKI (F1) that 
was set to 1. There are no covariances among IVs to be estimated, as indicated by the zeros in all 
the off-diagonal positions.

14.4.4 Model Estimation

Initial guesses (start values) for the parameters are needed to begin the modeling process. The more 
similar the guess and the start value, the fewer iterations needed to find a solution. There are many 
options available for start values (Bollen, 1989b). However, in most cases, it is perfectly reasonable 
to allow the SEM computer program to supply initial start values. Computer program generated start 
values are indicated with asterisks in the diagrams and in each of the three parameter matrices in the 
Bentler–  Weeks model, Bn , Gn, and �n , that follow next page. The ^ (hat) over the matrices indicates 
that these are matrices of estimated parameters. The Bn  (beta hat) matrix is the matrix of regression 
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coefficients between DVs where start values have been substituted for * (the parameters to be esti-
mated). For the example:

Bn = E0 0 0 0 0

0 0 0 0 0

0 0 0 0 1

0 0 0 0 .83

0 0 0 0 0

U
The matrix containing the start values for regression coefficients between DVs and IVs is Gn

(gamma hat). For the example:

Gn = E0 .80 1 0 0 0 0

0 .89 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

.39 .51 0 0 0 0 1

U
Finally, the matrix containing the start values for the variances and covariances of the IVs is 

�n (phi hat). For the example:

�n = G1.00 0 0 0 0 0 0

0 1.00 0 0 0 0 0

0 0 .39 0 0 0 0

0 0 0 10.68 0 0 0

0 0 0 0 .42 0 0

0 0 0 0 0 .73 0

0 0 0 0 0 0 1.35

W
To calculate the estimated population covariance matrix implied by the parameter estimates, 

selection matrices are first used to pull the measured variables out of the full parameter matrices. 
(Remember, the parameter matrices have both measured and latent variables as components.) The 
selection matrix is simply labeled G and has elements that are either 1s or 0s. (Refer to Ullman, 
2001, for a more detailed treatment of selection matrices.) The resulting vector is labeled Y,

Y = Gy* H = ≥V1

V2

V3

V4

¥ (14.11)

where Y is our name for the those measured variables that are dependent.
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The independent measured variables are selected in a similar manner,

X = Gx * j = V5 (14.12)

where X is our name for the independent measured variables.

Computation of the estimated population covariance matrix proceeds by rewriting the basic 
structural modeling Equation 14.10 as:3

H = (I - B)-1GJ (14.13)

where I is simply an identity matrix the same size as B. This equation expresses the 
DVs as a linear combination of the IVs.

At this point, the estimated population covariance matrix for the DVs, �n yy, is estimated using:

�n yy = Gy(I - Bn )-1Gn �n Gn �(I - Bn )-1G�y (14.14)

For the example:

�n yy = ≥1.04 .72 .41 .34

.72 11.48 .45 .38

.41 .45 2.18 1.46

.34 .38 1.46 1.95

¥
The estimated population covariance matrix between IVs and DVs is obtained similarly by:

�n yx = Gy(I - Bn )-1Gn �n G�x (14.15)

For the example:

�n yx = ≥0

0

.39

.38

¥
Finally, (phew!) the estimated population covariance matrix between IVs is estimated:

�n yx = Gx �n G�x (14.16)

For the example:

�n xx = 1.00

3This rewritten equation is often called the “reduced form.”
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In practice, a “super G” matrix is used so that all the covariances are estimated in one step. The 
components of �n  are then combined to produce the estimated population covariance matrix after 
one iteration.

For the example, using initial start values supplied by EQS:

�n = E1.04 .72 .41 .34 0

.72 11.48 .45 .38 0

.41 .45 2.18 1.46 .39

.34 .38 1.46 1.95 .33

0 0 .39 .33 1.00

U
After initial start values are calculated, parameter estimates are changed incrementally (itera-
tions continue) until the prespecified (in this case, maximum likelihood) function (Section 
14.5.2) is minimized (converges). After six iterations, the maximum likelihood function is at a 
minimum and the solution converges. The final estimated parameters are presented for compari-
son purposes in the B, G, and � matrices; these unstandardized parameters are also presented 
in Figure 14.5.

Bn = E0 0 0 0 0

0 0 0 0 0

0 0 0 0 1.00

0 0 0 0 .70

0 0 0 0 0

U
Gn = E0 .81 1.00 0 0 0 0

0 .86 0 1.00 0 0 0

0 0 0 0 1.00 0 0

0 0 0 0 0 1.00 0

.39 .62 0 0 0 0 1.00

U
�n = G1.00 0 0 0 0 0 0

0 1.00 0 0 0 0 0

0 0 .34 0 0 0 0

0 0 0 10.72 0 0 0

0 0 0 0 .52 0 0

0 0 0 0 0 .51 0

0 0 0 0 0 0 .69

W
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The final estimated population covariance matrix is given by �n . For the example:

�n = E1.00 .70 .51 .35 0

.70 11.47 .54 .38 0

.51 .54 1.76 .87 .39

.35 .38 .87 1.15 .27

0   0 .39 .27 1.00

U
The final residual matrix is:

S - �n = E0 0 .12 .08 .30

0 0 .08 .06 .21

.12 .08 .12 .08 .15

.08 .06 .08 .06 .11

.30 .21 .15 .11 0

U
14.4.5 Model Evaluation

A x2 statistic is computed based upon the function minimum when the solution has converged. The 
minimum of the function was .09432 in this example. This value is multiplied by N - 1 (N = num-
ber of participants) to yield the x2 value:

(.09432)(99) = 9.337

NUMYRS
number of
years skied

V1

SENSEEK
sensation
seeking

V5

SNOWSAT
snow

satisfaction
V3

FOODSAT
food

satisfaction
V4

(.35)
.59

(10.77)
.97

(.52)
.54

(.51)
.67

(.81*)
.81

(.62*)
.56

(.70)
.75

(.39*)
.35

(.86*)
.26

(1.00)
.84

(.70*)
.74

DAYSKI
total number
of days skied

V2

LOVESKI
Love of
Skiing

F1

SKISAT
Ski Trip

Satisfaction
F2

FIGURE 14.5 Final model for small-  sample example with standardized 
(and unstandardized) coefficients.
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This x2 is evaluated with degrees of freedom equal to the difference between the total number of de-
grees of freedom and the number of parameters estimated. The degrees of freedom in SEM are equal to 
the amount of unique information in the sample variance/covariance matrix (variances and covariances) 
minus the number of parameters in the model to be estimated (regression coefficients and variances and 
covariances of independent variables). In a model with a few variables, it is easy to count the number of 
variances and covariances; however, in larger models, the number of data points is calculated as,

number of data points =
p(p + 1)

2
(14.17)

where p equals the number of measured variables.

In this example with 5 measured variables, there are (5(6)>2 = ) 15 data points (5 variances 
and 10 covariances). The estimated model includes 11 parameters (5 regression coefficients and 
6 variances), so x2 is evaluated with 4 dfs, x2 (4, N = 99) = 9.337, p = .053.

Because the goal is to develop a model that fits the data, a nonsignificant chi-square is desired. 
This x2 is nonsignificant, so we conclude that the model fits the data. However, chi-  square values 
depend on sample sizes; in models with large samples, trivial differences often cause the x2 to be 
significant solely because of sample size. For this reason, many fit indices have been developed that 
look at model fit while eliminating or minimizing the effect of sample size. All fit indices for this 
model indicate an adequate, but not spectacular, fit. Fit indices are discussed fully in Section 14.5.3.

The model fits, but what does it mean? The hypothesis is that the observed covariances among 
the measured variables arose because of the relationships between variables specified in the model; 
because the chi-  square is not significant, we conclude that we should retain our hypothesized model.

Next, researchers usually examine the statistically significant relationships within the model. 
If the unstandardized coefficients in the three parameter matrices are divided by their respective 
standard errors, a z-score is obtained for each parameter that is evaluated in the usual manner,4

z =
parameter estimate

std error for estimate
(14.18)

For NUMYRS predicted from LOVESKI 
0.809

0.104
= 7.76, p 6 .05

DAYSKI predicted from LOVESKI 
0.865

0.106
= 8.25, p = .054

FOODSAT predicted from SKISAT 
0.701

0.127
= 5.51, p 6 .05

SKISAT predicted from SENSEEK 
0.389

0.108
= 3.59, p 6 .05

SKISAT predicted from LOVESKI 
0.625

0.128
= 4.89, p 6 .05

4The standard errors are derived from the inverse of the information matrix.
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Because of differences in scales, it is sometimes difficult to interpret unstandardized regres-
sion coefficients; therefore, researchers often examine standardized coefficients. Both the stan-
dardized and unstandardized regression coefficients for the final model are in Figure 14.5. The 
unstandardized coefficients are in parentheses. The paths from the factors to the variables are just 
standardized factor loadings. It could be concluded that number of years skied (NUMYRS) is a 
significant indicator of Love of Skiing (LOVESKI); the greater the Love of Skiing, the higher the 
number of years skied. Number of total days skied (DAYSKI) is a significant indicator of Love of 
Skiing, (i.e., greater Love of Skiing predicts more total days skied) because there was an a priori
hypothesis that stated a positive relationship. Degree of food satisfaction (FOODSAT) is a signifi-
cant indicator of ski trip satisfaction (SKISAT), higher Ski Trip Satisfaction predicts greater satis-
faction with the food. Because the path from SKISAT to SNOWSAT is fixed to 1 for identification, 
a standard error is not calculated. If this standard error is desired, a second run is performed with the 
FOODSAT path fixed instead. Higher SENSEEK predicts higher SKISAT. Lastly, greater Love of 
Skiing (LOVESKI) significantly predicts Ski Trip Satisfaction (SKISAT) because this relationship 
is also tested as an a priori, unidirectional hypothesis.

14.4.6 Computer Analysis of Small-Sample Example

Tables 14.2, 14.4, and 14.5 show syntax and minimal selected output for computer analyses of the 
data in Table 14.1 using EQS, LISREL, and AMOS, respectively. The syntax and output for the 
programs are all quite different. Each of these programs offers the option of using a Windows “point 
and click” method in addition to the syntax approach. Additionally, EQS, AMOS, and LISREL allow 
for analyses based on a diagram. The sample example is shown only using the syntax approach. The 
“point and click” method and the diagram specification methods are just special cases of the syntax.

As seen in Table 14.2, and described in Section 14.4.3, the model is specified in EQS using a 
series of regression equations. In the /EQUATIONS section, as in ordinary regression, the DV appears 
on the left side of the equation, the IVs on the right side. Measured variables are referred to by the 
letter V and the number corresponding to the variable given in the /LABELS section. Errors associ-
ated with measured variables are indicated by the letter E and the number of the variable. Factors are 
referred to with the letter F and a number given in the /LABELS section. The errors, or disturbances, 
associated with factors are referred to by the letter D and the number corresponding to the factor. An 
asterisk indicates a parameter to be estimated. Variables included in the equation without asterisks 
are considered parameters fixed to the value 1. In this example, start values are not specified and are 
estimated automatically by the program. The variances of IVs are parameters of the model and are 
indicated in the /VAR paragraph. The data appear as a covariance matrix in the paragraph labeled 
/MATRIX. In the /PRINT paragraph, FIT=ALL requests all goodness-of-fit indices available.

The output is heavily edited. After much diagnostic information (not included here), good-
ness-of-fit indices are given in the section labeled GOODNESS OF FIT SUMMARY. The indepen-
dence model chi-  square is labeled INDEPENDENCE CHI-SQUARE. The independence chi-square
tests the hypothesis that there is no relationship among the variables. This chi-  square should al-
ways be significant, indicating that there is some relationship among the variables. CHI-SQUARE
is the model chi-  square that ideally should be nonsignificant. Several different goodness-of-fit in-
dices are given (cf. Section 14.7.1), beginning with BENTLER-BONETT NORMED FIT INDEX.
Significance tests for each parameter of the measurement portion of the model are found in the 
section labeled MEASUREMENT EQUATIONS WITH STANDARD ERRORS AND TEST 
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TABLE 14.2 Structural Equation Model of Small-  Sample Example Through EQS 6.1 
(Syntax and Selected Output)

/TITLE
EQS model created by EQS 6 for Windows—  C:\JODIE\Papers\smallsample example
/SPECIFICATIONS
DATA=’C:\smallsample example 04.ESS’;
VARIABLES=5; CASES=100; GROUPS=1;
METHODS=ML;
MATRIX=covariance;
ANALYSIS=COVARIANCE;
/LABELS
V1=NUMYRS; V2=DAYSKI; V3=SNOWSAT; V4=FOODSAT; V5=SENSEEK;
F1 = LOVESKI; F2=SKISAT;
/EQUATIONS
!Love of Skiing Construct
V1 = *F1 + E1;
V2 = *F1 + E2;

!Ski Trip Satisfaction Construct
V3 = 1F2 + E3;
V4 = *F2 + E4;

F2 = *F1 + *V5 + D2;
/VARIANCES
V5 = *;
F1 = 1.00;
E1 to E4 = *;
D2 = *;
/PRINT
EFFECT = YES;
FIT=ALL;
TABLE=EQUATION;
/LMTEST
/WTEST
/END

MAXIMUM LIKELIHOOD SOLUTION (NORMAL DISTRIBUTION THEORY)
GOODNESS OF FIT SUMMARY FOR METHOD = ML

INDEPENDENCE MODEL CHI-SQUARE = 170.851 ON 10 DEGREES OF FREEDOM

INDEPENDENCE AIC = 150.85057 INDEPENDENCE CAIC = 114.79887
MODEL AIC = 1.33724 MODEL CAIC = −13.08344

CHI-SQUARE = 9.337 BASED ON 4 DEGREES OF FREEDOM
PROBABILITY VALUE FOR THE CHI-  SQUARE STATISTIC IS .05320

THE NORMAL THEORY RLS CHI-  SQUARE FOR THIS ML SOLUTION IS 8.910.
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FIT INDICES

BENTLER-BONETTNORMED FIT INDEX = .945
BENTLER-BONETT NON-NORMED FIT INDEX = .917
COMPARATIVE FIT INDEX (CFI) = .967
BOLLEN (IFI) FIT INDEX = .968
MCDONALD (MFI) FIT INDEX = .974
LISREL GFI FIT INDEX = .965
LISREL AGFI FIT INDEX = .870
ROOT MEAN–SQUARE RESIDUAL (RMR) = .122
STANDARDIZED RMR = .111
ROOT MEAN–SQUARE ERROR OF APPROXIMATION(RMSEA) = .116
90% CONFIDENCE INTERVAL OF RMSEA ( .000, .214)

MEASUREMENT EQUATIONS WITH STANDARD ERRORS AND TEST STATISTICS 
STATISTICS SIGNIFICANT AT THE 5% LEVEL ARE MARKED WITH @.

NUMYRS =V1 = .809*F1 + 1.000 E1
.104
7.755@

DAYSKI =V2 = .865*F1 + 1.000 E2
.105
8.250@

SNOWSAT =V3 = 1.000 F2 + 1.000 E3

FOODSAT =V4 = .701*F2 + 1.000 E4
.127
5.511@

CONSTRUCT EQUATIONS WITH STANDARD ERRORS AND TEST STATISTICS 
STATISTICS SIGNIFICANT AT THE 5% LEVEL ARE MARKED WITH @.

SKISAT =F2 = .389*V5 +.625*F1 + 1.000 D2
.108 .128

3.591@ 4.888@

STANDARDIZED SOLUTION: R-SQUARED

NUMYRS   =V1 = .809*F1 + .588 E1 .655
DAYSKI   =V2 = .865*F1 + .502 E2 .748
SNOWSAT =V3 = .839 F2 + .544 E3 .704
FOODSAT =V4 = .738*F2 + .674 E4 .545
SKISAT   =F2 = .350*V5 + .562*F1 + .749 D2 .438

TABLE 14.2 Continued
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STATISTICS. The unstandardized coefficient appears on the first line, immediately below it is 
the standard error for that parameter. The z-  score associated with the parameter (the unstandardized 
coefficient divided by the standard error) is given on the third line. The section labeled CONSTRUCT
EQUATIONS WITH STANDARD ERRORS AND TEST STATISTICS contains the unstandard-
ized regression coefficients, standard errors, and z-score significance tests for predicting factors 
from other factors and measured variables. The standardized parameter estimates appear in the sec-
tion labeled STANDARDIZED SOLUTION.

LISREL offers two very different methods of specifying models. SIMPLIS uses equations 
and LISREL employs matrices. Neither program allows the exact model specified in Figure 14.4 to 
be tested. Underlying both these programs is the LISREL model, which, although similar to the 
Bentler–  Weeks model, employs eight matrices instead of three. The matrices of the LISREL model 
that correspond to the Bentler–  Weeks model are given in Table 14.3. Within the LISREL model, 

TABLE 14.3 Equivalence of Matrices in Bentler–  Weeks and LISREL Model Specifications

Bentler-Weeks Model LISREL Model

Symbol Name Contents Symbol Name

LISREL
Two Letter 

Specification Contents

B Beta matrix of 
regression 
coefficients of 
DVs predicting 
other DVs

1. B

2. �y

1. Beta

2. Lambda
y

1. BE

2. LY

1. matrix of regression 
coefficients of latent DVs 
predicting other latent DVs

2. matrix of regression 
coefficients of measured 
DVs predicted by latent DVs

G Gamma matrix of 
regression 
coefficients of 
DVs predicted 
by IVs

1. �

2. �x

1. Gamma

2. Lambda
x

1. GA

2. LX

1. matrix of regression 
coefficient of latent DVs 
predicted by latent IVs

2. matrix of regression 
coefficients of measured 
DVs predicted by latent IVs

� Phi matrix of 
covariances 
among the IVs

1. �

2. �

3. 	d

4. 	e

1. Phi

2. Psi

3.  Theta-
Delta

4.  Theta-
Epsilon

1. PI

2. PS

3. TD

4. TE

1. matrix of covariances among 
the latent IVs

2. matrix of covariances of errors 
associated with latent DVs

3. matrix of covariances among 
errors associated with 
measured DVs predicted 
from latent IVs

4. matrix of covariances among 
errors associated with 
measured DVs predicted 
from latent DVs
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Ski Trip
Satisfaction

*
Dummy
“Latent”
Variable

sensation
seeking

SENSEEK

1

1

*

E = 0

FIGURE 14.6 LISREL adaptation for small-  sample example.

there is no matrix of regression coefficients for predicting latent DVs from measured IVs. To es-
timate these parameters, a little trick, illustrated in Figure 14.6, is employed. A dummy “latent” 
variable with one indicator5 is specified, in this example SENSEEK. The dummy latent variable 
then predicts SKISAT. The regression coefficient from the dummy “latent” variable to SENSEEK 
is fixed to one and the error variance of SENSEEK is fixed at zero. With this modification, the solu-
tions are identical, because SENSEEK = (dummy latent variable) + 0.

LISREL uses matrices, rather than equations, to specify the model. Syntax and edited output 
are presented in Table 14.4. Matrices and commands are given with two-  letter specifications defined 
in Table 14.3. CM with an asterisk indicates analysis of a covariance matrix. Following LA (for label), 
the measured variable names are given in the same order as the data. LISREL requires that the DVs 
appear before the IVs, so the specification SE (select) reorders the variables. The model specification 
begins with MO. The number of measured DVs is indicated after the key letters NY (number of Ys). The 
number of measured IVs is specified after the key letters NX (number of Xs). The latent DVs are speci-
fied after NE and the latent IVs are specified after NK. Labels are optional, but helpful. The labels for 
the latent DVs follow the key letters LE and labels for the latent IVs follow the key letters LK.

By default, elements of the matrices are either fixed at zero or are free. Additionally, matrices 
are one of four possible shapes: full nonsymmetrical, symmetrical, diagonal, or zero. Matrices are 
referred to by their two-  letter designation, for example, LX (lambda x) is a full nonsymmetrical and 
fixed matrix of the regression coefficients predicting the measured DVs from latent IVs.

The model is specified by a combination of freeing (FR) or fixing (FI) elements of the relevant 
matrices. Freeing a parameter means estimating the parameter. When an element of a matrix is fixed 

5Note this dummy variable is not a true latent variable. A one indicator latent variable is simply a measured variable.
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TABLE 14.4 Structural Equation Model for Small-  Sample Example Through LISREL 8.5.4 
(Syntax and Edited Output)

TI Small Sample Example —   LISREL
DA NI=5 NO=100 NG=1 MA=CM
CM
*
1.00
.70 11.47
.623 .623 1.874
.436 .436 .95 1.173
.3 .21 .54 .38 1.00
LA
NUMYRS DAYSKI SNOWSAT FOODSAT SENSEEK
SE
SNOWSAT FOODSAT NUMYRS DAYSKI SENSEEK
MO NY =2 NX = 3 NE =1 NK = 2
LE
SKISAT
LK
LOVESKI DUMMY
FR LX(1,1) LX(2,1) LY(2,1)
FI PH(2,1) TD(3,3)
VA 1 LX(3,2) LY(1,1) PH(1,1)
OU SC SE TV RS SS MI ND=3

LISREL Estimates (Maximum Likelihood)

LAMBDA-Y

SKISAT

SNOWSAT 1.000

FOODSAT 0.701
(0.137)

5.120

LAMBDA-X

LOVESKI DUMMY

NUMYRS 0.809 - -
(0.291)

2.782

DAYSKI 0.865 - -
(0.448)

1.930

SENSEEK - - 1.000

GAMMA

LOVESKI DUMMY

SKISAT 0.625 0.389
(0.185) (0.112)

2.540 3.480
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Covariance Matrix of ETA and KSI

SKISAT LOVESKI DUMMY

SKISAT 1.236
LOVESKI 0.625 1.000

DUMMY 0.389 - - 1.000

PHI
Note: This matrix is diagonal.

LOVESKI DUMMY

1.000 1.000
(0.142)

7.036

PSI

SKISAT

0.694
(0.346)

2.007

Squared Multiple Correlations for Structural Equations

SKISAT

0.438

THETA-EPS

SNOWSAT FOODSAT

0.520 0.507
(0.223) (0.126)

2.327 4.015

Squared Multiple Correlations for Y - Variables

SNOWSAT FOODSAT

0.704 0.546

THETA-DELTA

NUMYRS DAYSKI SENSEEK

0.345 10.722 - -
(0.454) (1.609)

0.760 6.664

Squared Multiple Correlations for X - Variables

NUMYRS DAYSKI SENSEEK

0.655 0.065 1.000

TABLE 14.4 Continued

(continued )
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TABLE 14.4 Continued

Goodness of Fit Statistics

Degrees of Freedom = 4
Minimum Fit Function Chi-  Square = 9.337 (P = 0.0532)

Normal Theory Weighted Least Squares Chi-  Square = 8.910 (P = 0.0634)
Estimated Non-  centrality Parameter (NCP) = 4.910

90 Percent Confidence Interval for NCP = (0.0 ; 17.657)

Minimum Fit Function Value = 0.0943
Population Discrepancy Function Value (F0) = 0.0496

90 Percent Confidence Interval for F0 = (0.0 ; 0.178)
Root Mean Square Error of Approximation (RMSEA) = 0.111
90 Percent Confidence Interval for RMSEA = (0.0 ; 0.211)

P-Value for Test of Close Fit (RMSEA < 0.05) = 0.127

Expected Cross-  Validation Index (ECVI) = 0.312
90 Percent Confidence Interval for ECVI = (0.263 ; 0.441)

ECVI for Saturated Model = 0.303
ECVI for Independence Model = 1.328

Chi-  Square for Independence Model with 10 Degrees of Freedom = 121.492
Independence AIC = 131.492

Model AIC = 30.910
Saturated AIC = 30.000

Independence CAIC = 149.518
Model CAIC = 70.567

Saturated CAIC = 84.078

Normed Fit Index (NFI) = 0.923
Non-  Normed Fit Index (NNFI) = 0.880

Parsimony Normed Fit Index (PNFI) = 0.369
Comparative Fit Index (CFI) = 0.952
Incremental Fit Index (IFI) = 0.955
Relative Fit Index (RFI) = 0.808

Critical N (CN) = 141.770

Root Mean Square Residual (RMR) = 0.122
Standardized RMR = 0.0974

Goodness of Fit Index (GFI) = 0.965
Adjusted Goodness of Fit Index (AGFI) = 0.870
Parsimony Goodness of Fit Index (PGFI) = 0.257

Completely Standardized Solution

LAMBDA-Y

SKISAT

SNOWSAT 0.839
FOODSAT 0.769
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LAMBDA-X

LOVESKI DUMMY

NUMYRS 0.809 - -
DAYSKI 0.255 - -

SENSEEK - - 1.000

GAMMA
LOVESKI DUMMY

SKISAT 0.562 0.350

Correlation Matrix of ETA and KSI

SKISAT LOVESKI DUMMY

SKISAT 1.000
LOVESKI 0.562 1.000

DUMMY 0.350 - - 1.000

PSI
SKISAT

0.562

THETA-EPS

SNOWSAT FOODSAT

0.296 0.454

THETA-DELTA

NUMYRS DAYSKI SENSEEK

0.345 0.935 - -

Regression Matrix ETA on KSI (Standardized)

LOVESKI DUMMY

SKISAT 0.562 0.350

TABLE 14.4 Continued

with the key letters FI, it is fixed at zero. A command line begins with either FI (for fix) or FR
(for free). Following this FI or FR specification, the particular matrix and specific element (row, 
column) that is to be freed or fixed is indicated. For example, from Table 14.4, FR LX(1,1)
means free (FR) the element of the lambda x matrix (LX) that is in the first row and the first column 
(1,1), that is, the factor loading of NUMYRS on LOVESKI. Similarly, FI PH(2,1) indicates 
that the covariance that is in the 2nd row, 1st column (2,1) of the phi matrix (PH) is fixed to zero 
(FI) (i.e., there is no relationship between LOVESKI and DUMMY).

In this example, LX (LAMBDA-X) is a 3 * 2 full and fixed matrix of regression coefficients 
of measured variables predicted by latent IVs. The rows are the three measured variables that are the 
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indicators of latent IVs: NUMYRS, DAYSKI, and SENSEEK; and the columns are the latent IVs: 
LOVESKI and DUMMY. LY(LAMBDA-Y) is a full and fixed matrix of the regression coefficients pre-
dicting measured DVs from the latent DV. In this example, LY is a 2 * 1 vector. The rows are the 
measured variables SNOWSAT and FOODSAT and the column is SKISAT. The PH (phi matrix) of co-
variances among latent IVs is by default symmetrical and free. In this example, phi is a 2 * 2 matrix. No 
covariance is specified between the dummy latent variable and LOVESKI therefore PH(2,1) is fixed, 
FI. To estimate this model, the error variance associated with SENSEEK must be fixed to zero. This is 
done by specifying FI TD(3,3). TD refers to the theta delta matrix (errors associated with measured 
IVs serving as indicators of latent IVs); by default, this matrix is diagonal and free. A diagonal matrix has 
zeros everywhere but the main diagonal. In the small-  sample example it is a 3 * 3 matrix.

Only four of the eight LISREL matrices (LX,LY,PH, and TD) are included on the model (MO)
line. LISREL matrices have particular shapes and elements specified by default. If these defaults 
are appropriate for the model, there is no need to mention the unmodified matrices on the MO line. 
In this example, the default specifications for TE,GA,PS, and BE are all appropriate. TE (theta 
epsilon) is diagonal and free by default. TE contains the covariances associated with the measured 
DVs associated with the latent DVs. In this example, it is a 2 * 2 matrix. Gamma (GA) contains the 
regression coefficients of latent IVs predicting latent DVs. By default, this matrix is full and free. In 
this example, GA is a 1 * 2 vector. PS contains the covariances among errors associated with latent 
DVs, by default it is diagonal and free. In the small-  sample example, there is only one latent DV; 
therefore, PS is simply a scalar (a number). BE contains the regression coefficients among the latent 
DVs, by default a matrix of zeros. The small-  sample example contains no relationships among latent 
DVs—  there is only one latent DV—  so there is no need to mention BE.

Finally, for identification, a path is fixed to 1 on each factor and the variance of LOVESKI 
is fixed at the value 1. (See Section 14.5.1 for a discussion of identification.) This is accomplished 
with the key letters VA 1 and the relevant matrices and corresponding elements. The OU line speci-
fies output options (SC completely standardized solution, SE standard errors, TV t values, RS re-
sidual information, SS standardized solution, and ND number of decimal places), not all of which 
are included in the edited output.

The highly edited output provides the unstandardized regression coefficients, standard errors 
for the regression coefficients, and t tests (unstandardized regression coefficient divided by stan-
dard error) by matrix in the section labeled LISREL Estimates(Maximum Likelihood).
The statistical significance of parameter estimates is determined with a table of t distributions 
(Table C.2). A t statistic greater than 1.96 is needed for significance at p 6 .05 and 2.56 for signifi-
cance at p 6 .01. These are two-  tailed tests. If the direction of the effect has been hypothesized a 
priori, a one-  tailed test can be employed, t = 1.65, p 6 .05, one-tailed. The goodness-of-fit sum-
mary is labeled Goodness Of Fit Statistics. A partially standardized solution appears, 
by matrix, in the section labeled Completely Standardized Solution. The regression 
coefficients, and variances and covariances, are completely standardized (latent variable mean of 0, 
sd = 1, observed variable mean = 0, sd = 1) and are identical to the standardized solution in EQS. 
The error variances given in Completely Standardized Solution for both measured 
variables and latent variables are not actually completely standardized and are different from EQS 
(Chou & Bentler, 1993). An option in LISREL (not shown) is the standardized solution, a second 
type of partially standardized solution in which the latent variables are standardized to a mean = 1 
and sd = 0, but the observed variables remain in their original scale.

AMOS syntax uses equations to specify the model. Syntax and edited output are presented 
in Table 14.5. After an SEM new model is specified with Dim Sem As New AmosEngine,
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TABLE 14.5 Structural Equation Model of Small-  Sample Example Through AMOS 
(Syntax and Selected Output)

Sub Main
Dim Sem As New AmosEngine
Sem.TableOutput
Sem.Standardized
Sem.Mods 0

Sem.BeginGroup “UserGuide.xls”, “smsample”
Sem.Structure “numyrs<---loveski”
Sem.Structure “dayski <---loveski”
Sem.Structure “snowsat<---skisat (1)”
Sem.Structure “foodsat<---skisat”
Sem.Structure “loveski (1)”

Sem.Structure “numyrs<---error1 (1)”
Sem.Structure “dayski<---error2 (1)”
Sem.Structure “snowsat <---error3 (1)”
Sem.Structure “foodsat <---error4 (1)”

Sem.Structure “skisat <---loveski”
Sem.Structure “skisat <---senseek”
Sem.Structure “skisat <---error5 (1)”
Sem.Structure “loveski<--->senseek (0)”

End Sub

Computation of degrees of freedom (Model 1)

Number of distinct sample moments: 15
Number of distinct parameters to be estimated: 11

Degrees of freedom (15 - 11): 4

Result (Model 1)

Minimum was achieved
Chi-square = 9.337
Degrees of freedom = 4
Probability level = .053

Group number 1 (Group number 1 - Model 1)

Estimates (Group number 1 - Model 1)

Scalar Estimates (Group number 1 - Model 1)

Maximum Likelihood Estimates

Regression Weights: (Group number 1 - Model 1)

Estimate S.E. C.R. P Label

skisat <-- loveski .622 .245 2.540 .011
skisat <-- senseek .389 .112 3.480 ***

numyrs <-- loveski .805 .289 2.782 .005
dayski <-- loveski .861 .446 1.930 .054

snowsat <-- skisat 1.000
foodsat <-- skisat .701 .137 5.120 ***

(continued )
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TABLE 14.5 Continued

Standardized Regression Weights: (Group number 1 - Model 1)

Estimate

skisat <-- loveski .562
skisat <-- senseek .350

numyrs <-- loveski .809
dayski <-- loveski .255

snowsat <-- skisat .839
foodsat <-- skisat .739

Covariances: (Group number 1 - Model 1)

Estimate S.E. C.R. P Label

loveski <--> senseek .000

Model Fit Summary

CMIN

Model NPAR CMIN DF P CMIN/DF
Default model 11 9.337 4 .053 2.334
Saturated model 15 .000 0
Independence model 5 102.841 10 .000 10.284

RMR, GFI

Model RMR GFI AGFI PGFI
Default model .121 .965 .870 .257
Saturated model .000 1.000
Independence model .451 .671 .506 .447

Baseline Comparisons

Model NFI RFI IFI TLI
Delta1 rho1 Delta2 rho2 CFI

Default model .909 .773 .946 .856 .943
Saturated model 1.000 1.000 1.000
Independence model .000 .000 .000 .000 .000

Parsimony-Adjusted Measures

Model PRATIO PNFI PCFI
Default model .400 .364 .377
Saturated model .000 .000 .000
Independence model 1.000 .000 .000

NCP

Model NCP LO 90 HI 90
Default model 5.337 .000 18.334
Saturated model .000 .000 .000
Independence model 92.841 63.951 129.194
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general commands regarding output options are given. Each command begins with the letters Sem.
Sem.TableOutput indicates that output be presented in table form similar to IBM SPSS for 
Windows style. Other options are available. Sem.Standardized requests a completely stan-
dardized solution. Sem.Mods 0 requests all modification indices.

Heavily edited table output follows. The first section after Computation of degrees of free-
dom contains the model chi-  square information. The model chi-  square information is contained in 
the section labeled Chi-square. Detailed goodness-of-fit information follows in the section labeled 
Fit Measures. Significance tests for each parameter are given in the sections labeled Regression 
Weights. The first column in this table is parameter estimate, labeled Estimate. The next column, 
labeled S.E., contains the standard errors. The third column, labeled C.R., the critical ratio, is the 
estimate divided by the S.E. The C.R. is the same as the z test in EQS. The final column, labeled P,
contains the P value for the critical ratio. The completely standardized solution is given in the table 
labeled, Standardized Regression Weights.

FMIN

Model FMIN F0 LO 90 HI 90
Default model .094 .054 .000 .185
Saturated model .000 .000 .000 .000
Independence model 1.039 .938 .646 1.305

RMSEA

Model RMSEA LO 90 HI 90 PCLOSE
Default model .116 .000 .215 .110
Independence model .306 .254 .361 .000

AIC

Model AIC BCC BIC CAIC
Default model 31.337 32.757 59.994 70.994
Saturated model 30.000 31.935 69.078 84.078
Independence model 112.841 113.486 125.867 130.867

ECVI

Model ECVI LO 90 HI 90 MECVI
Default model .317 .263 .448 .331
Saturated model .303 .303 .303 .323
Independence model 1.140 .848 1.507 1.146

HOELTER

HOELTER HOELTER
Model .05 .01
Default model 101 141
Independence model 18 23

TABLE 14.5 Continued
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The model specification begins by specifying the location of the data with the command, 
SemBeginGroup “UserGuide.xls”, “smsample”. In this example, the data are in an Excel workbook 
“UserGuide.xls” in a worksheet called “smsample.” Following specification of the data, separate equa-
tions are written for each dependent variable in the model. The specific equation is stated by double 
quotes (”) after the command Sem.Structure. As with EQS, paths that are fixed to 1 have (1) follow-
ing the equation. AMOS automatically correlates the IV, in this example Love of Skiing (LOVESKI) 
and degree of sensation seeking (SENSEEK). To specify no relationship between these variables, 
the command Sem.Structure “loveski <—> senseek(0)” is given. AMOS makes use of colors 
in the syntax specification method. When each line is correctly imputed, the keywords, for example, 
Structure, on the line change color. If the line of syntax is incorrect, there is no color change.

14.5 Some Important Issues

14.5.1 Model Identification

In SEM, a model is specified, parameters for the model are estimated using sample data, and the param-
eters are used to produce the estimated population covariance matrix. But only models that are identified 
can be estimated. A model is said to be identified if there is a unique numerical solution for each of the 
parameters in the model. For example, say both that the variance of Y = 10 and that the variance of 
Y = a + b. Any two values can be substituted for a and b as long as they sum to 10. There is no unique 
numerical solution for either a or b, that is, there are an infinite number of combinations of two numbers 
that would sum to 10. Therefore, this single equation model is not identified. However, if we fix a to 
zero, then there is a unique solution for b, 10, and the equation is identified. It is possible to use covari-
ance algebra to calculate equations and assess identification in very simple models; however, in large 
models, this procedure quickly becomes unwieldy. For a detailed, technical discussion of identification, 
see Bollen (1989b). The following guidelines are rough, but may suffice for many models.

The first step is to count the numbers of data points and the number of parameters that are to 
be estimated. The data in SEM are the variances and covariances in the sample covariance matrix.
The number of data points are the number of sample variances and covariances (found through 
Equation 14.17). The number of parameters is found by adding together the number of regression coef-
ficients, variances, and covariances that are to be estimated (i.e., the number of asterisks in a diagram).

If there are more data points than parameters to be estimated, the model is said to be 
overidentified, a necessary condition for proceeding with the analysis. If there are the same number 
of data points as parameters to be estimated, the model is said to be just identified. In this case, the 
estimated parameters perfectly reproduce the sample covariance matrix; chi-  square and degrees of 
freedom are equal to zero, and the analysis is uninteresting because hypotheses about adequacy of 
the model cannot be tested. However, hypotheses about specific paths in the model can be tested. 
If there are fewer data points than parameters to be estimated, the model is said to be underidentified 
and parameters cannot be estimated. The number of parameters needs to be reduced by fixing, 
constraining, or deleting some of them. A parameter may be fixed by setting it to a specific value or 
constrained by setting the parameter equal to another parameter.

In the small-  sample example of Figure 14.4, there are 5 measured variables, so there are 
15 data points: 5(5 + 1)>2 = 15 (5 variances and 10 covariances). There are 11 parameters to be 
estimated in the hypothesized model: 5 regression coefficients and 6 variances. The hypothesized 
model has four fewer parameters than data points, so the model may be identified.
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The second step in determining model identifiability is to examine the measurement portion 
of the model. The measurement part of the model deals with the relationship between the measured 
indicators and the factors. It is necessary both to establish the scale of each factor and to assess the 
identifiability of this portion of the model.

To establish the scale of a factor, you either fix the variance for the factor to 1, or fix to 
1 the regression coefficient from the factor to one of the measured variables (perhaps a marker 
variable cf. Section 13.3.1). Fixing the regression coefficient to 1 gives the factor the same variance 
as the measured variable. If the factor is an IV, either alternative is acceptable. If the factor is a DV, 
most researchers fix the regression coefficient to 1. In the small-  sample example, the variance of the 
Love of Skiing factor was set to 1 (normalized) and the scale of the Ski Trip Satisfaction factor was 
set equal to the scale of the snow satisfaction variable.

To establish the identifiability of the measurement portion of the model, look at the number 
of factors and the number of measured variables (indicators) loading on each factor. If there is only 
one factor, the model may be identified if the factor has at least three indicators with nonzero load-
ing and the errors (residuals) are uncorrelated with one another. If there are two or more factors, 
again consider the number of indicators for each factor. If each factor has three or more indicators, 
the model may be identified if errors associated with the indicators are not correlated, each indicator 
loads on only one factor, and the factors are allowed to covary. If there are only two indicators for a 
factor, the model may be identified if there are no correlated errors, each indicator loads on only one 
factor, and none of the variances or covariances among factors is equal to zero.

In the small-  sample example, there are two indicators for each factor. The errors are uncorre-
lated and each indicator loads on only one factor. Additionally, the covariance between the factors is 
not zero. Therefore, this part of the model may be identified. Please note that identification may still be 
possible if errors are correlated or variables load on more than one factor, but it is more complicated.

The third step in establishing model identifiability is to examine the structural portion of the model, 
looking only at the relationships among the latent variables (factors). Ignore the measured variables for a 
moment, and consider only the structural portion of the model that deals with the regression coefficients 
relating latent variables to one another. If none of the latent DVs predicts each other (the beta matrix is all 
zeros), the structural part of the model may be identified. The small-  sample example has only one latent 
DV, so this part of the model may be identified. If the latent DVs do predict one another, look at the latent 
DVs in the model and ask if they are recursive or nonrecursive. If the latent DVs are recursive, there are no 
feedback loops among them, and there are no correlated disturbances (errors) among them. (In a feedback 
loop, DV1 predicts DV2 and DV2 predicts DV1. That is, there are two lines linking the factors, one with 
an arrow in one direction and the other line with an arrow in the other direction. Correlated disturbances 
are linked by single curved lines with double-  headed arrows.) If the structural part of the model is recur-
sive, it may be identifiable. These rules also apply to path analysis models with only measured variables. 
The small-  sample example is a recursive model and therefore may be identified.

If a model is nonrecursive, either there are feedback loops among the DVs or there are cor-
related disturbances among the DVs, or both, see Bollen (1989a).

Identification is often difficult to establish and frequently, despite the best laid plans, prob-
lems emerge. One extremely common error that leads to identification problems is failure to set the 
scale of a factor. In the small-  sample example, if we had forgotten to set the scale of the Ski Trip 
Satisfaction factor, each of the programs would have indicated a problem. The error messages for 
each program are given in Table 14.6. Note that SIMPLIS fixes the problem automatically without 
printing out a warning message. Potentially, this could lead to some confusion.
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Part (a) of Table 14.6 illustrates how EQS signals this type of identification problem. This mes-
sage usually indicates an identification problem either with the particular variables mentioned, as in 
this case, or in the general neighborhood of the variables mentioned. Part (b) illustrates the LISREL 
message given the same identification problem. TE 2,2 refers to an element in the theta epsilon ma-
trix (cf. Table 14.3). This indicates that the error variance for SNOWSAT may not be identified.

Part (c) of Table 14.6 shows the error message provided by AMOS. The first section indicates 
a possible identification problem and the second section indicates equations where the identification 
problem may have occurred.

When these messages occur, and despite the best of intentions they will, it is often helpful to 
compare the diagram of the model with the program input and be absolutely certain that everything 
on the diagram matches the input and that every factor has a scale. Application of these few basic 
principles will solve many identification problems.

Another common error is to fix both the factor variance to 1 and a path from the factor to an 
indicator to 1. This does not lead to an identification problem but does imply a very restricted model 
that almost certainly will not fit your data.

TABLE 14.6 Condition Codes When Latent Variable Variance Is Not Fixed

(a) EQS

PARAMETER CONDITION CODE
V3,F2 LINEARLY DEPENDENT ON OTHER PARAMETERS

(b) LISREL

W_A_R_N_I_N_G: TE 2,2 may not be identified. 
Standard Errors, T-Values, Modification Indices, 
and Standardized Residuals cannot be computed.

(c) AMOS

Regression Weights

Estimate S.E. C.R. P Label

skisat <-- loveski Unidentified
skisat <-- senseek Unidentified
skisat <-- error

numyrs <-- loveski
dayski <-- loveski

snowsat <-- skisat Unidentified
foodsat <-- skisat Unidentified

Covariances

Estimate S.E. C.R. P Label

loveski <-->senseek
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Variances

Estimate S.E. C.R. P Label

loveski
senseek
error Unidentified
error1
error2
error3
error4

Computation of degrees of freedom

Number of distinct sample moments = 15
Number of distinct parameters to be estimated = 12
Degrees of freedom = 15-12 = 3

The model is probably unidentified. In order to achieve 
identifiability, it will probably be necessary to impose 1 
additional constraint.

The (probably) unidentified parameters are marked.

TABLE 14.6 Continued

14.5.2 Estimation Techniques

After a model is specified, population parameters are estimated with the goal of minimizing the 
difference between the observed and estimated population covariance matrices. To accomplish this 
goal, a function, Q, is minimized where

Q = (s - S(	))�W(s - S(	)) (14.19)

s is the vector of data (the observed sample covariance matrix stacked into a vector); S
is the vector of the estimated population covariance matrix (again, stacked into a vec-
tor); and 	 indicates that S is derived from the parameters (the regression coefficients, 
variances, and covariances) of the model. W is the matrix that weights the squared dif-
ferences between the sample and estimated population covariance matrix.

Recall that in factor analysis (Chapter 13), the observed and reproduced correlation matrices are 
compared. This notion is extended in SEM to include a statistical test of the difference. If the weight 
matrix, W, is chosen correctly to minimize Q, Q multiplied by (N – 1) yields a chi-  square test statistic.

The trick is to select W to minimize the squared differences between observed and estimated 
population covariance matrices. In an ordinary chi-  square (Chapter 3), the weights are the set of 
expected frequencies in the denominators of the cells. If we use some other numbers instead of the 
expected frequencies, the result might be some sort of test statistic, but it would not be a x2 statistic; 
that is, the weight matrix would be wrong.
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TABLE 14.7 Summary of Estimation Techniques and Corresponding Function Minimized

Estimation
Method

Function
Minimized

Interpretation of W, 
the Weight Matrix

Unweighted Least 
Squaresa (ULS)

FULS =
1

2
tr [(S - �(	))2] W = l, the identity matrix

Generalized Least 
Squares (GLS)

FGLS =
1

2
tr5[(S - �(	))]W- 162

W = S. W is any consistent 
estimator of �. Often the sample 
covariance matrix, S, is used.

Maximum
Likelihood (ML)

FML = log � � � - log � S � + tr(S� - 1) - r

W = � - 1, the inverse of the 
estimated population covariance 
matrix. The number of measured 
variables is r.

Elliptical
Distribution 
Theory (EDT)

FEDT =
1

2
(k + 1)- 1tr53S - �(�)4W- 162

- d5tr[S - �(	)]W- 162

W = any consistent estimator of 
�. k and d are measures of 
kurtosis.

Asymptotically
Distribution Free 
(ADF)

FADF = 3s - S(	)4�W- 13s - S(	)4 W has elements, 
Wijkl = Sijkl - SijSkl(Sijkl is 
the kurtosis, Sij is the 
covariance).

aNo x2 statistics or standard errors are available by the usual formulae, but some programs give these using more general 
computations.

In SEM, estimation techniques vary by the choice of W. A summary of the most popular 
estimation techniques and the corresponding functions minimized is presented in Table 14.7.6

Unweighted least squares estimation (ULS) does not usually yield a x2 statistic or standard errors.
Because researchers are usually interested in the test statistic, ULS estimation is not discussed 
further (see Bollen, 1989b, for a further discussion of ULS).

Other estimation procedures are Generalized Least Squares (GLS), Maximum Likelihood (ML), 
Elliptical Distribution Theory (EDT), and Asymptotically Distribution Free (ADF). Satorra and Bentler 
(1988) have also developed an adjustment for nonnormality that can be applied to the chi-  square test sta-
tistic following any estimation procedure. Briefly, the Satorra–  Bentler scaled x2 is a correction to the x2

test statistic.7 EQS also corrects the standard errors associated with the parameter estimates for the extent 
of the nonnormality (Bentler & Dijkstra, 1985). These adjustments to the standard errors and the Satorra–
Bentler scaled chi-  square so far have been implemented only in the ML estimation procedure in EQS.

6Really, it’s not that technical! See Appendix A for additional guidance in deciphering the equations.
7The Satorra–Bentler scaled x2 is the maximum likelihood test statistic (TML) adjusted using the following formula:

Satorra9Bentler Scaled x2 =
dfs in the model

tr(UnSy)
TML

where Un  is the weight matrix and residual weight matrix under the model and Sy is the asymptotic covariance matrix.
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The performance of the x2 test statistic derived from these different estimation procedures is af-
fected by several factors, among them (1) sample size; (2) nonnormality of the distribution of errors, 
of factors, and of errors and factors; and (3) violation of the assumption of independence of factors and 
errors. The goal is to select an estimation procedure that, in Monte Carlo studies, produces a test sta-
tistic that neither rejects nor accepts the true model too many times as defined by a prespecified alpha 
level, commonly p 6 .05. Two studies provide guidelines for selection of an appropriate estimation 
method and test statistics. The following sections summarize the performance of estimation procedures 
examined in Monte Carlo studies by Hu, Bentler, and Kano (1992) and Bentler and Yuan (1999). Hu et 
al. (1992) varied sample size from 150 to 5,000 and Bentler and Yuan (1999) examined samples sizes 
ranging from 60 to 120. Both studies examined the performance of test statistics derived from several 
estimation methods when the assumptions of normality and independence of factors were violated.

14.5.2.1 Estimation Methods and Sample Size

Hu and colleagues (1992) found that when the normality assumption was reasonable, both the 
ML and the scaled ML performed well with sample sizes over 500. When the sample size was 
less than 500, GLS performed slightly better. Interestingly, the EDT test statistic performed a 
little better than ML at small sample sizes. It should be noted that the elliptical distribution theory 
estimator (EDT) considers the kurtosis of the variables and assumes that all variables have the 
same kurtosis, although the variables need not be normally distributed. (If the distribution is nor-
mal, there is no excess kurtosis.) Finally, the ADF estimator was poor with sample sizes under 
2,500. Bentler and Yuan (1999) found that a test statistic similar to Hotelling’s T, based on an 
adjustment to the ADF estimator, performed very well in models with small sample sizes (N = 60 
to 120) and more subjects than the number of nonredundant variances and covariances in the sam-
ple covariance matrix (i.e., 3p(p + 1)4 /2 where p is the number of measured variables). This test 
statistic (Yuan–  Bentler) adjusts the chi-  square test statistic derived from the ADF estimator as,

T =
3N - ( p* - q)4TADF3(N - 1)( p* - q)4 (14.20)

where N is the number of subjects, p* = 3p(p + 1)4>2, where p is the number of mea-
sured variables, q is the number of parameters to be estimated, and TADF is the test 
statistic based on the ADF estimator.

14.5.2.2 Estimation Methods and Nonnormality

When the normality assumption was violated, Hu et al. (1992) found that the ML and GLS estimators 
worked well with sample sizes of 2,500 and greater. The GLS estimator was a little better with 
smaller sample sizes but led to acceptance of too many models. The EDT estimator accepted far too 
many models. The ADF estimator was poor with sample sizes under 2,500. Finally, the scaled ML 
performed about the same as the ML and GLS estimators and better than the ADF estimator at all 
but the largest sample sizes.8 With small sample sizes, the Yuan–  Bentler test statistic performed best.

8This is interesting in that the ADF estimator has no distributional assumptions and, theoretically, should perform quite well 
under conditions of nonnormality.
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14.5.2.3 Estimation Methods and Dependence

The assumption that errors are independent underlies SEM and other multivariate techniques. 
Hu et al. (1992) also investigated estimation methods and test statistic performance when the 
errors and factors were dependent but uncorrelated.9 ML and GLS performed poorly, always 
rejecting the true model. ADF was poor unless the sample size was greater than 2,500. EDT 
was better than ML, GLS, and ADF, but still rejected too many true models. The scaled ML was 
better than the ADF at all but the largest sample sizes. The scaled ML x2 performed best overall 
with medium to larger sample sizes; the Yuan–  Bentler test statistic performed best with small 
samples.

14.5.2.4 Some Recommendations for Choice of Estimation Method

Sample size and plausibility of the normality and independence assumptions need to be considered 
in selection of the appropriate estimation technique and test statistic. ML, the scaled ML, or GLS 
estimators may be good choices with medium to large samples and evidence of the plausibil-
ity of the normality and independence assumptions. The scaled ML is fairly computer intensive. 
Therefore, if time is an issue, ML and GLS are better choices when the assumptions seem plausible. 
ML estimation is currently the most frequently used estimation method in SEM. In medium to large 
samples, the scaled ML test statistic is a good choice with nonnormality or suspected dependence 
among factors and errors. Because scaled ML x2 is computer intensive and many model estimations 
may be required, it is often reasonable to use the ML x2 during model estimation and then scaled 
ML x2 for the final estimation. In small samples, the Yuan–  Bentler test statistic seems best. The test 
statistic based on ADF estimator (without adjustment) seems like a poor choice under all conditions 
unless the sample size is very large.

14.5.3 Assessing the Fit of the Model

After the model has been specified and then estimated, the major question is, “Is it a good 
model?” One component of a “good” model is the fit between the sample covariance matrix 
and the estimated population covariance matrix. Like multiway frequency analysis (Chapter 16) 
and logistic regression (Chapter 10), a good fit is sometimes indicated by a nonsignificant 
x2. Unfortunately, assessment of fit is not always as straightforward as assessment of x2. With 
large samples, trivial differences between sample and estimated population covariance matrices 
are often significant because the minimum of the function is multiplied by N – 1. With small 
samples, the computed x2 may not be distributed as x2, leading to inaccurate probability levels. 
Finally, when assumptions underlying the x2 test statistic are violated, the probability levels are 
inaccurate (Bentler, 1995).

Because of these problems, numerous measures of model fit have been proposed. In fact, 
this is a lively area of research with new indices seemingly developed daily. One very rough “rule 
of thumb,” however, directly related to the x2 value is that a good-  fitting model may be indi-
cated when the ratio of the x2 to the degrees of freedom is less than 2. The following discussion 

9Factors were dependent but uncorrelated by creating a curvilinear relationship between the factors and the errors. Correlation 
coefficients examine only linear relationships; therefore, although the correlation is zero between factors and errors, they are 
dependent.
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presents only some examples of each type of fit index. The interested reader is referred to Tanaka 
(1993), Browne and Cudeck (1993), and Williams and Holahan (1994) for excellent discussions 
of fit indices.

14.5.3.1 Comparative Fit Indices

One method of conceptualizing goodness of fit is by thinking of a series of models all nested 
within one another. Nested models are like the hierarchical models in log-  linear modeling dis-
cussed in Chapter 16. Nested models are models that are subsets of one another. At one end of 
the continuum is the independence model: the model that corresponds to completely unrelated 
variables. This model would have degrees of freedom equal to the number of data points minus 
the variances that are estimated. At the other end of the continuum is the saturated (full or perfect) 
model with zero degrees of freedom. Fit indices that employ a comparative fit approach place the 
estimated model somewhere along this continuum. The Bentler–  Bonett (1980) normed fit index 
(NFI) evaluates the estimated model by comparing the x2 value of the model to the x2 value of the 
independence model,

NFI =
x2

indep - x2
model

x2
indep

(14.21)

This yields a descriptive fit index that lies in the 0 – 1 range. For the small-  sample example,

NFI =
170 .851 - 9 .337

170 .851
= .945

High values (greater than .95) are indicative of a good-  fitting model. Therefore, the NFI for the 
small-  sample example indicates only a marginal fit as compared to a model with completely un-
correlated variables. Unfortunately, the NFI may underestimate the fit of the model in good-  fitting 
models with small samples (Bearden, Sharma, & Teel, 1982). An adjustment to the NFI incorporat-
ing the degrees of freedom in the model yields the non-  normed fit index (NNFI),

NNFI =
x2

indep -
dfindep

dfmodel
x2

model

x2
indep - dfindep

(14.22)

The adjustment improves on the problem of underestimating the fit in extremely good-  fitting mod-
els but can sometimes yield numbers outside of the 0 – 1 range. The NNFI can also be much too 
small in small samples, indicating a poor fit when other indices indicate an adequate fit (Anderson & 
Gerbing, 1984).

The problem of the large variability in the NNFI is addressed by the incremental fit index 
(IFI) (Bollen, 1989b),

IFI =
x2

indep - x2
model

x2
indep - dfmodel

(14.23)
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The comparative fit index (CFI; Bentler, 1988) also assesses fit relative to other models as the 
name implies, but uses a different approach. The CFI employs the noncentral x2 distribution with 
noncentrality parameters, ti. The larger the value of ti, the greater the model misspecification; that 
is, if the estimated model is perfect, ti = 0. The CFI is defined as,

CFI = 1 -
test. model

tindep. model
(14.24)

So, clearly, the smaller the noncentrality parameter, ti, for the estimated model relative to the ti, for 
the independence model, the larger the CFI and the better the fit. The t value for a model can be 
estimated by,

tindep. model =x
2
indep. model - dfindep. model

test. model = x2
est. model - dfest. model

(14.25)

For the small-sample example,

tindependence model = 170.851 - 10 = 160.851

testimated model = 9.337 - 4 = 5.337

CFI = 1 -
5 .337

160 .851
= .967

CFI values greater than .95 are often indicative of good-  fitting models (Hu & Bentler, 1999). The 
CFI is normed to the 0 – 1 range and does a good job of estimating model fit even in small samples 
(Bentler, 1988). It should be noted that the values of all of these indices depend on the estimation 
method used.

The root mean square error of approximation (RMSEA; Browne & Cudeck, 1993) estimates 
the lack of fit in a model compared to a perfect (saturated) model. The equation for the estimated 
RMSEA is given by

estimated RMSEA = A F0n

dfmodel
(14.26)

where Fn0 =
x2

model - dfmodel

N
 or 0 whichever is smaller but positive.

When the model is perfect, Fn0 = 0. The greater the model misspecification, the larger Fn0.
Values of .06 or less indicate a good-  fitting model relative to the model degrees of freedom (Hu & 
Bentler, 1999). Values larger than .10 are indicative of poor-  fitting models (Browne & Cudeck, 
1993). Hu and Bentler (1999) found that in small samples, the RMSEA overrejected the true model, 
that is, the value was too large. Because of this problem, this index may be less preferable with 
small samples. As with the CFI, the choice of estimation method affects the size of the RMSEA.
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For the small-sample example,

Fn =
9.337 - 4

100
= .05337

therefore,

RMSEA = A
.05337

4
= .116

14.5.3.2 Absolute Fit Index

McDonald and Marsh (1990) have proposed an index that is absolute in that it does not depend on a 
comparison with another model such as the independence or saturated models (CFI) or the observed 
data (GFI). This index is illustrated with the small-  sample example,

MFI = exp c - .5
1x2

model - dfmodel2
N

d
MFI = exp c - .5

19.337 - 42
100

d = .974

(14.27)

14.5.3.3 Indices of Proportion of Variance Accounted

Two widely available fit indices calculate a weighted proportion of variance in the sample covari-
ance accounted for by the estimated population covariance matrix (Bentler, 1983; Tanaka & Huba,
1989). The goodness-of-fit index (GFI) can be defined by,

GFI =
tr(sn �Wsn)

tr(s�Ws)
(14.28)

where the numerator is the sum of the weighted variances from the estimated model 
covariance matrix and the denominator is the sum of the squared weighted variances 
from the sample covariance. W is the weight matrix that is selected by the choice of 
estimation method (Table 14.7).

Tanaka and Huba (1989) suggest that GFI is analogous to R2 in multiple regression. This fit 
index can also be adjusted for the number of parameters estimated in the model. The adjusted fit 
index, labeled AGFI, is estimated by

AGFI = 1 -
1 - GFI

1 -
Number of est . parameters

Number of data points

(14.29)
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For the small-sample example,

AGFI = 1 -
1 - .965

1 -
11

15

= .87

The fewer the number of estimated parameters relative to the number of data points, the closer the 
AGFI is to the GFI. In this way, the AGFI adjusts the GFI for the number of parameters estimated. 
The fit improves by estimating lots of parameters in SEM. However, a second goal of modeling is to 
develop a parsimonious model with as few parameters as possible.

14.5.3.4 Degree of Parsimony Fit Indices

Several indices have been developed that take into account the degree of parsimony in the model. 
Most simply, an adjustment can be made to the GFI (Mulaik, et al., 1989), to produce PGFI

PGFI = c 1 - aNumber of est. parameters

Number of data points
b dGFI (14.30)

For the small-sample example,

PGFI = c 1 - a 11

15
b d .965 = .257

The larger the fit index, the better (values closer to 1.00). Clearly, there is a heavy penalty for 
estimating a lot of parameters with this index. This index will always be substantially smaller 
than other indices unless the number of parameters estimated is much smaller than the number of 
data points.

Completely different methods of assessing fit that include a parsimony adjustment are the 
Akaike Information Criterion (AIC) and the Consistent Akaike Information Criterion (CAIC) 
(Akaike, 1987; Bozdogan, 1987). These indices are also functions of x2 and df,

Model AIC = x2
model - 2dfmodel (14.31)

Model CAIC = x2
model - ( ln N + 1)dfmodel (14.32)

For the small-sample example,

Model AIC = 9.337 - 2(4) = 1.337

Model CAIC = 9.337 - ( ln 100 + 1)4 = -13.08

Small values indicate a good-  fitting, parsimonious model. How small is small enough? There is 
no clear answer because these indices are not normed to a 0 - 1 scale. “Small enough” is small 
as compared to other competing models. This index is applicable to models estimated with ML 
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methods. It is useful for cross-  validation because it is not dependent on sample data (Tanaka, 
1993). EQS uses Equations 14.31 and 14.32 to calculate the AIC and CAIC. LISREL and AMOS, 
however, use

AIC = x2
model + 2(dfnumber of est. parameters) (14.33)

CAIC = x2
model + (1 + ln N)dfnumber of est. parameters (14.34)

Both sets of equations are correct. LISREL and AMOS compute the AIC and CAIC with a constant 
included; EQS computes the AIC and CAIC without the constant. Therefore, although both sets of 
computations are correct, the AIC and CAIC computed in EQS are always smaller than the same 
values in LISREL and AMOS.

14.5.3.5  Residual-Based Fit Indices

Finally, there are indices based on the residuals. The root mean square residual (RMR) and the 
standardized root mean square residual (SRMR) are the average differences between the sample 
variances and covariances and the estimated population variances and covariances. The root mean 
square residual is given by

RMR = c 2aq

i = 1
a

i

j = 1

(sij - sn ij)
2

q(q + 1)
d 1>2 (14.35)

The RMR is the square root (indicated by the power of 1>2) of two times the sum, over 
all of the variables in the covariance matrix, and of the average squared differences 
between each of the sample covariances (or variances) and the estimated covariances 
(or variances).

Good-  fitting models have small RMR. It is sometimes difficult to interpret an unstandard-
ized residual because the scale of the variables affects the size of the residual; therefore, a 
standardized root mean square residual (SRMR) is also available. Again, small values indicate 
good-  fitting models. The SRMR has a range of 0–  1, values of .08 or less are desired (Hu & 
Bentler, 1999).

14.5.3.6 Choosing Among Fit Indices

Good-  fitting models produce consistent results on many different indices in many, if not most, 
cases. If all the indices lead to similar conclusions, the issue of which indices to report is a matter 
of personal preference and, perhaps, the preference of the journal editor. The CFI and RMSEA are 
perhaps the most frequently reported fit indices. The RMSEA is particularly helpful if power calcu-
lations are to be performed. The AIC and CAIC are helpful indices to use when comparing models 
that are not nested. Often multiple indices are reported. If the results of the fit indices are inconsis-
tent, the model should probably be reexamined; if the inconsistency cannot be resolved, consider 
reporting multiple indices. Hu and Bentler (1999) suggest reporting two types of fit indices: the 
SRMR and then a comparative fit index.
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14.5.4 Model Modification

There are at least two reasons for modifying a SEM model: to improve fit (especially in exploratory 
work) and to test hypotheses (in theoretical work). The three basic methods of model modification 
are chi-  square difference tests, Lagrange multiplier tests (LM), and Wald tests. All are asymptoti-
cally equivalent under the null hypothesis (act the same as the sample size approaches infinity) but 
approach model modification differently.

14.5.4.1  Chi-Square Difference Test

If models are nested (one model is a subset of another), the x2 value for the larger model is sub-
tracted from the x2 value for the smaller nested model and the difference, also a x2, is evaluated 
with degrees of freedom equal to the difference between the degrees of freedom in the two models. 
When the data are normally distributed, the chi-  squares can simply be subtracted. However, when 
the data are nonnormal and the Satorra–  Bentler scaled chi-  square is employed, an adjustment is 
required so that the Satorra–  Bentler chi-  square is distributed as a chi-  square (Satorra & Bentler, 
1988). This will be demonstrated in Sections 14.6.2.3 and 14.6.2.4.

Recall that the residual between LOVESKI and SENSEEK is very high. We might allow 
these IVs to correlate and ask, “Does adding (estimating) this covariance improve the fit of the 
model?” Although our “theory” is that these variables are uncorrelated, is this aspect of theory sup-
ported by the data? To examine these questions, a second model is estimated in which LOVESKI 
and SENSEEK are allowed to correlate. The resulting model produces x2 = 0.084, df = 3. In the 
small-  sample example solution in Section 14.4.5, x2 = 9.337, df = 4. The x2 difference test, (or 
likelihood ratio for ML) is 9.337 - .084 = 9.253, df = 4 - 3 = 1, p 6 .05. The model is significantly 
improved with the addition of this covariance; in fact, one of the fit indices (CFI) increases to 1 and 
the RMSEA drops to zero. Although the theory specifies independence between Sensation Seeking 
and Love of Skiing, the data support the notion that, indeed, these variables are correlated.

There are some disadvantages to the x2 difference test. Two models need to be estimated to 
get the x2 difference value and estimating two models for each parameter is time consuming with 
very large models and/or a slow computer. A second problem relates to x2 itself. Because of the 
relationship between sample size and x2, it is hard to detect a difference between models when 
sample sizes are small.

14.5.4.2 Lagrange Multiplier (LM) Test

The LM test also compares nested models but requires estimation of only one model. The LM test 
asks if the model is improved if one or more of the parameters in the model that are currently fixed 
are estimated. Or, equivalently, what parameters should be added to the model to improve the fit? 
This method of model modification is analogous to forward stepwise regression.

The LM test applied to the small-  sample example indicates that if we add a covariance be-
tween LOVESKI and SENSEEK, the approximate drop in x2 value is 8.801. This is one path, so 
the x2 value of 8.801 is evaluated with 1 df. The p level of this difference is .003. The model is then 
re-estimated if the decision is made to add the path. When the path is added, the drop is slightly 
larger, 9.253, but yields the same result.

The LM test can be examined either univariately or multivariately. There is a danger in 
examining only the results of univariate LM tests because overlapping variance between parameter 
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estimates may make several parameters appear as if their addition would significantly improve the 
model. All of these parameters are candidates for inclusion by the results of univariate LM tests but 
the multivariate LM test identifies the single parameter that would lead to the largest drop in model 
x2 and calculates the expected change in x2. After this variance is removed, the parameter that ac-
counts for the next largest drop in model x2 is assessed in a manner analogous to Roy-  Bargmann 
stepdown analysis in MANOVA (Chapter 7).

EQS provides both univariate and multivariate LM tests. Additionally, several options are 
available for LM tests on specific sets of matrices and in specific orders of testing. The default LM 
test was requested for the small-  sample example. Portions of the LM test output are presented in 
Table 14.8.

LM univariate output is presented first. The parameter that the LM test suggests adding is 
listed under the column labeled PARAMETER. The convention used in EQS is DV, IV, or IV, IV. 
Because both F1 and V5 are IVs, this refers to a covariance between LOVESKI and SENSEEK. 
The CHI-SQUARE column indicates the approximate chi-  square associated with this path, 8.801. 

TABLE 14.8 Edited Output From EQS for Lagrange Multiplier Tests (Syntax Appears in Table 14.2)

MAXIMUM LIKELIHOOD SOLUTION (NORMAL DISTRIBUTION THEORY)

LAGRANGE MULTIPLIER TEST (FOR ADDING PARAMETERS)

ORDERED UNIVARIATE TEST STATISTICS:

NO CODE PARAMETER
CHI-

SQUARE PROBABILITY
PARAMETER

CHANGE
STANDARDIZED

CHANGE

1 2 2 F1,V5 8.801 .003 .366 .366
2 2 11 V1,V5 8.529 .003 .287 .287
3 2 20 V1,F2 8.529 .003 .738 .664
4 2 12 V3,F1 .000 .985 .005 .003
5 2 11 V3,V5 .000 .985 −.003 −.002
6 2 11 V4,V5 .000 .985 .002 .002
7 2 12 V4,F1 .000 .985 −.003 −.003
8 2 20 V2,F2 .000 1.000 .000 .000
9 2 11 V2,V5 .000 1.000 .000 .000

10 2 0 F1,F1 .000 1.000 .000 .000
11 2 0 V3,F2 .000 1.000 .000 .000

MULTIVARIATE LAGRANGE MULTIPLIER TEST BY SIMULTANEOUS PROCESS IN STAGE 1

PARAMETER SETS (SUBMATRICES) ACTIVE AT THIS STAGE ARE:

PVV PFV PFF PDD GVV GVF GFV GFF BVF BFF

CUMULATIVE MULTIVARIATE STATISTICS UNIVARIATE INCREMENT

STEP PARAMETER CHI-SQUARE D.F. PROBABILITY CHI-SQUARE PROBABILITY

1 F1,V5 8.801 1 .003 8.081 .003
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The probability level of this x2 is in the PROBABILITY column, p = .003. Significant x2 values 
are sought if improvement of the model is the goal. If hypothesis testing guides the use of the LM 
test, then the desired significance (or lack of significance) depends on the specific hypothesis. The 
PARAMETER CHANGE column indicates the approximate coefficient for the added parameter. But 
this series of univariate tests may include overlapping variance between parameters, so multivariate 
LM is examined.

Before presenting the multivariate test, EQS presents the list of default parameter matrices 
active at this stage of analysis. The matrices beginning with the letter P are phi matrices of covari-
ances between IVs; the last two letters indicate what type of variables are included, where, for 
instance, VV indicates covariances between measured variables and FV covariances between factors 
and measured variables. The matrices beginning with the letter G refer to gamma matrices of regres-
sion coefficients between DVs and IVs. The matrices beginning with the letter B refer to matrices of 
regression coefficients of DVs with other DVs. At times, only very particular parameters will be of 
interest for potential inclusion. For example, maybe the only parameters of interest are regression 
paths among the latent dependent variables; in these cases, it is helpful to check that only the ap-
propriate matrix is active (in this example, BFF).

The multivariate test also suggests adding the F1,V5 parameter. Indeed, after adding this 
one parameter, none of the other parameters significantly improves the model x2, therefore no other 
multivariate LM tests are shown.

LISREL presents only univariate LM tests, called Modification Indices. Edited 
LISREL printout for the small-  sample example is given in Table 14.9. Modification indices are pre-
sented on a matrix-by-matrix basis. For each matrix in the LISREL model, four matrices of model 
modifications are included. The first, labeled Modification Indices For..., contains 
x2 values for the specific parameter. The second matrix, labeled Expected Change For...,
contains unstandardized changes in parameter values. The third matrix, labeled Standardized
Expected Change For..., contains the parameter changes where the latent variable has 
been standardized with a standard deviation of 1 but the original scale of the measured variables has 
been retained. The last matrix, labeled Completely Standardized Expected Change 
For..., contains the approximate parameter change when both the measured and latent variables 
(with the exception of the latent and observed errors) have been standardized with a standard devia-
tion of 1. After all the LISREL matrices have been given, the parameter with the largest chi-  square
value is reported under Maximum Modification Index....

Table 14.10 shows edited output for modification indices from AMOS. Modification indi-
ces are grouped: covariances, variances, and regression weights. The modification index, the ap-
proximate chi-  square value, is given in the column labeled M.I. The approximate drop in parameter 
changes, given this addition is in the column labeled Par Change. The probability associated 
with each modification index is not included.

14.5.4.3 Wald Test

While the LM test asks which parameters, if any, should be added to a model, the Wald test asks 
which, if any, could be deleted. Are there any parameters that are currently being estimated that 
could, instead, be fixed to zero? Or, equivalently, which parameters are not necessary in the model? 
The Wald test is analogous to backward deletion of variables in stepwise regression where one seeks 
a nonsignificant change in the equation when variables are left out.



Structural Equation Modeling 729

TABLE 14.9 Syntax and Edited Output From LISREL for Modification Indices

Modification Indices and Expected Change

No Non-  Zero Modification Indices for LAMBDA-Y

Modification Indices for LAMBDA-X

LOVESKI DUMMY

NUMYRS - - 8.529
DAYSKI - - - -

SENSEEK 8.801 - -

Expected Change for LAMBDA-X

LOVESKI DUMMY

NUMYRS - - 0.287
DAYSKI - - - -

SENSEEK 0.366 - -

Standardized Expected Change for LAMBDA-X

LOVESKI DUMMY

NUMYRS - - 0.287
DAYSKI - - - -
SENSEEK −0.366 - -

Completely Standardized Expected Change for LAMBDA-X

LOVESKI DUMMY

NUMYRS - - 0.287
DAYSKI - - - -

SENSEEK 0.366 - -

No Non-  Zero Modification Indices for GAMMA

Modification Indices for PHI

LOVESKI DUMMY

LOVESKI - -
DUMMY 8.801 - -

Expected Change for PHI

LOVESKI DUMMY

LOVESKI - -
DUMMY 0.366 - -

Standardized Expected Change for PHI

LOVESKI DUMMY

LOVESKI - -
DUMMY 0.366 - -

No Non-  Zero Modification Indices for PSI
(continued )
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Modification Indices for THETA-DELTA-EPS

SNOWSAT FOODSAT

NUMYRS 0.000 0.000
DAYSKI 0.000 0.000

SENSEEK 0.000 0.000

Expected Change for THETA-DELTA-EPS

SNOWSAT FOODSAT

NUMYRS 0.003 −0.002
DAYSKI 0.000 0.000

SENSEEK 0.003 0.002

Completely Standardized Expected Change for THETA-DELTA-EPS

SNOWSAT FOODSAT

NUMYRS 0.002 −0.002
DAYSKI 0.000 0.000

SENSEEK −0.002 0.002

Modification Indices for THETA-DELTA

NUMYRS DAYSKI SENSEEK

NUMYRS - -
DAYSKI - - - -

SENSEEK 8.529 - - - -

Expected Change for THETA-DELTA

NUMYRS DAYSKI SENSEEK

NUMYRS - -
DAYSKI - - - -

SENSEEK 0.287 - - - -

Completely Standardized Expected Change for THETA-  DELTA

NUMYRS DAYSKI SENSEEK

NUMYRS - -
DAYSKI - - - -

SENSEEK 0.287 - - - -

Maximum Modification Index is 8.80 for Element ( 3, 1) of LAMBDA-X

TABLE 14.9 Continued

When the Wald test is applied to the small-  sample example, the first candidate for deletion 
is error variance associated with NUMYRS. If this parameter is dropped, the x2 value increases 
by .578, a nonsignificant change (p = .447). The model is not significantly degraded by deletion 
of this parameter. However, because it is generally not reasonable to drop an error variance from a 
model, the decision is to retain the error variance associated with NUMYRS. Notice that, unlike the 
LM test, nonsignificance is desired when using the Wald test.
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This illustrates an important point. Both the LM and Wald tests are based on statistical, not 
substantive, criteria. If there is conflict between these two criteria, substantive criteria are more 
important.

Table 14.11 presents edited output of both the univariate and multivariate Wald test from 
EQS. The specific candidate for deletion is indicated and the approximate multivariate x2 with 
its probability value is provided. The univariate tests are shown in the last two columns. In this 
example, only one parameter is suggested. By default, parameters are considered for deletion only 
if deletion does not cause the multivariate x2 associated with the Wald test to become significant. 

TABLE 14.10 Edited Output From AMOS of Modification Indices (Syntax in Table 14.5)

Modification Indices (Group number 1 - Model 1) 

Covariances: (Group number 1 - Model 1)

M.I. Par Change

loveski <-- senseek 8.324 .345
error5 <-- senseek .000 .000
error5 <-- loveski .000 .000
error4 <-- senseek .000 .000
error4 <-- loveski .000 –.000
error4 <-- error5 .000 .000
error3 <-- senseek .000 –.000
error3 <-- loveski .000 .000
error3 <-- error5 .000 .000
error3 <-- error4 .000 .000
error2 <-- senseek .000 .000
error2 <-- loveski .000 .000
error2 <-- error5 .000 .000
error2 <-- error4 .000 .000
error2 <-- error3 .000 .000
error1 <-- senseek 7.111 .237
error1 <-- loveski .000 .000
error1 <-- error5 .000 .000
error1 <-- error4 .000 –.000
error1 <-- error3 .000 .000
error1 <-- error2 .000 .000

Variances: (Group number 1 - Model 1)

M.I. Par Change

senseek .000 .000
loveski .000 .000
error5 .000 .000
error4 .000 .000
error3 .000 .000
error2 .000 .000
error1 .000 .000

(continued )
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TABLE 14.11 Edited Output From EQS for Wald Test (Syntax Appears in Table 14.2)

WALD TEST (FOR DROPPING PARAMETERS)
MULTIVARIATE WALD TEST BY SIMULTANEOUS PROCESS

CUMULATIVE MULTIVARIATE STATISTICS UNIVARIATE INCREMENT

STEP PARAMETER CHI-SQUARE D.F. PROBABILITY CHI-SQUARE PROBABILITY

1 E1,E1 .578 1 .447 .578 .447
2 V2,F1 3.737 2 .154 3.159 .076

TABLE 14.10 Continued

Modification Indices (Group number 1 - Model 1)

Covariances: (Group number 1 - Model 1)

Regression Weights: (Group number 1 - Model 1)

M.I. Par Change

skisat <-- senseek .000 .000
skisat <-- loveski .000 .000

foodsat <-- senseek .000 .001
foodsat <-- loveski .000 –.001
foodsat <-- skisat .000 .000
foodsat <-- snowsat .000 .000
foodsat <-- dayski .000 .000
foodsat <-- numyrs .000 –.001

snowsat <-- senseek .000 –.001
snowsat <-- loveski .000 .001
snowsat <-- skisat .000 .000
snowsat <-- foodsat .000 .000
snowsat <-- dayski .000 .000
snowsat <-- numyrs .000 .001

dayski <-- senseek .000 .000
dayski <-- loveski .000 .000
dayski <-- skisat .000 .000
dayski <-- foodsat .000 .000
dayski <-- snowsat .000 .000
dayski <-- numyrs .000 .000

numyrs <-- senseek 7.111 .239
numyrs <-- loveski .000 .000
numyrs <-- skisat 1.065 .092
numyrs <-- foodsat .467 .058
numyrs <-- snowsat .617 .053
numyrs <-- dayski .000 .000
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Remember, the goal is to drop parameters that do not contribute significantly to the model. LISREL 
and AMOS do not provide the Wald test.

