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Preface

Taken literally, the title “All of Statistics” is an exaggeration. But in spirit,
the title is apt, as the book does cover a much broader range of topics than a
typical introductory book on mathematical statistics.

This book is for people who want to learn probability and statistics quickly.
It is suitable for graduate or advanced undergraduate students in computer
science, mathematics, statistics, and related disciplines. The book includes
modern topics like nonparametric curve estimation, bootstrapping, and clas-
sification, topics that are usually relegated to follow-up courses. The reader is
presumed to know calculus and a little linear algebra. No previous knowledge
of probability and statistics is required.

Statistics, data mining, and machine learning are all concerned with
collecting and analyzing data. For some time, statistics research was con-
ducted in statistics departments while data mining and machine learning re-
search was conducted in computer science departments. Statisticians thought
that computer scientists were reinventing the wheel. Computer scientists
thought that statistical theory didn’t apply to their problems.

Things are changing. Statisticians now recognize that computer scientists
are making novel contributions while computer scientists now recognize the
generality of statistical theory and methodology. Clever data mining algo-
rithms are more scalable than statisticians ever thought possible. Formal sta-
tistical theory is more pervasive than computer scientists had realized.

Students who analyze data, or who aspire to develop new methods for
analyzing data, should be well grounded in basic probability and mathematical
statistics. Using fancy tools like neural nets, boosting, and support vector
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machines without understanding basic statistics is like doing brain surgery
before knowing how to use a band-aid.

But where can students learn basic probability and statistics quickly? Nowhere.
At least, that was my conclusion when my computer science colleagues kept
asking me: “Where can I send my students to get a good understanding of
modern statistics quickly?” The typical mathematical statistics course spends
too much time on tedious and uninspiring topics (counting methods, two di-
mensional integrals, etc.) at the expense of covering modern concepts (boot-
strapping, curve estimation, graphical models, etc.). So I set out to redesign
our undergraduate honors course on probability and mathematical statistics.
This book arose from that course. Here is a summary of the main features of
this book.

1. The book is suitable for graduate students in computer science and
honors undergraduates in math, statistics, and computer science. It is
also useful for students beginning graduate work in statistics who need
to fill in their background on mathematical statistics.

2. I cover advanced topics that are traditionally not taught in a first course.
For example, nonparametric regression, bootstrapping, density estima-
tion, and graphical models.

3. I have omitted topics in probability that do not play a central role in
statistical inference. For example, counting methods are virtually ab-
sent.

4. Whenever possible, I avoid tedious calculations in favor of emphasizing
concepts.

5. I cover nonparametric inference before parametric inference.

6. I abandon the usual “First Term = Probability” and “Second Term
= Statistics” approach. Some students only take the first half and it
would be a crime if they did not see any statistical theory. Furthermore,
probability is more engaging when students can see it put to work in the
context of statistics. An exception is the topic of stochastic processes
which is included in the later material.

7. The course moves very quickly and covers much material. My colleagues
joke that I cover all of statistics in this course and hence the title. The
course is demanding but I have worked hard to make the material as
intuitive as possible so that the material is very understandable despite
the fast pace.

8. Rigor and clarity are not synonymous. I have tried to strike a good
balance. To avoid getting bogged down in uninteresting technical details,
many results are stated without proof. The bibliographic references at
the end of each chapter point the student to appropriate sources.
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Data generating process Observed data

Probability

Inference and Data Mining

FIGURE 1. Probability and inference.

9. On my website are files with R code which students can use for doing
all the computing. The website is:

http://www.stat.cmu.edu/∼larry/all-of-statistics

However, the book is not tied to R and any computing language can be
used.

Part I of the text is concerned with probability theory, the formal language
of uncertainty which is the basis of statistical inference. The basic problem
that we study in probability is:

Given a data generating process, what are the properties of the out-
comes?

Part II is about statistical inference and its close cousins, data mining and
machine learning. The basic problem of statistical inference is the inverse of
probability:

Given the outcomes, what can we say about the process that gener-
ated the data?

These ideas are illustrated in Figure 1. Prediction, classification, clustering,
and estimation are all special cases of statistical inference. Data analysis,
machine learning and data mining are various names given to the practice of
statistical inference, depending on the context.
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Part III applies the ideas from Part II to specific problems such as regres-
sion, graphical models, causation, density estimation, smoothing, classifica-
tion, and simulation. Part III contains one more chapter on probability that
covers stochastic processes including Markov chains.

I have drawn on other books in many places. Most chapters contain a section
called Bibliographic Remarks which serves both to acknowledge my debt to
other authors and to point readers to other useful references. I would especially
like to mention the books by DeGroot and Schervish (2002) and Grimmett
and Stirzaker (1982) from which I adapted many examples and exercises.

As one develops a book over several years it is easy to lose track of where pre-
sentation ideas and, especially, homework problems originated. Some I made
up. Some I remembered from my education. Some I borrowed from other
books. I hope I do not offend anyone if I have used a problem from their book
and failed to give proper credit. As my colleague Mark Schervish wrote in his
book (Schervish (1995)),

“. . . the problems at the ends of each chapter have come from many
sources. . . . These problems, in turn, came from various sources
unknown to me . . . If I have used a problem without giving proper
credit, please take it as a compliment.”

I am indebted to many people without whose help I could not have written
this book. First and foremost, the many students who used earlier versions
of this text and provided much feedback. In particular, Liz Prather and Jen-
nifer Bakal read the book carefully. Rob Reeder valiantly read through the
entire book in excruciating detail and gave me countless suggestions for im-
provements. Chris Genovese deserves special mention. He not only provided
helpful ideas about intellectual content, but also spent many, many hours
writing LATEXcode for the book. The best aspects of the book’s layout are due
to his hard work; any stylistic deficiencies are due to my lack of expertise.
David Hand, Sam Roweis, and David Scott read the book very carefully and
made numerous suggestions that greatly improved the book. John Lafferty
and Peter Spirtes also provided helpful feedback. John Kimmel has been sup-
portive and helpful throughout the writing process. Finally, my wife Isabella
Verdinelli has been an invaluable source of love, support, and inspiration.

Larry Wasserman
Pittsburgh, Pennsylvania

July 2003
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Statistics/Data Mining Dictionary
Statisticians and computer scientists often use different language for the

same thing. Here is a dictionary that the reader may want to return to
throughout the course.

Statistics Computer Science Meaning
estimation learning using data to estimate

an unknown quantity
classification supervised learning predicting a discrete Y

from X
clustering unsupervised learning putting data into groups
data training sample (X1, Y1), . . . , (Xn, Yn)
covariates features the Xi’s
classifier hypothesis a map from covariates

to outcomes
hypothesis — subset of a parameter

space Θ
confidence interval — interval that contains an

unknown quantity
with given frequency

directed acyclic graph Bayes net multivariate distribution
with given conditional
independence relations

Bayesian inference Bayesian inference statistical methods for
using data to
update beliefs

frequentist inference — statistical methods
with guaranteed
frequency behavior

large deviation bounds PAC learning uniform bounds on
probability of errors
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Probability





1
Probability

1.1 Introduction

Probability is a mathematical language for quantifying uncertainty. In this
Chapter we introduce the basic concepts underlying probability theory. We
begin with the sample space, which is the set of possible outcomes.

1.2 Sample Spaces and Events

The sample space Ω is the set of possible outcomes of an experiment. Points
ω in Ω are called sample outcomes, realizations, or elements. Subsets of
Ω are called Events.

1.1 Example. If we toss a coin twice then Ω = {HH,HT, TH, TT}. The event
that the first toss is heads is A = {HH,HT}. �

1.2 Example. Let ω be the outcome of a measurement of some physical quan-
tity, for example, temperature. Then Ω = R = (−∞,∞). One could argue that
taking Ω = R is not accurate since temperature has a lower bound. But there
is usually no harm in taking the sample space to be larger than needed. The
event that the measurement is larger than 10 but less than or equal to 23 is
A = (10, 23]. �
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1.3 Example. If we toss a coin forever, then the sample space is the infinite
set

Ω =
{
ω = (ω1, ω2, ω3, . . . , ) : ωi ∈ {H,T}

}
.

Let E be the event that the first head appears on the third toss. Then

E =
{

(ω1, ω2, ω3, . . . , ) : ω1 = T, ω2 = T, ω3 = H, ωi ∈ {H,T} for i > 3
}
. �

Given an event A, let Ac = {ω ∈ Ω : ω /∈ A} denote the complement of
A. Informally, Ac can be read as “not A.” The complement of Ω is the empty
set ∅. The union of events A and B is defined

A
⋃
B = {ω ∈ Ω : ω ∈ A or ω ∈ B or ω ∈ both}

which can be thought of as “A or B.” If A1, A2, . . . is a sequence of sets then
∞⋃
i=1

Ai =
{
ω ∈ Ω : ω ∈ Ai for at least one i

}
.

The intersection of A and B is

A
⋂
B = {ω ∈ Ω : ω ∈ A and ω ∈ B}

read “A and B.” Sometimes we write A
⋂
B as AB or (A,B). If A1, A2, . . . is

a sequence of sets then
∞⋂
i=1

Ai =
{
ω ∈ Ω : ω ∈ Ai for all i

}
.

The set difference is defined by A−B = {ω : ω ∈ A,ω /∈ B}. If every element
of A is also contained in B we write A ⊂ B or, equivalently, B ⊃ A. If A is a
finite set, let |A| denote the number of elements in A. See the following table
for a summary.

Summary of Terminology
Ω sample space
ω outcome (point or element)
A event (subset of Ω)
Ac complement of A (not A)
A
⋃
B union (A or B)

A
⋂
B or AB intersection (A and B)

A−B set difference (ω in A but not in B)
A ⊂ B set inclusion
∅ null event (always false)
Ω true event (always true)
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We say thatA1, A2, . . . are disjoint or are mutually exclusive ifAi
⋂
Aj =

∅ whenever i �= j. For example, A1 = [0, 1), A2 = [1, 2), A3 = [2, 3), . . . are
disjoint. A partition of Ω is a sequence of disjoint sets A1, A2, . . . such that⋃∞
i=1Ai = Ω. Given an event A, define the indicator function of A by

IA(ω) = I(ω ∈ A) =
{

1 if ω ∈ A
0 if ω /∈ A.