14.5.4.4 Some Caveats and Hints on Model Modification

Because both the LM test and Wald test are stepwise procedures, Type I error rates are inflated but 
there are, as yet, no available adjustments as in ANOVA. A simple approach is to use a conserva-
tive probability value (say, p 6 .01) for adding parameters with the LM test. Cross-  validation with 
another sample is also highly recommended if modifications are made. If numerous modifications 
are made and new data are not available for cross-  validation, compute the correlation between the 
estimated parameters from the original, hypothesized model and the estimated parameters from the 
final model using only parameters common to both models. If this correlation is high, ( 7 .90) re-
lationships within the model have been retained despite the modifications (Tanaka & Huba, 1989).

Unfortunately, the order that parameters are freed or estimated can affect the significance 
of the remaining parameters. MacCallum (1986) suggests adding all necessary parameters before 
deleting unnecessary parameters. In other words, do the LM test before the Wald test. Because model 
modification easily gets very confusing, it is often wise to add, or delete, parameters, one at a time.

A more subtle limitation is that tests leading to model modification examine overall changes 
in x2, not changes in individual parameter estimates. Large changes in x2 are sometimes associated 
with very small changes in parameter estimates. A missing parameter may be statistically needed 
but the estimated coefficient may have an uninterpretable sign. If this happens, it is best not to add 
the parameter. Finally, if the hypothesized model is wrong, tests of model modification, by them-
selves, may be insufficient to reveal the true model. In fact, the “trueness” of any model is never 
tested directly, although cross-  validation does add evidence that the model is correct. Like other 
statistics, these tests must be used thoughtfully.

If model modifications are done in hopes of developing a good-  fitting model, the fewer modi-
fications the better, especially if a cross-  validation sample is not available. If the LM test and Wald 
test are used to test specific hypotheses, the hypothesis will dictate the number of necessary tests.

14.5.5 Reliability and Proportion of Variance

Reliability is defined in the classic sense as the proportion of true variance relative to total variance 
(true plus error variance). Both the reliability and the proportion of variance of a measured variable 
are assessed through squared multiple correlation (SMC) where the measured variable is the DV 
and the factor is the IV. Each SMC is interpreted as the reliability of the measured variable in the 
analysis and as the proportion of variance in the variable that is accounted for by the factor, concep-
tually the same as a communality estimate in factor analysis.

To calculate a SMC:

SMCvar i =
l2

i

l2
i + ii

(14.36)

The factor loading for variable i is squared and divided by that value plus the residual 
variance associated with the variable i.
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This equation is applicable only for when there are no complex factor loadings or correlated errors. 
The proportion of variance in the variables accounted for by the factor is assessed as:

R2
j = 1 - D2

j (14.37)

The disturbance (residual) for the DV factor j is squared and subtracted from 1.

14.5.6 Discrete and Ordinal Data

SEM assumes that measured variables are continuous and measured on an interval scale. Often, 
however, a researcher desires to include discrete and/or ordinally measured, categorical variables in 
an analysis. Because the data points in SEM are variances and covariances, the trick is to produce 
reasonable values for these types of variables for analysis.

Discrete (nominal level) measured variables such as favorite baseball team are included as 
IVs in a model by either dummy-  coding the variable (i.e., Dodger fan or other) or by using a mul-
tiple group model where a model is tested for each team preference, as discussed in the next section.

Ordinal, categorical variables require special handling in SEM. Imagine that there is a nor-
mally distributed, continuous variable underlying each ordinal variable. To convert an ordinal vari-
able to a continuous variable, the categories of the ordinal variables are converted to thresholds of 
the underlying (latent), normally distributed, continuous variable.

For example, say we ask people lingering outside a candy store if they: (1) hate, (2) like, or 
(3) love chocolate. As in Figure 14.7, underlying the ordinal variable is a normally distributed, la-
tent, continuous construct representing love of chocolate. It is assumed that people who hate choco-
late or absolutely loathe chocolate fall at, or below, the first threshold. Those who like chocolate fall 
between the two thresholds, and people who love chocolate, or who are enraptured by chocolate, 
fall at or above the second threshold. The proportion of people falling into each category is calcu-
lated and this proportion is used to calculate a z-score from a standardized normal table. The z-score
is the threshold.

SEM proceeds by using polychoric correlations (between two ordinal variables), or polyserial 
correlations (between an ordinal and an interval variable) rather than covariance as the basis of the 
analysis.

Both EQS and LISREL (in PRELIS) compute thresholds and appropriate correlations. 
To incorporate categorical dependent variables in EQS, the statement CATEGORY = in the 
SPECIFICATIONS section is followed by the discrete variable labels, for example, V1, V3. All
measured variables must be DVs when models with categorical variables are estimated in EQS 
(Lee, Poon, & Bentler, 1994). If a model contains measured IVs, these IVs are first converted to 
factors in a method similar to LISREL. For example, if V1 was a measured IV, it is converted to 
a measured DV in the \EQUATIONS section with V1 = F1. F1 is then used in equations in place 
of V1.

Using PRELIS, the procedure file specifies both the continuous and ordinal variables and 
requests matrix output of polyserial and polychoric correlations with the statement OUTPUT 
MATRIX = PMATRIX. This matrix is then used in LISREL as the sample correlation matrix: PM 
is substituted for CM in the LISREL procedure file. AMOS does not accommodate categorical data. 
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threshold 1 threshold 2

1. Hate it! 2. Like it! 3. Love it!

Underlying continuous
latent construct
“Love of Chocolate”

Ordinal Variable with
3 levels
“How much do you like
chocolate?”

FIGURE 14.7 Representation of thresholds underlying ordinal data categories.

Although not illustrated in this chapter, a particularly helpful SEM program for models with cat-
egorical data is Mplus (Muthén & Muthén, 2011).

14.5.7 Multiple Group Models

Although each of the models estimated in this chapter uses data from a single sample, it is also pos-
sible to estimate and compare models that come from two or more samples, called multiple group 
models. The general null hypothesis tested in multiple group models is that the data from each group 
are from the same population. For example, if data from a sample of men and a sample of women 
are drawn for the small-  sample example, the general null hypothesis tested is that the two groups are 
drawn from the same population.

The analysis begins by developing good-  fitting models in separate runs for each group. The 
models are then tested in one run with none of the parameters across models constrained to be equal. 
This unconstrained multiple group model serves as the baseline against which to judge more restricted 
models. Following baseline model estimation, progressively more stringent constraints are speci-
fied by constraining various parameters across all groups. When parameters are constrained, they are 
forced to be equal to one another. After each set of constraints is added, a chi-  square difference test 
is performed for each group between the less restrictive and more restrictive model. The goal is to 
not degrade the models by constraining parameters across the groups; therefore, you want a nonsig-
nificant x2. If a significant difference in x2 is found between the models at any stage, the LM test is 
examined to locate the specific parameters that are different in the groups and these parameters are 
estimated separately in each group; that is, the specific across-group parameter constraints are released.

Various hypotheses are tested in a specific order. The first step is usually to constrain the fac-
tor loadings (regression coefficients) between factors and their indices to equality across groups.
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This step tests the hypothesis that the factor structure is the same in different groups. Using 
the small-  sample example with one model for men and another for women, we ask if men and 
women have the same underlying structure for the Love of Skiing and Ski Trip Satisfaction fac-
tors. If these constraints are reasonable, the x2 difference test between the restricted model and the 
baseline model is nonsignificant for both groups. If the difference between the restricted and nonre-
stricted models is significant, we need not throw in the towel immediately; rather, results of the LM 
test are examined and some equality constraints across the groups can be released. Naturally, the 
more parameters that differ across groups, the less alike the groups are. Consult Byrne, Shavelson, 
and Muthén (1989) for a technical discussion of these issues.

If the equality of factor structure is established, the second step is to ask if the factor variances 
and covariances are equal. In the small-  sample example, this is equivalent to asking if the variance of 
Ski Trip Satisfaction is equal for men and women. (Recall that the variance of Love of Skiing was set to 
1 for identification.) If these constraints are feasible, the third step examines equality of the regression 
coefficients. In the small-  sample example, this is equivalent to testing the equality of the regression coef-
ficient predicting Ski Trip Satisfaction from Love of Skiing. We could also test the equality of the regres-
sion path predicting Ski Trip Satisfaction from Sensation Seeking for men and women. If all of these 
constraints are reasonable, the last step is to examine the equality of residual variances across groups, an 
extremely stringent hypothesis not often tested. If all the regression coefficients, variances, and covari-
ances are the same across groups, it is concluded that men and women represent the same population.

The groups are often similar in some respects but not others. For example, men and women 
could have identical factor structure except for one indicator on one factor. In this case, that loading 
is estimated separately for the two groups before further, more stringent, constraints are considered. 
Or men and women could have the same factor structure for Love of Skiing and Ski Trip Satisfaction 
but differ in the size of the regression coefficient linking Ski Trip Satisfaction to Love of Skiing.

Some cautions about multiple group modeling are in order before you dive head-  first into this 
type of analysis. Multiple group models are often quite difficult to estimate. Critical to estimating a 
multiple group model with a good fit are single group models that fit well. It is extremely unlikely 
that the multiple group models will fit better than the individual group models. Good user-  specified 
start values also seem to be more critical when estimating multiple group models. A demonstration 
of multiple group modeling is outside of the scope of this chapter, but see Bentler (1995) and Byrne 
et al. (1989) for examples and detailed discussion of the process.

A different type of multiple group model is called a multilevel model. In this situation, sepa-
rate models are developed from different levels of a nested hierarchy. For example, you might be 
interested in evaluating an intervention given to several classrooms of students in several different 
schools. One model is estimated for the schools, another for the classrooms that are nested within 
the schools, and a third for the children nested within the classrooms and schools. Predictors at each 
level are employed to test various within-  level and cross-  level hypotheses. An example of a multi-
level model is provided in Stein, Nyathmathi, Ullman and Bentler (2007).

14.5.8 Mean and Covariance Structure Models

The discussion so far has centered on modeling regression coefficients, variances, and covariances; 
however, means, both latent and observed, can also be modeled (Sörbom, 1974, 1982). Means of 
latent variables can be particularly interesting. Means are estimated in SEM models by adding a 
special intercept variable to the model.
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Typically latent means are estimated in the context of a multiple group model. To ask, in the 
small-  sample example, if men and women have the same mean Love of Skiing or if gender makes 
a difference in the mean of Ski Trip Satisfaction, the data are estimated as a two group model, 
constraints on the factor structure are made, the measured variable means estimated, and the latent 
means for both Love of Skiing and Ski Trip Satisfaction estimated. The most interpretable latent 
mean models are those in which the factor structure is identical or highly similar in both groups. For 
identification, the latent mean for one group is fixed at zero and the other estimated. The difference 
between the means is then estimated and evaluated with a z test like any other parameter, where the 
estimated parameter is divided by standard error. Demonstration of latent mean models is outside 
the scope of this chapter; however, Bentler (1995) and Byrne et al. (1989) provide examples and 
detailed discussion of these models.

14.6 Complete Examples of Structural Equation 
Modeling Analysis

The first example is a CFA model performed through LISREL. The data used in this example are 
described in Appendix B. The factor structure underlying the subscales of the WISC in a sample of 
learning disabled children is examined. The model assesses the relationship between the indicators 
of IQ and two potential underlying constructs representing IQ. This type of model is sometimes 
referred to as a measurement model.

The second example is performed through EQS and has both measurement and structural 
components. In this example, mediators of the relationship between age, a life change measure, and 
latent variables representing Poor Sense of Self, Perceived Ill Health, and Health Care Utilization 
are examined. Data for the second example are from the women’s health and drug study, described 
in Appendix B.1.

14.6.1 Confirmatory Factor Analysis of the WISC

The first example demonstrates CFA of 11 subtests of the Wechsler Intelligence Scale for Children 
(WISC) in a sample of learning-  disabled children.

14.6.1.1 Model Specification for CFA

The hypothesized model is presented in Figure 14.8. In this model, two factors are hypothesized: a 
Verbal factor (with the information, comprehension, arithmetic, similarities, vocabulary, and digit 
span subscales of the WISC as indicators) and a Performance factor (with the picture completion, 
picture arrangement, block design, object assembly, and coding subscales of the WISC serving as 
indicators). For clarity within the text, the labels of latent variables have initial capital letters and 
the measured variables do not. Two main hypotheses are of interest: (1) Does a two-  factor model 
with simple structure (each variable loading only on one factor) fit the data? (2) Is there a significant 
covariance between the Verbal and Performance factors?

After the hypotheses are formulated and the model diagrammed, the first step of the model-
ing process is complete. At this point it is a good idea to do a preliminary check of the identifiabil-
ity of the model. Count the number of data points and the number of parameters to be estimated 
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informationX1

comprehensionX2

arithmeticX3

similaritiesX4

vocabularyX5

digit spanX6

picture
completionX7

picture
arrangementX8

block
designX9

object
assemblyX10

codingX11

FIGURE 14.8 Hypothesized CFA model.

in the model. With 11 variables, there are (11(11 + 1))>2 = 66 data points. The hypothesized 
model indicates that 23 parameters are to be estimated (11 regression coefficients, 1 covariance, and 
11 variances with asterisks); therefore, the model is overidentified and is tested with 43 dfs.

14.6.1.2 Evaluation of Assumptions for CFA

Computer evaluation of assumptions is shown only when the procedure or output differs from that 
of other chapters in this book.

14.6.1.2.1 Sample Size and Missing Data
For this example there are 177 participants and 11 observed variables. The ratio of cases to 

observed variables is 16:1. The ratio of cases to estimated parameters is 8:1. This ratio is adequate 
given that the reliability of the subtests of the WISC-R is high. There are no missing data.
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14.6.1.2.2 Normality and Linearity
Normality of the observed variables was assessed through examination of histograms using IBM 

SPSS FREQUENCIES. None of the observed variables was significantly skewed or highly kurtotic. 
No variables had a standardized skewness greater than 3.75. It was not feasible to examine all pairwise 
scatterplots to assess linearity; therefore, randomly selected pairs of scatterplots were examined using 
IBM SPSS GRAPHS SCATTER. All observed variables appeared to be linearly related, if at all.

14.6.1.2.3 Outliers
Using IBM SPSS DESCRIPTIVES, one participant was found to have an extremely high 

score on the arithmetic subtest (19, z = 4.11) and was deleted. Using IBM SPSS REGRESSION 
and Mahalanobis distance, 1 multivariate outlier was also detected and deleted (p 6 .001). This 
child had an extremely low comprehension subtest score and an extremely high arithmetic subtest 
score. The analysis was performed on 175 participants. IBM SPSS was used to create a new file 
without the two outliers. (PRELIS could also have been used.) A new file was necessary because 
within the LISREL program itself outliers cannot be deleted (nor transformations made).

14.6.1.2.4 Multicollinearity and Singularity
The determinant of the covariance matrix is not given in LISREL output but the program con-

verged so the covariance matrix was assumed to be nonsingular.

14.6.1.2.5 Residuals
Evaluation of the residuals is performed as part of evaluating the model.

14.6.1.3 CFA Model Estimation and Preliminary Evaluation

The syntax and edited output for the CFA analysis are presented in Table 14.12. As a first step, 
it is helpful to check that the parameters that are indicated as free are those that were really in-
tended to be estimated. It is also a good idea to check that the covariance matrix is correct, that is, 
that it matches the covariance matrix from preliminary analyses. The output labeled Parameter
Specifications lists each matrix specified in the model section and numbers each free pa-
rameter. Lambda-X is the matrix of regression coefficients to be estimated between indicators and 
factors. PHI is the matrix of covariances among factors. THETA-  DELTA is the diagonal matrix 
of errors to be estimated for each measured variable. Only the diagonal of matrix is shown as all 
other entries in this matrix are zero, that is, no correlated errors. In the other matrices, zeros indicate 
parameters that are fixed, that is, not estimated. After checking the parameter specifications we con-
firm that they match the path diagram.

Next, it is helpful to assess the overall fit of the model by looking at the x2 and fit indices that 
appear in the section labeled Goodness of Fit Statistics (Table 14.13). The Chi-Square 
for Independence Model with 55 Degrees of Freedom is x2

indep (55, N = 175) =
516.237, p 6 .01. This x2 tests the hypotheses that the variables are unrelated; it should always be 
significant. If it is not, as is possible with very small samples, modeling should be reconsidered. The 
model chi-square is significant, x2 (43, N = 175) = 70.24, p = .005. Ideally, a nonsignificant chi- 
square is desired. The model x2 in this case is significant, but it is also less than two times the model 
degrees of freedom. This ratio gives a very rough indication that the model may fit the data. LISREL 
output includes many other fit indices, including the CFI = .94, GFI = .93, and the standardized 
RMSEA = .06. These indices all seem to indicate a good-  fitting model.
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TABLE 14.12 Syntax and Parameter Specifications for CFA Using LISREL

CONFIRMATORY FACTOR ANALYSIS OF THE WISC-R
DA NI = 13 NO = 175
RA FI = WISCSEM.DAT
LA
CLIENT, AGEMATE, INFO, COMP, ARITH, SIMIL, VOCAB,
DIGIT, PICTCOMP, PARANG, BLOCK, OBJECT, CODING
SE
INFO, COMP, ARITH, SIMIL, VOCAB,
DIGIT, PICTCOMP, PARANG, BLOCK, OBJECT CODING/
MO NX=11 NK=2
LK
VERBAL PERFORM
FR LX(1,1) LX(2,1) LX(3,1) LX(4,1) LX(5,1) LX(6,1)
FR LX(7,2) LX(8,2) LX(9,2) LX(10,2) LX(11,2)
VA 1 PH(1,1) PH(2,2)
OU SC SE TV RS SS MI ND=3

CONFIRMATORY FACTOR ANALYSIS OF THE WISC-R

Number of Input Variables 13
Number of Y - Variables   0
Number of X - Variables  11
Number of ETA - Variables 0
Number of KSI - Variables 2
Number of Observations  175

CONFIRMATORY FACTOR ANALYSIS OF THE WISC-R

Covariance Matrix to be Analyzed

INFO COMP ARITH SIMIL VOCAB DIGIT

INFO 8.481
COMP 4.034 8.793

ARITH 3.322 2.684 5.322
SIMIL 4.758 4.816 2.713 10.136
VOCAB 5.338 4.621 2.621 5.022 8.601
DIGIT 2.720 1.891 1.678 2.234 2.334 7.313

PICTCOMP 1.965 3.540 1.052 3.450 2.456 0.597
PARANG 1.561 1.471 1.391 2.524 1.031 1.066
BLOCK 1.808 2.966 1.701 2.255 2.364 0.533

OBJECT 1.531 2.718 0.282 2.433 1.546 0.267
CODING 0.059 0.517 0.598 −0.372 0.842 1.344

Covariance Matrix to be Analyzed

PICTCOMP PARANG BLOCK OBJECT CODING

PICTCOMP 8.610
PARANG 1.941 7.074
BLOCK 3.038 2.532 7.343

OBJECT 3.032 1.916 3.077 8.088
CODING −0.605 0.289 0.832 0.433 8.249
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CONFIRMATORY FACTOR ANALYSIS OF THE WISC-R

Parameter Specifications

LAMBDA-X

VERBAL PERFORM

INFO 1 0
COMP 2 0

ARITH 3 0
SIMIL 4 0
VOCAB 5 0
DIGIT 6 0

PICTCOMP 0 7
PARANG 0 8
BLOCK 0 9

OBJECT 0 10
CODING 0 11

PHI

VERBAL PERFORM

VERBAL 0
PERFORM 12 0

THETA-DELTA

INFO COMP ARITH SIMIL VOCAB DIGIT

13 14 15 16 17 18

THETA-DELTA

PICTCOMP PARANG BLOCK OBJECT CODING

19 20 21 22 23

TABLE 14.12 Continued

Residuals are examined after evaluation of fit. Residual diagnostics are requested with 
RS on the OU (output line) of the syntax in Table 14.12. LISREL gives numerous residual diag-
nostics. Residuals in both the original scale of the variables, labeled FITTED RESIDUALS (not 
shown), and partially standardized residuals, labeled STANDARDIZED RESIDUALS, are included. 
For both types of residuals, the full residual covariance matrix, summary statistics, and a stem leaf 
plot are given. Partially standardized residual output appears in Table 14.14. Although the model 
fits the data well, there is a sizable residual (standardized residual 3.06) between picture comple-
tion (PICTCOMP) and comprehension (COMP). This indicates that the model does not adequately 
estimate the relationship between these two variables. The large residual between PICTCOMP and 
COMP is also clearly indicated in the stem leaf plot. The stem leaf plot also shows that the residuals 
are centered around zero and symmetrically distributed. The median residual is zero. LISREL also 
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TABLE 14.13 Goodness-of-Fit Statistics for CFA Model Using LISREL
(Syntax Appears in Table 14.12)

Goodness of Fit Statistics

Degrees of Freedom = 43
Minimum Fit Function Chi-  Square = 70.236 (P = 0.00545)

Normal Theory Weighted Least Squares Chi-  Square = 71.045 (P = 0.00454)
Estimated Non-  centrality Parameter (NCP) = 28.045

90 Percent Confidence Interval for NCP = (8.745; 55.235)

Minimum Fit Function Value = 0.404
Population Discrepancy Function Value (F0) = 0.161

90 Percent Confidence Interval for F0 = (0.0503; 0.317)
Root Mean Square Error of Approximation (RMSEA) = 0.0612

90 Percent Confidence Interval for RMSEA = (0.0342; 0.0859)
P-Value for Test of Close Fit (RMSEA < 0.05) = 0.221

Expected Cross-  Validation Index (ECVI) = 0.673
90 Percent Confidence Interval for ECVI = (0.562; 0.829)

ECVI for Saturated Model = 0.759
ECVI for Independence Model = 3.093

Chi-  Square for Independence Model with 55 Degrees of Freedom = 516.237
Independence AIC = 538.237

Model AIC = 117.045
Saturated AIC = 132.000

Independence CAIC = 584.050
Model CAIC = 212.835

Saturated CAIC = 406.876

Root Mean Square Residual (RMR) = 0.468
Standardized RMR = 0.0585

Goodness of Fit Index (GFI) = 0.931
Adjusted Goodness of Fit Index (AGFI) = 0.894
Parsimony Goodness of Fit Index (PGFI) = 0.606

Normed Fit Index (NFI) = 0.864
Non-  Normed Fit Index (NNFI) = 0.924

Parsimony Normed Fit Index (PNFI) = 0.675
Comparative Fit Index (CFI) = 0.941
Incremental Fit Index (IFI) = 0.942
Relative Fit Index (RFI) = 0.826

Critical N (CN) = 168.123
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TABLE 14.14 Partially Standardized Residuals for CFA Using LISREL
(Syntax Appears in Table 14.12)

STANDARDIZED RESIDUALS

INFO COMP ARITH SIMIL VOCAB DIGIT

INFO - -
COMP −2.279 - -

ARITH 2.027 0.054 - -
SIMIL −0.862 0.817 –0.748 - -
VOCAB 2.092 –0.008 –1.527 –0.138 - -
DIGIT 1.280 –0.753 0.897 –0.342 –0.168 - -

PICTCOMP −0.734 3.065 –0.716 2.314 0.319 –0.942
PARANG −0.176 –0.096 1.092 1.759 –1.488 0.579
BLOCK −1.716 1.844 0.795 –0.441 –0.276 –1.341

OBJECT −1.331 1.673 –2.394 0.633 –1.403 –1.443
CODING −0.393 0.472 0.950 –1.069 1.051 2.146

STANDARDIZED RESIDUALS

PICTCOMP PARANG BLOCK OBJECT CODING

PICTCOMP - -
PARANG −0.779 - -
BLOCK −1.004 0.861 - -

OBJECT 0.751 −0.319 0.473 - -
CODING −2.133 0.059 1.284 0.215 - -

Summary Statistics for Standardized Residuals

Smallest Standardized Residual = -2.394
Median Standardized Residual = 0.000
Largest Standardized Residual = 3.065

Stemleaf Plot

- 2|431
- 1|755443310
- 0|9988777443332211000000000000
0|1123556688899
1|01133788
2|0113
3|1

Largest Positive Standardized Residuals
Residual for PICTCOMP and COMP 3.065

provides a QPLOT of partially standardized residuals as shown in Figure 14.9. If the residuals are 
normally distributed, the Xs hover around the diagonal. As in multiple regression, large deviations 
from the diagonal indicate nonnormality. Once again the large residual between PICTCOMP and 
COMP is clearly evident in the upper right hand corner of the plot.
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FIGURE 14.9 Q Plot output of partially standardized residuals 
for CFA model in LISREL. Syntax appears in Table 14.12.

Finally, estimates of the parameters are examined (Table 14.15). In the section labeled 
LISREL,Estimates(Maximum Likelihood) are, by row, the unstandardized regression co-
efficients, standard errors in parentheses, and z-scores (coefficient/standard error) for each indicator.10

10Pop quiz! With your knowledge of both SEM and EFA (Chapter 13), what are the regression coefficients in this CFA
equivalent to in EFA? Answer: Elements in the patterns matrix.
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TABLE 14.15 Output From LISREL of Parameter Estimates, Standard Errors, and z Test 
and Partially Standardized Solution for CFA Model (Syntax Appears in Table 14.12)

LISREL Estimates (Maximum Likelihood)

LAMBDA-X

VERBAL PERFORM

INFO 2.212 - -
(0.201)
10.997

COMP 2.048 - -
(0.212)

9.682

ARITH 1.304 - -
(0.173)

7.534

SIMIL 2.238 - -
(0.226)

9.911

VOCAB 2.257 - -
(0.202)
11.193

DIGIT 1.056 - -
(0.213)

4.952

PICTCOMP - - 1.747
(0.244)

7.166

PARANG - - 1.257
(0.226)

5.566

BLOCK - - 1.851
(0.223)

8.287

OBJECT - - 1.609
(0.237)

6.781

CODING - - 0.208
(0.256)

0.811

PHI

VERBAL PERFORM

VERBAL 1.000

PERFORM 0.589 1.000
(0.076)
7.792

(continued )
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TABLE 14.15 Continued

THETA-DELTA

INFO COMP ARITH SIMIL VOCAB DIGIT

3.586 4.599 3.623 5.125 3.507 6.198
(0.511) (0.590) (0.424) (0.667) (0.511) (0.686)

7.014 7.793 8.547 7.680 6.866 9.030

THETA-DELTA

PICTCOMP PARANG BLOCK OBJECT CODING

5.558 5.494 3.916 5.499 8.206
(0.764) (0.664) (0.646) (0.726) (0.882)
7.276 8.275 6.066 7.578 9.309

Completely Standardized Solution

LAMBDA-X

VERBAL PERFORM

INFO 0.760 - -
COMP 0.691 - -
ARITH 0.565 - -
SIMIL 0.703 - -
VOCAB 0.770 - -
DIGIT 0.390 - -

PICTCOMP - - 0.595
PARANG - - 0.473
BLOCK - - 0.683

OBJECT - - 0.566
CODING - - 0.072

PHI

VERBAL PERFORM

VERBAL 1.000
PERFOR 0.589 1.000

THETA-DELTA

INFO COMP ARITH SIMIL VOCAB DIGIT

0.423 0.523 0.681 0.506 0.408 0.848

THETA-DELTA

PICTCOMP PARANG BLOCK OBJECT CODING

0.646 0.777 0.533 0.680 0.995
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All of the indicators are significant (p 6 .01) with the exception of coding. Sometimes the 
different scales of the measured variables make the unstandardized coefficients difficult to interpret 
and often the scales of the measured variables lack inherent meaning. The standardized solution, 
labeled Completely Standardized Solution in Table 14.15, is often easier to interpret 
in such cases. Completely standardized output is requested with SC (on the OU—  output line) in the 
syntax of Table 14.12. Note that this output is not completely standardized regarding error variances.

The first hypothesis, that the model fits the data, has been evaluated and supported, although 
there is a large residual between PICTCOMP and COMP. The final model with significant parameter 
estimates presented in standardized form appears in Figure 14.10. Other questions of interest are now 
examined. Is there a significant correlation between the Verbal and Performance factors? Looking 
at the completely standardized solution (or Figure 14.10), the Verbal and Performance factors are 
significantly correlated, r = .589 supporting the hypothesis of a relationship between the factors.

information.42

comprehension.52

arithmetic.68

similarities.51

vocabulary.41

digit span.85

picture
completion

.65

picture
arrangement

.78

block
design

.53

object
assembly

.68

coding.99

Performance IQ

.76

.60

.59

.47

.68

.57

n.s.

.69

.56

.70

.77

.39

Verbal IQ

FIGURE 14.10 CFA model before modifications.
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LISREL provides estimates of the squared multiple correlations of the variables with the fac-
tors in the section labeled Squared Multiple Correlations For X—  Variables in 
Table 14.16. It is also clear upon examining these SMCs that coding, with an SMC of .005, is not 
related to the performance factor. 

14.6.1.4 Model Modification

At this point in the analysis, there are several choices. The model fits the data, and we have con-
firmed that there is a significant correlation between the factors. Therefore, we could stop here 
and report the results. Generally, however, several additional models are examined that test further 
hypothesis (either a priori or post hoc) and/or attempt to improve the fit of the model. At least two 
post hoc hypotheses are of interest in this model: (1) Could the residual between the comprehension 
and picture completion be reduced by adding additional paths to the model? and (2) Could a good-
fitting, more parsimonious model be estimated without data from the coding subtest?

Before demonstrating model modification, be warned that when adding and deleting pa-
rameters, there too often comes a point of almost total confusion: What have I added? What have 
I deleted? and What am I doing anyway? One hint for avoiding this sort of confusion is to diagram 
the estimated model, prior to any modifications, and make a few copies of it. Then, as parameters 
are added and deleted, draw the modifications on the copies. In this way, the model can be viewed 
at each stage without having to redraw the diagram each time. When one copy gets too messy, move 
to the next, and make more copies as necessary.

With copies of the diagram firmly in hand, modification indices are examined. Completely stan-
dardized modification indices are presented in Table 14.17. The largest univariate modification index 
is for the regression path predicting comprehension from the Performance factor, x2 = 9.767 with an 
approximate completely standardized parameter value of .317. Because this path may also reduce the 
residual between the comprehension and picture completion subtests, a model is run with this path es-
timated, x2 (42, N = 172) = 60.29, p = .03, CFI = .96. The estimated (first) model and the newly 
modified model are nested within one another; the estimated model is a subset of this modified model. 
Therefore, a chi-  square difference test was performed to see if the addition of this path significantly 
improves the model. The estimated (first) model has 43 dfs, and the modified model had 42 dfs; there-
fore, this is a 1 df test. The x2 for the first model was 70.236, and for the second, 60.295. The difference 
between the two chi-  square values is a x2 equal to 9.941, 2Xdiff (1, N = 172) = 9.941, p 6 .01, about 

TABLE 14.16 Output of Squared Multiple Correlations for Indicators of Verbal and Performance 
Factor From LISREL (Syntax Appears in Table 14.12)

Squared Multiple Correlations for X - Variables

INFO COMP ARITH SIMIL VOCAB DIGIT

0.577 0.477 0.319 0.494 0.592 0.152

Squared Multiple Correlations for X - Variables

PICTCOMP PARANG BLOCK OBJECT CODING

0.354 0.223 0.467 0.320 0.005
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TABLE 14.17 Output From LISREL of Modification Indices for CFA Model 
(Syntax Appears in Table 14.12)

Modification Indices and Expected Change

Modification Indices for LAMBDA-X

VERBAL PERFORM

INFO - - 4.451
COMP - - 9.767

ARITH - - 0.177
SIMIL - - 2.556
VOCAB - - 1.364
DIGIT - - 1.852

PICTCOMP 1.763 - -
PARANG 0.020 - -
BLOCK 0.181 - -

OBJECT 1.174 - -
CODING 0.199 - -

Expected Change for LAMBDA-X

VERBAL PERFORM

INFO - - −0.597
COMP - - 0.940

ARITH - - −0.106
SIMIL - - 0.512
VOCAB - - −0.331
DIGIT - - −0.435

PICTCOMP 0.458 - -
PARANG 0.043 - -
BLOCK −0.145 - -
OBJECT −0.357 - -
CODING 0.148 - -

Standardized Expected Change for LAMBDA-X

VERBAL PERFORM

INFO - - −0.597
COMP - - 0.940

ARITH - - −0.106
SIMIL - - 0.512
VOCAB - - −0.331
DIGIT - - −0.435

PICTCOMP 0.458 - -
PARANG 0.043 - -
BLOCK −0.145 - -

OBJECT −0.357 - -
CODING 0.148 - -

(continued )
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Completely Standardized Expected Change for LAMBDA-X

VERBAL PERFORM

INFO - - −0.205
COMP - - 0.317

ARITH - - −0.046
SIMIL - - 0.161
VOCAB - - −0.113
DIGIT - - −0.161

PICTCOMP 0.156 - -
PARANG 0.016 - -
BLOCK −0.054 - -

OBJECT −0.126 - -
CODING 0.052 - -

No Non-  Zero Modification Indices for PHI

Modification Indices for THETA-DELTA

INFO COMP ARITH SIMIL VOCAB DIGIT

INFO - -
COMP 5.192 - -

ARITH 4.110 0.003 - -
SIMIL 0.744 0.668 0.559 - -
VOCAB 4.378 0.000 2.332 0.019 - -
DIGIT 1.637 0.567 0.804 0.117 0.028 - -

PICTCOMP 1.318 4.659 1.672 3.251 0.000 0.767
PARANG 0.087 1.543 2.081 3.354 4.122 1.208
BLOCK 1.415 1.205 2.561 2.145 0.325 0.923

OBJECT 0.101 2.798 6.326 0.803 0.686 0.873
CODING 0.762 0.035 0.832 3.252 1.509 4.899

Modification Indices for THETA-DELTA

PICTCOMP PARANG BLOCK OBJECT CODING

PICTCOMP - -
PARANG 0.607 - -
BLOCK 1.008 0.742 - -

OBJECT 0.564 0.102 0.223 - -
CODING 4.549 0.004 1.648 0.046 - -

TABLE 14.17 Continued

the value of 9.767 anticipated from the modification index (LM test). We conclude that the addition of 
a path predicting comprehension from the Performance factor significantly improves the model. The 
largest standardized residual is now 2.614, and the plot of residuals is improved.

Additional paths could be added to the model but the decision is made to next test a third model 
with the coding subtest removed. The Wald test is unavailable in LISREL so we delete coding and 
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TABLE 14.17 Continued

Expected Change for THETA-DELTA

INFO COMP ARITH SIMIL VOCAB DIGIT

INFO - -
COMP −0.990 - -

ARITH 0.701 0.020 - -
SIMIL −0.403 0.391 −0.291 - -
VOCAB 0.918 −0.003 −0.530 −0.065 - -
DIGIT 0.544 −0.342 0.344 −0.165 −0.071 - -

PICTCOMP −0.479 0.975 −0.498 0.865 0.003 −0.430
PARANG 0.117 −0.533 0.529 0.835 −0.802 0.514
BLOCK −0.444 0.442 0.548 −0.627 0.213 −0.419

OBJECT −0.130 0.741 −0.950 0.422 −0.338 −0.450
CODING −0.404 0.093 0.392 −0.962 0.566 1.214

Expected Change for THETA-DELTA

PICTCOMP PARANG BLOCK OBJECT CODING

PICTCOMP - -
PARANG −0.419 - -
BLOCK −0.643 0.447 - -

OBJECT 0.449 −0.165 0.283 - -
CODING −1.232 0.032 0.679 0.121 - -

Completely Standardized Expected Change for THETA-  DELTA

INFO COMP ARITH SIMIL VOCAB DIGIT

INFO - -
COMP −0.115 - -

ARITH 0.104 0.003 - -
SIMIL −0.043 0.041 −0.040 - -
VOCAB 0.107 0.000 −0.078 −0.007 - -
DIGIT 0.069 −0.043 0.055 −0.019 −0.009 - -

PICTCOMP −0.056 0.112 −0.074 0.093 0.000 −0.054
PARANG 0.015 −0.068 0.086 0.099 −0.103 0.072
BLOCK −0.056 0.055 0.088 −0.073 0.027 −0.057

OBJECT −0.016 0.088 −0.145 0.047 −0.041 −0.059
CODING −0.048 0.011 0.059 −0.105 0.067 0.156

Completely Standardized Expected Change for THETA-  DELTA

PICTCOMP PARANG BLOCK OBJECT CODING

PICTCOMP - -
PARANG −0.054 - -
BLOCK −0.081 0.062 - -

OBJECT 0.054 −0.022 0.037 - -
CODING −0.146 0.004 0.087 0.015 - -

Maximum Modification Index is 9.77 for Element (2, 2) of LAMBDA-X
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estimate the third model, x2 (33, N = 172) = 45.018, p = .08, CFI = .974. By dropping the cod-
ing subtest completely, we have changed the data and the parameters so the model is no longer nested 
and the chi-  square difference test is no longer appropriate. Although a statistical test of an improvement 
is not available, other fit indices can be examined. The model AIC and CAIC can be compared between 
the models with small values indicating good-  fitting, parsimonious models. The AIC for the model 
with the coding subtest is 108.30; without the coding subtest, the AIC drops to 89.018. The CAIC 
also drops after the coding subtest is deleted, CAIC with coding = 208.25 and without coding CAIC =
180.64. It is unclear if this drop is large enough as the AIC and CAIC are not normed; however, there 
does seem to be a sizable increase in fit and parsimony when the coding subtest is removed. The third 
model, with significant coefficients included in standardized form, is presented in Figure 14.11.

The model modifications in this example were post hoc and may have capitalized on chance. 
Ideally, these results would be cross-  validated with a new sample. However, in the absence of a 
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FIGURE 14.11 Final modified CFA model with significant 
coefficients presented in standardized form.
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Results

The Hypothesized Model

A confirmatory factor analysis, based on data from 

learning-  disabled children, was performed through LISREL on the 

11 subtests of the WISC-R. The hypothesized model is presented in 

Figure 14.8 where circles represent latent variables, and rectangles 

represent measured variables. Absence of a line connecting 

variables implies no hypothesized direct effect. A two-  factor model 

of IQ, Verbal and Performance, is hypothesized. The information, 

comprehension, arithmetic, similarities, vocabulary, and digit span 

subtests serve as indicators of the Verbal IQ factor. The picture 

comprehension, picture arrangement, block design, object assembly, 

and coding subtests serve as indicators of the Performance IQ 

factor. The two factors are hypothesized to covary with one another.

Assumptions

The assumptions of multivariate normality and linearity 

were evaluated through IBM SPSS. One child had an extremely high 

score on the arithmetic subtest (19, z = 4.11, p < .01) and his 

data were deleted from the analysis. Using Mahalanobis distance, 

another child was a multivariate outlier, p < .001, and the data 

from this child were also deleted. This child had an extremely 

low comprehension subtest score and an extremely high arithmetic 

score. Structural equation modeling (SEM) analyses were performed 

using data from 175 children. There were no missing data.

new sample, a helpful measure of the extent to which the parameters changed in the course of 
modifications is the bivariate correlation between the parameter estimates of the first and third 
models. This correlation, as calculated by IBM SPSS CORRELATE, is r (18) = .947, p 6 .01,
which indicates that, although model modifications were made, the relative size of the parameters 
hardly changed.

Table 14.24 (near the end of Section 14.6) contains a checklist for SEM. A Results section for 
the CFA analysis follows, in journal format.



754 C H A P T E R  1 4

Model Estimation

Maximum likelihood estimation was employed to estimate all 

models. The independence model that tests the hypothesis that 

all variables are uncorrelated was easily rejectable, x2(55,N = 

175) = 516.24, p < .01. The hypothesized model was tested next 

and support was found for the hypothesized model, x2(43,N = 175) 

= 70.24, p = .005, comparative fix index (CFI) = .94. A chi-

square difference test indicated a significant improvement in fit 

between the independence model and the hypothesized model.

Post hoc model modifications were performed in an attempt 

to develop a better fitting and possibly more parsimonious 

model. On the basis of the Lagrange multiplier test, a path 

predicting the comprehension subtest from the Performance factor 

was added, x2(42,N = 172) = 60.29, p = .03, CFI = .96, CAIC = 

108.25, AIC = 108.295. A chi square difference test indicated 

that the model was significantly improved by addition of this 

path, x2diff(1,N = 172) = 9.941, p < .01. Second, because the 

coefficient predicting the coding subscale from the Performance 

factor (.072) was not significant, SMC = .005, this variable was 

dropped and the model re-estimated, x2(33,N = 172) = 45.018, p = 

.08, CFI = .974, CAIC = 180.643, AIC = 89.018. Both the CAIC and 

AIC indicated a better fitting, more parsimonious model after 

the coding subtest is dropped.

Because post hoc model modifications were performed, a 

correlation was calculated between the hypothesized model 

parameter estimates and the parameter estimates from the final 

model, r(18) = .95, p < .01; this indicates that parameter 

estimates were hardly changed despite modification of the 

model. The final model, including significant coefficients in 

standardized form, is illustrated in Figure 14.11.
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14.6.2 SEM of Health Data

The second example demonstrates SEM of health and attitudinal variables.

14.6.2.1 SEM Model Specification

EQS 6.1 is used to assess the fit of the hypothesized model in Figure 14.12 using data in 
Appendix B.1. The model includes three hypothesized factors: Poor Sense of Self (with   self- 
esteem–ESTEEM, satisfaction with marital status–ATTMAR, and locus of control–CONTROL, as 
indicators), Perceived Ill Health (with number of mental health problems–  MENHEAL, and number 
of physical health problems–  PHYHEAL as indicators), and Health Care Utilization (with number 
of visits to health professionals–  TIMEDRS, and extent of drug use–  DRUGUSE, as indicators). It is 
hypothesized that age and number of life stress units (STRESS), both measured variables, as well as 
poor sense of self (SELF), a latent variable, all predict perceived ill health (PERCHEAL) and health 
care utilization (USEHEAL), both latent variables. Additionally, perceived ill health (PERCHEAL)

*

*

*

*

*
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V17*

Life change
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V21*

E7*

D3*

D2*
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problems
(MENHEAL) V7

Number of
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Health Care
Utilization
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V12

E14*
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1.00

1.00

**

E6*

E8*

E5*

1.00 *

*

FIGURE 14.12 Hypothesized SEM model.
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predicts health care utilization. As is typically done, all three independent variables (age, stress, and 
poor sense of self) are allowed, initially, to freely covary.

Several questions are of interest: (1) How well does this model estimate the population co-
variance matrix, that is, reproduce the sample covariance matrix? (2) How well do the constructs 
predict the measured indicator variables, for example, how strong is the measurement model? (3) Do 
age, stress, and poor sense of self directly predict perceived ill health and/or health care utilization? 
(4) Does perceived ill health directly predict health care utilization? (5) Does perceived ill health 
serve as an intervening variable between age, life stress units, poor sense of self, and health care 
utilization? Said another way, is there an indirect relationship between age, life stress units, poor 
sense of self, and health care utilization?

As a preliminary check of the identifiability of the model, the number of data points and 
parameters to be estimated are counted. With 9 variables, there are 9(9 + 1)>2 = 45 data points. 
The hypothesized model contains 23 parameters to be estimated (10 regression coefficients, 3 cova-
riance, 12 variances); therefore, the model is overidentified and is tested with 22 df. To set the scales 
of the factors, the path predicting number of physical health problems from Perceived Ill Health, the 
path predicting number of visits to health professionals from Health Care Utilization, and the path 
predicting self-  esteem from poor sense of self are fixed to 1. EQS syntax and summary statistics 
appear in Table 14.18.

14.6.2.2 Evaluation of Assumptions for SEM

Output from the evaluation of assumptions is shown only when the procedure or output is different 
from that in other chapters or the CFA example.

14.6.2.2.1 Sample Size and Missing Data
The dataset contains responses from 459 participants. There are complete data for 443 partici-

pants on the nine variables of interest. Five participants (1.1%) are missing data on attitudes toward 
marriage (ATTMAR), 4 participants (0.9%) are missing age (AGE), and 7 (1.5%) are missing the 
stress measure (STRESS). After examination of the pattern of missing data, there is no evidence of 
a nonignorable missing data pattern (cf. Section 4.1.3). Although it would be reasonable to estimate 
the missing data, this analysis will use complete cases only. Given the number of measured vari-
ables and the hypothesized relationships, the sample is adequate.

14.6.2.2.2 Normality and Linearity
Normality of the observed variables was assessed through examination of histograms using 

IBM SPSS c:\data\rsch\CyberSurgeons DESCRIPTIVES and EQS11 and summary descriptive 
statistics in EQS. Eight of the ten observed variables were significantly skewed;

11Scatterplots also could have been examined through the EQS Windows program.

(1) TIMEDRS

(3) MENHEAL

(5) ESTEEM

(7) STRESS

z = 24.84

z = 5.06

z = 4.22

z = 6.96

(2) PHYHEAL

(4) DRUGUSE

(6) CONTROL

(7) ATTMAR

z = 9.28

z = 10.79

z = 4.46

z = 8.75
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TABLE 14.18 Syntax and Partial Output From EQS SEM Model of Health Utilization

/TITLE
    Large sample example

/SPECIFICATIONS
    DATA = 'healthsem.ESS';
    VARIABLES=21; CASES=459; GROUPS=1;
    METHODS=ML,ROBUST;
    MATRIX=RAW
    ANALYSIS=COVARIANCE;

/LABELS
    V1=SUBNO; V2=EDCODE; V3=INCODE; V4=EMPLMNY; V5=TIMEDRS;
    V6=PHYHEAL; V7=MENHEAL; V8=DRUGUSE; V9=STRESS; V10=ATTMED;
    V11=ESTEEM; V12=CONTROL; V13=ATTMAR; V14=ATTROLE; V15=ATTHOUSE;
    V16=ATTWORK; Vl7=AGE; V18=SEL; V19=LTIMEDRS; V20=LPHYHEAL;
    V21=SCSTRESS; F1=SELF; F2=PERCHEAL; F3=USEHEAL;

/EQUATIONS
    !F1 Poor sense of self

V11’= 1F1 + 1E11;
     V12 = *F1 + 1E12;
     V13 = *F1 + E13;
     V14 = *F1 + E14;

    !F2 PERCHEAL
     V6 = 1F2 + 1E6;
     V7 = *F2 + 1E7;

    !F3 USEHEAL
     V5 = F3 + E5;
     V8 = *F3 + E8;

     F2 = *V2l + *V17 + *F1 + D2;
     F3 = *F2 + *V17 + D3;
     V21 = *V17 + E21;

    /VARIANCES
     F1 = *;
     D2,D3 = *;
     v17 = *;
     E21 = *;
     E6,E7 = *;
     E5,E8 = *;
     E11,E12,E13,E14 = *;

    /COVARIANCES
      F1,V17 = *;
    /PRINT
      FIT=ALL;
      TABLE=EQUATION;
     EFFECT = YES;
     /LMTEST
     /WTEST
     /END

(continued )
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SAMPLE STATISTICS BASED ON COMPLETE CASES

UNIVARIATE STATISTICS

VARIABLE TIMEDRS PHYHEAL MENHEAL DRUGUSE ESTEEM

MEAN 7.5730 4.9412 6.0871 8.5643 15.8301

SKEWNESS (G1) 2.9037 1.0593 .6175 1.2682 .4870

KURTOSIS (G2) 9.9968 1.2271 −.2605 1.0620 .2822

STANDARD DEV. 9.9821 2.3768 4.1858 9.0952 3.9513

VARIABLE CONTROL ATTMAR ATTROLE AGE SCSTRESS

MEAN 6.7429 22.7298 35.1503 4.3638 2.0087

SKEWNESS (G1) .4912 .7937 .0551 .0372 .7637

KURTOSTS (G2) −.3978 .8669 −.4190 −1.1624 .2436

STANDARD DEV. 1.2657 8.8654 6.7708 2.2284 1.2967

MULTIVARIATE KURTOSIS

MARDIA’S COEFFICIENT (G2,P) = 23.7537
NORMALIZED ESTIMATE = 16.4249

ELLIPTICAL THEORY KURTOSIS ESTIMATES

MARDIA-  BASED KAPPA = .1979 MEAN SCALED UNIVARIATE KURTOSIS = .3813

MARDIA-  BASED KAPPA IS USED IN COMPUTATION. KAPPA = .1979

COVARIANCE MATRIX TO BE ANALYZED: 10 VARIABLES 
(SELECTED FROM 21 VARIABLES)

BASED ON 459 CASES.

TIMEDRS PHYHEAL MENHEAL DRUGUSE ESTEEM
V 5 V 6 V 7 V 8 V 11

TIMEDRS V   5 99.643
PHYHEAL V   6 10.912 5.649
MENHEAL V   7 10.705 4.957 17.521
DRUGUSE V   8 26.779 9.151 14.136 82.722
ESTEEM v 11 .726 .852 3.600 −1.541 15.613
CONTROL V 12 .279 .328 1.490 .779 1.690
ATTMAR V 13 4.332 1.683 9.026 7.262 10.251
ATTROLE V 14 −5.460 −.814 −1.926 −5.897 4.947

AGE V 17 −.336 .144 −.757 −.544 .031
SCSTRESS V 21 3.315 .926 2.099 3.619 −.468

TABLE 14.18 Continued
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EQS also provides information on multivariate normality (see Table 14.18). In the section 
labeled, MULTIVARIATE KURTOSIS, Mardia’s coefficient and a normalized estimate of the 
coefficient are given; the normalized estimate can be interpreted as a z-score. In this example, after 
deletion of all outliers, NORMALIZED ESTIMATE = 16.42, suggesting that the measured vari-
ables are not distributed normally.

It is not feasible to examine all pairwise scatterplots to assess linearity; therefore, randomly 
selected pairs of scatterplots are examined using IBM SPSS GRAPHS.12 All observed pairs appear 
to be linearly related, if at all. Transformations are not made to these variables because it is reason-
able to expect these variables to be skewed in the population (most women use few drugs, are not 
ill, and do not go to the doctor often). Instead, given the sample size (N = 443, a large sample), the 
decision is made to use provisions in the EQS program to take the nonnormality into account when 
assessing x2 statistics and standard errors, by use of ML estimation with the Satorra–  Bentler scaled 
chi-  square and adjustment to the standard errors to the extent of the nonnormality. This analysis is 
requested from EQS by ME=ML,ROBUST (see Table 14.18).

CONTROL ATTMAR ATTROLE AGE SCSTRESS
V 12 V 13 V 14 V 17 V 21

CONTROL V 12 1.602
ATTMAR V 13 2.173 78.595
ATTROLE V 14 −.009 -3.804 45.844
AGE V 17 −.376 −1.762 3.423 4.966

SCSTRESS V 21 .099 1.251 −2.114 −.838 1.681

BENTLER-WEEKS STRUCTURAL REPRESENTATION:

NUMBER OF DEPENDENT VARIABLES = 11
DEPENDENT V’S : 5 6 7 8 11 12 13 14 21
DEPENDENT F’S : 2 3

NUMBER OF INDEPENDENT VARIABLES = 13
INDEPENDENT V’S : 17
INDEPENDENT F’S : 1
INDEPENDENT E’S : 5 6 7 8 11 12 13 14 21
INDEPENDENT D’S : 2 3

NUMBER OF FREE PARAMETERS = 25
NUMBER OF FIXED NONZERO PARAMETERS = 14

DETERMINANT OF INPUT MATRIX IS .11552D+12

PARAMETER ESTIMATES APPEAR IN ORDER,
NO SPECIAL PROBLEMS WERE ENCOUNTERED DURING OPTIMIZATION.

TABLE 14.18 Continued

12Scatterplots also could have been examined through the EQS Windows program.
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14.6.2.2.3 Outliers
Using IBM SPSS FREQUENCIES and GRAPHS, no univariate outliers were detected. 

Although there were z-scores on several variables greater than 3.3, these large scores were associ-
ated with naturally skewed distributions, that is, most women don’t go to the doctor often and a 
diminishing number go frequently. Using IBM SPSS REGRESSION, there were also no multivari-
ate outliers.

14.6.2.2.4 Multicollinearity and Singularity
The determinant of the matrix, given in EQS (Table 14.18), is DETERMINANT OF INPUT 

MATRIX IS.1552D+12. This is much larger than 0, so there is no singularity.

14.6.2.2.5 Adequacy of Covariances
SEM programs have difficulty with computations if the scales of the variables, and therefore 

the covariances are of vastly different sizes. In this example, the largest variance is 17,049.99 for 
STRESS, and the smallest variance is 1.61 for CONTROL. This difference is large and a prelimi-
nary run of the model does not converge after 200 iterations. Therefore, the STRESS variable was 
multiplied by .01. After this rescaling, the new variable SCSTRESS had a variance of 1.70 and there 
were no further convergence problems.

14.6.2.2.6 Residuals
Evaluation of residuals is performed as part of model evaluation.

14.6.2.3 SEM Model Estimation and Preliminary Evaluation

The syntax and edited output for SEM analysis are presented in Table 14.18. As a first step, look 
in the printout for the statement, PARAMETER ESTIMATES APPEAR IN ORDER, shown at 
the end of Table 14.18. If there are identification problems or other problems with estimation, this 
statement does not appear and, instead, a message about CONDITION CODES, as discussed in 
Section 14.5.1, is printed. This message is used to diagnose problems that come up during the 
analysis.

After checking the covariance matrix for reasonable relationships, examine the portion of the 
printout labeled BENTLER-  WEEKS STRUCTURAL REPRESENTATION that lists the IVs and 
DVs as specified by the model. These should, and do in this case, match the path diagram.

Table 14.19 presents residuals and goodness-of-fit information for the estimated model in the 
section labeled GOODNESS OF FIT SUMMARY. A necessary condition for evaluating and inter-
preting a model is that the hypothesized model is a significant improvement over the independence 
model. The independence model tests the hypothesis that all the measured variables are independent 
of one another. Our proposed model hypothesizes that there are relationships among the measured 
variables; therefore it is necessary that our hypothesized model is a significant improvement over 
the independence model. The test of improvement between independence and model chi-  squares 
is assessed with a chi-  square difference test. Had the data been normal, we simply could have sub-
tracted the chi-  square test statistic values and evaluated the chi-  square with the dfs associated with 
the difference between the models. However, because the data were nonnormal and we used the 
Satorra–  Bentler scaled chi-  square, we need to make an adjustment as follows (Satorra & Bentler, 
2002). First, a scaling correction is calculated,
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Scaling correction =

(df nested
model) ¢x2

ML nested model

x2
S@B nested model

≤ -
(df comparison

model)
¢x2

ML comparison model

x2
S@B comparison model

≤
(dfnested model - dfcomparison model)

Scaling correction =
(36)a 705.53

613.17
b - (20)a 99.94

86.91
b

(36 - 20)

(14.38)

= 1.15

The scaling correction is then employed with the ML x2 values to calculate the S–  B scaled x2

difference test statistic value,

x2
S@B difference =

x2
ML nested model - x2

ML comparison model

scaling correction

=
705.53 - 99.942

1.15
= 525.91

This chi-  square difference is evaluated with degrees of freedom equal to, df nested model – df comparison model
= 36 - 20 = 16. The adjusted S–  B x2 (N = 443, 20) = 525.91, p 6 .01. The chi-  square differ-
ence test is significant; therefore, the model is a significant improvement over the independence model 
and model evaluation can continue. In practice, just about the only time this difference is not significant 
is when sample sizes are very small or there is a major problem with the hypothesized model.

TABLE 14.19 Standardized Residuals and Goodness-of-Fit Information From EQS Complete 
Example (Syntax Appears in Table 14.18)

STANDARDIZED RESIDUAL MATRIX:

TIMEDRS PHYHEAL MENHEAL DRUGUSE ESTEEM
V 5 V 6 V 7 V 8 V 11

TIMEDRS V   5 .000
PHYHEAL V   6 .094 .000
MENHEAL V   7 −.085 −.019 .000
DRUGUSE V   8 .000 .019 −.005 .000
ESTEEM V 11 −.079 −.065 .072 −.150 .000
CONTROL V 12 −.060 −.022 .159 −.023 .002
ATTMAR V 13 −.017 −.026 .145 .017 .021
AGE V 17 .005 .049 −.061 −.004 .073

SCSTRESS V 21 −.013 −.049 .061 .010 −.094

CONTROL ATTMAR AGE SCSTRESS
V 12 V 13 V 17 V 21

CONTROL V 12 .000
ATTMAR V 13 −.034 .000
AGE V 17 −.075 −.042 .000

SCSTRESS V 21 .058 .107 .000 .000
(continued)
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AVERAGE ABSOLUTE STANDARDIZED RESIDUALS = .0404
AVERAGE OFF-  DIAGONAL ABSOLUTE STANDARDIZED RESIDUALS  =  .0505

MAXIMUM LIKELIHOOD SOLUTION (NORMAL DISTRIBUTION THEORY)

LARGEST STANDARDIZED RESIDUALS:

NO. PARAMETER ESTIMATE NO. PARAMETER ESTIMATE

1 V12, V7 .159 11 V11, V7 .072
2 V11, V7 −.150 12 V11, V6 −.065
3 V13, V7 .145 13 V21, V7 .061
4 V21, V13 .107 14 V17, V7 −.061
5 V21, V11 −.094 15 V12, V5 −.060
6 V6,  V5 .094 16 V21, V12 .058
7 V7,  V5 −.085 17 V21, V6 −.049
8 V11, V5 −.079 18 V17, V6 .049
9 V17, V12 −.075 19 V17, V13 −.042
10 V17, V11 .073 20 V13, V12 −.034

DISTRIBUTION OF STANDARDIZED RESIDUALS

RANGE FREQ PERCENT
1 -0.5 - - 0 .00%
2 -0.4 - -0.5 0 .00%
3 -0.3 - -0.4 0 .00%
4 -0.2 - -0.3 0 .00%
5 -0.1 - -0.2 1 2.22%
6 0.0 - -0.1 19 42.22%
7 0.1 - 0.0 22 48.89%
8 0.2 - 0.1 3 6.67%
9 0.3 - 0.2 0 .00%
A 0.4 - 0.3 0 .00%
B 0.5 - 0.4 0 .00%
C ++ - 0.5 0 .00%
----------------------------------------------------------------

TOTAL 45 100.00%

EACH “*” REPRESENTS 2 RESIDUALS

MAXIMUM LIKELIHOOD SOLUTION (NORMAL DISTRIBUTION THEORY)

GOODNESS OF FIT SUMMARY FOR METHOD = ML

INDEPENDENCE MODEL CHI-SQUARE = 705.531 ON  36 DEGREES OF FREEDOM

TABLE 14.19 Continued
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INDEPENDENCE AIC =  633.53117 INDEPENDENCE CAIC =  448,88536
MODEL AIC =   59.94157 MODEL CAIC =  −42.63943

CHI-  SQUARE = 99.942 BASED ON 20 DEGREES OF FREEDOM
PROBABILITY VALUE FOR THE CHI-  SQUARE STATISTIC IS   .00000

THE NORMAL THEORY RLS CHI-  SQUARE FOR THIS ML SOLUTION IS   102.834.

FIT INDICES

BENTLER-BONETT   NORMED FIT INDEX = .858
BENTLER-BONETT NON-NORMED FIT INDEX = .785
COMPARATIVE FIT INDEX (CFI) = .881
BOLLEN   (IFI) FIT INDEX = .883
MCDONALD (MFI) FIT INDEX = .917
LISREL GFI FIT INDEX = .952
LISREL   AGFI FIT INDEX = .893
ROOT MEAN-SQUARE RESIDUAL (RMR) = 1.471
STANDARDIZED RMR = .059
ROOT MEAN-  SQUARE ERROR OF APPROXIMATION(RMSEA) = .093
90% CONFIDENCE INTERVAL OF RMSEA   (.075, .112)
GOODNESS OF FIT SUMMARY FOR METHOD = ROBUST

ROBUST INDEPENDENCE MODEL CHI-  SQUARE = 613.174 ON 36 DEGREES OF FREEDOM
INDEPENDENCE AIC = 541.17402 INDEPENDENCE CAIC = 356.52821

MODEL AIC = 46.90838 MODEL CAIC = -55.67262

SATORRA-  BENTLER SCALED CHI-  SQUARE = 86.9084 ON 20 DEGREES OF FREEDOM
PROBABILITY VALUE FOR THE CHI-  SQUARE STATISTIC IS .00000

RESIDUAL-BASED TEST STATISTIC = 70.815
PROBABILITY VALUE FOR THE CHI-  SQUARE STATISTIC IS .00000

YUAN-BENTLER RESIDUAL-BASED TEST STATISTIC = 61.350
PROBABILITY VALUE FOR THE CHI-  SQUARE STATISTIC IS .00000

YUAN-BENTLER RESIDUAL-BASED F-STATISTIC = 3.394
DEGREES OF FREEDOM = 20,439
PROBABILITY VALUE FOR THE F-STATISTIC I .00000

FIT INDICES

BENTLER-BONETT   NORMED FIT INDEX = .858
BENTLER-BONETT NON-NORMED FIT INDEX = .791
COMPARATIVE FIT INDEX (CFI) = .884
BOLLEN    (IFI) FIT INDEX = .887
MCDONALD (MFI) FIT INDEX = .930
ROOT-  MEAN SQUARE ERROR OF APPROXIMATION (RMSEA) = .085
90% CONFIDENCE INTERVAL OF RMSEA (.067, .104)

TABLE 14.19 Continued
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However, the Satorra–  Bentler scaled chi-  square test of the robust ML estimation is also sig-
nificant, x2 (20, N = 443) = 86.91, p 6 .001, indicating a significant difference between the esti-
mated and observed covariance matrices. In a large sample like this, trivial differences can produce 
a statistically significant x2, so fit indices often provide a better gauge of fit when sample size is 
large. However, none of the fit indices indicates a good fitting model. The residuals are symmetri-
cally distributed around zero, but large. The largest standardized residual is .159, and a few are 
greater than .10. Because the hypothesized model does not fit the data, further inspection of para-
meters is deferred, and instead, the Lagrange multiplier test is examined.

14.6.2.4 Model Modification

The hypothesized model does not fit. Models can be improved by adding paths, so a first approach 
is to carefully examine the hypothesized model set-up to insure that important paths were not for-
gotten. No paths were obviously forgotten in our model, so the next step is to examine the Lagrange 
multiplier test (LM Test). Doing model modifications to improve the fit of a model moves the 
analysis from a confirmatory analysis to an exploratory analysis and caution should be exercised in 
interpreting significance levels. Results of initial univariate and multivariate LM tests with default 
settings are presented in Table 14.20. Note that these tests are based on ML statistics because EQS 
does not yet print out Satorra–  Bentler LM tests.

The multivariate LM test suggests that adding a path predicting V7 from F1 (predicting num-
ber of mental health problems from Poor Sense of Self) would significantly improve the model and 
lead to an approximate drop in model x2 of 32.199. This means that in addition to the relationship 
between poor sense of self and number of mental health problems through perceived ill health there 
is also a direct relationship between these two variables. This may be a reasonable parameter to add. 
It may be that women who have a poor sense of self also report more mental health problems over 
and above the relationship between poor sense of self and perceived ill health. The path is added and 
the model reestimated (not shown).

Instead of the message, PARAMETER ESTIMATES APPEAR IN ORDER, however, the 
following message is found:

PARAMETER CONDITION CODE
D3,D3 CONSTRAINED AT LOWER BOUND

This indicates that during estimation, EQS held the disturbance (residual variance) of the third fac-
tor, the Health Care Utilization factor, at zero rather than permit it to become negative. This message 
may well indicate a potential problem with interpretation (negative error variance?). This path was 
not hypothesized and we add the path and reestimate the model. Unfortunately, we create a condi-
tion code (indicating a problem with the model). Therefore, this path is not added, instead the cor-
relations among the residuals are examined through the LM test.

Adding correlated residuals is conceptually and theoretically tricky. First and foremost this is 
dangerously close to data fishing! When we add correlated residuals, we are correlating the parts of 
the dependent variable that are not predicted by the independent variable. So in essence, we don’t 
know exactly what we are correlating, only what we are not correlating. Sometimes this makes 
good sense and other times it does not (Ullman, 2006).
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TABLE 14.20 Edited EQS Output of Univariate and Multivariate LM Test
(Syntax Appears in Table 14.18)

LAGRANGE MULTIPLIER TEST (FOR ADDING PARAMETERS)

ORDERED UNIVARIATE TEST STATISTICS:

NO CODE PARAMETER
CHI-

SQUARE PROB.

HANCOCK
20 DF 
PROB.

PARAMETER
CHANGE

STANDARD-
IZED

CHANGE

1 2 12 V7,F1 32.199 .000 .041 .573 .055
2 2 10 D3,D2 15.027 .000 .775 6.352 2.898
3 2 16 F3,F1 15.027 .000 .775 −.765 −.059
4 2 22 F2,F3 15.027 .000 .775 2.691 .295
5 2 11 V11,V21 14.052 .000 .828 −.596 −.116
6 2 11 V6,V21 9.991 .002 .968 −.364 −.118
7 2 11 V7,V21 9.991 .002 .968 .598 .110
8 2 20 V11,F3 9.956 .002 .969 −.168 −.008
9 2 20 V6,F3 9.212 .002 .960 1.385 .113
10 2 11 V11,V17 8.931 .003 .984 .283 .032

MAXIMUM LIKELIHOOD SOLUTION (NORMAL DISTRIBUTION THEORY)

MULTIVARIATE LAGRANGE MULTIPLIER TEST BY SIMULTANEOUS PROCESS IN STAGE 1

PARAMETER SETS (SUBMATRICES) ACTIVE AT THIS STAGE ARE:

PVV PFV PFF PDD GVV GVF GFV GFF BVF BFF

CUMULATIVE MULTIVARIATE STATISTICS UNIVARIATE INCREMENT

HANCOCK'S
SEQUENTIAL

STEP PARAMETER CHI-SQUARE D.F. PROB. CHI-SQUARE PROB. D.F. PROB.

1 V7,F1 32.199 1 .000 32.199 .000 20 .041
2 V7,F21 62.428 2 .000 30.229 .000 19 .049
3 V11,V21 76.480 3 .000 14.052 .000 18 .726
4 V11,V17 80.363 4 .000 3.883 .049 17 1.000

The LM test is again employed to examine the usefulness of adding correlated errors to the 
model.13 Correlated errors are requested in EQS by the inclusion of

/LMTEST
SET = PEE;

Table 14.21 shows that if the residuals between E6 and E5 are added the chi-  square will drop 
approximately 30.529 points. It may be that even after accounting for the common relationship 

13Note: Adding post hoc paths is a little like eating salted peanuts—  one is never enough. Extreme caution should be used 
when adding paths as they are generally post hoc and therefore potentially capitalizing on chance. Conservative p levels (p 6
.001) may be used as a criterion for adding post hoc parameters to the model.
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between number of physical health problems and number of visits to health professionals through 
their respective factors, there is still a unique significant relationship between these two measured 
variables. This seems reasonable, therefore the path is added and the model reestimated.

The model Satorra–  Bentler x2 for the new model = 60.37, Robust CFI = .93, and RMSEA 
= .07. The adjusted scaled x2 difference test is calculated using Equation 14.38, Satorra–  Bentler
x2

difference (1, N = 459) = 17.54, p 6 .05. The model is significantly improved by adding this path 
(not shown). It would be feasible to stop adding paths at this point. However, the RMSEA is somewhat 
high and CFI is a little too low, so the decision is made to examine the correlated residuals one more 
time with the goal of improving the model a little bit more if conceptually justifiable. The LM test is 
examined after the addition of the correlated residual between E6 and E5 and the test indicates that 
adding the covariance between E8 and E6 will be associated with an approximate drop in the model 
x2 of 23.63 (not shown). Again, it seems reasonable that there may be a unique relationship between 
frequency of drug use and number of physical health problems. A word of warning here about model 
modifications is necessary. These decisions to add paths are being made post hoc, after looking at the 
data. It is very easy to fool yourself into a convincing story about the theoretical importance of a path 
when you see that adding it would significantly improve the model. Exercise caution here!

TABLE 14.21 Syntax Modifications and Edited EQS Multivariate LM Test for Adding Correlated 
Errors (Full Syntax Appears in Table 14.26)

/LMTEST
set=pee;
LAGRANGE MULTIPLIER TEST (FOR ADDING PARAMETERS)

ORDERED UNIVARIATE TEST STATISTICS:

NO CODE PARAMETER
CHI-

SQUARE PROB.

HANCOCK
20 DF 
PROB.

PARAMETER
CHANGE

STANDARD-
IZED

CHANGE

1 2 6 E6,E5 30.259 .000 .062 5.661 .418
2 2 6 E7,E5 18.845 .000 .532 −7.581 −.295

MULTIVARIATE LAGRANGE MULTIPLIER TEST BY SIMULTANEOUS PROCESS IN STAGE 1

PARAMETER SETS (SUBMATRICES) ACTIVE AT THIS STAGE ARE:

PEE

CUMULATIVE MULTIVARIATE STATISTICS UNIVARIATE INCREMENT

HANCOCK'S
SEQUENTIAL

STEP PARAMETER CHI-SQUARE D.F. PROB.
CHI-

SQUARE PROB. D.F. PROB.

1 E6,E5 30.529 1 .000 30.529 .000 20 .062
2 E11,E8 41.280 2 .000 10.750 .000 19 .932
3 E12,E7 51.575 3 .000 10.295 .000 18 .922
4 E13,E7 60.250 4 .000 8.675 .000 17 .950
5 E11,E7 69.941 5 .000 9.690 .000 16 .882
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The covariance between E8 and E6 is added and the model Satorra–  Bentler x2 for the new 
model = 40.16, Robust CFI = .96, RMSEA = .05. The adjusted scaled x2 difference test is calcu-
lated using Equation 14.38, Satorra–  Bentler x2

difference (1, N = 459) = 20.60, p 6 .05.
The final model goodness-of-fit information is presented in Table 14.22. The final model with 

significant parameter estimates presented in standardized form is diagrammed in Figure 14.13. Two 
paths were added that were not hypothesized, therefore it is important to provide some evidence that 
the hypothesized model has not substantially changed. Ideally, the model should be tested on new 
data. No new data are available for analysis, however; so instead, the bivariate correlation between 
the initial parameter estimates and the final parameter estimates is calculated. If this correlation is 
high ( 7 .90) we can conclude that although paths were added, the model did not change substan-
tially. The correlation between the final parameters and the hypothesized paths was calculated and 
exceeded .90 (r = .97) therefore, although the model was changed, it was not changed substantially.

Specific parameter estimates are now examined. The syntax for the final model, portions of 
the printout related to parameter estimates, and the standardized solution are shown in Table 14.23. 
The section labeled MEASUREMENT EQUATIONS WITH STANDARD ERRORS AND TEST 
STATISTICS contains the parameter estimates, standard errors, and, because robust estimation was 
employed, the robust statistics in parentheses. These are the standard errors and the z tests to interpret.

All of the path coefficients between measured variables and factors in the model are sig-
nificant, p 6 .05. The section labeled CONSTRUCT EQUATIONS WITH STANDARD ERRORS

Age (AGE)
V17*

Life change
units

(STRESS)
V21*

E7*

D3*

D2*

Number of
mental health

problems
(MENHEAL) V7

Number of
physical health

problems
(PHYHEAL) V6

Visits to health
professionals

(TIMEDRS) V5

Frequency of
drug use

(DRUGUSE) V8

Perceived
III Health

(PERCHEAL)
F2

Health Care
Utilization

(USEHEAL)
F3

Self-esteem
(ESTEEM)

V11 Marital
satisfaction
(ATTMAR)

V13

Locus of
control

(CONTROL )
V12

E12*

E13*

E11*

Poor Sense
of Self
(SELF)

F1*

E6*

E8*

E5*

–.84* (–.29)

–.64ns
(–.12)

.05ns (.02)

.07* (.12)

.47* (.12)

.91* (.26)

.27* (.04)

.07ns (.12)

1.00
(.60)

.29*
(.55)

1.62*
(.43)

1.84*
(.53)

2.86*
(0.90)

1.00
(.56)

1.24*
(0.63)

1.00
(.46)

6.94*
(.40)

4.07*
(.29)

FIGURE 14.13 Final SEM model.



TABLE 14.22 Edited EQS Output for Final Model Goodness-of-Fit Summary

GOODNESS OF FIT SUMMARY FOR METHOD = ML

INDEPENDENCE MODEL CHI-  SQUARE = 705.531 ON 36 DEGREES OF FREEDOM

INDEPENDENCE AIC = 633.53117 INDEPENDENCE CAIC = 448.88536
MODEL AIC = 8.72072 MODEL CAIC = −83.60219

CHI-  SQUARE = 44.721 BASED ON 18 DEGREES OF FREEDOM
PROBABILITY VALUE FOR THE CHI-  SQUARE STATISTIC IS .00045

THE NORMAL THEORY RLS CHI-  SQUARE FOR THIS ML SOLUTION IS 42.058.

FIT INDICES

BENTLER-BONETT   NORMED FIT INDEX = .937
BENTLER-BONETT NON-NORMED FIT INDEX = .920
COMPARATIVE FIT INDEX (CFI) = .960
BOLLEN (IFI) FIT INDEX = .961
MCDONALD (MFI) FIT INDEX = .971
LISREL GFI FIT INDEX = .980
LISREL AGFI FIT INDEX = .950
ROOT MEAN-  SQUARE RESIDUAL (RMR) = .992
STANDARDIZED RMR = .044
ROOT MEAN-  SQUARE ERROR OF APPROXIMATION(RMSEA) = .057
90% CONFIDENCE INTERVAL OF RMSEA ( .036, .078)

GOODNESS OF FIT SUMMARY FOR METHOD = ROBUST

INDEPENDENCE MODEL CHI-  SQUARE = 613.174 ON 36 DEGREES OF FREEDOM

INDEPENDENCE AIC = 541.17402 INDEPENDENCE CAIC = 356.52821
MODEL AIC = 4.166650 MODEL CAIC = −88.15640

SATORRA-BENTLER SCALED CHI-SQUARE =  40.1665 ON 18 DEGREES OF FREEDOM
  PROBABILITY VALUE FOR THE CHI-  SQUARE STATISTIC IS .00198

   RESIDUAL-BASED TEST STATISTIC = 51.064
  PROBABILITY VALUE FOR THE CHI-  SQUARE STATISTIC IS .00005

   YUAN-BENTLER RESIDUAL-BASED TEST STATISTIC = 45.952
  PROBABILITY VALUE FOR THE CHI-  SQUARE STATISTIC IS .00030

   YUAN-BENTLER RESIDUAL-BASED F-STATISTIC   = 2.732
  DEGREES OF FREEDOM = 18,441
  PROBABILITY VALUE FOR THE F-STATISTIC IS .00018

FIT INDICES

BENTLER-BONETT NORMED FIT INDEX = .934
BENTLER-BONETT NON-NORMED FIT INDEX = .923
COMPARATIVE FIT INDEX (CFI) = .962
BOLLEN (IFI) FIT INDEX = .963
MCDONALD (MFI) FIT INDEX = .976
ROOT MEAN-  SQUARE ERROR OF APPROXIMATION(RMSEA) = .052
90% CONFIDENCE INTERVAL OF RMSEA ( .030, .073)

768 C H A P T E R  1 4
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TABLE 14.23 Syntax and Edited Output From EQS Final Model Parameter Estimates 
and Standardized Solution

/TITLE
  Large Sample Example Final Model
/SPECIFICATIONS
  DATA='healthsem 5th editon.ESS';
  VARIABLES=21; CASES=459; GROUPS=1;
  METHODS=ML,ROBUST;
  MATRIX=RAW;
  ANALYSIS=COVARIANCE;
/LABELS

V1=SUBNO; V2=EDCODE; V3=INCODE; V4=EMPLMNY; V5=TIMEDRS;
V6=PHYHEAL; V7=MENHEAL; V8=DRUGUSE; V9=STRESS; V10=ATTMED;
V11=ESTEEM; V12=CONTROL; V13= ATTMAR; V14=ATTROLE; V15=ATTHOUSE;
V16=ATTWORK; V17= AGE; V18=SEL; V19= LTIMEDRS; V20= LPHYHEAL;
V21= SCSTRESS; F1=SELF; F2=PERCHEAL; F3=USEHEAL;
/EQUATIONS
!F1 Poor sense of self
V11 = 1F1 + 1E11;
V12 = *F1 + 1E12;
V13 = *F1 + E13;

!F2 PERCHEAL
V6 = 1F2 + 1E6;
V7 = *F2 + E7;

!F3 USEHEAL
V5 = F3 + E5;
V8 = *F3 + E8;

F2 = *V17 + *F1 + *V21 + D2;
F3 = *F2 + *V17 + *V21 + D3;

/VARIANCES
F1 = *;
D2,D3 = *;
V17 = *;
E6,E7 = *;
E5,E8 = *;
E11,E12,E13, = *;

/COVARIANCES
F1,V17 = *;
F1,V21 = *;
V17, V21 = *;
E6,E5 = *;
E8,E6 = *;

/PRINT
FIT=ALL;
TABLE=EQUATION;
EFFECT = YES;

/LMTEST
SET = PEE;
/WTEST
/END

(continued )
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MEASUREMENT EQUATIONS WITH STANDARD ERRORS AND TEST STATISTICS
STATISTICS SIGNIFICANT AT THE 5% LEVEL ARE MARKED WITH @.
(ROBUST STATISTICS IN PARENTHESES)

TIMEDRS =V5 = 1.000 F3 + 1.000 E5

PHYHEAL =V6 = 1.000*F2 + 1.000 E6

MENHEAL =V7 = 2.859*F2 + 1.000 E7
.364

7.846@
( .368)
( 7.774@

DRUGUSE =V8 = 1.244*F3 + 1.000 E8
.207

5.998@
( .212)
( 5.855@

ESTEEM =V11 = 1.000 F1 + 1.000 E11

CONTROL =V12 = .293*F1 + 1.000 E12
.046

6.355@
( .052)
( 5.641@

ATTMAR =V13 = 1.616*F1 + 1.000 E13
.278

5.808@
( .268)
( 6.034@

CONSTRUCT EQUATIONS WITH STANDARD ERRORS AND TEST STATISTICS
STATISTICS SIGNIFICANT AT THE 5% LEVEL ARE MARKED WITH @.
(ROBUST STATISTICS IN PARENTHESES)

PERCHEAL=F2 = .069*V17 + .473*V21 + .269*F1 + 1.000 D2
.030 .073 .054

2.297@ 6.442@ 4.962@
( .030) ( .081) (  .059)
( 2.307@ ( 5.870@ ( 4.587@

USEHEAL =F3 = 1.837*F2 + .070*V17 + .905*V21 + 1.000 D3
.316 .119 .255

5.822@ .584 3.544@
(  .322) ( .116) (  .267)
( 5.697@ ( .602) ( 3.393@

TABLE 14.23 Continued
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(continued )

COVARIANCES AMONG INDEPENDENT VARIABLES

STATISTICS SIGNIFICANT AT THE 5% LEVEL ARE MARKED WITH @.

V F

F21 - SCSTRESS −.838*I I
V17 - AGE .141 I I

−5.958@I I
(   .136)I I
( −6.143@I I

I I
F1   - SELF −.642*I I
V17 - AGE .338 I I

−1.899 I I
(   .343)I I
( −1.873)I I

I I
F1   - SELF .049*I I
V21 - SCSTRESS, .194 I I

.254 I I
( .199)I I
( .248)I I

I I
E D

E6 - PHYHEAL 6.941*I I
E5 - TIMEDRS 1.026 I I

6.673@I I
( 1.363)I I
( 5.094@I I

I I
E8 - DRUGUSE 4.074*I I
E6 - PHYHEAL .910 I I

4.479@I I
(  .975)I I
( 4.179@I I

I I

DECOMPOSITION OF EFFECTS WITH NONSTANDARDIZED VALUES
STATISTICS SIGNIFICANT AT THE 5% LEVEL ARE MARKED WITH @.

PARAMETER INDIRECT EFFECTS

TIMEDRS =V5 = 1.837 F2 + .196 V17 − 1.775 V21 + .494 F1
.316 .131 .309 .132

5.822@ 1.495 5.744@ 3.754@
(  .322) (  .137) (  .345) (  .144)
( 5.697@ ( 1.429) ( 5.142@ ( 3.434@

TABLE 14.23 Continued
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+ 1.837 D2 + 1.000 D3
.316

5.822@
(  .322)
( 5.697@

PHYHEAL =V6 =  .069 V17 + .473 V21 + .269 F1 + 1.000 D2
.083 .073 .054

2.297@ 6.442@ 4.962@
(  .030) (  .081) (  .059)
( 2.307@ ( 5.870@ ( 4.587@

MENHEAL =V7 =  .197 V17 + 1.353 V21 + .769 F1 + 2.859 D2
.083 .141 .128 .364

2.381@ 9.592@ 6.024@ 7.846@
(  .097) (  .381) (  .240) (  .368)
( 2.041@ ( 3.551@ ( 3.207@ ( 7.774@

DRUGUSE =V8 = 2.284 F2 + .244 V17 + 2.207 V21 + .614 F1
.335 .161 .305 .147

6.823@ 1.516 7.232@ 4.167@
(  .377) (  .170) (  .594) (  .171)
( 6.055@ ( 1.434) ( 3.714@ ( 3.591@

+ 2.284 D2 + 1.244 D2
.335 .207
6.823@ 5.998@

(  .377) (  .212)
( 6.055@ ( 5.855@

USEHEAL =F3 =  .127*V17 + .869*V21 + .494 F1 + 1.837 D2
.059 .204 .132 .316

2.131@ 4.257@ 3.754@ 5.822@
(  .060) (  .227) (  .144) (  .322)
( 2.112@ ( 3.826@ ( 3.434@ ( 5.697@

DECOMPOSITION OF EFFECTS WITH STANDARDIZED VALUES

PARAMETER INDIRECT EFFECTS

TIMEDRS =V5 =   .244 F2
+ .185 D2

+ .044 V17
+ .340 D3

+ .231 V21 + .118 F1

PHYHEAL =V6 =   .065 V17 + .258 V21 + .269 F1 + .421 D2

MENHEAL =V7 =   .105 V17 + .419 V21 + .438 F1 + .684 D2

DRUGUSE =V8 =   .333 F2
+ .252 D2

+ .060 V17
+ .464 D3

+ .315 V21 + .161 F1

USEHEAL =F3 =   .062*V17 + .246*V21 + .256 F1 + .401 D2

TABLE 14.23 Continued
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contains the same information for the equations that relate one factor to another. The coefficients 
that are significant, 2 tailed, at p 6 .05 are marked with an @ sign. Increasing age, more life 
change units (stress), and poorer sense of self all significantly predict worse perceived ill health 
(unstandardized coefficient age [V17] = .069, stress [V21] = .473, poor sense of self [F1] = .269). 
Increased health care utilization is predicted by increased stress (unstandardized coefficient = .905) 
and perceived ill health (F2, unstandardized coefficient = 1.837). In this model, age does not signifi-
cantly predict increased health care utilization. (Note: In the interest of developing a parsimonious 
model, it would have been reasonable to run a final model and drop all the nonsignificant paths.)

STANDARDIZED SOLUTION: R-SQUARED

TIMEDRS =V5 = .461 F3 + .887 E5 .213
PHYHEAL =V6 = .555*F2 + .831 E6 .309
MENHEAL =V7 = .903 F2 + .430 E7 .815
DRUGUSE =V8 = .629*F3 + .777 E8 .396
ESTEEM  =V11 = .603*F1 + .798 E11 .363
CONTROL =V12 = .552*F1 + .834 E12 .305
ATTMAR  =V13 = .434*F1 + .901 E13 .189
PERCHEAL=F2 = .116*V17 + .464*V21 + .485*F1 + .758 D2 .426
USEHEAL =F3 = .529*F2 + .034*V17 + .256*V21 + .737 D3 .457

CORRELATIONS AMONG INDEPENDENT VARIABLES

V F

V21 - SCSTRESS −.290*I I
V17 - AGE I I

I I
F1  - SELF −.121*I I
V17 - AGE I I

I I
F1  - SELF .016*I I
V21 - SCSTRESS I I

I I

CORRELATIONS AMONG INDEPENDENT VARIABLES

E D

E6 -PHYHEAL .398*I I
E5 -TIMEDRS I I

I I
E8 -DRUGUSE .292*I I
E6 -PHYHEAL I I

I I

TABLE 14.23 Continued



774 C H A P T E R  1 4

TABLE 14.24 Checklist for Structural Equations Modeling

1. Issues

a. Sample size and missing data

b. Normality of sampling distributions

c. Outliers

d. Linearity

e. Adequacy of covariances

f. Identification

g. Path diagram–hypothesized model

h. Estimation method

2. Major analyses

a. Assessment of fit

(1) Residuals

(2) Model chi-square

(3) Fit indices

b. Significance of specific parameters

c. Variance in a variable accounted for by a factor

3. Additional analyses

a. Lagrange Multiplier test

(1) Tests of specific parameters

(2) Addition of parameters to improve fit

b. Wald test for dropping parameters

c. Correlation between hypothesized and final model or cross-  validate model

d.  Diagram–final model

Evaluation of indirect effects is done from the section labeled DECOMPOSITION OF 
EFFECTS WITH NONSTANDARDIZED VALUES PARAMETER INDIRECT EFFECTS. Age, 
number of life change units, and Poor Sense of Self all indirectly affect Health Care Utilization. Said 
another way, perceived ill health serves as an intervening variable between age, stress, Poor Sense of 
Self, and Health Care Utilization. Increasing age, more stress, and Poor Sense of Self all predict greater 
Perceived Ill Health, which in turn predicts greater health care utilization over and above the direct 
effects of these variables on Health Care Utilization (age unstandardized indirect effect =.127, 
z = 2.112, stress unstandardized indirect effect = .869, z = 3.83, Poor Sense of Self unstandardized 
indirect effect = .494, z = .49). The standardized solution for the indirect effects appears in the section 
labeled DECOMPOSITION OF EFFECTS WITH STANDARDIZED VALUES. The standardized 
direct effects included in the model are shown in the section labeled STANDARDIZED SOLUTION.

The percent of variance in the dependent variables accounted for by the predictors is found 
in the R-SQUARED column in the STANDARDIZED SOLUTION section of Table 14.23: 42.6% of 
the variance in Perceived Ill Health is accounted for by age, stress, and Poor Sense of Self; 45.7% of 
the variance in Health Care Utilization is accounted for by Perceived Ill Health, age, and stress. The 
checklist for SEM analysis is in Table 14.24. A Results section for the SEM analysis follows.
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Results

The Hypothesized Model

The hypothesized model is in Figure 14.12. Circles represent 

latent variables, and rectangles represent measured variables. 

Absence of a line connecting variables implies lack of a 

hypothesized direct effect.

The hypothesized model examined the predictors of health care 

utilization. Health care utilization was a latent variable with 

2 indicators (number of visits to health professionals and frequency 

of drug use). It was hypothesized that perceived ill health (a 

latent variable with 2 indicators—  number of mental health problems 

and number of physical health problems), age, and number of life 

stress units directly predicted increased health care utilization.

Additionally it was hypothesized that perceived ill health 

is directly predicted by poorer sense of self, greater number 

of life change units, and increasing age. Perceived ill health 

served as an intervening variable between age, life change 

units, poor sense of self, and health care utilization.

Assumptions

The assumptions were evaluated through IBM SPSS and EQS. The 

dataset contains responses from 459 women. There were complete 

data for 443 participants on the nine variables of interest. 

Five participants (1.1%) were missing data on attitudes toward 

marriage (ATTMAR), 4 participants (.9%) were missing age (AGE), 

and 7 (1.5%) are missing the stress measure (STRESS). This 

analysis used complete only cases (N = 443).

There were no univariate or multivariate outliers. There was 

evidence that both univariate and multivariate normality were 

violated. Eight of the measured variables (TIMEDRS, PHYHEAL, 

MENHEAL, DRUGUSE, ESTEEM, CONTROL, STRESS, and ATTMAR) were 
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significantly univariately skewed, p < .001. Mardia’s normalized 

coefficient = 6.42, p < .001, indicating violation of multivariate 

normality. Therefore, the models were estimated with maximum 

likelihood estimation and tested with the Satorra–  Bentler scaled 

chi square (Satorra & Bentler, 1988). The standard errors also were 

adjusted to extent of the nonnormality (Bentler & Dijkstra, 1985).

Model Estimation

Only marginal support was found for the hypothesized model 

Satorra–Bentler x2(20, N = 443) = 86.91, p < .05, Robust CFI = 

.88, RMSEA = .08.

Post hoc model modifications were performed in an attempt 

to develop a better fitting model. On the basis of the Lagrange 

multiplier test, and theoretical relevance, two residual 

covariances were estimated (residual covariance between number 

of physical health problems and number of visits to health 

professionals and the residual covariance between frequency 

of drug use and number of visits to health professionals). The 

model was significantly improved with the addition of these 

paths, Satorra–Bentler x2
difference(2, N = 443)= 37.33, p < .05.

The final model fit the data well, Satorra–  Bentler x2(18, N = 

443) = 40.17, p < .05, Robust CFI = .96, RMSEA = .05. Because post 

hoc model modifications were performed, a correlation was calculated 

between the hypothesized model estimates and the estimates from the 

final model, r(20) = .97, p < .01. This high correlation indicates 

that the parameter estimates from the first and last models are 

highly related to each other. The final model with standardized and 

unstandardized coefficients is in Figure 14.13.

Direct Effects

Increased health care utilization was predicted by greater 

perceived ill health (unstandardized coefficient = 1.84, 
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p < .05), and more stress (life change units, unstandardized 

coefficient = .90, p < .05). Increasing age did not significantly 

predict increased health care utilization (unstandardized 

coefficient = .07, p > .05).

Perceived ill health increased as stress increased (number of 

life change units, unstandardized coefficient = .47, p < .05), age 

increased (unstandardized coefficient = .07, p < .05), and women had 

a poorer sense of self (unstandardized coefficient = .27, p < .05).

Indirect Effects

The significance of the intervening variables was evaluated 

using tests of indirect effects through EQS (Sobel, 1988). This 

method of examining intervening variables has more power than 

the mediating variable approach (Baron & Kenny, 1986; MacKinnon, 

Lockwood, Hoffman, West, & Sheets, 2002).

Perceived ill health served as an intervening variable 

between age, life change units, and poor sense of self. Increased 

age predicted greater perceived ill health which predicted 

greater health care utilization (unstandardized indirect effect 

coefficient = .13, p < .05, standardized coefficient = .06). More 

life change units predicted worse perceived ill health, greater 

perceived ill health predicted greater health care utilization, 

(unstandardized indirect effect coefficient = .87, p < .05, 

standardized coefficient = .25). A poorer sense of self also 

predicted worse perceived ill health, which was associated with 

greater health care utilization (unstandardized indirect effect 

coefficient = .49, p < .05, standardized coefficient = .26).

Almost half (45.7%) of the variance in health care 

utilization was accounted for by perceived ill health, age, 

stress, and poor sense of self. Poor sense of self, stress, and 

age accounted for 42.6% of the variance in perceived ill health.
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14.7 Comparison of Programs

The four SEM programs discussed—  EQS, LISREL, SAS CALIS, and AMOS—  are full-  service, 
multioption programs. A list of options included in each package is presented in Table 14.25.

14.7.1 EQS

EQS is the most user-  friendly of the programs. The equation method of specifying the model is 
clear and easy to use and the output is well organized. Colors distinguish key words from user 
input in the equation method. In addition to the equation method of model specification, there are 
also options to specify the model through a diagram or with a windows “point and click” method. 
EQS offers numerous diagnostics for evaluation of assumptions and handles deletion of cases very 
simply. Evaluation of multivariate outliers and normality can be performed within this program. 
Missing data can be imputed within EQS. EQS is the only program to impute nonnormal data. 
EQS reads data sets from a variety of other statistical and database programs. Several methods of 
estimation are offered. EQS is the only program that offers the correct adjusted standard errors and 
Satorra–  Bentler scaled x2 for model evaluation and the Bentler–  Yuan (1999) test statistic. This 
is the program of choice when data are nonnormal. A specific estimation technique is available 
if the measured variables are nonnormal with common kurtosis. A second method for treatment 
of nonnormal data, through estimation of polychoric or polyserial correlations, is also available. 
Additionally, EQS is able to analyze multilevel models.

EQS is also the program of choice if model modifications are to be performed. EQS is very 
flexible, offering both multivariate and univariate LM tests, as well as the multivariate Wald test. 
EQS offers several options for matrices to be considered for modification and allows specifica-
tion of order of consideration of these matrices. Categorical variables can be included within the 
model without preprocessing. EQS allows multiple group models to be specified and tested easily. 
Diagrams are available in EQS. The entire EQS Manual is included within the program.

14.7.2 LISREL

LISREL is a set of three programs: PRELIS, SIMPLIS, and LISREL. PRELIS preprocesses data, 
for example, categorical or nonnormal data, for SEM analyses through LISREL. SIMPLIS is a pro-
gram that allows models to be specified with equations. SIMPLIS is very simple to use but is some-
what limited in options, and some output, for example, a standardized solution, must be requested 
in LISREL output form. Models can be specified through diagrams or point and click methods with 
SIMPLIS. LISREL specifies SEM models with matrices and some models become quite compli-
cated to specify when using this method. Missing data can be imputed with PRELIS. LISREL also 
is capable of estimating multilevel models.

LISREL offers residual diagnostics, several estimation methods, and many fit indices. 
LISREL includes two types of partially standardized solutions. The univariate LM test is also avail-
able. Nonnormal and categorical data can be included in LISREL by first preprocessing the data in 
PRELIS to calculate polyseric and polychoric correlations. LISREL also calculates the SMC for 
each variable in the equations. Coefficients of determination are calculated for the latent DVs in the 
model. Diagrams are available in SIMPLIS.
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TABLE 14.25 Comparison of Programs for SEM

Feature EQS LISREL AMOS SAS CALIS

Input

Covariance matrix

Lower triangular Yes Yes Yes Yes

Full symmetric Yes Yes Yes Yes

Input stream Yes Yes No No

Asymptotic covariance matrix Yes Yes No No

Multiple covariance matrices Yes Yes Yes No

Correlation matrix

Lower triangular Yes Yes Yes Yes

Full symmetric Yes Yes Yes Yes

Input stream Yes Yes No No

Matrix of polychoric, polyserial correlations Yes Yes No No

Correlation matrix based on optimal scores No Yes No No

Multiple correlation matrices Yes Yes Yes No

Moment matrices Yes Yes Yes Yes

Sum of squares and cross-  products matrix No No No Yes

Raw data Yes Yes Yes Yes

User specified weight matrix Yes Yes No No

Categorical (ordinal) data Yes Yesa No No

Means and standard deviations Yes Yes Yes Yes

Delete cases Yes Yesa No Yes

Estimate model from diagram Yes Yesb Yes No

Windows “point and click” method Yes Yesb Yes No

Multilevel models Yes Yes No No

Estimation methods

Maximum likelihood (ML) Yes Yes Yes Yes

Unweighted least squares (ULS) Yes Yes Yes Yes

Generalized least squares (GLS) Yes Yes Yes Yes

Two-stage least squares No Yes No No

Diagonally weighted least squares No Yes No No

Elliptical least squares (ELS) Yes No No No

Elliptical generalized least squares (EGLS) Yes No No No

Elliptical reweighted least squares (ERLS) Yes No No No

Arbitrary distribution generalized least squares (AGLS) Yes Yes Yes No

Satorra–Bentler scaled chi-square Yes Yes No No

(continued )
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Feature EQS LISREL AMOS SAS CALIS

Estimation methods (continued )

Bentler–Yuan (1999) F Yes No No No

Robust standard errors Yes No No No

Elliptical cor. chi-square No No No Yes

Instrumental variables No Yes No No

Specify number of groups Yes Yes Yes No

Scale free least squares No No Yes No

Specify elliptical kurtosis parameter—kappa Yes No No No

Specify model with equations Yes Yesb Yes Yes

Specify model with matrix elements No Yes No Yes

Specify models with intercepts Yes Yes Yes Yes

Start values

Automatic Yes Yes Yes Yesc

User specified Yes Yes Yes Yes

Specify confidence interval range No No No No

Automatically scale latent variables No Yes No No

Specify covariances Yes Yes Yes Yes

Specify general linear constraints Yes Yes Yes Yes

Nonlinear constraints No Yes No No

Specify cross-group constraints Yes Yes Yes No

Specify inequalities Yes Yes No Yes

Lagrange multiplier test—Univariate Yes Yes Yes Yes

Lagrange multiplier test—Multivariate Yes No No No

Lagrange multiplier options

Indicate parameters to be considered first for addition Yes No No No

Indicate specific order for entry consideration Yes No No No

Specify LM testing process Yes No No No

Specify specific matrices only Yes Yes No No

Set probability value for criterion for inclusion Yes Yes No No

Specify parameters not to be included in LM test Yes Yes No No

Wald test—Univariate Yes No No Yes

Wald test—Multivariate Yes No No Yes

Wald test options

Indicate parameters to be considered first for dropping Yes No No No

Indicate specific order for dropping consideration Yes No No No

TABLE 14.25 Continued
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Feature EQS LISREL AMOS SAS CALIS

Set probability value Yes No No No

Specify parameters not to be included in Wald test Yes Yes No Yes

Specify number of iterations Yes Yes Yes No

Specify maximum CPU time used No Yes No Yes

Specify optimization method No No No Yes

Specific convergence criterion Yes Yes Yes No

Specify tolerance Yes No No Yes

Specify a ridge factor No Yes No No

Diagram Yes Yes Yes Yes

Effect decomposition Yes Yes Yes Yesd

Simulation Yes Yes No

Bootstrapping Yes Yes Yes Yes

Missing data estimation Yes Yes Yes No

Output

Means Yes No No Yes

Skewness and kurtosis Yes No No Yes

Mardia’s coefficient Yes No No Yes

Normalized estimate Yes No No Yes

Mardia based kappa Yes No No Yes

Mean scaled univariate kurtosis Yese No No Yes

Multivariate least squares kappa Yese No No No

Multivariate mean kappa Yes No No No

Adjusted mean scaled univariate kurtosis Yes No No Yes

Relative multivariate kurtosis coefficient No No No Yes

Case numbers with largest contribution to normalized 
multivariate kurtosis Yes No No Yes

Sample covariance matrix Yes Yes Yes Yes

Sample correlation matrix Yes Yes Yes Yes

Estimated model covariance matrix Yes Yes Yes Yes

Correlations among parameter estimates Yes Yes Yes Yes

Asymptotic covariance matrix of parameters No Yes No No

Iteration summary Yes No Yes Yes

Determinant of input matrix Yes No Yes Yes

Residual covariance matrix Yes Yes Yes Yes

Largest raw residuals Yes Yes Yes Yes

TABLE 14.25 Continued

(continued )
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TABLE 14.25 Continued

Feature EQS LISREL AMOS SAS CALIS

Output (continued )

Completely standardized residual matrix Yes No No Yes

Largest completely standardized residuals Yes No No Yes

Frequency distribution of standardized residuals Yes No No Yes

Largest partially standardized residual No Yes No No

Partially standardized residual matrix No Yes No No

Q plot of partially standardized residuals No Yes No No

Frequency distribution of partially standardized residuals No Yes No No

Estimated covariance matrix Yes Yes Yes Yes

Estimated correlation matrix Yes Yes Yes Yes

Largest eigenvalue of B*B′ No Yes No No

Goodness-of-fit indices

Normed fit index (NFI) (Bentler & Bonett, 1980) Yes Yes Yes Yes

Nonnormed fit index (NNFI) (Bentler & Bonett, 1980) Yes Yes No Yes

Comparative fit index (CFI) (Bentler, 1995) Yes Yes Yes Yes

Minimum of fit function Yes Yes Yes Yes

Noncentrality parameter (NCP) No Yes Yes No

Confidence interval of NCP No Yes Yes No

Goodness-of-fit index (GFI) Yes Yes Yes Yes

Adjusted goodness-of-fit index Yes Yes Yes Yes

Root mean square residual Yes Yes Yes Yes

Standardized root mean square residual Yes Yes No No

Population discrepancy function (PDF) No Yes No No

Confidence interval for PDF No Yes No No

Root mean square error of approximation (RMSEA) Yes Yes Yes No

Confidence interval for RMSEA Yes No Yes No

Akaike’s information criterion model Yes Yes Yes Yes

Akaike’s information criterion—independence model Yes Yes Yes No

Akaike’s information criterion—saturated model No Yes Yes No

Consistent information criterion model Yes Yes Yes Yes

Consistent information criterion—independence model Yes Yes Yes No

Consistent information criterion—saturated model No Yes Yes No

Schwartz Bayesian criterion No No No Yes

McDonald’s centrality (1989) Yes No No Yes

James, Mulaik, and Brett (1982) parsimony index No Yes Yes Yes

Z test (Wilson & Hilferty, 1931) No No No Yes
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Feature EQS LISREL AMOS SAS CALIS

Normed index rho 1 (Bollen, 1986) No Yes No Yes

Non-  normed index delta 2 (Bollen, 1989a) Yes Yes No Yes

Expected cross-validation index (ECVI) No Yes Yes No

Confidence interval for ECVI No Yes Yes No

ECVI for saturated model No Yes Yes No

ECVI for independence model No Yes Yes No

Hoelter’s critical N No Yes Yes Yes

Brown–Cudeck criterion No No Yes No

Bayes information criterion No No Yes No

P for test of close fit No No Yes No

R2 for dependent variables Yes Yes No Yes

SMC for structural equations No Yes Yes No

Coefficient of determination for structural equations No Yes No No

Latent variable score regression coefficients No Yes Yes Yes

Unstandardized parameter estimates Yes Yes Yes Yes

Completely standardized parameter estimates Yes No Yes Yes

Partially standardized solution No Yes No No

Standard errors for parameter estimates Yes Yes Yes Yes

Variances of independent variables Yes Yes Yes Yes

Covariances of independent variables Yes Yes Yes Yes

Test statistics for parameter estimates Yes Yes Yes Yes

Save output to file

Condition code flag Yes No No Yes

Convergence flag Yes No No No

Function minimum No No No Yes

Independence model Yes No No Yes

Model x2 value Yes No No Yes

Model degrees of freedom Yes No No Yes

Probability level Yes No No Yes

Bentler–Bonett normed fit index Yes Yes No No

Bentler–Bonett nonnormed fit index Yes Yes No No

Comparative fit index Yes Yes No Yes

GFI No Yes No Yes

AGFI No Yes No Yes

Root mean square residual No Yes No Yes

TABLE 14.25 Continued

(continued )
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Feature EQS LISREL AMOS SAS CALIS

Save output to file (continued )

Number of parameters in model No No No Yes

AIC No Yes No Yes

CAIC No Yes No Yes

Schwartz’s Bayesian criterion No No No Yes

James, Mulaik, & Hilferty parsimony index No Yes No Yes

z test of Wilson & Hilferty No No No Yes

Hoelter’s critical N No Yes No Yes

Generated data Yes Yesa No Yesd

Derivatives Yes No No Yes

Gradients Yes No No Yes

Matrix analyzed Yes Yes No Yes

Means No No No Yes

Standard deviations No No No Yes

Sample size No No No Yes

Univariate skewness No No No Yes

Univariate kurtosis No No No Yes

Information matrix No No No Yes

Inverted information matrix Yes No No Yes

Weight matrix Yes No No No

Estimated population covariance matrix No Yes No Yes

Asymptotic covariance matrix No Yes No No

Asymptotic covariance matrix of parameter estimates No Yes No No

Parameter estimates Yes No No Yes

Residual matrix Yes No No No

Standard errors Yes No No Yes

LM test results Yes No No No

Wald test results Yes No No No

Updated start values Yes No Yes Yes

Automatic model modification Yes Yes No No

aIn PRELIS.
bIn SIMPLIS.
cNot available with COSAN model specification.
dWith SAS IML.
eWith AGLS estimation only.

TABLE 14.25 Continued
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14.7.3 AMOS

AMOS allows models to be specified through diagrams or equations. Different options are available 
for the equation method. AMOS makes clever use of colors in the equation specification method. 
Key words are presented in a different color than user-  specified words. If the line is correct, the 
color changes. If the line is incorrect, the color remains. Several different estimation methods are 
available. Detailed goodness-of-fit information is given in output. Missing data can be estimated in 
AMOS. AMOS also has extensive bootstrapping capabilities. Multiple group models can be tested. 
Categorical data is not treated in AMOS. Table or text options are also presently available. AMOS 
has a clever output feature. If the cursor is placed over certain elements of the output within the 
AMOS program, a little help screen pops up and explains that portion of the output. One limitation 
of AMOS is the inability to save output without transporting it to a word-  processing program.

14.7.4 SAS System

SAS CALIS offers a choice of model specification methods:lineqs (Bentler–Weeks), ram, and 
cosan (a form of matrix specification). Diagnostics are available for evaluation of assumptions; 
for instance, evaluations of multivariate outliers and multivariate normality can be done within 
CALIS. If data are nonnormal, but with homogenous kurtosis, the chi-  square test statistics can 
be adjusted within the program. Several different estimation techniques are available and lots of 
information about the estimation process is given. Categorical data are not treated in CALIS, nor 
can multiple group models be tested.
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15.1 General Purpose and Description

Multilevel (hierarchical) linear modeling1 (MLM) is used for research designs, where the data 
for participants are organized at more than one level. For example, student achievement (the DV) 
is measured for pupils within classrooms, which are, in turn, organized within schools. Different 
variables may be available for each level of analysis; for example, there may be a measure of 
student motivation at the pupil level, a measure of teacher enthusiasm at the classroom level, 
and a measure of poverty at the school level. You may recognize this as the nested ANOVA de-
sign of Section 3.2.5.1. It also has many of the characteristics of the random effects ANOVA of 
Section 3.2.5.4, because most often the lower-  level units of analysis were not randomly assigned 
to higher levels of the hierarchy (pupils within classrooms or classrooms within schools).

MLM provides an alternative analysis to several different designs discussed elsewhere in this 
volume. Although the lowest level of data in MLM is usually an individual, it may instead be re-
peated measurements of individuals. For example, there may be measures of student achievement at 
the beginning, middle, and end of the school year, nested within pupils, nested within classrooms, 
and nested within schools. Thus, MLM provides an alternative to univariate or multivariate analy-
sis of repeated measures. Because there are separate analyses of each case over time, individual 
differences in growth curves may be evaluated. For example, do students differ in their pattern of 
growth in achievement over the school year? If so, are there variables, such as hours of homework, 
that predict these differences? MLM also has been developed within the framework of structural 
equation modeling to permit analysis of latent variables (where, e.g., there might be several factors 
representing different aspects of teacher enthusiasm) and yet another approach to longitudinal data.

Another useful application of MLM is as an alternative to ANCOVA, where DV scores are 
adjusted for covariates (individual differences) prior to testing treatment differences (Cohen, Cohen, 
West, & Aiken, 2003). MLM analyzes these experiments without the often-  pesky assumption of ho-
mogeneity of regression, in which it is assumed that the relationship between the DV and CV(s) is 
the same for all treatment groups.

15 Multilevel
Linear Modeling

1We have chosen multilevel linear modeling (MLM) rather than hierarchical linear modeling (HLM) to avoid confusion with 
the HLM software package. Note that the term hierarchical as used here does not imply sequence, and therefore differs from 
that of hierarchical/sequential modeling used in other chapters of this book.
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An advantage of MLM over alternative analyses is that independence of errors is not re-
quired. In fact, independence is often violated at each level of analysis. For example, students in a 
classroom influence each other, so are apt to be more alike than students in different classrooms; 
similarly, students within one school are apt to be more alike than students in different schools. In 
a repeated-measures2 design, measurements made on occasions close in time are likely to be more 
highly correlated than measurements made on occasions farther apart in time (recall sphericity of 
Chapter 8). In addition, there may be interactions across levels of the hierarchy. For example, stu-
dent motivation at the lowest level may well interact with teacher enthusiasm at the classroom level.

Analyzing data organized into hierarchies as if they are all on the same level leads to both 
interpretational and statistical errors. Suppose, for example, that data for student achievement are 
aggregated to the classroom level to see if groups3 that differ in teacher enthusiasm have different 
mean scores. Interpretation is restricted to the classroom level; however, a common error of inter-
pretation is to apply group level results to the individual level. This is called the ecological fallacy.
Statistically, this type of analysis usually results in decreased power and loss of information, be-
cause the unit of analysis for purposes of deriving the ANOVA error term is the group. That is, n is 
the number of groups, not the number of participants in each group.

A less common but equally misleading approach is to interpret individual-  level analyses at 
the group level, leading to the atomistic fallacy (Hox, 2002). A multilevel model, on the other hand, 
permits prediction of individual scores adjusted for group differences as well as prediction of group 
scores adjusted for individual differences within groups. Statistically, if individual scores are used 
without taking into account the hierarchical structure, the Type I error rate is inflated because analyses 
are based on too many degrees of freedom that are not truly independent.

MLM addresses these issues by allowing intercepts (means) and slopes (IV–  DV relation-
ships) to vary between higher-  level units. For example, the relationship between student achieve-
ment (the DV) and student motivation (the IV) is allowed to vary between different classrooms. This 
variability is modeled by treating group intercepts and slopes as DVs in the next level of analysis. 
For the example, there is an attempt to predict differences in means and slopes within classrooms 
from differences in teacher enthusiasm between classrooms. These group differences, in turn, can 
vary across yet higher-  level units (e.g., schools), so that third-  level equations can be built to model 
the variability between second-  level units, and so on.

Multilevel models often are called random coefficient regression models because the regres-
sion coefficients (the intercepts and predictor slopes) may vary across groups (higher-  level units), 
which are considered to be randomly sampled from a population of groups. For the example, the 
regression coefficients for the relationship between student achievement and student motivation 
are considered to be randomly sampled from a population of classrooms. In garden-  variety (OLS) 
regression, it is the individual participants who are considered to be a random sample from some 
population; in multilevel modeling, the groups also are considered to be a random sample.

One advantage of the multilevel modeling approach over other ways of handling hierarchical 
data is the opportunity to include predictors at every level of analysis. For the example, a predictor 
of student achievement might include student motivation and/or study time and/or gender at the stu-
dent level of analysis, teacher enthusiasm and/or teacher emphasis on homework at the classroom 

2  Repeated-measures terminology is customary in MLM rather than within-  subjects terminology.
3Group, cluster, and context are terms that are used synonymously in MLM to denote higher-  level units of analysis. Thus, 
multilevel models are sometimes referred to as contextual or clustered models (not to be confused with cluster analysis).
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level of analysis, and school poverty level and/or school type (public vs. private) and/or school size 
at the school level. Higher-  level predictors may help explain lower-  level differences in intercepts 
and slopes. For example, differences between average classroom achievement (the intercept) and 
the relationship between student achievement and student motivation (the slope) could be a function 
of school poverty level. Within-  level interactions among predictors (e.g., between school poverty 
level and school size) can be modeled, as well as cross-  level interactions (e.g., between teacher 
emphasis on homework and school type).

Reeves et al. (2010) used multilevel modeling to study the relative impact of state, hos-
pital, and patient variables on the quality of ischemic stroke care as determined on an 8-point 
scale. Data were taken from an acute stroke registry maintained in four states in 2001–  2002. 
A total of 4 states, 96 hospitals, and 4,897 patients remained in the database after exclusions 
for missing data and the like. State differences were not significant and were not included in the 
final model. The only significant hospital-  level variable was bed size, with smaller hospitals 
scoring lower in care than larger hospitals. Bed size accounted for 30% of the hospital-  related 
variability in care. Significant patient-  level variables were age, race, ambulatory status, and 
involvement of a neurologist in care but these together accounted for less than 2% of the 
patient-level variability in care.

Kim and Sax (2011) used multilevel modeling to study the development of student cog-
nitive skills as a function of student–  faculty interaction and department climate variables. The 
study involved a sample of 43,014 students from 119 academic majors in the 9 campuses of the 
University of California system. The development of student cognitive skills was a composite of 
measures of analytical, writing, and comprehension skills. Student–  faculty interaction was mea-
sured by amount of student–  faculty contact outside of class, by e-mail or in person, and during 
class sessions. Student involvement in research activities was also assessed. The researchers sum-
marized a series of multilevel models by concluding that the amount of faculty support for the 
major, emphasis on critical thinking and reasoning in coursework, and better organized programs 
foster greater student–  faculty interaction that is, in turn, important to the development of critical 
thinking in students.

Multilevel modeling is a highly complex set of techniques; we can only skim the surface 
of this fascinating topic. Several recent books address MLM in greater depth. One that is espe-
cially easy to follow and discusses software without being tied to any one package is Hox (2002). 
Snijders and Bosker (1999) offer an introduction to multilevel modeling as well as ample discus-
sion of more advanced topics. The book is a rich source of examples in the social sciences, as 
well as discussion of more exotic transformations than we cover in this book to produce better-
fitting models. The classic multilevel modeling text is by Raudenbush and Bryk (2001), who are 
also the authors of HLM, a stand-  alone package. Kreft and DeLeeuw (1998) offer a helpful intro-
ductory guide to MLM that is tied to MlwiN, another stand-  alone package. An introductory text 
by Heck and Thomas (2000) provides detailed information for multilevel factor and structural 
equation modeling as well as for the more common multilevel regression models emphasized in 
this chapter.

We (reluctantly) demonstrate only IBM SPSS and SAS MIXED programs in this chapter. 
However, there are two excellent stand-  alone packages, HLM and MLwiN, in addition to SYSTAT 
MIXED REGRESSION, that also handle MLM and have features absent in IBM SPSS and SAS. 
Therefore, we discuss these programs throughout the text and compare their features in the final 
section of this chapter.
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15.2 Kinds of Research Questions

The primary questions in MLM are like the questions in multiple regression: degree of relationship 
among the DV and various IVs (Is student achievement related to student motivation or teacher en-
thusiasm?); importance of IVs (How important is student motivation? Teacher enthusiasm?); adding 
and changing IVs (What happens when school poverty level is added to the equation?); contingencies 
among IVs (Once differences due to student motivation are factored into the equation, what happens to 
teacher enthusiasm?); parameter estimates (What is the slope of the equation that relates student mo-
tivation to student achievement?); and predicting DV scores for members of a new sample. However, 
additional questions can be answered when the hierarchical structure of the data is taken into account 
and random intercepts and slopes are permitted. Only these additional questions are discussed here.

15.2.1 Group Differences in Means

This question is answered as part of the first step in routine hierarchical analyses. Is there a sig-
nificant difference in intercepts (means) for the various groups? For example, is there a significant 
difference in mean student achievement in the different classrooms? As in ANOVA, this is a ques-
tion about variability: Is the variance between groups (between-  subject variance in ANOVA) greater 
than would be expected by chance (within-  subject variance in ANOVA)? Section 15.4.1.2 discusses 
analysis of first-  level intercepts. These differences also are evaluated as precursors to MLM through 
calculation of intraclass correlations (Section 15.6.1).

15.2.2 Group Differences in Slopes

This question may also be answered as part of routine hierarchical analyses. Is there a significant 
difference in slopes for the various groups? For example, is there a significant difference in the 
slope for the relationship between student achievement and student motivation among the differ-
ent classrooms? Group differences in slope between a predictor and the DV are called a failure of 
homogeneity of regression in ANCOVA, but in MLM such differences are expected and included 
in the model. These differences are assessed separately for all first-  level predictors if there is more 
than one. Section 15.4.2.2 discusses second-  level analysis of first-  level predictors.

15.2.3  Cross-Level Interactions

Does a variable at one level interact with a variable at another level in its effect on the DV? For 
example, does school-  level poverty (a third-  level variable) interact with student motivation (a first-
level variable) to produce differences in student achievement? Or, does teacher level of enthusiasm 
(a second-  level variable) interact with student motivation to produce differences in student achieve-
ment? Or, does school-  level poverty interact with teacher enthusiasm to produce differences in stu-
dent achievement? Addition of such cross-  level interactions to the multilevel regression equation 
is discussed in Section 15.6.3. Cross-  level interactions may be especially interesting in the context 
of experiments where the treated (as opposed to the control) group displays a different relationship 
between a predictor and the DV. Cohen et al. (2003) discuss an example in which the treatment 
moderates the relationship between weight loss (the DV) and motivation (a predictor)—treatment 
gives more highly motivated participants the means for effective dieting.
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15.2.4  Meta-Analysis

MLM provides a useful strategy for meta-  analyses in which the goal is to compare many studies 
from the literature that address the same outcome. For example, there may be hundreds of studies 
evaluating various aspects of student achievement. Original raw data usually are not available, but 
statistics for numerous studies are available in the form of effect sizes, p values, and often means 
and standard deviations. A common outcome measure is derived for the various studies, often a 
standardized effect size for the outcome measure (student achievement). When these problems are 
addressed through MLM, individual studies provide the lowest level of analysis. A simple analysis 
(Section 15.4.1) determines whether there are significant differences among studies in effect size. 
IVs (such as student motivation, teacher enthusiasm, or school poverty level) are then investigated 
to try to determine whether differences in the various studies are predicted by those IVs (cf. Hox, 
2002, Chapter 6).

15.2.5 Relative Strength of Predictors at Various Levels

What is the relative size of the effect for individual-  level variables versus group-  level variables? 
Or, are interventions better aimed at the individual level or the group level? For example, if there is 
to be an intervention, should it be directed at the motivation of individual students or the enthusi-
asm levels of teachers? Analytic techniques are available through SEM (cf. Chapter 14) to evaluate 
the relative strengths of individual versus group effects. Hox (2002), as well as Heck and Thomas 
(2000), demonstrates such multilevel factor and path analyses.

15.2.6 Individual and Group Structure

Is the factor structure of a model the same at the individual and group level? Do individual students 
and teachers have the same pattern of responses to a questionnaire? That is, do the same items 
regarding homework, extra curricular activities, and the like load on the same factors at the indi-
vidual and group levels? These and similar questions can be answered through application of SEM
techniques to analysis of covariance structures (variance–  covariance matrices) aimed at data at the 
individual level and the group level. Section 15.5.3 discusses these models.

15.2.7 Effect Size

How much of the total variance in behavior is associated with predictors? How much better can we 
predict student motivation with the knowledge of their motivation, their teacher’s enthusiasm, and 
the level of poverty of their schools? Section 15.6.6 discusses these issues, which are much less 
straightforward than are found with other techniques.

15.2.8 Path Analysis at Individual and Group Levels

What is the path model for prediction of the DV from level-1, level-2, and level-3 variables? For 
example, what is the path model for predicting student achievement from student-  level variables 
(e.g., student motivation, study time, and gender), teacher/classroom-  level variables (teacher enthu-
siasm and teacher emphasis on homework), and school-  level variables (poverty level, type of school, 
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and school size)? Hox (2002) provides an example of this type of analysis in an educational setting. 
All of the power of path analysis and, indeed, latent factor analysis can be tapped by the application 
of SEM techniques to multilevel data.

15.2.9 Analysis of Longitudinal Data

What is the pattern of change over time on a measure? Do students show a linear trend of improve-
ment over the school year or do improvements level off after a while? Do individuals differ in their 
trend of improvement (growth curves) over time? There are two MLM techniques that address this 
type of question without the restrictive assumptions of repeated-  measures ANOVA: (1) direct ap-
plication of MLM with occasions as the lowest level of analysis, and (2) latent growth modeling 
using the techniques of SEM (cf. Chapter 14). Section 15.5.1 demonstrates the first application and 
discusses the second. Section 15.7 provides a complete example of a three-  level repeated-  measures
model through MLM techniques.

15.2.10 Multilevel Logistic Regression

What is the probability of a binary outcome when individuals are nested within several levels of a 
hierarchy? For example, what is the probability that a student will be retained when students are 
nested within classrooms and classrooms are nested within schools? Nonnormal, including binary, 
outcomes are discussed in Section 15.5.4.

15.2.11 Multiple Response Analysis

What are the effects of variables at different levels on multiple DVs at the individual level? For example, 
what are the effects of predictors at the student level, the teacher/classroom level, and the school level 
on several different types of student achievements (achievement in reading, achievement in math, 
achievement in problem solving, and so on—  the DVs)? In these analyses, the multivariate DVs are 
presented as the lowest level of analysis. Section 15.5.5 discusses the multivariate form of MLM.

15.3 Limitations to Multilevel Linear Modeling

15.3.1 Theoretical Issues

Correlated predictors are even more problematic in MLM than in simple linear regression. In MLM, 
equations at multiple levels are solved and correlations among predictors at all levels are taken into 
account simultaneously. Because effects of correlated predictors are all adjusted for each other, it 
becomes increasingly likely that none of their regression coefficients will be statistically significant. 
The best advice, then, is to choose a very small number of relatively uncorrelated predictors. A 
strong theoretical framework helps limit the number of predictors and facilitates decisions about 
how to treat them.

If interactions are formed (Section 15.6.3), predictors in the interactions are bound to be cor-
related with their main effects. The problem of multicollinearity between interactions and their 
main effects can be solved by centering (see Section 15.6.2).
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Raudenbush and Bryk (2001) recommend a build-up strategy for MLM analyses. First, a 
series of standard multiple regression analyses are run, starting with the most interesting (or theo-
retically important) predictor and adding predictors in order of importance. Then, predictors that 
do not enhance prediction are dropped unless they are components of cross-  level interactions. This 
strategy is discussed more fully in Section 15.6.8.

Modeling high-  level predictors at their own level is not always the best way to deal with them. 
If there are only a few of them, they are often best entered at the next lower level as categorical pre-
dictors. For example, if there are only a few schools, with several classrooms from each and many 
students in each class, then school can be considered a categorical predictor at the classroom (second) 
level of analysis rather than a third level of analysis. The problem with considering schools at the third 
level is that there are too few of them to generalize to a population of schools (Rasbash et al. 2000).

15.3.2 Practical Issues

Multilevel linear modeling is an extension of multiple linear regression, so the limitations and as-
sumptions of Section 5.3 apply to all levels of the analysis. Thus, conformity with distributional 
assumptions and outliers in the data and in the solution are considered using methods for multiple 
regression. The assumptions are evaluated for the set of predictors at each level and also for sets 
of predictors that are used within cross-  level interactions. Raudenbush and Bryk (2001) recom-
mend using exploratory multiple regression analyses to look for outliers among first-  level predic-
tors within second-  level units. For the example, univariate and multivariate outliers are sought for 
student achievement, student motivation, study time, and student gender within each classroom. 
Ideally, all screening of first-  level predictors should be within second-  level units; however, this may 
be impractical when the number of second-  level units is very large. In that case, they may be com-
bined over the second-  level units. Similarly, second-  level predictors are examined within third-  level 
units if possible, if not they are aggregated over the third-  level units. Programs for MLM provide 
analyses of residuals or permit residuals to be saved to a file for analysis in other modules.

MLM uses maximum likelihood techniques, which pose some further problems, and the use 
of multiple levels creates additional complications, so issues of sample size and multicollinearity 
need to be addressed differently from garden-  variety multiple regression. MLM also addresses in-
dependence of errors differently.

15.3.2.1 Sample Size, Unequal-n, and Missing Data

The price of large, complex models is instability and a requirement for a substantial sample size at 
each level. Even small models, with only a few predictors, grow rapidly as equations are added at 
higher levels of analysis. Therefore, large samples are necessary even if there are only a few predictors.

As a maximum likelihood technique, a sample size of at least 60 is required if only 5 or fewer 
parameters are estimated (Eliason, 1993). Parameters to be estimated include intercepts and slopes 
as well as effects of interest at each level. In practice, convergence often is difficult even with larger 
sample sizes. And you may be unpleasantly surprised at the lengthy processing time on even speedy 
computers when dealing with MLM.

Unequal sample sizes at each of the levels pose no problems and are, indeed, expected. 
Missing values can be tolerated in repeated-  measures analyses [unlike the requirement for complete 
data at all levels of the repeated-  measures IV in ANOVA (Rasbash et al., 2000, pp. 129–  130)]. 
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In MLM, for example, some of the occasions for measurement may be missing for one or more 
cases. In other, nonrepeated measures designs, missing data are estimated using the techniques of 
Section 4.1.3 and inserted at the appropriate level of analysis. Group sizes may be as small as one, 
as long as other groups are larger (Snijders & Bosker, 1999). Group size itself may be a predictor of 
the DV, as in the example in which school size is one of the predictors.

As in most analyses, increasing sample sizes increases power, while smaller effect sizes and 
larger standard errors decrease power. There are other issues that affect power in MLM, however, 
and their effects are not so easily predicted (Kreft & DeLeeuw, 1998). For example, power depends 
on compliance with assumptions of the analysis; with each type of assumption leading to a different 
relationship between the probability of rejecting the null hypothesis and the true effect size. Power 
issues also differ for first-   versus higher-  level effects, and whether effects are considered fixed or 
random (with tests of random effects usually less powerful because standard errors are larger). For 
example, Kreft and DeLeeuw (1998) conclude that power grows with the intraclass correlation (dif-
ference between groups relative to differences within groups, Section 15.6.1), especially for tests of 
second-  level effects and cross-  level interactions. Sufficient power for cross-  level effects is obtained 
when sample sizes at the first level are not too small and the number of groups is 20 or larger. In 
general, simulation studies show that power is greater with more groups (second-  level units) and 
fewer cases per group (first-  level units) than the converse, although more of both leads to increased 
power. Hox (2002) devotes an entire chapter to power and sample size issues and provides guide-
lines for a simulation-  based power analysis. Software for determining power and optimal sample 
size in MLM is available as a free download from Scientific Software International (Raudenbush, 
Spybrook, Liu, & Congdon, 2005).

15.3.2.2 Independence of Errors

MLM is designed to deal with the violation of the assumption of independence of errors expected 
when individuals within groups share experiences that may affect their responses. The problem is 
similar to that of heterogeneity of covariance (sphericity), in that events that are close in time are more 
alike than those farther apart. In MLM, it usually is the individuals within groups who are closer to 
each other in space and experiences than to individuals in other groups. Indeed, when the lowest level 
of the hierarchy is repeated measures over time, multilevel modeling provides an alternative to the as-
sumption of heterogeneity of covariance (sphericity) required in repeated-  measures ANOVA.

The intraclass correlation (r, Section 15.6.1) is an explicit measure of the dependence of 
errors because it compares differences between groups to individual differences within groups. The 
larger the r, the greater the violation of independence of errors and the greater the inflation of 
Type I error rate, if the dependence is ignored. If multilevel data are analyzed using non-  MLM 
statistics and there is dependence of errors, Type I error can be dramatically increased. Barcikowski 
(1981) shows that Type I error rates at a nominal .05 level can be as high as .17 when group sample 
size is 100 and the intraclass correlation is as small as .01; the Type I error rate rises to .70 when 
the intraclass correlation is .20. Thus, significant effects of treatment cannot be trusted if indepen-
dence of errors is assumed without justification. Instead, the hierarchical structure of the data must 
be considered when choosing the appropriate analysis. Alternatively, the group mean could be used 
as the unit of analysis in a simple analysis of variance when r is large. However, this results in loss 
of power associated with decreased sample size; there are far fewer error df when groups rather than 
participants serve as the unit of analysis.
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15.3.2.3 Absence of Multicollinearity and Singularity

Collinearity among predictors is especially worrisome when cross-  level interactions are formed, as 
is common in MLM, because these interactions are likely to be highly correlated with their com-
ponent main effects. At the least, the problem often leads to a failure of significance for the main 
effect(s). At worst, multicollinearity can cause a failure of the model to converge on a solution. The 
solution is to center predictors, a practice with additional benefits, as discussed in Section 15.6.2.

15.4 Fundamental Equations

Small data sets are difficult to analyze through MLM. The maximum likelihood procedure fails to 
converge with multiple equations unless samples are large enough to support those equations. Nor 
is it convenient to apply MLM to a matrix (or a series of matrices). Therefore, we depart from our 
usual presentation of a small sample data set or a matrix of sample correlations and, instead, use a 
portion of a data set developed by others, with the names of variables changed to reflect our usual 
silly research applications.4

Two ski resorts provide a total of 10 ski runs; one at Aspen Highlands (mountain = 1) and 
the rest at Mammoth Mountain (mountain = 0). There are 260 skiers in all, with different ski-
ers on each run at each mountain. Table 15.1 shows the data for a single run, labeled 7,472, at 
Mammoth Mountain. The dependent variable is speed of skiing a run, with skill level of the skier as 
a level-1 predictor.5 The column labeled “skill deviation” is the skill score for each skier minus the 
average skill for skiers on that run (used in some later analyses).

The hierarchy to be modeled is composed of skiers at the first level and runs (the group-
ing variable) at the second level. Skiers and runs are considered random effects. Skiers are nested 
within runs and runs are nested within mountains; however, with only two mountains, that variable 
is considered a fixed predictor at the second-  level rather than specifying an additional third level of 
analysis. The major question is whether or not speed of skiing varies with mountain, after adjusting 
for average skier skill, differences in speed among runs, and differences in the relationship between 
skill and speed among runs.

MLM is often conducted in a sequence of steps. Therefore, the equations and computer analy-
ses are divided into three models of increasing complexity. The first is an intercepts-  only (“null”) 
model, in which there are no predictors and the test is for mean differences between runs (groups—
considered random) on the DV (skiing speed). The second is a model in which the first-  level pre-
dictor, skill, is added to the intercepts-  only model. The third is a model in which the second-  level 
predictor, mountain, is added to the model with the first-  level predictor. Table 15.2 identifies the 
10 runs (the grouping variable), the mountain for each run, and the intercept (mean speed) and slope 
of the relationship between skill and speed from separate bivariate regressions for each run, as well 
as sample size.

4The data set is a selection of 260 cases from the NELS-88 data by Kreft and DeLeeuw (1998) collected by the National 
Center for Educational Statistics of the U.S. Department of Education. Actual variables are public versus private sector 
schools for mountain, school for run, math achievement (rounded) for speed, and homework for skill level.
5The term covariate is used generically for predictors in MLM as in survival analysis. In this chapter we use the terms CVs 
for continuous predictors and IVs for categorical predictors; the term “predictors” here refers generically to a combination 
of CVs and IVs and/or random effects.
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TABLE 15.1 Partial Listing of Sample Data

Run Skier Skill Mountain Speed
Skill

Deviation

7472 3 1 0 5 -0.39
7472 8 0 0 5 -1.39
7472 13 0 0 6 -1.39
7472 17 1 0 5 -0.39
7472 27 2 0 5 0.61
7472 28 1 0 6 -0.39
7472 30 5 0 4 3.61
7472 36 1 0 7 -0.39
7472 37 1 0 4 -0.39
7472 42 2 0 6 0.61
7472 52 1 0 5 -0.39
7472 53 1 0 5 -0.39
7472 61 1 0 5 -0.39
7472 64 2 0 4 0.61
7472 72 1 0 6 -0.39
7472 83 4 0 4 2.61
7472 84 1 0 5 -0.39
7472 85 2 0 5 0.61
7472 88 1 0 5 -0.39
7472 93 1 0 5 -0.39
7472 94 1 0 4 -0.39
7472 96 1 0 5 -0.39
7472 99 1 0 5 -0.39

TABLE 15.2 Intercepts and Slopes for 10 Ski Runs in Sample Data

Run Mountain Intercept Slope Sample Size

7472 0 5.46835 –0.30538 23
7829 0 5.49309 –0.29493 20
7930 0 4.46875 0.81250 24

24725 0 3.92664 0.60039 22
25456 0 5.84116 –0.44765 22
25642 0 5.55777 –0.35458 20
62821 1 6.43780 0.11162 67
68448 0 4.09225 0.66052 21
68493 0 4.26857 0.62000 21
72292 0 4.25258 0.65464 20
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Table 15.3 summarizes the symbols that are typically used in MLM texts (e.g., Kreft & 
DeLeeuw, 1998) and software as a reference for demonstrating equations for the three models.

Prior to an MLM analysis, a number of choices have to be made. First is a decision about 
which predictors, if any, are to be included. Second choice is either “fixing” value of a “parameter” 
to a constant over all groups or letting the value be a random effect (a different value for each group). 
For example, is the intercept to be considered a fixed effect over all groups or will it be allowed to 

TABLE 15.3 Equations and Symbols Typically Used in MLM

Symbol Meaning

Level 1 
Equation Yij = b0j + b1j(Xij) + eij

Yij The DV score for a case at Level 1, i indexes the individual within a group, j indexes the 
group

Xij A Level-1 predictor

b0j The intercept for the DV in group j (Level 2)

b1j The slope for the relationship in group j (Level 2) between the DV and the Level-  1
predictor

eij The random errors of prediction for the Level-1 equation (sometimes called rij)

At Level 1, both the intercepts and the slopes in the j groups can be:
1. Fixed (all groups have the same values, but note that fixed intercepts are rare)
2.  Nonrandomly varying (the intercepts and/or the slopes are predictable from an IV at 

Level 2)
3.  Randomly varying (the intercept and/or the slopes are different in the different 

j groups, each with an overall mean and a variance)

Level 2 
Equations

The DVs are the intercepts and slopes for the IV-DV Level-1 relationships in the 
j groups of Level 2.

b0j = g00 + g01Wj + u0j

b1j = g10 + u1j

g00 The overall intercept; the grand mean of the DV scores across all groups when all 
predictors = 0

Wj A Level-2 predictor

g01 The overall regression coefficient for the relationship (slope) between a Level-2 predictor 
and the DV

u0j Random error component for the deviation of the intercept of a group from the overall 
intercept; the unique effect of Group j on the intercept

g10 The overall regression coefficient for the relationship (slope) between a Level-1 predictor 
and the DV

u1j An error component for the slope; the deviation of the group slopes from the overall 
slope. Also the unique effect of Group j on slope when the value of the Level-2 predictor 
W is zero
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vary over the groups? Typically, even random effects have their fixed component. That is, we are 
interested in looking at the overall mean of the DV (fixed effect, g00) as well as the difference in means 
over higher-  level units (random effect, t00). Thus, we will have two parameters to estimate for the in-
tercept: the fixed mean and the random variability in means. For predictors, we sometimes are inter-
ested in their variability in relationship with the DV over higher-  level units (a random effect, e.g., t11)
but are interested in their average relationship as well (a fixed effect, e.g., g01). This decision is made 
separately for each predictor at each level except that highest-  level predictors may not be considered 
random because there is no higher level within which they can vary. A decision is also made as to 
whether to evaluate the covariance between slopes and intercepts (a random effect, e.g., t10) for each 
predictor that is considered random. Then, a decision is made as to whether to evaluate covariance 
among slopes of different random-  effect predictors if there is more than one (not shown in Table 15.3 
because there is only one first-  level predictor and the second-  level predictor may not vary).

The parameters are the elements of Table 15.3 that are to be estimated (gs and ts, as well 
as eij). Finally, there is the choice of the type of estimation to use (e.g., maximum likelihood or 
restricted maximum likelihood).

15.4.1  Intercepts-Only Model

The MLM is expressed as a set of regression equations. In the level-1 equation for the intercepts-
only model (a model without predictors), the response (DV score) for an individual is predicted by 
an intercept that varies across groups. The intercepts-  only model is of singular importance in MLM 
because it provides information about the intraclass correlation (Section 15.6.1), a value helpful in 
determining whether a multilevel model is required or not.

Symbol Meaning

Combined
Equation with 
Cross-Level 
Interaction Yij = g00 + g01Wj + g10Xij + g11WjXij + u0j + u1jXij + eij

g01Wj A Level-2 regression coefficient (g01) times a Level-2 predictor

g10Xij A Level-2 regression coefficient (g10) times a Level-1 predictor

g11WjXij A Level-2 regression coefficient (g11) times the cross-  product of the Level-2 and Level-1 
predictors; the cross-  level interaction term

u0j + u1jXij

+eij The random error components for the combined equation

Variance Components

t(tau) Variance-  covariance matrix for the estimates of the values of random error components

t00 Variance among random intercepts (means)

t11 Variance among random slopes

t10 Covariance between slopes and intercepts

TABLE 15.3 Continued
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15.4.1.1 The Intercepts-  Only Model: Level-1 Equation

Yij = b0j + eij (15.1)

An individual score on the DV, Yij, is the sum of an intercept (mean), b0j, that can vary 
over the j groups and individual error, eij (the deviation of an individual from her or his 
group mean).

The terms Y and e that in ordinary regression have a single subscript i, indicating case, now 
have two subscripts, ij, indicating case and group. The intercept, b0 (often labeled A in a regression 
equation; cf. Sections 3.5.2 and 5.1) now also has a subscript, j, indicating that the coefficient varies 
over groups. That is, each group could have a separate Equation 15.1.

b0j is not likely to have a single value because its value depends on the group. Instead, a 
parameter estimate (t00) and standard error are developed for the variance of a random effect. The 
parameter estimate reflects the degree of variance for a random effect; large parameter estimates re-
flect effects that are highly variable. For example, the parameter estimate for the groups represents 
how discrepant they are in their means. These parameter estimates and their significance tests are 
shown in computer runs to follow. The z test of the random component, t00 divided by its standard 
error, evaluates whether the groups vary more than that would be expected by chance.

15.4.1.2 The Intercepts-  Only Model: Level-2 Equation

The second-  level analysis (based on groups as research units) for the intercepts-  only model uses the 
level-1 intercept (group mean) as the DV. To predict the intercept for group j:

b0j = g00 + u0j (15.2)

An intercept for a run, b0j, is predicted from the average intercept over groups when there 
are no predictors, g00, and group error, u0j (deviation from average intercept for group j).

A separate Equation 15.2 could be written for each group. Substituting right-  hand terms from 
Equation 15.2 into Equation 15.1:

Yij = g00 + u0j + eij (15.3)

The average intercept (mean) is g00 (a “fixed” component). The two random compo-
nents are u0j (the deviation in intercept for cases in group j) and ej (the deviation for case 
i from its group j).

The two-  level solution to the intercepts-  only model for the sample data is

Speedij = 5.4 + u0j + e0j

The unweighted mean speed (average of the means for each of the 10 groups) is 5.4. Thus, the 
skiing speed for an individual skier is the grand mean for all groups (5.4) plus the deviation of the 
skier’s group from the grand mean plus the deviation of an individual’s speed from his or her group. 
Those familiar with ANOVA recognize this way of thinking about an individual’s score; it is con-
ceived as the grand mean plus the deviation of the individual’s group mean from the grand mean 
plus the deviation of the individual’s score from her or his group mean.
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In MLM, components that resolve to constants are called “fixed.” In Equation 15.3, the grand 
mean is a fixed component and also an estimated parameter (5.4) with its own standard error. The 
ratio of the parameter estimate to its standard error is evaluated as a two-  tailed z test at a predeter-
mined a level. Here, the test is that the grand mean for speed differs from zero and is uninteresting; 
it is akin to the test of the intercept in standard bivariate or multiple regression. More interesting are 
the tests of the variances (u0j and e0j), shown in computer runs.

15.4.1.3 Computer Analyses of Intercepts-Only Model

Tables 15.4 and 15.5 show syntax and selected output for computer analysis of the data described in 
Section 15.4.1 through SAS MIXED and IBM SPSS MIXED.

As seen in Table 15.4, SAS MIXED produces a “null” solution in a single level-2 run. The 
usual model instruction declares SPEED to be the DV; there is nothing after the “ =” because 
there are no predictors in this model. The request for solution provides parameter estimates 
and significance tests for fixed effects. The covtest instruction provides hypothesis testing of 
the variance and covariance components of the random errors in the model. The maximum likeli-
hood method (method=ml) has been chosen. Research units (subject) for the random part 
of the model are RUNs, which is identified as a class (categorical) variable. This indicates how 
the level-2 units (runs) are formed from the level-1 units (skiers). The random instruction sets the 
group intercept to be random. The fixed effect of intercept (the grand mean combined over 
groups) is included implicitly. The type=un instruction indicates that there are no assumptions 
made about the structure of the variance–  covariance matrix (e.g., no assumption of sphericity).

The Dimensions section provides information useful for comparing models by showing 
the number of parameters in the model. Covariance Parameters refers to the two random 
effects in the model: group intercepts and residual. Columns in X refers to the single fixed ef-
fect in the model at this point: overall intercept. Thus, the total number of parameters for the model 
is three, two random effects and one fixed effect.

The Covariance Parameter Estimates section applies to the random com-
ponents in the model. UN(1,1) is the variance in intercepts across runs (t00 of Table 15.3), and 
with a one-  tailed test (appropriate for testing whether intercepts vary more than expected by chance) 
at a = .05 (critical value = 1.58) there is evidence that, indeed, the intercepts vary. This suggests 
the desirability of taking group differences into account when predicting speed.6 The significant 
Residual indicates that there are individual differences among skiers within runs after accounting 
for differences between runs.

Fit statistics are useful for comparing models (recall Section 10.4.3). The Null Model 
Likelihood Ratio Test indicates that the data with groups identified differ significantly 
from a model with just a single fixed intercept.

The remaining output is for the fixed effects in the model. The Intercept = 5.4108 is 
the unweighted mean of the 10 groups (mean of the 10 means, g00 of Table 15.3). The fact that it 
differs significantly from zero is of no research interest.

Table 15.5 shows syntax and output for IBM SPSS MIXED analysis. The DV is shown in the 
first line of syntax as speed; nothing more is specified when there are no predictors. The syntax for 
the FIXED equation also shows no predictors; the test for the fixed effect of the overall intercept is 

6It is also important to evaluate the intraclass correlation, a measure of the strength of the between-  group differences (Section 
15.6.1), because inferential tests are highly influenced by sample size.
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TABLE 15.4 Syntax and Selected Output for SAS MIXED Analysis of Intercepts-  Only Model

proc mixed data=Sasuser.Ss_hlm covtest method=ml;
   class RUN;
   model SPEED= / solution;
   random intercept / type=un subject=RUN;
run;

Dimensions

Covariance Parameters 2
Columns in X 1
Columns in Z Per Subject 1
Subjects 10
Max Obs Per Subject 67

Covariance Parameter Estimates

Cov Parm Subject Estimate
Standard

Error
Z

Value Pr Z

UN(1,1) RUN 0.3116 0.1484 2.10 0.0178
Residual   0.7695 0.06872 11.20 <.0001

Fit Statistics

-2 Log Likelihood 693.5
AIC (smaller is better) 699.5
AICC (smaller is better) 699.6
BIC (smaller is better) 700.4

Null Model Likelihood Ratio Test

DF Chi-Square Pr > ChiSq

1 110.16 <.0001

Solution for Fixed Effects

Effect Estimate

Standard
Error DF t Value Pr > |t|

Intercept 5.4108 0.1857 9 29.13 <.0001

included by default. Method chosen is ML rather than the default REML. The PRINT instruction 
requests parameter estimates and tests for the single fixed effect (SOLUTION) and the two random 
effects (TESTCOV). The RANDOM equation explicitly lists the group intercept. Runs are declared to 
be “subjects” (i.e., units of analysis at second level). Remaining syntax is produced by the menu system.7

The output begins with an indication of fixed and random effects, the type of cova-
riance structure for the random effects, number of parameters (cf. Section 15.6.5.1), and 

7Note that there was a change in specification of COVTYP beginning with Version 11.5 of IBM SPSS.
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TABLE 15.5 Syntax and Output for SPSS MIXED Analysis of Intercepts-  Only Model

MIXED speed
 /CRITERIA=CIN(95) MXITER(100) MXSTEP(10) SCORING(1)
SINGULAR(0.000000000001) HCONVERGE(0, ABSOLUTE) 
LCONVERGE(0, ABSOLUTE) PCONVERGE(0.000001, ABSOLUTE)
 /FIXED=| SSTYPE(3)
 /METHOD=ML
/PRINT=SOLUTION TESTCOV
 /RANDOM=INTERCEPT | SUBJECT(run) COVTYPE(UN).

Mixed Model Analysis

Model Dimensiona

Number
of Levels

Covariance 
Structure

Number of 
Parameters

Subject
Variables

Fixed Effects Intercept 1 1

Random 
Effects

Intercept 1 Identity 1 Run

Residual 1

Total 2 3

a. Dependent Variable: speed.

Information Criteriaa

-2 Log Likelihood 693.468

Akaike’s Information 
Criterion (AIC) 699.468

Hurvich and Tsai’s 
Criterion (AICC) 699.562

Bozdogan’s Criterion (CAIC) 713.150

Schwarz’s Bayesian 
Criterion (BIC) 710.150

The information criteria are displayed in 
smaller-is-better forms.

a. Dependent Variable: speed.

Fixed Effects

Type III Tests of Fixed Effectsa

Source Numerator df
Denominator 

df F Sig.

Intercept 1 10.801 848.649 .000

a. Dependent Variable: speed.
(continued )
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the variable used to combine subjects (run). Helpfully, total number of parameters is also 
shown. Then information is provided that is useful to test differences between models, such as 
−2 Log Likelihood.

Fixed effects follow, with two tables: one for significance tests of combined effects and 
another for parameter estimates, single-df tests, and confidence intervals. Results match those of 
SAS, except for denominator df. The presence of random effects and varying levels can complicate
the calculation of denominator df for fixed effects. IBM SPSS applies corrections for random effects 
and multiple levels even in the simplest models, resulting in fractional values for denominator df. 
SAS does not apply these corrections unless requested (see Table 15.10).

The output concludes with a table for random effects, labeled Estimates of Covariance 
Parameters. The test for Intercept (whether runs differ in mean speed) is statistically significant 
at z = 2.100. Note that the Sig. value of .036 is for a two-  tailed test rather than the more appropriate 
one-  tailed test; we are concerned only with whether intercepts vary more than would be expected by 
chance. Therefore, the appropriate p value for comparison is .036/2 = .018.

Table 15.6 summarizes the parameter estimates for both random and fixed effects and their 
interpretation.

15.4.2 Model With a First-Level Predictor

The next model is one in which a predictor, skill of skier, is added to the equations to predict skiing 
speed.

TABLE 15.5 Continued

Estimates of Fixed Effectsa

95% Confidence Interval

Parameter Estimate Std. Error df t Sig.
Lower 
Bound

Upper
Bound

Intercept 5.410832 .185738 10.801 29.132 .000 5.001106 5.820559

a. Dependent Variable: speed.

Covariance Parameters

Estimates of Covariance Parametersa

95% Confidence Interval

Parameter Estimate Std. Error Wald Z Sig.
Lower 
Bound

Upper
Bound

Residual .769461 .068719 11.197 .000 .645903 .916655

Intercept 
[subject = run]  Variance .311598 .148353 2.100 .036 .122556 .792238

a. Dependent Variable: speed.
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15.4.2.1 Level-1 Equation for a Model With a Level-1 Predictor

The level-1 equation is now expanded so that the DV score for an individual is predicted by a 
random intercept that varies across groups (as in the previous section) and a random slope for the 
relationship between the DV and the level-1 predictor (that also varies across groups).

Yij = b0j + b1jXij + eij (15.4)

An individual score on the DV, Yij, is the sum of an intercept, b
0j
, that may vary over 

the j groups; a slope, b1j, that may vary over groups times an individual’s score on a 
predictor, Xij;

8 and error, eij (the deviation of an individual from his or her group mean).

Except for the subscripts, this is highly similar to the usual bivariate regression equation 
(Yi = b0 + b1Xi + ei). All of the terms (Y, X, and e) that ordinarily would have a single subscript, 
i, indicating case, now have two subscripts, ij, indicating case and group. The regression coefficients, 
b0 and b1 now also have a subscript, j, indicating that each of these coefficients varies over groups.

In terms of the example,

Speedij = b0j + b1jSkillij + eij (15.5)

An individual’s skiing speed is the sum of the intercept, b0j for that skier’s run (group); 
a weighting, b1j for that skier’s run (group) times the skier’s skill level; and error, eij

(deviation of individual score from its run).

Coefficients that vary across groups are treated as random. Thus, this is often called a random 
coefficients model, referring to the random coefficients for the intercept, b0j, and for the slope, b1j, that 

TABLE 15.6 Summary of Symbols and Interpretations for Intercepts-  Only Model

Parameter Estimate 
for Effect and 
Software Label

Symbol
from 
Table 15.3

Sample-specific 
Interpretation

Generalized
Interpretation

Random Effects (Covariance Parameter Estimates)

Value = 0.3116 
IBM SPSS: Intercept [subject = 

run] Variance
SAS:UN(1,1)

t00
The variance in the 
means of speed for 
the runs around the 
grand mean of speed

The variance in the group 
means on the DV around 
the grand mean on the DV 
(variance between groups)

Value = 0.7695 
IBM SPSS: Residual
SAS: Residual

eij Variance in speed 
for individual skiers 
within runs around the 
mean speed for the run

The variance among cases on 
the DV within groups around 
their own group means 
(variance within groups)

Fixed Effect (Parameter Estimate)

Value = 5.4108 
IBM SPSS: Intercept
SAS: Intercept

g00 The unweighted 
grand mean of speed 
for the runs

The overall intercept: 
unweighted mean of the 
means for the groups

8X is sometimes centered, for example, a deviation from the mean for the group may be used (cf. Section 15.6.2).
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FIGURE 15.1 Relationships between speed and skill for two runs. 
Generated in SYSTAT PLOT.

vary over groups (runs). Error is always considered random. These varying coefficients can be illus-
trated in scatterplots between skill and speed that differ between runs. For example, Figure 15.1 shows 
the skill–  speed relationships for the run at Aspen Highlands and for the first run at Mammoth.

There is a small positive relationship between skill and speed at the Aspen Highlands run, 
with an intercept at about 6.25, but a negative relationship for the first run at Mammoth Mountain, 
with an intercept at about 5.8. Thus, both the intercepts and slopes vary for these runs. A variety 
of other slopes and intercepts are noted for the remaining Mammoth runs, as seen in Figure 15.2, 
which shows all 10 runs. You may recognize this as a failure of homogeneity of regression, as dis-
cussed in Chapter 6 (cf. Figure 6.2). That is, there is an interaction between skill (the predictor) and 
runs (the groups) on speed (the DV): slopes vary over runs.

The varying intercepts and slopes are found through a separate regression analysis for each higher-
level research unit, in this case each run. For the data in Table 15.1, a bivariate regression analysis is done 
as per Equations 3.30 through 3.32 with skill as X and speed as Y. The resulting slopes and intercepts are 
shown in Table 15.2. The procedures of Section 5.4 apply, if there are several level-1 predictors.

15.4.2.2 Level-2 Equations for a Model With a Level-1 Predictor

Each random effect (other than individual error) requires a separate second-  level equation. 
Therefore, the second-  level analysis (where groups are research units) requires two equations with 
level-1 intercept and level-1 slope as DVs (see Table 15.2). To predict the random intercept:

b0j = g00 + u0j (15.6)

An intercept for a run, b0j, is predicted by the average intercept over groups when all 
predictors are zero, g00 (a fixed effect), and error, u0j (a random effect: deviation from 
average intercept for group j).
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Note that this is the same as Equation 15.2 for the intercepts-  only model.
To predict the random slope:

b1j = g10 + u1j (15.7)

The slope for a run, b1j, is predicted by a single intercept, g10 (a fixed effect: the average 
IV–DV slope), and error, u1j (a random effect: the deviation from average slope for group j).

Substituting right-  hand terms from Equations 15.6 and 15.7 into Equation 15.5:

Yij = g00 + u0j + (g10 + u1j)Xij + eij (15.8)

Thus, the entire two-  level equation, with terms rearranged, is

Yij = g00 + g10Xij + u0j + u1j Xij + eij (15.9)

The two fixed components are g00 (the average intercept) and g10 (the average slope). 
The three random components are u0j (the deviation in intercept for cases in group j), u1j

(the deviation in slope for cases in group j) times the first-  level predictor score for case 
i in group j, and eij (the deviation for case i from its group j).

The solution to Equation 15.6 produced by SAS and IBM SPSS software is

b0j = 4.981 + u0j

The intercept 4.981 is the unweighted mean for the 10 runs when predicted skill is 0. As usual, there 
is no research import to its test of significance.

The solution to Equation 15.7 produced by software is

b1j = 0.216 + u1j
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FIGURE 15.2 Relationship between speed and skill for all 10 runs. 
Generated in SYSTAT PLOT.
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With a standard error = 0.151 for the average slope, z = 0.216/0.151 = 1.43. Thus, there is no 
evidence at a = .05 of a relationship between the DV, speed, and the level-1 predictor, average 
skill. That is, skiing speed cannot be predicted from skill when it is averaged over all runs.

The entire two-  level solution is

Yij = 4.981 + 0.216(Skill) + (b0j - 4.981) + (b1j - 0.216)(Skill) + eij

Recall that b0j is the intercept for group j, and b1j is the slope for group j. As described for the 
intercepts-  only model, parameter estimates for fixed effects are based on average values over runs, 
so that tests for them are tests of central tendency, using two-  tailed z tests. Tests of some random 
effects are based on variances as parameter estimates and typically are tested using one-  tailed 
z tests; is the variance greater than zero? That is, do intercepts and slopes vary more than expected over 
runs? Tests of whether intercepts and slopes differ among runs are shown in the following computer 
analyses, as is the test of whether slopes and intercepts are correlated (not included in these equations).

15.4.2.3 Computer Analysis of a Model With a Level-1 Predictor

The SAS MIXED model instruction in Table 15.7 declares SPEED to be the DV, with SKILL as an 
IV. Note that SKILL has been added to group intercept as a random effect and also has been included 
in the model instruction as a fixed effect. Remaining syntax is as for the intercepts-  only model.

As before, the Covariance Parameter Estimates section applies to the 
random components in the model. UN(1,1) is the variance in group intercepts (means) across 
runs (t00 of Table 15.3), and with a one-  tailed test at a = .05 (critical value = 1.58) there is still 
evidence that, indeed, the group intercepts vary across runs. UN(2,1) is the covariance between 
group intercepts and group slopes (t10 of Table 15.3); there is no indication of a relationship between 
intercepts and slopes over runs (Pr Z = .0692). That is, there is no evidence that the effects of skill 
on speed differ depending on average speed on the run. Note that this is tested with a two-  tailed 
probability value, because covariances can be either negative or positive. UN(2,2) is the variance 
in group slopes across runs (t11 of Table 15.3); there is evidence that the relationship between skill 
and speed differs among runs, so a fixed effect of SKILL may not be interpretable. The significant 
Residual indicates that there are individual differences among skiers within runs after account-
ing for differences due to group membership and to skill. Note that the −2 Log Likelihood
value is smaller than that of the intercepts-  only model of Table 15.4. This difference can be evaluated 
through x2 to provide a test of model improvement by the addition of skill as a predictor, as seen in 
Section 15.6.5.1. The Null Model Likelihood Ratio Test indicates that the speci-
fied model differs significantly from a model with just a single fixed intercept.