A sequence of sets A1, A2, . . . is monotone increasing if A1 ⊂ A2 ⊂
· · · and we define limn→∞An =

⋃∞
i=1Ai. A sequence of sets A1, A2, . . . is

monotone decreasing if A1 ⊃ A2 ⊃ · · · and then we define limn→∞An =⋂∞
i=1Ai. In either case, we will write An → A.

1.4 Example. Let Ω = R and let Ai = [0, 1/i) for i = 1, 2, . . .. Then
⋃∞
i=1Ai =

[0, 1) and
⋂∞
i=1Ai = {0}. If instead we define Ai = (0, 1/i) then

⋃∞
i=1Ai =

(0, 1) and
⋂∞
i=1Ai = ∅. �

1.3 Probability

We will assign a real number P(A) to every event A, called the probability of
A. 1 We also call P a probability distribution or a probability measure.
To qualify as a probability, P must satisfy three axioms:

1.5 Definition. A function P that assigns a real number P(A) to each
event A is a probability distribution or a probability measure if it
satisfies the following three axioms:
Axiom 1: P(A) ≥ 0 for every A
Axiom 2: P(Ω) = 1
Axiom 3: If A1, A2, . . . are disjoint then

P

( ∞⋃
i=1

Ai

)
=

∞∑
i=1

P(Ai).

1It is not always possible to assign a probability to every event A if the sample space is large,
such as the whole real line. Instead, we assign probabilities to a limited class of set called a
σ-field. See the appendix for details.
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There are many interpretations of P(A). The two common interpretations
are frequencies and degrees of beliefs. In the frequency interpretation, P(A)
is the long run proportion of times that A is true in repetitions. For example,
if we say that the probability of heads is 1/2, we mean that if we flip the
coin many times then the proportion of times we get heads tends to 1/2 as
the number of tosses increases. An infinitely long, unpredictable sequence of
tosses whose limiting proportion tends to a constant is an idealization, much
like the idea of a straight line in geometry. The degree-of-belief interpretation
is that P(A) measures an observer’s strength of belief that A is true. In either
interpretation, we require that Axioms 1 to 3 hold. The difference in inter-
pretation will not matter much until we deal with statistical inference. There,
the differing interpretations lead to two schools of inference: the frequentist
and the Bayesian schools. We defer discussion until Chapter 11.

One can derive many properties of P from the axioms, such as:

P(∅) = 0

A ⊂ B =⇒ P(A) ≤ P(B)

0 ≤ P(A) ≤ 1

P(Ac) = 1− P(A)

A
⋂
B = ∅ =⇒ P

(
A
⋃
B
)

= P(A) + P(B). (1.1)

A less obvious property is given in the following Lemma.

1.6 Lemma. For any events A and B,

P

(
A
⋃
B
)

= P(A) + P(B)− P(AB).

Proof. Write A
⋃
B = (ABc)

⋃
(AB)

⋃
(AcB) and note that these events

are disjoint. Hence, making repeated use of the fact that P is additive for
disjoint events, we see that

P

(
A
⋃
B
)

= P

(
(ABc)

⋃
(AB)

⋃
(AcB)

)
= P(ABc) + P(AB) + P(AcB)

= P(ABc) + P(AB) + P(AcB) + P(AB)− P(AB)

= P
(
(ABc)

⋃
(AB)

)
+ P

(
(AcB)

⋃
(AB)

)
− P(AB)

= P(A) + P(B)− P(AB). �

1.7 Example. Two coin tosses. Let H1 be the event that heads occurs on
toss 1 and let H2 be the event that heads occurs on toss 2. If all outcomes are
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equally likely, then P(H1

⋃
H2) = P(H1)+P(H2)−P(H1H2) = 1

2+ 1
2−

1
4 = 3/4.

�

1.8 Theorem (Continuity of Probabilities). If An → A then

P(An)→ P(A)

as n→∞.

Proof. Suppose that An is monotone increasing so that A1 ⊂ A2 ⊂ · · ·.
Let A = limn→∞An =

⋃∞
i=1Ai. Define B1 = A1, B2 = {ω ∈ Ω : ω ∈

A2, ω /∈ A1}, B3 = {ω ∈ Ω : ω ∈ A3, ω /∈ A2, ω /∈ A1}, . . . It can be
shown that B1, B2, . . . are disjoint, An =

⋃n
i=1Ai =

⋃n
i=1Bi for each n and⋃∞

i=1Bi =
⋃∞
i=1Ai. (See exercise 1.) From Axiom 3,

P(An) = P

(
n⋃
i=1

Bi

)
=

n∑
i=1

P(Bi)

and hence, using Axiom 3 again,

lim
n→∞ P(An) = lim

n→∞

n∑
i=1

P(Bi) =
∞∑
i=1

P(Bi) = P

( ∞⋃
i=1

Bi

)
= P(A). �

1.4 Probability on Finite Sample Spaces

Suppose that the sample space Ω = {ω1, . . . , ωn} is finite. For example, if we
toss a die twice, then Ω has 36 elements: Ω = {(i, j); i, j ∈ {1, . . . 6}}. If each
outcome is equally likely, then P(A) = |A|/36 where |A| denotes the number
of elements in A. The probability that the sum of the dice is 11 is 2/36 since
there are two outcomes that correspond to this event.

If Ω is finite and if each outcome is equally likely, then

P(A) =
|A|
|Ω| ,

which is called the uniform probability distribution. To compute prob-
abilities, we need to count the number of points in an event A. Methods for
counting points are called combinatorial methods. We needn’t delve into these
in any great detail. We will, however, need a few facts from counting theory
that will be useful later. Given n objects, the number of ways of ordering
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these objects is n! = n(n − 1)(n − 2) · · · 3 · 2 · 1. For convenience, we define
0! = 1. We also define (

n

k

)
=

n!
k!(n− k)! , (1.2)

read “n choose k”, which is the number of distinct ways of choosing k objects
from n. For example, if we have a class of 20 people and we want to select a
committee of 3 students, then there are(

20
3

)
=

20!
3!17!

=
20× 19× 18

3× 2× 1
= 1140

possible committees. We note the following properties:(
n

0

)
=

(
n

n

)
= 1 and

(
n

k

)
=

(
n

n− k

)
.

1.5 Independent Events

If we flip a fair coin twice, then the probability of two heads is 1
2 ×

1
2 . We

multiply the probabilities because we regard the two tosses as independent.
The formal definition of independence is as follows:

1.9 Definition. Two events A and B are independent if

P(AB) = P(A)P(B) (1.3)

and we write A �B. A set of events {Ai : i ∈ I} is independent if

P

(⋂
i∈J

Ai

)
=

∏
i∈J

P(Ai)

for every finite subset J of I. If A and B are not independent, we write

A ������ B

Independence can arise in two distinct ways. Sometimes, we explicitly as-
sume that two events are independent. For example, in tossing a coin twice,
we usually assume the tosses are independent which reflects the fact that the
coin has no memory of the first toss. In other instances, we derive indepen-
dence by verifying that P(AB) = P(A)P(B) holds. For example, in tossing
a fair die, let A = {2, 4, 6} and let B = {1, 2, 3, 4}. Then, A

⋂
B = {2, 4},
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P(AB) = 2/6 = P(A)P(B) = (1/2)× (2/3) and so A and B are independent.
In this case, we didn’t assume that A and B are independent — it just turned
out that they were.

Suppose that A and B are disjoint events, each with positive probability.
Can they be independent? No. This follows since P(A)P(B) > 0 yet P(AB) =
P(∅) = 0. Except in this special case, there is no way to judge independence
by looking at the sets in a Venn diagram.

1.10 Example. Toss a fair coin 10 times. Let A =“at least one head.” Let Tj
be the event that tails occurs on the jth toss. Then

P(A) = 1− P(Ac)

= 1− P(all tails)

= 1− P(T1T2 · · ·T10)

= 1− P(T1)P(T2) · · ·P(T10) using independence

= 1−
(

1
2

)10

≈ .999. �

1.11 Example. Two people take turns trying to sink a basketball into a net.
Person 1 succeeds with probability 1/3 while person 2 succeeds with proba-
bility 1/4. What is the probability that person 1 succeeds before person 2?
Let E denote the event of interest. Let Aj be the event that the first success
is by person 1 and that it occurs on trial number j. Note that A1, A2, . . . are
disjoint and that E =

⋃∞
j=1Aj . Hence,

P(E) =
∞∑
j=1

P(Aj).

Now, P(A1) = 1/3. A2 occurs if we have the sequence person 1 misses, person
2 misses, person 1 succeeds. This has probability P(A2) = (2/3)(3/4)(1/3) =
(1/2)(1/3). Following this logic we see that P(Aj) = (1/2)j−1(1/3). Hence,

P(E) =
∞∑
j=1

1
3

(
1
2

)j−1

=
1
3

∞∑
j=1

(
1
2

)j−1

=
2
3
.

Here we used that fact that, if 0 < r < 1 then
∑∞
j=k r

j = rk/(1− r). �
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Summary of Independence

1. A and B are independent if and only if P(AB) = P(A)P(B).

2. Independence is sometimes assumed and sometimes derived.

3. Disjoint events with positive probability are not independent.

1.6 Conditional Probability

Assuming that P(B) > 0, we define the conditional probability of A given
that B has occurred as follows:

1.12 Definition. If P(B) > 0 then the conditional probability of A
given B is

P(A|B) =
P(AB)
P(B)

. (1.4)

Think of P(A|B) as the fraction of times A occurs among those in which
B occurs. For any fixed B such that P(B) > 0, P(·|B) is a probability (i.e., it
satisfies the three axioms of probability). In particular, P(A|B) ≥ 0, P(Ω|B) =
1 and if A1, A2, . . . are disjoint then P(

⋃∞
i=1Ai|B) =

∑∞
i=1 P(Ai|B). But it

is in general not true that P(A|B
⋃
C) = P(A|B) + P(A|C). The rules of

probability apply to events on the left of the bar. In general it is not the case
that P(A|B) = P(B|A). People get this confused all the time. For example,
the probability of spots given you have measles is 1 but the probability that
you have measles given that you have spots is not 1. In this case, the difference
between P(A|B) and P(B|A) is obvious but there are cases where it is less
obvious. This mistake is made often enough in legal cases that it is sometimes
called the prosecutor’s fallacy.

1.13 Example. A medical test for a disease D has outcomes + and −. The
probabilities are:

D Dc

+ .009 .099
− .001 .891
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From the definition of conditional probability,

P(+|D) =
P(+

⋂
D)

P(D)
=

.009
.009 + .001

= .9

and

P(−|Dc) =
P(−

⋂
Dc)

P(Dc)
=

.891
.891 + .099

≈ .9.

Apparently, the test is fairly accurate. Sick people yield a positive 90 percent
of the time and healthy people yield a negative about 90 percent of the time.
Suppose you go for a test and get a positive. What is the probability you have
the disease? Most people answer .90. The correct answer is

P(D|+) =
P(+

⋂
D)

P(+)
=

.009
.009 + .099

≈ .08.

The lesson here is that you need to compute the answer numerically. Don’t
trust your intuition. �

The results in the next lemma follow directly from the definition of condi-
tional probability.

1.14 Lemma. If A and B are independent events then P(A|B) = P(A). Also,
for any pair of events A and B,

P(AB) = P(A|B)P(B) = P(B|A)P(A).

From the last lemma, we see that another interpretation of independence is
that knowing B doesn’t change the probability of A. The formula P(AB) =
P(A)P(B|A) is sometimes helpful for calculating probabilities.

1.15 Example. Draw two cards from a deck, without replacement. Let A be
the event that the first draw is the Ace of Clubs and let B be the event that
the second draw is the Queen of Diamonds. Then P(AB) = P(A)P(B|A) =
(1/52)× (1/51). �

Summary of Conditional Probability

1. If P(B) > 0, then

P(A|B) =
P(AB)
P(B)

.

2. P(·|B) satisfies the axioms of probability, for fixed B. In general,
P(A|·) does not satisfy the axioms of probability, for fixed A.

3. In general, P(A|B) �= P(B|A).



12 1. Probability

4. A and B are independent if and only if P(A|B) = P(A).

1.7 Bayes’ Theorem

Bayes’ theorem is the basis of “expert systems” and “Bayes’ nets,” which are
discussed in Chapter 17. First, we need a preliminary result.

1.16 Theorem (The Law of Total Probability). Let A1, . . . , Ak be a partition
of Ω. Then, for any event B,

P(B) =
k∑
i=1

P(B|Ai)P(Ai).

Proof. Define Cj = BAj and note that C1, . . . , Ck are disjoint and that
B =

⋃k
j=1 Cj . Hence,

P(B) =
∑
j

P(Cj) =
∑
j

P(BAj) =
∑
j

P(B|Aj)P(Aj)

since P(BAj) = P(B|Aj)P(Aj) from the definition of conditional probability.
�

1.17 Theorem (Bayes’ Theorem). Let A1, . . . , Ak be a partition of Ω such
that P(Ai) > 0 for each i. If P(B) > 0 then, for each i = 1, . . . , k,

P(Ai|B) =
P(B|Ai)P(Ai)∑
j P(B|Aj)P(Aj)

. (1.5)

1.18 Remark. We call P(Ai) the prior probability of A and P(Ai|B) the
posterior probability of A.

Proof. We apply the definition of conditional probability twice, followed
by the law of total probability:

P(Ai|B) =
P(AiB)
P(B)

=
P(B|Ai)P(Ai)

P(B)
=

P(B|Ai)P(Ai)∑
j P(B|Aj)P(Aj)

. �

1.19 Example. I divide my email into three categories: A1 = “spam,” A2 =
“low priority” and A3 = “high priority.” From previous experience I find that
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P(A1) = .7, P(A2) = .2 and P(A3) = .1. Of course, .7 + .2 + .1 = 1. Let B be
the event that the email contains the word “free.” From previous experience,
P(B|A1) = .9, P(B|A2) = .01, P(B|A1) = .01. (Note: .9 + .01 + .01 �= 1.) I
receive an email with the word “free.” What is the probability that it is spam?
Bayes’ theorem yields,

P(A1|B) =
.9× .7

(.9× .7) + (.01× .2) + (.01× .1)
= .995. �

1.8 Bibliographic Remarks

The material in this chapter is standard. Details can be found in any number
of books. At the introductory level, there is DeGroot and Schervish (2002);
at the intermediate level, Grimmett and Stirzaker (1982) and Karr (1993); at
the advanced level there are Billingsley (1979) and Breiman (1992). I adapted
many examples and exercises from DeGroot and Schervish (2002) and Grim-
mett and Stirzaker (1982).

1.9 Appendix

Generally, it is not feasible to assign probabilities to all subsets of a sample
space Ω. Instead, one restricts attention to a set of events called a σ-algebra
or a σ-field which is a class A that satisfies:

(i) ∅ ∈ A,
(ii) if A1, A2, . . . ,∈ A then

⋃∞
i=1Ai ∈ A and

(iii) A ∈ A implies that Ac ∈ A.
The sets in A are said to be measurable. We call (Ω,A) a measurable
space. If P is a probability measure defined on A, then (Ω,A,P) is called a
probability space. When Ω is the real line, we take A to be the smallest
σ-field that contains all the open subsets, which is called the Borel σ-field.

1.10 Exercises

1. Fill in the details of the proof of Theorem 1.8. Also, prove the monotone
decreasing case.

2. Prove the statements in equation (1.1).
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3. Let Ω be a sample space and let A1, A2, . . . , be events. Define Bn =⋃∞
i=nAi and Cn =

⋂∞
i=nAi.

(a) Show that B1 ⊃ B2 ⊃ · · · and that C1 ⊂ C2 ⊂ · · ·.

(b) Show that ω ∈
⋂∞
n=1Bn if and only if ω belongs to an infinite

number of the events A1, A2, . . ..

(c) Show that ω ∈
⋃∞
n=1 Cn if and only if ω belongs to all the events

A1, A2, . . . except possibly a finite number of those events.

4. Let {Ai : i ∈ I} be a collection of events where I is an arbitrary index
set. Show that(⋃

i∈I
Ai

)c

=
⋂
i∈I

Aci and

(⋂
i∈I

Ai

)c

=
⋃
i∈I

Aci

Hint: First prove this for I = {1, . . . , n}.

5. Suppose we toss a fair coin until we get exactly two heads. Describe
the sample space S. What is the probability that exactly k tosses are
required?

6. Let Ω = {0, 1, . . . , }. Prove that there does not exist a uniform distri-
bution on Ω (i.e., if P(A) = P(B) whenever |A| = |B|, then P cannot
satisfy the axioms of probability).

7. Let A1, A2, . . . be events. Show that

P

( ∞⋃
n=1

An

)
≤

∞∑
n=1

P (An) .

Hint: Define Bn = An −
⋃n−1
i=1 Ai. Then show that the Bn are disjoint

and that
⋃∞
n=1An =

⋃∞
n=1Bn.

8. Suppose that P(Ai) = 1 for each i. Prove that

P

( ∞⋂
i=1

Ai

)
= 1.

9. For fixed B such that P(B) > 0, show that P(·|B) satisfies the axioms
of probability.

10. You have probably heard it before. Now you can solve it rigorously.
It is called the “Monty Hall Problem.” A prize is placed at random
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behind one of three doors. You pick a door. To be concrete, let’s suppose
you always pick door 1. Now Monty Hall chooses one of the other two
doors, opens it and shows you that it is empty. He then gives you the
opportunity to keep your door or switch to the other unopened door.
Should you stay or switch? Intuition suggests it doesn’t matter. The
correct answer is that you should switch. Prove it. It will help to specify
the sample space and the relevant events carefully. Thus write Ω =
{(ω1, ω2) : ωi ∈ {1, 2, 3}} where ω1 is where the prize is and ω2 is the
door Monty opens.

11. Suppose that A and B are independent events. Show that Ac and Bc

are independent events.

12. There are three cards. The first is green on both sides, the second is red
on both sides and the third is green on one side and red on the other. We
choose a card at random and we see one side (also chosen at random).
If the side we see is green, what is the probability that the other side is
also green? Many people intuitively answer 1/2. Show that the correct
answer is 2/3.

13. Suppose that a fair coin is tossed repeatedly until both a head and tail
have appeared at least once.

(a) Describe the sample space Ω.

(b) What is the probability that three tosses will be required?

14. Show that if P(A) = 0 or P(A) = 1 then A is independent of every other
event. Show that if A is independent of itself then P(A) is either 0 or 1.

15. The probability that a child has blue eyes is 1/4. Assume independence
between children. Consider a family with 3 children.

(a) If it is known that at least one child has blue eyes, what is the
probability that at least two children have blue eyes?

(b) If it is known that the youngest child has blue eyes, what is the
probability that at least two children have blue eyes?

16. Prove Lemma 1.14.

17. Show that

P(ABC) = P(A|BC)P(B|C)P(C).
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18. Suppose k events form a partition of the sample space Ω, i.e., they
are disjoint and

⋃k
i=1Ai = Ω. Assume that P(B) > 0. Prove that if

P(A1|B) < P(A1) then P(Ai|B) > P(Ai) for some i = 2, . . . , k.

19. Suppose that 30 percent of computer owners use a Macintosh, 50 percent
use Windows, and 20 percent use Linux. Suppose that 65 percent of
the Mac users have succumbed to a computer virus, 82 percent of the
Windows users get the virus, and 50 percent of the Linux users get
the virus. We select a person at random and learn that her system was
infected with the virus. What is the probability that she is a Windows
user?