The remaining output is for the fixed effects in the model. The Intercept = 4.9808 is 
the mean of the 10 groups when predicted skill is 0. The overall relationship between SPEED and 
SKILL is not statistically significant (p = .1868), but the result cannot be interpreted due to the sig-
nificant random variance in slopes across runs, UN(2,2).

Table 15.8 shows syntax and output for IBM SPSS MIXED analysis. The continuous predic-
tor, skill, is shown as a WITH variable (called a covariate on the menu). Skill appears as both a fixed 
and a random predictor, as in SAS. COVTYP(UN) specifies an unstructured covariance matrix and 
produces output that matches other software.9 Remaining syntax is as for the intercepts-  only model.

The output begins with an indication of fixed and random effects, the type of covariance struc-
ture for the random effects, and the variable used to combined subjects (RUN), as well as the number 
of parameters in the model. Then information is provided that is useful to test differences between 

9Thanks to Jodie Ullman for uncovering this trick in Version 11.5.
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TABLE 15.7 Syntax and Selected Output for SAS MIXED Analysis of Level-1 Predictor Model

proc mixed data=Sasuser.Ss_hlm covtest method=ml;
class RUN;
model SPEED= SKILL / solution;
random intercept SKILL / type=un subject = RUN;

run;

The Mixed Procedure

Covariance Parameter Estimates

Cov Parm Subject Estimate
Standard

Error
Z

Value Pr Z

UN(1,1) RUN 0.6281 0.3050 2.06 0.0197
UN(2,1) RUN -0.2920 0.1607 -1.82 0.0692
UN(2,2) RUN 0.2104 0.1036 2.03 0.0211
Residual   0.4585 0.04184 10.96 <.0001

Fit Statistics

-2 Log Likelihood 587.9
AIC (smaller is better) 599.9
AICC (smaller is better) 600.2
BIC (smaller is better) 601.7

Null Model Likelihood Ratio Test

DF Chi-Square Pr > ChiSq

3 139.50 <.0001

Solution for Fixed Effects

Effect Estimate
Standard

Error DF t Value Pr > |t|

Intercept 4.9808 0.2630 9 18.94 <.0001
SKILL 0.2160 0.1512 9 1.43 0.1868

Type 3 Tests of Fixed Effects

Effect
Num
DF

Den
DF F Value Pr > F

SKILL 1 9 2.04 0.1868
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TABLE 15.8 Syntax and Selected Output for IBM SPSS MIXED Analysis of Model With 
Level-1 Predictor

MIXED
speed WITH skill
/CRITERIA = CIN(95) MXITER(100) MXSTEP(5) SCORING(1)
SINGULAR(0.000000000001) HCONVERGE(0, ABSOLUTE) LCONVERGE(0, ABSOLUTE)
PCONVERGE(0.000001, ABSOLUTE)
/FIXED = skill | SSTYPE(3)
/METHOD = ML
/PRINT = SOLUTION TESTCOV
/RANDOM INTERCEPT skill | SUBJECT(run) COVTYPE(UN).

Model Dimensionb

Number
of Levels

Covariance 
Structure

Number of 
Parameters

Subject
Variables

Fixed Effects Intercept 1 1

skill 1 1

Random Effects Intercept 2 Unstructured 3 run

+ skilla

Residual 1

Total 4 6

a. As of version 11.5, the syntax rules for the RANDOM subcommand have changed. Your 
command syntax may yield results that differ from those produced by prior versions. If you are 
using SPSS 11 syntax, please consult the current syntax reference guide for more information.
b. Dependent Variable: speed.

Information Criteriaa

–2 Log Likelihood 587.865

Akaike’s Information

Criterion (AIC) 599.865

Hurvich and Tsai’s

Criterion (AICC) 600.197

Bozdogan’s Criterion (CAIC) 627.229

Schwarz’s Bayesian

Criterion (BIC) 621.229

The information criteria are displayed in 
smaller-is-better forms.

a. Dependent Variable: speed.
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Fixed Effects

Type III Tests of Fixed Effectsa

Source Numerator df Denominator df F Sig.

Intercept 1 10.955 358.755 .000
skill 1 10.330 2.041 .183

a. Dependent Variable: speed.

Estimates of Fixed Effectsa

95% Confidence Interval

Parameter Estimate Std. Error df t Sig. Lower Bound Upper Bound

Intercept 4.9808208 .2629674 10.955 18.941 .000 4.4017434 5.5598981
skill .2159816 .1511620 10.330 1.429 .183 –.1193769 .5513400

a. Dependent Variable: speed.

Covariance Parameters

Estimates of Covariance Parametersa

95% Confidence Interval

Parameter Estimate Std. Error Wald Z Sig. Lower Bound Upper Bound

Residual .4585221 .0418398 10.959 .000 .3834324 .5483171
Intercept + skill UN(1,1) .6280971 .3050274 2.059 .039 .2424664 1.6270543
[subject = run] UN(2,1) –.2919760 .1606737 –1.817 .069 –.6068906 .0229386

UN(2,2) .2104463 .1036264 2.031 .042 .0801676 .5524383

a. Dependent Variable: speed.

TABLE 15.8 Continued
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models, such as −2 Log Likelihood. Fixed effects follow, with two tables: one for significance tests of 
combined effects and another for parameter estimates, single-df tests, and confidence intervals. Results 
match those of SAS; SKILL differences are not statistically significant when averaged over runs.

Labeling and tests for random effects match those of SAS. That is, UN(1,1) indicates statistically 
significant variance of the group intercept. Note that the p = .039 is incorrect for this one-  tailed test; instead, 
the obtained p value should be half that amount because the test is whether variance is greater than would 
be expected by chance. Similarly, the p value for UN(2,2), the test of the variance among group slopes, 
should be .021 rather than .042. The test for UN(1,2), the covariance between intercepts and slopes, is 
correctly interpreted as a two-  tailed test because the relationship can be either negative or positive.

Table 15.9 summarizes the parameter estimates for both random and fixed effects of the 
model with a level-1 predictor and their interpretation.

TABLE 15.9 Summary of Symbols and Interpretations for Model With Level-1 Predictor

Parameter Estimate 
for Effect and 
Software Labels

Symbol
from 
Table 15.3

Sample-specific 
Interpretation

Generalized Interpretation

Random Effects (Covariance Parameter Estimates)

Value = 0.6281
IBM SPSS: UN(1,1)
SAS: UN(1,1)

t00 The variance in the means 
of speed for the runs 
around the grand mean of 
speed when skill is taken 
into account

The variance in the group means 
on the DV around the grand 
mean on the DV (variance 
between groups) when the 
predictor is taken into account

Value = -0.2920
IBM SPSS: UN(2,1)
SAS: UN(2,1)

t10 The covariance between 
means for runs and slopes 
(skill-speed association) 
for runs

The covariance between 
intercepts and slopes 
(predictor-DV association) for 
groups

Value = 0.2104
IBM SPSS: UN(2,2)
SAS: UN(2,2)

t11 The variance in the slopes 
for skill around the 
average slope for all runs

The variance in the slopes for 
a predictor around the average 
slope for all group

Value = 0.4585 
IBM SPSS: Residual 
SAS: Residual

eij The variance in speed for 
individual skiers within 
runs around the mean 
speed for the run when 
skill is taken into account

The variance among cases on 
the DV within groups around 
their own group means (variance 
within groups) when the 
predictor is taken into account

Fixed Effect (Parameter Estimates)

Value = 4.9809
IBM SPSS: Intercept 
SAS: Intercept

g00 The unweighted grand 
mean of speed for the 
runs when skill level is 
zero

The overall intercept; 
unweighted mean of the 
means for the groups when the 
predictor level is zero

Value = 0.2160 
IBM SPSS: skill
SAS: Skill

g10 The unweighted average 
of slopes for skill over all 
runs

The unweighted average of 
slopes for the predictor over all 
groups
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15.4.3 Model With Predictors at First and Second Levels

The full model adds a second-  level predictor, mountain, to the model with a first-  level predictor, 
skill. Mountain is a categorical IV (although with only two levels it can be treated as either categori-
cal or continuous).

15.4.3.1 Level-1 Equation for Model With Predictors at Both Levels

The level-1 equation for a model with predictors at both levels does not differ from that of the 
level-1 equations for a model with a predictor only at the first level. That is, the inclusion of the 
second-  level IV does not affect the equations for the first level of analysis. However, it can affect 
the results of those equations, because all effects are adjusted for all other effects.

15.4.3.2 Level-2 Equations for Model With Predictors at Both Levels

The second-  level analysis (based on groups as research units) uses all three variables of Table 15.2: 
level-1 intercept, level-1 slope, and the level-2 IV (mountain). For these analyses, level-1 slope and 
intercept again are considered DVs. To predict the random intercept:

b0j = g00 + g01Wj + u0j (15.10)

An intercept for a run b0j, is predicted by g00 (the average intercept over groups when 
all predictors are zero), the slope g01 (for the relationship between the intercepts of the 
level-1 analysis and the levels of the fixed level-2 IV) multiplied by Wj (the average value 
of the IV for the group), and error, u0j (the deviation from average intercept for group j).

The coefficient, g01, is the relationship between the original DV, Yij, and the IV, Wj.
To predict the random slope for the level-1 predictor:

b1j = g10 + u1j (15.11)

The slope for a run, b1j, is predicted by a single intercept, g10 (the average 
level-1 predictor-DV slope), and error, u1j (the deviation from average slope for group j).

Substituting right-  hand terms from Equations 15.10 and 15.11 into Equation 15.4:

Yij = g00 + g01Wj + u0j + (g10 + u1j)Xij + eij (15.12)

Thus the entire two-  level equation, with terms rearranged, is:

Yij = g00 + g01Wj + g10 Xij + u0j + u1j Xij + eij (15.13)

The three fixed components are g00 (the average intercept-  grand mean), g01Wj (the 
overall slope for the relationship between a level-2 predictor and the DV times the 
second-  level predictor score for group j), and g10 Xij (the unique effect of group j on 
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slope when the value of the level-2 predictor W is zero times the first-  level predictor 
score for case i in group j). The three random components are u0j (the deviation in 
intercept for cases in group j), u1j Xij (the deviation in slope for cases in group j times 
the first-  level predictor score for case i in group j), and eij (the deviation for case i from 
its group j).

The solution to Equation 15.10 produced by software is

b0j = 4.837 + 1.472(Mountain) + u0j

The intercept 4.837 is the unweighted mean for the Mammoth runs (mountain = 0) when skill is 0. 
The slope has a value of 1.472 and a standard error of 0.197; thus, z = 1.472/0.197 = 7.467 a signifi-
cant result at a = .05, which means that the intercepts (means) for Mammoth Mountain (coded 0) 
are lower than the mean for Aspen Highlands (coded 1). Skiing speed is significantly different for 
the two mountains.

The solution to Equation 15.11 produced by software is

b1j = 0.209 + u1j

The average slope is 0.209 with a standard error of 0.156; thus, z = 0.209/0.156 = 1.343. There is no 
evidence at a = .05 of a relationship between the DV, speed, and the predictor, skill. That is, skiing 
speed cannot be predicted by skill when averaged over all runs.

The entire two-  level (Equation 15.13) solution is

Yij = 4.837 + 1.472(Mountain) + 0.209(Skill) + (b0j - 4.837)

+ (b1j - 0.209)(Skill) + eij

Recall that b0j is the intercept for group j and b1j is the slope for the relationship between the DV 
and level-1 predictor in group j.

Tests of whether intercepts and slopes differ among runs are shown in the following computer 
runs, as is the test of whether slopes and intercepts are correlated.

15.4.3.3  Computer Analyses of Model With Predictors 
at First and Second Levels

As seen in Table 15.10, SAS syntax adds MOUNTAIN to the model instruction. Because 
MOUNTAIN is a dichotomous variable, it may be treated as continuous, simplifying interpretation 
of output. Note that SKILL has been defined as a random effect, but MOUNTAIN remains only a 
fixed effect. There is no way to specify MOUNTAIN as a fixed level-2 (rather than level-1) vari-
able (using runs rather than skiers as subjects), so that df for its tests need to be adjusted. The use of 
ddfm = satterth approximates the appropriate df.

The total number of parameters in the model now is 7, as seen in the Dimensions section. 
The four Covariance Parameters are the variance in intercepts, variance in slopes, cova-
riance between intercepts and slopes, and residual. The three fixed parameters (Columns in X)
are the overall intercept, skill, and mountain.



TABLE 15.10 Syntax and Selected Output for SAS MIXED Analysis of Full Model

proc mixed data=sasuser.ss_mlm covtest method=ml;
class RUN;
Model SPEED= SKILL MOUNTAIN/ Solution ddfm=satterth ;
random intercept SKILL / type=un subject=RUN;
run;

Dimensions

Covariance Parameters 4
Columns in X 3
Columns in Z Per Subject 2
Subjects 10
Max Obs Per Subject 67

Number of Observations

Number of Observations Read 260
Number of Observations Used 260
Number of Observations Not Used   0

Covariance Parameter Estimates

Cov Parm Subject Estimate
Standard

Error Z Value Pr Z

UN(1,1) RUN 0.4024 0.2063 1.95 0.0256
UN(2,1) RUN -0.2940 0.1473 -2.00 0.0460
UN(2,2) RUN 0.2250 0.1098 2.05 0.0202
Residual 0.4575 0.04167 10.98 <.0001

Fit Statistics

-2 Log Likelihood 570.3
AIC (smaller is better) 584.3
AICC (smaller is better) 584.8
BIC (smaller is better) 586.4

Null Model Likelihood Ratio Test

DF Chi-Square Pr > ChiSq

3 92.80 <.0001

Solution for Fixed Effects

Effect Estimate
Standard

Error DF t Value Pr > |t|

Intercept 4.8367 0.2162 10.3 22.37 <.0001
SKILL 0.2090 0.1555 9.68 1.34 0.2097
MOUNTAIN 1.4719 0.1971 7.09 7.47 0.0001

(continued )

813
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Again, UN(1,1) is the variance in intercepts (means) across runs; with a one-  tailed test at 
a = .05 (critical value = 1.58) there is evidence that the intercepts vary after adjusting for all other 
effects. UN(2,1) is the covariance between intercepts and slopes, and there is now an indication 
at a = .05 of a negative relationship between intercepts and slopes over runs. The negative para-
meter estimate of −0.2940 indicates that the higher the speed the lower the relationship between 
skill and speed, after adjusting for all other effects. This effect was not statistically significant before
entry of MOUNTAIN into the model. UN(2,2) is the variance in slopes across runs, and there 
is evidence that the relationship between skill and speed differs among runs (making a fixed effect 
of SKILL difficult to interpret). The significant Residual indicates that there are individual 
differences among skiers within runs even after accounting for all other effects. Fit statistics are as 
described earlier.

The remaining output is for the fixed effects in the model. The statistically significant 
estimate of 1.4719 indicates greater speed for the mountain with the code of 1 (Aspen 
Highlands).

The Intercept 4.8367 is the mean of the groups in the mountain coded 0 (Mammoth) 
when skill level is 0. The overall relationship between SPEED and SKILL is still not statistically 
significant (p = .2120) but is not interpretable, in any event, in the face of the significant random 
variance in slopes across runs, UN(2,2).

Table 15.11 shows syntax and output for IBM SPSS MIXED analysis. Both skill and mountain 
are declared continuous (WITH) variables—  as a dichotomous variable, MOUNTAIN may be treated 
as continuous. Subjects are nested within runs. Skill appears as both a FIXED and a RANDOM
predictor; Mountain is only a fixed predictor. Remaining syntax is as previously described.

The output begins with specification of fixed and random effects (note that random effects 
are also listed in the fixed rows), the type of covariance structure for the random effects, and the 
variable used to combined subjects (RUN). Results for fixed effects are the same as those of SAS; 
MOUNTAIN differences are statistically significant but the average relationship between SKILL
and SPEED is not.

The random effect test, UN(1,1), for Intercept (whether runs differ in mean speed) 
is statistically significant at z = 1.95 if a one-  tailed criterion is used at a = .05; the Sig. value of 
.051 is for a two-  tailed test. The UN(2,2) test for skill (slope differences among runs) also shows 
significant differences, z = 2.049, as does the two-  tailed test for the covariance between intercepts 
and slopes.

Table 15.12 summarizes the parameter estimates for both random and fixed effects of the 
model with a level-1 predictor and their interpretation.

TABLE 15.10 Continued

Type 3 Tests of Fixed Effects

Effect
Num
DF

Den
DF F Value Pr > F

SKILL 1 9.68 1.81 0.2097
MOUNTAIN 1 7.09 55.76 0.0001



TABLE 15.11 Syntax and Selected Output for IBM SPSS MIXED Analysis of Full Model

MIXED
speed WITH skill mountain
/CRITERIA = CIN(95) MXITER(100) MXSTEP(5) SCORING(1)
SINGULAR(0.000000000001) HCONVERGE(0, ABSOLUTE) LCONVERGE(0, ABSOLUTE)
PCONVERGE(0.000001, ABSOLUTE)
/FIXED = skill mountain k SSTYPE(3)
/METHOD = ML
/PRINT = SOLUTION TESTCOV
/RANDOM INTERCEPT skill k SUBJECT(run) COVTYPE(UN).

Model Dimensionb

  Number of 
Levels

Covariance 
Structure

Number of 
Parameters

Subject
Variables

Fixed Effects Intercept 1 1

skill 1 1

mountain 1 1

Random Effects Intercept 
+ skilla

2 Unstructured 3 run

Residual 1

Total 5 7

a. As of version 11.5, the syntax rules for the RANDOM subcommand have changed. Your 
command syntax may yield results that differ from those produced by prior versions. If you are 
using SPSS 11 syntax, please consult the current syntax reference guide for more information.

b. Dependent Variable: speed.

Information Criteriaa

–2 Log Likelihood 570.318
Akaike’s Information
Criterion (AIC) 584.318
Hurvich and Tsai’s
Criterion (AICC) 584.762
Bozdogan’s Criterion (CAIC) 616.242
Schwarz’s Bayesian
Criterion (BIC) 609.242

The information criteria are displayed in 
smaller-is-better forms.

a. Dependent Variable: SPEED.
(continued )
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Fixed Effects

Type III Tests of Fixed Effectsa

Source Numerator df Denominator df F Sig.

Intercept 1 12.206 500.345 .000
skill 1 11.826 1.805 .204
mountain 1 7.086 55.759 .000

a. Dependent Variable: speed.

Estimates of Fixed Effectsa

95% Confidence Interval

Parameter Estimate Std. Error df t Sig. Lower Bound Upper Bound

Intercept 4.8366975 .2162292 12.206 22.368 .000 4.3664530 5.3069421
skill .2089697 .1555458 11.826 1.343 .204 –.1304878 .5484272
mountain 1.4718779 .1971118 7.086 7.467 .000 1.0069237 1.9368322

a. Dependent Variable: speed.

Covariance Parameters

Estimates of Covariance Parametersa

95% Confidence Interval

Parameter Estimate Std. Error Wald Z Sig. Lower Bound Upper Bound

Residual .4575351 .0416711 10.980 .000 .3827358 .5469526
Intercept + skill UN(1,1) .4024587 .2063647 1.950 .051 .1473191 1.0994700
[subject = run] UN(2,1) –.2941195 .1474021 –1.995 .046 –.5830223 –.0052168

UN(2,2) .2250488 .1098392 2.049 .040 .0864633 .5857622

a. Dependent Variable: speed.

TABLE 15.11 Continued

816
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TABLE 15.12 Summary of Symbols and Interpretations for Models With Predictors at Both Levels

Parameter Estimate 
for Effect and 
Software Labels

Symbol
from 
Table 15.3

Sample-specific 
Interpretation

Generalized
Interpretation

Random Effects (Covariance Parameter Estimates)

Value = 0.6281
IBM SPSS: UN(1,1)
SAS: UN(1,1)

t00 The variance in the means 
of speed for the runs 
around the grand mean 
of speed when skill and 
mountain are taken into 
account

The variance in the group 
means on the DV around 
the grand mean on the DV 
(variance between groups) 
when predictors are taken 
into account

Value = -0.2920
IBM SPSS: UN(2,1)
SAS: UN(2,1)

t01 The covariance between 
means for runs and slopes 
(skill-speed association) 
for runs when mountain 
is taken into account

The covariance between 
means for groups and slopes 
(predictor-DV association) 
for runs when the level-2 
predictor is taken into account

Value = 0.2104
IBM SPSS: UN(2,2)
SAS: UN(2,2)

t11 The variance in the 
slopes for skill around 
the average slope for all 
runs when mountain is 
taken into account

The variance in the slopes 
for a predictor around the 
average slope for all groups 
when other predictors are 
taken into account

Value = 0.4585
IBM SPSS: Residual 
SAS: Residual

n.a. The variance in speed for 
individual skiers within 
runs around the mean 
speed for the run when 
skill and mountain are 
taken into account

The variance among cases on 
the DV within groups around 
their own group means 
(variance within groups) 
when predictors are taken 
into account

Fixed Effect (Parameter Estimates)

Value = 5.4108
IBM SPSS: Intercept 
SAS: Intercept

g00 The unweighted grand 
mean of speed for the 
runs when skill level 
and mountain are zero

The overall intercept; 
unweighted mean of the 
means for the groups when 
all predictor levels are zero

Value = 0.2160
IBM SPSS: skill
SAS: Skill

g10 The average slope for 
skill over all runs when 
mountain is taken into 
account

The average slope for the 
predictor over all groups 
when all other predictors are 
taken into account

Value = 1.472
IBM SPSS: mountain 
SAS: MOUNTAIN

g01 The average slope for 
mountain over all runs 
when skill is taken into 
account

The average slope for the 
predictor over all groups 
when all other predictors are 
taken into account
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15.5 Types of MLM

MLM is an extremely versatile technique that, like SEM, can be used for a variety of research 
designs. The ones discussed here are those that are implemented in one or more of the programs 
discussed. This chapter demonstrates repeated-  measures designs and higher-  order models. Other 
topics in this section—  latent variables, nonnormal outcome variables, and multiple response 
models—  are described briefly, with references to other sources.

15.5.1 Repeated Measures

One of the more common uses of MLM is to analyze a repeated-  measures design, which violates 
some of the requirements of repeated-  measures ANOVA. Longitudinal designs (called growth curve 
data) are handled in MLM by setting measurement occasions as the lowest level of analysis with 
cases (e.g., students) the grouping variable. However, the repeated measures need not be limited to 
the first level of analysis (e.g., there could be repeated measurement of teachers and/or schools, as 
well). A big advantage of MLM over repeated-  measures ANOVA is that there is no requirement for 
complete data over occasions (although it is assumed that data are missing at random), nor is there 
need for equal numbers of cases or equal intervals of measurements for each case. Another impor-
tant advantage of MLM for repeated-  measures data is the opportunity to test individual differences 
in growth curves (or other patterns of responses over the repeated measure). Are the regression 
coefficients the same for all cases? Because each case has its own regression equation when random 
slopes and intercepts are specified, it is possible to evaluate whether individuals do indeed differ in 
their mean response and/or in their pattern of responses over the repeated measure.

An additional advantage is that sphericity (uncorrelated errors over time) is not an issue be-
cause, as a linear regression technique, MLM tests trends for individuals over time (if individuals 
are the grouping variable). Finally, you may create explicit time-  related level-1 predictors, other 
than the time period itself. Time-  related predictors (a.k.a. time-  varying covariates) come in a variety 
of forms: days in the study, age of participant, grade level of participant, and so on.

Unlike ANOVA, there is no overall test of the “repeated measures” factor unless one or more 
time-  related predictors are explicitly entered. Once the time-  related predictor is entered into the equa-
tion, it is evaluated as a single df test (e.g., linear relationship between time and the DV, a longitudinal 
growth curve), so that the assumption of sphericity is avoided. If other trends are of interest, they are 
coded and entered as separate predictors (e.g., time-  squared for the quadratic trend). Thus, MLM 
can be used to provide all of the advantages of a trend analysis if relevant predictors are created and 
entered.

Table 15.13 shows a small, hypothetical data set prepared for IBM SPSS MIXED with 
15 cases in which the number of books read per month serves as the DV and the type of novel (sci-
ence fiction, romance, and mystery) serves as a fixed IV. The first column is the type of novel, the 
second is indicator of month, the third is the identification of the case, and the final column is the 
DV (number of books read that month). This corresponds to a two-  way within-  between-  subjects 
design with month as the repeated-  measures IV and novel as the between-  subjects IV. The sample 
size is highly inadequate, especially for tests of random effects (although a solution miraculously 
emerged), but provides a convenient vehicle for demonstrating various facets of MLM repeated-
measures analysis and has the further advantage of being sufficiently silly.

Figure 15.3 shows the layout of the data for this design.
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TABLE 15.13 Data Set for IBM SPSS MIXED 
Analysis of Repeated Measures Data

Novel Month Case Books

1 1 1 1
1 1 2 1
1 1 3 3
1 1 4 5
1 1 5 2
1 2 1 3
1 2 2 4
1 2 3 3
1 2 4 5
1 2 5 4
1 3 1 6
1 3 2 8
1 3 3 6
1 3 4 7
1 3 5 5
2 1 6 3
2 1 7 4
2 1 8 5
2 1 9 4
2 1 10 4
2 2 6 1
2 2 7 4
2 2 8 3
2 2 9 2
2 2 10 5
2 3 6 0
2 3 7 2
2 3 8 2
2 3 9 0
2 3 10 3
3 1 11 4
3 1 12 2
3 1 13 3
3 1 14 6
3 1 15 3
3 2 11 2
3 2 12 6
3 2 13 3
3 2 14 2
3 2 15 3
3 3 11 0
3 3 12 1
3 3 13 3
3 3 14 1
3 3 15 2



820 C H A P T E R  1 5

Table 15.14 shows syntax and partial output for analysis of effects of linear trend of month, 
novel type, and their interaction, as well as tests of mean differences among readers. The intercept 
is a RANDOM effect. The linear trend of month (1 to 2 to 3) is evaluated (rather than main effect) 
because MONTH is not declared to be a categorical variable (i.e., it is a WITH variable rather than 

Level 2
Between subjects
(Predictor � novels)

Level 1
Repeated
measures

Case 5

Month
1

Month
2

Month
3

Case 4

Month
1

Month
2

Month
3

Case 3

Month
1

Month
2

Month
3

Case 2

Month
1

Month
2

Month
3

Month
1

Month
2

Month
3

Case 1

FIGURE 15.3 Layout of Table 15.13 data.

TABLE 15.14 Syntax and Selected Output From IBM SPSS MIXED Analysis 
of Repeated-Measures Data

MIXED
books BY novel WITH month
/CRITERIA = CIN(95) MXITER(100) MXSTEP(5) SCORING(1) SINGULAR(0.000000000001)
HCONVERGE(0, ABSOLUTE) LCONVERGE(0, ABSOLUTE)
PCONVERGE(0.000001, ABSOLUTE)
/FIXED = novel month month*novel | SSTYPE(3)
/METHOD = REML
/PRINT = TESTCOV
/RANDOM INTERCEPT month | SUBJECT(case) COVTYPE(UN).

Model Dimensionb

  Number
of Levels

Covariance 
Structure

Number of 
Parameters

Subject
Variables

Fixed Effects Intercept 1 1

novel 3 2

month 1 1

novel * month 3 Unstructured 2

Random Intercept 2 3 case

Effects + montha

Residual 1

Total 10 10

a. As of version 11.5, the syntax rules for the RANDOM subcommand have changed. Your 
command syntax may yield results that differ from those produced by prior versions. If you are 
using SPSS 11 syntax, please consult the current syntax reference guide for more information.

b. Dependent Variable: books.



Fixed Effects

Type III Tests of Fixed Effectsa

Source Numerator df Denominator df F Sig.

Intercept 1 12.000 50.586 .000
novel 2 1.2000 11.321 .002
month 1 1.2000 .320 .582
novel * month 2 1.2000 20.540 .000

a. Dependent Variable: books.

Covariance Parameters

Estimates of Covariance Parametersa

95% Confidence Interval

Parameter Estimate Std. Error Wald Z Sig. Lower Bound Upper Bound

Residual 1.355556 .494979 2.739 .006 .662678 2.772887
Intercept + month UN(1,1) .492593 1.887086 .261 .794 .000270 898.209913
[subject = case] UN(2,1) –.208333 .838257 –.249 .804 –1.851287 1.434620

UN(2,2) .155556 .420704 .370 .712 .000776 31.187562

a. Dependent Variable: books.

TABLE 15.14 Continued
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a BY variable). The linear trend of month by novel interaction and the main effect of novel are 
declared to be fixed by listing them in the FIXED instruction. Month is declared random by listing 
it in the RANDOM instruction. CASE is the group identifier.

No significant random effects are found. The test of UN(1,1), the variance of the intercept 
(p = .794) shows that there is no significant difference in the mean number of books read among 
the five cases. The random test of UN(2,2), p = .804, shows no significant difference among 
readers in the linear trend of month; this test is not available in ANOVA using either univariate 
or multivariate approaches. Finally, the test of UN(2,1) the random INTERCEPT by MONTH 
covariance (p = .712) shows no significant difference in the relationship between the mean num-
ber of books read and the linear trend of month across readers. If any of these were statistically 
significant, it might be worthwhile to explore some characteristics of individuals to “explain” 
those individual differences.

With respect to fixed effects, there is no significant fixed linear trend of month averaged over 
subjects (p = .582). The main effect of novel is statistically significant (p = .002) but this is interpreted 
with great caution in the presence of the significant month by novel interaction (p 6 .001). Thus, 
averaged over readers, the linear trend of month is different for the different types of novels. A plot 
of the interaction (as per Figure 8.1) would assist interpretation; cell means can be found by using the 
“split cases” instruction in IBM SPSS, specifying NOVEL and MONTH as the grouping variables in 
a DESCRIPTIVES analysis.

This analysis shows that there is nothing special or different about repeated-  measures versus 
non-  repeated-  measures analysis in MLM. The repeated measures are simply treated as any other 
first-  level unit of analysis, and participants become a second-  level unit of analysis. If cases are 
nested within multiple units (e.g., students in classrooms), then classrooms become the third-  level 
unit of analysis, and so on. Thus, repeated measures add another, bottom-  level, unit of analysis to 
any design. Because of this, models involving repeated measures often require more than two levels 
of analysis (see the complete example of Section 15.7.2).

Another issue that can arise in using MLM for repeated measures is the scale (coding) of the 
time variable. Section 15.6.2 addresses centering of predictors and how that affects interpretation. 
A problem in repeated measures is that the correlation between slopes and intercepts may be of 
particular interest if, for example, we want to know whether children who start high on the DV 
(e.g., reading achievement) have a steeper or shallower slope over time. The difficulty is that the 
correlation changes as a result of the coding of time. Therefore, the correlation can only be inter-
preted in light of the particular scaling of the occasions (Hox, 2002, pp. 84–  86).

The example here has an IV for the level-2 analysis, novel, but no time-  varying predic-
tor for the level-1 analysis; that is, there is no variable that indicates case characteristics that 
change over time such as age, fatigue, or the like. A level-1, time-  varying predictor can be 
especially useful in a longitudinal study because intervals between levels of the repeated mea-
sure can be unequal and different for each participant. For example, reading achievement can 
be evaluated on multiple occasions, with each child tested at different ages as well having as 
different numbers of tests. MLM permits evaluation of the relationship between age (the level-1 
predictor) and reading (the DV) without requiring that each child be tested according to a 
standard schedule.

Additional level-2 predictors might be gender, or any other grouping variable that applies to 
cases and is stable over time, such as employment status, or some other stable case characteristic 
measured on a continuous scale, such as SES.
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Another method for analyzing repeated-  measures designs is through SEM as a latent growth 
(or curve) model. The time variable is defined in the measurement of the latent factors (Hox, 2002). 
There is one latent variable for the intercept and another for each slope (linear, quadratic, etc.). This 
is also a random coefficient model, and Hox (2002) shows it to be equivalent to a two-  level MLM as 
long as data are complete and time intervals are equally spaced.

The advantage of latent curve analysis is that it can be used for more complex two-  level 
models, for example, when slope is a predictor of some outcome. Although higher level models 
are possible, they require complicated program setups (Hox, 2002). Advantages of the MLM 
approach include automatic dealing with missing data and no requirement for equally spaced time 
intervals. Hox (2002) compares the two approaches in detail (pp. 273–  274). Little, Schnabel, and 
Baumert (2000) also discuss analysis of growth models through MLM and SEM in detail. Singer 
and Willett (2003) concentrate on analyzing longitudinal data, including MLM strategies. Singer 
(1998) focuses on the use of SAS PROC MIXED to analyze individual growth models as well 
as other applications of MLM. The SAS and IBM SPSS MIXED programs permit two approaches 
to repeated measures: the MLM approach illustrated here or the “repeated” approach in which the 
structure of the variance–  covariance is specified.

15.5.2  Higher-Order MLM

The model described in Section 15.4 has two levels: skiers and runs. This is the most common type 
of model and, obviously, the easiest to analyze. Most MLM software is capable of analyzing three-
level models; and some programs accommodate even more levels. An alternative strategy if the 
software is limited is to run a series of two-  level models, using the slopes and intercepts from one 
level (as seen in Table 15.2) as DVs for the next higher level. A three-  level example with repeated 
measures is demonstrated in Section 15.7.

15.5.3 Latent Variables

Latent variables are used in several ways in MLM—  observed variables combined into factors 
(cf. Chapters 13 and 14), analysis of variables that are measured without error, analyses with data 
missing on one or more predictors, and models in which the latent factors are based on time.

The HLM manual (Raudenbush, et al., 2004) shows examples of two applications. In 
the first, the latent variable regression option is chosen to analyze a latent variable measured 
without error, gender, which is entered on both levels of a two-  level repeated-  measures model 
(occasion and participant), with age as a level-1, occasion-  level predictor. The DV is attitude 
toward deviant behaviors. Coefficients are available to test the linear growth rate in the DV 
(trend over occasions); the effect of gender on the growth rate; the effect of the initial value of 
the DV on the linear growth rate; and the total, direct, and indirect associations between gender 
and growth rate.

In the second example, the latent variable regression option in HLM is chosen to do garden-
variety, single level, multiple regression with missing data. Data are reorganized so that a partici-
pant with complete data has as many rows as there are DVs; a participant with missing data has 
fewer rows. The value of the variable is entered in one column of the data set, and there are as many 
additional (indicator) columns as there are DVs. Each measure has a 1 in the column representing 
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the variable that it measures and a zero in the remaining columns. Raudenbush et al. (2004) also 
show how to do HLM analyses with data that have multiply-  imputed values (cf. Section 4.1.3.2).

SEM programs are designed to analyze multilevel models with latent variables (factors) 
composed of several measured variables (IVs). Variables associated with factors are specified as 
seen in Table 14.2 using EQS. Analysis of such models is based on a partition of variance–  covariance 
matrices into within-group (first-level) and between-group (second-level) matrices. A single set of 
summary statistics provides information about fit of the combined multilevel model, and the usual 
information is provided to test the model against alternatives (cf. Chapter 14). Also available are 
parameter estimates for both levels of the model—  the structures of the first-  level (individual) and 
second-level (group) models.

Partitioning variance–  covariance matrices into within-  group and between-  group matrices 
also permits MLM when groups are very small as, for example, when couples or twins form the 
level-2 grouping unit. With garden-  variety MLM performed on such data, the separate regressions 
for each two-  participant group may be problematic if there are level-2 predictors.

Another useful application of MLM with latent variables is confirmatory factor analysis 
which investigates the similarity of factor structures at different levels (e.g., at the individual and the 
group level). Do the loadings of variables on factors from individual-  level data change substantively 
when group membership is taken into account or do we see the same factor structure when analyz-
ing individual versus group covariance matrices? Put another way, does the same factor structure 
explain group differences as well as individual differences?

MLM confirmatory factor analysis is also useful in determining whether there are any group 
(higher level) differences worth taking into account before adding predictors to a model. By provid-
ing information to compute intraclass correlations (see Section 15.6.1) for factors, one can deter-
mine whether a multilevel model is necessary when adding predictors to a model.

Heck and Thomas (2000) devote fully half of their introductory MLM book to models with 
latent variables, including a demonstration of confirmatory factor analysis with a hierarchical data 
structure. Hox (2002) also devotes a chapter to multilevel factor models.

15.5.4 Nonnormal Outcome Variables

As a variant of the general linear model, MLM assumes multivariate normality so the usual diag-
nostic techniques and remedies of Section 4.1.5 can be applied. However, some MLM programs 
also provide specialized techniques for dealing with nonnormal data (see Table 15.33). Models with 
nonnormal outcomes (DVs) are often referred to as multilevel generalized linear models.

MLwiN allows analysis of binomial and Poisson as well as normal error distributions for 
MLM. A binary response variable is analyzed using the binomial error distribution, as is a response 
variable that is expressed as a proportion. These are analogous to the two-  outcome logistic regres-
sion models of Chapter 10. The Poisson distribution is used to model frequency count data. The 
MLwiN manual (Rasbash et al., 2000, Chapters 8 and 9) describes many choices of link functions 
and estimation techniques and demonstrates examples of these models. A special MLwiN manual 
(Yang, Rasbash, Goldstein, & Barbosa, 1999) discusses categorical responses with ordered and 
unordered categories.

HLM also permits a variety of nonlinear options: Bernoulli (logistic regression for 0–  1 out-
comes), two types of Poisson distributions (constant or variable exposure), and binomial (number 
of trials), multinomial (logistic regression with more than two outcomes), and ordinal outcomes. 
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The HLM6 manual (Raudenbush et al., 2004) demonstrates several of these models. Yet another 
approach offered through HLM is computation of standard errors that are robust to violation of 
normality, provided by default for all fixed effects, with a note describing their appropriateness. 
Hox (2002) devotes a chapter to the logistic model, in which generalized and multilevel generalized 
models are discussed thoroughly.

SAS has a separate nonlinear mixed models procedure (PROC NLMIXED) for dealing with 
such models. IBM SPSS does not have nonnormal options for MLM at this time. However, as dis-
cussed in Chapter 10, IBM SPSS COMPLEX SAMPLES LOGISTIC REGRESSION is available 
for two-  level models with dichotomous outcomes by declaring groups (second-  level units) to be 
clusters or, in repeated-  measures designs, by declaring individuals (second-  level units) to be clus-
ters. IBM SPSS COMPLEX SAMPLES ORDINAL REGRESSION permits analysis on an ordinal 
DV. Another program, Mplus, is especially flexible in dealing with nonnormal DVs in MLM.

15.5.5 Multiple Response Models

The true multivariate analog of MLM is the analysis of multiple DVs as well as multiple predictors. 
These models are specified by providing an additional lowest level of analysis, defining the multi-
variate structure in a manner similar to that of repeated measures. That is, a case has as many rows 
as there are DVs, and some coding scheme is used to identify which DV is being recorded in that 
row. Snijders and Bosker (1994) discuss some of the advantages of multivariate multilevel models 
over MANOVA. First, missing data (assuming they are missing at random) pose no problem. This 
is a less restrictive assumption than required by MANOVA with imputed values for missing data, 
which is that data be missing completely at random (Hox, 2002). Second, tests are available to 
determine whether the effect of a predictor is greater on one DV than another. Third, if DVs are 
highly correlated, tests for specific effects on single DVs are more powerful because standard errors 
are smaller. Fourth, covariances among DVs can be partitioned into individual and group level, so 
that it is possible to compare size of correlations at the group versus the individual level.

MLwiN and HLM have a special multivariate model technique for dealing with multiple DVs. 
The first level simply codes which response is being recorded. Chapter 11 of Rasbash et al. (2000) 
discusses multiple response models and demonstrates a model with two DVs (in which the level-1 pre-
dictor is a 0,1 dummy code indicating which response is recorded). That is, there is a separate row 
of data for each response in the multivariate set and a dummy variable to indicate whether it is one 
response or the other. This dummy variable is the level-1 predictor. Obviously, things get more com-
plicated with more than two DVs. A separate dummy variable is required for every df—  that is, one 
fewer dummy variables than the number of DVs. The coding reflects the comparisons of interest. For 
example, if DVs were scores on arithmetic, reading, and spelling and the interest is in comparing read-
ing with spelling, one of the dummy codes should be something like 0 = reading and 1 = spelling. The 
second comparison might be a contrast between arithmetic and the other two measures.

Chapter 9 of Hox (2002) discusses a meta-  analysis with two responses, in which the low-
est level is, again, a dummy code for response type, the second level is data collection condition 
(face-to-face, telephone, or mail), and the third level is the study. Each of the response types has 
a separate regression equation, and significance of differences between them is tested. Hox also 
discusses a model of a measurement instrument, in which item is the lowest level, student is second 
level, and school is the third level. This is similar to a repeated-  measurement model as discussed in 
Section 15.5.2, although the emphases may differ.
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TABLE 15.15 Labeling of Variances for Intraclass Correlations Through Five Software 
Programs—Intercept-only Models for the Sample Data

Software (Table) Within-Group Variance (s2
wg) Between-Group Variance (s2

bg)

SAS (Table 15.4) Residual = 0.7695 UN(1,1) = 0.3116

IBM SPSS (Table 15.5) Residual = .7694610 Intercept [subject = RUN] = .3115983

HLM level-1, R = 0.76946 INTRCPT1, U0 = 0.31160

SYSTAT Residual variance = .769 Cluster variance = .312

MLwiN e0skier,run = 0.769 m0run = 0.311

15.6 Some Important Issues

15.6.1 Intraclass Correlation

The intraclass correlation (r)10 is the ratio of variance between groups at the second level of the 
hierarchy (ski runs in the small-  sample example) to variance within those groups. High values imply 
that the assumption of independence of errors is violated and that errors are correlated—  that is, the 
grouping level matters. An intraclass correlation is like h2 in a one-  way ANOVA, although in MLM 
the groups are not deliberately subjected to different treatments.

The need for a hierarchical analysis depends partially on the size of the intraclass 
correlation. If r is trivial, there is no meaningful average difference among groups on the DV, 
and data may be analyzed at the individual (first) level, unless there are predictors and groups 
that differ in their relationships between the predictors and the DV. In any event, Barcikowski 
(1981) shows that even small values of r can inflate Type I error rate with large groups. For 
example, with 100 cases per group, r of .01, and nominal a of .05, the actual a level is as high 
as .17; with 10 cases per group, r of .05, and nominal a of .05, the actual a level is .11. A prac-
tical strategy when the need for a hierarchical analysis is ambiguous is to do the analysis both 
ways to see if the results differ substantively and then report the simpler analysis in detail if 
results are similar.

The intraclass correlation is calculated when there is a random intercept but no random 
slopes (because then there would be different correlations for cases with different values of 
a predictor). Therefore, r is calculated from the two-  level intercept-  only model (the “null” 
or unconditional model of Section 15.4.1). Such a model provides variances at each level; 
r is the level-2 variance (s2

bg , between-  group variability) divided by the sum of level-1 and 
level-2 variances (s2

wg + s2
bg).

These components show up in the random effects portion of output. For example, in SAS 
(Table 15.4), the level-2 variance, 0.3116, is labeled UN(1,1) and the level-1 variance, 0.7695, is 
labeled Residual. Thus,

10Note that intraclass correlation, the term conventionally used, is a misnomer; this really is a squared correlation or strength 
of association (effect size) measure.
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r =
s2

bg

s2
bg + s2

wg
=

0.3116

0.3116 + 0.7695
= .288 (15.14)

That is, about 29% of the variability in the DV (skiing speed) is associated with differences 
between ski runs. Table 15.15 summarizes the labeling of information for intraclass correlations for 
several programs.

For a three-  level design, there are two versions of the intraclass correlation, each with its 
own interpretation (Hox, 2002). For either version, a model is run with no predictors (a three-  level 
intercepts-  only model). The intraclass correlation at the second level is:

rlevel 2 =
s2

bg2

s2
bg2 + s2

bg3 + s2
wg

(15.15)

where s2
bg2 is the variance between the level-2 groups at level 2 and s2

bg3 is the variance 
between the level-3 groups. The intraclass correlation at the third level is:

rlevel 3 =
s2

bg3

s2
bg2 + s2

bg3 + s2
wg

(15.16)

Each is interpreted as a proportion of variance at the designated group level.
The second interpretation is as the expected shared variance between two randomly chosen 

elements in the same group (Hox, 2002). The equation for level 3 is the same for both interpreta-
tions (Equation 15.16). The level-2 equation for this interpretation is:

rlevel 2 =
s2

bg2 + s2
bg3

s2
bg2 + s2

bg3 + s2
wg

(15.17)

Intraclass correlations for a three-  level model are demonstrated in the complete example of 
Section 15.7.

15.6.2  Centering Predictors and Changes 
in Their Interpretations

Subtracting a mean from each predictor score, “centering” it, changes a raw score to a deviation 
score. One major reason for doing this is to prevent multicollinearity when predictors are compo-
nents of interactions or raised to powers, because predictors in their raw form are highly correlated 
with the interactions that contain them or with powers of themselves (cf. Section 5.6.6).

Centering is most commonly performed on level-1 predictors. Level-2 predictors are not usu-
ally centered (although it might be done if that enhanced interpretation). An exception would be 
when interactions are formed among two or more continuous level-2 predictors. Centering DVs is 
unusual because it is likely to make interpretation more difficult.

The meaning of the intercept changes when predictors are centered. For example, if all IVs 
are centered in multiple regression, the intercept is the mean of the DV. In multilevel models with no 
centering and viewed as a single equation (e.g., speed as a function of both skill and mountain), the 
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intercept is the value of the DV (speed) when all IVs (skill and mountain) are zero. If, on the other 
hand, the level-1 IV (skill) is centered and 0 is the code for one of the mountains, then the intercept 
becomes the speed for skiers with an average skill level at that mountain.

Therefore, centering can facilitate interpretation when there is no meaning to a value of zero 
on a predictor. If, for example, IQ is a predictor, it does not make sense to interpret an intercept for 
a value of zero on IQ. On the other hand, if IQ is centered, the intercept becomes the value of the 
DV when IQ is equal to the mean of the sample. That is, with uncentered data, the intercept can be 
interpreted as the expected score of a student with an IQ of zero—  an unrealistic value. On the other 
hand, centering changes the interpretation of the intercept as the expected score for a student with 
average IQ.

In multilevel models, there is a choice between centering a predictor around the grand mean 
(overall skill), centering around the means of the second-  level units (mean skill at different ski 
runs) or even around some other value such as a known population mean. Centering around the 
grand mean reduces multicollinearity when interactions are introduced and produces models that 
are easily transformed back into models based on raw scores. Some values of parameters change, 
but the models have the same fit, the same predicted values, and the same residuals. Further, the 
parameter estimates are easily transformed into each other (Kreft & DeLeeuw, 1998). Thus, the 
goal of enhancing statistical stability by reducing multicollinearity is reached without changing 
the underlying model.

The more common practice of centering around group means has more serious consequences 
for interpretation unless group means are reintroduced as level-2 predictors. Differences in raw-
score and group-  centered models without reintroduction of group means as level-2 predictors can 
be large enough to change the direction of the findings, as illustrated by Kreft and DeLeeuw (1998, 
pp. 110–  113), because important between-  group information is lost. That is, mean differences 
between groups on an IV can be an important factor in the prediction of DV. Reintroducing the 
mean brings those between-  group differences back into the model. In the small-  sample example, 
this involves finding the mean skill for each group and adding it to the second-  level model, so that 
Equation 15.10 becomes

b0j = g00 + g01(Mountain) + g02(MeanSkill) + u0j

The predictor at the first level here is group-  centered at the second level—  the “skill deviation” of 
Table 15.1. That is, DEV_SKL is formed by taking the raw score for each case and subtracting the 
group mean from it.

A model in which first-  level predictor scores are centered around group means is shown 
through SAS MIXED in Table 15.16.

Conclusions have not changed substantively for this model. Notice that the new predictor 
MEAN_SKL is not a statistically significant addition to the model (p = .4501). Indeed, the larger 
value for –2 Log Likelihood suggests a poorer fit for the expanded and centered model 
(a direct comparison cannot be made because the models are not nested).

In this example, the level-1 intercept is the mean speed for a skier with a mean skill level 
(DEV_SKL coded 0) skiing on the mountain coded 0; the slope for the level-2 IV is the gain 
(or  loss) in DV units for the other group (mountain coded 1). It is often worthwhile with a 
level-1 mean-  centered IV to try a model with the group means introduced at level two to see if 
between-  group (run) differences in the predictor are significant. And, of course, this is the method 
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TABLE 15.16 Syntax and Selected Output for Model With Mean Skill Added to Second-  Level 
Equation for SAS MIXED Analysis

proc mixed data=Sasuser.Meanskl covtest method=ml;
class RUN;
model SPEED= DEV_SKL MOUNTAIN MEAN_SKL /

solution ddfm = kenwardroger;
random intercept DEV_SKL / type=un subject = RUN;

run;

The Mixed Procedure

Covariance Parameter Estimates

Cov Parm Subject Estimate
Standard

Error Z Value Pr Z

UN(1,1) RUN 0.08085 0.04655 1.74 0.0412
UN(2,1) RUN 0.07569 0.05584 1.36 0.1752
UN(2,2) RUN 0.2078 0.1025 2.03 0.0213
Residual 0.4594 0.04201 10.94 <.0001

Fit Statistics

-2 Log Likelihood 576.4
AIC (smaller is better) 592.4
AICC (smaller is better) 592.9
BIC (smaller is better) 594.8

Solution for Fixed Effects

Effect Estimate
Standard

Error DF t Value Pr > |t|

Intercept 5.5328 0.3865 10.9 14.32 <.0001
DEV_SKL 0.2173 0.1505 9.69 1.44 0.1802
MOUNTAIN 1.9192 0.5026 8.85 3.82 0.0042
MEAN_SKL -0.1842 0.2348 10.5 -0.78 0.4501

Type 3 Tests of Fixed Effects

Effect
Num
DF

Den
DF F Value Pr > F

DEV_SKL 1 9.69 2.09 0.1802
MOUNTAIN 1 8.85 14.58 0.0042
MEAN_SKL 1 10.5 0.62 0.4501
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of choice if there is research interest in those between-  group differences. Reintroduction of the 
group mean is unnecessary if centering is done around the grand mean.

The topic of centering in MLM is discussed and illustrated in much greater detail by Kreft 
and DeLeeuw (1998). Raudenbush and Bryk (2001) provide useful insights into interpretation of 
MLM parameters under various types of centering. Snijders and Bosker (1999) recommend that 
group-  mean centering be used only when there is theory indicating that the DV is related not to the 
predictor but to the relative value of the predictor within a group. For example, if the DV is teacher’s 
rating of student performance, the relative score within each group with the same teacher makes 
sense because teachers may use different rating criteria.

15.6.3 Interactions

Interactions of interest in MLM can be within a level or across levels. The small-  sample example 
has only one predictor at each level. Had there been another level-1 predictor, such as skier age, 
the interaction between skill and age (if included in the model) would be a within-  level interaction. 
However, if the interaction between skill and mountain is added to the small-  sample example it is 
across levels, because skill is measured at level one and mountain at level two.

Inclusion of interactions is straightforward in MLM and follows the conventions of multiple 
regression: continuous predictors from which interactions are formed are centered and the inter-
action term is added. The interaction is formed in the small sample data set from the centered 
level-1 predictor, SKILL, and the level-2 predictor, MOUNTAIN (DEV_SKL*MOUNTAIN). This 
interaction tests whether the relationship between skill and speed (measured at the skier level) dif-
fers for the two mountains or not. Note that the interaction is added to the model equation after 
the main effects included in it. Changing the order of entry can affect parameter estimates for fixed 
effects even when Type III (default) sums of squares are used.

Table 15.17 shows SAS syntax and selected output for a model which includes the skill by 
mountain interaction. The table of fixed effects shows that there is no statistically significant differ-
ence in the relationship between skill and speed between the two mountains (p = .8121). (Note that 
this cross-  level interaction is indeed predictive of the DV in the full NELS-88 data set from which 
this small sample was taken and relabeled.)

15.6.4 Random and Fixed Intercepts and Slopes

Multilevel modeling typically includes random intercepts because one of its goals is to deal with the 
increased Type I error rate that occurs in hierarchical data when groups differ in their average value 
of the DV. Random slopes, however, may or may not be appropriate in any given model. Inclusion 
of random slopes allows the relationships between the IV and DV to differ among groups.

Figure 15.4 illustrates some idealized combinations of random and fixed parameters with three 
groups (level-2 units). Figure 15.4(a) shows a need to include random intercepts in a model because 
the groups cross the Y axis at different places, but no need to include random slopes, because all of 
them are the same. That is, the rates of change in Y with change in X (the predictor) are the same for 
all groups. Figure 15.4(b) shows a need for both random intercepts and random slopes; groups cross 
the Y axis at different places, and the changes in Y from low to high values of the predictor (X) are 
different. Figure 15.4(c) shows a rare situation: a need for random slopes but a fixed intercept. That 
is, all of the groups have the same mean, but they differ in their change in Y with change in X from 
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TABLE 15.17 SAS MIXED Syntax and Output for Testing the Cross-  Level Interaction 
for the Data of Table 15.1

proc mixed data=Sasuser.Meanskl covtest method=ml;
class RUN ;
model SPEED=DEV_SKL MOUNTAIN DEV_SKL*MOUNTAIN MEAN_SKL/

solution ddfm=kenwardrogers;
random intercept DEV_SKL / type=un subject = RUN;

run;

Covariance Parameter Estimates

Cov Parm Subject Estimate
Standard

Error Z Value Pr Z

UN(1,1) RUN 0.08068 0.04641 1.74 0.0411
UN(2,1) RUN 0.07520 0.05546 1.36 0.1751
UN(2,2) RUN 0.2061 0.1020 2.02 0.0216
Residual 0.4595 0.04202 10.93 <.0001

Fit Statistics

-2 Log Likelihood 576.3
AIC (smaller is better) 594.3
AICC (smaller is better) 595.0
BIC (smaller is better) 597.0

Null Model Likelihood Ratio Test

DF Chi-Square Pr > ChiSq

3 77.56 <.0001

Solution for Fixed Effects

Effect Estimate
Standard

Error DF t Value Pr > |t|

Intercept 5.5366 0.3863 10.9 14.33 <.0001
DEV_SKL 0.2302 0.1587 9.83 1.45 0.1781
MOUNTAIN 1.8765 0.5111 10.3 3.67 0.0041
DEV_SKL*MOUNTAIN -0.1186 0.4834 8.5 -0.25 0.8121
MEAN_SKL -0.1839 0.2346 10.5 -0.78 0.4503

Type 3 Tests of Fixed Effects

Effect
Num
DF

Den
DF F Value Pr > F

DEV_SKL 1 9.83 2.10 0.1781
MOUNTAIN 1 10.3 13.48 0.0041
DEV_SKL*MOUNTAIN 1 8.5 0.06 0.8121
MEAN_SKL 1 10.5 0.61 0.4503
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low to high values. If both intercepts and slopes can be fixed, there would be a single regression 
line, because regression lines for all groups would be superimposed. Garden-  variety (single-  level) 
regression is appropriate in such a case; there is no need for MLM.

The test of random intercepts in the small-  sample example asks whether speed differs among 
runs. It may be the case, however, that those differences disappear with the addition of predictors. 
If, for example, different runs were chosen on the basis of skiing skill, then variance in intercepts in 
speed could go away once skill is taken into account. Remember that in any (standard) regression 
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FIGURE 15.4 Regression lines for three groups varying in 
(a) intercepts but not slopes, (b) both intercepts and slopes, and 

(c) slopes but not intercepts. Generated in SYSTAT PLOT.
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model, including a multilevel model, all effects are adjusted for each other. Note that in the three 
runs of Section 15.4, intercept variance does not disappear but it does become smaller as predictors 
are added.

In the small-  sample example, is the relationship between skill (the IV) and speed (the DV) the 
same for all runs? If you fix the value for slopes in your model, you are assuming that the relation-
ship between skill and speed is constant over runs. Unless you know that variability in slopes over 
runs is negligible, you should allow for random slope coefficients. In this example, the assumption 
that the relationship between skill and speed is constant (fixed) over runs is untenable because one 
would expect a much stronger relationship between skill and speed on more difficult ski runs. The 
price of inclusion of random slope coefficients is reduced power for the test for the DV–  predictor
association, because random effects usually have much larger standard errors than fixed effects.

Decisions about fixed versus random slopes apply separately to each predictor in a model. On 
the other hand, the decision about fixed versus random intercepts is made for the model as a whole, 
disregarding any predictors. Do the groups differ in average speed? That is, do runs have different 
speeds averaged over skiers? This is a question best answered through the intraclass correlation 
(Section 15.6.1).

The assumption that the slopes are constant is testable in a multilevel model in which random 
slope coefficients are specified as the test of the variance of slope. In the small-  sample example with 
a level-1 predictor, slope variance = 0.2104 with a standard error of 0.1036 in the SAS and IBM 
SPSS output of Tables 15.7 and 15.8, respectively. This produces a z value of (0.2104/0.1036 =) 2.03, 
significant at the one-  tailed a = .05 level. Thus, random slope coefficients are appropriate in this 
model. The presence of significant heterogeneity of slopes also shows the difficulty in interpreting 
the nonsignificant DV–  predictor association (here, between speed and skill) as unimportant. Recall 
from ANOVA that main effects (in this case the DV–  IV association) cannot be unambiguously inter-
preted in the presence of interaction (violation of the assumption of homogeneity of slopes).

Failing to account for random slopes can have serious statistical and interpretational conse-
quences. In the small-  sample example, including skill as a fixed, but not random, effect (model not 
shown) produces a significant effect of skill. That is, one would conclude that speed is positively 
related to skill on the basis of such a model. However, as we have seen in Figure 15.2, that conclu-
sion is incorrect for four of the runs.

Examination of the differences in slopes over the groups may be of substantive interest. For 
example, the slopes (and intercepts) for all of the runs in the small-  sample example are illustrated in 
Figure 15.2 and suggest an interesting pattern. The slope for the Aspen run shows little relationship 
between skill and speed for that run. The remaining slopes, for the Mammoth runs, appear to group 
themselves into two patterns. Five of the runs have relatively low intercepts and positive relation-
ships with skill. Runs are slow on average, but the greater the skill of the skier, the faster the speed. 
This suggests that the runs are difficult, but the difficulty can be overcome by skill. The remaining 
four runs have relatively high intercepts and negative relationships with skill. That is, these are fast 
runs but, for some reason, skilled skiers traverse them more slowly (perhaps to view the scenery). 
The pattern of negative relationships between intercepts and slopes is a common one, reflecting 
floor and ceiling effects. Those at the top have less room to grow than those at the bottom.

Higher-  level variables also can have fixed or random slopes, but slopes are necessarily fixed 
for predictors in the highest level of analysis. Thus, mountain is considered a fixed level-2 IV in the 
small-  sample example of Section 15.4.3. If it turns out that the intercept and slopes for all predictors 
at the first level can be treated as fixed, a single-  level model may be a good choice.
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15.6.5 Statistical Inference

Three issues arise regarding statistical inference in MLM. Is the model any good at all? Does making
a model more complex make it any better? What is the contribution of individual predictors?

15.6.5.1 Assessing Models

Does a model predict the DV beyond what would be expected by chance, that is, does it do any 
better than an intercepts-  only model? Is one model better than another? The same procedures are 
used to ask if the model is helpful at all and to ask whether adding predictors improves it. The 
familiar x2 likelihood-  ratio test (e.g., Equation 10.7) of a difference between models is used as long 
as models are nested (all of the effects of the simpler model are in the more complex model) and full 
ML (not REML) methods are used to assess both models.

There are several ways of expressing the test, depending on the information available in 
the program used. Table 15.18 shows x2 equations using terminology from each of the software 
packages.

Degrees of freedom for the x2 equations of Table 15.18 are the difference in the number 
of parameters for the models being compared. Recall that IBM SPSS provides the total number 
of parameters directly in the Model Dimension section of output (cf. Table 15.5). SAS presents 
the information in the Dimensions section in the form of Covariance Parameters
plus Columns in X (cf., Table 15.4).

The test to answer the question, “Does the model predict better than chance?”, pits the 
intercept-  only model of Table 15.5 (with a −2 Log Likelihood value of 693.468 and three param-
eters) against the full model of Table 15.11 (with a −2 Log Likelihood value of 570.318 and seven 
parameters). From Table 15.18:

x2 = 693.468 - 570.318 = 123.15

This value is clearly statistically significant with (7 - 3 = ) 4 df, so the full model leads to prediction 
that is significantly better than chance. SAS MIXED provides the Null Model Likelihood 
Ratio Test routinely for all models.

To test for differences among nested models, chi-  square tests are used to evaluate the conse-
quences of making effects random, or to test a dummy-  coded categorical variable as a single effect, 

TABLE 15.18 Equations for Comparing Models Using Various Software Packages

Program Equation

SAS MIXED x2 = (-2 Log Likelihood)s - (-2 Log Likelihood)c
IBM SPSS MIXED x2 = (–2 Log Likelihood)s – (–2 Log Likelihood)c
MLwiN x2 = (–2*loglikelihood )s – (–2*loglikelihood )c
HLM x2 = (Deviance)s – (Deviance)c
SYSTAT MIXED
REGRESSION x2 = 2(Log Likelihood)c – 2(Log Likelihood)s

Note: Subscript s = simpler model, c = more complex model.
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or for model building in general (Section 15.6.8). Also, Wald tests of individual predictors can be 
verified, especially when samples are small, by testing the difference in models with and without 
them. Note, however, that if the test is for a random effect (variance component) other than covari-
ance, the obtained p value associated with the chi-  square difference test should be divided by two in 
order to create a one-  tailed test of the null hypothesis that variance is no greater than expected by 
chance (Berkhof & Snijders, 2001).

Non-  nested models can be compared using the AIC that is produced by SAS and IBM SPSS
(Hox, 2002). AIC can be calculated from the deviance (which is -2 times the log-  likelihood) as:

AIC = d + 2p (15.18)

where d is deviance and p is the number of estimated parameters. Although no statistical test is 
available for differences in AIC between models, the model with a lower value of AIC is preferred.

15.6.5.2 Tests of Individual Effects

The programs reviewed provide standard errors for parameter estimates, whether random (variances 
and covariances11) or fixed. Some also provide z values (parameter divided by standard error—  Wald 
tests) for those parameters, and some add p (probability) values as well. These test the contribution 
to the equation of the predictors represented by the parameters. However, there are some difficulties 
with these tests.

First, the standard errors are valid only for large samples, with no guidelines available as to 
how large is large enough. Therefore, it is worthwhile to verify the significance of a borderline pre-
dictor using the model-  comparison procedure of Section 15.6.5.1. Second, Raudenbush and Bryk 
(2001) argue that, for fixed effects, the ratio should be interpreted as t (with df based on number of 
groups) rather than z. They also argue that the Wald test is not appropriate for variances produced by 
random effects (e.g., variability among groups) because the sampling distributions of variances are 
skewed. Therefore, their HLM program provides chi-  square tests of random effects. That is, the test 
as to whether intercepts differ among groups is a chi-  square test.

When tests with and without individual predictors (Section 15.6.5.1) are used for random 
effects, recall that, except for covariances, one-  tailed tests are appropriate. One wants to know if 
the predictor differs among higher level units (e.g., among level-2 groups) more than expected 
by chance? Therefore, the p value for the chi-  square difference test should be divided by two 
(Hox, 2002).

An example of this test applied to a fixed predictor is available by comparing results of 
Sections 15.4.2 and 15.4.3, in which the level-2 IV, mountain, is added to a model that already has 
the level-1 predictor, skill:

x2 = 587.865 - 570.318 = 17.55

With 1 df produced by adding the single level-2 predictor to the less complex model, this is clearly 
a statistically significant result. The model is improved by the addition of mountain as a predictor.

11Recall that variances represent differences among groups in slopes or intercepts. Covariances are relationships between 
slopes and intercepts or between slopes for two predictors if there is more than one predictor considered random.
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An application of the test to the addition of a random predictor is available by comparing the 
models of Sections 15.4.1 and 15.4.2, in which SKILL is added to the intercepts-  only model. Using 
the most common form of the test:

x2 = 693.468 - 587.865 = 105.6

This is clearly a significant effect with 6 - 3 = 3 df. Remember to divide the probability level by two 
because the predictor is specified to be random.

15.6.6 Effect Size

Recall that effect size (strength of association) is the ratio of systematic variance associated with a 
predictor or set of predictors to total variance. How much of the total variance is attributable to the 
model?

Kreft and DeLeeuw (1998) point out several ambiguities in the ill-  defined methods currently
available for calculating effect size in MLM. Counterintuitively, the error variances on which 
these measures are based can increase when predictors are added to a model, so that there can be 
“negative effect sizes.” Further, between-  groups and within-  groups estimates are confounded unless 
predictors are centered.

Kreft and DeLeeuw (1998) provide some guidelines for the calculation of h2 with the caution 
that these measures should only be applied to models with random intercepts and should not be 
applied to predictors with random slopes.12 Further, separate calculations are done for the within-
groups (level-1) and between-  groups (level-2) portions of the MLM, because residual variances are 
defined differently for the two levels.

In general, for fixed predictors, an estimate of effect size is found by subtracting the residual 
variance with the predictor (the larger model) from the residual variance of the intercepts-  only 
model (the smaller model), and dividing by the residual variance without the predictor13:

h2 =
s2

1 - s2
2

s2
1

(15.19)

where s2
1 is the residual variance of the intercepts-  only model and s2

2 is the residual variance of the 
larger model (note that the larger model generally has the smaller residual variance). There is as yet 
no convenient method for finding confidence intervals around these effect sizes.

Refer to Kreft and DeLeeuw (1998, pp. 115–  119) for a full discussion of the issues involved 
and definitions of these variances at the within-  group and between-  group levels of analysis for those 
relatively few instances when the measures can be applied and interpreted.

12Calculations for models with random slopes are much more difficult. Snijders and Bosker (1999, p. 105) point out that the 
required values are available in the HLM software. They also suggest that effect sizes calculated in Equation 15.19 do not 
differ much if the values are taken from a run in which only the fixed part of the slopes is included.
13This is different from the intraclass correlation. The intraclass correlation evaluates difference in variation between and 
within groups without consideration of predictors. The current effect size measure evaluates predicted variance–  improvement 
in a model due to fixed predictors.
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15.6.7 Estimation Techniques and Convergence Problems

As in all iterative procedures, a variety of estimation algorithms are available, with different pro-
grams offering a somewhat different choice among them. Table 15.19 shows the methods relevant 
to MLM in several programs.

The most common methods are maximum likelihood and restricted maximum likelihood. 
Maximum likelihood (ML) is a good choice when nested models are to be compared (e.g., when 
an effect has several parameter estimates to evaluate as when a categorical variable is represented 
as a series of dichotomous dummy variables, or when a comparison with an intercepts-  only model 
is desired). In the case of categorical variables, models are compared with and without the set of 
dummy-  coded predictors representing the categorical variable of interest. Maximum likelihood is 
the only method available in SYSTAT MIXED REGRESSION; the MLwiN form of ML is IGLS.

Restricted maximum likelihood (REML) estimates the random components averaged over 
all possible values of fixed effects, as opposed to ML, which estimates random components as well 
as fixed level-2 coefficients by maximizing their joint likelihood (Raudenbush, Bryk, Cheong, & 
Congdon, 2000). The advantage of REML is that the estimates of variances and covariances (ran-
dom coefficients) depend on interval rather than fixed estimates of fixed effects. The method is 
more realistic and less biased because it adjusts for uncertainty about the fixed effects. The disad-
vantage is that the chi-  square difference, likelihood-  ratio test of Table 15.18, is available only for 
testing random coefficients. That is, REML cannot be used to compare nested models, which differ 
in their fixed components. The two methods (ML and REML) produce very similar results when the 
number of level-2 units is large, but REML produces better estimates than ML when there are few 
level-2 units (Raudenbush & Bryk, 2001). The MLwiN form of REML is RIGLS. MLwiN also has 
some Bayesian modeling methods, fully discussed in the manual (Rasbash et al., 2000).

Convergence problems are common in MLM. All forms of maximum likelihood estima-
tion require iterations, and either the number of iterations to convergence may be very large or 

TABLE 15.19 Estimation Methods Available in Software Programs

Estimation Method Programs Providing Comments

Maximum Likelihood 
(ML)

SAS
IBM SPSS
HLM
SYSTAT (only)

Can be used for testing pairs of nested models.

Restricted Maximum 
Likelihood (REML)

SAS (default)
IBM SPSS (default)
HLM (default)

Random components estimated averaging over all 
possible values of fixed effects. Recommended 
when not testing pairs of nested models.

Iterative Generalized 
Least Squares (IGLS)

MLwiN (default) An iterative version of generalized least squares. 
Produces results congruent with ML.

Restrictive Generalized 
Least Squares (RIGLS)

MLwiN Leads to unbiased estimates of random parameters. 
Equivalent to REML with normal random 
variables.

Minimum Variance 
Quadratic Unbiased 
Estimation (MIVQUE0)

SAS Recommended only for large data sets and when 
ML and REML fail to converge.
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convergence may never happen. What’s more, different programs vary widely in the default number 
of iterations allowed and how that number is increased. Usually lack of convergence occurs sim-
ply because the model is bad. However, if samples are small even a good model may not produce 
convergence (or may require many, many iterations). Or there may be numerous random predictors
with very small effects (e.g., the actual variance in slopes over groups may be negligible). A solution
to this problem is to try changing random predictors to fixed.

Another solution in SAS is to use minimum variance quadratic unbiased estimation 
(MIVQUE0). The procedure does not require the normality assumption and does not involve itera-
tion. Actually, SAS uses MIVQUE0 estimates as starting values for ML and REML. However, the 
procedure should be used with caution and only if there is difficulty in convergence with ML and 
REML (Searle, Casella, & McCullock, 1992; Swallow & Monahan, 1984).

Hox (2002) points out that generalized least squares (GLS) estimates of coefficients are 
obtained from ML solutions when only one iteration is allowed. Thus, GLS estimates are the ML 
analog to MIVQUE0. These estimates are accurate when samples are very large. Although estimates
produced through GLS are less efficient, and have inaccurate standard errors, they at least provide 
some information about the nature of the model, and may help diagnose failure to converge.

15.6.8 Exploratory Model Building

MLM is often conducted through a series of runs in which a model is built up. If there are numer-
ous potential predictors, they are first screened through linear regression to eliminate some that are 
obviously not contributing to prediction. Hox (2002) provides a helpful step-by-step exploratory 
strategy to select an MLM model.14

-
relation (Section 15.6.1).

each predictor and/or look at the differences in the models, using the techniques of Sections 
15.6.5.1 and 15.6.5.2.

time; include predictors that were nonsignificant in step two because they may vary among 
level-2 units, as was the case for SKILL in the small-  sample example. If the intraclass cor-
relation is sufficiently small and there are no significant random effects of predictors, a simple 
single-  level regression analysis may be used.

from the second step in which all predictors were fixed (see Section 15.6.5.1 for figuring the 
difference in the number of parameters to use as df).

must be used to compare models unless comparisons are made only between random predictors.)

Alternatively, a top-  down approach may be used for building a model. That is, you can start 
with the most complex model, which includes all possible random effects as well as higher-  level 
predictors and cross-  level interactions, and then systematically eliminate nonsignificant effects. 

14Multilevel analysis: techniques and applications by HOX, J. J. Copyright 2002. Reproduced with permission of TAYLOR & 
FRANCIS GROUP LLC - BOOKS in the format. Other book via Copyright Clearance Center.
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Indeed, this is probably a more efficient strategy if it works, but may not work because the most 
complex model often is likely to result in a failure to converge on a solution.

If the overall sample is large enough to support it, exploratory model-  building procedures are 
best tested with cross-  validation. Half the sample is used to build the model, and the other half for 
cross-  validation. Otherwise, the results of the exploratory technique may be unduly influenced by 
chance. Even with a model based on theory, the full model as hypothesized may well fail to provide 
a solution. These “exploratory” techniques may be used to tweak the model until an acceptable 
solution can be found. Such modification, of course, is reported in the results.

15.7 Complete Example of MLM

These data are from field studies of the effects of nighttime aircraft noise in the vicinity of two 
airports and one control site. Airports were Castle Air Force Base in Merced, CA (site 1), neigh-
borhoods in the Los Angeles area that were not exposed to nighttime aircraft noise but were 
exposed to high levels of road traffic noise (site 2), and LAX (site 3). For the current analysis, 
50 participants were selected in 24 households with at least two participants each providing data 
for at least 3 consecutive nights. Interior noise levels (NIGHTLEQ) were monitored between 
10:00 p.m. and 8:00 a.m. Each test participant used a palmtop computer at bedside to answer an 
evening and morning questionnaire, including items about time taken to fall asleep the previ-
ous night (LATENCY) and annoyance by aircraft noise the previous night (ANNOY). Latency 
was measured on a scale of 1 to 5 (1 = less than 10 min, 2 = 10–20 min, 3 = 20–30 min, 4 =
30–60 min, 5 = more than an hour).

Annoyance served as the DV for the MLM analysis, with nights as a repeated-  measures 
first-  level unit. ANNOY was measured on a scale of 0 to 5 (0 = not at all annoyed to 5 = extremely 
annoyed). First-  level predictors were LATENCY and NIGHTLEQ. Participants served as the 
second-  level unit, with AGE as the predictor. Households served as the third-  level unit with 
SITE1 (Castle AFB vs. other sites) and SITE2 (control neighborhoods vs. other sites) as dummy-
variable predictors. Thus, we have a complex three-  level model with observed predictors at each 
level and no hypothesized interactions. Appendix B.5 provides additional information about the 
Fidell et al. (1995) research. Data files are MLM.*.

Figure 15.5 shows the layout for the data to be analyzed in this example.

15.7.1 Evaluation of Assumptions

15.7.1.1 Sample Sizes, Missing Data, and Distributions

There were 747 nights of data collected from 50 participants (only those participants providing at 
least 3 nights of data were included in this analysis) residing in 24 households (only households 
with at least 2 participants were included). This is not a very large sample for MLM, so that 
convergence difficulties may be anticipated, particularly with this relatively large number 
of predictors. The existence of only 24 households (and few participants per household) is 
particularly problematic.

First-  level variables were ANNOY (the DV), NIGHTLEQ, and LATENCY. Two participants 
each failed to provide latency values for one night; missing values were replaced with the aver-
age latency for that participant (1.22 for SUBNO = 219 and 2.5 for SUBNO = 323). IBM SPSS 
FREQUENCIES provided descriptive statistics and histograms shown in Table 15.20.
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TABLE 15.20 Descriptive Statistics for First-  level Variables Using IBM SPSS Frequencies

FREQUENCIES
VARIABLES=nightleq latency annoy /FORMAT=NOTABLE
/STATISTICS=STDDEV MINIMUM MAXIMUM MEAN SKEWNESS SESKEW KURTOSIS SEKURT
/HISTOGRAM NORMAL
/ORDER= ANALYSIS.

Frequencies

Histogram

Statistics

NIGHTLEQ LATENCY ANNOY

N Valid 747 745 747
Missing 0 2 0

Mean 74.0855 1.7651 1.27
Std. Deviation 7.73557 1.00796 1.341
Skewness 1.090 1.447 .829
Std. Error of Skewness .089 .090 .089
Kurtosis 1.572 1.705 −.218
Std. Error of Kurtosis .179 .179 .179
Minimum 60.60 1.00 0
Maximum 111.50 5.00 5

Household 1 Household 44

.....

..........

Participant 201 Participant 202 Participant 419 Participant 430

Night 10 Night 30 Night 2 ..... Night 30 Night 21 ..... Night 27 Night 5 ..... Night 28

FIGURE 15.5 Layout of data in complete example.

All three variables have extreme positive skewness. LATENCY and NIGHTLEQ are consid-
erably improved with logarithmic transformations; however, modeling with and without transfor-
mation of the variables produces results that do not differ substantively. Therefore, the decision was 
made to model untransformed predictors in the interest of interpretability. Various transformations 
of ANNOY increase the negative kurtosis to unacceptable levels, so the decision is made to leave 
the DV untransformed as well.
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AGE, the only second-  level variable, is acceptably distributed, as seen in Table 15.21, using a 
reduced data set in which there is one record per participant (as differentiated from the major data 
set which has one record for each participant-  night combination).

Frequency distributions are shown in Table 15.22 for the two dichotomous third-  level predic-
tors, SITE1 and SITE2, using a further reduced data set in which there is one record per household. 
Distributions are not optimal, but there are more than 10% of the households in the least frequent 
site (non-airport neighborhoods).

15.7.1.2 Outliers

At least one univariate outlier with extremely high noise level was noted in the transformed data 
(L_LEQ, z = 4.19, not shown). A check of multivariate outliers through IBM SPSS REGRESSION
(Table 15.23) shows three extreme cases (sequence numbers 73, 74, and 75 from participant #205) 
to be beyond the critical x2 of 13.815 for 2 df at a = .001.