20. A box contains 5 coins and each has a different probability of show-
ing heads. Let p1, . . . , p5 denote the probability of heads on each coin.
Suppose that

p1 = 0, p2 = 1/4, p3 = 1/2, p4 = 3/4 and p5 = 1.

Let H denote “heads is obtained” and let Ci denote the event that coin
i is selected.

(a) Select a coin at random and toss it. Suppose a head is obtained.
What is the posterior probability that coin i was selected (i = 1, . . . , 5)?
In other words, find P(Ci|H) for i = 1, . . . , 5.

(b) Toss the coin again. What is the probability of another head? In
other words find P(H2|H1) where Hj = “heads on toss j.”

Now suppose that the experiment was carried out as follows: We select
a coin at random and toss it until a head is obtained.

(c) Find P(Ci|B4) where B4 = “first head is obtained on toss 4.”

21. (Computer Experiment.) Suppose a coin has probability p of falling heads
up. If we flip the coin many times, we would expect the proportion of
heads to be near p. We will make this formal later. Take p = .3 and
n = 1, 000 and simulate n coin flips. Plot the proportion of heads as a
function of n. Repeat for p = .03.

22. (Computer Experiment.) Suppose we flip a coin n times and let p denote
the probability of heads. Let X be the number of heads. We call X
a binomial random variable, which is discussed in the next chapter.
Intuition suggests that X will be close to n p. To see if this is true, we
can repeat this experiment many times and average the X values. Carry
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out a simulation and compare the average of the X’s to n p. Try this for
p = .3 and n = 10, n = 100, and n = 1, 000.

23. (Computer Experiment.) Here we will get some experience simulating
conditional probabilities. Consider tossing a fair die. Let A = {2, 4, 6}
and B = {1, 2, 3, 4}. Then, P(A) = 1/2, P(B) = 2/3 and P(AB) = 1/3.
Since P(AB) = P(A)P(B), the events A and B are independent. Simu-
late draws from the sample space and verify that P̂(AB) = P̂(A)P̂(B)
where P̂(A) is the proportion of times A occurred in the simulation and
similarly for P̂(AB) and P̂(B). Now find two events A and B that are not
independent. Compute P̂(A), P̂(B) and P̂(AB). Compare the calculated
values to their theoretical values. Report your results and interpret.





2
Random Variables

2.1 Introduction

Statistics and data mining are concerned with data. How do we link sample
spaces and events to data? The link is provided by the concept of a random
variable.

2.1 Definition. A random variable is a mapping1

X : Ω→ R

that assigns a real number X(ω) to each outcome ω.

At a certain point in most probability courses, the sample space is rarely
mentioned anymore and we work directly with random variables. But you
should keep in mind that the sample space is really there, lurking in the
background.

2.2 Example. Flip a coin ten times. Let X(ω) be the number of heads in the
sequence ω. For example, if ω = HHTHHTHHTT , then X(ω) = 6. �

1Technically, a random variable must be measurable. See the appendix for details.
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2.3 Example. Let Ω =
{

(x, y); x2 + y2 ≤ 1
}

be the unit disk. Consider

drawing a point at random from Ω. (We will make this idea more precise
later.) A typical outcome is of the form ω = (x, y). Some examples of random
variables are X(ω) = x, Y (ω) = y, Z(ω) = x+ y, and W (ω) =

√
x2 + y2. �

Given a random variable X and a subset A of the real line, define X−1(A) =
{ω ∈ Ω : X(ω) ∈ A} and let

P(X ∈ A) = P(X−1(A)) = P({ω ∈ Ω; X(ω) ∈ A})
P(X = x) = P(X−1(x)) = P({ω ∈ Ω; X(ω) = x}).

Notice that X denotes the random variable and x denotes a particular value
of X.

2.4 Example. Flip a coin twice and let X be the number of heads. Then,
P(X = 0) = P({TT}) = 1/4, P(X = 1) = P({HT, TH}) = 1/2 and
P(X = 2) = P({HH}) = 1/4. The random variable and its distribution
can be summarized as follows:

ω P({ω}) X(ω)
TT 1/4 0
TH 1/4 1
HT 1/4 1
HH 1/4 2

x P(X = x)
0 1/4
1 1/2
2 1/4

Try generalizing this to n flips. �

2.2 Distribution Functions and Probability Functions

Given a random variable X, we define the cumulative distribution function
(or distribution function) as follows.

2.5 Definition. The cumulative distribution function, or cdf, is the
function FX : R→ [0, 1] defined by

FX(x) = P(X ≤ x). (2.1)
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FIGURE 2.1. cdf for flipping a coin twice (Example 2.6.)

We will see later that the cdf effectively contains all the information about
the random variable. Sometimes we write the cdf as F instead of FX .

2.6 Example. Flip a fair coin twice and let X be the number of heads. Then
P(X = 0) = P(X = 2) = 1/4 and P(X = 1) = 1/2. The distribution function
is

FX(x) =


0 x < 0
1/4 0 ≤ x < 1
3/4 1 ≤ x < 2
1 x ≥ 2.

The cdf is shown in Figure 2.1. Although this example is simple, study it
carefully. cdf’s can be very confusing. Notice that the function is right contin-
uous, non-decreasing, and that it is defined for all x, even though the random
variable only takes values 0, 1, and 2. Do you see why FX(1.4) = .75? �

The following result shows that the cdf completely determines the distri-
bution of a random variable.

2.7 Theorem. Let X have cdf F and let Y have cdf G. If F (x) = G(x) for
all x, then P(X ∈ A) = P(Y ∈ A) for all A. 2

2.8 Theorem. A function F mapping the real line to [0, 1] is a cdf for some
probability P if and only if F satisfies the following three conditions:

(i) F is non-decreasing: x1 < x2 implies that F (x1) ≤ F (x2).
(ii) F is normalized:

lim
x→−∞F (x) = 0

2Technically, we only have that P(X ∈ A) = P(Y ∈ A) for every measurable event A.
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and
lim
x→∞F (x) = 1.

(iii) F is right-continuous: F (x) = F (x+) for all x, where

F (x+) = lim
y→x
y>x

F (y).

Proof. Suppose that F is a cdf. Let us show that (iii) holds. Let x be
a real number and let y1, y2, . . . be a sequence of real numbers such that
y1 > y2 > · · · and limi yi = x. Let Ai = (−∞, yi] and let A = (−∞, x]. Note
that A =

⋂∞
i=1Ai and also note that A1 ⊃ A2 ⊃ · · ·. Because the events are

monotone, limi P(Ai) = P(
⋂
iAi). Thus,

F (x) = P(A) = P

(⋂
i

Ai

)
= lim

i
P(Ai) = lim

i
F (yi) = F (x+).

Showing (i) and (ii) is similar. Proving the other direction — namely, that if
F satisfies (i), (ii), and (iii) then it is a cdf for some random variable — uses
some deep tools in analysis. �

2.9 Definition. X is discrete if it takes countably3many values
{x1, x2, . . .}. We define the probability function or probability mass
function for X by fX(x) = P(X = x).

Thus, fX(x) ≥ 0 for all x ∈ R and
∑

i fX(xi) = 1. Sometimes we write f
instead of fX . The cdf of X is related to fX by

FX(x) = P(X ≤ x) =
∑
xi≤x

fX(xi).

2.10 Example. The probability function for Example 2.6 is

fX(x) =


1/4 x = 0
1/2 x = 1
1/4 x = 2
0 otherwise.

See Figure 2.2. �

3A set is countable if it is finite or it can be put in a one-to-one correspondence with the
integers. The even numbers, the odd numbers, and the rationals are countable; the set of real
numbers between 0 and 1 is not countable.
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FIGURE 2.2. Probability function for flipping a coin twice (Example 2.6).

2.11 Definition. A random variable X is continuous if there exists a
function fX such that fX(x) ≥ 0 for all x,

∫ ∞
−∞ fX(x)dx = 1 and for

every a ≤ b,

P(a < X < b) =
∫ b

a

fX(x)dx. (2.2)

The function fX is called the probability density function (pdf). We
have that

FX(x) =
∫ x

−∞
fX(t)dt

and fX(x) = F ′
X(x) at all points x at which FX is differentiable.

Sometimes we write
∫
f(x)dx or

∫
f to mean

∫ ∞
−∞ f(x)dx.

2.12 Example. Suppose that X has pdf

fX(x) =
{

1 for 0 ≤ x ≤ 1
0 otherwise.

Clearly, fX(x) ≥ 0 and
∫
fX(x)dx = 1. A random variable with this density

is said to have a Uniform (0,1) distribution. This is meant to capture the idea
of choosing a point at random between 0 and 1. The cdf is given by

FX(x) =


0 x < 0
x 0 ≤ x ≤ 1
1 x > 1.

See Figure 2.3. �
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FX(x)

x
FIGURE 2.3. cdf for Uniform (0,1).

2.13 Example. Suppose that X has pdf

f(x) =
{

0 for x < 0
1

(1+x)2 otherwise.

Since
∫
f(x)dx = 1, this is a well-defined pdf. �

Warning! Continuous random variables can lead to confusion. First, note
that if X is continuous then P(X = x) = 0 for every x. Don’t try to think
of f(x) as P(X = x). This only holds for discrete random variables. We get
probabilities from a pdf by integrating. A pdf can be bigger than 1 (unlike
a mass function). For example, if f(x) = 5 for x ∈ [0, 1/5] and 0 otherwise,
then f(x) ≥ 0 and

∫
f(x)dx = 1 so this is a well-defined pdf even though

f(x) = 5 in some places. In fact, a pdf can be unbounded. For example, if
f(x) = (2/3)x−1/3 for 0 < x < 1 and f(x) = 0 otherwise, then

∫
f(x)dx = 1

even though f is not bounded.

2.14 Example. Let

f(x) =
{

0 for x < 0
1

(1+x) otherwise.

This is not a pdf since
∫
f(x)dx =

∫ ∞
0
dx/(1+x) =

∫ ∞
1
du/u = log(∞) =∞.

�

2.15 Lemma. Let F be the cdf for a random variable X. Then:

1. P(X = x) = F (x)− F (x−) where F (x−) = limy↑x F (y);
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2. P(x < X ≤ y) = F (y)− F (x);

3. P(X > x) = 1− F (x);

4. If X is continuous then

F (b)− F (a) = P(a < X < b) = P(a ≤ X < b)

= P(a < X ≤ b) = P(a ≤ X ≤ b).

It is also useful to define the inverse cdf (or quantile function).

2.16 Definition. Let X be a random variable with cdf F . The inverse
CDF or quantile function is defined by4

F−1(q) = inf
{
x : F (x) > q

}
for q ∈ [0, 1]. If F is strictly increasing and continuous then F−1(q) is the
unique real number x such that F (x) = q.

We call F−1(1/4) the first quartile, F−1(1/2) the median (or second
quartile), and F−1(3/4) the third quartile.

Two random variables X and Y are equal in distribution — written
X

d= Y — if FX(x) = FY (x) for all x. This does not mean that X and Y are
equal. Rather, it means that all probability statements about X and Y will
be the same. For example, suppose that P(X = 1) = P(X = −1) = 1/2. Let
Y = −X. Then P(Y = 1) = P(Y = −1) = 1/2 and so X d= Y . But X and Y

are not equal. In fact, P(X = Y ) = 0.

2.3 Some Important Discrete Random Variables

Warning About Notation! It is traditional to write X ∼ F to indicate
that X has distribution F . This is unfortunate notation since the symbol ∼
is also used to denote an approximation. The notation X ∼ F is so pervasive
that we are stuck with it. Read X ∼ F as “X has distribution F” not as “X
is approximately F”.

4If you are unfamiliar with “inf”, just think of it as the minimum.
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The Point Mass Distribution. X has a point mass distribution at a,
written X ∼ δa, if P(X = a) = 1 in which case

F (x) =
{

0 x < a
1 x ≥ a.

The probability mass function is f(x) = 1 for x = a and 0 otherwise.

The Discrete Uniform Distribution. Let k > 1 be a given integer.
Suppose that X has probability mass function given by

f(x) =
{

1/k for x = 1, . . . , k
0 otherwise.

We say that X has a uniform distribution on {1, . . . , k}.

The Bernoulli Distribution. Let X represent a binary coin flip. Then
P(X = 1) = p and P(X = 0) = 1− p for some p ∈ [0, 1]. We say that X has a
Bernoulli distribution written X ∼ Bernoulli(p). The probability function is
f(x) = px(1− p)1−x for x ∈ {0, 1}.

The Binomial Distribution. Suppose we have a coin which falls heads
up with probability p for some 0 ≤ p ≤ 1. Flip the coin n times and let
X be the number of heads. Assume that the tosses are independent. Let
f(x) = P(X = x) be the mass function. It can be shown that

f(x) =

{ (
n
x

)
px(1− p)n−x for x = 0, . . . , n

0 otherwise.

A random variable with this mass function is called a Binomial random
variable and we write X ∼ Binomial(n, p). If X1 ∼ Binomial(n1, p) and
X2 ∼ Binomial(n2, p) then X1 +X2 ∼ Binomial(n1 + n2, p).

Warning! Let us take this opportunity to prevent some confusion. X is a
random variable; x denotes a particular value of the random variable; n and p
are parameters, that is, fixed real numbers. The parameter p is usually un-
known and must be estimated from data; that’s what statistical inference is all
about. In most statistical models, there are random variables and parameters:
don’t confuse them.

The Geometric Distribution. X has a geometric distribution with
parameter p ∈ (0, 1), written X ∼ Geom(p), if

P(X = k) = p(1− p)k−1, k ≥ 1.
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We have that
∞∑
k=1

P(X = k) = p

∞∑
k=1

(1− p)k =
p

1− (1− p) = 1.

Think of X as the number of flips needed until the first head when flipping a
coin.

The Poisson Distribution. X has a Poisson distribution with parameter
λ, written X ∼ Poisson(λ) if

f(x) = e−λλ
x

x!
x ≥ 0.

Note that ∞∑
x=0

f(x) = e−λ
∞∑
x=0

λx

x!
= e−λeλ = 1.

The Poisson is often used as a model for counts of rare events like radioactive
decay and traffic accidents. If X1 ∼ Poisson(λ1) and X2 ∼ Poisson(λ2) then
X1 +X2 ∼ Poisson(λ1 + λ2).

Warning! We defined random variables to be mappings from a sample
space Ω to R but we did not mention the sample space in any of the distri-
butions above. As I mentioned earlier, the sample space often “disappears”
but it is really there in the background. Let’s construct a sample space ex-
plicitly for a Bernoulli random variable. Let Ω = [0, 1] and define P to satisfy
P([a, b]) = b− a for 0 ≤ a ≤ b ≤ 1. Fix p ∈ [0, 1] and define

X(ω) =
{

1 ω ≤ p
0 ω > p.

Then P(X = 1) = P(ω ≤ p) = P([0, p]) = p and P(X = 0) = 1 − p. Thus,
X ∼ Bernoulli(p). We could do this for all the distributions defined above. In
practice, we think of a random variable like a random number but formally it
is a mapping defined on some sample space.

2.4 Some Important Continuous Random Variables

The Uniform Distribution. X has a Uniform(a, b) distribution, written
X ∼ Uniform(a, b), if

f(x) =
{

1
b−a for x ∈ [a, b]
0 otherwise
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where a < b. The distribution function is

F (x) =


0 x < a
x−a
b−a x ∈ [a, b]
1 x > b.

Normal (Gaussian). X has a Normal (or Gaussian) distribution with
parameters µ and σ, denoted by X ∼ N(µ, σ2), if

f(x) =
1

σ
√

2π
exp

{
− 1

2σ2
(x− µ)2

}
, x ∈ R (2.3)

where µ ∈ R and σ > 0. The parameter µ is the “center” (or mean) of the
distribution and σ is the “spread” (or standard deviation) of the distribu-
tion. (The mean and standard deviation will be formally defined in the next
chapter.) The Normal plays an important role in probability and statistics.
Many phenomena in nature have approximately Normal distributions. Later,
we shall study the Central Limit Theorem which says that the distribution of
a sum of random variables can be approximated by a Normal distribution.

We say that X has a standard Normal distribution if µ = 0 and σ = 1.
Tradition dictates that a standard Normal random variable is denoted by Z.
The pdf and cdf of a standard Normal are denoted by φ(z) and Φ(z). The
pdf is plotted in Figure 2.4. There is no closed-form expression for Φ. Here
are some useful facts:

(i) If X ∼ N(µ, σ2), then Z = (X − µ)/σ ∼ N(0, 1).

(ii) If Z ∼ N(0, 1), then X = µ+ σZ ∼ N(µ, σ2).

(iii) If Xi ∼ N(µi, σ2
i ), i = 1, . . . , n are independent, then

n∑
i=1

Xi ∼ N
(

n∑
i=1

µi,

n∑
i=1

σ2
i

)
.

It follows from (i) that if X ∼ N(µ, σ2), then

P (a < X < b) = P

(
a− µ
σ

< Z <
b− µ
σ

)
= Φ

(
b− µ
σ

)
− Φ

(
a− µ
σ

)
.

Thus we can compute any probabilities we want as long as we can compute
the cdf Φ(z) of a standard Normal. All statistical computing packages will
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0 1 2−1−2
z

FIGURE 2.4. Density of a standard Normal.

compute Φ(z) and Φ−1(q). Most statistics texts, including this one, have a
table of values of Φ(z).

2.17 Example. Suppose that X ∼ N(3, 5). Find P(X > 1). The solution is

P(X > 1) = 1− P(X < 1) = 1− P

(
Z <

1− 3√
5

)
= 1− Φ(−0.8944) = 0.81.

Now find q = Φ−1(0.2). This means we have to find q such that P(X < q) =
0.2. We solve this by writing

0.2 = P(X < q) = P

(
Z <

q − µ
σ

)
= Φ

(
q − µ
σ

)
.

From the Normal table, Φ(−0.8416) = 0.2. Therefore,

−0.8416 =
q − µ
σ

=
q − 3√

5

and hence q = 3− 0.8416
√

5 = 1.1181. �

Exponential Distribution. X has an Exponential distribution with
parameter β, denoted by X ∼ Exp(β), if

f(x) =
1
β
e−x/β , x > 0

where β > 0. The exponential distribution is used to model the lifetimes of
electronic components and the waiting times between rare events.

Gamma Distribution. For α > 0, the Gamma function is defined by
Γ(α) =

∫ ∞
0
yα−1e−ydy. X has a Gamma distribution with parameters α and
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β, denoted by X ∼ Gamma(α, β), if

f(x) =
1

βαΓ(α)
xα−1e−x/β , x > 0

where α, β > 0. The exponential distribution is just a Gamma(1, β) distribu-
tion. IfXi ∼ Gamma(αi, β) are independent, then

∑n
i=1Xi ∼ Gamma(

∑n
i=1 αi, β).

The Beta Distribution. X has a Beta distribution with parameters
α > 0 and β > 0, denoted by X ∼ Beta(α, β), if

f(x) =
Γ(α+ β)
Γ(α)Γ(β)

xα−1(1− x)β−1, 0 < x < 1.

t and Cauchy Distribution. X has a t distribution with ν degrees of
freedom — written X ∼ tν — if

f(x) =
Γ
(
ν+1
2

)
Γ
(
ν
2

) 1(
1 + x2

ν

)(ν+1)/2
.

The t distribution is similar to a Normal but it has thicker tails. In fact, the
Normal corresponds to a t with ν =∞. The Cauchy distribution is a special
case of the t distribution corresponding to ν = 1. The density is

f(x) =
1

π(1 + x2)
.

To see that this is indeed a density:∫ ∞

−∞
f(x)dx =

1
π

∫ ∞

−∞

dx

1 + x2
=

1
π

∫ ∞

−∞

d tan−1(x)
dx

=
1
π

[
tan−1(∞)− tan−1(−∞)

]
=

1
π

[π
2
−

(
−π

2

)]
= 1.