Examination of the original data revealed that several of the noise levels for participant 
#205 were highly discrepant from those of the housemate (participant #206) and were probably 
recorded erroneously. Thus, noise values for nights 17 through 23 for participant #205 were replaced
with those recorded for participant #206. This produced acceptable Mahalanobis distance values for 
all cases.

TABLE 15.21 Descriptive Statistics for Second-  level Predictor Through IBM SPSS Frequencies
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FREQUENCIES
VARIABLES=age /FORMAT=NOTABLE
/STATISTICS=STDDEV MAXIMUM MEAN SKEWNESS SESKEW KURTOSIS SEKURT
/HISTOGRAM NORMAL
/ORDER= ANALYSIS.

Frequencies

Statistics

AGE

N Valid 50
Missing 0

Mean 48.060
Std. Deviation 17.549
Skewness .033
Std. Error of 

Skewness
.337

Kurtosis −1.380
Std. Error of 

Kurtosis
.662

Minimum 19.0
Maximum 78.0



Multilevel Linear Modeling 843

TABLE 15.22 Frequency Distributions for the Third-  level Predictors Through IBM SPSS Frequencies

FREQUENCIES
VARIABLES=site1 site2

 /ORDER= ANALYSIS .

Frequency Table

SITE1

Frequency Percent Valid Percent
Cumulative

Percent

Valid 0 16 66.7 66.7 66.7

1 8 33.3 33.3 100.0

Total 24 100.0 100.0

SITE2

Frequency Percent Valid Percent
Cumulative

Percent

Valid 0 21 87.5 87.5 87.5

1 3 12.5 12.5 100.0

Total 24 100.0 100.0

Table 15.21 reveals no univariate outliers for the single second-  level predictor, AGE. Splits 
were not too highly discrepant for the third-  level predictors (SITE1 and SITE2, dichotomous 
variables) so that there were no outliers at that level.

15.7.1.3 Multicollinearity and Singularity

There are no interactions to be modeled, so no problems concerning collinearity are anticipated. 
A multiple regression run through IBM SPSS REGRESSION that included the five predictors from 
all levels (Table 15.24) revealed no cause for concern about collinearity, despite the rather high 
condition index for the sixth dimension.

15.7.1.4 Independence of Errors: Intraclass Correlations

Intraclass correlation is evaluated by running a three-  level (nights, subjects, and households) model 
through IBM SPSS, with random intercepts but no predictors. Table 15.25 shows the syntax and 
relevant output. Note that IBM SPSS changes the Covariance Structure from COVTYP(UN) to 
Identity whenever there is a random effect with only one level (i.e., Intercept).

The null model has four parameters, one each for the fixed intercept (grand mean), variability 
in participant intercepts, variability in household intercepts, and residual variance.
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Applying Equation 15.15 for the second level:

r =
s2

bg2

s2
bg2 + s2

bg3 + s2
wg

=
0.28607

0.28607 + 0.41148 + 1.12096
= .16

With about 16% of the variability in annoyance associated with individual differences (differences 
among participants), an MLM is advisable.

Applying Equation 15.16 for the third level:

r =
s2

bg3

s2
bg2 + s2

bg3 + s2
wg

=
0.41148

0.28607 + 0.41148 + 1.12096
= .23

With about 23% of the variance in annoyance associated with the third level of the hierarchy (differ-
ences among households), a three-  level MLM is advisable.

15.7.2 Multilevel Modeling

A three-  level model is hypothesized with predictors at all three levels (noise, time to fall asleep, 
age, and site). Recall that no interactions are hypothesized, either within or between levels. Only 

TABLE 15.23 Syntax and Selected IBM SPSS REGRESSION Output for Multivariate 
Outliers for Level 1

REGRESSION
/MISSING LISTWISE
/STATISTICS COEFF OUTS R ANOVA
/CRITERIA=PIN(.05) POUT(.10)
/NOORIGIN
/DEPENDENT annoy
/METHOD=ENTER nightleq latency
/RESIDUALS=OUTLIERS(MAHAL).

Outlier Statisticsa

Case Number Statistic

Mahal. Distance 1 75 23.413
2 74 21.017
3 73 16.499
4 72 13.495
5 665 13.471
6 212 12.385
7 71 11.827
8 554 11.770
9 21 11.675

10 645 11.559

a. Dependent Variable: annoy
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TABLE 15.24 Syntax and Selected IBM SPSS REGRESSION Output for Multicollinearity

REGRESSION
/MISSING LISTWISE
/STATISTICS COEFF OUTS R ANOVA COLLIN TOL
/CRITERIA=PIN(.05) POUT(.10)
/NOORIGIN
/DEPENDENT annoy
/METHOD=ENTER nightleq latency age site1 site2.

Regression

Coefficientsa

Unstandardized 
Coefficients

Standardized 
Coefficients

Collinearity 
Statistics

Model B
Std. 
Error Beta t Sig. Tolerance VIF

1    (Constant) -2.107 .517 -4.071 .000
nightleq .035 .007 .192 5.089 .000 .834 1.199
latency .192 .047 .144 4.102 .000 .967 1.034
age .012 .003 .151 3.905 .000 .802 1.247
site1 -.183 .106 -.066 -1.727 .085 .824 1.213
site2 -.431 .159 -.111 -2.713 .007 .707 1.414

a. Dependent Variable: annoy

Collinearity Diagnosticsa

Variance Proportions

Model Dimension
Eigen-
value

Condition 
Index (Constant)

night-
leq latency age site1 site2

1 1 4.281 1.000 .00 .00 .01 .00 .01 .00
2 1.021 2.048 .00 .00 .00 .00 .11 .45
3 .447 3.096 .00 .00 .02 .02 .77 .25
4 .193 4.713 .00 .00 .93 .06 .00 .04
5 .055 8.821 .03 .03 .04 .91 .04 .20
6 .004 32.012 .97 .96 .00 .01 .06 .05

a. Dependent Variable: annoy

nightleq is predicted to have a random slope; individual differences are expected in the relationship 
between noise and annoyance.

A model in which noise was treated as random failed to converge, even when number of 
iterations was increased to 500 and probability of convergence was relaxed to .001. Therefore, the 
decision was made to treat all predictors as fixed effects. Table 15.26 shows syntax and output for 
the full three-level model.

The full model has nine parameters, the four noted in Table 15.25 for the random effects of 
intercepts and residual as well as the fixed effect of the intercept, plus one parameter each for the 
five fixed predictors.
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TABLE 15.25 Three-Level Intercepts-Only Model Through IBM SPSS Mixed 
(Syntax and Selected Output)

MIXED
annoy BY site1 site2 WITH nightleq latency
/CRITERIA = CIN(95) MXITER(100) MXSTEP(5) SCORING(1)
SINGULAR(0.000000000001) HCONVERGE(0, ABSOLUTE) LCONVERGE(0, ABSOLUTE)
PCONVERGE(0.000001, ABSOLUTE)
/FIXED = | SSTYPE(3)
/METHOD = ML
/PRINT = SOLUTION TESTCOV
/RANDOM INTERCEPT | SUBJECT(subno) COVTYPE(UN)
/RANDOM INTERCEPT | SUBJECT(house) COVTYPE(UN).

Model Dimensiona

Number
of Levels

Covariance 
Structure

Number of 
Parameters

Subject
Variables

Fixed Effects Intercept 1 1

Random Effects Intercept 1 Identity 1 subno

Intercept 1 Identity 1 house

Residual 1

Total 3 4

a. Dependent Variable: annoy.

Information Criteriaa

−2 Log Likelihood 2307.764
Akaike’s Information 
Criterion (AIC) 2315.764
Hurvich and Tsai’s 
Criterion (AICC) 2315.818
Bozdogan’s Criterion 
(CAIC) 2338.228
Schwarz’s Bayesian 
Criterion (BIC) 2334.228

The information criteria are displayed in 
smaller-is-better forms.

a. Dependent Variable: annoy.

For random effects, there was significant variability in annoyance among participants within 
households (p = .005/2 = .0025) as well as significant variability in annoyance among households 
(p = .048/2 = .024). Unfortunately, there was also significant residual (unexplained) variance over 
nights after taking into account all effects in this hierarchical model (p 6 .001).

For fixed effects, nighttime noise level (p 6 .001) and time to fall asleep (p = .010) signifi-
cantly predicted annoyance when averaged over participants and households. The parameter esti-
mates show that annoyance is greater when nighttime noise was louder; for each leq unit increase 
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in noise level, annoyance increased by about 0.04 on a scale of 0 to 5. Annoyance also increased 
on nights when the time to fall asleep was greater. Each one-  unit increment in time to fall asleep 
increased annoyance by about 0.12. No statistically significant effects were found for age or either 
of the dummy variables for site.

Comparison between this model and the intercepts-  only model of Table 15.25 shows that 
annoyance is predicted at better-  than-  chance level as a result of the set of two predictors. Following 
the equation in Table 15.18,

x2 = 2307.764 - 2260.324 = 47.44

a significant difference with (9 - 4) = 5 df at a = .05.
A final, parsimonious, model eliminates the three nonsignificant effects (age and the two 

dummy-  coded site variables). Table 15.27 shows the final model.
Comparison between this model and the full model of Table 15.26 shows that prediction of 

annoyance does not suffer when the three predictors are dropped. Following the equation in Table 15.18

x2 = 2263.452 - 2260.324 = 3.13

a nonsignificant difference with (9 − 6) = 3 df at a = .05. Table 15.28 compares the three models.

TABLE 15.25 Continued

TABLE 15.26 Three-  Level Model of Annoyance as Predicted by Noise Level, Time to Fall Asleep, Age, 
and Site (IBM SPSS MIXED Syntax and Selected Output)

MIXED
annoy BY site1 site2 WITH age nightleq latency
/CRITERIA=CIN(95) MXITER(100) MXSTEP(10) SCORING(1) SINGULAR(0.000000000001) 
HCONVERGE(0, ABSOLUTE) LCONVERGE(0, ABSOLUTE) 
PCONVERGE(0.000001, ABSOLUTE)
/FIXED=age nightleq latency site1 site2 | SSTYPE(3)
/METHOD=ML
/PRINT=SOLUTION TESTCOV
/RANDOM=INTERCEPT | SUBJECT(subno) COVTYPE(UN)
/RANDOM=INTERCEPT | SUBJECT(house) COVTYPE(UN).

(continued )

Covariance Parameters

Estimates of Covariance Parametersa

95% Confidence Interval

Parameter Estimate
Std.
Error

Wald
Z Sig.

Lower
Bound

Upper
Bound

Residual 1.1209630 .0599997 18.683 .000 1.0093239 1.2449502
Intercept
[subject = subno] Variance .2860726 .1044476 2.739 .006 .1398605 .5851367

Intercept
[subject = house] Variance .4114774 .1789685 2.299 .021 .1754378 .9650918

a. Dependent Variable: annoy.



Mixed Model Analysis

Model Dimensiona

Number of 
Levels

Covariance 
Structure

Number of 
Parameters

Subject
Variables

Fixed Intercept 1 1

Effects age 1 1

nightleq 1 1

latency 1 1

site1 2 1

site2 2 1

Random Intercept 1 Identity 1 subno

Effects Intercept 1 Identity 1 house

Residual 1

Total 10 9

a. Dependent Variable: annoy.

Information Criteriaa

−2 Log Likelihood 2260.324

Akaike’s Information Criterion (AIC) 2278.324

Hurvich and Tsai’s Criterion (AICC) 2278.568

Bozdogan’s Criterion (CAIC) 2328.869

Schwarz’s Bayesian Criterion (BIC) 2319.869

The information criteria are displayed in 
smaller-is-better forms.

a. Dependent Variable: annoy.

Fixed Effects

Type III Tests of Fixed Effectsa

Source Numerator df Denominator df F Sig.

Intercept 1 163.066 16.763 .000
age 1 36.852 .672 .418
nightleq 1 718.651 37.423 .000
latency 1 744.678 6.617 .010
site1 1 22.898 .561 .461
site2 1 24.389 1.223 .280

a. Dependent Variable: annoy.

TABLE 15.26 Continued
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TABLE 15.26 Continued

Estimates of Fixed Effectsb

95% Confidence Interval

Parameter Estimate Std. Error df t Sig. Lower Bound Upper Bound

Intercept −3.191898 .786214 77.158 −4.060 .000 −4.757399 −1.626397

age .007233 .008826 36.852 .820 .418 −.010652 .025118

nightleq .043253 .007070 718.651 6.117 .000 .029372 .057134

latency .121545 .047250 744.678 2.572 .010 .028787 .214303

[site1= 0] .248439 .331564 22.898 .749 .461 −.437621 .934500

[site1=1] 0a 0 . . . . .

[site2=0] .569160 .514650 24.389 1.106 .280 −.492130 1.630449

[site2=1] 0a 0 . . . . .

a. This parameter is set to zero because it is redundant.

b. Dependent Variable: annoy.

Covariance Parameters

Estimates of Covariance Parametersa

95% Confidence Interval

Parameter Estimate Std. Error Wald Z Sig. Lower Bound Upper Bound

Residual 1.049098 .056218 18.661 .000 .944501 1.165278

Intercept [subject = subno] Variance .317301 .114145 2.780 .005 .156770 .642216

Intercept [subject = house] Variance .331617 .167963 1.974 .048 .122887 .894884

a. Dependent Variable: annoy.
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Table 15.29 displays the results in a format for journal reporting.
Table 15.30 is a checklist of items to consider in MLM. An example of a Results section in 

journal format appears after Table 15.30.

TABLE 15.27 Final Three-  Level Model of Annoyance as Predicted by Noise Level and Time to Fall 
Asleep (IBM SPSS MIXED Syntax and Selected Output)

MIXED annoy BY site1 site2 WITH nightleq latency
/CRITERIA=CIN(95) MXITER(100) MXSTEP(10) SCORING(1) SINGULAR(0.000000000001) 
HCONVERGE(0, ABSOLUTE) LCONVERGE(0, ABSOLUTE) PCONVERGE(0.000001, ABSOLUTE)
/FIXED=nightleq latency | SSTYPE(3)
/METHOD=ML
/PRINT=SOLUTION TESTCOV
/RANDOM=INTERCEPT | SUBJECT(subno) COVTYPE(UN)
/RANDOM=INTERCEPT | SUBJECT(house) COVTYPE(UN).

Mixed Model Analysis

Model Dimensiona

Number
of Levels

Covariance 
Structure

Number of 
Parameters

Subject
Variables

Fixed Effects Intercept 1 1

nightleq 1 1

latency 1 1

Random Effects Intercept 1 Identity 1 subno

Intercept 1 Identity 1 house

Residual 1

Total 5 6

a. Dependent Variable: annoy.

Information Criteriaa

−2 Log Likelihood 2263.452

Akaike’s Information Criterion (AIC) 2275.452

Hurvich and Tsai’s Criterion (AICC) 2275.565

Bozdogan’s Criterion (CAIC) 2309.148

Schwarz’s Bayesian Criterion (BIC) 2303.148

The information criteria are displayed in smaller-is-better 
forms.

a. Dependent Variable: annoy.



851

Fixed Effects

Type III Tests of Fixed Effectsa

Source Numerator df Denominator df F Sig.

Intercept 1 531.179 16.015 .000

nightleq 1 710.678 38.634 .000

latency 1 743.765 5.980 .015

a. Dependent Variable: annoy.

Estimates of Fixed Effectsa

95% Confidence Interval

Parameter Estimate Std. Error df t Sig. Lower Bound Upper Bound

Intercept -2.202711 .550428 531.179 -4.002 .000 -3.283993 −1.121428

nightleq .043743 .007038 710.678 6.216 .000 .029926 .057560

latency .115573 .047260 743.765 2.445 .015 .022795 .208351

a. Dependent Variable: annoy.

Covariance Parameters

Estimates of Covariance Parametersa

95% Confidence Interval

Parameter Estimate Std. Error Wald Z Sig. Lower Bound Upper Bound

Residual 1.048913 .056197 18.665 .000 .944356 1.165047

Intercept [subject = subno] Variance .308464 .110318 2.796 .005 .153032 .621765

Intercept [subject = house] Variance .427308 .190362 2.245 .025 .178459 1.023163

a. Dependent Variable: annoy.

TABLE 15.27 Continued
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TABLE 15.28 Comparison of Multilevel Models for Annoyance Due to Noise

Model −2 Log Likelihood df x2 Difference Test

Intercepts only 2307.764 4
Full 2260.324 9 M1 - M2 = 47.44*
Final 2263.452 6 M3 - M2 = 3.13

*p 6 .05.

TABLE 15.30 Checklist for Multilevel Modeling

1. Issues

a. Adequacy of sample sizes and missing data

b. Normality of distributions at each level

c. Absence of outliers at each level

d. Absence of multicollinearity and singularity

e. Independence of errors (intraclass correlation)

TABLE 15.29 Results of Final Three-  Level Model of Annoyance Due To Nighttime Noise Exposure 
(Excerpted From Table 15.27)

Random Effects

95% Confidence 
Interval

Level Effect
Parameter 
Estimate

Standard
Error

Wald 
Z

p
(1-sided) Lower Upper

1 Household Intercept 0.427 0.190 2.25 .013 0.178 1.023
2 Subject Intercept 0.308 0.110 2.80 .005 0.153 0.622
3 Nights Residual 1.049 0.056 18.66 6.001 0.944 1.165

Fixed Effects (Averaged over Participants and Households)

95% Confidence 
Interval

Effect
Parameter 
Estimate

Standard
Error t ratio

Approx 
df

p
(2-sided) Lower Upper

Intercept -2.203 0.550 -4.00 531 6.001 -3.284 -1.121
Noise Level 0.044 0.007 6.22 711 6.001 0.030 0.058
Latency 0.116 0.047 2.45 744 .008 0.023 0.208
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Results

Hypothesized Model

A three-  level hierarchical model assessed the effects of 

nighttime noise exposure, latency to fall asleep, age, and 

location on annoyance due to nighttime aircraft noise. It was 

expected that annoyance would be positively related to noise 

exposure, latency, age, and proximity to an Air Force base.

First-  level units were nights in which respondents 

participated in the study, with respondents limited to those 

who provided at least three nights of data, resulting in a 

total of 747 nights for analysis. Second-  level units were the 

50 participants residing in the 24 households, comprising the 

third-  level units. Only households with at least two participants 

were selected for analysis. Multilevel modeling was implemented 

through SPSS MIXED MODELS, Version 13.

Hierarchical models are those in which data collected 

at different levels of analysis (e.g., people, households, 

and sites) may be studied without violating assumptions of 

2. Major analyses

a. Analysis with first-level predictors

b. Analysis with second-  level predictors and significant 
first-level predictors, etc.

c. Determination of final model

(1) Parameter estimates for final model

(2) Comparison of final with an intercepts-  only model

3. Additional analyses

a. Adding main effects and/or interactions

b. Additional exploratory analyses

TABLE 15.30 Continued
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independence in linear multiple regression. For example, the 

fact that individuals respond together and have the same exposure 

within a household means that responses from individuals within 

each household are not independent of one another. Multilevel 

modeling takes account of these dependencies by estimating 

variance associated with group (e.g., household) differences 

in average response (intercepts) and group differences in 

associations (slopes) between predictors and the DV (e.g., group 

differences in the relationship between noise and annoyance). 

This is accomplished by declaring intercepts and/or slopes to be 

random effects. Figure 15.5 shows the layout of the design.

In the hypothesized model, individuals and households are 

declared random effects to assess variability among individuals 

within households as well as variability among households. 

Also, one of the predictors, noise level, was declared a random 

effect, reflecting the hypothesis that there would be individual 

differences in the association between noise level and annoyance.

Assumptions

One missing latency value each for two participants was 

replaced by the mean for that participant. Extreme positive 

skewness was noted for latency and noise level, but modeling 

with logarithmically transformed predictors did not substantively 

change the results. Therefore the untransformed values were used. 

Transformation of annoyance produced unacceptable values of 

kurtosis, so that DV also remained untransformed. Distributions 

for second-   and third-  level predictors were acceptable. There 

were no outliers (p < .001) once presumably erroneous noise 

levels were replaced by those recorded for the housemate. 

The intraclass correlations of .16 and .23 for second and 
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third levels, respectively, indicate the value of including 

participants as a random second-  level unit and households as a 

random third-level unit.

Multilevel Modeling

One predictor, noise level, initially was entered as a 

random effect, based on the hypothesis that there would be 

individual differences in the relationship between noise and 

annoyance. That model failed to converge, so that the full model 

considers all of the predictors to be fixed effects.

The full model as a whole was significantly better than one 

in which only the intercepts were included (i.e., differences 

among individual and households), x2 (6, N = 747) = 2307.764 – 

2260.324 = 47.44, p < .001. Thus, the predictors as a group 

improved the model beyond that produced by considering 

variability in individuals and households.

Two of the five predictors were significantly associated 

with annoyance, but age and the two indicators of site were not. 

Therefore, a final model was proposed in which only two fixed 

predictors were evaluated: nighttime noise level and time to 

fall asleep. This model did not differ significantly from the 

full model, x2(3, N = 747) = 2263.452 –   2260.324 = 3.13, p > .05. 

Table 15.28 summarizes the three models evaluated.

Table 15.29 shows that there are individual and household 

differences in intercepts (average annoyance varies for 

households and participants within households). Also noted is the 

statistically significant residual, indicating room to improve 

the model.

On average, annoyance is positively related to nighttime 

noise level; for each leq unit increase in noise level, annoyance 
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15.8 Comparison of Programs

The programs discussed in this chapter vary widely in the kinds of models they analyze and even 
in the results of analyses of the same models. These programs have far less in common than those 
used for other statistical techniques. SAS MIXED is part of the SAS package and is used for many 
analyses other than MLM. Indeed, at the time of writing this chapter, neither the SAS manuals nor 
special SAS publications directly address the issue of MLM. IBM SPSS MIXED MODEL is part 
of the IBM SPSS package starting with Version 11 and has been substantially revised since Version 
11.5. MLwiN and HLM are stand-  alone programs for MLM. SYSTAT MIXED REGRESSION 
is part of the SYSTAT package starting with Version 10. Table 15.31 compares features of these 
programs.

15.8.1 SAS System

The program in the SAS system that handles multilevel modeling is PROC MIXED, although it 
is not specifically designed for that purpose. The program is so flexible, however, that judicious 
use of its RANDOM feature and nesting specifications can be applied to a wide variety of MLM 
models, including those with more than two levels (Suzuki & Sheu, 1999). However, it is prob-
ably a good idea to limit the use of PROC MIXED to relatively simple MLM models until there is 
more information about its applicability. Only the features of the program that apply to MLM are 
reviewed here.

increased by about 0.04 on a scale of 0 to 5. Annoyance also 

increased on nights when the time to fall asleep was greater. 

Each 10-minute increment in time to fall asleep increased 

annoyance by about 0.12.

Thus, although annoyance differs among individuals and 

households, there is increased annoyance on average on nights 

when noise is louder and when it takes longer to fall asleep. 

No statistically significant associations were found between age 

and annoyance, nor between site and annoyance. That is, there is 

no evidence that annoyance due to nighttime noise increases with 

age, nor is there evidence that annoyance is greater in proximity 

to an Air Force base, after adjusting for the effect of the noise 

level itself.
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TABLE 15.31 Comparison of Programs for Multilevel Modeling

SYSTAT
SAS IBM SPSS MIXED

Feature MIXED MIXED HLM MLwiN REGRESSION

Input

Multiple estimation techniques Yes Yes Yes Yes No

Handles models with more than 
two levels Yes Yes Yes Yes No

Specify random or fixed slopes Yes Yes Yes Yes Yes

Accepts files from other software 
packages Yes Yes Yes No Yes

Can be used for data simulation No No No Yes No

Syntax mode available for input Yes Yes Yes No Yes

Requires explicit column of data 
for Constant No No No Yes No

Specify categorical variables and 
interactions without recode Yes Yes No Yes Yes

Specify nonnormal response 
variables and/or nonlinear model Noa Nob Yes Yes No

Specify Bayesian modeling Yes No Noc Yes Noc

Bootstrapping No No No Yes No

Special specification for cross-
classified models (overlapping 
groupings) No No Yes Yes No

Specify multiple membership 
models (lower-level units 
belonging to more than one 
higher-level unit) No No Yes Yes No

Specify latent variables No No Yes No No

Specify known variance and 
covariance values Yes No Yes No No

Specify structure of variance–
covariance matrix Yes Yes Yes No Yes

Specify design weights Yes Yes Yes No No

Test specific hypotheses in a single 
run Yes Yes Yes No No

Test and deal with failure of 
level-1 homogeneity of variance Yes No Yes No No

Delete intercept from 
level-1 model Yes Yes Yes Yes Yes

Constrain effects to be equal Yes No Yes Yes No

Specify fixed intercept Yes Yes No Yes Yes

Specify latent variables free of 
measurement error No No Yes No No

(continued )
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SYSTAT
SAS IBM SPSS MIXED

Feature MIXED MIXED HLM MLwiN REGRESSION

Input (continued)

Special procedure for single-level 
multiple regression analysis with 
missing data No No Yes No No

Procedure to deal with multiply-  
imputed data No No Yes No No

Control maximum number of 
iterations Yes Yes Yes Yes Yes

Additional controls on iterations Yes Yes Yes Yes No

Control number of units for OLS 
equations NA NA Yes NA NA

Determine convergence criterion 
and/or tolerance Yes Yes Yes Yes Yes

Alternatives for correcting 
unacceptable start values No No Yes No No

Alternative approaches for 
repeated- measures analysis Yes Yes No No Yes

Data restructuring for repeated 
measures No No No Yes Yes

Output

Parameter estimates and standard 
errors Yes Yes Yes Yes Yes

Parameter estimates with robust 
standard errors No No Yes No No

Log-likelihood, -2*log-likelihood 
value, and/or deviance Yes Yes Yes Yes Yes

Other fit statistics Yes Yes No No No

t or z ratio or x2 for effects Yes Yes Yes No Yes

df for effects Yesd Yes Yes No No

Probability value for tests of effects Yes Yes Yes No Yes

Printed confidence limits for fixed 
and random effects No Yes No No No

Number of estimated parameters No Yes Yes No No

Summary of model in equation 
format No No Yes Yes No

Reliability for least-squares
estimates of level-1 coefficients 
across set of level-2 units No No Yes No No

Null/independence model test Yes No No No No

TABLE 15.31 Continued
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SYSTAT
SAS IBM SPSS MIXED

Feature MIXED MIXED HLM MLwiN REGRESSION

Level-1 intercepts and slopes and 
summary over level-1 units No No Yes No No

Results for an OLS analysis and 
with robust SEs No No Yes No No

Prints start values and/or progress 
of iterations Yes No Yes Noe Yes

Prints variance–covariance (and/or 
correlation) matrix of parameters Yes Yes Yes No Yes

Residual variance–covariance 
matrices No Yes No No No

Intraclass (intracluster) correlation 
for fixed-coefficient models No No No No Yes

Summary of hierarchical structure 
with sample sizes No No No Yes Yes

Univariate statistics Nof Yes Yes Yes Yes

Analysis of residuals No No Yes Yes No

Plots

Scattergrams of variables Nof No No Yes No

Plots of residuals Nof No Yes Yes No

Graph of predicted values Nof No Yes Yes No

Trellis plot No No No Yes No

Additional diagnostic plots Nof No Yes Yes Yes

Saved on request

Residuals and predicted scores Yesg Yes Yes No Yes

Variance–covariance matrices of 
estimates and parameters Yes No Yes No No

Confidence limits for fixed and 
random effects Yes No No Yes No

aPROC NLMIXED handles nonlinear MLM.
bTwo-  level models with dichotomous DVs may be analyzed through COMPLEX SAMPLES LOGISTIC REGRESSION.
cEmpirical Bayes estimates are routinely provided of all randomly varying level-1 coefficients.
dAppropriate df for fixed effects provided by ddfm=kenwardroger.
eCan be seen interactively on screen as analysis progresses.
fAvailable in other programs in package.
gAny table from SAS MIXED can be converted to an SAS data set.

TABLE 15.31 Continued
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SAS MIXED has many options for specifying the structure of a variance–  covariance matrix 
(unstructured is the most common choice for MLM) and permits input of known values. Bayesian 
modeling can be specified through the PRIOR instruction. A number of fit statistics are provided, 
including deviance (−2 log-  likelihood), AIC, AICC, and BIC. SAS also shows the null/independence 
goodness-of-fit test.

Categorical predictors may be specified directly as CLASS variables; however, the default 
coding is unusual and produces results that may be more difficult to interpret than those of other 
programs unless adjustments are made, such as recoding the categorical variable in the data set. 
Degrees of freedom for higher-  level fixed effects require adjustment (cf. Table 15.10).

15.8.2 IBM SPSS Package

The MIXED MODEL module of IBM SPSS is a full-  featured MLM program. Options are available 
for specifying fixed and random effects as well as alternative methods for dealing with repeated 
measures (including specification of the variance–  covariance matrix, but not known values within 
it). As usual, output is well formatted and easy to follow; however, the menu system is somewhat 
confusing, with rather subtle ways to specify multiple levels of the hierarchy. This is the only pro-
gram that lets you specify size of confidence intervals for effects and routinely prints them out.

A variety of fit indices (information criteria) are shown. A handy feature is a listing of the 
number of parameters in a model, and whether each is fixed or random. This is the only program 
reviewed that makes available the residual variance–  covariance matrix.

15.8.3 HLM Program

The HLM program reviewed here is Version 6 (Raudenbush et al., 2004) and is designed to handle 
both two-  level and three-  level data. Indeed, there are separate modules for the two models (labeled 
HLM2 and HLM3). The manual makes extensive reference to the textbook on hierarchical linear 
models written by two of its authors: Raudenbush and Bryk (2001).

The program permits input of SAS, IBM SPSS, STATA, and SYSTAT as well as ASCII data 
and may use the same file for all levels or separate files for each level. In any event, variables have 
to be defined for each level, a sometimes confusing process. Analyses with and without robust stan-
dard errors are routinely provided in output.

HLM has procedures for dealing with variables measured without error (e.g., gender) and 
for single-  level garden-  variety multiple regression analysis with missing data; both are considered 
latent variable techniques in HLM. The manual also shows how to do an MLM analysis using 
multiply-  imputed data. Also available is a procedure for two-  level MLM when variances and co-
variances are known rather than to be estimated. HLM provides for analysis of a large variety of 
nonnormal and nonlinear models.

Parameter estimates and variance–  covariances matrices as well as residuals can be printed 
and saved to file. The residuals file contains Mahalanobis’ distances for the level-2 groups.

Level-1 parameters such as intercept and slope(s) are printed as part of output. Also printed 
are OLS results for fixed effects; comparing these with the final results shows the distortion that 
would have resulted from the use of simple multiple regression instead of MLM. Extensive facilities 
are available for Bayesian modeling.
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15.8.4 MLwiN Program

This program was developed as part of a project in the Institute of Education at the University of 
London (Rasbash et al., 2000). It is a comprehensive program that permits a large variety of models 
to be fit, with up to five levels permissible for a model. There is extensive capability for producing 
graphs to explore, diagnose, and interpret models.

The manual is extremely helpful in setting up both simple and complex models, with numer-
ous examples and special handling of such models as multivariate, repeated-  measures, and nonnor-
mal (binary and count) data. There is an extensive simulation facility, including Bayesian modeling 
and bootstrapping. The manual also shows how to deal with cross-  classified data, in which cases 
are partly but not fully nested, for example, when children belong to neighborhoods and schools, 
but there is overlap between the neighborhoods and schools. Multiple membership models are also 
possible, in which lower-  level units can belong to more than one higher-  level unit, as for example, 
when students in a longitudinal study change schools.

15.8.5 SYSTAT System

The MIXED REGRESSION module of SYSTAT, as are most modules in SYSTAT, is simple to use 
and produces output that is easy to interpret. There are even a few special features not widely avail-
able in other programs; conversion of repeated measures data to that required for MLM is simple and 
the intraclass (intracluster) correlation is provided by default when a model is specified without pre-
dictors. Although not rich in special features, all the basics are provided as well as two approaches 
to repeated measures. The major limitation is that only two-  level models can be analyzed.
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16.1 General Purpose and Description

Relationships among three or more discrete (categorical, qualitative) variables are studied through 
multiway frequency analysis or an extension of it called log-  linear analysis. Relationships between 
two discrete variables, say, the area of psychology (clinical, general experimental, and develop-
mental) and the average number of publications a year (0, 1, 2, 3, 4, or more), are studied through 
the two-  way x2 test of association. If a third variable is added, such as the number of statistics 
courses taken (two or fewer vs. more than two), two-   and three-  way associations are sought through 
multiway frequency analysis. Is the number of publications related to the area of psychology and/
or to the number of statistics courses taken? Is the number of statistics courses taken related to the 
area of psychology? Is there a three-  way relationship among the number of publications, area of 
psychology, and the number of statistics courses taken?

To do a multiway frequency analysis, tables are formed that contain the one-  way, two-  way, 
three-  way, and higher order associations. A linear model of (the logarithm of) expected cell fre-
quencies is developed. The log-  linear model starts with all of the one-, two-, three-, and higher-  way 
associations and then eliminates as many of them as possible while still maintaining an adequate fit 
between expected and observed cell frequencies. In the preceding example, the three-  way associa-
tion between number of publications, area of psychology, and number of statistics courses is tested 
first and then eliminated if not statistically significant. Then the two-  way associations (number 
of publications and area of psychology, number of publications and number of statistics courses, 
area of psychology and number of statistics courses) are tested and, if not significant, eliminated. 
Finally, there is a one-  way test for each of the variables against the hypothesis that frequencies are 
equal in each cell (e.g., that there are equal numbers of psychologists in each area—  a test analogous 
to equal frequency goodness-of-fit tests in x2 analysis).

The researcher may consider one of the variables a DV whereas the others are considered IVs. 
For example, a psychologist’s success as a professional (successful vs. unsuccessful) is studied as 
a function of number of publications, area of psychology, number of statistics courses taken, and 
their interactions. Used this way, multiway frequency analysis is like a nonparametric analysis of 
variance with a discrete DV as well as discrete IVs. However, the method of choice with a discrete 
DV usually is logistic regression (Chapter 10).

Uses of multiway frequency analysis (MFA) include study of possible patterns of collusion 
among insurance agents, adjustors, and producers of crops when claiming loss due to crop failure 
(Rejesus et al., 2004). Individual claims were compared to the average claim in the same district. If 
a claim from an agent, and adjustor, and/or a producer was 150% above “normal” for a district, it 
was tagged as anomalous. There was no proof of fraud for these cases and therefore no DV. The goal 

16 Multiway Frequency Analysis
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was to study the relationships among the frequencies of anomalous cases for agents, adjustors, and 
producers to see if there was a consistent pattern to them. The most common finding was a three-
way interaction, indicating that insurance agents, adjustors, and crop producers worked in concert 
on these anomalous cases.

As Connolly and Read (2006) noted, child sexual abuse claims are frequently made years 
after the alleged abuse occurred and may challenge the statute of limitations for prosecutions. 
Multiway frequency analysis was used to examine relationships among variables associated 
with the offense and on variables associated with the complainant. Variables associated with the 
offense were examined in 1,316 cases and included the level of the intrusiveness of the offense, 
the frequency of the offense, whether there was a reported threat, the duration of the abuse, and 
whether alcohol was involved. First level effects were not of interest and there were no three-
way or higher-  way interactions. However, there were several significant two-  way interactions; for 
example, the duration of the offense was related to a reported threat. With respect to the complain-
ant, 1,434 cases were examined for relationships among gender, age when the alleged offense 
ended, whether there was a claim of repression, and the relationship between the complainant and 
the accused. There was a significant two-  way relationship between gender and repression and a 
significant three-  way relationship between gender, age, and relationship between the complainant 
and the accused.

16.2 Kinds of Research Questions

The purpose of multiway frequency analysis is to discover associations among discrete variables. 
Once a preliminary search for associations is complete, a model is fit that includes only the associa-
tions necessary to reproduce the observed frequencies. Each cell has its own combination of param-
eter estimates for the associations retained in the model. The parameter estimates are used to predict 
cell frequency, and they also reflect the importance of each effect to the frequency in that cell. If 
one of the variables is a DV, the odds that a case falls into one of its categories can be predicted 
from the cell’s combination of parameter estimates. The following questions, then, are addressed by 
multiway frequency analysis.

16.2.1 Associations Among Variables

Which variables are associated with one another? By knowing which category a case falls into on one 
variable, can you predict the category it falls into on another? The procedures of Section 16.4 show, 
for a simple data set, how to determine statistically which variables are associated and how to 
decide on the level of complexity of associations necessary to describe the relationships.

As the number of variables increases, so do the number of potential associations and their 
complexity. With three variables there are seven potential associations: one three-  way association, 
three two-  way associations, and three one-  way associations. With four variables, there is a potential 
four-  way association, four three-  way associations, and so on. With more variables, the highest-  level 
associations are tested and eliminated if nonsignificant until a preliminary model is found with the 
fewest required associations.

In the previous example, the three-  way association between the number of publications, num-
ber of statistics courses, and area in psychology might be ruled out in preliminary analysis. The set 
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of two-  way associations is then tested to see which of these might be ruled out. The number of sta-
tistics courses and the number of publications might be associated, as well as the area of psychology 
and the number of statistics courses, but not the area of psychology and the number of publications. 
Finally, one-  way “associations” are tested. For example, there is a one-  way association for area of 
psychology if numbers of psychologists differ significantly among areas.

16.2.2 Effect on a Dependent Variable

In the usual multiway frequency table, cell frequency is the DV that is influenced by one or more 
discrete variables and their associations. Sometimes, however, one of the variables is considered a 
DV. In this case, questions about association are translated into tests of main effects (associations 
between the DV and each IV) and interactions (association between the DV and the joint effects of 
two or more IVs).

Under most circumstances, this type of data is more efficiently analyzed through logistic re-
gression, the subject of Chapter 10. Logistic regression uses a discrete DV but has the flexibility to 
include both discrete and continuous IVs. Thus, this chapter is limited to analyses in which none of 
the variables is considered a DV.

16.2.3 Parameter Estimates

What is the expected frequency for a particular combination of categories of variables? First, statis-
tically significant effects are identified, and then coefficients, called parameter estimates, are found 
for each level of all the statistically significant effects. Section 16.4.3.2 shows how to calculate 
parameter estimates and use them to find expected frequencies.

16.2.4 Importance of Effects

Because parameter estimates are developed for each level (or combinations of levels) of each sig-
nificant effect, the relative importance of each effect to the frequency in each cell can be evaluated. 
Effects with larger standardized parameter estimates are more important in predicting that cell’s 
frequency than effects with smaller standardized parameter estimates. If, for instance, the number 
of statistics courses has a higher standardized parameter estimate than the number of publications in 
the cell for successful psychologists, it is the more important effect.

16.2.5 Effect Size

How well does a model fit the observed frequencies? Effect size measures typically are not avail-
able in statistical packages used for log-  linear analysis. The x2 value that is a measure of the fit 
between the model and the observed frequencies can be considered a measure of effect size, con-
sidering that the expected value of x2/df is 1 when there is no association among variables. Section 
16.6.2.3 demonstrates software that calculates the confidence interval around x2 value.

Bonett and Bentler (1983) describe the use of a normed fit index (NFI). Although influenced 
by sample size, NFI may give a better notion of how well a model fits observed frequencies than 
is available from formal goodness-of-fit tests such as chi-  square. See Section 14.5.3.1 for further 
discussion of NFI and other indices of model fit.
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16.2.6 Specific Comparisons and Trend Analysis

If a significant association is found, it may be of interest to decompose the association to find its 
significant components. For example, if the area of psychology and the number of publications, 
both with several levels, are associated, which areas differ in number of publications? These ques-
tions are analogous to those of analysis of variance where a many-  celled interaction is investigated 
in terms of simpler interactions or in terms of simple effects (cf. Section 8.5.2). Similarly, if the 
categories of one of the variables differ in quantity (e.g., number of publications), a trend analysis 
often helps one understand the nature of its relationship with other variables. SAS CATMOD and 
IBM SPSS LOGLINEAR (available only in syntax) provide procedures for specifying contrasts.

16.3 Limitations to Multiway Frequency 
Analysis

16.3.1 Theoretical Issues

As a nonparametric statistical technique with no assumptions about population distributions, mul-
tiway frequency analysis is remarkably free of limitations. The technique can be applied almost 
universally, even to continuous variables that fail to meet distributional assumptions of parametric 
statistics if the variables are cut into discrete categories.

With the enormous flexibility of current programs for log-  linear analysis, many of the ques-
tions posed by highly complex data sets can be answered. However, the greatest danger in the use 
of this analysis is inclusion of so many variables that interpretation boggles the mind—  a danger 
frequently noted in multifactorial analysis of variance, as well.

16.3.2 Practical Issues

The only limitations to using multiway frequency analysis are the requirement for independence, 
adequate sample size, and the size of the expected frequency in each cell. During interpretation, 
however, certain cells may turn out to be poorly predicted by the solution.

16.3.2.1 Independence

Only between-  subjects designs may be analyzed in most circumstances, so that the frequency in each 
cell is independent of the frequencies in all other cells. If the same case contributes values to more 
than one cell, those cells are not independent. Verify that the total N is equal to the number of cases.

Sometimes the restriction to between-  subjects designs is circumvented by inclusion of a time 
variable, as in McNemar’s test for two-  way x2. A case is in a particular combination of cells over 
the time periods. Similarly, “yes–  no” variables may be developed. For example, in a 2 * 2 design, 
a person attends karate classes but does not take piano lessons (yes on karate, no on piano), or does 
neither (no on both), or does both (yes on both), or takes piano lessons but not karate (no on karate, 
yes on piano). Each case is in only one of four cells, despite having “scores” on both karate and 
piano. SAS CATMOD and GENMOD have procedures for analyzing designs in which a discrete 
DV is measured repeatedly. IBM SPSS COMPLEX SAMPLES also may be used for repeated-
measures designs with a dichotomous DV when cases are defined as clusters.
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16.3.2.2 Ratio of Cases to Variables

A number of problems may occur when there are too few cases relative to the number of variables. 
Log-  linear analysis may fail to converge when combinations of variables result in too many cells 
with no cases. You should have at least five times the number of cases as cells in your design. In the 
example, the area of psychology has three levels and the number of publications has five levels, so 
3 * 5 * 5 or 75 cases are needed. Software programs are available to aid in estimating required 
sample sizes for two-  way but not multiway frequency analysis.

16.3.2.3 Adequacy of Expected Frequencies

The fit between observed and expected frequencies is an empirical question in tests of association 
among discrete variables. Sample cell sizes are observed frequencies; statistical tests compare them 
with expected frequencies derived from some hypothesis, such as independence between variables. 
The requirement in multiway frequency analysis is that expected frequencies are large enough. Two 
conditions produce expected frequencies that are too small: a small sample in conjunction with too 
many variables with too many levels (as discussed in Section 16.3.2.2) and rare events.

When events are rare, the marginal frequencies are not evenly distributed among the various 
levels of the variables. For example, there are likely to be few psychologists who average four or 
more publications a year. A cell from a low-  probability row and/or a low-  probability column will 
have a very low expected frequency. The best way to avoid low expected frequencies is to attempt 
to determine in advance of data collection which cells will be rare, and then sample until those cells 
are adequately filled.

In any event, examine expected cell frequencies for all two-  way associations to assure that all 
are greater than one, and that no more than 20% are less than five. Inadequate expected frequen-
cies generally do not lead to increased Type I error (except in some cases with use of the Pearson
x2 statistic; cf. Section 16.5.2). But power can be so drastically reduced with inadequate expected 
frequencies that the analysis is worthless. Reduction of power becomes notable as expected fre-
quencies for two-  way associations drop below five in some cells (Milligan, 1980).

If low expected frequencies are encountered despite care in obtaining your sample, several 
choices are available. First, you can simply choose to accept reduced power for testing effects asso-
ciated with low expected frequencies. Second, you can collapse categories for variables with more 
than two levels. For example, you could collapse the “three” and “four or more” categories for the 
number of publications into one category of “three or more.” The categories you collapse depend on 
theoretical considerations as well as practical ones because it is quite possible that associations will 
disappear as a result. Because this is equivalent to a complete reduction in power for testing those 
associations, nothing has been gained.

Finally, you can delete variables to reduce the number of cells. Care is taken to delete only 
variables that are not associated with the remaining variables. For example, in a three-  way table, 
you might consider deleting a variable if there is no three-  way association and if at least one of the 
two-  way associations with the variable is nonsignificant (Milligan, 1980). The common practice 
of adding a constant to each cell is not recommended because it has the effect of further reduc-
ing power. Its purpose is to stabilize Type I error rate, but as noted before, that is generally not the 
problem and when it is, other remedies are available (Section 16.5.2). Some of the programs, such 
as IBM SPSS LOGLINEAR and HILOGLINEAR, add the constant by default anyway under cir-
cumstances that do not affect the outcome of the analysis.
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Section 16.6.1 demonstrates procedures for screening a multidimensional frequency table for 
expected cell frequencies.

16.3.2.4 Absence of Outliers in the Solution

Sometimes there are substantial differences between observed and expected frequencies derived 
from the best-  fitting model for some cells. If the differences are large enough, there may be no 
model that adequately fits the data. Levels of variables may have to be deleted or collapsed or new 
variables added before a model is fit. But whether or not a model is fit, examination of residuals 
in search of discrepant cells leads to a better interpretation of the data set. Analysis of residuals is 
discussed in Sections 16.4.3.1 and 16.6.2.3.

16.4 Fundamental Equations for Multiway 
Frequency Analysis

Analysis of multiway frequency tables typically requires three steps: (1) screening, (2) choosing and 
testing appropriate models, and (3) evaluating and interpreting the selected model. A small-  sample
example of hypothetical data with three discrete variables is illustrated in Table 16.1. The first 
variable is type of preferred reading material, READTYP, with two levels: science fiction (SCIFI) 
and spy novels (SPY). The second variable is SEX. The third variable is three levels of profession, 
PROFESS: politicians (POLITIC), administrators (ADMIN), and belly dancers (BELLY).

In this section, the simpler calculations are illustrated in detail, and the more complex arith-
metic is covered only enough to provide some idea of the methods used to model multidimensional 
data sets. The computer packages used in this section are also the most straightforward. With real 

TABLE 16.1 Small Sample of Hypothetical Data for Illustration 
of Multiway Frequency Analysis

Reading Type

Profession Sex SCIFI SPY Total

Politicians Male 15 15 30
Female 10 15 25

Total 25 30 55

Administrators Male 10 30 40
Female 5 10 15

Total 15 40 55

Belly dancers Male 5 5 10
Female 10 25 35

Total 15 30 45
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data sets, the various computer packages allow choice of strategy on the basis of utility rather than 
simplicity. Computer analyses of this data set through SAS CATMOD, IBM SPSS GENLOG, and 
HILOGLINEAR are discussed in Section 16.4.4.

If only a single association is of interest, as is usually the case in the analysis of a two-  way 
table, the familiar x2 statistic is used:

a
ij

( fo - Fe)
2>Fe (16.1)

where fo represents observed frequencies in each cell of the table and Fe represents 
the expected frequencies in each cell under the null hypothesis of independence (no 
association) between the two variables. Summation is over all cells in the two-  way table.

If the goodness-of-fit tests for the two marginal effects are also computed, the usual x2

tests for the 2 one-  way and 1 two-  way effects do not sum to total x2. This situation is similar 
to that of unequal-n ANOVA, where F tests of main effects and interactions are not independent 
(cf. Chapter 6). Because overlapping variance cannot be unambiguously assigned to effects, and 
because overlapping variance is repeatedly analyzed, interpretation of results is not clear-  cut. In 
multiway frequency tables, as in ANOVA, nonadditivity of x2 becomes more serious as additional 
variables produce higher order (e.g., three-  way and four-  way) associations.

An alternative strategy is to use the likelihood ratio statistic, G2. The likelihood ratio statistic 
is distributed as x2 so the x2 tables can be used to evaluate significance. However, under conditions 
to be described in Section 16.4.2, G2 has the property of additivity of effects. For example, in a two-
way analysis,

G2
T = G2

A + G2
B + G2

AB (16.2)

The test of overall association within a two-  way table, G2
T is the sum of the first-  order

goodness-of-fit tests, G2
A and G2

B and the G2
AB test of association,

G2, like x2, has a single equation for its various manifestations that differ among themselves 
only in how the expected frequencies are found.

G2 = 2a ( fo) ln ( fo>Fe) (16.3)

For each cell, the natural logarithm of the ratio of obtained to expected frequency is 
multiplied by the obtained frequency. These values are summed over cells, and the sum 
is doubled to produce the likelihood ratio statistics.

16.4.1 Screening for Effects

Screening is done if the researcher is data snooping and wishes simply to identify statistically sig-
nificant effects. Screening is also done if the researcher hypothesizes a full model, a model with all 
possible effects included. Screening is not done if the researcher has hypothesized an incomplete 
model, a model with some effects included and others eliminated; in this case, the hypothesized 
model is tested and evaluated (see Section 16.4.2) followed by, perhaps, post hoc analysis.
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The first step in screening is to determine if there are any effects to investigate. If there are, 
then screening progresses to a computation of Fe for each effect, a test of the reliability (signifi-
cance) of each effect (finding G2 for the first-order effects, the second-order or two-way associa-
tions, the third-  order or three-  way associations, and so on), and an estimation of the size of the 
statistically significant effects. Because Equation 16.3 is used for all tests of the observed frequen-
cies (fo), the trick is to find the Fe necessary to test the various hypotheses, as illustrated in what 
follows using the data of Table 16.1.

16.4.1.1 Total Effect

If done by hand, the process starts by calculation of overall G2
T which is used to test the hypothesis 

of no effects in the table (the hypothesis that all cells have equal frequencies). If this hypothesis 
cannot be rejected, there is no point to proceeding further. (Note that when all effects are tested 
simultaneously, as in computer programs, one can test either G2

T or G2 for each of the effects, but not 
both, because degrees of freedom limit the number of hypotheses to be tested.)

For the test of total effect,

Fe = N>rsp (16.4)

Expected frequencies, Fe, for testing the hypothesis of no effects are the same for each 
cell in the table and are found by dividing the total frequency (N) by the number of cells 
in the table, that is, the number of levels of READTYP (represented by r) times the 
number of levels of SEX (s) times the number of levels of PROFESS (p).

For these data, then,

Fe = 155>(2)(2)(3) = 12.9167

Applying Equation 16.3 for the test of overall effect,

G2
T = 2a

ijk
( fo) ln ( fo>Fe) df = rsp - 1

where I = 1, 2,. . . , r; j = 1, 2,. . . , s; and k = 1, 2,. . . , p.
Filling in frequencies for each of the cells in Table 16.1, then,

G2 = 2[15 ln (15>12.9167) + 15 ln (15>12.9167) + 10 ln (10>12.9167)

+ 15 ln (15>12.9167) + 10 ln(10>12.9167) + 30 ln (30>12.9167) + 5 ln(5>12.9167)

+ g + 25 ln (25>12.9167)]

= 2[2.243 + 2.243 + (-2.559) + 2.243 + (-2.559) + 25.280 + (-4.745)

+ (-2.559) + (-4.745) + (-4.745) + (-2.559) + 16.509]

= 48.09

With df = 12 - 1 = 11 and critical x2 at a = .05 equal to 19.68 (cf. Table C.4 in Appendix C), 
there is a statistically significant departure from equal frequencies among the 12 cells.1 Further 

1Throughout this section, calculations may differ slightly from those produced by computer programs due to rounding error.
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and the test for goodness of fit is

G2
T = 2a

i
( fo) ln ( fo>Fe) df = r - 1

= 2 c 55 ln a 55

77.5
b + 100 ln a 100

77.5
b d = 13.25 df = 1

Because critical x2 with df = 1 at a = .05 is 3.84, a significant preference for spy novels is sug-
gested. As in ANOVA, however, significant lower order (main) effects cannot be interpreted unam-
biguously if there are higher order (interaction) effects involving the same variable.

Similar tests for main effects of SEX and PROFESS produce G2
s = 0.16 with 1 df and 

G2
p = 1.32 with 2 df, suggesting no statistically significant difference in the number of men (80) 

and women (75), nor a significant difference in the numbers of politicians (55), administrators (55), 
and belly dancers (45), and an interesting sampling strategy.

analysis is now required to screen the table for sources of this departure. In the normal course 
of data analysis, the highest-  order association is tested first, and so on. Because, however, of the 
greater complexity for finding expected frequencies with higher order associations, the presentation 
here is in the reverse direction, from the first-  order to highest-  order associations.

16.4.1.2  First-Order Effects

There are three first-  order effects to test, one for each of the discrete variables. Starting with 
READTYP, a goodness-of-fit test evaluates the equality of preference for science fiction and spy 
novels. Only the marginal sums for the two types of reading material are relevant, producing the 
following observed frequencies:

fo

SCIFI SPY

55 100

Expected frequencies are found by dividing the total frequency by the number of relevant “cells,” 
that is, r = 2, yielding Fe = 155/2 = 77.5. The expected frequencies, then, are

Fe

SCIFI SPY

77.5 77.5
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16.4.1.3  Second-Order Effects

Tests of partial associations use an iterative procedure to develop a full set of expected frequencies, 
in which all marginal sums (except the one to be tested) match the observed marginal frequencies.2

First, the three-  way table is collapsed into three two-  way tables, one for each two-  way interaction. 
For the R * S association, for instance, the cells for each combination of reading type and sex are 
summed over the three levels of profession (P), forming as the observed frequencies:

2Other methods for finding partial associations are based on differences in G2 between hierarchical models.

fo

SCIFI SPY

MEN 30 50 80

WOMEN 25 50 75

55 100 155

The expected frequencies are found as in the usual way for a two-  way R * S test of 
association:

Cell Fe = (row sum)(column sum)>N (16.5)

for the appropriate row and column for each cell; that is, for the first cell, men preferring science 
fiction,

Fe = (80)(55)>155 = 28.3871

After the computations are completed for the remaining cells, the following table of expected 
frequencies is found:

Once found, the expected frequencies are duplicated at each level of the other variable. The 
results of this iteration for the partial test of the R * S association appear in Table 16.2. Notice that 
computation of the expected frequencies is repeated for politicians, administrators, and belly dancers.

All the entries are too large because the two-  way table has simply been duplicated three times. 
That is, N = 465 instead of 155, there are 80 male politicians instead of 30, and so on. A second 
iteration is performed to adjust the values in Table 16.2 for another two-  way association, in this 

Fe

SCIFI SPY

MEN 28.3871 51.6129 80

WOMEN 26.6129 48.3871 75

55 100 155
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case the R * P association. This iteration begins with the R * P table of observed frequencies and 
relevant marginal sums:

TABLE 16.2 First Iteration Estimates of Expected Frequencies for the 
Partial Test of the READTYP : SEX Association

Reading Type

Profession Sex SCIFI SPY Total

Politicians Male 28.3871 51.6129 80
Female 26.6129 48.3871 75

Total 55 100 155

Administrators Male 28.3871 51.6129 80
Female 26.6129 48.3871 75

Total 55 100 155

Belly dancers Male 28.3871 51.6129 80
Female 26.6129 48.3871 75

Total 55 100 155

fo

SCIFI SPY

POLITIC 25 30

ADMIN 15 40

BELLY 15 30

55 100

Note that the actual number of politicians preferring science fiction is 25, whereas after the first 
iteration (Table 16.2), the number is (28.3871 + 26.6129) = 55. The goal is to compute a proportion 
that, when applied to the relevant numbers in Table 16.2 (in this case, both male and female politi-
cians who prefer science fiction), eliminates the effects of any R * P interaction:

fo>F#1
e = 25>55 = 0.45455

producing

F#2
e = F#1

e (0.45455) = (28.3871)(0.45455) = 12.9032

and

F#2
e = F#1

e (0.45455) = (26.6129)(0.45455) = 12.0968

for male and female politicians preferring science fiction, respectively.
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TABLE 16.3 Second Iteration Estimates of Expected Frequencies 
for the Partial Test of the READTYP : SEX Association

Reading Type

Profession Sex SCIFI SPY Total

Politicians Male 12.9032 15.4839 28.3871
Female 12.0968 14.5161 26.6129

Total 25 30 55

Administrators Male 7.7419 20.6452 28.3871
Female 7.2581 19.3548 26.6129

Total 15 40 55

Belly dancers Male 7.7419 15.4839 23.2258
Female 7.2581 14.5161 21.7742

Total 15 30 45

To find second iteration expected frequency for female belly dancers preferring spy stories, 
the last cell in the table,

fo>F#1
e = 30>100 = 0.3

F#2
e = (48.3871)(0.3) = 14.5161

Table 16.3 shows the results of applying this procedure to all cells of the data matrix.
Notice that correct totals have been produced for overall N, for R, P, and S, and for R * P but 

that the S * P values are incorrect. The third and final iteration, then, adjusts the S * P expected 
values from the second iteration for the S * P matrix of observed values. These S * P matrices are:

fo Fe

Men Women Men Women

POLITIC 30 25 POLITIC 28.3871 26.6129

ADMIN 40 15 ADMIN 28.3871 26.6129

BELLY 10 35 BELLY 23.2258 21.7742

For the first cell, male politicians preferring to read science fiction, the proportional adjustment 
(rounded off) is

fo>F#2
e = 30>28.3871 = 1.0568

to produce

F#3
e = F#2

e (1.0568) = (12.9032)(1.0568) = 13.6363
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And for the last cell, female belly dancers who prefer spy stories,

fo>F#2
e = 35>21.7742 = 1.6074

F#3
e = (14.5161)(1.6074) = 23.3333

Following this procedure for the remaining 10 cells of the matrix produces the third iteration esti-
mates, as shown in Table 16.4. These values fulfill the requirement that all expected marginal fre-
quencies are equal to observed marginal frequencies except for the R * S association to be tested.

At this point, we have the Fe necessary to calculate G2
RS

G2
RS = 2a

ij
( fo) ln ( fo>Fe)

= 2[( fo) ln ( fo>Fe)]

= 2[15 ln (15>13.6363) + g + 25 ln (25>23.3333)]

= 2.47

However, a final adjustment is made for the three-  way association, G2
RSP (as computed in what fol-

lows). The partial likelihood ratio statistic for the association between READTYP and SEX, then, is

G2
RS(part) = G2

RS - G2
RSP df = (r - 1)(s - 1)

= 2.47 - 1.85 = 0.62 df = 1

This partial test shows a lack of association.

TABLE 16.4 Third Iteration Estimates of Expected Frequencies for the 
Partial Test of the READTYP : SEX Association

Reading Type

Profession Sex SCIFI SPY Total

Politicians Male 13.6363 16.3637 30
Female 11.3637 13.6363 25

Total 25 30 55

Administrators Male 10.9090 29.0910 40
Female 4.0909 10.9091 15

Total 15 40 55

Belly dancers Male 3.3333 6.6666 10
Female 11.6667 23.3333 35

Total 15 30 45
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The same process is (tediously) followed for the partial tests of the R * P and the S * P
associations. The resultant partial likelihood ratio statistic for the R * P association is

G2
RP(part) = 4.42 df = 2

showing lack of association between reading preferences and profession. For the R * P associa-
tion, the partial likelihood ratio result is

GSP(part) = 27.12 df = 2

a statistically significant association.
Corresponding partial tests of intermediate associations in this example produce the same 

conclusions and the interpretation is clear-  cut: There is a statistically significant association between
sex and profession and no evidence of association between sex and reading preferences or between 
reading preferences and profession. In some situations, however, interpretation is more problematic 
because the results of marginal and partial tests differ. Procedures for dealing with such situations 
are discussed in Section 16.5.3.

16.4.1.4  Third-Order Effect

The test for the three-  way R * S * P association requires a much longer iterative process, 
because all marginal expected frequencies must match observed frequencies (R, S, P,
R * S, R * P, and S * P). Ten iterations are required to compute the appropriate Fe for the 
12 cells (not shown in the interests of brevity and avoidance of terminal boredom), producing

G2
RSP = 2a

ijk
( fo) ln ( fo>Fe) df = (r - 1) (s - 1) ( p - 1)

= 1.85 df = 2

The three-  way association, then, shows no statistical significance.
A summary of the results of the calculations for all effects appears in Table 16.5. At the 

bottom of the table is the sum of all one-, two-, and three-  way effects using partial methods for 
calculating G2. As can be seen, this fails to match G2

T; the sum is too large. Further, depending on 
the data, either over-   or underadjustment of each effect may occur. Therefore, additional modeling 
may be required (see Section 16.5.3).

16.4.2 Modeling

In some applications of multiway frequency analysis, results of screening provide sufficient in-
formation for the researcher. In the current example, for instance, the results are clear-  cut. One 
first-  order effect, preference for reading type, is statistically significant, as is the sex-by-profession
association. Often, however, the results are not so evident and consistent, and/or the goal is to find 
the best model for predicting frequencies in each cell of the design.

A log-  linear model is developed where an additive regression-  type equation is written for 
(the log of) expected frequency as a function of the effects in the design. The procedure is similar 
to multiple regression, where a predicted DV is obtained by combining the effects of several IVs.
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A full3 model includes all possible effects in a multiway frequency analysis. The full model 
for the three-  way design of the example is

ln Feijk
= u + lAi

+ lBj
+ lCk

+ lABij
+ lACik

+ lBCjk
+ lABCijk

(16.6)

For each cell (the natural logarithm of), the expected frequency, ln Fe, is an additive 
sum of the effect parameters, ls, and a constant, u.

For each effect in the design, there are as many values of l—called effect parameters—as there 
are levels in the effect, and these values sum to zero. In the example, there are two levels of READTYP, 
so there is a value of lR for SCIFI and for SPY, and the sum of these two values is zero. For most cells, 
then, the expected frequency is derived from a different combination of effect parameters.

The full (saturated) model always provides a perfect fit to data so that expected frequencies exactly 
equal observed frequencies. The purpose of modeling is to find the incomplete model with the fewest 
effects that still closely mimics the observed frequencies. Screening is done to avoid the necessity of 
exploring all possible incomplete models, an inhumane effort with large designs, even with computers. 
Effects that are found to be nonsignificant during the screening process are often omitted during modeling.

Model fitting is accomplished by finding G2 for a particular incomplete model and evaluating 
its significance. Because G2 is a test of fit between observed and expected frequencies, a good model 
is one with a nonsignificant G2. Because there are often many “good” models, however, there is a 
problem in choosing among them. The task is to compare nonsignificant models with one another.

Models come in two flavors, hierarchical and nonhierarchical. Hierarchical (nested) models 
include the highest-  order statistically significant association and all its component parts; nonhierar-
chical models do not necessarily include all the components (see Section 16.5.1). For hierarchical 
models, the optimal model is one that is not significantly worse than the next most complex one. 
Therefore, the choice among hierarchical models is made with reference to statistical criteria. There 
are no statistical criteria for choosing among nonhierarchical models and they are not recommended.

3Full models are also called saturated models.

TABLE 16.5 Summary of Screening Tests 
for Small-  Sample Example of Multiway 
Frequency Analysis

Effect df G2 Prob

All (total) 11 48.09 6.05

READTYP 1 13.25 6.05

SEX 1 0.16 7.05

PROFESS 2 1.32 7.05

R * S 1 0.62 7.05

R * P 2 4.42 7.05

S * P 2 27.12 6.05

R * S * P 2 1.85 7.05

Sums 11 48.74
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Several methods for comparing models are available, as discussed in Section 16.5.3. In the 
simplest method, illustrated here, a few hierarchical models are selected on the basis of screening 
results and compared using the significance of the difference in G2 between them. When the models 
are hierarchical, the difference between the two G2s is itself a G2. That is,

G2
1 - G2

2 = G2 (16.7)

if Model 1 is a subset of Model 2, in which all the effects in Model 1 are included in Model 2. For 
example, a Model 1 with R * P, R, and P effects is nested within a Model 2 with R * S, R * P,
R, S, and P effects.

To simplify the description of models, the preceding Model 1 is designated (RP) and Model 
2 (RS,RP). This is a fairly standard notation for hierarchical models. Each association term (e.g., RS)
implies that all lower order effects (R and S) are included in the model. In the example, the most obvi-
ous model to choose is (SP,R), which includes the S * P association and all three first-  order effects.

In practice, the first step is to evaluate the highest-  order effect before sequentially testing 
lower order effects. During screening on the example, the three-  way association is ruled out but 
at least one of the two-  way associations is statistically significant. Because there are only three 
effects in the design, it would not be difficult by computer to try out a model with all three two-  way 
associations (RS,RP,SP) and compare that with models with all pairwise combinations of two-  way 
associations. If there are ambiguities in the partial tests of effects, models with and without the 
ambiguous effects are compared.

In the example, lack of significance for partial tests of the RP and RS effects would ordinarily 
preclude their consideration in the set of models to be tested. The RP effect is included in a model 
to be tested here for illustrative purposes only.

For each model to be tested, expected frequencies and G2 are found. To obtain G2 for a model, 
the G2 for each of the effects is subtracted from total G2 to yield a test of residual frequency that is 
not accounted for by effects in the model. If the residual frequencies are not significant, there is a 
good fit between obtained and expected frequencies from the reduced model.

For the example, G2 values for the (SP,R) model are available from the screening tests shown 
in Table 16.5. For the two-  way effects, the G2 values from the partial tests are used. G2 for the (SP,R)
model is, then

G2
(SP,R) = G2

T - G2
SP - G2

S - G2
P - G2

R

= 48.09 - 27.12 - 0.16 - 1.32 - 13.25

= 6.24

Degrees of freedom are those associated with each of the effects as in Section 16.4.1, so that df =
11 - 2 - 1 - 2 - 1 = 5. Because residuals from this model are not statistically significant, the model 
is adequate.

For the example, a more complex model includes the R * P association. Following the earlier
procedures, the (SP,RP) model produces G2 = 2.48 with 3 df. The test of the difference between 
(SP,R) and (SP,RP) is simply the difference between G2s (Equation 16.7) for the two models, using 
the difference between degrees of freedom to test for significance:

G2
(diff) = G2

(SP,R) - G2
(SP,RP)

= 6.24 - 2.48 = 3.76 with df = 5 - 3 = 2
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a nonsignificant result. Because the difference between models is not statistically significant, the 
more parsimonious (SP,R) model is preferred over the more complex (SP,RP) model. The model of 
choice, then, is

In Fe = u + lR + lS + lP + lSP

16.4.3 Evaluation and Interpretation

The optimal model, once chosen, is evaluated in terms of both the degree of fit to the overall data 
matrix (as discussed in the previous section) and the amount of deviation from fit in each cell.

16.4.3.1 Residuals

Once a model is chosen, expected frequencies are computed for each cell and the deviation between 
the expected and the observed frequencies in each cell (the residual) is used to assess the adequacy 
of the model for fitting the observed frequency in that cell. In some cases, a model predicts the fre-
quencies in some cells well, and in others very poorly, to give an indication of the combination of 
levels of variables for which the model is and is not adequate.

For the example, the observed frequencies are in Table 16.1. Expected frequencies under 
the (SP,R) model, derived through an iterative procedure as demonstrated in Section 16.4.1.3, are 
shown in Table 16.6. Residuals are computed as the cell-by-cell differences between the values in 
the two tables.

Rather than trying to interpret raw differences, residuals usually are standardized by dividing the 
difference between observed and expected frequencies by the square root of the expected frequency to 
produce a z value. Both raw differences and standardized residuals for the example are in Table 16.7. 
The most deviant cell is for male politicians preferring science fiction, with 4.4 fewer cases expected 
than observed and a standardized residual of z = 1.3. Although the discrepancies for men are larger 
than those for women, none of the cells is terribly discrepant; so this seems to be an acceptable model.

TABLE 16.6 Expected Frequencies Under the Model

Reading Type

Profession Sex SCIFI SPY Total

Politicians Male 10.6 19.4 30.0
Female 8.9 16.1 25.0

Total 19.5 35.5 55.0

Administrators Male 14.2 25.8 40.0
Female 5.3 9.7 15.0

Total 19.5 35.5 55.0

Belly dancers Male 3.5 6.5 10.0
Female 12.4 22.6 35.0

Total 16.0 29.0 45.0
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16.4.3.2 Parameter Estimates

There is a different linear combination of parameters for most cells, and the sizes of the parameters 
in a cell reflect the contribution of each of the effects in the model to the frequency found in that cell.

One can evaluate, for example, how important READTYP is to the number of cases found in 
the cell for female politicians who read science fiction.

Parameters are estimated for the model from the Fe in Table 16.6 in a manner that closely 
follows ANOVA. In ANOVA, the size of an effect for a cell is expressed as a deviation from the 
grand mean. Each cell has a different combination of deviations that correspond to the particular 
combination of levels of the statistically significant effects for that cell.

In MFA, deviations are derived from natural logarithms of proportions: ln (Pijk). Expected 
frequencies for the model (Table 16.6) are converted to proportions by dividing Fe for each cell by 
N = 155, and then the proportions are changed to natural logarithms. For example, for the first cell, 
male politicians who prefer science fiction:

ln (Pijk) = ln (Feijk
>155)

= ln 110.6>1552
= -2.6825711

Table 16.8 gives all the resulting values.
The values in Table 16.8 are then used in a three-  step process that culminates in parameter 

estimates, expressed in standard deviation units, for each effect for each cell. The first step is to find 

TABLE 16.7 Raw and Standardized Residuals 
for Hypothetical Data Set Under Model (SP,R)

Reading Type

Profession Sex SCIFI SPY

Raw residuals ( fo –   Fe):

Politicians Male 4.4 -4.4
Female 1.1 -1.1

Administrators Male -4.2 4.2
Female -0.3 0.3

Belly dancers Male 1.5 -1.5
Female -2.4 2.4

Standardized residuals ( fo - Fe)>F1>2
e :

Politicians Male 1.3 -1.0
Female 0.4 -0.3

Administrators Male -1.1 0.8
Female -0.1 0.1

Belly dancers Male 0.8 -0.6
Female -0.7 0.5
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both the overall mean and the mean (in natural logarithm units) for each level of each of the effects 
in the model. The second step is to express each level of each effect as a deviation from the overall 
mean. The third step is to convert the deviations to standard scores to compare the relative contribu-
tions of various parameters to the frequency in a cell.

In the first step, various means are found by summing ln (Pijk) across appropriate cells and 
dividing each sum by the number of cells involved. For example, to find the overall mean,

x... = (1>rsp)a
ijk

ln (Pijk)

= (1>12)3-2.6825711 + (-2.0781521) + (-2.8573738) + c+ (-1.9254752)4
= - 2.6355346

To find the mean for SCIFI, the first level of READTYP:

x1 # # = (1>sp)a
jk

ln (Pijk)

= (1>6)3-2.6825711 + (-2.8573738)

+ (-2.3901832) + (-3.3757183) + (-3.7906621) + (-2.5257286)4
= -2.9370395

The mean for belly dancers is

x # #3 = (1>rs)a
ij

ln (Pijk)

= (1>4)3-3.7906621 + (-3.1716229) + (-2.5257286) + (-1.9254752)4
= -2.8533722

and so on for the first-  order effects.

TABLE 16.8 Expected ln Pijk for Model (SP,R)

Reading Type

Profession Sex SCIFI SPY

Politicians Male -2.6825711 -2.0781521
Female -2.8573738 -2.2646058

Administrators Male -2.3901832 -1.7930506
Female -3.3757183 -2.7712992

Belly dancers Male -3.7906621 -3.1716229
Female -2.5257286 -1.9254752

Note: ln (Pijk) = (Fijk/155) = ln (Fijk) - ln (155).
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The means for second-  order effects are found in a similar manner. For instance, for the S * P
association, the mean for male politicians is

x #11 = (1>r)a
i

ln (Pijk)

= (1>2)3-2.6825711 + (-2.0781521)4
= -2.3803616

In the second step, parameter estimates are found by subtraction. For first-  order effects, the 
overall mean is subtracted from the mean for each level. For example, lR1

, the parameter for SCIFI, 
the first level of READTYP is

lR1
= x1.. - x...

= -2.9370395 - (-2.6355346)

= - .302

For belly dancers, the third level of PROFESS

lp3
= x..3 - x...

= -2.8533722 - (-2.63555346)

= - .218

and so on.
To find l for a cell in two-  way effect, the two appropriate main effect means are subtracted 

from the two-  way mean, and the overall mean is added (in a pattern that is also familiar from 
ANOVA). For example, lSP23

, the parameter for female belly dancers (second level of sex, third 
level of profession), is found by subtracting from the female belly dancer mean (averaged over the 
two types of reading material) the mean for women and the mean for belly dancers, and then adding 
the overall mean.

lSP23
= x #23 - x #2 # - x # #3 + x # # #
= -2.2256019 - (-2.6200335) - (-2.8533722) + (-2.6355346)

= .612

All the l values, as shown in Table 16.9, are found in a similar, if tedious, fashion. In the 
table, u is the conversion of the overall mean from proportion to frequency units by addition of 
ln (N):

u = x # # # + ln (155)

= 2.4079
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The expected frequency generated by the model for each cell is then expressed as a function 
of the appropriate parameters. For example, the expected frequency (19.40) for male politicians 
who read spy novels is

ln Fe = u + lR2
+ lS1

+ lP1
+ lSP11

= 2.4079 + .302 + (- .015) + .165 + .106

= 2.9659 6 ln (19.40)

within rounding error.
These parameters are used to find expected frequencies for each cell but are not interpreted 

in terms of magnitude until step 3 is taken. During step 3, parameters are divided by their respec-
tive standard errors to form standard normal deviates that are interpreted according to their relative 
magnitudes. Therefore, the parameter values in Table 16.9 are given both in their l form and after 
division by their standard errors.

Standard errors of parameters, SE, are found by squaring the reciprocal of the number of 
levels for the set of parameters, dividing by the observed frequencies, and summing over the levels. 
For example, for READTYP:

SE2 = a (1>ri)
2>fo

= (1>2)2>55 + (1>2)2>100

= (.25)>55 + (.25)>100

= .0070455

and

SE = .0839372

TABLE 16.9 Parameter Estimates for Model (SP,R). U (MEAN) � 2.4079

Effect Level L L/SE

READTYP SCIFI -.302 -3.598
SPY .302 3.598

SEX MALE -.015 -0.186
FEMALE .015 0.186

PROFESSION POLITICIAN .165 2.045
ADMINISTRATOR .053 0.657
BELLY DANCER -.218 -2.702

SEX BY PROFESS MALE POLITICIAN .106 1.154
FEMALE POLITICIAN -.106 -1.154
MALE ADMINISTRATOR .506 5.510
FEMALE ADMINISTRATOR -.506 -5.510
MALE BELLY DANCER .612 7.200
FEMALE BELLY DANCER -.612 -7.200
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Note that this is the simplest method for finding SE (Goodman, 1978) and does not weight the num-
ber of levels by unequal marginal frequencies, as do some other methods.

To find the standard normal deviate for SCIFI (the first level of READTYP), l for SCIFI is 
divided by its standard error

lR1
>SE = - .302> .0839372

= -3.598

This ratio is interpreted as a standard normal deviate (z) and compared with critical z to assess the 
contribution of an effect to a cell. The relative importance of the various effects to a cell is also derived 
from these values. For female belly dancers preferring spy novels, for example, the standard normal de-
viates for the parameters are 3.598 (SPY), 0.186 (FEMALE), -2.702 (BELLY), and -7.200 (FEMALE 
BELLY). The most important influences on cell frequency are, in order, the sex by profession associa-
tion, preferred type of reading material, and profession—  all statistically significant at p 6 .01 because 
they exceed 2.58. Sex contributes little to the expected frequency in this cell and is not statistically 
significant.

Because of the large number of effects produced in typical log-  linear models, a conservative 
criterion should be used if statistical significance is evaluated. A criterion z of 4.00 often is consid-
ered reasonable.

Further insights into interpretation are provided in Section 16.6.2.4. Conversion of parameters 
to odds when one variable is a DV is discussed in Section 10.6.3.

16.4.4 Computer Analyses of Small-Sample Example

Syntax and selected output for computer analyses of the data in Table 16.1 appear in 
Tables 16.10 through 16.12. IBM SPSS HILOGLINEAR and GENLOG4 are in Tables 16.10 and 
16.11, respectively, and SAS CATMOD is in Table 16.12.

The syntax of IBM SPSS HILOGLINEAR (Model Selection on Loglinear menu) in Table 16.10 
produces output appropriate for screening a hierarchical multiway frequency analysis. Additional 
instructions are necessary to test models. The instruction PRINT=FREQ RESID produces the 
table of Cell Counts and Residuals. Because no model is specified in the syntax, a full model (all 
effects included in the model) is produced in which expected and observed frequencies are identi-
cal. IBM SPSS adds 0.5 to each observed frequency for a full model; however, this has no effect on 
subsequent values.

The next two tables are produced by the ASSOCIATION instruction and consist of tests of all ef-
fects individually, effects combined at each order, and effects combined at each order and higher orders. 
The table labeled Partial Associations shows tests of each two-  way and one-  way effect. These values 
are the same as those of Table 16.5, produced by hand calculation. Tests of the combined associations 
at each order are presented in the table labeled K-way and Higher-Order Effects. In the first row 
labeled 2 is the test of the three two-  way associations combined which, in this case, shows statistical 
significance using both the Likelihood Ratio and Pearson Chi-Square criteria. This output suggests 
that at least one of the two-  way associations is significant by both criteria. The test of the single three-
way association is also provided in this table when k = 3; it is not significant. The second row labeled 

4Another program IBM SPSS LOGLINEAR is available only through syntax and is demonstrated in Section 16.6.2.
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TABLE 16.10 Multiway Frequency Analysis of Small-  Sample Example Through IBM SPSS 
HILOGLINEAR (Syntax and Selected Output)

HILOGLINEAR profess(1 3) sex(1 2) readtyp(1 2)
/CWEIGHT=freq
/METHOD=BACKWARD
/CRITERIA MAXSTEPS(10) P(.05) ITERATION(20) DELTA(.5)
/PRINT=FREQ RESID ASSOCIATION ESTIM
/DESIGN.

Cell Counts and Residuals

Observed Expected

profess sex readtyp Counta % Count % Residuals Std. Residuals

1.00 1.00 1.00 15.500 10.0% 15.500 10.0% .000 .000
2.00 15.500 10.0% 15.500 10.0% .000 .000

2.00 1.00 10.500 6.8% 10.500 6.8% .000 .000
2.00 15.500 10.0% 15.500 10.0% .000 .000

2.00 1.00 1.00 10.500 6.8% 10.500 6.8% .000 .000
2.00 30.500 19.7% 30.500 19.7% .000 .000

2.00 1.00 5.500 3.5% 5.500 3.5% .000 .000
2.00 10.500 6.8% 10.500 6.8% .000 .000

3.00 1.00 1.00 5.500 3.5% 5.500 3.5% .000 .000
2.00 5.500 3.5% 5.500 3.5% .000 .000

2.00 1.00 10.500 6.8% 10.500 6.8% .000 .000
2.00 25.500 16.5% 25.500 16.5% .000 .000

a. For saturated models, .500 has been added to all observed cells.

K-Way and Higher-Order Effects

Likelihood Ratio Pearson
Number of 
IterationsK df Chi-Square Sig. Chi-Square Sig.

K-way and Higher Order 1 11 48.089 .000 52.097 .000 0
Effectsa 2 7 33.353 .000 32.994 .000 2

3 2 1.852 .396 1.917 .384 2

K-way Effectsb 1 4 14.737 .005 19.103 .001 0
2 5 31.500 .000 31.077 .000 0
3 2 1.852 .396 1.917 .384 0

a. Tests that k-way and higher order effects are zero.
b. Tests that k-way effects are zero.
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1 contains the test of the combination of all one-  way, two-  way, and three-  way associations, significant in 
this case by both likelihood ratio and Pearson chi-  square criteria. The row labeled 2 contains the test of 
the combination of all two-  way and three-  way associations, and so on.

The final section of Table 16.10 contains parameter estimates, an alternative way of test-
ing effects. Instead of a partial test for each effect, parameter estimates for the effect are tested 
by dividing each Estimate by its standard error (Std. Error) to produce a Z Value and a 95% 
confidence interval.5 These parameter estimates are available only for saturated models—  models 

5These parameter estimates differ somewhat from those produced by hand calculation (Table 16.9) because of the different 
algorithm used by this program.

Partial Associations

Effect df
Partial 

Chi-Square Sig.
Number of 
Iterations

profess*sex 2 27.118 .000 2
profess*readtyp 2 4.412 .110 2
sex*readtyp 1 .616 .432 2
profess 2 1.321 .517 2
sex 1 .161 .688 2
readtyp 1 13.255 .000 2

Parameter Estimates

95% Confidence 
Interval

Effect Parameter Estimate Std. Error Z Sig.
Lower 
Bound

Upper
Bound

profess*sex*readtyp 1 .026 .120 .217 .828 −.208 .260
2 −.176 .129 −1.364 .173 −.430 .077

profess*sex 1 .104 .120 .869 .385 −.130 .338
2 .435 .129 3.363 .001 .181 .688

profess*readtyp 1 .152 .120 1.270 .204 −.083 .386
2 −.179 .129 −1.385 .166 −.433 .074

sex*readtyp 1 .071 .091 .785 .432 −.107 .250

profess 1 .194 .120 1.619 .105 −.041 .428
2 .006 .129 .050 .960 −.247 .260

sex 1 −.007 .091 −.072 .943 −.185 .172
readtyp 1 −.249 .091 −2.738 .006 −.427 −.071

TABLE 16.10 Continued
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TABLE 16.11 Multiway Frequency Analysis of Small-  Sample Example Through IBM SPSS 
GENLOG (Syntax and Selected Output)

GENLOG
profess sex readtyp
/MODEL = POISSON
/PRINT = FREQ ESTIM
/CRITERIA = CIN(95) ITERATE(20) CONVERGE(.001) DELTA(.5)
/DESIGN

Cell Counts and Residualsa,b

Observed Expected

profess sex readtyp Count % Count %

1.00 1.00 1.00
2.00

15.500
15.500

9.6%
9.6%

15.500
15.500

9.6%
9.6%

2.00 1.00
2.00

10.500
15.500

6.5%
9.6%

10.500
15.500

6.5%
9.6%

2.00 1.00 1.00
2.00

10.500
30.500

6.5%
18.9%

10.500
30.500

6.5%
18.9%

2.00 1.00
2.00

5.500
10.500

3.4%
6.5%

5.500
10.500

3.4%
6.5%

3.00 1.00 1.00
2.00

5.500
5.500

3.4%
3.4%

5.500
5.500

3.4%
3.4%

2.00 1.00
2.00

10.500
25.500

6.5%
15.8%

10.500
25.500

6.5%
15.8%

a. Model: Poisson
b. Design: Constant + profess + sex + readtyp + profess * sex + profess* 

readtyp + sex * readtyp + profess * sex * readtyp

Parameter Estimates b,c

Parameter Estimate
Std. 
Error Z Sig.

95% Confidence 
Interval

Lower 
Bound

Upper
Bound

Constant 3.239 .198 16.355 .000 2.851 3.627
[profess = 1.00] −.498 .322 −1.546 .122 −1.129 .133
[profess = 2.00] .887 .367 −2.420 .016 −1.605 −.169
[profess = 3.00] 0a

[sex = 1.00] −1.534 .470 −3.262 .001 −2.455 −.612
[sex = 2.00] 0a

[readtyp = 1.00] −.887 .367 −2.420 .016 −1.606 −.169
[readtyp = 2.00] 0a

[profess = 1.00]*[sex = 1.00] 1.534 .592 2.593 .010 .374 2.694
[profess = 1.00]*[sex = 2.00] 0a



Parameter Estimates b,c

Parameter Estimate
Std. 
Error Z Sig.

95% Confidence 
Interval

Lower 
Bound

Upper
Bound

[profess = 2.00]*[sex = 1.00] 2.600 .591 4.401 .000 1.442 3.758
[profess = 2.00]*[sex = 2.00] 0a

[profess = 3.00]*[sex = 1.00] 0a

[profess = 3.00]*[sex = 2.00] 0a

[profess = 1.00]*[readtyp = 1.00] .498 .542 .918 .359 −.565 1.561
[profess = 1.00]*[readtyp = 2.00] 0a

[profess = 2.00]*[readtyp = 1.00] .241 .641 .375 .708 −1.017 1.498
[profess = 2.00]*[readtyp = 2.00] 0a

[profess = 3.00]*[readtyp = 1.00] 0a

[profess = 3.00]*[readtyp = 2.00] 0a

[sex = 1.00]*[readtyp = 1.00] .887 .706 1.257 .209 −.496 2.271
[sex = 1.00]*[readtyp = 2.00] 0a

[sex = 2.00]*[readtyp = 1.00] 0a

[sex = 2.00]*[readtyp = 2.00] 0a

[profess = 1.00]*[sex = 1.00]*
[readtyp = 1.00] −.498 .887 −.561 .575 −2.236 1.241
[profess = 1.00]*[sex = 1.00]*
[readtyp = 2.00] 0a

[profess = 1.00]*[sex = 1.00]*
[readtyp = 2.00] 0a

[profess = 1.00]*[sex = 2.00]*
[readtyp = 1.00] 0a

[profess = 1.00]*[sex = 2.00]*
[readtyp = 2.00] −1.307 .950 −1.375 .169 −3.170 .556
[profess = 2.00]*[sex = 1.00]*
[readtyp = 2.00] 0a

[profess = 2.00]*[sex = 2.00]*
[readtyp = 1.00] 0a

[profess = 2.00]*[sex = 2.00]*
[readtyp = 2.00] 0a

[profess = 3.00]*[sex = 1.00]*
[readtyp = 1.00] 0a

[profess = 3.00]*[sex = 1.00]*
[readtyp = 2.00] 0a

[profess = 3.00]*[sex = 2.00]*
[readtyp = 1.00] 0a

[profess = 3.00]*[sex = 2.00]*
[readtyp = 2.00] 0a

a. This parameter is set to zero because it is redundant. b. Model: Poisson
c. Design: Constant + profess + sex + readtyp + profess * sex + profess * readtyp + 

sex * readtyp + profess * sex *readtyp

TABLE 16.11 Continued

Continued

887
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TABLE 16.12 Multiway Frequency Analysis of Small-  Sample Example Through SAS CATMOD 
(Syntax and Selected Output)

proc catmod data=SASUSER.SSMFA;
weight freq;
model PROFESS*SEX*READTYP=_response_/ 

noiter;
loglin PROFESS|SEX|READTYP;

run;

Maximum Likelihood Analysis

Maximum likelihood computations converged.

The CATMOD Procedure
Data Summary

Response PROFESS*SEX*READTYP Response Levels 12
Weight Variable FREQ Populations 1
Data Set SSMFA Total Frequency 155
Frequency Missing 0 Observations 12

Population Profiles

Sample Sample Size

1 155

Response Profiles

Response PROFESS SEX READTYP

1 1 1 1
2 1 1 2
3 1 2 1
4 1 2 2
5 2 1 1
6 2 1 2
7 2 2 1
8 2 2 2
9 3 1 1
10 3 1 2
11 3 2 1
12 3 2 2
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Maximum Likelihood Analysis of Variance

Source DF Chi-Square Pr > ChiSq

PROFESS 2 3.46 0.1777
SEX 1 0.01 0.9256
PROFESS*SEX 2 17.58 0.0002
READTYP 1 7.61 0.0058
PROFESS*READTYP 2 2.62 0.2691
SEX*READTYP 1 0.66 0.4168
PROFESS*SEX*READTYP 2 1.89 0.3894

Likelihood Ratio 0 . .

TABLE 16.12 Continued

Analysis of Maximum Likelihood Estimates

Parameter Estimate
Standard 
Error

Chi-
Square Pr > ChiSq

PROFESS 1 0.2081 0.1229 2.87 0.0903
2 0.00538 0.1337 0.00 0.9679

SEX 1 −0.00878 0.0940 0.01 0.9256
PROFESS*SEX 1 1 0.1101 0.1229 0.80 0.3700

2 1 0.4567 0.1337 11.67 0.0006
READTYP 1 −0.2595 0.0940 7.61 0.0058
PROFESS*READTYP 1 1 0.1581 0.1229 1.66 0.1982

2 1 −0.1885 0.1337 1.99 0.1586
SEX*READTYP 1 1 0.0764 0.0940 0.66 0.4168
PROFESS*SEX*READTYP 1 1 1 0.0250 0.1229 0.04 0.8387

2 1 1 −0.1777 0.1337 1.77 0.1837

that include all possible effects. Note that if an effect has more than 1 df, a single test for the effect 
is not provided because the parameter estimate for each df is tested separately.

Table 16.11 shows the results of an unspecified (full, saturated) model run through IBM SPSS 
GENLOG. Note that specification of cell weight occurs outside the GENLOG procedure. Output 
begins with a description of observed and expected cell frequencies and percentages for the speci-
fied model, spelled out in footnote b of the first output table shown. All cell counts are automatically 
incremented by 0.5. Although the title of the table includes residuals, they do not appear because this 
is a saturated model; the observed and expected counts are equal. The final table shows parameter 
estimates, each shown with its standard error (Std. Error), as well as z value: the Estimate divided by 
Std. Error. The final two columns show the 95% confidence interval for each parameter estimate. Note 
that the difference between the parameters and their standard errors for IBM SPSS HILOGLINEAR 
and GENLOG are due to the different ways that the models are parameterized in the two programs.
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SAS CATMOD syntax and output for MFA appear in Table 16.12. The full model is speci-
fied by listing the three-  way association, PROFESS*SEX*READTYP equal to _response_,
a keyword that induces a log-  linear model. Unneeded output is suppressed with noiter. The 
loglin instruction is used; the instructions in this syntax specify that all variables—  PROFESS, 
SEX, READTYP—  are to be treated the same, that none is the DV.

After information on description of the design, CATMOD provides details about the response 
profiles. The Maximum Likelihood Analysis of Variance table contains likelihood 
ratio Chi-  Square tests of each effect individually. Note that due to differences in the algorithms 
used, these estimates differ a bit from those of IBM SPSS HILOGLINEAR and a great deal from those 
of IBM SPSS GENLOG.

There are also tests of individual parameter estimates in the following section (Analysis of 
Maximum Likelihood Estimates), although some of these differ from both the ones shown 
for hand calculation (Table 16.9) and those produced by IBM SPSS HILOGLINEAR and GENLOG 
(Tables 16.10 and 16.11). Chi-  Square tests (rather than z) are given for each of the parameter estimates.

16.5 Some Important Issues

16.5.1 Hierarchical and Nonhierarchical Models

A model is hierarchical, or nested, if it includes all the lower effects contained in the highest-  order
association that is retained in the model. A hierarchical model for a four-  way design, ABCD, with 
a significant three-way association, ABC, is A * B * C, A * B, A * C, B * C, and A, B, and C.
The hierarchical model might or might not also include some of the other two-  way associations and 
the D first-  order effect. A nonhierarchical model derived from the same four-  way design includes 
only the significant two-  way associations and first-  order effects along with the significant three-
way association; that is, a nonsignificant B * C association is included in a hierarchical model that 
retains the ABC effect but is not included automatically in a nonhierarchical model.

In log-  linear analysis of multiway frequency tables, hierarchical models are the norm 
(e.g., Goodman, 1978; Knoke & Burke, 1980). Nonhierarchical models are suspect because higher 
order effects are confounded with lower order components. Therefore, it is best to explicitly include 
component lower order associations when specifying models in general log-  linear programs.

One major advantage of hierarchical models is the availability of a significance test for the 
difference between models, so that the most parsimonious adequately fitting model can be identi-
fied using inferential procedures. With nonhierarchical models, a statistical test for the difference 
between models is not available unless one of the candidate models happens to be nested in the other.

IBM SPSS LOGLINEAR and GENLOG, and SAS CATMOD have the Newton–  Raphson algo-
rithm for assessing models and are considered general log-  linear programs because they do not automati-
cally impose hierarchical modeling. IBM SPSS HILOGLINEAR is restricted to hierarchical models.

16.5.2 Statistical Criteria

A potential source of confusion is that tests of models look for statistical nonsignificance while tests 
of effects look for statistical significance. Both kinds of tests commonly use the same statistics—
forms of x2. This is usual practice in model-  fitting techniques, as in Chapter 10 (Logistic Regression) 
and Chapter 14 (Structural Equation Modeling).
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16.5.2.1 Tests of Models

Both Pearson x2 and the likelihood ratio statistic G2 are often available for screening for the 
complexity of model necessary to fit data and for testing overall fit of models. Between the two, 
consistency favors use of G2 because it is available for testing overall fit, screening, and testing for 
differences among hierarchical models. Also, under some conditions, inadequate expected frequen-
cies can inflate Type I error rate when Pearson x2 is used (Milligan, 1980).

In assessing goodness-of-fit for a model, you look for a nonsignificant G2 where the frequen-
cies estimated from the model are similar to the observed frequencies. Thus, retention of the null 
hypothesis is the desired outcome—  an unhappy state of affairs for choosing an appropriate alpha 
level. In order to avoid finding too many “good” models, you need a less strict criterion for a, say 
.10 or .25.

Further, with very large samples, small discrepancies between the expected and observed 
frequencies often result in statistical significance. A significant model, even at a = .05, may 
actually have adequate fit. With very small samples, on the other hand, large discrepancies often fail 
to reach statistical significance so that a nonsignificant model, even at a = .25, actually has a poor 
fit. Choice of a significance level, then, is a matter of considering both sample size and the nature of 
the test. With larger samples, smaller tail probability values are chosen.

16.5.2.2 Tests of Individual Effects

Two types of tests typically are available for testing individual effects in multiway frequency tables: 
chi-  square tests of partial effects and z tests for single df parameter estimates.

IBM SPSS HILOGLINEAR and SAS CATMOD provide partial G2 tests of all effects in a full 
model. In addition, all programs print parameter estimates and their standard errors, which are con-
verted to z tests of parameters or, in the case of SAS, x2 tests. However, IBM SPSS HILOGLINEAR 
prints these only for saturated models.

IBM SPSS LOGLINEAR and GENLOG provide parameter estimates and their associated z
tests, but no omnibus test for any effect that has more than one degree of freedom. If an effect has 
more than two levels, there is no single inferential test of that effect. Although one can attribute sta-
tistical significance to an effect if any of its single df tests is significant, no overall tail probability 
level is available. Also, an effect may be statistically significant even though none of its single df 
parameters reaches significance. With only the single df z tests of parameters, such an effect is not 
identified.

16.5.3 Strategies for Choosing a Model

If you have one or more models hypothesized a priori, then there is no need for the strategies dis-
cussed in this section. The techniques in this section are used if you are building a model, or trying 
to find the most parsimonious incomplete model. As in all exploratory modeling, care should be 
taken in overgeneralizing results which may be subject to overfitting and inflated Type I error.

Strategies for choosing a model differ depending on whether you are using IBM SPSS or 
SAS. Options and features differ among programs. You may find it handy to use one program to 
screen and another to evaluate models. Recall that hierarchical programs automatically include 
lower order components of higher order associations; general log-  linear programs require that you 
explicitly include lower order components when specifying candidate hierarchical models.
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16.5.3.1 IBM SPSS HILOGLINEAR (Hierarchical)

This program provides a test of each individual effect (with partial x2 reported where 
appropriate), simultaneous tests of all k-way effects (all one-  way effects combined, all two-
way effects combined, and so on), and simultaneous tests of all k-way and higher way effects 
(with a four-way model, all three-way and four-way effects combined, all two-way, three-way, 
and four-  way effects combined, and so on). Both Pearson and likelihood ratio x2 (G2) are 
reported. A strategy that follows the recommendations of Benedetti and Brown (1978) pro-
ceeds as follows.

Consider the ABC effect in a four-  way design with ABCD. First, look at the tests of all 
three-  way effects combined and three-  way and four-  way effects combined because combined 
results take precedence over tests of individual effects. If both combined tests are nonsignifi-
cant, the ABC association is deleted regardless of its partial test unless this specific three-  way 
interaction has been hypothesized beforehand. If the combined test is significant, and the ABC
effect is significant, the ABC effect is retained in the final model. If some of the tests are sig-
nificant while others are not, further screening is recommended. This process is demonstrated 
in Section 16.6.2.1. (Recall that the cutoff p values for assessing significance depend on sample 
size. Larger samples are tested with smaller p values to avoid including statistically significant 
but trivial effects.)

Further screening of effects with ambiguous results (disagreement, say, between G2 and 
Pearson x2 or a result between a = .01 and a = .05) proceeds stepwise. HILOGLINEAR provides 
only backward stepping, in which one starts with all the unambiguously significant effects plus all 
ambiguous effects from the initial screening of the full model. The term that is least helpful to the 
model is deleted first, followed by assessment of the remaining terms of the same order. x2 for the 
difference between simpler and more complex models is reported. Terms that do not significantly 
degrade the model when deleted are excluded.

Note that this stepwise procedure, like others, violates rules of hypothesis testing. Therefore, 
don’t take the x2 and the probability values produced by the stepping procedure too seriously. View 
this as a search for the most reasonable model, with x2 providing guidelines for choosing among 
models, as opposed to a stricter view that some models are truly significantly better or worse than 
others.

16.5.3.2 IBM SPSS GENLOG (General Log-  Linear)

This program provides neither simultaneous tests for associations nor a stepping algorithm. 
Therefore, the procedure for choosing an appropriate model is simpler but less flexible.

A preliminary run with a full model is used to identify effects whose parameters differ 
significantly from zero. Recall that each cell of a design has a parameter for each effect and 
that, if the effect has more than two levels, the size of the parameter for the same effect may be 
different in the different cells. If an effect has a parameter that is highly significant for any cell, 
the effect is retained. If all the parameters for an effect are clearly nonsignificant, the effect is 
deleted.

Ambiguous cases occur when some parameters are marginally significant. Subsequent runs 
are made with and without ambiguous effects. In these runs, the significance of parameters is 
assessed along with the fit of the overall model. The strategy of backward elimination of simple 
effects, as described above, is followed for the safest route to the most reasonable model.
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16.5.3.3 SAS CATMOD and IBM SPSS LOGLINEAR (General Log-  Linear)

Although these programs have no provision for stepwise model building and no simultaneous tests 
of association for each order, they do provide separate tests for each effect in a model, including 
effects with more than 1 df. A preliminary run with a full model, then, is used to identify candidates 
for model testing through the maximum likelihood chi-  square test of association. Evaluation of 
models follows the spirit of backward elimination of simple effects as described in Section 16.5.3.1.

16.6 Complete Example of Multiway 
Frequency Analysis

Data to illustrate multiway frequency analysis were taken from the survey of clinical psychologists 
described in Appendix B, Section B.3. The example is a hierarchical analysis of five dichotomous vari-
ables: whether the therapists thought (1) that their clients were aware of the therapist’s attraction to them 
(AWARE), (2) the attraction was beneficial to the therapy (BENEFIT), and (3) the attraction was harm-
ful to the therapy (HARM), as well as whether the therapists had (4) sought consultation when attracted 
to a client (CONSULT), or (5) felt uncomfortable as a result of the attraction (DISCOMF). This is an 
exploratory analysis, attempting to fit a model as opposed to a model in which hypothesized effects are 
specified. Concerns regarding overfitting apply as in all atheoretical models. Files are MFA.*.

16.6.1  Evaluation of Assumptions: Adequacy 
of Expected Frequencies

There are 585 psychologists in the sample. Of these, 151 are excluded from the analysis because 
of missing data and because only therapists who had felt attraction to at least one client answered 
the questions used for the analysis. The usable sample, then, consists of 434 psychologists for the 
hierarchical analysis, as seen in the IBM SPSS CROSSTABS run of Table 16.13. The first part of 
syntax COMPUTEs a FILTER to assure that cases missing data on any of the variables are omitted 
from the analysis. Then the CROSSTABS instructions request observed frequency COUNTs and 
EXPECTED frequencies for all combinations of 2 * 2 tables. Only a few tables are shown.

Sample sizes are adequate for the analysis. The 2 * 2 * 2 * 2 * 2 data table contains 
32 cells, for which a sample of 434 should be sufficient; more than 5 cases are expected per cell if 
the dichotomous splits are not too bad. All the two-  way contingency tables of Table 16.13 are exam-
ined to determine the adequacy of expected frequencies. The smallest expected frequency, 41.3 for 
the cell in which clients probably were aware of the attraction and the attraction was beneficial, is 
well in excess of the required minimum of 5 cases. Discussion of outliers in the solution appears in 
the section on adequacy of fit of the selected model that follows the section on selection of a model.

16.6.2 Hierarchical Log-Linear Analysis

16.6.2.1 Preliminary Model Screening

The full model is proposed because there are no a priori reasons to eliminate any associations. 
Therefore, screening and model building are used to eliminate associations that do not contribute to 
observed cell frequencies. Table 16.14 contains the information needed to start the model-  building 
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TABLE 16.13 Syntax and Partial Output From Preliminary IBM SPSS CROSSTABS RUN 
for Hierarchical Log-Linear Analysis

USE ALL.
COMPUTE filter_$=(aware < 3 and benefit < 3 and harm < consult < 3 and 

discomf < 3).
VARIABLE LABEL filter_$ ‘aware < 3 and benefit < 3 and harm < consult < 3 and’+

 ‘ discomf < 3 (FILTER)’.
VALUE LABELS filter_$ 0 ‘Not Selected’ 1 ‘Selected’.
FORMAT filter_$ (f1.0).
FILTER BY filter_$.
EXECUTE .

CROSSTABS
/TABLES=aware benefit harm BY consult discomf
/FORMAT= AVALUE TABLES
/CELLS= COUNT EXPECTED ROW COLUMN .

CROSSTABS
/TABLES=aware BY benefit harm
/FORMAT= AVALUE TABLES
/CELLS= COUNT EXPECTED ROW COLUMN .

CROSSTABS
/TABLES=benefit BY harm
/FORMAT= AVALUE TABLES
/CELLS= COUNT EXPECTED ROW COLUMN .

CROSSTABS
/TABLES=consult BY discomf
/FORMAT= AVALUE TABLES
/CELLS= COUNT EXPECTED ROW COLUMN .

procedure; the simultaneous tests for effects of each order, each order and higher, and the tests of 
individual association, all requested through the ASSOCIATION instruction.

Both likelihood ratio and Pearson criteria are used to evaluate the K-way and Higher Order 
Effects and the K-way Effects. Note that the probability levels for more than two-  way associations are 
greater than 0.05 for the simultaneous tests of both k-way effects and k-way and higher order effects. 
The two sets of simultaneous tests agree that variables are independent in three-  way and higher order 
effects. Thus the model need contain no associations greater than two-  way.6

The final portion of the table provides the basis of a search for the best model of one-   and 
two-way effects. Among the two-way effects, several associations are clearly significant (p 6 .01).
AWARE by BENEFIT, AWARE by CONSULT, AWARE by HARM, BENEFIT by CONSULT, 
HARM by DISCOMF, and CONSULT by DISCOMF. Two of the two-  way associations are clearly 
nonsignificant: AWARE by DISCOMF and BENEFIT by DISCOMF. The remaining two-  way 

6Although one three-  way effect, BENEFIT by HARM by AWARE, approaches the p 6.01 criterion, the three-  way associa-
tions are not considered for inclusion because the simultaneous tests take precedence over the component associations.



Multiway Frequency Analysis 895

TABLE 16.13 Continued

effects—  BENEFIT by HARM and HARM by CONSULT—  are ambiguous (.01 6 p 6 .05) and are 
tested through a stepwise analysis.

All first-  order effects need to be included in the final hierarchical model, most because they are 
highly significant, and HARM because it is part of a significant two-  way association. Recall that in a 
hierarchical model a term automatically is included if it is a part of an included higher order association.

16.6.2.2 Stepwise Model Selection

Stepwise selection by simple deletion from the model with 8 of the 10 two-  way terms is illustrated 
in the IBM SPSS HILOGLINEAR run of Table 16.15. Although 10 steps are permitted by the in-
struction MAXSTEPS(10), the selection process stops after the second step because the criterion 
probability (.01) is reached.

Recall that each potential model generates a set of expected frequencies. The goal of model 
selection is to find the model with the smallest number of effects that still provides a fit between 

Crosstabs

Was client aware of attraction? * Was there consultation about attraction? Crosstabulation

Was there consultation 
about attraction?

NEVER YES Total

Was client aware 
of attraction?

PROB_NOT Count 155 151 306
Expected Count 126.9 179.1 306.0
% within Was client 
aware of attraction?

50.7% 49.3% 100.0%

% within Was there 
consultation about 
attraction?

86.1% 59.4% 70.5%

YES Count 25 103 128
Expected Count 53.1 74.9 128.0
% within Was client 
aware of attraction?

19.5% 80.5% 100.0%

% within Was there 
consultation about 
attraction?

13.9% 40.6% 29.5%

Total Count 180 254 434
Expected Count 180.0 254.0 434.0
% within Was client 
aware of attraction?

41.5% 58.5% 100.0%

% within Was there 
consultation about 
attraction?

100.0% 100.0% 100.0%

(continued)
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Was client aware of attraction? * Was there discomfort due to attraction? Crosstabulation

Was there discomfort 
due to attraction?

NEVER YES Total

Was client aware 
of attraction?

PROB_NOT Count
Expected Count

119
107.9

187
198.1

306
306.0

% within Was client 
aware of attraction?

38.9% 61.1% 100.0%

% within Was there 
discomfort due to 
attraction?

77.8% 66.5% 70.5%

YES Count 34 94 128
Expected Count 45.1 82.9 128.0
% within Was client 
aware of attraction?

26.6% 73.4% 100.0%

% within Was there 
discomfort due to 
attraction?

22.2% 33.5% 29.5%

Total Count 
Expected Count 
% within Was client 
aware of attraction? 
% within Was there 
discomfort due to 
attraction?

153 281 434
153.0 281.0 434.0

35.3% 64.7% 100.0%

100.0% 100.0% 100.0%

TABLE 16.13 Continued

expected frequencies and observed frequencies. First, the optimal model must have a nonsignificant 
Likelihood ratio chi square value (cf. Section 16.5.2.1, for choice between Pearson
and likelihood ratio values). Second, the selected model should not be significantly worse than the 
next more complicated model. That is, if an effect is deleted from a model, that model should not be 
significantly worse than the model with the term still in it.

Notice first in Table 16.15 that the first model (Step 0) includes eight effects, certain and 
ambiguous, that might be included. This model is not significant, meaning that it provides an ac-
ceptable fit between expected and observed frequencies, x2(18) = 24.549, p = .138. At Step 1
effects are deleted one at a time. CONSULT by HARM is deleted at Step 1 because eliminating it 
produces the smallest Chi-Square change from Step 0 with p = .037. This model also is nonsig-
nificant, x2(19) = 28.917, p = .067.

Any further deletion of effects violates the criterion p = .01; deletion of BENEFIT by HARM 
has p = .005 for Chi-Square change. Therefore, the model at the end of Step 1 is retained.

However, the second criterion is that the model should not be significantly different from 
the next more complicated model. The next more complicated model is the initial model that con-
tains CONSULT by HARM. Deletion of CONSULT by HARM at Step 1 results in a significant 
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Was client aware of attraction? * Was attraction beneficial to therapy? Crosstabulation

Was attraction 
beneficial to therapy?

NEVER YES Total

Was client aware 
of attraction?

PROB_NOT Count 129 177 306
Expected Count 98.7 207.3 306.0
% within Was client 
aware of attraction?

42.2% 57.8% 100.0%

% within Was attraction 
beneficial to therapy?

92.1% 60.2% 70.5%

YES Count 11 117 128
Expected Count 41.3 86.7 128.0
% within Was client 
aware of attraction?

8.6% 91.4% 100.0%

% within Was attraction 
beneficial to therapy?

7.9% 39.8% 29.5%

Total Count 140 294 434
Expected Count 140.0 294.0 434.0
% within Was client 
aware of attraction?

32.3% 67.7% 100.0%

% within Was attraction 
beneficial to therapy?

100.0% 100.0% 100.0%

TABLE 16.13 Continued

difference between the models, x2(1) = (28.917 - 24.492) = 4.37, p 6 .05. Therefore, the 
model at Step 1 is unsatisfactory because it is significantly worse than the next more complicated 
model. (The use of a more conservative alpha, for example p 6 .01, would lead to a decision in favor 
of the best model at Step 1 with seven effects.)

The best model (8 two-  way effects) is satisfactory by all criteria. Observed and expected 
frequencies based on this model do not differ significantly. Remember that this model includes all 
one-  way effects because all variables are represented in one or more associations.

The model of choice for explaining the observed frequencies, then, includes all first-  order 
effects and the two-  way associations between benefit and harm, benefit and awareness, benefit and 
consultation, harm and awareness, harm and discomfort, harm and consultation, awareness and con-
sultation, and discomfort and consultation. Not required in the model are the two-  way associations 
between benefit and discomfort or discomfort and harm.

16.6.2.3 Adequacy of Fit

Overall evaluation of the model is made on the basis of the likelihood ratio x2 which, as seen 
in Table 16.16, indicates a good fit between observed and expected frequencies. For the model 
of choice, the likelihood ratio value is 24.55 with 18 df and p = .138. Confidence limits around 
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TABLE 16.14 Syntax and Edited Output for IBM SPSS HILOGLINEAR Preliminary Run 
of Simultaneous and Component Associations

HILOGLINEAR 
aware(1 2) benefit(1 2) harm(1 2) consult(1 2) discomf(1 2)
/CRITERIA MAXSTEPS(10) P(.05) ITERATION(20) DELTA(.5)
/PRINT= ASSOCIATION
/DESIGN.

K-Way and Higher-Order Effects

Likelihood Ratio Pearson Number of 
IterationsK df Chi-Square Sig. Chi-Square Sig.

K-way and Higher Order 1 31 436.151 .000 491.346 .000 0
Effectsa 2 26 253.506 .000 364.212 .000 2

3 16 24.086 .088 21.854 .148 6
4 6 10.162 .118 11.141 .084 4
5 1 .295 .587 .164 .686 3

K-way Effectsb 1 5 182.645 .000 127.134 .000 0
2 10 229.420 .000 342.358 .000 0
3 10 13.924 .176 10.713 .380 0
4 5 9.867 .079 10.978 .052 0
5 1 .295 .587 .164 .686 0

df used for these tests have NOT been adjusted for structural or sampling zeros. Tests using 
these df may be conservative.
a. Tests that k-way and higher order effects are zero.
b. Tests that k-way effects are zero.

x2 (recall that likelihood ratio is a form of x2) are found by entering x2 and df for the selected 
model and the percentage for the desired confidence interval into Smithson’s (2003) NoncChi.
sav and running it through NoncChi.sps. Results are added to NoncF.sav, as seen in Table 16.16. 
Confidence limits are 0–  27.49. Even the upper value is less than the critical value of 28.87 with 
18 df at a = .05. This again shows inability to reject the null hypothesis of a good fit between 
observed and expected frequencies.

Assessment of fit of the model in individual cells proceeds through inspection of the stan-
dardized residuals for each cell (cf. Section 16.4.3.1). These residuals, as produced by IBM SPSS
HILOGLINEAR, are shown in Table 16.17. The table displays the observed frequencies for each 
cell, the expected frequencies for each cell (Expected Count), the differences between observed and 
expected frequencies (Residuals), and the standardized deviates (Std. Residuals, the standardized
residual values from which discrepancies are evaluated).

Most of the standardized residual values are quite small; only one cell has a value that 
exceeds the critical z value of 1.96. Since the classification table has 32 cells, a standardized re-
sidual value of 2.17 (the largest of the standardized residuals) for one of them is not unexpected; 
this cell is not deviant enough to be considered an outlier. However, the fit of the model is least 
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TABLE 16.14 Continued

effective for this cell, which contains therapists who felt their attraction to clients was beneficial 
to the therapy, who thought their clients were aware of the attraction, and who felt uncomfort-
able about it, but who never felt it harmful to the therapy or sought consultation about it. As seen 
from the observed frequency table, 7 of the 434 therapists responded in this way. The expected 
frequency table shows that, according to the model, only about three were predicted to provide 
this pattern of responses.

The syntax of Table 16.17 also requests a normalized probability plot of residuals (/PLOT=
RESID NORMPROB). Figure 16.1 shows the output produced by this request, in which observed 
standardized residuals are seen to be acceptably close to those that are expected (the diagonal line).

Partial Associations

Effect df
Partial Chi-

Square Sig.
Number of 
Iterations

aware*benefit*harm*consult 1 3.068 .080 3
aware*benefit*harm*discomf 1 3.594 .058 3
aware*benefit*consult*discomf 1 1.200 .273 3
aware*harm*consult*discomf 1 2.059 .151 4
benefit*harm*consult*discomf 1 .430 .512 3
aware*benefit*harm 1 6.089 .014 4
aware*benefit*consult 1 .660 .417 4
aware*harm*consult 1 .613 .434 4
benefit*harm*consult 1 .412 .521 4
aware*benefit*discomf 1 .157 .692 3
aware*harm*discomf 1 .745 .388 4
benefit*harm*discomf 1 1.065 .302 4
aware*consult*discomf 1 2.202 .138 4
benefit*consult*discomf 1 .423 .515 4
harm*consult*discomf 1 .055 .814 4
aware*benefit 1 31.954 .000 6
aware*harm 1 11.708 .001 6
benefit*harm 1 4.688 .030 5
aware*consult 1 15.947 .000 6
benefit*consult 1 9.769 .002 5
harm*consult 1 4.283 .039 5
aware*discomf 1 .263 .608 5
benefit*discomf 1 .313 .576 5
harm*discomf 1 28.987 .000 5
consult*discomf 1 21.474 .000 5
aware 1 75.203 .000 2
benefit 1 55.854 .000 2
harm 1 .590 .442 2
consult 1 12.679 .000 2
discomf 1 38.318 .000 2
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TABLE 16.15 Syntax and Partial Output From IBM SPSS HILOGLINEAR Model Selection RUN for 
Hierarchical Log-Linear Analysis

Step Summary

Stepa Effects Chi-Squarec df Sig.
Number of 
Iterations

0 Generating 
Classb

aware*benefit, 
aware*consult, 
aware*harm, 
benefit*consult, 
benefit*harm, 
consult*discomf, 
consult*harm, 
discomf*harm

24.549 18 .138

Deleted 1 aware*benefit 31.828 1 .000 5
Effect 2 aware*consult 15.824 1 .000 4

3 aware*harm 11.589 1 .001 5
4 benefit*consult 11.267 1 .001 4
5 benefit*harm 5.762 1 .016 4
6 consult*discomf 23.481 1 .000 5
7 consult*harm 4.368 1 .037 4
8 discomf*harm 30.463 1 .000 5

1 Generating 
classb

aware*benefit, 
aware*consult, 
aware*harm, 
benefit*consult, 
benefit*harm, 
consult*discomf, 
discomf*harm

28.917 19 .067

Deleted 1 aware*benefit 30.474 1 .000 4
Effect 2 aware*consult 19.227 1 .000 4

3 aware*harm 14.992 1 .000 4
4 benefit*consult 13.289 1 .000 4
5 benefit*harm 7.784 1 .005 4
6 consult*discomf 31.545 1 .000 4
7 discomf*harm 38.527 1 .000 4

2 Generating 
Classb

aware*benefit, 
aware*consult, 
aware*harm, 
benefit*consult, 
benefit*harm, 
consult*discomf, 
discomf*harm

28.917 19 .067

a. At each step, the effect with the largest significance level for the likelihood Ratio Change is 
deleted, provided the significance level is larger than .010.

b. Statistics are displayed for the best model at each step after step 0.
c. For ‘Deleted Effect’, this is the change in the Chi-  Square after the effect is deleted from the model.



Multiway Frequency Analysis 901

16.6.2.4 Interpretation of the Selected Model

Two types of information are useful in interpreting the selected model: parameter estimates for the 
model and marginal observed frequency tables for all included effects.

The log-  linear parameter estimate, lambda (Coeff.), and the Z-Value—ratio of the 
Coeff./Std. Err. (cf. Section 16.4.3.2)—from IBM SPSS LOGLINEAR (available only 
in syntax) are shown in Table 16.18 for each effect included in the model (recall that these are not 
available through HILOGLINEAR for an unsaturated model). Because there are only two levels of 
each variable, each effect is summarized by a single parameter value where one level of the effect 
has the positive value of the parameter and the other the negative value of the parameter.

Especially useful for interpretation are the standardized parameter estimates (Z-Values). 
Effects with the largest standardized parameter estimates are the most important in influencing the 

Goodness-of-Fit Tests

Chi-Square df Sig.

Likelihood Ratio 28.917 19 .067
Pearson 28.043 19 .083

TABLE 16.15 Continued

TABLE 16.16 Data Set Output From Noncchi.Sps for Likelihood Ratio (Chi Square) With 95% 
Confidence Limits (lc2 and uc2)
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FIGURE 16.1 Normal probability plot for selected model.



902 TABLE 16.17 Syntax and Partial Output of IBM SPSS HILOGLINEAR RUN to Evaluate Residuals

HILOGLINEAR
aware(1 2) benefit(1 2) harm(1 2) consult(1 2) discomf(1 2)
/CRITERIA ITERATION(20) DELTA(0)
/PRINT = FREQ RESID
/PLOT = RESID NORMPROB
/DESIGN aware*benefit aware*consult aware*harm benefit*consult benefit*harm
consult*discomf consult*harm discomf*harm

Cell Counts and Residuals

Were clients 
aware of 
attraction?

Was 
attraction 
beneficial 
to therapy?

Was 
attraction 
harmful to 
therapy?

Was there 
consultation 
about
attraction?

Was there 
discomfort 
due to 
attraction?

Observed Expected

Residuals
Std. 
ResidualsCount % Count %

PROB_NOT NEVER NEVER NEVER NEVER 43.000 9.9% 37.080 8.5% 5.920 .972

YES 20.000 4.6% 21.838 5.0% −1.838 −.393

YES NEVER 10.000 2.3% 9.827 2.3% .173 .055

YES 16.000 3.7% 16.654 3.8% −.654 −.160

YES NEVER NEVER 4.000 .9% 7.502 1.7% −3.502 −1.279

YES 14.000 3.2% 14.807 3.4% −807 −210

YES NEVER 4.000 .9% 3.194 .7% .806 .451

YES 18.000 4.1% 18.140 4.2% −.140 −.033

YES NEVER NEVER NEVER 27.000 6.2% 28.036 6.5% −1.036 −.196

YES 14.000 3.2% 16.512 3.8% −2.512 −.618

YES NEVER 13.000 3.0% 15.972 3.7% −2.972 −.744

YES 30.000 6.9% 27.068 6.2% 2.932 .564

YES NEVER NEVER 11.000 2.5% 9.833 2.3% 1.167 .372

YES 22.000 5.1% 19.407 4.5% 2.593 .589

YES NEVER 7.000 1.6% 8.999 2.1% −1.999 −.666

YES 53.000 12.2% 51.107 11.8% 1.893 .265
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TABLE 16.17 Continued

Cell Counts and Residuals

Were clients 
aware of 
attraction?

Was 
attraction 
beneficial 
to therapy?

Was 
attraction 
harmful to 
therapy?

Was there 
consultation 
about
attraction?

Was there 
discomfort 
due to 
attraction?

Observed Expected

Residuals
Std. 
ResidualsCount % Count %

YES NEVER NEVER NEVER NEVER .000 .0% 1.273 .3% −1.273 −1.128

YES .000 .0% .750 .2% −.750 −.866

YES NEVER 1.000 .2% .941 .2% .059 .060

YES .000 .0% 1.595 .4% −1.595 −1.263

YES NEVER NEVER 1.000 .2% .586 .1% .414 .541

YES 3.000 .7% 1.157 .3% 1.843 1.714

YES NEVER .000 .0% .696 .2% −.696 −.834

YES 6.000 1.4% 3.954 .9% 2.046 1.029

YES NEVER NEVER NEVER 3.000 .7% 5.356 1.2% −2.356 −1.018

YES 7.000 1.6% 3.155 .7% 3.845 2.165

YES NEVER 10.000 2.3% 8.514 2.0% 1.486 .509

YES 15.000 3.5% 14.429 3.3% .571 .150

YES NEVER NEVER 5.000 1.2% 4.275 1.0% .725 .351

YES 6.000 1.4% 8.437 1.9% −2.437 −.839

YES NEVER 14.000 3.2% 10.915 2.5% 3.085 .934

YES 57.000 13.1% 61.992 14.3% −4.992 −.634

Goodness-of-Fit Tests

Chi-Square df Sig.

Likelihood Ratio 24.549 18 .138

Pearson 22.014 18 .231
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frequency in a cell. If the effects are rank ordered by the sizes of their standardized parameter esti-
mates, the relative importance of the various effects becomes apparent. With a standardized param-
eter estimate of 8.815, the strongest predictor of cell size is whether or not the therapist thought the 
client was aware of the therapist’s attraction. The least predictive of all the effects in the model, with 
a standardized parameter estimate of 0.508, is whether the therapist’s attraction to the client was 
believed to be harmful to the therapy. (Recall from Table 16.17 that this one-  way effect is included 
in the hierarchical model only because it is a component of at least one two-  way association; it was 
not statistically significant by itself.)

TABLE 16.18 Syntax and Partial Output for IBM SPSS LOGLINEAR Run on Parameter Estimates

LOGLINEAR
aware(1 2) benefit(1 2) harm(1 2) consult(1 2) discomf(1 2)
/PRINT=ESTIM
/DESIGN aware*benefit aware*consult aware*harm benefit*consult benefit*harm 
consult*discomf consult*harm discomf*harm aware benefit consult harm discomf.

* * * * * * * * * LOG LINEAR ANALYSIS * * * * * * * *

Estimates for Parameters

aware * benefit

Parameter Coeff. Std. Err. Z-Value Lower 95 CI Upper 95 CI

1 .4275530136 .08643 4.94693 .25815 .59695

aware * consult

Parameter Coeff. Std. Err. Z-Value Lower 95 CI Upper 95 CI

2 .2562875811 .06667 3.84412 .12561 .38696

aware * harm

Parameter Coeff. Std. Err. Z-Value Lower 95 CI Upper 95 CI

3 .2055847749 .06127 3.35516 .08549 .32568

benefit * consult

Parameter Coeff. Std. Err. Z-Value Lower 95 CI Upper 95 CI

4 .1915142665 .05724 3.34580 .07932 .30370

benefit * harm

Parameter Coeff. Std. Err. Z-Value Lower 95 CI Upper 95 CI

5 .1381059298 .05766 2.39509 .02509 .25112

consult * discomf

Parameter Coeff. Std. Err. Z-Value Lower 95 CI Upper 95 CI

6 .2649530804 .05507 4.81159 .15702 .37288
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Parameter estimates are useful in determining the relative strength of effects and in creating a 
prediction equation, but they do not provide a simple view of the direction of effects. For interpreta-
tion of direction, the marginal tables of observed frequencies for each effect in the model are useful, 
as illustrated in the CROSSTABS output of Table 16.13.

The results as displayed in Table 16.13 are best interpreted as proportions of therapists responding 
in a particular way. For example, the BENEFIT marginal subtable (see third subtable) shows that 32% 
(140/434) of the therapists believe that there was never any benefit to be gained from the therapist being 
attracted to a client. The BENEFIT by HARM marginal subtable (next to last subtable) shows that, among 
those who believe that there was no benefit, 64% (90/140) also believe there was no harm. Of those who 
believe there was at least some benefit, 59% (175/294) also believe there was at least some harm.

Table 16.19 summarizes significance tests and their confidence intervals, as found per 
Smithson (2003). Recall that the expected value of chi-  square when the null hypothesis is true is 
equal to the df. Table 16.20 summarizes parameter estimates.

consult * harm

Parameter Coeff. Std. Err. Z-Value Lower 95 CI Upper 95 CI

7 .1182768367 .05644 2.09545 .00765 .22891

discomf * harm

Parameter Coeff. Std. Err. Z-Value Lower 95 CI Upper 95 CI
8 .3022378758 .05582 5.41421 .19282 .41165

aware

Parameter Coeff. Std. Err. Z-Value Lower 95 CI Upper 95 CI
9 .7935949466 .09003 8.81471 .61713 .97006

benefit

Parameter Coeff. Std. Err. Z-Value Lower 95 CI Upper 95 CI
10 −.617075264 .08537 −7.22819 −.78442 −.44975

consult

Parameter Coeff. Std. Err. Z-Value Lower 95 CI Upper 95 CI

11 −.166275582 .07171 −2.31865 −.30683 −.02572

harm

Parameter Coeff. Std. Err. Z-Value Lower 95 CI Upper 95 CI

12 .0351320444 .06924 .50742 −.10057 .17084

discomf

Parameter Coeff. Std. Err. Z-Value Lower 95 CI Upper 95 CI

13 −.301825163 .05544 −5.44463 −.41048 −.19317

TABLE 16.18 Continued



906 C H A P T E R  1 6

TABLE 16.19 Significance Tests for Hierarchical Model of Therapists’ Attraction 
to Clients, N = 434

Effect
Partial Association 
Chi Square df = 1

95% Confidence 
Interval for Chi Square

Lower Upper

First-order effects:
Aware 75.20** 42.73 109.35
Benefit 55.85** 30.39 88.98
Discomfort 38.32** 17.91 66.43
Consult 12.68** 2.56 30.48
Harm 0.59 0 7.42

Second-order effects:
Benefit by aware 31.95** 13.64 57.95
Harm by discomfort 28.99** 11.72 53.94
Discomfort by consult 21.47** 7.15 43.47
Aware by consult 15.95** 4.14 35.45
Harm by aware 11.71** 2.14 28.97
Benefit by consult 9.77** 1.36 25.86
Benefit by harm 4.69* 0 17.02
Harm by consult 4.28* 0 16.23

*p 6 .05.

**p 6 .01.

TABLE 16.20 Parameter Estimates for Hierarchical Model of Therapists’ 
Attraction to Clients; N = 434, Constant = 1.966

Effect
Log-linear Parameter 
Estimate (Lambda) Lambda/SE

First-order effects:

Prob. not Yes Prob. not Yes

Aware 0.794 -0.794 8.815 -8.815

Never Yes Never Yes

Benefit -0.617 0.617 -7.228 7.228

Never Yes Never Yes

Discomfort -0.302 0.302 -5.445 5.445

Never Yes Never Yes

Consult -0.166 0.166 -2.319 2.319

Never Yes Never Yes

Harm 0.035 −0.035 0.508 -0.508
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TABLE 16.20 Continued

Effect
Log-linear Parameter 
Estimate (Lambda) Lambda/SE

Second-order effects:
Prob. not Yes Prob. not Yes

Benefit by aware
Never 0.428 -0.428 4.947 -4.947

Yes -0.428 0.428 -4.947 4.947

Never Yes Never Yes

Harm by discomfort
Never 0.302 -0.302 5.414 -5.414

Yes -0.302 0.302 -5.414 5.414

Never Yes Never Yes

Discomfort by consult
Never 0.265 -0.265 4.812 -4.812

Yes -0.265 0.265 -4.812 4.812

Never Yes Never Yes

Aware by consult
Prob. not 0.265 -0.265 3.844 -3.844

Yes -0.265 0.265 -3.844 3.844

Prob. not Yes Never Yes

Harm by aware
Never 0.206 -0.206 3.555 -3.555

Yes -0.206 0.206 -3.555 3.555

Never Yes Never Yes

Benefit by consult
Never 0.191 -0.191 3.345 -3.345

Yes -0.191 0.191 -3.345 3.345

Never Yes Never Yes

Benefit by harm
Never 0.138 -0.138 2.397 -2.397

Yes -0.138 0.138 -2.397 2.397

Never Yes Never Yes

Harm by consult
Never 0.118 -0.138 2.095 -2.095

Yes -0.118 0.118 -2.095 2.095
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Results

A five-  way exploratory frequency analysis was performed 

to develop a hierarchical log-  linear model of attraction of 

therapists to clients. Dichotomous variables analyzed were 

whether the therapist (1) believed the attraction to be 

beneficial to the client, (2) believed the attraction to be 

harmful to the client, (3) thought the client was aware of the 

attraction, (4) felt discomfort, and (5) sought consultation as a 

result of the attraction.

Four hundred thirty-  four therapists provided usable data for 

this analysis. All two-  way contingency tables provided expected 

frequencies in excess of five. After the model was selected, none 

of the 32 cells was an outlier.

TABLE 16.21 Checklist for Hierarchical 
Multiway Frequency Analysis

1. Issues
a. Adequacy of expected frequencies
b. Outliers in the solution

2. Major analysis
a. Model screening
b. Model selection
c. Evaluation of overall fit. If adequate:

(1)  Significance tests for each model effect 
and their confidence intervals

(2) Parameter estimates

3. Additional analyses
a. Interpretation via proportions
b. Identifying extreme cells (if fit inadequate)

A checklist for hierarchical multiway frequency analysis appears in Table 16.21. A Results 
section, in journal format, follows for the analysis described.
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Stepwise selection by simple deletion of effects using 

IBM SPSS HILOGLINEAR produced a model that included all first- 

order effects and eight of the ten possible two-  way associations. 

The model had a likelihood ratio x2(18) = 24.55 with 95% confidence 

limits from 0 to 27.49, p = .14, indicating a good fit between 

observed frequencies and expected frequencies generated by the 

model. A summary of the model with results of tests of significance 

(partial likelihood ratio x2) and their 95% confidence limits is 

in Table 16.19. A summary of log-  linear parameter estimates in raw 

and standardized form appears in Table 16.20.

Most of the therapists (68%) reported that the attraction 

they felt for clients was at least occasionally beneficial 

to therapy, while a slight majority (52%) also reported that 

it was at least occasionally harmful. Seventy-  one percent 

of the therapists thought that clients were probably aware 

of the attraction. Most therapists (65%) felt at least some 

discomfort about the attraction, and more than half (58%) sought 

consultation as a result of the attraction.

Of those therapists who thought the attraction beneficial 

to the therapy, 60% also thought it harmful. Of those who 

thought the attraction never beneficial, 36% thought it harmful. 

Perception of benefit was also related to client’s awareness. Of 

those who thought their clients were aware of the attraction, 91% 

thought it beneficial. Among those who thought clients unaware, 

only 58% thought it beneficial.

Those who sought consultation were also more likely to see 

the attraction as beneficial. Of those seeking consultation, 

78% judged the attraction beneficial. Of those not seeking 

consultation, 53% judged it beneficial.
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16.7 Comparison of Programs

Five programs are available in SAS, IBM SPSS, and SYSTAT for analysis of multiway frequency 
tables. There are two types of programs for log-  linear analysis, those that deal exclusively with hier-
archical models and general log-  linear programs that can handle nonhierarchical models as well (cf. 
Section 16.5.1). IBM SPSS GENLOG and LOGLINEAR, SYSTAT LOGLIN, and SAS CATMOD 
are general programs for nonhierarchical as well as hierarchical models (cf. Section 16.5.1). IBM 
SPSS HILOGLINEAR deals only with hierarchical models, but includes features for stepwise model 
building (cf. Section 16.5.3). All five programs provide observed and expected cell frequencies, tests 
of fit of incomplete models, and parameter estimates accompanied by their standard errors. Beyond 
that, the programs differ widely. Features of the five programs appear in Table 16.22.

Lack of harm was associated with lack of awareness. Fifty- 

seven percent of therapists who thought their clients unaware 

felt the attraction was never harmful. Only 28% of those who 

thought their clients aware considered it never harmful. 

Discomfort was more likely to be felt by those therapists who 

considered the attraction harmful to therapy (80%) than by those 

therapists who thought it was not harmful to therapy (49%). 

Similarly, consultation was more likely to be sought by those who 

felt the attraction harmful (71%) than by those who did not feel 

it harmful (45%).

Seeking consultation was also related to client awareness and 

therapist discomfort. Therapists who thought clients were aware 

of the attraction were more likely to seek consultation (80%) 

than those who thought the client unaware (43%). Those who felt 

discomfort were more likely to seek consultation (69%) than those 

who felt no such discomfort (39%).

No statistically significant two-  way associations were 

found between benefit and discomfort or between awareness and 

discomfort. None of the higher-  order associations reached 

statistical significance.
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TABLE 16.22 Comparisons of Programs for Multiway Frequency Analysis

Feature
IBM SPSS 
GENLOG

IBM SPSS 
HILOG-
LINEAR

IBM SPSS 
LOG-LINEAR

SAS
CATMOD

SYSTAT 
LOGLIN

Input

Individual case data Yes Yes Yes Yes Yes

Cell frequencies and indices Noc WEIGHT WEIGHT WEIGHT FREQ

Cell weights (structural zeros) CSTRUCTURE CWEIGHT CWEIGHT Yes ZERO 
CELL

Convergence criteria CONVERGE CONVERGE CONVERGE EPSILON CONV, 
LCONV

Tolerance No No No No TOL

Level of confidence interval CIN No No No No

Epsilon value for 
redundancy checking EPS No No No No

Specify maximum number 
of iterations ITERATE ITERATE ITERATION MAXITER ITER

Maximum number of 
halvings No No No No HALF

Stepping options N.A. Yes N.A. N.A. N.A.

Specify maximum no. of 
steps N.A. Yes N.A. N.A. N.A.

Specify significance level 
for adequate fit N.A. P N.A. N.A. N.A.

Specify maximum order of 
terms N.A. MAXORDER N.A. N.A. N.A.

Force terms into stepping 
model N.A. No N.A. N.A. N.A

Covariates (continuous) Yes No Yes No No

Logit model specification Yes No Yes Yes No

Single df partitions and 
contrasts No No Yes Yes No

Specify delta for each cell DELTA DELTA DELTA ADDCELL DELTA

Include cases with 
user-missing values INCLUDE INCLUDE INCLUDE No No

Specify a repeated 
measures factor (DV only) Nod Nod Nod Yese No

Specify ordered factor(s) Noa No Yes Yes No

Poisson model Default No No No No

Multinomial logit model Yes Yes Yes Yes Yes

Specify weighted least-
squares method No No No Yes No

(continued)
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Feature
IBM SPSS 
GENLOG

IBM SPSS 
HILOG-
LINEAR

IBM SPSS 
LOG-LINEAR

SAS
CATMOD

SYSTAT 
LOGLIN

Output

Nonhierarchical models Yes No Yes Yes Yes

Tests of partial association No Yes No Yes No

Tests of models with and 
without each item No No No No Yes

Maximum likelihood 
(x2) tests of association 
(ANOVA) No No No Yes No

Tests of k-way effects No Yes No No No

Tests of k-way and higher 
effects No Yes No No No

Pearson model tests Yes Yes Yes No Yes

Likelihood ratio model tests Yes Yes Yes Yes Yes

Observed and expected 
(predicted) frequencies Yes Yes Yes Yes Yes

Observed and expected 
probabilities or 
percentages Yes No Yes Yes Yes

Raw residuals Yes Yes Yes Yes Yes

Standardized residuals Yes Yes Yes No Yes

Deviation residuals Yes No No No No

Generalized residuals Yes No Yes No No

Adjusted residuals Yes No Yes No No

Freeman–Tukey residuals No No No No Yes

Pearson x2 residuals No No No No Yes

Likelihood ratio 
components No No No No Yes

Contribution to log 
likelihood for each cell No No No No Yes

Log-linear parameter 
estimates Parameter Coeffa Coeff Estimate Param

Standard error of parameter 
estimate SE Std. Erra Std. Err.

Standard
error SE (Param)

Ratio of parameter estimate 
to standard error (z or t) Z-value Z-valuea Z-value No Param/SE

Confidence limits for 
parameter estimates Yes Yesa Yes No No

Chi-square tests for 
parameter estimate No No No Yes No

TABLE 16.22 Continued
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Feature
IBM SPSS 
GENLOG

IBM SPSS 
HILOG-
LINEAR

IBM SPSS 
LOG-LINEAR

SAS
CATMOD

SYSTAT 
LOGLIN

Multiplicative parameter 
estimates No No No No Yes

Index of dissimilarity No No No No Yes

Correlation matrix for 
parameter estimates Yes No Yes Yes Yes

Covariance matrix for 
parameter estimates Yes No No Yes Yes

Design matrix Yes No Yes Yes No

Plots of standardized or 
adjusted residuals vs. 
observed and expected 
frequencies Yes Yes Yes No No

Normal plots of adjusted 
residuals Yes Yes Yes No No

Detrended normal plots of 
adjusted and deviance 
residuals Yes Yes Yes No Nob

Raftery’s BIC No No No No Yes

Dissimilarity No No No No Yes

aSaturated model only.
bAvailable through PPLOT.
cDone outside the program (see Table 16.11).
dDone through IBM SPSS COMPLEX SAMPLES LOGISTIC REGRESSION.
eAlso available through SAS GENMOD

TABLE 16.22 Continued

16.7.1 IBM SPSS Package

Currently there are two programs for handling multiway frequency tables in the package: 
HILOGLINEAR, which deals with only hierarchical models, and GENLOG, which deals with hier-
archical and nonhierarchical models.

IBM SPSS HILOGLINEAR, labeled Model Selection in the Loglinear menu, is well suited 
to choosing among hierarchical models, with several options for controlling stepwise selection of 
effects. Simultaneous tests of all k-way effects and of all k-way and higher effects are available for 
a quick screening of the complexity of the model from which to start stepwise selection. Parameter
estimates and partial tests of association are available, but only for full models.

IBM SPSS GENLOG does not provide stepwise selection of hierarchical models, although 
it can be used to compare user-  specified models of any sort. The program permits specification of 
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continuous covariates. Also available is a simple specification of a logit model (in which one factor 
is a DV). Specification of a cell weighting variable must occur outside the GENLOG program.

No inferential tests of model components are provided in the program. Parameter estimates 
and their z tests are available for any specified model, along with their 95% confidence intervals. 
However, the parameter estimates are reported by single degrees of freedom, so that a factor with 
more than two categories has no omnibus significance test reported for either its main effect or its 
association with other effects (cf. Section 16.5.2.2). No quick screening for k-way tests is available. 
Screening information can be gleaned from a full model run, but identifying an appropriate model 
may be tedious with a large number of factors. Both IBM SPSS programs offer residuals plots. IBM 
SPSS GENLOG is the only program offering specification of Poisson models, which do not require 
that the analysis be conditional on total sample size.

IBM SPSS LOGLINEAR, available only through syntax, fills in where IBM SPSS 
HILOGLINEAR leaves off when developing a model, providing parameter estimates for models 
that are not saturated. IBM SPSS LOGLINEAR also may be used for nonhierarchical models and 
permits specification of continuous covariates and contrasts. IBM SPSS COMPLEX SAMPLES 
LOGISTIC REGRESSION may be used when a dichotomous DV is repeatedly measured on the 
same cases by defining cases as clusters.

16.7.2 SAS System

SAS CATMOD is a general program for modeling discrete data, of which log-  linear modeling is 
only one type. The program is primarily set up for logit analyses where one variable is the DV but 
provision is made for log-  linear models where no such distinction is made. The program offers 
simple designation of logit models, contrasts, and single df tests of parameters as well as maximum 
likelihood tests of more complex components. The program lacks provision for continuous covari-
ates and stepwise model building procedures.

SAS CATMOD uses different algorithms from the other three programs both for parameter 
estimation and model testing. The output in Table 16.12 compared with that of Tables 16.10 and 
16.11 demonstrates some of the inconsistencies.

This is the only program that allows specification of factors that are ordered. Also, this pro-
gram permits multiple DVs that are defined as repeated measurements of the same variable. SAS 
GENMOD can be used for repeated measures when Poisson distribution is selected to indicate 
frequency data.

16.7.3 SYSTAT System

SYSTAT LOGLIN is a general program for log-  linear analysis of categorical data. The program 
uses its typical MODEL statement to set up the full, saturated, model (i.e., observed frequencies) 
on the left-  hand side of the equation, and the desired model to be tested on the right-  hand side. 
Structural zeros can be specified, and several options are available for controlling the iterative pro-
cessing of model estimation. All of the usual descriptive and parameter estimate statistics are avail-
able, as well as multiple tests of effects in the model, both hierarchical and nonhierarchical. The 
program also prints outlying cells, designated “outlandish.” Estimated frequencies and parameter 
estimates can be saved to a file.
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17.1 Linearity and the General Linear Model

To facilitate choice of the most useful technique to answer your research question, the 
emphasis has been on differences among statistical methods. We have repeatedly hinted, how-
ever, that most of these techniques are special applications of the general linear model (GLM). 
The goal of this chapter is to introduce the GLM and to fit the various techniques into the model. 
In addition to the aesthetic pleasure provided by insight into the GLM, an understanding of 
it provides a great deal of flexibility in data analysis by promoting use of more sophisticated 
statistical techniques and computer programs. Most data sets are fruitfully analyzed by one or 
more of several techniques. Section 17.3 presents an example of the use of alternative research 
strategies.

Linearity and additivity are important to the GLM. Pairs of variables are assumed to have a 
linear relationship with each other; that is, it is assumed that relationships between pairs of vari-
ables are adequately represented by a straight line. Additivity is also relevant, because if one set of 
variables is to be predicted by a set of other variables, the effects of the variables within the set are 
additive in the prediction equation. The second variable in the set adds predictability to the first one, 
the third adds to the first two, and so on. In all multivariate solutions, the equation relating sets of 
variables is composed of a series of weighted terms added together.

These assumptions, however, do not prevent inclusion of variables with curvilinear or mul-
tiplicative relationships. As discussed throughout this book, variables can be multiplied together, 
raised to powers, dichotomized, transformed, or recoded so that even complex relationships are 
evaluated within the GLM.

17.2 Bivariate to Multivariate Statistics 
and Overview of Techniques

17.2.1 Bivariate Form

The GLM is based on prediction or, in jargon, regression. A regression equation represents the value 
of a DV, Y, as a combination of one or more IVs, Xs, plus error. The simplest case of the GLM, then, 
is the familiar bivariate regression:

A + BX + e = Y (17.1)

17 An Overview of the 
General Linear Model
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where, B is the change in Y associated with a one-  unit change in X; A is a constant 
representing the value of Y when X is 0; and e is a random variable representing error 
of prediction.

If X and Y are converted to standard z-scores, zx and zy, they are now measured on the same 
scale and cross at the point where both z-scores equal 0. The constant A automatically becomes 
0 because zy is 0 when zx is 0. Further, after standardization of variances to 1, slope is measured in 
equal units (rather than the possibly unequal units of X and Y raw scores) and now represents the 
strength of the relationship between X and Y; in bivariate regression with standardized variables, it 
is equal to the Pearson product-  moment correlation coefficient. The closer b is to 1.00 or -1.00, the 
better the prediction of Y from X (or X from Y). Equation 17.1 then simplifies to

bzx + e = zy (17.2)

As discussed in Chapters 1 and 2, one distinction that is sometimes important in statistics is 
whether data are continuous or discrete.1 There are, then, three forms of bivariate regression for 
situations where X and Y are (1) both continuous—  analyzed by Pearson product-  moment correla-
tion, (2) mixed, with X dichotomous and Y continuous—  analyzed by point biserial correlation, and 
(3) both dichotomous—  analyzed by phi coefficient. In fact, these three forms of correlation are 
identical. If the dichotomous variable is coded 0–  1, all the correlations can be calculated using the 
equation for Pearson product-  moment correlation. Table 17.1 compares the three bivariate forms of 
the GLM.

17.2.2 Simple Multivariate Form

The first generalization of the simple bivariate form of the GLM is to increase the number of 
IVs, Xs, used to predict Y. It is here that the additivity of the model first becomes apparent. In 
standardized form:

a
k

i = 1
bizxi

+ e = zy (17.3)

That is, Y is predicted by a weighted sum of Xs. The weights, bi, no longer reflect the correlation 
between Y and each X because they are also affected by correlations among the Xs. Here, again, 
as seen in Table 17.1, there are special statistical techniques associated with whether all Xs are 
continuous; here also, with appropriate coding, the most general form of the equation can be used 
to solve all the special cases.

If Y and all Xs are continuous, the special statistical technique is multiple regression. Indeed, 
as seen in Chapter 5, Equation 17.3 is used to describe the multiple regression problem. But if Y
is continuous and all Xs are discrete, we have the special case of regression known as analysis of 
variance. The values of X represent “groups” and the emphasis is on finding mean differences in Y

1When discrete variables have more than two levels, they are dummy variable coded into k - 1 (df  ) dichotomous variables to 
eliminate the possibility of nonlinear relationships. In this section, when we speak of statistical techniques using discrete vari-
ables, we imply that recoding is unnecessary or is handled internally in computer programs designed for the particular analysis.
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among groups rather than on predicting Y, but the basic equation is the same. A significant differ-
ence among groups implies that knowledge of X can be used to predict performance on Y.

Analysis of variance problems can be solved through multiple regression computer programs. 
There are as many Xs as there are degrees of freedom for the effects. For example, in a one-  way 
design, three groups are recoded into two dichotomous Xs—one representing the first group versus 
the other two and the second representing the second group versus the other two. The third group is 

TABLE 17.1 Overview of Techniques in the General Linear Model

A. Bivariate form (Equation 17.2)

1. Pearson product-moment correlation: X continuous, Y continuous

2. Point biserial correlation: X dichotomous, Y continuous

3. Phi coefficient: X dichotomous, Y dichotomous

B. Simple multivariate form (Equation 17.3)

1. Multiple regression: all Xs continuous, Y continuous

2. ANOVA: all Xs discrete, Y continuous

3. ANCOVA: some Xs continuous and some discrete, Y continuous

4.  Two-group discriminant analysis: all Xs continuous, Y dichotomous

5. Multiway frequency analysis: all Xs discrete, Y is category frequency 
(or dichotomous in logit analysis)

6.  Two-group logistic regression analysis: Xs continuous and/or discrete, 
Y dichotomous

7. Multilevel modeling: Xs at each level may be continuous or discrete. Ys at 
each level are continuous

8. Survival analysis: Xs continuous and/or dichotomous, Y continuous (time)

9. Time series analysis: Xs continuous (time) and dichotomous, Y continuous

C. Full multivariate form (Equation 17.4)

1. Canonical correlation: all Xs continuous, all Ys continuous

2. MANOVA: all Xs discrete, all Ys continuous

3. MANCOVA: some Xs continuous and some discrete, all Ys continuous

4. Profile analysis: all Xs discrete, all Ys continuous and commensurate

5. Discriminant analysis: all Xs continuous, all Ys discrete

6. Factor analysis (FA)/principal component analysis (PCA): all Ys continuous, 
all Xs latent

7. Structural equations modeling: Xs continuous and/or latent, Ys continuous 
and/or latent

8. Multiway frequency analysis: all Xs discrete, Y is category frequency

9. Polychotomous logistic regression analysis: Xs continuous and/or discrete, 
Y discrete
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those who are not in either of the other two groups. Inclusion of a third X would produce singularity 
because it is perfectly predictable from the combination of the other two.

If IVs are factorially combined, main effects and interactions are still coded into a series 
of dichotomous X variables. Consider an example of one IV, anxiety level, divided into three 
groups and a second IV, task difficulty, divided into two groups. There are two X components 
for the 2 df associated with anxiety level and one X component for the 1 df associated with task 
difficulty. An additional two X components are needed for the 2 df associated with the interaction 
of anxiety level and task difficulty. The five X components are combined to test each of the two 
main effects and the interaction or are tested individually if the comparisons coded into each 
component are of interest. Detailed description of analysis of variance through multiple regres-
sion is available in Tabachnick and Fidell (2007) as well as in such books as Cohen, Cohen, 
West, and Aiken (2003) and Keppel and Zedeck (1989).

If some Xs are continuous and others are discrete, with Y continuous, we have analysis of 
covariance. The continuous Xs are the covariates and the discrete ones are the IVs. The effects of 
IVs on Y are assessed after adjustments are made for the effects of the covariates on Y. Actually, the 
GLM can deal with combinations of continuous and discrete Xs in much more general ways than 
traditional analysis of covariance, as alluded to in Chapters 5 and 6.

If Y is dichotomous (two groups), with Xs continuous, we have the simple multivariate form 
of discriminant analysis. The aim is to predict group membership on the basis of the Xs. There is 
a reversal in terminology between ANOVA and discriminant analysis; in ANOVA the groups are 
represented by X, but in discriminant analysis the groups are represented by Y. The distinction, 
although confusing, is trivial within the GLM. As seen in forthcoming sections, all the special tech-
niques are simply special cases of the full GLM.

If Y and all Xs are discrete, we have multiway frequency analysis. The log-  linear model, rather 
than the simple linear model, is required to evaluate relationships among variables. Logarithmic 
transforms are applied to cell frequencies and the weighted sum of these cell frequencies is used to 
predict group membership. Because the equation eventually boils down to a weighted sum of terms, 
it is considered here to be part of the GLM.

If Y is dichotomous and Xs are continuous and/or discrete, we have logistic regression analy-
sis. Again a nonlinear model, in this case the logistic model, is required to evaluate relationships 
among variables. Y is expressed in terms of the probability of being in one or the other level. The 
linear regression equation is the (natural log of the) probability of being in one group divided by 
the probability of being in the other group. Because the linear regression equation does appear in 
the model, it can be considered part of the GLM.

Multilevel modeling deals with a hierarchy of Ys and Xs and equations to relate them. At the 
first level, Ys may be individual scores for each case on a single DV, individual scores for each case 
at a particular time (repeated-  measures application of MLM) on a single DV, or scores for each 
case on multiple DVs. Ys at subsequent levels are intercepts and/or slopes over units at lower levels. 
Xs at each level are predictors of scores at that level. Although there are multiple Ys at each level 
except the first one (and even at the first one if there is more than one DV) and may be multiple Xs, 
they are never formed into combinations. Therefore, this is not a true multivariate strategy.

If Y is continuous and is the time it takes for something to happen, we have survival analysis. 
Xs can be continuous covariates and/or treatment(s), dichotomously coded. Here the equation is 
based on a log-  linear rather than a linear model, but like logistic regression may be considered part 
of the GLM. The difference between logistic regression and survival analysis is that the Y in logistic 
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regression is the probability of something happening and in survival analysis the Y is how long it 
takes to happen.

In time-series analysis, Y is continuous, and one X is always time. Intervention studies also 
require at least one dichotomous X, usually a treatment but rarely experimentally manipulated.

17.2.3 Full Multivariate Form

The GLM takes a major leap when the Y side of the equation is expanded because more than one 
equation may be required to relate the Xs to the Ys:

Root

1: a
k

i = 1
bi1zXi1

= a
k

i = 1
gj1zYj1

2: a
k

i = 1
bi2zXi2

= a
k

i = 1
gj2zYj2

(17.4)

o

m:     a
k

i = 1
bimzXim

+ e = a
k

i = 1
gjmzYjm

where m equals k or p, whichever is smaller, and g are regression weights for the 
standardized Y variables.

In general, there are as many equations as the number of X or Y variables, whichever is 
smaller. When there is only one Y, Xs are combined to produce one straight-  line relationship with Y.
Once there is more than one Y, however, combined Ys and combined Xs may fit together in several 
different ways. Section 9.1 and Figure 9.1 show how the combination of two or three groups (Ys)
and three predictors (Xs) might fit together.

Each combination of Ys and Xs is a root. Roots are called by other names in the special 
statistical technique in which they are developed: discriminant functions, principal components, 
canonical variates, and so forth. Full multivariate techniques need multidimensional space to 
describe relationships among variables. With 2 df, two dimensions might be needed. With 3 df, up to 
three dimensions might be needed, and so on.

The number of roots necessary to describe the relationship between two sets of variables 
may be smaller than the number of roots maximally available. For this reason, the error term for 
Equation 17.4 is not necessarily associated with the mth root. It is associated with the last necessary 
root, with “necessary” statistically or psychometrically defined.

As with simpler forms of the GLM, specialized statistical techniques are associated with 
whether variables are continuous, as summarized in Table 17.1. Canonical correlation is the most 
general form and the noble ancestor of the GLM where all Xs and Ys are continuous. With appropri-
ate recoding, all bivariate and multivariate problems (with the exceptions of PCA, FA, MFA, logis-
tic regression, survival, and time series) could be solved through canonical correlation. Practically, 
however, the programs for canonical correlation tend not to give the kinds of information usually 
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desired when one or more of the X or Y variables are discrete. Programs for the “multivariate gen-
eral linear model” tend to be rich, but much more difficult to use.

With all Xs discrete and all Ys continuous, we have multivariate analysis of variance. The 
discrete X variables represent groups, and combinations of Y variables are examined to see how 
their centroids differ as a function of group membership. If some Xs are continuous, they can be 
analyzed as covariates, just as in ANCOVA; MANCOVA is used to discover how groups differ on 
Ys after adjustment for the effects of covariates.

If the Ys are all measured on the same scale and/or represent levels of a within-  subjects IV, 
profile analysis is available—  a form of MANOVA that is especially informative for these kinds of 
data. And if there are multiple DVs at each level of a within-  subjects IV, doubly multivariate analy-
sis of variance is used to discover the effects of the IVs on the Ys.

When Y is discrete (more than two groups) and Xs are continuous, the full multivariate form 
of discriminant analysis is used to predict membership in Y.

There is a family of procedures—  FA and PCA—  in which the continuous Ys are measured 
empirically but the Xs are latent. It is assumed that a set of roots underlies the Ys; the purpose of 
analysis is to uncover the set of roots, or factors, or Xs.

In structural equations modeling, continuous and latent variables are acceptable on both sides of 
the equations—the X side as well as the Y side. For each Y, whether continuous (an observed indicator 
variable) or latent (a factor composed of multiple observed indicator variables), there is an equation 
involving continuous and/or latent Xs. Ys for some equations may serve as Xs for other equations, and 
vice versa. It is these equations that render structural equations modeling part of the GLM.

Finally, if Y is discrete and Xs are continuous and/or discrete, we have logistic regression 
analysis. As for MFA, a nonlinear model, the logistic model, is required to evaluate relationships 
among variables. Y is expressed in terms of the probability of being in one versus any of the other 
levels, with a separate equation for each level of Y but one. For each equation, the linear regression 
equation is the (natural log of the) probability of being in one group divided by the probability of 
being in any of the other groups. Because the model includes the linear regression equation, it can 
be considered part of the GLM.

Tables 17.2 and 17.3 show how each technique could be set up in IBM SPSS and SAS GLM, 
along with the interpretation of the B weights produced by the program. In some cases, such as logistic 
regression or survival analysis, the variables require transformation to counteract the nonlinear nature 
of the relationships within that technique. And, of course, GLM programs do not necessarily pres-
ent the information of greatest interest in the technique. For example, GLM programs do not show 
correlations between Y variables and roots for canonical correlation or factor analyses.