The χ2
distribution. X has a χ2 distribution with p degrees of freedom

— written X ∼ χ2
p — if

f(x) =
1

Γ(p/2)2p/2
x(p/2)−1e−x/2, x > 0.

If Z1, . . . , Zp are independent standard Normal random variables then
∑p
i=1 Z

2
i ∼

χ2
p.
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2.5 Bivariate Distributions

Given a pair of discrete random variables X and Y , define the joint mass
function by f(x, y) = P(X = x and Y = y). From now on, we write P(X =
x and Y = y) as P(X = x, Y = y). We write f as fX,Y when we want to be
more explicit.

2.18 Example. Here is a bivariate distribution for two random variables X
and Y each taking values 0 or 1:

Y = 0 Y = 1
X=0 1/9 2/9 1/3
X=1 2/9 4/9 2/3

1/3 2/3 1

Thus, f(1, 1) = P(X = 1, Y = 1) = 4/9. �

2.19 Definition. In the continuous case, we call a function f(x, y) a pdf

for the random variables (X,Y ) if

(i) f(x, y) ≥ 0 for all (x, y),

(ii)
∫ ∞

−∞
∫ ∞

−∞ f(x, y)dxdy = 1 and,

(iii) for any set A ⊂ R× R, P((X,Y ) ∈ A) =
∫ ∫

A
f(x, y)dxdy.

In the discrete or continuous case we define the joint cdf as FX,Y (x, y) =
P(X ≤ x, Y ≤ y).

2.20 Example. Let (X,Y ) be uniform on the unit square. Then,

f(x, y) =
{

1 if 0 ≤ x ≤ 1, 0 ≤ y ≤ 1
0 otherwise.

Find P(X < 1/2, Y < 1/2). The event A = {X < 1/2, Y < 1/2} corresponds
to a subset of the unit square. Integrating f over this subset corresponds, in
this case, to computing the area of the set A which is 1/4. So, P(X < 1/2, Y <

1/2) = 1/4. �
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2.21 Example. Let (X,Y ) have density

f(x, y) =
{
x+ y if 0 ≤ x ≤ 1, 0 ≤ y ≤ 1
0 otherwise.

Then ∫ 1

0

∫ 1

0

(x+ y)dxdy =
∫ 1

0

[∫ 1

0

x dx

]
dy +

∫ 1

0

[∫ 1

0

y dx

]
dy

=
∫ 1

0

1
2
dy +

∫ 1

0

y dy =
1
2

+
1
2

= 1

which verifies that this is a pdf �

2.22 Example. If the distribution is defined over a non-rectangular region,
then the calculations are a bit more complicated. Here is an example which I
borrowed from DeGroot and Schervish (2002). Let (X,Y ) have density

f(x, y) =
{
c x2y if x2 ≤ y ≤ 1
0 otherwise.

Note first that −1 ≤ x ≤ 1. Now let us find the value of c. The trick here is
to be careful about the range of integration. We pick one variable, x say, and
let it range over its values. Then, for each fixed value of x, we let y vary over
its range, which is x2 ≤ y ≤ 1. It may help if you look at Figure 2.5. Thus,

1 =
∫ ∫

f(x, y)dydx = c

∫ 1

−1

∫ 1

x2
x2y dy dx

= c

∫ 1

−1

x2

[∫ 1

x2
y dy

]
dx = c

∫ 1

−1

x2 1− x4

2
dx =

4c
21
.

Hence, c = 21/4. Now let us compute P(X ≥ Y ). This corresponds to the set
A = {(x, y); 0 ≤ x ≤ 1, x2 ≤ y ≤ x}. (You can see this by drawing a diagram.)
So,

P(X ≥ Y ) =
21
4

∫ 1

0

∫ x

x2
x2 y dy dx =

21
4

∫ 1

0

x2

[∫ x

x2
y dy

]
dx

=
21
4

∫ 1

0

x2

(
x2 − x4

2

)
dx =

3
20
. �
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0 1

1

y = x2

y = x

x

y

FIGURE 2.5. The light shaded region is x2 ≤ y ≤ 1. The density is positive over
this region. The hatched region is the event X ≥ Y intersected with x2 ≤ y ≤ 1.

2.6 Marginal Distributions

2.23 Definition. If (X,Y ) have joint distribution with mass function
fX,Y , then the marginal mass function for X is defined by

fX(x) = P(X = x) =
∑
y

P(X = x, Y = y) =
∑
y

f(x, y) (2.4)

and the marginal mass function for Y is defined by

fY (y) = P(Y = y) =
∑
x

P(X = x, Y = y) =
∑
x

f(x, y). (2.5)

2.24 Example. Suppose that fX,Y is given in the table that follows. The
marginal distribution for X corresponds to the row totals and the marginal
distribution for Y corresponds to the columns totals.

Y = 0 Y = 1
X=0 1/10 2/10 3/10
X=1 3/10 4/10 7/10

4/10 6/10 1

For example, fX(0) = 3/10 and fX(1) = 7/10. �
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2.25 Definition. For continuous random variables, the marginal densities
are

fX(x) =
∫
f(x, y)dy, and fY (y) =

∫
f(x, y)dx. (2.6)

The corresponding marginal distribution functions are denoted by FX and
FY .

2.26 Example. Suppose that

fX,Y (x, y) = e−(x+y)

for x, y ≥ 0. Then fX(x) = e−x ∫ ∞
0
e−ydy = e−x. �

2.27 Example. Suppose that

f(x, y) =
{
x+ y if 0 ≤ x ≤ 1, 0 ≤ y ≤ 1
0 otherwise.

Then

fY (y) =
∫ 1

0

(x+ y) dx =
∫ 1

0

x dx+
∫ 1

0

y dx =
1
2

+ y. �

2.28 Example. Let (X,Y ) have density

f(x, y) =
{

21
4 x

2y if x2 ≤ y ≤ 1
0 otherwise.

Thus,

fX(x) =
∫
f(x, y)dy =

21
4
x2

∫ 1

x2
y dy =

21
8
x2(1− x4)

for −1 ≤ x ≤ 1 and fX(x) = 0 otherwise. �

2.7 Independent Random Variables

2.29 Definition. Two random variables X and Y are independent if,
for every A and B,

P(X ∈ A, Y ∈ B) = P(X ∈ A)P(Y ∈ B) (2.7)

and we write X � Y . Otherwise we say that X and Y are dependent
and we write X ������ Y .
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In principle, to check whether X and Y are independent we need to check
equation (2.7) for all subsets A and B. Fortunately, we have the following
result which we state for continuous random variables though it is true for
discrete random variables too.

2.30 Theorem. Let X and Y have joint pdf fX,Y . Then X � Y if and only
if fX,Y (x, y) = fX(x)fY (y) for all values x and y. 5

2.31 Example. Let X and Y have the following distribution:

Y = 0 Y = 1
X=0 1/4 1/4 1/2
X=1 1/4 1/4 1/2

1/2 1/2 1

Then, fX(0) = fX(1) = 1/2 and fY (0) = fY (1) = 1/2. X and Y are inde-
pendent because fX(0)fY (0) = f(0, 0), fX(0)fY (1) = f(0, 1), fX(1)fY (0) =
f(1, 0), fX(1)fY (1) = f(1, 1). Suppose instead that X and Y have the follow-
ing distribution:

Y = 0 Y = 1
X=0 1/2 0 1/2
X=1 0 1/2 1/2

1/2 1/2 1

These are not independent because fX(0)fY (1) = (1/2)(1/2) = 1/4 yet
f(0, 1) = 0. �

2.32 Example. Suppose that X and Y are independent and both have the
same density

f(x) =
{

2x if 0 ≤ x ≤ 1
0 otherwise.

Let us find P(X + Y ≤ 1). Using independence, the joint density is

f(x, y) = fX(x)fY (y) =
{

4xy if 0 ≤ x ≤ 1, 0 ≤ y ≤ 1
0 otherwise.

5The statement is not rigorous because the density is defined only up to sets of
measure 0.
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Now,

P(X + Y ≤ 1) =
∫ ∫

x+y≤1

f(x, y)dydx

= 4
∫ 1

0

x

[∫ 1−x

0

ydy

]
dx

= 4
∫ 1

0

x
(1− x)2

2
dx =

1
6
. �

The following result is helpful for verifying independence.

2.33 Theorem. Suppose that the range of X and Y is a (possibly infinite)
rectangle. If f(x, y) = g(x)h(y) for some functions g and h (not necessarily
probability density functions) then X and Y are independent.

2.34 Example. Let X and Y have density

f(x, y) =
{

2e−(x+2y) if x > 0 and y > 0
0 otherwise.

The range of X and Y is the rectangle (0,∞)×(0,∞). We can write f(x, y) =
g(x)h(y) where g(x) = 2e−x and h(y) = e−2y. Thus, X � Y . �

2.8 Conditional Distributions

If X and Y are discrete, then we can compute the conditional distribution of
X given that we have observed Y = y. Specifically, P(X = x|Y = y) = P(X =
x, Y = y)/P(Y = y). This leads us to define the conditional probability mass
function as follows.

2.35 Definition. The conditional probability mass function is

fX|Y (x|y) = P(X = x|Y = y) =
P(X = x, Y = y)

P(Y = y)
=
fX,Y (x, y)
fY (y)

if fY (y) > 0.

For continuous distributions we use the same definitions. 6 The interpre-
tation differs: in the discrete case, fX|Y (x|y) is P(X = x|Y = y), but in the
continuous case, we must integrate to get a probability.

6We are treading in deep water here. When we compute P(X ∈ A|Y = y) in the
continuous case we are conditioning on the event {Y = y} which has probability 0. We
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2.36 Definition. For continuous random variables, the conditional
probability density function is

fX|Y (x|y) =
fX,Y (x, y)
fY (y)

assuming that fY (y) > 0. Then,

P(X ∈ A|Y = y) =
∫
A

fX|Y (x|y)dx.