The GLM is, in itself, part of a larger class of models which go by various names and 
are implemented in various ways in statistical software: for SAS, generalized linear models 
(GENMOD) and nonlinear mixed models (NLMIXED); for IBM SPSS, generalized linear models
(GENLIN), general linear mixed models (GENLINMIXED), and nonlinear regression (NLR); 
for Stata, generalized latent variable modeling—  multilevel, longitudinal, and structural equation 
models (GLLAMM); and for Statistica, generalized multivariate linear/nonlinear models. Mplus 
is a generalized program that combines structural equation modeling and multilevel modeling. 
These are highly flexible programs which do not necessarily require continuous DVs and/or linear 
relationships, circumventing many of the issues regarding assumptions of normality, linearity, and 
so forth, and are mentioned in some of the chapters in this book, for example, “Multiway Frequency 
Analysis,” “Logistic Regression,” and “Multilevel Linear Modeling.” However, these programs tend 
to be more difficult to use and, for the most part, are beyond the scope of this book.
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TABLE 17.2 Syntax and Interpretation of Coefficients for Techniques in GLM: Bivariate 
and Simple Multivariate Forms

Technique IBM SPSS GLM Syntax SAS GLM Syntax Interpreting Weights

Pearson product-
moment
correlation, point-
biserial correlation, 
phi coefficient

GLM
Y WITH X
/METHOD = SSTYPE(3)
/PRINT = PARAMETER
/DESIGN = X.

procglm;
modelY=X;
run;

B for X is the increase 
in Y for every one-unit
increase in X.

Multiple regression GLM
Y WITH X1 X2
/METHOD = SSTYPE(3)
/PRINT = PARAMETER
/DESIGN = X1 X2.

procglm;
modelY=X1X2;
run;

B for each X is the 
increase in Y for every 
one-unit increase in 
that X, holding all 
other Xs constant.

ANOVA GLM
Y BY X
/METHOD = SSTYPE(3)
/PRINT = PARAMETER
/DESIGN = X.

procglm;
class=X;
model Y=X;
run;

B for each df of X is the 
increase in Y for every 
one-unit increase in 
that df of X, holding all 
other dfs of X constant.

ANCOVA GLM
Y BY X2 WITH X1
/METHOD = SSTYPE(3)
/PRINT = PARAMETER
/DESIGN = X1 X2.

procglm;
class=X2;
modelY=X1X2;
run;

B for each df of X2 is 
the increase in Y for 
every one-unit increase 
in that df of X2, 
holding all other dfs 
of X2 and X1 constant. 
B for X1 is the increase 
in Y for each one-unit 
increase in X1, holding 
X2 constant.

Two-group
discriminant
analysis: Y
represents groups, 
coded 0,1

GLM
Y WITH X1 X2
/METHOD = SSTYPE(3)
/PRINT = PARAMETER
/DESIGN = X1 X2.

procglm;
modelY=X1X2;
run;

B for each X is the 
increase in Y for every 
one-unit increase in that 
X, holding all other Xs
constant. If Y is greater 
than 0.5, then case is 
predicted to be in group 
coded 1, otherwise in 
group coded 0.

Multiway frequency 
analysis, Y
represents natural 
logarithm of 
frequency, X
represents cell 
combination in 
contingency table

GLM
Y WITH X1 X2
/METHOD = SSTYPE(3)
/PRINT = PARAMETER
/DESIGN = X1 X2

GLM not feasible for 
saturated model (no error 
term available)

procglm;
modelY=X1X2;
run;

B for each X is the 
increase in expected 
frequency for a cell 
by considering the 
effect of that cell 
combination.

(continued)
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Technique IBM SPSS GLM Syntax SAS GLM Syntax Interpreting Weights

Two-group logistic 
regression analysis, 
Y is the natural 
logarithm of the 
odds of being 
in a group (see 
Equation 10.3)

GLM
Y WITH X1 X2
/METHOD = SSTYPE(3)
/PRINT = PARAMETER
/DESIGN = X1 X2.

procglm;
modelY=X1X2;
run;

eB for each X is the 
increase in the odds 
of being in one of the 
groups for every one-
unit increase in that X,
holding all other Xs
constant.

Multilevel 
modeling: after 
first level, Ys are 
intercepts and 
slopes from lower 
levels; there are 
separate equations 
for each Y

GLM
Y WITH X1 X2
/METHOD = SSTYPE(3)
/PRINT = PARAMETER
/DESIGN = X1 X2. 

procglm;
modelY=X1X2;
run;

Separately for each 
equation: B for each 
X is the increase in 
Y for every one-unit
increase in that X,
holding all other 
Xs constant over all 
equations.

Survival analysis: Y
is the probability of 
survival

GLM
Y WITH X1 X2
/METHOD = SSTYPE(3)
/PRINT = PARAMETER
/DESIGN = X1 X2.

procglm;
modelY=X1X2;
run;

eB for each X is 
the increase in the 
probability of survival 
for each one-unit
increase in that X,
holding all other Xs
constant.

Time-series
analysis: Xs
are ARIMA
parameters
(see Section 
18.4.1), time, 
and, if present, 
intervention

GLM
Y WITH X1 X2
/METHOD = SSTYPE(3)
/PRINT = PARAMETER
/DESIGN = X1 X2.

procglm;
model Y=X1X2;
run;

B for each X is the 
increase in Y for every 
one-unit increase in 
that X, holding all 
other Xs constant.

TABLE 17.2 Continued

17.3 Alternative Research Strategies

For most data sets, there is more than one appropriate analytical strategy, and choice among them 
depends on considerations such as how the variables are interrelated, your preference for interpret-
ing statistics associated with certain techniques, and the audience you intend to address.

A data set for which alternative strategies are appropriate has groups of people who receive one 
of three types of treatments: behavior modification, short-  term psychotherapy, or a waiting-  list control 
group. Suppose a great many variables are measured—  self-  reports of symptoms and moods, reports 
of family members, therapist reports, and a host of personality and attitudinal tests—  the major goal 
of the analysis is probably to find out if, and on which variable(s), the groups differ after treatment.
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TABLE 17.3 Syntax and Interpretation of Coefficients for Techniques in GLM: 
Full Multivariate Forms

Technique IBM SPSS GLM Syntax SAS GLM Syntax Interpreting Weights

Canonical
correlation:
Separate analyses 
for each set 
of variables 
considered Ys.
Canonical variate 
analysis requires 
specialized
software.

GLM
Y1 Y2 WITH X1 X2
/METHOD = SSTYPE(3)
/PRINT = PARAMETER
/DESIGN = X1 X2.

procglm;
model Y1Y2 
=X1X2;

run;

Separately for each 
Y: B for each X is the 
increase in Y for every 
one-unit increase 
in that X, holding 
all other Xs and Ys
constant.

MANOVA GLM
Y1 Y2 BY X
/METHOD = SSTYPE(3)
/PRINT = PARAMETER
/DESIGN = X.

procglm;
class=X;
model Y1Y2=X;
run;

Separately for each 
Y: B for each df of 
X is the increase in 
Y for every one-unit
increase in that df of 
X, holding all other Ys
and all other dfs of X
constant.

MANCOVA GLM
Y1 Y2 BY X2 WITH X1
/METHOD = SSTYPE(3)
/PRINT = PARAMETER
/DESIGN = X1 X2.

procglm;
class=X2;
model Y1Y2 
=X1X2;

run;

Separately for each 
Y: B for each df of 
X2 is the increase in 
Y for every one-unit
increase in that df of 
X2, holding all other 
Ys and all other dfs of 
X2 and X1 constant. B
for X1 is the increase 
in Y for each one-unit
increase in X1, holding 
X2 constant.

Profile analysis: GLM
Y1 Y2 BY X
/WSFACTOR = 
factor1 2 Polynomial
/METHOD = SSTYPE(3)
/PRINT = PARAMETER
/WSDESIGN = factor1
/DESIGN = X.

procglm;
class=X;
model Y1Y2=X;
repeated factor12 
profile;

run;

Separately for each 
Y: B for each df of 
X is the increase in 
Y for every one-unit
increase in that df of 
X, holding all other Ys
and all other dfs of X
constant.

(continued)
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Technique IBM SPSS GLM Syntax SAS GLM Syntax Interpreting Weights

Discriminant
analysis: Ys are 
dummy-coded
groups

GLM
Y1 Y2 WITH X1 X2
/METHOD = SSTYPE(3)
/PRINT = PARAMETER
/DESIGN = X1 X2.

procglm;
model Y1Y2 
=X1X2;
run;

Separately for 
each contrast on Y
groups (e.g., group 
1 vs. groups 2 and 
3): B for each X is 
the increase in Y
for every one-unit
increase in that X,
holding all other Ys
and all other Xs
constant. If Y is 
greater than 0.5, then 
case is predicted to 
be in group coded 1, 
otherwise in one of 
groups coded 0.

Factor and principal 
components 
analysis: Each X
is a factor score 
based on a linear 
combination of Ys.

GLM
Y1 Y2 WITH X1 X2
/METHOD = SSTYPE(3)
/PRINT = PARAMETER
/DESIGN = X1 X2.

procglm;
model Y1Y2 
=X1X2;

run;

Separately for 
each Y: B for each X
is the increase in Y
for every one-
unit increase in 
that X, holding all 
other Ys and all 
other Xs constant.

Structural equations 
modeling: some 
X and/or some Ys
are factor scores 
based on a linear 
combination of the 
other.

GLM
Y1 Y2 WITH X1 X2
/METHOD = SSTYPE(3)
/PRINT = PARAMETER
/DESIGN = X1 X2

procglm;
model Y1Y2 
=X1X2;

run;

Separately for each 
Y: B for each X is the 
increase in Y for 
every one-unit
increase in that X,
holding all other 
Ys and all other Xs
constant.

Multiway frequency 
analysis: Y is the 
natural logarithm 
of frequency, X
represents a cell 
combination in 
contingency table

GLM
Y WITH X1 X2
/METHOD = SSTYPE(3)
/PRINT = PARAMETER
/DESIGN = X1 X2

GLM not feasible for 
saturated model (no error 
term available)

procglm;
model Y 
=X1X2;

run;

B for each X is the 
increase in expected 
frequency for a cell 
by considering the 
effect of that cell 
combination.

TABLE 17.3 Continued
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The obvious strategy is MANOVA, but a likely problem is that the number of variables 
exceeds the number of clients in some group, leading to singularity. Further, with so many variables, 
some are likely to be highly related to combinations of others. You could choose among them or 
combine them on some rational basis, or you might choose first to look at empirical relationships 
among them.

A first step in reducing the number of variables might be examination of squared multiple 
correlations of each variable with all the others through regression or factor analysis programs. But 
the SMCs might or might not provide sufficient information for a judicious decision about which 
variables to delete and/or combine. If not, the next likely step is a principal component analysis on 
the pooled within-  cells correlation matrix.

The usual procedures for deciding the number of components and type of rotation are followed. 
Out of this analysis come scores for each client on each component and some idea of the meaning 
of each component. Depending on the outcome, subsequent strategies might differ. If the princi-
pal components are orthogonal, the component scores can serve as DVs in a series of univariate 
ANOVAs, with adjustment for experimentwise Type I error. If the components are correlated, then 
MANOVA is used with component scores as DVs. The stepdown sequence might well correspond 
to the order of components (the scores on the first component enter first, and so on).

Or you might want to analyze the component scores through a discriminant analysis to learn, 
for instance, that differences between behavior modification and short-  term psychotherapy are most 
notable on components loaded heavily with attitudes and self-  reports, but differences between the 
treated groups and the control group are associated with components loaded with therapist reports 
and personality measures.

You could, in fact, solve the entire problem through discriminant analysis or logistic 
regression. Both types of analyses protect against multicollinearity and singularity by setting a 
tolerance level so that the variables that are highly predicted by the other variables do not partici-
pate in the solution. Logistic regression is especially handy when the predictors are a mix of many 
different types of variables.

These strategies are all “legitimate” and simply represent different ways of getting to the same 
goal. In the immortal words spoken one Tuesday night in the Jacuzzi by Sanford A. Fidell, “You 
mean you only know one thing, but you have a dozen different names for it?”

TABLE 17.3 Continued

Technique IBM SPSS GLM Syntax SAS GLM Syntax Interpreting Weights

Polychotomous 
logistic regression 
analysis, each Y is 
the natural logarithm 
of the odds of being 
in a group (see 
Equation 10.3), 
groups are 
dummy-coded.

GLM
Y1 Y2 WITH X1 X2
/METHOD = SSTYPE(3)
/PRINT = PARAMETER
/DESIGN = X1 X2.

procglm;
model Y1Y2 
=X1X2;

run;

Separately for each 
Y, eB for each X is the 
increase in the odds 
of being in one of the 
groups for every one-
unit increase in that 
X, holding all other 
Ys and all other Xs
constant.
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The purpose of this appendix is to provide readers with sufficient background to follow, and duplicate 
as desired, calculations illustrated in the fourth sections of Chapters 5 through 14. The purpose is not 
to provide a thorough review of matrix algebra or even to facilitate an in‐depth understanding of it. The 
reader who is interested in more than calculational rules has several excellent discussions available, 
particularly those in Tatsuoka (1971), Carroll, Green, and Chatervedi (1997), and Rummel (1970).

Most of the algebraic manipulations with which the reader is familiar—addition, subtraction, 
multiplication, and division—have counterparts in matrix algebra. In fact, the algebra that most of 
us learned is a special case of matrix algebra involving only a single number, a scalar, instead of 
an ordered array of numbers, a matrix. Some generalizations from scalar algebra to matrix algebra 
seem “natural” (i.e., matrix addition and subtraction) while others (multiplication and division) are 
convoluted. Nonetheless, matrix algebra provides an extremely powerful and compact method for 
manipulating sets of numbers to arrive at desirable statistical products.

The matrix calculations illustrated here are calculations performed on square matrices. Square 
matrices have the same number of rows as columns. Sums‐of‐squares and cross‐products matrices, 
variance‐covariance matrices, and correlation matrices are all square. In addition, these three very 
commonly encountered matrices are symmetrical, having the same value in row 1, column 2, as 
in column 1, row 2, and so forth. Symmetrical matrices are mirror images of themselves about the 
main diagonal (the diagonal going from top left to bottom right in the matrix).

There is a more complete matrix algebra that includes nonsquare matrices as well. However, 
once one proceeds from the data matrix, which has as many rows as research units (subjects) and 
as many columns as variables, to the sum‐of‐squares and cross‐products matrix, as illustrated in 
Section 1.5, most calculations illustrated in this book involve square, symmetrical matrices. A 
further restriction on this appendix is to limit the discussion to only those manipulations used 
in the fourth sections of Chapters 5 through 14. For purposes of numerical illustration, two very 
simple matrices, square, but not symmetrical (to eliminate any uncertainty regarding which ele-
ments are involved in calculations), will be defined as follows:

A = £ a b c

d e f

g h i

§ = £ 3 2 4

7 5 0

1 0 8

§
B = £ r s t

u v w

x y z

§ = £ 6 1 0

2 8 7

3 4 5

§

A A Skimpy Introduction 
to Matrix Algebra

A P P E N D I X
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A.1  The Trace of a Matrix

The trace of a matrix is the sum of the numbers on the diagonal that runs from the upper left to lower 
right. For matrix A, the trace is 16 (3 + 5 + 8); for matrix B it is 19. If the matrix is a sum‐of‐
squares and cross‐products matrix, then the trace is the sum of squares. If it is a variance‐covariance 
matrix, the trace is the sum of variances. If it is a correlation matrix, the trace is the number of vari-
ables (each having contributed a value of 1 to the trace).

A.2   Addition or Subtraction of a Constant 
to a Matrix

If one has a matrix, A, and wants to add or subtract a constant, k, to the elements of the matrix, one 
simply adds (or subtracts) the constant to every element in the matrix.

A + k = £ a b c

d e f

g h i

§ + k = £ a + k b + k c + k

d + k e + k f + k

g + k h + k i + k

§ (A.1)

If k = -3, then

A + k = £ 0 -1 1

4 2 -3

-2 -3 5

§
A.3   Multiplication or Division of a Matrix 

by a Constant

Multiplication or division of a matrix by a constant is a straightforward process.

kA = k £ a b c

d e f

g h i

§
kA = £ ka kb kc

kd ke kf

kg kh ki

§ (A.2)

and

1

k
A =

a

k

b

k

c

k

d

k

e

k

f

k
g

k

h

k

i

k

(A.3)
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Numerically, if k = 2, then

kA = £ 6 4 8

14 10 0

2 0 16

§
A.4  Addition and Subtraction of Two Matrices

These procedures are straightforward, as well as useful. If matrices A and B are as defined at the 
beginning of this appendix, one simply performs the addition or subtraction of corresponding 
elements.

A + B = £ a b c

d e f

g h i

§ + £ r s t

u v w

x y z

§ = £ a + r b + s c + t

d + u e + v f + w

g + x h + y i + z

§ (A.4)

And

A - B = £ a - r b - s c - t

d - u e - v f - w

g - x h - y i - z

§ (A.5)

For the numerical example:

A + B = £ 3 2 4

7 5 0

1 0 8

§ + £ 6 1 0

2 8 7

3 4 5

§ = £ 9 3 4

9 13 7

4 4 13

§
Calculation of a difference between two matrices is required when, for instance, one desires 

a residuals matrix, the matrix obtained by subtracting a reproduced matrix from an obtained matrix 
(as in factor analysis, Chapter 13). Or if the matrix that is subtracted happens to consist of columns 
with appropriate means of variables inserted in every slot, then the difference between it and a 
matrix of raw scores produces a deviation matrix.

A.5   Multiplication, Transposes, and Square 
Roots of Matrices

Matrix multiplication is both unreasonably complicated and undeniably useful. Note that the ijth
element of the resulting matrix is a function of row i of the first matrix and column j of the second.

AB = £ a b c

d e f

g h i

§ £ r s t

u v w

x y z

§ = £ar + bu + cx

rd + eu + fx

gr + hu + ix

as + bv + cy

ds + ev + fy

gs + hv + iy

at + bw + cz

dt + ew + fz

gt + hw + iz

§ (A.6)



930 A P P E N D I X  A

Numerically,

AB = £ 3 2 4

7 5 0

1 0 8

§ £ 6 1 0

2 8 7

3 4 5

§
= £ 3 # 6 + 2 # 2 + 4 # 3 3 # 1 + 2 # 8 + 4 # 4 3 # 0 + 2 # 7 + 4 # 5

7 # 6 + 5 # 2 + 0 # 3 7 # 1 + 5 # 8 + 0 # 4 7 # 0 + 5 # 7 + 0 # 5

1 # 6 + 0 # 2 + 8 # 3 1 # 1 + 0 # 8 + 8 # 4 1 # 0 + 0 # 7 + 8 # 5

§
= £ 34 35 34

52 47 35

30 33 40

§
Regrettably, AB � BA in matrix algebra. Thus

BA = £ 6 1 0

2 8 7

3 4 5

§ £ 3 2 4

7 5 0

1 0 8

§ = £ 25 17 24

69 44 64

42 26 52

§
If another concept of matrix algebra is introduced, some useful statistical properties of matrix 

algebra can be shown. The transpose of a matrix is indicated by a prime (�) and stands for a rear-
rangement of the elements of the matrix such that the first row becomes the first column, the second 
row the second column, and so forth. Thus

A� = £ a d g

b e h

c f i

§ = £ 3 7 1

2 5 0

4 0 8

§ (A.7)

When transposition is used in conjunction with multiplication, then some advantages of matrix 
multiplication become clear, namely,

AA� = £ a b c

d e f

g h i

§ £ a d g

b e h

c f i

§
= £ a2 + b2 + c2 ad + be + cf ag + bh + ci

ad + be + cf d2 + e2 + f 2 dg + eh + fi

ag + bh + ci dg + eh + fi g2 + h2 + i2

§ (A.8)

The elements in the main diagonal are the sums of squares while those off the diagonal are cross 
products.
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Had A been multiplied by itself, rather than by a transpose of itself, a different result would 
have been achieved.

AA = £ a2 + bd + cg ab + be + ch ac + bf + ci

da + ed + fg db + e2 + f h dc + ef + fi

ga + hd + ig gb + he + ih gc + hf + i2
§

If AA = C, then C1/2 = A. That is, there is a parallel in matrix algebra to squaring and taking the 
square root of a scalar, but it is a complicated business because of the complexity of matrix multi-
plication. If, however, one has a matrix C from which a square root is desired (as in canonical cor-
relation, Chapter 12), one searches for a matrix, A, which, when multiplied by itself, produces C.
If, for example,

C = £ 27 16 44

56 39 28

11 2 68

§
then

C1>2 = £ 3 2 4

7 5 0

1 0 8

§
A.6 Matrix “Division” 

(Inverses and Determinants)

If you liked matrix multiplication, you’ll love matrix inversion. Logically, the process is analogous 
to performing division for single numbers by finding the reciprocal of the number and multiplying 
by the reciprocal: if a-1 = 1/a, then (a)(a-1) = a/a = 1. That is, the reciprocal of a scalar is a 
number that, when multiplied by the number itself, equals 1. Both the concepts and the notation are 
similar in matrix algebra, but they are complicated by the fact that a matrix is an array of numbers.

To determine if the reciprocal of a matrix has been found, one needs the matrix equivalent of 
the 1 as employed in the preceding paragraph. The identity matrix, I, a matrix with 1s in the main 
diagonal and zeros elsewhere, is such a matrix. Thus

I = £ 1 0 0

0 1 0

0 0 1

§ (A.9)

Matrix division, then, becomes a process of finding A-1 such that

A-1A = AA-1 = I (A.10)
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One way of finding A-1 requires a two‐stage process, the first of which consists of finding the 
determinant of A, noted � A � . The determinant of a matrix is sometimes said to represent the gener-
alized variance of the matrix, as most readily seen in a 2 * 2 matrix. Thus we define a new matrix 
as follows:

D = c a b

c d
d

where

�D � = ad - bc (A.11)

If D is a variance‐covariance matrix where a and d are variances while b and c are covariances, then 
ad - bc represents variance minus covariance. It is this property of determinants that makes them 
useful for hypothesis testing (see, for example, Chapter 7, Section 7.4, where Wilks’ Lambda is 
used in MANOVA).

Calculation of determinants becomes rapidly more complicated as the matrix gets larger. For 
example, in our 3 by 3 matrix,

� A � = a(ei - f h) + b( fg - di) + c(dh - eg) (A.12)

Should the determinant of A equal 0, then the matrix cannot be inverted because the next operation 
in inversion would involve division by zero. Multicollinear or singular matrices (those with vari-
ables that are linear combinations of one another, as discussed in Chapter 4) have zero determinants 
that prohibit inversion.

A full inversion of A is

A-1 = £ a b c

d e f

g h i

§ -1

=
1

� A �
£ ei - fh ch - bi bf - ce

fg - di ai - cg cd - af

dh - eg bg - ah ae - bd

§ (A.13)

Please recall that because A is not a variance‐covariance matrix, a negative determinant is 
possible, even somewhat likely. Thus, in the numerical example,

� A � = 3(5 # 8 - 0 # 0) + 2(0 # 1 - 7 # 8) + 4(7 # 0 - 5 # 1) = -12

and

=
1

-12
£ 5 # 8 - 0 # 0 4 # 0 - 2 # 8 2 # 0 - 4 # 5

0 # 1 - 7 # 8 3 # 8 - 4 # 1 4 # 7 - 3 # 0

7 # 0 - 5 # 1 2 # 1 - 3 # 0 3 # 5 - 2 # 7

§
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= 

 

40

-12

-16

-12

-20

-12

-56

-12

20

-12

28

-12

-5

-12

2

-12

1

-12

= £ -3.33 1.33 1.67

4.67 -1.67 -2.33

0.42 -0.17 -0.08

§
Confirm that, within rounding error, Equation A.10 is true. Once the inverse of A is found, “division” 
by it is accomplished whenever required by using the inverse and performing matrix multiplication.

A.7   Eigenvalues and Eigenvectors: Procedures 
for Consolidating Variance From a Matrix

We promised you a demonstration of computation of eigenvalues and eigenvectors for a matrix, so 
here it is. However, you may well find that this discussion satisfies your appetite for only a couple 
of hours. During that time, round up Tatsuoka (1971), get the cat off your favorite chair, and prepare 
for an intelligible, if somewhat lengthy, description of the same subject.

Most of the multivariate procedures rely on eigenvalues and their corresponding eigenvectors 
(also called characteristic roots and vectors) in one way or another because they consolidate the 
variance in a matrix (the eigenvalue) while providing the linear combination of variables (the eigen-
vector) to do it. The coefficients applied to variables to form linear combinations of variables in all 
the multivariate procedures are rescaled elements from eigenvectors. The variance that the solution 
“accounts for” is associated with the eigenvalue, and is sometimes called so directly.

Calculation of eigenvalues and eigenvectors is best left up to a computer with any realistically 
sized matrix. For illustrative purposes, a 2 * 2 matrix will be used here. The logic of the process 
is also somewhat difficult, involving several of the more abstract notions and relations in matrix 
algebra, including the equivalence between matrices, systems of linear equations with several un-
knowns, and roots of polynomial equations.

Solution of an eigenproblem involves solution of the following equation:

(D - lI )V = 0 (A.14)

where l is the eigenvalue and V the eigenvector to be sought. Expanded, this equation becomesc ca b

c d
d - l c1 0

0 1
d d c v1

v2
d = 0

or c ca b

c d
d - cl 0

0 l
d d c v1

v2
d = 0
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or, by applying Equation A.5,

c a - l b

c d - l
d c v1

v2
d = 0 (A.15)

If one considers the matrix D, whose eigenvalues are sought, a variance‐covariance matrix, one can 
see that a solution is desired to “capture” the variance in D while rescaling the elements in D by v1

and v2 to do so.
It is obvious from Equation A.15 that a solution is always available when v1 and v2 are 0. 

A nontrivial solution may also be available when the determinant of the leftmost matrix in 
Equation A.15 is 0.1 That is, if (following Equation A.11)

(a - l)(d - l) - bc = 0 (A.16)

then there may exist values of l and values of v1 and v2 that satisfy the equation and are not 0. 
However, expansion of Equation A.16 gives a polynomial equation, in l, of degree 2:

l2 - (a + d)l + ad - bc = 0 (A.17)

Solving for the eigenvalues, l, requires solving for the roots of this polynomial. If the matrix has 
certain properties (see footnote 1), there will be as many positive roots to the equation as there are 
rows (or columns) in the matrix.

If Equation A.17 is rewritten as xl2 + yl + z = 0, the roots may be found by applying the 
following equation:

l =
-y { 2y2 - 4xz

2x
(A.18)

For a numerical example, consider the following matrix.

D = c 5 1

4 2
d

Applying Equation A.17, we obtain

l2 - (5 + 2)l + 5 # 2 - 1 # 4 = 0

or

l2 - 7l + 6 = 0

1Read Tatsuoka (1971); a matrix is said to be positive definite when all l1 7 0, positive semidefinite when all l1 Ú 0, and 
ill‐conditioned when some li 6 0.
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The roots to this polynomial may be found by Equation A.18 as follows:

l =
-(-7) + 2(-7)2 - 4 # 1 # 6

2 # 1 = 6

and

l =
-(-7) - 2(-7)2 - 4 # 1 # 6

2 # 1 = 1

(The roots could also be found by factoring to get [l - 6][l - 1].)
Once the roots are found, they may be used in Equation A.15 to find v1 and v2, the eigenvector. 

There will be one set of eigenvectors for the first root and a second set for the second root. Both 
solutions require solving sets of two simultaneous equations in two unknowns, to wit, for the first 
root, 6, and applying Equation A.15.

c 5 - 6 1

4 2 - 6
d c v1

v2
d = 0

or

c -1 1

4 - 4
d c v1

v2
d = 0

so that

-1v1 + 1v2 = 0

and

4v1 - 4v2 = 0

When v1 = 1 and v2 = 1, a solution is found.
For the second root, 1, the equations become

c 5 - 1 1

4 2 - 1
d c v1

v2
d = 0

or

c 4 1

4 1
d c v1

v2
d = 0

so that

4v1 + 1v2 = 0
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and

4v1 + 1v2 = 0

When v1 = -1 and v2 = 4, a solution is found. Thus the first eigenvalue is 6, with [1, 1] 
as a corresponding eigenvector, while the second eigenvalue is 1, with [-1, 4] as a corresponding 
eigenvector.

Because the matrix was 2 * 2, the polynomial for eigenvalues was quadratic and there were 
two equations in two unknowns to solve for eigenvectors. Imagine the joys of a matrix 15 * 15, 
a polynomial with terms to the 15th power for the first half of the solution and 15 equations in 
15 unknowns for the second half. A little more appreciation for your computer, please, next time 
you use it!
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B.1  Women’s Health and Drug Study

Data used in most of the large sample examples were collected with the aid of a grant from the 
National Institute on Drug Abuse (#DA 00847) to L. S. Fidell and J. E. Prather in 1974–1976. 
Methods of collecting the data and references to the measures included in the study are described 
here approximately as they have been previously reported (Hoffman & Fidell, 1979).

Method

A structured interview, containing a variety of health, demographic, and attitudinal measures, was 
given to a randomly selected group of 465 female, 20‐ to 59‐year‐old, English‐speaking residents 
of the San Fernando Valley, a suburb of Los Angeles, in February 1975. A second interview, focus-
ing primarily on health variables but also containing the Bem Sex Role Inventory (BSRI; Bem, 
1974) and the Eysenck Personality Inventory (EPI; Eysenck & Eysenck, 1963), was conducted with 
369 (79.4%) of the original respondents in February 1976.

The 1975 target sample of 703 names was approximately a .003 probability sample of 
appropriately aged female residents of the San Fernando Valley, and was randomly drawn from 
lists prepared by listers during the weeks immediately preceding the sample selection. Lists 
were prepared for census blocks that had been randomly drawn (proportional to population) 
from 217 census tracks, which were themselves randomly drawn after they were stratified by 
income and assigned probabilities proportional to their populations. Respondents were con-
tacted after first receiving a letter soliciting their cooperation. Substitutions were not allowed. 
A minimum of four callbacks was required before the attempt to obtain an interview was termi-
nated. The completion rate for the target sample was 66.1%, with a 26% refusal rate and a 7.9% 
“unobtainable” rate.

The demographic characteristics of the 465 respondents who cooperated in 1975 con-
firmed the essentially white, middle‐ and working‐class composition of the San Fernando 
Valley, and agreed, for the most part, with the profile of characteristics of women in the val-
ley that was calculated from 1970 Census Bureau data. The final sample was 91.2% white, 
with a median family income (before taxes) of $17,000 per year and an average Duncan scale 
(Featherman, 1973) socioeconomic level (SEL) rating of 51. Respondents were also well edu-
cated (13.2 years of school completed, on average), and predominantly Protestant (38%), with 
26% Catholic, 20% Jewish, and the remainder “none” or “other.” A total of 52.9% worked 
(either full‐time—  33.5%—or part‐time—  19.4%). Seventy‐eight percent were living with 

Research Designs for 
Complete Examples
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husbands at the time of the first interview, with 9% divorced, 6% single, 3% separated, 3% 
widowed, and fewer than 1% “living together.” Altogether, 82.4 of the women had children; the 
average number of children was 2.7, with 2.1 children, on the average, still living in the same 
house as the respondent.

Of the original 465 respondents, 369 (79.4%) were re‐interviewed a year later. Of the 
96 respondents who were not re‐interviewed, 51 refused, 36 had moved and could not be relocated, 
8 were known to be in the Los Angeles area but were not contacted after a minimum of 5 attempts, 
and 1 was deceased. Those who were and were not re‐interviewed were similar (by analyses of vari-
ance) on health and attitudinal variables. They differed, however, on some demographic measures. 
Those who were re‐interviewed tended to be higher‐SEL, higher‐income white women who were 
better‐educated, were older, and had experienced significantly fewer life change units (Rahe, 1974) 
in 1975.

The 1975 interview schedule was composed of items assessing a number of demographic, 
health, and attitudinal characteristics (see Table B.1). Insofar as possible, previously tested and 
validated items and measures were used, although time constraints prohibited including all items 
from some measures. Coding on most items was prearranged so that responses given large numbers 
reflected increasingly unfavorable attitudes, dissatisfaction, poorer health, lower income, increasing 
stress, increasing use of drugs, and so forth.

The 1976 interview schedule repeated many of the health items, with a shorter set of items 
assessing changes in marital status and satisfaction, changes in work status and satisfaction, and so 
forth. The BSRI and EPI were also included, as previously mentioned. The interview schedules for 
both 1975 and 1976 took 75 minutes on average to administer and were conducted in respondent’s 
homes by experienced and trained interviewers.

To obtain median values for the masculine and feminine scores of the BSRI for a comparable 
sample of men, the BSRI was mailed to the 369 respondents who cooperated in 1976, with instruc-
tions to ask a man near to them (husband, friend, brother, etc.) to fill out and return it. The completed 
BSRI was received from 162 (46%) men, of whom 82% were husbands, 8.6% friends, 3.7% fiances, 
1.9% brothers, 1.2% sons, 1.2% ex‐husbands, 0.6% brothers‐in‐law, and 0.6% fathers. Analyses 
of variance were used to compare the demographic characteristics of the men who returned the 
BSRI with those who did not (insofar as such characteristics could be determined by responses of the 
women to questions in the 1975 interview). The two groups differed in that, as with the re‐interviewed 
women, the men who responded presented an advantaged socioeconomic picture relative to those who 
did not. Respondents had higher SEL2 ratings, were better educated, and enjoyed higher income. The 
unweighted averages of the men’s and women’s median masculine scores and median feminine scores 
were used to split the sample of women into those who were feminine, masculine, androgynous, and 
undifferentiated.

B.2 Sexual Attraction Study

Data used in the large sample multiway frequency analysis example (Section 16.6) were collected 
in 1984 as part of a survey assessing issues surrounding the nature of sexual attraction to clients 
among clinical psychologists. Data‐collection methods and demographic characteristics that fol-
low are approximately as they appear in an American Psychologist paper (Pope, Keith‐Spiegel, & 
Tabachnick, 1986).
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TABLE B.1 Description of Some of the Variables Available from 1975–1976 Interviews

Variable Abbreviation Brief Description Source

Demographic
variables

Socioeconomic
level

SEL, SEL2 Measure of deference accorded employment 
categories (SEL2 from second interview)

Featherman (1973), 
update of Duncan 
Scale

Education EDUC Number of years completed
EDCODE Categorical variable assessing whether or not 

education proceeded beyond high school

Income INCOME Total family income before taxes
INCODE Categorical variable assessing family 

income

Age AGE Chronological age in 5‐year categories

Marital status MARITAL A categorical variable assessing current 
marital status

MSTATUS A dichotomous variable assessing whether 
or not currently married

Parenthood CHILDREN A categorical variable assessing whether or 
not one has children

Ethnic group 
membership

RACE A categorical variable assessing ethnic 
affiliation

Employment 
status

EMPLMNT A categorical variable assessing whether or 
not one is currently employed

WORKSTAT A categorical variable assessing current 
employment status and, if not, attitude 
toward unemployed status

Religious
affiliation

RELIGION A categorical variable assessing religious 
affiliation

Attitudinal
variables

Attitudes toward 
housework

ATTHOUSE Frequency of experiencing various 
favorable and unfavorable attitudes toward 
homemaking

Derived from 
Johnson (1955)

Attitudes toward 
paid work

ATTWORK Frequency of experiencing various favorable 
and unfavorable attitudes toward paid work

Johnson (1955)

Attitudes toward 
role of women

ATTROLE Measure of conservative or liberal attitudes 
toward role of women

Spence and 
Helmreich (1972)

Locus of control CONTROL Measure of control ideology; internal or 
external

Rotter (1966)

(continued )
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Variable Abbreviation Brief Description Source

Attitudinal
variables (cont.)

Attitudes toward 
marital status

ATTMAR Satisfaction with current marital status From Burgess & 
Locke (1960); 
Locke & 
Wallace (1959); 
and Rollins & 
Feldman (1970)

Personality
variables

Self‐esteem ESTEEM Measures of self‐esteem and confidence in 
various situations

Rosenberg (1965)

Neuroticism‐
stability index

NEUROTIC A scale derived from factor analysis to 
measure neuroticism vs. stability

Eysenck & 
Eysenck (1963)

Introversion‐ 
extraversion 
index

INTEXT A scale derived from factor analysis to 
measure introversion vs. extraversion

Eysenck & 
Eysenck (1963)

Androgyny 
measure

ANDRM A categorical variable based on femininity 
and masculinity

Derived from 
Bem (1974)

Health variables

Mental health MENHEAL Frequency count of mental health problems 
(feeling somewhat apart, can’t get along, 
etc.)

Langer (1962)

Physical health PHYHEAL Frequency count of problems with various 
body systems (circulation, digestion, 
etc.), general description of health

Number of 
visits

TIMEDRS Frequency count of visits to physical and 
mental health professionals

Use of psycho‐ 
tropic drugs

DRUGUSE A frequency, recency measure of 
involvement with prescription and 
nonprescription major and minor 
tranquilizers, sedatives‐hypnotics, 
antidepressants, and stimulants

Balter & Levine 
(1971)

Use of psycho‐ 
tropic and over‐
the‐ counter 
drugs

PSYDRUG DRUGUSE plus a frequency, recency 
measure of over‐the‐counter mood‐ 
modifying drugs

Attitudes toward 
medication

ATTDRUG Items concerning attitudes toward use of 
medication

Life change 
units

STRESS Weighted items reflecting number and 
importance of change in life situation

Rahe (1974)

TABLE B.1 Continued
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Method

A cover letter, a brief 17‐item questionnaire (15 structured questions and 2 open‐ended questions), and 
a return envelope were sent to 1000 psychologists (500 men and 500 women) randomly selected from 
the 4356 members of Division 42 (Psychologists in Private Practice) as listed in the 1983 Membership 
Register of the American Psychological Association.

The questionnaire requested respondents to provide information about their gender, age 
group, and years of experience in the field. Information was elicited about the respondent’s in-
cidence of sexual attraction to male and female clients; clients’ reactions to this experience of at-
traction; beliefs about the clients’ awareness of and reciprocation of the attraction; the impact of 
the attraction on the therapy process; how such feelings were managed; the incidence of sexual 
fantasies about clients; why, if relevant, respondents chose to refrain from acting out their attrac-
tion through actual sexual intimacies with clients; what features determined which clients would be 
perceived as sexually attractive; incidence of actual sexual activity with clients; and the extent to 
which the respondents’ graduate training and internship experiences had dealt with issues related to 
sexual attraction to clients.

Questionnaires were returned by 585 respondents. Of these 59.7% were men. Sixty‐eight 
percent of the male respondents returned their questionnaires as compared with 49% of the female 
respondents. Approximately half of the respondents were 45 years of age and under. The sample’s 
median age was approximately 46 years as compared with the median age of 40 years reported in a 
1983 survey of mental health service providers (VandenBos & Stapp, 1983).

Respondents averaged 16.99 (SD = 8.43) years of professional experience with no significant 
differences between male and female psychologists. Younger therapists averaged 11.36 (SD = 8.43)
years of experience and older therapists averaged 21.79 (SD = 8.13) years of experience. Only 77 of 
the 585 therapists reported never being attracted to any client.

B.3  Learning Disabilities Data Bank

Data for the large sample example in Section 8.6.1 (profile analysis of subscales of the WISC) were 
taken from a data bank developed at the California Center for Educational Therapy (CCET) in the 
San Fernando Valley.

All children who were referred to the CCET were given an extensive battery of psychodiag-
nostic tests to measure current intellectual functioning, perceptual development, psycholinguistic 
abilities, visual and auditory functioning, and achievement in a number of academic subjects. In 
addition, an extensive Parent Information Outline queries parents about demographic variables, 
family health history, as well as child’s developmental history, strengths, weaknesses, preferences, 
and the like. The entire data bank consists of 112 variables from the testing battery plus 155 vari-
ables from the Parent Information Outline.

Data collection began in July 1972 and continued to 1993. The sample in Sections 8.6.1 and 
14.6.1 includes children tested before February 1984 who were administered the Wechsler Intelligence 
Scale for Children, who were diagnosed as learning‐disabled, whose parents agreed to be included 
in the data bank, and whose parents answered a question about the child’s preference for playmates’ 
age. Available answers to this question were: (1) older, (2) younger, (3) same age, and (4) no prefer-
ence. The latter two categories were combined into a single one for the Chapter 8 analysis because 
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either category by itself would have been too small. Of the 261 children tested between 1972 and 
1984, 177 were eligible for inclusion in the sample in Sections 8.6.1 and 14.6.1.

For the entire sample of 261 cases, average age is 10.58 years with a range of 5 to 61 years. 
(The sample in Sections 8.6.1 and 14.6.1 consists of school‐age children only.) About 75% of the 
entire sample is male. At the time of testing, 63% of the entire sample attended public school; 
33% were enrolled in various types of private schools. Of the 94% of parents who revealed their 
educational level, mothers had completed an average of 13.6 years of schooling and fathers had 
completed an average of 14.9 years.

B.4  Reaction Time to Identify Figures

Data for this study were collected by Damos (1989). Twenty right‐handed males were required 
to respond “standard” or “mirror” on a keypad as quickly as possible to a stimulus (the letter G 
or a symbol) and its mirror image. Each trial consisted of 30 presentations of the stimulus and 
30 presentations of its mirror image, five presentations in each of six orientations: upright (0), 
60, 120, 180, 240, and 300 degrees of rotation. In all, the experiment required ten sessions over 
two consecutive weeks. Each session had four blocks of nine trials distributed over morning and 
afternoon periods. Thus, each subject made 21,600 responses during the study. Half the subjects 
were given stimulus G in the first week and a symbol in the second week; the others participated 
only for one week and were given the symbol stimulus. Order of presentation of all stimuli was 
random on all trials.

The two DVs were average correct reaction time and error rate. Responses to 60° of absolute 
rotation were averaged with those of 300°, and responses to 120° were averaged with those of 240°. 
Averages were calculated separately for standard and mirror‐image trials. Linear regression on the 
averages for each subject in each session yielded a slope and intercept.

Data selected for analysis in Section 8.6.2 were slopes and intercepts from the first four ses-
sions: morning and afternoon sessions for days 1 and 2 of the first week, so that practice effects 
could be observed. Only the trials on which the subject responded “standard” were used. Thus, 
each of the 20 subjects provided eight scores and a slope and an intercept for each of the four 
sessions.

B.5   Field Studies of Noise‐Induced
Sleep Disturbance

These data are from field studies of the effects of nighttime noise on sleep disturbance reported by 
Fidell et al. (1995). Measurements were taken in the vicinity of two airports and one control site. 
Airports were Castle Air Force Base in Merced, CA, neighborhoods in the Los Angeles area that 
were not exposed to nighttime aircraft noise but were exposed to high levels of road traffic noise, 
and LAX. Indoor and outdoor noise exposure was measured for periods of approximately one 
month in 45 homes of 82 test participants for a total of 1887 subject nights. Responses included 
time to fall asleep, number of recalled awakenings, behavioral awakenings, sleep quality, sleep 
time, annoyance, tiredness in the morning, reported time awake, and awakenings by aircraft noise.
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A number of personal characteristics also were recorded, including age, gender, spontaneous 
awakening rate, duration of residence, use of alcohol and medications, and tiredness upon retiring. 
Event‐based awakening was predicted in a logistic regression analysis by event noise level, ambi-
ent noise level, rate of spontaneous awakening, age, time since retiring, duration of residence, and 
tiredness on retiring. However, the slope of the relationship between awakening and noise exposure 
was rather shallow. Results were found to be in good agreement with those of other field studies, but 
quite different from laboratory studies.

B.6  Clinical Trial for Primary Biliary Cirrhosis

Data in this example were collected during a double‐blind randomized clinical trial conducted at 
the Mayo Clinic January 1974 and May 1984. Of the 424 patients who met eligibility requirements 
for the study, 312 (with their physicians) agreed to participate in the randomized trial. A number 
of clinical, biochemical, serologic, and histologic measurements were made for the 312 patients, 
in addition to the date of random assignment to either a placebo group or to a group treated with 
the drug D‐penicillamine. Data from the clinical trial were analyzed in 1986 for presentation in the 
clinical literature.

Data from the 312 cases used in the survival analysis in Chapter 11 included 125 who had died 
(the 11 patients whose deaths were not attributable to PBC were not distinguished) and 19 who had 
undergone liver transplant. The data and some analyses are described by Fleming and Harrington 
(1991, Chapters 1 and 4) and by Markus, et al. (1989). The latter paper focuses on the efficacy of 
liver transplantation, but also discusses the Mayo model which determined the variables used in the 
survival analysis of Section 11.7.

Fleming and Harrington describe PBC as “. . . a rare but fatal chronic liver disease of unknown 
cause, with a prevalence of about 50 cases per million population. The primary pathologic event 
appears to be the destruction of interlobular bile ducts, which may be mediated by immunologic 
mechanisms” (p. 2).

B.7  Impact of Seat Belt Law

Rock (1992) applied an ARIMA approach to evaluating the impact of the Illinois seat belt use law 
on accidents, deaths, and various degrees of injury. Data were collected monthly starting January 
1980 and continued through December 1990, with the seat belt law taking effect in 1985. Accident 
statistics are available from the IDOT. Rock considered other statistical techniques in addition to 
ARIMA, which he concluded was preferable (less biased).

DVs, evaluated separately, were monthly fatalities, accidents, and A‐, B‐, and C‐level 
injuries. A‐level injuries, the ones chosen for demonstration in Section 18.7, are the most serious, 
defined as incapacitating; C‐level are the least severe, possibly not visible. Different ARIMA 
models were applied to the five DVs, with a statistically significant impact of the law found only 
for A‐level injuries. Rock concluded that overall the net impact of the law was a reduction in 
injury severity.
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TABLE C.1 Normal Curve Areas

0 z

z .00 .01 .02 .03 .04 .05 .06 .07 .08 .09

0.0 .0000 .0040 .0080 .0120 .0160 .0199 .0239 .0279 .0319 .0359
0.1 .0398 .0438 .0478 .0517 .0557 .0596 .0636 .0675 .0714 .0753
0.2 .0793 .0832 .0871 .0910 .0948 .0987 .1026 .1064 .1103 .1141
0.3 .1179 .1217 .1255 .1293 .1331 .1368 .1406 .1443 .1480 .1517
0.4 .1554 .1591 .1628 .1664 .1700 .1736 .1772 .1808 .1844 .1879
0.5 .1915 .1950 .1985 .2019 .2054 .2088 .2123 .2157 .2190 .2224
0.6 .2257 .2291 .2324 .2357 .2389 .2422 .2454 .2486 .2517 .2549
0.7 .2580 .2611 .2642 .2673 .2704 .2734 .2764 .2794 .2823 .2852
0.8 .2881 .2910 .2939 .2967 .2995 .3023 .3051 .3078 .3106 .3133
0.9 .3159 .3186 .3212 .3238 .3264 .3289 .3315 .3340 .3365 .3389
1.0 .3413 .3438 .3461 .3485 .3508 .3531 .3554 .3577 .3599 .3621
1.1 .3643 .3665 .3686 .3708 .3729 .3749 .3770 .3790 .3810 .3830
1.2 .3849 .3869 .3888 .3907 .3925 .3944 .3962 .3980 .3997 .4015
1.3 .4032 .4049 .4066 .4082 .4099 .4115 .4131 .4147 .4162 .4177
1.4 .4192 .4207 .4222 .4236 .4251 .4265 .4279 .4292 .4306 .4319
1.5 .4332 .4345 .4357 .4370 .4382 .4394 .4406 .4418 .4429 .4441
1.6 .4452 .4463 .4474 .4484 .4495 .4505 .4515 .4525 .4535 .4545
1.7 .4554 .4564 .4573 .4582 .4591 .4599 .4608 .4616 .4625 .4633
1.8 .4641 .4649 .4656 .4664 .4671 .4678 .4686 .4693 .4699 .4706
1.9 .4713 .4719 .4726 .4732 .4738 .4744 .4750 .4756 .4761 .4767
2.0 .4772 .4778 .4783 .4788 .4793 .4798 .4803 .4808 .4812 .4817
2.1 .4821 .4826 .4830 .4834 .4838 .4842 .4846 .4850 .4854 .4857
2.2 .4861 .4864 .4868 .4871 .4875 .4878 .4881 .4884 .4887 .4890
2.3 .4893 .4896 .4898 .4901 .4904 .4906 .4909 .4911 .4913 .4916
2.4 .4918 .4920 .4922 .4925 .4927 .4929 .4931 .4932 .4934 .4936
2.5 .4938 .4940 .4941 .4943 .4945 .4946 .4948 .4949 .4951 .4952
2.6 .4953 .4955 .4956 .4957 .4959 .4960 .4961 .4962 .4963 .4964
2.7 .4965 .4966 .4967 .4968 .4969 .4970 .4971 .4972 .4973 .4974
2.8 .4974 .4975 .4976 .4977 .4977 .4978 .4979 .4979 .4980 .4981
2.9 .4981 .4982 .4982 .4983 .4984 .4984 .4985 .4985 .4986 .4986
3.0 .4987 .4987 .4987 .4988 .4988 .4989 .4989 .4989 .4990 .4990

Source: Adapted/abridged from A. Hald, Statistical Tables and Formulas, Table 1. John Wiley, 1952.
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TABLE C.2 Critical Values of the t Distribution 
for A = .05 and .01, Two‐Tailed Test

Degrees of Freedom .05 .01

1 12.706 63.657
2 4.303 9.925
3 3.182 5.841
4 2.776 4.604
5 2.571 4.032
6 2.447 3.707
7 2.365 3.499
8 2.306 3.355
9 2.262 3.250

10 2.228 3.169
11 2.201 3.106
12 2.179 3.055
13 2.160 3.012
14 2.145 2.977
15 2.131 2.947
16 2.120 2.921
17 2.110 2.898
18 2.101 2.878
19 2.093 2.861
20 2.086 2.845
21 2.080 2.831
22 2.074 2.819
23 2.069 2.807
24 2.064 2.797
25 2.060 2.787
26 2.056 2.779
27 2.052 2.771
28 2.048 2.763
29 2.045 2.756
30 2.042 2.750
40 2.021 2.704
60 2.000 2.660

120 1.980 2.617
∞ 1.960 2.576

Source: Adapted from Table 9 in Biometrika Tables for 
Statisticians, vol. 1, 3d ed., edited by E. S. Pearson and H. O. 
Hartley (New York: Cambridge University Press, 1958).
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TABLE C.3 Critical Values of the F Distribution

df1
df2 1 2 3 4 5 6 8 12 24 ∞

1 0 .1% 405284 500000 540379 562500 576405 585937 598144 610667 623497 636619
0.5% 16211 20000 21615 22500 23056 23437 23925 24426 24940 25465
1% 4052 4999 5403 5625 5764 5859 5981 6106 6234 6366

2.5% 647.79 799.50 864.16 899.58 921.85 937.11 956.66 976.71 997.25 1018.30
5% 161.45 199.50 215.71 224.58 230.16 233.99 238.88 243.91 249.05 254.32

10% 39.86 49.50 53.59 55.83 57.24 58.20 59.44 60.70 62.00 63.33
2 0.1 998.5 999.0 999.2 999.2 999.3 999.3 999.4 999.4 999.5 999.5

0.5 198.50 199.00 199.17 199.25 199.30 199.33 199.37 199.42 199.46 199.51
1 98.49 99.00 99.17 99.25 99.30 99.33 99.36 99.42 99.46 99.50

2.5 38.51 39.00 39.17 39.25 39.30 39.33 39.37 39.42 39.46 39.50
5 18.51 19.00 19.16 19.25 19.30 19.33 19.37 19.41 19.45 19.50

10 8.53 9.00 9.16 9.24 9.29 9.33 9.37 9.41 9.45 9.49
3 0.1 167.5 148.5 141.1 137.1 134.6 132.8 130.6 128.3 125.9 123.5

0.5 55.55 49.80 47.47 46.20 45.39 44.84 44.13 43.39 42.62 41.83
1 34.12 30.81 29.46 28.71 28.24 27.91 27.49 27.05 26.60 26.12

2.5 17.44 16.04 15.44 15.10 14.89 14.74 14.54 14.34 14.12 13.90
5 10.13 9.55 9.28 9.12 9.01 8.94 8.84 8.74 8.64 8.53

10 5.54 5.46 5.39 5.34 5.31 5.28 5.25 5.22 5.18 5.13
4 0.1 74.14 61.25 56.18 53.44 51.71 50.53 49.00 47.41 45.77 44.05

0.5 31.33 26.28 24.26 23.16 22.46 21.98 21.35 20.71 20.03 19.33
1 21.20 18.00 16.69 15.98 15.52 15.21 14.80 14.37 13.93 13.46

2.5 12.22 10.65 9.98 9.60 9.36 9.20 8.98 8.75 8.51 8.26
5 7.71 6.94 6.59 6.39 6.26 6.16 6.04 5.91 5.77 5.63

10 4.54 4.32 4.19 4.11 4.05 4.01 3.95 3.90 3.83 3.76
5 0.1 47.04 36.61 33.20 31.09 29.75 28.84 27.64 26.42 25.14 23.78

0.5 22.79 18.31 16.53 15.56 14.94 14.51 13.96 13.38 12.78 12.14
1 16.26 13.27 12.06 11.39 10.97 10.67 10.29 9.89 9.47 9.02

2.5 10.01 8.43 7.76 7.39 7.15 6.98 6.76 6.52 6.28 6.02
5 6.61 5.79 5.41 5.19 5.05 4.95 4.82 4.68 4.53 4.36

10 4.06 3.78 6.62 3.52 3.45 3.40 3.34 3.27 3.19 3.10
6 0.1 35.51 27.00 23.70 21.90 20.81 20.03 19.03 17.99 16.89 15.75

0.5 18.64 14.54 12.92 12.03 11.46 11.07 10.57 10.03 9.47 8.88
1 13.74 10.92 9.78 9.15 8.75 8.47 8.10 7.72 7.31 6.88

2.5 8.81 7.26 6.60 6.23 5.99 5.82 5.60 5.37 5.12 4.85
5 5.99 5.14 4.76 4.53 4.39 4.28 4.15 4.00 3.84 3.67
10 3.78 3.46 3.29 3.18 3.11 3.05 2.98 2.90 2.82 2.72

7 0.1 29.22 21.69 18.77 17.19 16.21 15.52 14.63 13.71 12.73 11.69
0.5 16.24 12.40 10.88 10.05 9.52 9.16 8.68 8.18 7.65 7.08
1 12.25 9.55 8.45 7.85 7.46 7.19 6.84 6.47 6.07 5.65

2.5 8.07 6.54 5.89 5.52 5.29 5.12 4.90 4.67 4.42 4.14
5 5.59 4.74 4.35 4.12 3.97 3.87 3.73 3.57 3.41 3.23

10 3.59 3.26 3.07 2.96 2.88 2.83 2.75 2.67 2.58 2.47
8 0.1 25.42 18.49 15.83 14.39 13.49 12.86 12.04 11.19 10.30 9.34

0.5 14.69 11.04 9.60 8.81 8.30 7.95 7.50 7.01 6.50 5.95
(continued )
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df1
df2 1 2 3 4 5 6 8 12 24 ∞

1% 11.26 8.65 7.59 7.01 6.63 6.37 6.03 5.67 5.28 4.86
2.5% 7.57 6.06 5.42 5.05 4.82 4.65 4.43 4.20 3.95 3.67
5% 5.32 4.46 4.07 3.84 3.69 3.58 3.44 3.28 3.12 2.93

10% 3.46 3.11 2.92 2.81 2.73 2.67 2.59 2.50 2.40 2.29
9 0.1 22.86 16.39 13.90 12.56 11.71 11.13 10.37 9.57 8.72 7.81

0.5 13.61 10.11 8.72 7.96 7.47 7.13 6.69 6.23 5.73 5.19
1 10.56 8.02 6.99 6.42 6.06 5.80 5.47 5.11 4.73 4.31

2.5 7.21 5.71 5.08 4.72 4.48 4.32 4.10 3.87 3.61 3.33
5 5.12 4.26 3.86 3.63 3.48 3.37 3.23 3.07 2.90 2.71

10 3.36 3.01 2.81 2.69 2.61 2.55 2.47 2.38 2.28 2.16
10 0.1 21.04 14.91 12.55 11.28 10.48 9.92 9.20 8.45 7.64 6.76

0.5 12.83 8.08 7.34 6.87 6.54 6.12 5.66 5.17 4.64
1 10.04 7.56 6.55 5.99 5.64 5.39 5.06 4.71 4.33 3.91

2.5 6.94 5.46 4.83 4.47 4.24 4.07 3.85 3.62 3.37 3.08
5 4.96 4.10 3.71 3.48 3.33 3.22 3.07 2.91 2.74 2.54

10 3.28 2.92 2.73 2.61 2.52 2.46 2.38 2.28 2.18 2.06
11 0.1 19.69 13.81 11.56 10.35 9.58 9.05 8.35 7.63 6.85 6.00

0.5 12.23 8.91 7.60 6.88 6.42 6.10 5.68 5.24 4.76 4.23
1 9.65 7.20 6.22 5.67 5.32 5.07 4.74 4.40 4.02 3.60

2.5 6.72 5.26 4.63 4.28 4.04 4.88 3.66 3.43 3.17 2.88
5 4.84 3.98 3.59 3.36 3.20 3.09 2.95 2.79 2.61 2.40

10 3.23 2.86 2.66 2.54 2.45 2.39 2.30 2.21 2.10 1.97
12 0.1 18.64 12.97 10.80 9.63 8.89 8.38 7.71 7.00 6.25 5.42

0.5 11.75 8.51 7.23 6.52 6.07 5.76 5.35 4.91 4.43 3.90
1 9.33 6.93 5.95 5.41 5.06 4.82 4.50 4.16 3.78 3.36

2.5 6.55 5.10 4.47 4.12 3.89 3.73 3.51 3.28 3.02 2.72
5 4.75 3.88 3.49 3.26 3.11 3.00 2.85 2.69 2.50 2.30

10 3.18 2.81 2.61 2.48 2.39 2.33 2.24 2.15 2.04 1.90
13 0.1 17.81 12.31 10.21 9.07 8.35 7.86 7.21 6.52 5.78 4.97

0.5 11.37 8.19 6.93 6.23 5.79 5.48 5.08 4.64 4.17 3.65
1 9.07 6.70 5.74 5.20 4.86 4.62 4.30 3.96 3.59 3.16

2.5 6.41 4.97 4.35 4.00 3.77 3.60 3.39 3.15 2.89 2.60
5 4.67 3.80 3.41 3.18 3.02 2.92 2.77 2.60 2.42 2.21

10 3.14 2.76 2.56 2.43 2.35 2.28 2.20 2.10 1.98 1.85
14 0.1 17.14 11.78 9.73 8.62 7.92 7.43 6.80 6.13 5.41 4.60

0.5 11.06 7.92 6.68 6.00 5.56 5.26 4.86 4.43 3.96 3.44
1 8.86 6.51 5.56 5.03 4.69 4.46 4.14 3.80 3.43 3.00

2.5 6.30 4.86 4.24 3.89 3.66 3.50 3.27 3.05 2.79 2.49
5 4.60 3.74 3.34 3.11 2.96 2.85 2.70 2.53 2.35 2.13

10 3.10 2.73 2.52 2.39 2.31 2.24 2.15 2.05 1.94 1.80
15 0.1 16.59 11.34 9.30 8.25 7.57 7.09 6.47 5.81 5.10 4.31

0.5 10.80 7.70 6.48 5.80 5.37 5.07 4.67 4.25 3.79 3.26
1 8.68 6.36 5.42 4.89 4.56 4.32 4.00 3.67 3.29 2.87

2.5 8.20 4.77 4.15 3.80 3.58 3.41 3.20 2.96 2.70 2.40

TABLE C.3 Continued
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df1
df2 1 2 3 4 5 6 8 12 24 ∞

5% 4.54 3.80 3.29 3.06 2.90 2.79 2.64 2.48 2.29 2.07
10% 3.07 2.70 2.49 2.36 2.27 2.21 2.12 2.02 1.90 1.76

16 0.1 16.12 10.97 9.00 7.94 7.27 6.81 6.19 5.55 4.85 4.06
0.5 10.58 7.51 6.30 5.64 5.21 4.91 4.52 4.10 3.64 3.11
1 8.53 6.23 5.29 4.77 4.44 4.20 3.89 3.55 3.18 2.75

2.5 6.12 4.69 4.08 3.73 3.50 3.34 3.12 2.89 2.63 2.32
5 4.49 3.63 3.24 3.01 2.85 2.74 2.59 2.42 2.24 2.01

10 3.05 2.67 2.46 2.33 2.24 2.18 2.09 1.99 1.87 1.72
17 0.1 15.72 10.66 8.73 7.68 7.02 6.56 5.96 5.32 4.63 3.85

0.5 10.38 7.35 6.16 5.50 5.07 4.78 4.39 3.97 3.51 2.98
1 8.40 6.11 5.18 4.67 4.34 4.10 3.79 3.45 3.08 2.65

2.5 6.04 4.62 4.01 3.66 3.44 3.28 3.06 2.82 2.56 2.25
5 4.45 3.59 3.20 2.96 2.81 2.70 2.55 2.38 2.19 1.96

10 3.03 2.64 2.44 2.31 2.22 2.15 2.06 1.96 1.84 1.69
18 0.1 15.38 10.39 8.49 7.46 6.81 6.35 5.76 5.13 4.45 3.67

0.5 10.22 7.21 6.03 5.37 4.96 4.66 4.28 3.86 3.40 2.87
1 8.28 6.01 5.09 4.58 4.25 4.01 3.71 3.37 3.00 2.57

2.5 5.98 4.56 3.95 3.61 3.38 3.22 3.01 2.77 2.50 2.19
5 4.41 3.55 3.16 2.93 2.77 2.66 2.51 2.34 2.15 1.92

10 3.01 2.62 2.42 2.29 2.20 2.13 2.04 1.93 1.81 1.66
19 0.1 15.08 10.16 8.28 7.26 6.61 6.18 5.59 4.97 4.29 3.52

0.5 10.07 7.09 5.92 5.27 4.85 4.56 4.18 3.76 3.31 2.78
1 8.18 5.93 5.01 4.50 4.17 3.94 3.63 3.30 2.92 2.49

2.5 5.92 4.51 3.90 3.56 3.33 3.17 2.96 2.72 2.45 2.13
5 4.38 3.52 3.13 2.90 2.74 2.63 2.48 2.31 2.11 1.88

10 2.99 2.61 2.40 2.27 2.18 2.11 2.02 1.91 1.79 1.63
20 0.1 14.82 9.95 8.10 7.10 6.46 6.02 5.44 4.82 4.15 3.38

0.5 9.94 6.99 5.82 5.17 4.76 4.47 4.09 3.68 3.22 2.69
1 8.10 5.85 4.94 4.43 4.10 3.87 3.56 3.23 2.86 2.42

2.5 5.87 4.46 3.86 3.51 3.29 3.13 2.91 2.68 2.41 2.09
5 4.35 3.49 3.10 2.87 2.71 2.60 2.45 2.28 2.08 1.84

10 2.97 2.59 2.38 2.25 2.16 2.09 2.00 1.89 1.77 1.61
21 0.1 14.59 9.77 7.94 6.95 6.32 5.88 5.31 4.70 4.03 3.26

0.5 9.83 6.89 5.73 5.09 4.68 4.39 4.01 3.60 3.15 2.61
1 8.02 5.78 4.87 4.37 4.04 3.81 3.51 3.17 2.80 2.36

2.5 5.83 4.42 3.82 3.48 3.25 3.09 2.87 2.64 2.37 2.04
5 4.32 3.47 3.07 2.84 2.68 2.57 2.42 2.25 2.05 1.81

10 2.96 2.57 2.36 2.23 2.14 2.08 1.98 1.88 1.75 1.59
22 0.1 14.38 9.61 7.80 6.81 6.19 5.76 5.19 4.58 3.92 3.15

0.5 9.73 6.81 5.65 5.02 4.61 4.32 3.94 3.54 3.08 2.55
1 7.94 5.72 4.82 4.31 3.99 3.76 3.45 3.12 2.75 2.31

2.5 5.79 4.38 3.78 3.44 3.22 3.05 2.84 2.60 2.33 2.00
5 4.30 3.44 3.05 2.82 2.66 2.55 2.40 2.23 2.03 1.78

10 2.95 2.56 2.35 2.22 2.13 2.06 1.97 1.86 1.73 1.57

TABLE C.3 Continued
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df1
df2 1 2 3 4 5 6 8 12 24 ∞

23 0.1% 14.19 9.47 7.67 6.69 6.08 5.65 5.09 4.48 3.82 3.05
0.5% 9.63 6.73 5.58 4.95 4.54 4.26 3.88 3.47 3.02 2.48
1% 7.88 5.66 4.76 4.26 3.94 3.71 3.41 3.07 2.70 2.26

2.5% 5.75 4.35 3.75 3.41 3.18 3.02 2.81 2.57 2.30 1.97
5% 4.28 3.42 3.03 2.80 2.64 2.53 2.38 2.20 2.00 1.76

10% 2.94 2.55 2.34 2.21 2.11 2.05 1.95 1.84 1.72 1.55
24 0.1 14.03 9.34 7.55 6.59 5.98 5.55 4.00 4.00 3.74 2.97

0.5 9.55 6.66 5.52 4.89 4.49 4.20 3.83 3.42 2.97 2.43
1 7.82 5.61 4.72 4.22 3.90 3.67 3.36 3.03 2.66 2.21

2.5 5.72 4.32 3.72 3.38 3.15 2.99 2.78 2.54 2.27 1.94
5 4.26 3.40 3.01 2.78 2.62 2.51 2.36 2.18 1.98 1.73

1.0 2.93 2.54 2.33 2.19 2.10 2.04 1.94 1.83 1.70 1.53
25 0.1 13.88 9.22 7.45 6.49 5.88 5.46 4.91 4.31 3.66 2.89

0.5 9.48 6.60 5.46 4.84 4.43 4.15 3.78 3.37 2.92 2.38
1 7.77 5.57 4.68 4.18 3.86 3.63 3.32 2.99 2.62 2.17

2.5 5.69 4.29 3.69 3.35 3.13 2.97 2.75 2.51 2.24 1.91
5 4.24 3.38 2.99 2.76 2.60 2.49 2.34 2.16 1.96 1.71

1.0 2.92 2.53 2.32 2.18 2.09 2.02 1.93 1.82 1.69 1.52
26 0.1 13.74 9.12 7.36 6.41 5.80 5.38 4.83 4.24 3.59 2.82

0.5 9.41 6.54 5.41 4.79 4.38 4.10 3.73 3.33 2.87 2.33
1 7.72 5.53 4.64 4.14 3.82 3.59 3.29 2.96 2.58 2.13

2.5 5.66 4.27 3.67 3.33 3.10 2.94 2.73 2.49 2.22 1.88
5 4.22 3.37 2.98 2.74 2.59 2.47 2.32 2.15 1.95 1.69

10 2.91 2.52 2.31 2.17 2.08 2.01 1.92 1.81 1.68 1.50
27 0.1 13.61 9.02 7.27 6.33 5.73 5.31 4.76 4.17 3.52 2.75

0.5 9.34 6.49 5.36 4.74 4.34 4.06 3.69 3.28 2.83 2.29
1 7.68 5.49 4.60 4.11 3.78 3.56 3.26 2.93 2.55 2.10

2.5 5.63 4.24 3.65 3.31 3.08 2.92 2.71 2.47 2.19 1.85
5 4.21 3.35 2.96 2.73 2.57 2.46 2.30 2.13 1.93 1.67

10 2.90 2.51 2.30 2.17 2.07 2.00 1.91 1.80 1.67 1.49
28 0.1 13.50 8.93 7.19 6.25 5.66 5.24 4.69 4.11 3.46 2.70

0.5 9.28 6.44 5.32 4.70 4.30 4.02 3.65 3.25 2.79 2.25
1 7.64 5.45 4.57 4.07 3.75 3.53 3.23 2.90 2.52 2.06

2.5 5.61 4.22 3.63 3.29 2.06 2.90 2.69 2.45 2.17 1.83
5 4.20 3.34 2.95 2.71 2.56 2.44 2.29 2.12 1.91 1.65
10 2.89 2.50 2.29 2.16 2.06 2.00 1.90 1.79 1.66 1.48

29 0.1 13.39 8.85 7.12 6.19 5.59 5.18 4.64 4.05 3.41 2.64
0.5 9.23 6.40 5.28 4.66 4.26 3.98 3.61 3.21 2.76 2.21
1 7.60 5.42 4.54 4.04 3.73 3.50 3.20 2.87 2.49 2.03

2.5 5.59 4.20 3.61 3.27 3.04 2.88 2.67 2.43 2.15 1.81
5 4.18 3.33 2.93 2.70 2.54 2.43 2.28 2.10 1.90 1.64

10 2.89 2.50 2.28 2.15 2.06 1.99 1.89 1.78 1.65 1.47
30 0.1 13.29 8.77 7.05 6.12 5.53 5.12 4.58 4.00 3.36 2.59

0.5 9.18 6.35 5.24 4.62 4.23 3.95 3.58 3.18 2.73 2.18
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Statistical Tables 951

df1
df2 1 2 3 4 5 6 8 12 24 ∞

1% 7.56 5.39 4.51 4.02 3.70 3.47 3.17 2.84 2.47 2.01
2.5% 5.57 4.18 3.59 3.25 3.03 2.87 2.65 2.41 2.14 1.79
5% 4.17 3.32 2.92 2.69 2.53 2.42 2.27 2.09 1.89 1.62

10% 2.88 2.49 2.28 2.14 2.05 1.98 1.88 1.77 1.64 1.46
40 0.1 12.61 8.25 6.60 5.70 5.13 4.73 4.21 3.64 3.01 2.23

0.5 8.83 6.07 4.98 4.37 3.99 3.71 3.35 2.95 2.50 1.93
1 7.31 5.18 4.31 3.83 3.51 3.29 2.99 2.66 2.29 1.80

2.5 5.42 4.05 3.46 3.13 2.90 2.74 2.53 2.29 2.01 1.64
5 4.08 3.23 2.84 2.61 2.45 2.34 2.18 2.00 1.79 1.51

10 2.84 2.44 2.23 2.09 2.00 1.93 1.83 1.71 1.57 1.38
60 0.1 11.97 7.76 6.17 5.31 4.76 4.37 3.87 3.31 2.69 1.90

0.5 8.49 5.80 4.73 4.14 3.76 3.49 3.13 2.74 2.29 1.69
1 7.08 4.98 4.13 3.65 3.34 3.12 2.82 2.50 2.12 1.60

2.5 5.29 3.93 3.34 3.01 2.79 2.63 2.41 2.17 1.88 1.48
5 4.00 3.15 2.76 2.52 2.37 2.25 2.10 1.92 1.70 1.39

10 2.70 2.30 2.10 2.04 1.05 1.37 1.77 1.66 1.51 1.20
120 0.1 11.38 7.31 5.79 4.95 4.42 4.04 3.55 3.02 2.40 1.56

0.5 8.18 5.54 4.50 3.92 3.55 3.28 2.93 2.54 2.09 1.43
1 6.85 4.79 3.95 3.48 3.17 2.96 2.66 2.34 1.95 1.38

2.5 5.15 3.80 3.23 2.89 2.67 2.52 2.30 2.05 1.76 1.31
5 3.92 3.07 2.68 2.45 2.29 2.17 2.02 1.83 1.61 1.25

10 2.75 2.35 2.13 1.99 1.90 1.82 1.72 1.60 1.45 1.19
∞ 0.1 10.83 6.91 5.42 4.62 4.10 3.74 3.27 2.74 2.13 1.00

0.5 7.88 5.30 4.28 3.72 3.35 3.09 2.74 2.36  1.90 1.00
1 6.64 4.60 3.78 3.32 3.02 2.80 2.51 2.18 1.79 1.00

2.5 5.02 3.69 3.12 2.79 2.57 2.41 2.19 1.94 1.64 1.00
5 3.84 2.99 2.60 2.37 2.21 2.09 1.94 1.75 1.52 1.00

10 2.71 2.30 2.08 1.94 1.85 1.77 1.67 1.55 1.35 1.00

Source: Adapted from Table 18 in Biometrika Tables for Statisticians, vol. 1, 3d ed., edited by E. S. Pearson and H. O. 
Hartley (New York: Cambridge University Press, 1958).