2.37 Example. Let X and Y have a joint uniform distribution on the unit
square. Thus, fX|Y (x|y) = 1 for 0 ≤ x ≤ 1 and 0 otherwise. Given Y = y, X
is Uniform(0, 1). We can write this as X|Y = y ∼ Uniform(0, 1). �

From the definition of the conditional density, we see that fX,Y (x, y) =
fX|Y (x|y)fY (y) = fY |X(y|x)fX(x). This can sometimes be useful as in exam-
ple 2.39.

2.38 Example. Let

f(x, y) =
{
x+ y if 0 ≤ x ≤ 1, 0 ≤ y ≤ 1
0 otherwise.

Let us find P(X < 1/4|Y = 1/3). In example 2.27 we saw that fY (y) =
y + (1/2). Hence,

fX|Y (x|y) =
fX,Y (x, y)
fY (y)

=
x+ y

y + 1
2

.

So,

P

(
X <

1
4

∣∣∣∣∣ Y =
1
3

)
=

∫ 1/4

0

fX|Y

(
x

∣∣∣∣∣ 1
3

)
dx

=
∫ 1/4

0

x+ 1
3

1
3 + 1

2

dx =
1
32 + 1

12
1
3 + 1

2

=
11
80
. �

2.39 Example. Suppose that X ∼ Uniform(0, 1). After obtaining a value of
X we generate Y |X = x ∼ Uniform(x, 1). What is the marginal distribution

avoid this problem by defining things in terms of the pdf. The fact that this leads to
a well-defined theory is proved in more advanced courses. Here, we simply take it as a
definition.
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of Y ? First note that,

fX(x) =
{

1 if 0 ≤ x ≤ 1
0 otherwise

and

fY |X(y|x) =
{

1
1−x if 0 < x < y < 1
0 otherwise.

So,

fX,Y (x, y) = fY |X(y|x)fX(x) =
{

1
1−x if 0 < x < y < 1
0 otherwise.

The marginal for Y is

fY (y) =
∫ y

0

fX,Y (x, y)dx =
∫ y

0

dx

1− x = −
∫ 1−y

1

du

u
= − log(1− y)

for 0 < y < 1. �

2.40 Example. Consider the density in Example 2.28. Let’s find fY |X(y|x).
When X = x, y must satisfy x2 ≤ y ≤ 1. Earlier, we saw that fX(x) =
(21/8)x2(1− x4). Hence, for x2 ≤ y ≤ 1,

fY |X(y|x) =
f(x, y)
fX(x)

=
21
4 x

2y
21
8 x

2(1− x4)
=

2y
1− x4

.

Now let us compute P(Y ≥ 3/4|X = 1/2). This can be done by first noting
that fY |X(y|1/2) = 32y/15. Thus,

P(Y ≥ 3/4|X = 1/2) =
∫ 1

3/4

f(y|1/2)dy =
∫ 1

3/4

32y
15

dy =
7
15
. �

2.9 Multivariate Distributions and iid Samples

Let X = (X1, . . . , Xn) where X1, . . . , Xn are random variables. We call X a
random vector. Let f(x1, . . . , xn) denote the pdf. It is possible to define
their marginals, conditionals etc. much the same way as in the bivariate case.
We say that X1, . . . , Xn are independent if, for every A1, . . . , An,

P(X1 ∈ A1, . . . , Xn ∈ An) =
n∏
i=1

P(Xi ∈ Ai). (2.8)

It suffices to check that f(x1, . . . , xn) =
∏n
i=1 fXi(xi).
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2.41 Definition. If X1, . . . , Xn are independent and each has the same
marginal distribution with cdf F , we say that X1, . . . , Xn are iid

(independent and identically distributed) and we write

X1, . . . Xn ∼ F.

If F has density f we also write X1, . . . Xn ∼ f . We also call X1, . . . , Xn

a random sample of size n from F .

Much of statistical theory and practice begins with iid observations and we
shall study this case in detail when we discuss statistics.

2.10 Two Important Multivariate Distributions

Multinomial. The multivariate version of a Binomial is called a Multino-
mial. Consider drawing a ball from an urn which has balls with k different
colors labeled “color 1, color 2, . . . , color k.” Let p = (p1, . . . , pk) where
pj ≥ 0 and

∑k
j=1 pj = 1 and suppose that pj is the probability of drawing

a ball of color j. Draw n times (independent draws with replacement) and
let X = (X1, . . . , Xk) where Xj is the number of times that color j appears.
Hence, n =

∑k
j=1Xj . We say that X has a Multinomial (n,p) distribution

written X ∼ Multinomial(n, p). The probability function is

f(x) =
(

n

x1 . . . xk

)
px1
1 · · · p

xk
k (2.9)

where (
n

x1 . . . xk

)
=

n!
x1! · · ·xk!

.

2.42 Lemma. Suppose that X ∼ Multinomial(n, p) where X = (X1, . . . , Xk)
and p = (p1, . . . , pk). The marginal distribution of Xj is Binomial (n,pj).

Multivariate Normal. The univariate Normal has two parameters, µ
and σ. In the multivariate version, µ is a vector and σ is replaced by a matrix
Σ. To begin, let

Z =

 Z1

...
Zk
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where Z1, . . . , Zk ∼ N(0, 1) are independent. The density of Z is 7

f(z) =
k∏
i=1

f(zi) =
1

(2π)k/2
exp

−1
2

k∑
j=1

z2
j


=

1
(2π)k/2

exp
{
−1

2
zT z

}
.

We say that Z has a standard multivariate Normal distribution written Z ∼
N(0, I) where it is understood that 0 represents a vector of k zeroes and I is
the k × k identity matrix.

More generally, a vector X has a multivariate Normal distribution, denoted
by X ∼ N(µ,Σ), if it has density 8

f(x; µ,Σ) =
1

(2π)k/2|(Σ)|1/2 exp
{
−1

2
(x− µ)TΣ−1(x− µ)

}
(2.10)

where |Σ| denotes the determinant of Σ, µ is a vector of length k and Σ is a
k × k symmetric, positive definite matrix. 9 Setting µ = 0 and Σ = I gives
back the standard Normal.

Since Σ is symmetric and positive definite, it can be shown that there exists
a matrix Σ1/2 — called the square root of Σ — with the following properties:
(i) Σ1/2 is symmetric, (ii) Σ = Σ1/2Σ1/2 and (iii) Σ1/2Σ−1/2 = Σ−1/2Σ1/2 = I

where Σ−1/2 = (Σ1/2)−1.

2.43 Theorem. If Z ∼ N(0, I) and X = µ + Σ1/2Z then X ∼ N(µ,Σ).
Conversely, if X ∼ N(µ,Σ), then Σ−1/2(X − µ) ∼ N(0, I).

Suppose we partition a random Normal vector X as X = (Xa, Xb) We can
similarly partition µ = (µa, µb) and

Σ =
(

Σaa Σab
Σba Σbb

)
.

2.44 Theorem. Let X ∼ N(µ,Σ). Then:
(1) The marginal distribution of Xa is Xa ∼ N(µa,Σaa).
(2) The conditional distribution of Xb given Xa = xa is

Xb|Xa = xa ∼ N
(
µb + ΣbaΣ−1

aa (xa − µa), Σbb − ΣbaΣ−1
aaΣab

)
.

(3) If a is a vector then aTX ∼ N(aTµ, aTΣa).
(4) V = (X − µ)TΣ−1(X − µ) ∼ χ2

k.

7If a and b are vectors then aT b =
∑k

i=1 aibi.
8Σ−1 is the inverse of the matrix Σ.
9A matrix Σ is positive definite if, for all nonzero vectors x, xT Σx > 0.
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2.11 Transformations of Random Variables

Suppose that X is a random variable with pdf fX and cdf FX . Let Y = r(X)
be a function of X, for example, Y = X2 or Y = eX . We call Y = r(X) a
transformation of X. How do we compute the pdf and cdf of Y ? In the
discrete case, the answer is easy. The mass function of Y is given by

fY (y) = P(Y = y) = P(r(X) = y)

= P({x; r(x) = y}) = P(X ∈ r−1(y)).

2.45 Example. Suppose that P(X = −1) = P(X = 1) = 1/4 and P(X = 0) =
1/2. Let Y = X2. Then, P(Y = 0) = P(X = 0) = 1/2 and P(Y = 1) = P(X =
1) + P(X = −1) = 1/2. Summarizing:

x fX(x)
-1 1/4
0 1/2
1 1/4

y fY (y)
0 1/2
1 1/2

Y takes fewer values than X because the transformation is not one-to-one. �

The continuous case is harder. There are three steps for finding fY :

Three Steps for Transformations

1. For each y, find the set Ay = {x : r(x) ≤ y}.

2. Find the cdf

FY (y) = P(Y ≤ y) = P(r(X) ≤ y)
= P({x; r(x) ≤ y})

=
∫
Ay

fX(x)dx. (2.11)

3. The pdf is fY (y) = F ′
Y (y).

2.46 Example. Let fX(x) = e−x for x > 0. Hence, FX(x) =
∫ x
0
fX(s)ds =

1− e−x. Let Y = r(X) = logX. Then, Ay = {x : x ≤ ey} and

FY (y) = P(Y ≤ y) = P(logX ≤ y)
= P(X ≤ ey) = FX(ey) = 1− e−ey .

Therefore, fY (y) = eye−ey for y ∈ R. �
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2.47 Example. Let X ∼ Uniform(−1, 3). Find the pdf of Y = X2. The
density of X is

fX(x) =
{

1/4 if − 1 < x < 3
0 otherwise.

Y can only take values in (0, 9). Consider two cases: (i) 0 < y < 1 and (ii) 1 ≤
y < 9. For case (i), Ay = [−√y,√y] and FY (y) =

∫
Ay
fX(x)dx = (1/2)

√
y.

For case (ii), Ay = [−1,
√
y] and FY (y) =

∫
Ay
fX(x)dx = (1/4)(

√
y + 1).