TABLE C.3 Continued
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TABLE C.4 Critical Values of Chi Square (X2)

df 0.250 0.100 0.050 0.025 0.010 0.005 0.001

1 1.32330 2.70554 3.84146 5.02389 6.63490 7.87944 10.828
2 2.77259 4.60517 5.99147 7.37776 9.21034 10.5966 13.816
3 4.10835 6.25139 7.81473 9.34840 11.3449 12.8381 16.266
4 5.38527 7.77944 9.48773 11.1433 13.2767 14.8602 18.467
5 6.62568 9.23635 11.0705 12.8325 15.0863 16.7496 20.515
6 7.84080 10.6446 12.5916 14.4494 16.8119 18.5476 22.458
7 9.03715 12.0170 14.0671 16.0128 18.4753 20.2777 24.322
8 10.2188 13.3616 15.5073 17.5346 20.0902 21.9550 26.125
9 11.3887 14.6837 16.9190 19.0228 21.6660 23.5893 27.877

10 12.5489 15.9871 18.3070 20.4831 23.2093 25.1882 29.588
11 13.7007 17.2750 19.6751 21.9200 24.7250 26.7569 31.264
12 14.8454 18.5494 21.0261 23.3367 26.2170 28.2995 32.909
13   15.9839 19.8119 22.3621 24.7356 27.6883 29.8194 34.528
14 17.1770 21.0642 23.6848 26.1190 29.1413 31.3193 36.123
15 18.2451 22.3072 24.9958 27.4884 30.5779 32.8013 37.697
16 19.3688 23.5418 26.2962 28.8454 31.9999 34.2672 39.252
17 20.4887 24.7690 27.5871 30.1910 33.4087 35.7185 40.790
18 21.6049 25.9894 28.8693 31.5264 34.8053 37.1564 42.312
19 22.7178 27.2036 30.1435 32.8523 36.1908 38.5822 43.820
20 23.8277 28.4120 31.4104 34.1696 37.5662 39.9968 45.315
21 24.9348 29.6151 32.6705 35.4789 38.9321 41.4010 46.797
22 26.0393 30.8133 33.9244 36.7807 40.2894 42.7956 48.268
23 27.1413 32.0069 35.1725 38.0757 41.6384 44.1813 49.728
24 28.2412 33.1963 36.4151 39.3641 42.9798 45.5585 51.179
25 29.3389 34.3816 37.6525 40.6465 44.3141 46.9278 52.620
26 30.4345 35.5631 38.8852 41.9232 45.6417 48.2899 54.052
27 31.5284 36.7412 40.1133 43.1944 46.9630 49.6449 55.476
28 32.6205 37.9159 41.3372 44.4607 48.2782 50.9933 56.892
29 33.7109 39.0875 42.5569 45.7222 49.5879 52.3356 58.302
30 34.7998 40.2560 43.7729 46.9792 50.8922 53.6720 59.703
40 45.6160 51.8050 65.7585 59.3417 63.6907 66.7659 73.402
50 56.3336 63.1671 67.5048 71.4202 76.1539 79.4900 86.661
60 66.9814 74.3970 79.0819 83.2976 88.3794 91.9517 99.607
70 77.5766 85.5271 90.5312 95.0231 100.425 104.215 112.317
80 88.1303 96.5782 101.879 106.629 112.329 116.321 124.839
90 98.6499 107.565 113.145 118.136 124.116 128.299 137.208

100 109.141 118.498 124.342 129.561 135.807 140.169 149.449

Source: Adapted from Table 8 in Biometrika Tables for Statisticians, vol. 1, 3d ed., edited by E. S. Pearson and H. O. Hartley 
(New York: Cambridge University Press, 1958).
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TABLE C.5 Critical Values for Squared Multiple Correlation (R2)
in Forward Stepwise Selection: A = .05

N−k−1

k F 10 12 14 16 18 20 25 30  35 40 50 60 80 100 150 200

2 2 43 38 33 30 27 24 20 16 14 13 10 8 6 5 3 2
2 3 40 36 31 27 24 22 18 15 13 11 9 7 5 4 2 2
2 4 38 33 29 26 23 21 17 14 12 10 8 7 5 4 3 2
3 2 49 43 39 35 32 29 24 21 18 16 12 10 8 7 4 2
3 3 45 40 36 32 29 26 22 19 17 15 11 9 7 6 4 3
3 4 42 36 33 29 27 25 20 17 15 13 11 9 7 5 4 3
4 2 54 48 44 39 35 33 27 23 20 18 15 12 10 8 5 4
4 3 49 43 39 36 33 30 25 22 19 17 14 11 8 7 5 4
4 4 45 39 35 32 29 27 22 19 17 15 12 10 8 6 5 3
5 2 58 52 47 43 39 36 31 26 23 21 17 14 11 9 6 5
5 3 52 46 42 38 35 32 27 24 21 19 16 13 9 8 5 4
5 4 46 41 38 35 52 29 24 21 18 16 13 11 9 7 5 4
6 2 60 54 50 46 41 39 33 29 25 23 19 16 12 10 7 5
6 3 54 48 44 40 37 34 29 25 22 20 17 14 10 8 6 5
6 4 48 43 39 36 33 30 26 23 20 17 14 12 9 7 5 4
7 2 61 56 51 48 44 41 35 30 27 24 20 17 13 11 7 5
7 3 59 50 46 42 39 36 31 26 23 21 18 15 11 9 7 5
7 4 50 45 41 38 35 32 27 24 21 18 15 13 10 8 6 4
8 2 62 58 53 49 46 43 37 31 28 26 21 18 14 11 8 6
8 3 57 52 47 43 40 37 32 28 24 22 19 16 12 10 7 5
8 4 51 46 42 39 36 33 28 25 22 19 16 14 11 9 7 5
9 2 63 59 54 51 47 44 38 33 30 27 22 19 15 12 9 6
9 3 58 53 49 44 41 38 33 29 25 23 20 16 12 10 7 6
9 4 52 46 43 40 37 34 29 25 23 20 17 14 11 10 7 6

10 2 64 60 55 52 49 46 39 34 31 28 23 20 16 13 10 7
10 3 59 54 50 45 42 39 34 30 26 24 20 17 13 11 8 6
10 4 52 47 44 41 38 35 30 26 24 21 18 15 12 10 8 6
12 2 66 62 57 54 51 48 42 37 33 30 25 22 17 14 10 8
12 3 60 55 52 47 44 41 36 31 28 25 22 19 14 12 9 7
12 4 53 48 45 41 39 36 31 27 25 22 19 16 13 11 9 7
14 2 68 64 60 56 53 50 44 39 35 32 27 24 18 15 11 8
14 3 61 57 53 49 46 43 37 32 29 27 23 20 15 13 10 8
14 4 43 49 46 42 40 37 32 29 26 23 20 17 13 11 9 7
16 2 69 66 61 58 55 53 46 41 37 34 29 25 20 17 12 9
16 3 61 58 54 50 47 44 38 34 31 28 24 21 17 14 11 8
16 4 53 50 46 43 40 38 33 30 27 24 21 18 14 12 10 8
18 2 70 67 65 60 57 55 49 44 40 36 31 27 21 18 13 9
18 3 62 59 55 51 49 46 40 35 32 30 26 23 18 15 12 9
18 4 54 50 46 44 41 38 34 31 28 25 22 19 15 13 11 8
20 2 72 68 64 62 59 56 50 46 42 38 33 28 22 19 14 10
20 3 62 60 56 52 50 47 42 37 34 31 27 24 19 16 12 9
20 4 54 50 46 44 41 37 35 32 29 26 23 20 16 14 11 8

(continued )
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N−k−1

k F 10 12 14 16 18 20 25 30  35 40 50 60 80 100 150 200

2 2 59 53 48 43 40 36 30 26 23 20 17 14 11 9 7 5
2 3 58 52 46 42 38 35 30 25 22 19 16 13 10 8 6 4
2 4 57 49 44 39 36 32 26 22 19 16 13 11 8 7 5 4
3 2 67 60 55 50 46 42 35 30 27 24 20 17 13 11 7 5
3 3 63 58 52 47 43 40 34 29 25 22 19 16 12 10 7 5
3 4 61 54 48 44 40 37 31 26 23 20 16 14 11 9 6 5
4 2 70 64 58 53 49 46 39 34 30 27 23 19 15 12 8 6
4 3 67 62 56 51 47 44 37 32 28 25 21 18 14 11 8 6
4 4 64 58 52 47 43 40 34 29 26 23 19 16 13 11 7 6
5 2 73 67 61 57 52 49 42 37 32 29 25 21 16 13 9 7
5 3 70 65 59 54 50 46 39 34 30 27 23 19 15 12 9 7
5 4 65 60 55 50 46 43 36 31 28 25 20 17 14 12 8 6
6 2 74 69 63 59 55 51 44 39 34 31 26 23 18 14 10 8
6 3 72 67 61 56 51 48 41 36 32 28 24 20 16 13 10 7
6 4 66 61 56 52 48 45 38 33 29 26 22 19 15 13 9 7
7 2 76 70 65 60 56 53 46 40 36 33 28 25 19 15 11 9
7 3 73 68 62 57 53 50 42 37 33 30 25 21 17 14 10 8
7 4 67 62 58 54 49 46 40 35 31 28 23 20 16 14 10 8
8 2 77 72 66 62 58 55 48 42 38 34 29 26 20 16 12 9
8 3 74 69 63 58 54 51 44 39 34 31 26 22 18 15 11 9
8 4 67 63 59 55 50 47 41 36 32 29 24 21 17 15 11 9
9 2 78 73 67 63 60 56 49 43 39 36 31 27 21 17 12 10
9 3 74 69 64 59 56 52 45 40 35 32 27 23 19 16 12 9
9 4 68 63 60 56 51 48 42 37 33 30 25 22 18 16 12 9

10 2 79 74 68 65 61 58 51 45 40 37 32 28 22 18 13 10
10 3 74 69 65 50 57 53 47 41 37 33 28 24 20 17 13 10
10 4 68 64 61 56 52 49 43 38 34 31 26 23 19 17 13 9
12 2 80 75 70 66 63 60 53 48 43 39 34 30 24 20 14 11
12 3 74 70 66 62 58 55 48 43 39 35 30 26 21 18 14 10
12 4 69 65 61 57 53 50 44 40 35 32 27 24 20 18 13 10
14 2 81 76 71 68 65 62 55 50 45 41 36 32 25 21 15 11
14 3 74 70 67 63 60 56 50 45 41 37 31 27 22 19 15 11
14 4 69 65 61 57 54 52 45 41 36 33 28 25 21 19 14 10
16 2 82 77 72 69 66 63 57 52 47 43 38 34 27 22 16 12
16 3 74 70 67 64 61 58 52 47 42 39 33 29 23 20 15 11
16 4 70 66 62 58 55 52 46 42 37 34 29 26 22 20 14 11
18 2 82 78 73 70 67 65 59 54 49 45 39 35 28 23 17 12
18 3 74 70 67 65 62 59 53 48 44 41 35 30 24 21 16 12
18 4 70 65 62 58 55 53 47 43 38 35 30 27 23 20 15 11
20 2 82 78 74 71 68 66 60 55 50 46 41 36 29 24 18 13
20 3 74 70 67 65 62 60 55 60 46 42 36 32 26 22 17 12
20 4 70 66 62 58 55 53 47 43 39 36 31 28 24 21 16 11

Note: Decimals are omitted; k = number of candidate predictors; N = sample size; F = criterion F‐to‐enter.

Source: Adapted from Tables 1 and 2 in “Tests of significance in forward selection regression,” by Wilkinson and Dallal,
Technometrics, 1981, 23(4), 377–380. Vol. 23 No.4, November 1981 “Reprinted with permission from Technometrics.
Copyright 1981 by the American Statistical Association. All rights reserved.”
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TABLE C.6 Critical Values for FMAX (S2
MAX/S2

MIN) Distribution for A = .05 and .01

A = .05

k
df 2 3 4 5 6 7 8 9 10 11 12

4 9.60 15.5 20.6 25.2 29.5 33.6 37.5 41.1 44.6 48.0 51.4
5 7.15 10.8 13.7 16.3 18.7 20.8 22.9 24.7 26.5 28.2 29.9
6 5.82 8.38 10.4 12.1 13.7 15.0 16.3 17.5 18.6 19.7 20.7
7 4.99 6.94 8.44 9.70 10.8 11.8 12.7 13.5 14.3 15.1 15.8
8 4.43 6.00 7.18 8.12 9.03 9.78 10.5 11.1 11.7 12.2 12.7
9 4.03 5.34 6.31 7.11 7.80 8.41 8.95 9.45 9.91 10.3 10.7

10 3.72 4.85 5.67 6.34 6.92 7.42 7.87 8.28 8.66 9.01 9.34
12 3.28 4.16 4.79 5.30 5.72 6.09 6.42 6.72 7.00 7.25 7.48
15 2.86 3.54 4.01 4.37 4.68 4.95 5.19 5.40 5.59 5.77 5.93
20 2.46 2.95 3.29 3.54 3.76 3.94 4.10 4.24 4.37 4.49 4.59
30 2.07 2.40 2.61 2.78 2.91 3.02 3.12 3.21 3.29 3.36 3.39
60 1.67 1.85 1.96 2.04 2.11 2.17 2.22 2.26 2.30 2.33 2.36
∞ 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

A = .01

k
df 2 3 4 5 6 7 8 9 10 11 12

4 23.2 37 49 59 69 79 89 97 106 113 120
5 14.9 22 28 33 38 42 46 50 54 57 60
6 11.1 15.5 19.1 22 25 27 30 32 34 36 37
7 8.89 12.1 14.5 16.5 18.4 20 22 23 24 26 27
8 7.50 9.9 11.7 13.2 14.5 15.8 16.9 17.9 18.9 19.8 21
9 6.54 8.5 9.9 11.1 12.1 13.1 13.9 14.7 15.3 16.0 16.6

10 5.85 7.4 8.6 9.6 10.4 11.1 11.8 12.4 12.9 13.4 13.9
12 4.91 6.1 6.9 7.6 8.2 8.7 9.1 9.5 9.9 10.2 10.6
15 4.07 4.9 5.5 6.0 6.4 6.7 7.1 7.3 7.5 7.8 8.0
20 3.32 3.8 4.3 4.6 4.9 5.1 5.3 5.5 5.6 5.8 5.9
30 2.63 3.0 3.3 3.4 3.6 3.7 3.8 3.9 4.0 4.1 4.2
60 1.96 2.2 2.3 2.4 2.4 2.5 2.5 2.6 2.6 2.7 2.7
∞ 1.00 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Note: S2
MAX is the largest and S2

MIN the smallest in a set of k independent mean squares, each based on degrees of freedom (df).

Source: Adapted from Table 31 in Biometrika Tables for Statisticians, vol. 1, 3d ed., edited by E. S. Pearson and H. O. 
Hartley (New York: Cambridge University Press, 1958).
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specific comparisons and trend analysis, 200–

201, 220–221, 242
sphericity, 216–217
strength of association, 207, 216, 223
unequal n, 203, 211, 214, 219–220, 225–226, 232
uses of, 197–198
within‐subjects designs, 216–219

Analysis of variance (ANOVA), 37–53
GLM and, 917–918, 921, 925
as multiple regression, 119, 156–158
normality in, 79

A priori comparisons. See Planned comparisons
Atomistic fallacy, 787
Autocorrelation of errors, 128

Bartlett’s test
for canonical correlation, 579
for factorability, 619
for MANOVA (sphericity), 310

Belly dancing, 17–18, 153–155
Best fitting straight line. See Bivariate correlation 

and regression
b. See Type II error
Bivariate correlation and regression, 3, 17–18. See

also Correlation; Correlation matrix
equations for, 56
in factor analysis, 614–615, 629
GLM and, 913, 925

Bivariate statistics, defined, 2
Blocking

as alternative to covariates, 224–225
in matched‐randomized design, 45

Bonferroni, 270, 272
Bootstrapping, 143
Box’s M test, 254, 283, 318, 374

Canonical correlation analysis, 18–19, 571–611
assumptions of, 576, 593–595, 607
canonical coefficients, 578, 580–582, 585, 587, 

589, 604, 606, 610–611
canonical variate scores, 574, 576, 593, 610–611
checklist for, 603
compared with regression, 571–572, 577–578, 

580
eigenvalues and eigenvectors, 578–580
GLM and, 919–920
loading matrices, 582, 589, 592, 597, 602
problems with use of, 574–575
programs compared, 609–611
proportion of variance, 579, 584–585, 603, 606, 

608–610
r2

ci , 578–579
redundancy, 585, 589, 592, 595, 603
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Coefficient of variation, 136
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Communality. See Factor analysis, communality
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737
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IBM SPSS software for, 288, 293, 302, 369
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in a data set, 12, 14
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Covariates. See also Analysis of covariance

in DISCRIM, 382, 398
in logistic regression, 442
in MANCOVA, 247, 249–256, 266, 268–270, 

273–275, 279, 283, 286–287, 290–291, 
298–310

in MANOVA, stepdown F, 274
in multiple regression, 119
in sequential regression, 18, 138
in survival analysis, 510, 528–539, 553

Cross‐products matrix. See Sum‐of‐squares and 
cross‐products matrix

Cross‐validation
in DISCRIM, 407, 420–421, 423
in SEM, 687, 725, 733
in statistical regression, 140–141

Data deletion. See Case deletion; Variable, deletion
Data matrix, 12–13
Data snooping. See also Post hoc comparisons

in FA, 638
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in multiple regression, 149
in SEM. See Structural equation modeling, Type 

I error rate
Delta, as criterion for rotation, 643–644
Descriptive statistics, defined, 7–8
Determinant, 931–933

in DISCRIM, 387
in MANCOVA, 269
in MANOVA, 287, 290
multicollinearity and singularity and, 90, 255
in profile analysis, 323, 365
in SEM, 689, 759

Detrended normal probability plots, 81–83
Dichotomous variables, 5–7

in correlation, 62
in GLM, 915–919
and linearity, 83
in logistic regression, 439, 443–447, 458, 465, 

502, 508–509
in MLM, 812
in outliers, 73
in regression, 119

Difference scores, as alternative to ANCOVA, 224
Dimensions, 10

in DISCRIM, 378–379, 388, 405
in GLM, 919–920
statistical criteria in MANOVA and, 271

Direct effects in SEM, 686
Direct oblimin rotation, 643–644
Discrepancy

outliers, 74–75
in sample sizes, 86

Discrete variables, 5–7
in a data set, 12
and dummy variable coding, 6, 156
in GLM, 916–918, 920
in logistic regression, 439, 443–447, 460, 466, 

484, 503, 507
in SEM, 681, 734–735
in survival analysis, 531, 539

Discriminant analysis (DISCRIM), 23–24, 25, 
377–438

assumptions of, 383–385, 409–413
canonical correlation, 382, 388–389, 392–395, 

400, 404
centroids, 378, 393–394, 399–402
checklist for direct DISCRIM, 427
classification, 377, 380–386, 406–409, 423
classification coefficients, 389–390, 394, 407
compared with MANOVA, 23–24, 25, 245, 

377, 379–380, 382–386, 388, 397–399, 
403–406

covariates, 379, 382, 398
cross‐validation, 407, 420, 423
data set for, 386
dimensions, 378–381, 388, 405
direct DISCRIM, 397, 414–431
discriminant function coefficients, 388, 393, 

402, 404

effect size, 404, 423, 427
eigenvalues, 389, 391–392, 394–395, 404
GLM and, 918–921, 924–925
interpretation of discriminant functions, 377, 

402–403
loading (structure) matrix, 389, 393–394, 

402–404, 414, 435
McNemar’s change test, 407–408
Mahalanobis distance, 399, 438
number of discriminant functions, 378–381, 

388, 400
partition of sum of squares, 386–387
plots of centroids, 378, 400–401, 414, 420
plots of discriminant function scores, 385
programs compared, 432–438
quadratic discriminant analysis, 385, 420, 

422–423
Rao’s V, 399
results, 428–431
rotation of loading matrix, 403
sequential DISCRIM, 398
significance of successive discriminant functions, 

393–394, 400, 412, 414, 417
significance test for DISCRIM, 387–388, 398
stepwise DISCRIM, 398
strength of association. See effect size
structure matrix, 389, 393–394, 396, 402–404, 

414, 418, 432
tolerance, 385, 399, 413
unequal n, 380, 383–384, 385, 391, 398, 

406, 410
Dispersion matrix. See Variance‐covariance matrix
Division, matrix, 928–929
Doubly‐multivariate analysis, 314, 343–347, 

362–373
syntax and location of output, IBM SPSS GLM, 

IBM SPSS MANOVA, SAS GLM, 
344–346

Dummy variable coding, 6. See also Dichotomous
variables; Discrete variables

Durbin‐Watson statistic, 128

Ecology fallacy, 787
Effect size, 54–55

in ANCOVA, 201, 210–211, 234–235
in ANOVA, 54–55
in DISCRIM, 382, 393, 404–405, 423, 427
in logistic regression, 443, 451, 453, 462–463, 

465, 467
in MANOVA/MANCOVA, 250, 262, 272, 275, 

291, 294, 302, 305
in MFA, 864, 904
in MLM, 790, 836
in profile analysis, 321, 323, 325, 353, 357, 369
in SEM, 688
as squared correlation, 54–55
in survival analysis, 513, 542–543, 557
in time series analysis, 18–45 to 18–46, 18–58 

(online)
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Eigenvalues and eigenvectors, 933–936
in canonical correlation, 578–580, 585
in DISCRIM, 389, 391–392, 394, 404
in FA, 619–624, 633, 649–650, 661
in missing data correlation matrix, 70–71

EM for missing data, 63, 66, 68–69, 71–72
IBM SPSS MVA output, 64–66, 473–476

EQS
categorical data, 734
compared with other programs for SEM, 

701–702, 778–785
fit indices, 700, 764
identification problems, 716
Lagrange multiplier test in, 726–728, 764–766
output, 702–703, 727, 732, 757, 765, 

768–769, 778
small‐sample SEM example, 699
structural equations model,755
Wald test, 728–733

Equality of slopes. See Homogeneity of regression; 
Profile analysis of repeated measures

Equal n. See Unequal n
Equamax rotation, 642–644
Error of prediction. See Residuals
Error variance, reduction

in ANCOVA, 199, 202
in MANCOVA, 326
in within‐subjects ANOVA, 44

Eta squared. See Effect size
Expected frequencies, adequacy of

in logistic regression, 444, 484
in MFA, 866, 893

Expected normal probability plots, 81–83
in time series,18–55, 18–57 (online)

Experimental research, 2–3
ANCOVA and, 197–198, 202, 205
blocking versus covariates, 224–225
cross‐level interactions in MLM, 789
MANOVA and, 247–248, 251
MLM and, 786
multiple regression and, 119
profile analysis and, 316, 331
sampling in, 7
in SEM, 683, 685
in survival analysis, 512–513
in time series analysis, 18–2, 18–6, 18–30 

(online)
unequal n and, 219–220

Factor analysis (FA) and principal components 
analysis (PCA), 25–26, 612–680

alpha factor extraction, 637, 642
assumptions of, 618
checklist for, 674
communality, 626–627, 632–633, 635–642, 645, 

647–649, 651–652, 655, 664, 668, 672
complexity of variables, 617
confirmatory, 614, 616, 618, 649
data set for, 620

eigenvalues and eigenvectors, 619–624, 637, 
649–650, 661

exploratory, 614–616, 618, 620, 651
factor correlation matrix, 614, 631, 651
factor extraction, 620–625, 637–642, 661
factor scores, 614, 616, 627–630, 651, 654–656, 

664, 671, 680
GLM and, 925, 929
group comparisons in, 656
image extraction, 641, 648
internal consistency of solutions, 652–654, 671
interpretation

of factors, 613, 616, 620, 625, 640, 645–647, 
651–652, 654–655, 661, 672, 680

geometric, 645–647
Kaiser’s MSA, 619
loading matrix, 614, 621, 624–628, 630, 

643–645, 651, 654, 676, 680
marker variables, 617–618, 652
maximum likelihood extraction, 637–638, 

640–641, 648, 651, 680
naming factors, 655
number of factors, 612–613, 615–618, 

621–622, 637–638, 644, 645, 647–651, 
655, 661, 680

number of variables per factor, 649
oblique rotation, 614, 620, 630–632, 642, 

644–645, 647, 651–654, 664, 667, 
676, 680

direct oblimin, 643–644
direct quartimin, 643–644
gamma and delta, 643–644
orthoblique, 643–644

orthogonal rotation, 614, 625–626, 630–631, 637, 
642–644, 648, 651–654, 664, 667, 671, 
676, 680

equamax, 643–644
orthogonal with gamma, 643–644
quartimax, 643–644
varimax, 625, 632–634, 636–639, 642–645, 

661, 664–665, 670, 672–673
pattern matrix, 614, 620–621, 630–632, 637, 643, 

651, 654, 680
PCA (principal components analysis), 25, 

612–680
PCA versus FA, 639–640
principal factors extraction (PFA), 640, 645
programs compared, 676–680
reliability of factors, 619–620, 642, 651
reproduced correlation matrix, 614–615, 627, 

629, 632, 641–642, 648, 679
residual correlation matrix, 614, 627, 632
results, 674–675
scree test, 649–650, 661
simple structure, 645, 651–652
stability of solutions, 638, 654
structure matrix, 614, 631, 654
sum of squared loadings (SSLs), 626, 637, 

652–653, 671
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transformation matrix, 625, 634, 645
two‐variable factors, 619, 651

Factorial designs
in ANOVA, 42–43, 46–47
in DISCRIM, 379, 401, 405–406
specific comparisons for, 52–53

Fixed effects, 49
in MLM, 796–797, 799, 830, 833, 835, 837, 860

Flatness test, in profile analysis, 316, 324, 353
Fmax test, 86
F ratio, adjusted for post hoc contrasts. See

Scheffé test

Gamma, as criterion for rotation, 643–644
Generalized variance. See Determinant
General linear model (GLM), 915–925
GFI (goodness of fit index), 723–724
GLM. See General linear model
Group differences in SEM, 686, 735–737

Hierarchical analysis. See Sequential analysis
Hierarchical analysis, in MFA, 893
HLM. See Multilevel modeling
HLM, compared with other programs for MLM, 

856–861
Homogeneity of covariance. See Sphericity
Homogeneity of regression

in ANCOVA, 204–205, 215
interaction and, 224
in MANOVA and MANCOVA, 254, 283–286
in MLM, 786, 789, 804
outliers and, 203

Homogeneity of variance, 86. See also
Homoscedasticity

in ANCOVA, 203, 230–232
in ANOVA, 49

Homogeneity of variance‐covariance matrices, 86
in DISCRIM, 384–385, 412–413
in MANOVA, 253–254, 271, 282–283
in profile analysis, 317–318, 362–364

Homoscedasticity, 78, 85. See also Homogeneity of 
variance

in multiple regression, 125–127, 162–167
Hosmer‐Lemeshow statistic in logistic regression, 

461
Hotelling’s T2, 21

for flatness test in profile analysis, 324
Hotelling’s trace, 263–264, 271
Hypothesis testing, 33–37

IBM SPSS, 4. See also Output of AMOS, EQS, 
IBM SPSS, LISREL/PRELIS, and SAS

IBM SPSS ACF (online)
for diagnosis and estimation, 18–19 to 18–20, 

18–22
for differenced scores, 18–16 to 18–17, 18–31 to 

18–32
output, 18–16, 18–20, 18–26, 18–28, 18–31
of residuals, 18–19 to 18–20

IBM SPSS ARIMA (online)
compared with other programs for ARIMA, 

18–62 to 18–65
intervention analysis, 18–30 to 18–32, 18–33 to 

18–35, 18–39
output, 18–20, 18–22, 18–35, 18–39

IBM SPSS CANCORR, compared with other 
canonical correlation programs, 609–611

IBM SPSS CONDESCRIPTIVE. See IBM SPSS 
DESCRIPTIVES

IBM SPSS COXREG
compared with other Cox Regression programs, 

566–569
complete example, 555–561
output, 533–536, 555, 557–559
prediction from covariates, test statistics for, 544
proportionality of hazards, 515, 539–540, 553, 555
sequential analysis, 531, 534–536, 557–559

IBM SPSS DESCRIPTIVES
describing outliers, example, 103–104
output, 103–104, 363–364, 548, 549, 550

IBM SPSS DISCRIMINANT
Box’s M, 385
classification matrix, 406, 407
classification with separate covariance matrices, 

385
compared with other DISCRIM programs, 

432–438
cross‐validation, 407
evaluation of successive discriminant functions, 

400
loading matrix, 402
output, 391–392
plots of group centroids, 401
rotation of loading matrices, 403
scatterplots, discriminant function scores, 385
small‐sample example, 391–394
stepping methods, 399

IBM SPSS EXPLORE, 162–166
IBM SPSS FACTOR

adequacy of rotation, 651
alpha factor extraction, 642
compared with other FA programs, 676–679
factorability of R, 619
factor extraction procedures, 637–639, 641
factor scores, 655
generalized least squares factoring, 641–642
image factoring, 641
maximum likelihood extraction, 641
multicollinearity, to evaluate, 555
oblique rotation, 644–645
output, 633–634
partial correlation matrices, 619
PFA, 641
rotation, 642–645
scree test, 649
small‐sample FA example, 632–634
SMCs in FA, 648
unweighted least squares factoring, 641
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IBM SPSS FREQUENCIES
data screening example, 93–97, 99
example of skewness, 94–96
grouped data example, 279–281
histograms, 94–95, 97, 99
normality, 81
output, 94–95, 97, 99, 167, 280–281
univariate descriptive statistics, 61
univariate outliers, 73, 124

IBM SPSS GENLOG
compared with other MFA programs, 910–913
general loglinear models, 892
output, 886–887
small‐sample MFA example, 883–885
tests of individual effects in MFA, 891

IBM SPSS GLM
compared with other ANCOVA programs, 

242–244
compared with other MANOVA programs, 

310–312
compared with other programs for profile 

analysis, 373–375
small‐sample example

ANCOVA, 211–212
MANOVA, 263–266
profile analysis, 325–327

syntax and location of output for
doubly‐multivariate ANOVA, 343–347
interaction contrasts, 341
orthogonal and pairwise comparisons, 221–222
simple comparisons, 338, 340
simple effects, 336, 339

IBM SPSS GRAPH
homoscedasticity in canonical correlation, 576
linearity, 84, 97, 98, 100
output, 98, 100

IBM SPSS HILOGLINEAR
compared with other MFA programs, 910–913
complete example, 893–908
hierarchical MFA models and, 890
output, 884–885, 898–899, 900–901, 904–905
small‐sample MFA example, 883–886
tests of effects, 891

IBM SPSS KM
compared with other survival programs, 563–569
group differences, tests for, 358–359
output, 529–530

IBM SPSS LIST VARIABLES, describing outliers, 
example, 103

IBM SPSS LOGISTIC REGRESSION
classification of cases, 469–470
coding discrete variables, 466
compared with other logistic regression 

programs, 502–507
coefficients, tests of, 461
Cox and Snell R2, 462
direct logistic regression, 456
Nagelkerke R2, 462
odds ratios in, 464

output, 454–455, 457
sequential logistic regression, 456
small‐sample logistic regression example, 

451–455
stepwise logistic regression, 456–458
unbiased classification with, 470

IBM SPSS LOGLINEAR
compared with other MFA programs, 910–913
for general loglinear models, 892
output, 904–905
tests of effects, 891

IBM SPSS MANOVA
adjusted means example, 291–292, 302–303
Box’s M, 254, 283
compared with other ANCOVA programs, 

242–244
compared with other canonical correlation 

programs, 609–611
compared with other DISCRIM programs, 

432–438
compared with other MANOVA programs, 

310–312
compared with other programs for profile 

analysis, 373–376
complete doubly‐multivariate example, 365–369
complex ANCOVA designs in, 215
discriminant functions, 275
doubly‐multivariate analysis, 343–347, 365–368
homogeneity of regression, 204–205, 215
homogeneity of regression examples, 215, 

283–286, 365
interaction contrasts, 341
multicollinearity and singularity, 255, 287
multiple regression analysis in MANCOVA, 

298, 300
normal probability plots, 81–82
output, 215, 263, 284–287, 289–290, 293, 

299–304, 325, 365–368
pooled within‐cell correlation matrix, 272, 289
rotation of loading matrices, 403
simple effects analysis, 335–341
small‐sample example of profile analysis, 

325–326
small‐sample MANOVA example, 263
syntax and location of output for

doubly‐multivariate analysis, 343–347
interaction contrasts, 341
orthogonal and pairwise comparisons, 

221–222
simple comparisons, 338–340
simple effects, 336, 339

tests of adjusted means, 221
unequal n, 220, 278

IBM SPSS MIXED
compared with other programs for MLM, 

856–859
comparing models in, 834–835
complete example of MLM, 839–853
estimation methods, 837
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intraclass correlations in, 826, 843–844
repeated‐measures factors, 818–823

IBM SPSS MVA, 63–66, 473–476
IBM SPSS NOMREG

compared with other logistic regression 
programs, 502–507

complete example, 484, 488–494
multiple unordered categories, 467

IBM SPSS ONEWAY for simple effects and 
comparisons, 336–338

IBM SPSS PLOT. See IBM SPSS GRAPH
IBM SPSS PLUM

compared with other logistic regression 
programs, 502–507

IBM SPSS PPLOT, data screening, 81–83
IBM SPSS PROBIT, 459
IBM SPSS REGRESSION

compared with other regression programs, 190–195
complete sequential example, 175–177
complete standard example, 169–173
confidence limits, 152
group differences in survival analysis, 554–555
multicollinearity and singularity, examples, 100, 

104, 168–169, 843
multivariate outliers, 75–76

examples, 99–101, 167–168, 842, 844
normal probability plots of residuals, 81–82
output, 100–101, 102, 103, 134–135, 139, 163, 

168, 169, 170–171, 175–177, 282–283, 
551, 552, 554, 844, 845

partial and semipartial correlations, 145–146
residuals example, 163–168
small‐sample standard example, 136–137
standard multiple regression, 136
stepwise regression, 142
test of regression coefficients, 150–151

IBM SPSS SCATTERGRAM. See IBM SPSS 
GRAPH

IBM SPSS SURVIVAL
compared with other survival programs, 563–569
group differences, 543–544
output, 522–524
small‐sample example, 522–524
and types of survival analysis, 528

IBM SPSS TSPLOT, 18–9, 18–11, 18–13 (online)
Identification in SEM, 714–717
IFI (incremental fit index), 721
Image factor extraction, 641
Importance of variables

in DISCRIM, 382, 403–404
in logistic regression, 441–442, 447–448, 471
in MANOVA, 249–250, 272–275
in MFA, 864
in multiple regression, 119, 136, 144–146
in survival analysis, 512–513
suppressor variables, 156–157

Imputing missing data, 66–70
in logistic regression, example, 473–476
in multiple regression, example, 181–190

Incremental F ratio, 151–152
Independence. See Orthogonality
Independence of errors, 81

in logistic regression, 445–446
in MLM, 787, 792–793, 826–827, 843–844
in multiple regression, 128

Indeterminacy in FA, 655
Indirect effects in SEM, 684, 686, 774
Individual differences

in ANCOVA, 197
as a source of variance, 44

Inferential statistics, defined, 7–8
Influence, 75–76
Initial values. See Start values in SEM
Input. See Output of AMOS, EQS, IBM SPSS, 

LISREL/PRELIS, and SAS 
Interaction contrasts, 335, 341–342
Interactions. See also Simple comparisons; Simple 

effects
in ANOVA, 43–47
centering, 158–160, 827–830
in DISCRIM, 401, 406
hierarchical and nonhierarchical models, 

470–472, 892
between IVS and covariates, 204–205, 215, 

224–225
in logistic regression analysis, 442, 458, 470–471
in MANOVA, 249, 287–288, 298–299
in MFA, 862
in MLM, 787–789, 791–794, 797, 830–831, 833, 

838–839
in multiple regression, centering, 158–160
in profile analysis, 314–315. See also Parallelism 

test in profile analysis
between subjects and treatment, 44
in time series analysis, 18–29 (online)
and unequal n, 219–220

Intercept (constant), A
in bivariate regression, 57
in logistic regression, 440, 449–451, 460, 472
in MLM, 787–789, 792, 794–812, 814–818, 

820–823, 826–828, 830, 832–838, 843, 
845–847

in multiple regression, 118, 130, 135, 138, 159
in time series analysis, 18–25 (online)

Interpretation
in canonical correlation, 592
in DISCRIM, 377–379, 381–382, 400–403
in FA, 613–616, 620, 625, 632, 638, 640–641, 

644–645, 647, 654–655, 661, 672, 680
of linear combination, 10–11
in logistic regression, 450–451, 463–465
in MANOVA (with inconsistent results), 246, 275
in MFA, 882, 901–904
in MLM, 827–830, 833, 835
of output, 4
in SEM, 701, 725, 737
in survival analysis, 544–545
in time series analysis, 18–57 (online)
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Interval scales, 5–7
Intraclass correlation in MLM, 789, 793, 797, 

826–827, 843–844, 861

Jackknifed classification, 407, 420

Kaiser’s MSA, 619
Kurtosis, 79–81, 86, 96–97

in SEM, 618–619, 688, 759, 778, 785

Lagrange multiplier test, in SEM, 689, 726–728, 
764–766

Lambda, in MFA, 901
Lambda, Wilks’

in canonical correlation, 579
in DISCRIM, 387, 399
homogeneity of variance‐covariance matrices 

and, 253
for improvement in classification, 408
in MANOVA, 260–261, 271

Latent class analysis, 687
Latent means in SEM, 736–737
Latent variables

in MLM, 823–824
in SEM, 681–683, 686, 689, 691–693, 696, 705, 

710, 715–717, 728, 736–737
Latin square designs, 47–48
Level of confidence. See Type I error
Levels test, in profile analysis, 315, 320, 

353–355, 369
Leverage, 75–76, 111–112, 124, 226, 229, 410
Likelihood ratio statistic, 451, 460, 868
Linearity, 78, 83–84, 96–98
Linearity in the logit, 445, 477–478, 484
LISREL

categorical data, 734–735
compared with other programs for SEM, 

701–714, 778–784
confirmatory factor analysis example, 

739–753
fit indices, 725
identification problems, 716
Lagrange multiplier test in, 728
output, 706–709, 729–730, 740–746, 748–751
small‐sample SEM example, 706–709
Wald test, 733

LM test. See Lagrange multiplier test
Loading matrix

in canonical correlation, 582–583, 589, 597, 602
in DISCRIM, 389, 394, 402–404, 414, 423, 432
in FA, 614, 621, 624–628, 630, 637, 643–645, 

651, 654, 676, 680
Logistic regression, 24–25, 439–509

assumptions of, 443–446, 477
case‐control studies, 472
checklist

for direct two‐group, 482
for sequential multiple group, 499

classification of cases, 469–470, 478, 494

coefficients, 440–442, 447–448, 453–454, 461, 
463–465, 472, 501, 508

tests of, 447–448, 461–462, 476–478, 489–494
comparing models, 459–461
comparison with a perfect model, 460–461
constants‐only versus full model, 460
covariates, 442
Cox and Snell R2, 462–463
criterion for classification, 470
data set for, 446
deciles of risk, 461
direct, 456, 477–480
discrete variables, coding of, 451, 453, 465–466
effect size, 443, 462–463
expected frequencies, adequacy of, 444, 484–485
full model, 441, 443, 450–451, 456, 459–460, 

462, 477, 483, 509
GLM and, 918, 920, 925
goodness‐of‐fit, 444, 448–449, 459–461
hierarchical and nonhierarchical models, 470–472
Hosmer‐Lemeshow statistic, 461
importance of predictors, 441–442, 447–448, 472
interactions, 442, 458, 470–471
interpretation, 450–451, 463–465
likelihood ratio test of individual variables, 461
logit, 439–440, 442, 444, 447, 458–459, 509
McFadden’s rho, 462
matched groups, 472
maximum likelihood test, 444, 447, 451, 458
multiple outcome categories, 466–469
Nagelkerke R2, 462
odds, 440, 442, 447, 463–466
ordered outcome categories, 466–469
parameter estimates. See Logistic regression, 

coefficients
power, 444
probit transformation, 458–459
programs compared, 502–509
receiver operating characteristic (ROC) curves, 

463
residuals, 450–451
results

for direct two‐group, 482–483
for sequential multiple‐group, 499–502

saturated model. See Logistic regression, full 
model

sequential, 456
stepwise, 456, 458
trend analysis, 466
Wald test, 446, 447, 451, 453, 458, 502

Logit analysis, 914. See also Logistic regression
Loglinear model. See Multiway frequency analysis

McNemar’s change test, 407–408
Manifest variables in SEM, 682
Magnitude of effect. See Effect size
Mahalanobis’ distance

as criterion in DISCRIM, 399
for multivariate outliers, 74–76, 99–101, 111
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in ANCOVA, 226, 230
in canonical correlation, 600
in DISCRIM, 410–411
in MANOVA, 282–283
in MLM, 842, 844
in regression, 124, 167–168
in survival analysis, 549, 551–552

Mardia’s coefficient, 759
Marginal test, in MFA, 870–871, 875
Marker variables, 617–618, 652
Matched‐randomized design, 44–45
Maximum likelihood estimation

in MLM, 837
in SEM, 718

Maximum likelihood factoring, 637–638, 641, 648, 
651, 680

Maximum likelihood test, in logistic regression, 
440–441, 444

Means, adjusted
in ANCOVA, 197–198, 201–202, 216, 220–221, 

234
in MANCOVA and MANOVA, 250, 291, 302, 

374
Mean square

in ANCOVA, 208
in ANOVA, 42–48

Measurement errors in SEM, 684
Measurement models, in SEM, 683, 737
Measurement scales, 5–7
Mediation, 160–161. See also Indirect effects in 

SEM
MFI (absolute fit index), 723
MIANALYZE, 67, 70, 182, 188–189

output, 188
Missing data, 62–72
MLR. See Maximum likelihood test
MLwiN compared with other programs for MLM, 

856–861
Multicollinearity and singularity, 91. See also

Collinearity diagnostics
Multidimensional space and GLM, 919
Multilevel modeling (MLM), 19, 786–861

ANCOVA and, 786, 789
assumptions of, 791, 839–844
atomistic fallacy, 787
centering, 827–830
checklist, 852–853
comparing models, 834–835
cross‐level interactions,788–789, 830–831

and collinearity, 794
and power, 793

data set for, 794, 819
ecology fallacy, 787
effect size, 836
equations in, 796–797
exploratory model building, 838–839
fixed effects, 835, 860
fixed intercepts and slopes, 830, 832
GLM and, 918, 922

homogeneity of regression and, 786, 789, 804
IGLS, 837
independence of errors, 787, 792–793, 826, 

843–844
interactions, 787, 789, 791–794, 797, 830–831, 

839
intercepts‐only model, 797–802
interpretation, 835, 836
intraclass correlation, 789, 793, 797, 826–827, 

843–844, 861
latent variables in, 823–824
log‐likelihood, 835, 860
MIVQUE0, 838
multiple‐response analysis, 825
nonnormal outcome variables, 824–825
null model, 794, 799
parameter estimates, 789, 798, 806, 810, 814, 835

and centering, 827–830
power, 787, 791, 833
predictors, number of, 790–791
programs compared, 856–861
random coefficients, 787, 803
random effects, 786, 793, 796–797, 835, 838, 860
random intercepts and slopes, 830–833
repeated measures in, 786, 818–823, 825, 

860–861
residuals, 792, 828, 860
results, 853–856
r, 793, 826–827
RIGLS, 837
symbols in, 796–797
three‐level model, 823, 839, 844–845, 847, 

850, 852
and intraclass correlation, 826–827, 843–844

variance‐covariance matrix, structure of, 790, 799
Wald test, 835

Multiple correlation. See Multiple regression
Multiple imputation of missing data, 67, 69–70, 72, 

181–190
Multiple regression, 18, 117–196

assumptions of, 121–128, 161–169
autocorrelation, Durbin‐Watson statistic, 128
centering, 158–160
checklist

for sequential, 179
for standard, 173

choice of variables, 122
covariates, 18, 138
data set for, 129
difference between two sets of predictors, 

153–154
Durbin‐Watson statistic, 128
GLM and, 916–917, 921
incremental F, 151
partial correlation, 144–145, 146
partition of sum of squares, 130
post hoc tests, 149–150
programs compared, 134–136, 190–196
R2, 131–133
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Multiple regression (continued)
adjusted, 154–155
significance test for, 149–150

regression coefficients, 117–118, 121, 129, 134, 
149–150

confidence limits for, 151–153
significance of, 149–150
suppressor variables and, 155–156

residuals, 125–128, 162
results

sequential, 179–180
standard, 173–174

ridge regression, 125
semipartial correlation, 145–146
statistical (stepwise), 138–143

and case‐to‐variable ratio, 123
unique versus shared variance, 172

Multiple regression analysis of covariates in 
MANCOVA, 298–301

Multiplication, matrix, 928–929
Multivariate analysis of variance (MANOVA) 

and multivariate analysis of covariance 
(MANCOVA), 21–22, 245–313

adjusted means, 250, 291–293, 302–304
versus ANOVA, 245–246, 270
assessing DVs, 271–275, 288–291, 298, 

300–301
assumptions of, 251–254, 279–287
Box’s M, 254, 283
checklist

for MANCOVA, 305
for MANOVA, 294

choice of DVs, 251
covariates, 250–251, 298–309

reliability of, 255, 286–287
data set for, 255
discriminant analysis, compared with, 23–24, 25, 

245, 377, 379, 380, 382–386, 388, 394, 
397–399, 404–406

effect size, 262–263, 288, 291, 294, 302, 305
GLM and, 920, 923
homogeneity of regression, 254–255, 283–286
homogeneity of variance‐covariance matrices, 

253–254, 282–283
multivariate significance tests, 261–262, 271
partition of sums of squares, 257–259
power, 246, 252–253
programs compared, 263–267, 310–313
results

for MANCOVA, 306–309
for MANOVA, 295–298

robustness, 253, 271
specific comparisons and trend analysis, 250, 

275–276
stepdown analysis, 247, 251–252, 254–255, 

273–274, 275, 288–291, 302
Type I error rate, 246, 272, 274, 276
unequal n, 252, 271, 278–279, 281

Multivariate normality, 78

Multivariate outliers, 72–77. See also Cook’s 
distance; Mahalanobis’ distance; Outliers

Multiway frequency analysis (MFA), 19, 24, 
862–914

additivity, 868
assumptions of, 893
checklist, hierarchical analysis, 908
data set for, 865
DV in, 862
effect size, 864
evaluation, 878–883
expected frequencies, adequacy of, 

866–867, 893
full models, 868, 876, 883, 890–893
G2, 868
GLM and, 919, 920–921, 924
hierarchical and nonhierarchical models, 876, 

890, 892
importance of effects, 864, 883
interpretation, 878–883
likelihood ratio statistic, 868
logit analysis, 914
log‐linear model, 862, 875
marginal test, 870–871, 875
modeling, 875–878
Newton‐Raphson algorithm, 890
parameter estimates, 879–883, 904–905
partial test, 871–875, 892
power, 866
programs compared, 910–914
repeated measures in, 865
residuals, 878, 899–901
results, 908–910
saturated models, 876, 885, 889, 891
screening, 867–875, 893–895
significance tests, 890
specific comparisons and trend analysis, 865
stepwise model selection, 895–897
theta, 876, 882

N. See Sample size
Nested designs

in ANOVA, 47
in MLM, 786
in SEM, 687

Nested models
in MLM, 834, 837, 861
in SEM, 721, 726, 736
in survival analysis, 536, 538
in time series analysis, 18–48 (online)

Newton‐Raphson algorithm, 890
NFI (normed fit index), 721
NNFI (non‐normed fit index), 721
Nominal scales, 6
Nonexperimental research, 2–3, 7, 9

ANCOVA and, 198, 202, 205
profile analysis and, 332
SEM and, 688
unequal n and, 48–49, 219–220, 383
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Nonindependence of errors. See Durbin‐Watson 
statistic

Nonrecursive, 715
Normality, 78–83, 86–88

in residuals, 125–127, 162–167
Normal probability plots, 81–83

in MFA, 901
in time‐series, 18–55, 18–57 (online)

NORM software for missing data, 69
Null hypothesis, 33–36

in ANOVA, 37–38
and specific comparisons, 50

Odds
in logistic regression, 440, 442, 447, 451, 

463–465, 477–479
in survival analysis, 513

Omega squared, in ANOVA, 55
Omnibus F test and specific comparisons, 49–53
One‐sample z test, 33–35
Order of entry

in MANOVA, stepdown, 251–252, 275
in sequential DISCRIM, 398
in sequential regression, 138

Ordinal scales, 6–7
in logistic regression, 466–470
in SEM, 734–735

Orthoblique rotation, 643
Orthogonality, 8–10

in ANOVA, 48–49
of canonical variates, 592
of discriminant functions, 380
specific comparisons and, 50–51

Outliers, among variables in FA, 619–620, 658–660
Outliers, multivariate, 72–77, 99–104

IBM SPSS REGRESSION example, 99–103, 
167–168, 282–283, 549, 551–553, 842

SAS REG example, 111–113, 226, 229, 410–412, 
595

Outliers, in a solution, 77
in logistic regression, 445, 477
in MFA, 867
in multiple regression, 128
in time‐series analysis, 18–7, 18–50, 18–55 

(online)
Outliers, univariate, 72–74, 77, 106–109

IBM SPSS DESCRIPTIVES example, 547
IBM SPSS EXPLORE example, 162–166
IBM SPSS FREQUENCIES example, 97
SAS MEANS example, 106–109, 226–228, 595
SAS STANDARD example, 595

Output, interpretation of, 4
Output of AMOS, EQS, IBM SPSS, LISREL/

PRELIS, and SAS
analysis of covariance (ANCOVA)

adjusted cell means, SAS GLM, 236
homogeneity of regression, IBM SPSS 

MANOVA, 215
homogeneity of regression, SAS GLM, 239

IBM SPSS GLM (UNIANOVA), 212
repeated measures, SAS GLM, 218–219
SAS GLM, 213, 233

canonical correlation
IBM SPSS CANCORR, 589–591
SAS CANCORR, 586–588, 601–605
scatterplots, SAS CANCORR and PLOT, 

596–597
confirmatory factor analysis through SEM, 

LISREL, 740–745, 748–749
discriminant analysis (DISCRIM)

contrasts, SAS GLM, 424–426
cross‐validation, SAS DISCRIM, 421–423
direct, IBM SPSS DISCRIMINANT, 

391–393
direct, SAS DISCRIM, 394–397
homogeneity of variance‐covariance matrices, 

SAS DISCRIM, 412–414
factor analysis and principal components analysis

communalities, SAS FACTOR, 665
confirmatory factor analysis through SEM, 

LISREL, 739, 741, 744–745, 749
correlations among factors, SAS FACTOR, 

666
eigenvalues and proportions of variance, SAS 

FACTOR, 663, 665
factor loadings, SAS FACTOR, 670
IBM SPSS FACTOR, 633–634
linearity scatterplot, SAS PLOT, 658
multivariate outliers, variables causing, SAS 

REG, 658–660
SAS FACTOR, 635–636, 662–672
scatterplot of factor loadings, SAS FACTOR, 

669
scatterplot of factor scores, SAS FACTOR, 667
scree plot, SAS FACTOR, 664
SMCs for factors, SAS FACTOR, 662

logistic regression
adequacy of expected frequencies, IBM SPSS 

CROSSTABS, 485–487
classification, SAS LOGISTIC, 479
direct, IBM SPSS LOGISTIC REGRESSION, 

454–455
direct, SAS LOGISTIC, 452–453
group means, IBM SPSS DESCRIPTIVES,

496–497
linearity in the logit, 478, 488
missing values analysis, IBM SPSS MVA, 

473–476
multiple outcome categories, IBM SPSS 

NOMREG, 488–494
ordered categories, SAS LOGISTIC, 468–469
sequential, IBM SPSS LOGISTIC 

REGRESSION, 457
sequential, IBM SPSS NOMREG, 488–494

missing data, IBM SPSS MVA, 64–66, 473–476
multicollinearity

IBM SPSS REGRESSION, 100–101, 168, 845
SAS FACTOR, 115, 230, 662
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Output of AMOS, EQS, IBM SPSS, LISREL/
PRELIS, and SAS (continued)

multilevel modeling
centered predictor, SAS MIXED, 829
cross‐level interaction, SAS MIXED, 831
intercepts‐only model, IBM SPSS MIXED,

846–847, 801–802
intercepts‐only model, two‐level, SAS 

MIXED, 800
multicollinearity, IBM SPSS REGRESSION, 

845
multivariate outliers, IBM SPSS 

REGRESSION, 844
repeated measures, IBM SPSS MIXED,

820–821, 846–851
three‐level model, IBM SPSS MIXED, 846–851
two‐level model, IBM SPSS MIXED,

801–802, 808–809, 815–816
two‐level model, SAS MIXED, 800, 807, 

813–814
multiple regression

correlation between predicted and actual 
scores, SAS CORR, 142

multiple imputation, 181, 183–187
sequential, IBM SPSS REGRESSION, 139, 

174–176
standard, IBM SPSS REGRESSION, 134–135, 

170–171
standard, SAS REG, 135
statistical (stepwise) with cross‐validation, 

SAS REG, 141–142
multivariate analysis of covariance (MANCOVA)

adjusted and unadjusted marginal means, IBM 
SPSS MANOVA, 303–305

homogeneity of regression, IBM SPSS 
MANOVA, 285–286

IBM SPSS MANOVA, 299–302
multiple regression analysis, 300
stepdown results, IBM SPSS MANOVA, 300
univariate results, IBM SPSS MANOVA, 300

multivariate analysis of variance (MANOVA)
adjusted and unadjusted marginal means, IBM 

SPSS MANOVA, 293
homogeneity of regression, IBM SPSS 

MANOVA, 284–285
IBM SPSS GLM, 264–265
IBM SPSS MANOVA, 263, 287, 289–290
pooled within‐cell correlations, IBM SPSS 

MANOVA, 289
SAS GLM, 266–268
stepdown results, IBM SPSS MANOVA, 290
univariate results, IBM SPSS MANOVA, 289

multiway frequency analysis
associations, IBM SPSS HILOGLINEAR, 

898–899
IBM SPSS GENLOG, 886–887
IBM SPSS HILOGLINEAR, 884–885
model selection, IBM SPSS HILOGLINEAR, 

900–901

observed frequencies, IBM SPSS 
CROSSTABS, 894–897

parameter estimates, IBM SPSS LOGLINEAR, 
904–905

residuals, IBM SPSS HILOGLINEAR, 
902–903

SAS CATMOD, 888–889
screening, IBM SPSS HILOGLINEAR, 

898–899
normality and descriptive statistics

IBM SPSS DESCRIPTIVES, 103–104, 
548–550

IBM SPSS EXPLORE, 163–166
IBM SPSS FREQUENCIES, 94–95, 97, 99, 

167, 280–281, 840–841
SAS Interactive Data Analysis, 107–109
SAS MEANS, 107, 227–228, 231, 350–352, 

594, 18–61 (online)
normal probability plots

IBM SPSS HILOGLINEAR, 902–903
IBM SPSS PPLOT, 82
SAS UNIVARIATE, 18–57 (online)

outliers
multivariate described, IBM SPSS 

DESCRIPTIVES, 103–104
multivariate described, IBM SPSS 

SUMMARIZE, 551
multivariate described, SAS MEANS, 114
multivariate identified, IBM SPSS 

REGRESSION, 100–101, 168, 282–283, 
844

multivariate identified, SAS REG, 111–112, 
229

univariate, 93–96, 109, 279, 549, 842–843
univariate identified, SAS MEANS, 350–352
variables causing multivariate, 102, 103, 113, 

552, 659–660
profile analysis

homogeneity of regression, IBM SPSS 
MANOVA, 365

IBM SPSS DESCRIPTIVES, 363–364
IBM SPSS GLM, 326–328
IBM SPSS MANOVA, 325, 365–368
SAS GLM, 329–330, 354–355

residuals
IBM SPSS HILOGLINEAR, 902–903
IBM SPSS REGRESSION, 163, 168
SAS UNIVARIATE, 18–57 (online)

structural equations modeling
AMOS, 711–713, 731–732
EQS, 702–703, 727, 732, 757–759, 765–766, 

768–769
LISREL, 704–709, 729–730, 740–746, 

748–751
survival analysis

IBM SPSS COXREG, 534–536, 555, 557–559
IBM SPSS DESCRIPTIVES, 548, 549–550
IBM SPSS FACTOR, 556
IBM SPSS KM, 529–530
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IBM SPSS REGRESSION, 551–552
IBM SPSS SUMMARIZE, 551
IBM SPSS SURVIVAL, 522–524
SAS LIFEREG, 537
SAS LIFETEST, 525–527
SAS PHREG, 533, 540, 546–547

time‐series analysis (online)
IBM SPSS ACF, 18–16, 18–31 to 18–32
IBM SPSS ARIMA, 18–20 to 18–24, 18–35, 

18–39
IBM SPSS TSPLOT, 18–9, 18–11, 18–13
SAS ARIMA, 18–26 to 18–28, 18–37, 18–41, 

18–47, 18–50, 18–58
SAS MEANS, 18–61
SAS UNIVARIATE, 18–57

Overfitting, 11
in DISCRIM, 384
in regression, 140, 143

Overlapping variance, 8–10, 48–49
in canonical correlation, 579, 592
in FA, 654
in MANOVA, 272, 275
in regression, 137
within unequal n in ANOVA, 48–49

Pairwise comparisons. See Specific comparisons
Parallelism test in profile analysis, 315–316, 

321–324, 326, 332, 353–354, 365
Parameter estimation of means, 53–54
Part correlation, 145–147, 172, 178
Partial correlation, 144–145, 146
Partial test in MFA, 871–875, 892
Path analysis, 681
Pattern matrix, 614, 620, 630–632, 637, 651, 676
PCA. See Factor analysis and principle components 

analysis
Percent of covariance, 626, 649–651, 671
Percent of variance. See Proportion (percent) of 

variance
PFA. See Factor analysis and principle components 

analysis
PGFI (parsimony goodness of fit index), 724
Phi coefficient, 916–917, 921
Pillai’s criterion, 254, 271, 399
Planned comparisons, 49–52. See also Specific 

comparisons
in ANCOVA, 220–222
in MANOVA, 275–277

Plots. See Scatterplots
Point biserial correlation coefficient, 214, 916–917, 

921
Polychoric correlations in SEM, 734
Polyserial correlations in SEM, 734
Population, 7

in hypothesis testing, 31–34
Post hoc comparisons, 53. See also Scheffé test

in ANCOVA, 221–223
in MANOVA, 276
in multiple regression, 149–150

in profile analysis, 336–338, 356
in SEM, 748

Power, 11–12, 36–37. See also Type II error
in ANCOVA, 20, 197, 202, 203, 204, 205, 206, 

214, 216–217, 219, 224–225, 242
in logistic regression analysis, 444
in MANOVA and MANCOVA, 246, 252–253
in MFA, 866
in MLM, 787, 791, 833
number of variables and, 11
in profile analysis, 317
in SEM, 688, 725
in survival analysis, 511, 513, 542–543
in time series analysis, 18–6 (online)
unequal n and, 219–220

Powers, variables raised to, 10, 158
PRELIS, categorical data, 734–735. See also

LISREL
Pretest scores as covariates, 20, 197

versus difference scores, 224–225
Principal components analysis. See Factor analysis 

and principle components analysis
Principal factor analysis. See Factor analysis and 

principle components analysis
Priority order. See Order of entry
Prior probabilities in DISCRIM, 391, 406, 420
Probit analysis, 458–459
Profile analysis of repeated measures, 23, 

314–376
assumptions of, 314, 349–353, 362–365
Box’s M, 318
checklist for doubly‐multivariate analysis, 371
checklist for profile analysis, 359
classification in profile analysis, 347
confidence interval of pooled profiles, 353, 359
data set for, 319
doubly‐multivariate analysis, 343–347, 362–373
effect size, 316, 321, 323, 325, 353, 357, 369
flatness test, 315, 324–325, 353, 356
GLM and, 920, 923
levels test, 320, 353–355
missing values imputation, 347–348
parallelism test, 315, 321–324, 326, 332, 353
partition of sum of squares, 320
power, 317
programs compared, 325–331, 373–376
results

for doubly‐multivariate analysis, 372–373
for profile analysis, 360–362

specific comparisons, 343
sphericity, 331
versus univariate repeated measures, ANOVA, 

314, 331–333
Proportion (percent) of covariance in FA, 626, 652, 

671
Proportion (percent) of variance, 54–55. See also

Effect size
in FA, 626, 637, 648–649, 652–653, 664–665, 

671–673
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Quadratic discriminant analysis, 385, 420
Quartimax rotation, 642–643

R2. See Multiple regression
R2, in SEM, 685, 723
R2 software, 463, 542, 557

demonstrated, 153
Random assignment, 2–3, 7

and ANCOVA, 197, 202–203
Random coefficients, 787, 803, 837
Random effects, 49, 786, 793–794, 833, 835, 860
Randomized blocks, 43

as alternative to ANCOVA, 224–225
Random loss of subjects, 49, 62–63
Random sampling, 7
Rao’s V in DISCRIM, 399
Receiver operating characteristic curve, 463, 470, 

508
in IBM SPSS output, 471

Recursive, 715
Redundancy, 585, 589
Reflecting variables, 88
Regression coefficient. See also Multiple regression

in ANCOVA, 208, 214–215
in bivariate regression, 57–58
in canonical correlation, 577
in factor analysis, 627
homogeneity of regression in ANCOVA, 204, 

215, 239
in logistic regression, 447, 461, 463, 467, 472
in MLM, 787, 791, 796–797, 803, 818
in SEM, 686, 736, 744
in survival analysis, 513, 531, 544–545
in time‐series analysis, 18–36 (online)

Regression weight. See Regression coefficient
Reliability, 11

of covariates, 205
of factors, 620, 676
in MANOVA, stepdown analysis, 286
in SEM, 733–734

Repeated measures. See Within‐subjects design
Reporting results. See Results
Residuals, 16, 76

in logistic regression, 450–451
in MFA,877
in MLM, 792, 826, 859
in multiple regression, 125–128, 162
in SEM, 739, 760
in time‐series analysis, 18–2, 18–4, 18–6 to 18–7, 

18–19, 18–42, 18–45 to 18–46, 18–54, 
18–62 (online)

Restricted maximum likelihood estimation
in MLM, 797

Results
for ANCOVA, 240–241
for canonical correlation, 607–609
for DISCRIM, 428–431
for doubly‐multivariate ANOVA, 372–373
for FA, 674–675

for logistic regression
sequential multiple‐group, 499–502
two‐group direct, 482–483

for MANCOVA, 306–309
for MANOVA, 295–298
for MFA, 908–910
for MLM, 853–856
for profile analysis, 360–362
for screening grouped data, 115–116
for screening ungrouped data, 104–105
for SEM, 753–754, 775–777
for sequential regression, 179–181
for standard multiple regression, 173–175
for survival analysis, 561–563
for time‐series analysis, 18–60 to 18–61 (online)

r. See Intraclass correlation in MLM
Ridge regression, 125
RMR (root mean square residual) fit index, 725
RMSEA (root mean square error of approximation), 

722
Robustness of F to violation of assumptions, 78, 

204, 253–254, 318, 384–385
ROC curve. See Receiver operating characteristic 

curve
Rotation. See also Factor analysis and principle 

components analysis
of canonical variates, 574
In DISCRIM, 383, 403

Roy’s gcr, 271, 399

Sample, 7
in hypothesis testing, 33–36

Sample size. See also Unequal n; Power
in ANCOVA, 203
in canonical correlation, 575
central limit theorem, 78
in DISCRIM, 383–384
in factor analysis, 618
in logistic regression, 444
in MANOVA, 252–253
in MLM, 792–793
in profile analysis, 317–318
in regression, 123–124
in SEM, 688, 700, 719
standard deviation of sampling distribution, 

33–34
in survival analysis, 514

Sampling distribution for means, 33–34, 35
and normality, 78, 86

SAS, 4. See also Output of AMOS, EQS, IBM 
SPSS, LISREL/PRELIS, and SAS

residuals analysis, 126–127
in time series, 18–55, 18–57 (online)

SAS ARIMA (online)
ACF and PACF plots, 18–25 to 18–27, 18–50 to 

18–54
compared with other time‐series programs, 18–62 

to 18–65
complete example, 18–49 to 18–62
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for continuous variables, 18–40
forecasting, 18–47
identification syntax, 18–25
intervention analysis, 18–33, 18–37, 18–55 to 

18–60
output, 18–26 to 18–27, 18–28, 18–37, 18–41, 

18–50 to 18–54, 18–58 to 18–60
small‐sample example, 18–21 to 18–28

SAS CALIS, compared with other SEM programs, 
779–784

SAS CANCORR
compared with other programs for canonical 

correlation, 609–611
complete example, 592–606
output, 586–588, 601–604
plots of canonical variates, 593, 595
small‐sample canonical correlation example, 

585–589
SAS CANDISC, compared with other DISCRIM

programs, 432–438
SAS CATMOD

compared with other MFA programs, 910–913
for general loglinear MFA models, 893
small‐sample MFA example, 888–889
tests of effects, 891

SAS CHART, 74
SAS CORR, 71, 318
SAS DISCRIM

classification with separate covariance matrices, 
385, 423

compared with other DISCRIM programs, 
432–438

cross‐validation, 409, 419–422
output, 394–397, 414–419, 421–422
quadratic discriminant analysis, 385, 418, 421
for sequential DISCRIM, 398
small‐sample example, 394–397

SAS FACTOR
adequacy of rotation, 651–652
alpha factor extraction, 642
compared with other factor programs, 676–680
generalized least squares factoring, 641–642
image factoring, 641
interpretation of factors, 654
maximum likelihood factoring, 641
multicollinearity, 114, 230, 661
orthogonal rotation with gamma, 642–644
output, 115, 230, 635–636, 662–672
promax and Procrustean rotation, 645
small‐sample FA example, 632–637
SMCs, 648
unweighted least squares factoring, 641

SAS GLM
compared with other ANCOVA programs, 

242–244
compared with other MANOVA programs, 

310–312
compared with other programs for profile 

analysis, 373–376

complex ANCOVA designs, 215–216, 
220–221

discriminant functions, 275
doubly multivariate, 343–347
homogeneity of regression, 239
linearity and, 226
multicollinearity and singularity in ANCOVA, 

230
output, 213, 233, 267–268, 329–330, 354–355
pooled within‐cell correlation matrix, 238, 272
profile analysis, 353–355
small‐sample ANCOVA example, 211–212
small‐sample MANOVA example, 263–266
small‐sample profile analysis example, 325, 

329–330
syntax and location of output for

doubly‐multivariate ANOVA, 344–346
interaction contrasts, 341
orthogonal and pairwise comparisons, 

221–222
simple comparisons, 338
simple effects, 334, 335

unequal n, 219, 278
SAS Interactive Data Analysis, 107–109
SAS LIFEREG

accelerated failure‐time models, 532, 537–538
censoring, 542
Cox proportional‐hazards model, 529, 531–532
effect size, 542–543
output, 537

SAS LIFETEST
group differences, 520, 543–544
output, 525–527
product‐limit method, 528
small‐sample example, 522, 525–527

SAS LOGISTIC
case‐control studies, 472
classification of cases, 470
coding of discrete predictors, 466
coding of outcome categories, 466
compared with other logistic regression 

programs, 502–508
direct analysis in, 456
discrete predictor variables, coding of, 466
effect size measures, 463
multiple outcome categories in, 466–467
odds ratios in, 464
ordered response categories, 468–469
output, 452–453, 468–469, 478, 479–480, 481
sequential analysis in, 456
small‐sample logistic regression example, 

451–453
stepwise analysis in, 458

SAS MEANS, 61
output, 107–108, 114, 227–228, 231, 350–351, 

352, 594
in time series, 18–61 (online)

SAS MI, 182
output, 183
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SAS MIXED
centering example, 827–830
compared with other programs for MLM, 

856–860
comparing models in, 834
cross‐level interaction example, 831
estimation methods, 837–838
intraclass correlations in, 826
output, 800, 807, 813–814, 829, 831
repeated‐measures factors, 818–819

SAS PHREG, 531–533, 540, 546–547
output, 533, 540, 546–547

SAS PLOT, 84, 657
SAS PROBIT, 459
SAS REG

compared with other programs for regression, 
190–195

multiple imputation example, 182–185
multivariate outliers

identification, 111–112, 229–230
variables causing, 113–114, 658–660

output, 113, 115, 135, 141–142, 184–185, 
189, 229

semipartial and partial correlations, 145, 151
sequential regression, 138
small‐sample multiple regression example, 

136–137
standard multiple regression, 136
statistical (stepwise) with cross‐validation, 

140–142
test of regression components, 150–151

SAS STANDARD, standard scores, 67, 73
SAS STEPDISC

compared with other DISCRIM programs, 
436–438

stepwise DISCRIM, 398, 438
SAS UNIVARIATE, 61, 74, 81

in time series, 18–55, 18–57 (online)
Saturated models in MFA, 868, 876, 

890–893
SBC in time‐series analysis, 18–48 (online)
Scatterplots

between canonical variates, 593, 595, 596
between discriminant functions, 385
homoscedasticity, 85
linearity, 83–84, 98, 100, 110, 657
residuals, 126–127, 162–163, 169
within‐cell, 110

Scheffé test, 53
in ANCOVA, 221
in profile analysis, 333, 336, 341

Schwarz’s Bayesian Criterion, 18–48 (online)
Screening data, 92–116

checklist for, 91
flow diagrams for, 93, 106

Scree test, 649–650, 661, 664
Semipartial correlation, 144–146, 172, 178. See also

Multiple regression
Sensitivity. See Power

Sequential analysis, 8–10
in DISCRIM, 24, 25, 398
in logistic regression, 24–25, 456, 457
in multiple regression, 18, 120–121, 136–138, 

149–150, 175–179
in survival analysis, 531

Setup. See Output of AMOS, EQS, IBM SPSS, 
LISREL/PRELIS, and SAS

Significance test, 33–37
for added subset of IVs in multiple regression, 151
for ANCOVA, 211
for ANOVA, 42–46
for canonical correlation, 579–580, 585, 601
for comparing two sets of predictors, 153–154
for comparing two time‐series models, 18–47 to 

18–48 (online)
for DISCRIM, 386–387
for DVs in MANOVA, 271–272
for goodness of fit in logistic regression, 

448–449, 459–461
for group differences in survival analysis, 

520–522, 543–544
for improvement in classification, difference 

between lambdas, 407–409
for improvement in fit in logistic regression, 

461–462
for interventions in time‐series analysis, 18–33, 

18–36 (online)
for kurtosis, 79–80
for logistic regression coefficients, 461–462
McNemar’s change test, 407–408
for MFA, 883
for multiple R, 149–150
for multivariate effect

in MANCOVA, 269
in MANOVA, 262–263

for parameter estimates
in MLM, 835, 837
in SEM, 700–701, 710

for prediction from covariates, in survival 
analysis, 544

for profile analysis, 320, 323, 324
for regression coefficients, 150–151
for sample versus population value, 33–35, 359
for semipartial correlations, 151
for skewness, 79
for stepwise regression, 149
for subset of IVs in multiple regression, 151
for successive discriminant functions, 400

Simple comparisons, 338, 340
Simple effects, 334, 335–341
Simple minded. See Statistics
Simple structure, 645, 651–652
SIMPLIS. See LISREL
SIMPLIS, model modification, 704
Singular cells, in MANOVA, 252
Skewness, 79–83

in bivariate scatterplots, 83, 84
in EQS, 755
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illustrated, 93–96
transformations and, 86–88

Skiing, 446–456, 620–637, 691–714, 794–817
SMC, 90. See also Factor analysis and principle 

components analysis; Multiple regression
multicollinearity and singularity, 88–91

SOLAS MDA, 67, 69
Specific comparisons, 49–53

in ANCOVA, 201, 220–223
in MANOVA, 275–276
in MFA, 865
in profile analysis, 333–342, 353

Sphericity, 216–217, 331
Squared multiple correlation. See SMC
Square root of a matrix, 929
SRMR (standard root mean square residual) fit 

index, 725
SSL. See Factor analysis and principal components 

analysis
Standard analysis, 9–10
Standard deviation, definition of, 38
Standard multiple regression, 136–137
Standard normal distribution, 34
Start values in SEM, 695
Statistical criteria

for comparing SEM models, 735
for comparing time‐series models, 18–47 to 

18–48 (online)
in DISCRIM, 399
in logistic regression, 459–461
in MANOVA, 270
in statistical (stepwise) regression, 149

Statistical decision theory, 33–36
Statistical matching

in ANCOVA, 197–198
in MANCOVA, 247

Statistical (stepwise) analysis
DISCRIM, 398–399
logistic regression, 456–458
MFA, 890–891, 895–897
multiple regression, 138–143

Statistics, 1–955
for time series, 18–1 to 18–65 (online)

Stepdown analysis. See Multivariate analysis of 
variance and multivariate analysis of 
covariance

Stepwise analysis. See Statistical (stepwise) analysis
Strength of association. See Effect size
Structural equation modeling (SEM), 681–785

absolute fit index (MFI), 723
advantages of, 684
AGFI (adjusted fit index), 723–724
AIC (Akaike information criterion), 724–725
CFI (comparative fit index), 721–723, 725, 748, 

752
comparing models, statistical criteria for, 700–

701, 710
correlated errors, 715, 734, 739, 764
cross‐validation, 687, 725, 733

determinant, 688, 760
direct effects, 686
effect size, 685, 733–734
elliptical distribution theory (EDT), 718
equations, model, 692
errors, 693
estimated population covariance matrix, 693, 

696–699
experiments, 683–684, 686, 687
factor analysis and, 692–693
fixed parameters, 692, 694, 701, 705, 709–710, 

714, 726, 728, 737, 739, 756
generalized least squares estimation (GLS), 

718–723
GFI (goodness of fit index), 723–724
group differences, 686, 735–737
hypotheses, 687
hypothesized model, 691–693
identification, 714–716
IFI (incremental fit index), 721
indirect effects, 684, 686, 774
initial values, 695
interpretation, 701, 725, 737, 773–774
just‐identified model, 714
kurtosis, 688, 718–719, 759, 778, 785
Lagrange multiplier (LM) test, 689, 726–728, 

730–731, 764–766, 778
latent means, 736–737
latent variables, 681–685, 691–693, 696, 705, 

709–710, 715, 728, 736–737
LM test, 689, 726–728, 730–731, 764–766, 778
manifest variables, 682
Mardia’s coefficient, 759
maximum likelihood (ML), 718
mean differences, 686, 735–737
measurement error, 684
measurement model, 683, 737

identifiability, 715
mediation, 684, 686, 774
MFI (absolute fit index), 723
nested designs, 686–687
nested models, 721, 725–726, 736
nonexperimental research, 687
non‐normed fit index (NNFI), 721
nonrecursive, 715
normed fit index (NFI), 721
ordinal variables, 734
overidentification,714
parameter estimates, 685–686, 739, 744–747

significance tests for, 701–702, 710
parameter matrices, 693–694, 697–698
parameters, 685–686, 689, 691

fixed, 692, 694, 701, 705, 709–710, 714, 726, 
728, 737, 739, 756

PGFI (parsimony goodness of fit index), 724
path analysis in, 684
path diagrams, 684
polychoric correlations, 734
polyserial correlations, 734
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Structural equation modeling (SEM) (continued)
post hoc comparisons, 726–733
power, 688, 700, 725
programs compared, 701–714,785
R2, 685, 723, 733–734
recursive, 715
reliability, 685, 733–734
residual covariance matrix, 689, 699, 741–743
residual diagnostics, 741–744, 759–762
residual variables, 693
restricted model, 735
results

for confirmatory factor analysis, 753–754
for structural equations model, 775–777

RMR (root mean square residual) fit index, 
725

RMSEA (root mean square error of 
approximation), 722

sample covariance matrix, 685, 689, 714, 718, 
720

Satorra‐Bentler scaled chi square, 718, 726, 
759–760, 763–764, 778

scale of a factor, 715–716
SMC, 685, 723, 733–734
SRMR (standard root mean square residual) fit 

index, 725
start values, 695
strength of association, 685, 733–734
structural model, 683
Type I error rate, 687, 733
underidentification, 714
unweighted least squares (ULS), 718
Wald test, 728, 730–731, 733
weight matrix, 716, 718, 723

Structure matrix
in DISCRIM, 392–394, 402–403, 404, 435
in factor analysis, 614, 631, 654

Student’s t. See t test
Subtraction, matrix, 928–929
Sum of squared loadings (SSL). See Factor analysis 

and principle components analysis
Sum of squares, 39

in ANCOVA, 206–210
in ANOVA, 39–46
in multiple regression, 130
in profile analysis, 320, 322

Sum‐of‐squares and cross‐products matrix, 
14–16

in ANCOVA, 210
to correlation matrix, 15
in DISCRIM, 386–387
in MANCOVA, 266–269
in MANOVA, 259–260
in multiple regression, 132
in profile analysis, 323

Suppressor variables, 155–156
Survival analysis, 26, 510–570

accelerated failure‐time model, 532–539
assumptions of, 513–514, 547–555

censoring, 542
checklist for, 560
complete example, 545–563
Cox proportional‐hazards model, 555–560
data set for, 515
distributions for accelerated failure‐time models, 

533, 536, 538
GLM and, 918–919, 922
group differences, tests for, 519–520, 543
Kaplan‐Meier analysis, 531
likelihood ratios and log‐likelihoods, 533, 539, 

543–544
output, 522–524, 529–530, 534–536, 537, 540, 

555–559
power, 513, 542–543
prediction, 544–546
proportionality of hazards, 540
results, 561–563

Syntax. See Output of AMOS, EQS, IBM SPSS, 
LISREL/PRELIS, and SAS

SYSTAT, 4
SYSTAT ANOVA, 242–244
SYSTAT DISCRIM, 438
SYSTAT FACTOR, 680
SYSTAT GLM

compared with other ANCOVA programs, 
242–244

compared with other MANOVA programs, 
310–313

compared with other programs for profile 
analysis, 373–376

SYSTAT LOGIT, 509–510
SYSTAT LOGLIN, 910–914
SYSTAT REGRESS, 196
SYSTAT SERIES, 18–63 to 18–65 (online)
SYSTAT SETCOR, 619–621
SYSTAT SURVIVAL, 570

Theta, in MFA, 876, 882
Time‐series analysis, 28
Time‐series analysis (online), 18–1 to 18–65

ACF and PACF plots, 18–16 to 18–18, 18–44 to 
18–45, 18–50 to 18–54

assumptions of, 18–6 to 18–7, 18–49 to 
18–50

checklist, 18–62
comparing time series, 18–47 to 18–48
covariates in, 18–6, 18–40
data set for, 18–34, 18–38
diagnosis of models, 18–19 to 18–21, 18–55
effect size, 18–6, 18–45 to 18–46
forecasting, 18–5, 18–47
GLM and, 919, 922
identification of ARIMA, 18–8 to 18–18, 18–49 

to 18–54
syntax for, 18–25

interventions in, 18–5, 18–30 to 18–40, 18–55 to 
18–62

syntax for, 18–41
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output, 18–9, 18–11, 18–13, 18–16 to 18–18, 
18–20 to 18–24, 18–26 to 18–28, 18–31 
to 18–32, 18–35, 18–37, 18–39, 18–41, 
18–47, 18–50 to 18–54, 18–57 to 18–60

parameter estimates, 18–18 to 18–19, 18–50 to 
18–54

power, 18–6
results, 18–60 to 18–61
seasonality, 18–7, 18–30 to 18–31
terminology, 18–4

Tolerance
in DISCRIM, 384–385, 399
and multicollinearity and singularity, 90
in multiple regression, 125

Trace of a matrix, 928
Transformations, 78, 86–88, 98–99
Transpose of a matrix, 930–931
Trend analysis. See also Specific comparisons

in ANCOVA, 221
to circumvent failure of sphericity, 332
in logistic regression, 466
in MANOVA, 276, 278

t test, in hypothesis testing, 37
Type I error (�), 34

classification of cases in logistic 
regression, 470

in DISCRIM, 403
in MANOVA, 246, 270, 272
in MFA, 866
outliers, 253
in profile analysis, 336–337, 356
in SEM, 687, 733
in specific comparisons, 53, 221
sphericity, 331–332
unequal n, 49
unreliable covariates, 205
in within‐subjects ANOVA, 44

Type II error (�), 35. See also Power
classification of cases in logistic 

regression, 470
outliers, 253
unreliable covariates, 205

Unequal n, 48–49
in ANCOVA, 203, 219–220, 226
in DISCRIM, 383
in MANOVA, 252, 271, 281

in MLM, 792–793
in profile analysis, 317

Unique variance. See Multiple regression, 
in commonality analysis, 146

Univariate F in MANOVA, 272–273, 288, 298
Univariate statistics, defined, 2
Unweighted least squares, 718
Unweighted means analysis, 48–49, 219–220

Variable
composite, 61
deletion, 66, 77, 91
selection, 11

Variables. See also Continuous variables; 
Dichotomous variables; Discrete
variables

correlated
in MANOVA, 246–247, 251, 272–273
in multiple regression, 118

dependent (DV) and independent (IV), 2
Variance, defined, 38
Variance, overlapping. See Overlapping variance
Variance‐covariance matrix, 14–15, 932. See also

Homogeneity of variance‐covariance 
matrices

in multiple regression, 132
Varimax rotation, 625, 632, 642, 661–664
Vectors. See Eigenvalues and eigenvectors

Wald test
in logistic regression, 446, 447–448, 458, 461
in MLM, 835
in SEM, 726, 728, 730
in survival analysis, 544

Weight matrix in SEM, 717–718, 723
Wilks’ lambda. See Lambda, Wilks’
Within‐cell correlation matrix

determinant of, 255
Within‐subjects design, 43–47

in ANCOVA, 216–217
versus ANCOVA, 223–225
in MANOVA, 251, 276, 278
in MLM, 787
versus profile analysis, 314, 331–333

z test, one sample, 33–36
profile analysis example, 358–359
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