Differentiating F we get

fY (y) =


1

4
√
y if 0 < y < 1

1
8
√
y if 1 < y < 9

0 otherwise. �

When r is strictly monotone increasing or strictly monotone decreasing then
r has an inverse s = r−1 and in this case one can show that

fY (y) = fX(s(y))
∣∣∣∣ds(y)dy

∣∣∣∣ . (2.12)

2.12 Transformations of Several Random Variables

In some cases we are interested in transformations of several random variables.
For example, if X and Y are given random variables, we might want to know
the distribution of X/Y , X + Y , max{X,Y } or min{X,Y }. Let Z = r(X,Y )
be the function of interest. The steps for finding fZ are the same as before:

Three Steps for Transformations

1. For each z, find the set Az = {(x, y) : r(x, y) ≤ z}.

2. Find the cdf

FZ(z) = P(Z ≤ z) = P(r(X,Y ) ≤ z)

= P({(x, y); r(x, y) ≤ z}) =
∫ ∫

Az

fX,Y (x, y) dx dy.

3. Then fZ(z) = F ′
Z(z).
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2.48 Example. Let X1, X2 ∼ Uniform(0, 1) be independent. Find the density
of Y = X1 +X2. The joint density of (X1, X2) is

f(x1, x2) =
{

1 0 < x1 < 1, 0 < x2 < 1
0 otherwise.

Let r(x1, x2) = x1 + x2. Now,

FY (y) = P(Y ≤ y) = P(r(X1, X2) ≤ y)

= P({(x1, x2) : r(x1, x2) ≤ y}) =
∫ ∫

Ay

f(x1, x2)dx1dx2.

Now comes the hard part: finding Ay. First suppose that 0 < y ≤ 1. Then Ay
is the triangle with vertices (0, 0), (y, 0) and (0, y). See Figure 2.6. In this case,∫ ∫

Ay
f(x1, x2)dx1dx2 is the area of this triangle which is y2/2. If 1 < y < 2,

then Ay is everything in the unit square except the triangle with vertices
(1, y − 1), (1, 1), (y − 1, 1). This set has area 1− (2− y)2/2. Therefore,

FY (y) =


0 y < 0
y2

2 0 ≤ y < 1

1− (2−y)2
2 1 ≤ y < 2

1 y ≥ 2.

By differentiation, the pdf is

fY (y) =


y 0 ≤ y ≤ 1

2− y 1 ≤ y ≤ 2

0 otherwise. �

2.13 Appendix

Recall that a probability measure P is defined on a σ-field A of a sample
space Ω. A random variable X is a measurable map X : Ω→ R. Measurable
means that, for every x, {ω : X(ω) ≤ x} ∈ A.

2.14 Exercises

1. Show that
P(X = x) = F (x+)− F (x−).
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0 1
0

1

(0, y)

(y, 0)

�

�

This is the case 0 ≤ y < 1.

0 1
0

1

(1, y − 1)

(y − 1, 1)

�

�

This is the case 1 ≤ y ≤ 2.

FIGURE 2.6. The set Ay for example 2.48. Ay consists of all points (x1, x2) in the
square below the line x2 = y − x1.

2. LetX be such that P(X = 2) = P(X = 3) = 1/10 and P(X = 5) = 8/10.
Plot the cdf F . Use F to find P(2 < X ≤ 4.8) and P(2 ≤ X ≤ 4.8).

3. Prove Lemma 2.15.

4. Let X have probability density function

fX(x) =


1/4 0 < x < 1
3/8 3 < x < 5
0 otherwise.

(a) Find the cumulative distribution function of X.

(b) Let Y = 1/X. Find the probability density function fY (y) for Y .
Hint: Consider three cases: 1

5 ≤ y ≤
1
3 , 1

3 ≤ y ≤ 1, and y ≥ 1.

5. Let X and Y be discrete random variables. Show that X and Y are
independent if and only if fX,Y (x, y) = fX(x)fY (y) for all x and y.

6. Let X have distribution F and density function f and let A be a subset
of the real line. Let IA(x) be the indicator function for A:

IA(x) =
{

1 x ∈ A
0 x /∈ A.

Let Y = IA(X). Find an expression for the cumulative distribution of
Y . (Hint: first find the probability mass function for Y .)
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7. Let X and Y be independent and suppose that each has a Uniform(0, 1)
distribution. Let Z = min{X,Y }. Find the density fZ(z) for Z. Hint:
It might be easier to first find P(Z > z).

8. Let X have cdf F . Find the cdf of X+ = max{0, X}.

9. Let X ∼ Exp(β). Find F (x) and F−1(q).

10. Let X and Y be independent. Show that g(X) is independent of h(Y )
where g and h are functions.

11. Suppose we toss a coin once and let p be the probability of heads. Let
X denote the number of heads and let Y denote the number of tails.

(a) Prove that X and Y are dependent.

(b) Let N ∼ Poisson(λ) and suppose we toss a coin N times. Let X and
Y be the number of heads and tails. Show thatX and Y are independent.

12. Prove Theorem 2.33.

13. Let X ∼ N(0, 1) and let Y = eX .

(a) Find the pdf for Y . Plot it.

(b) (Computer Experiment.) Generate a vector x = (x1, . . . , x10,000) con-
sisting of 10,000 random standard Normals. Let y = (y1, . . . , y10,000)
where yi = exi . Draw a histogram of y and compare it to the pdf you
found in part (a).

14. Let (X,Y ) be uniformly distributed on the unit disk {(x, y) : x2 +y2 ≤
1}. Let R =

√
X2 + Y 2. Find the cdf and pdf of R.

15. (A universal random number generator.) Let X have a continuous, strictly
increasing cdf F . Let Y = F (X). Find the density of Y . This is called
the probability integral transform. Now let U ∼ Uniform(0, 1) and let
X = F−1(U). Show that X ∼ F . Now write a program that takes
Uniform (0,1) random variables and generates random variables from
an Exponential (β) distribution.

16. Let X ∼ Poisson(λ) and Y ∼ Poisson(µ) and assume that X and Y are
independent. Show that the distribution of X given that X + Y = n is
Binomial(n, π) where π = λ/(λ+ µ).
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Hint 1: You may use the following fact: If X ∼ Poisson(λ) and Y ∼
Poisson(µ), and X and Y are independent, then X+Y ∼ Poisson(µ+λ).

Hint 2: Note that {X = x, X + Y = n} = {X = x, Y = n− x}.

17. Let

fX,Y (x, y) =
{
c(x+ y2) 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1
0 otherwise.

Find P
(
X < 1

2 | Y = 1
2

)
.

18. Let X ∼ N(3, 16). Solve the following using the Normal table and using
a computer package.

(a) Find P(X < 7).

(b) Find P(X > −2).

(c) Find x such that P(X > x) = .05.

(d) Find P(0 ≤ X < 4).

(e) Find x such that P(|X| > |x|) = .05.

19. Prove formula (2.12).

20. Let X,Y ∼ Uniform(0, 1) be independent. Find the pdf for X − Y and
X/Y .

21. Let X1, . . . , Xn ∼ Exp(β) be iid. Let Y = max{X1, . . . , Xn}. Find the
pdf of Y . Hint: Y ≤ y if and only if Xi ≤ y for i = 1, . . . , n.
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Expectation

3.1 Expectation of a Random Variable

The mean, or expectation, of a random variable X is the average value of X.

3.1 Definition. The expected value, or mean, or first moment, of
X is defined to be

E(X) =
∫
x dF (x) =

{ ∑
x xf(x) if X is discrete∫
xf(x)dx if X is continuous

(3.1)

assuming that the sum (or integral) is well defined. We use the following
notation to denote the expected value of X:

E(X) = EX =
∫
x dF (x) = µ = µX . (3.2)

The expectation is a one-number summary of the distribution. Think of
E(X) as the average

∑n
i=1Xi/n of a large number of iid draws X1, . . . , Xn.

The fact that E(X) ≈
∑n
i=1Xi/n is actually more than a heuristic; it is a

theorem called the law of large numbers that we will discuss in Chapter 5.
The notation

∫
x dF (x) deserves some comment. We use it merely as a

convenient unifying notation so we don’t have to write
∑
x xf(x) for discrete
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random variables and
∫
xf(x)dx for continuous random variables, but you

should be aware that
∫
x dF (x) has a precise meaning that is discussed in real

analysis courses.
To ensure that E(X) is well defined, we say that E(X) exists if

∫
x
|x|dFX(x) <

∞. Otherwise we say that the expectation does not exist.

3.2 Example. Let X ∼ Bernoulli(p). Then E(X) =
∑1
x=0 xf(x) = (0 × (1 −

p)) + (1× p) = p. �

3.3 Example. Flip a fair coin two times. Let X be the number of heads. Then,
E(X) =

∫
xdFX(x) =

∑
x xfX(x) = (0 × f(0)) + (1 × f(1)) + (2 × f(2)) =

(0× (1/4)) + (1× (1/2)) + (2× (1/4)) = 1. �

3.4 Example. LetX ∼ Uniform(−1, 3). Then, E(X) =
∫
xdFX(x) =

∫
xfX(x)dx =

1
4

∫ 3

−1
x dx = 1. �

3.5 Example. Recall that a random variable has a Cauchy distribution if it
has density fX(x) = {π(1 + x2)}−1. Using integration by parts, (set u = x

and v = tan−1 x),∫
|x|dF (x) =

2
π

∫ ∞

0

x dx

1 + x2
=

[
x tan−1(x)

]∞
0
−

∫ ∞

0

tan−1 x dx =∞

so the mean does not exist. If you simulate a Cauchy distribution many times
and take the average, you will see that the average never settles down. This
is because the Cauchy has thick tails and hence extreme observations are
common. �

From now on, whenever we discuss expectations, we implicitly assume that
they exist.

Let Y = r(X). How do we compute E(Y )? One way is to find fY (y) and
then compute E(Y ) =

∫
yfY (y)dy. But there is an easier way.

3.6 Theorem (The Rule of the Lazy Statistician). Let Y = r(X). Then

E(Y ) = E(r(X)) =
∫
r(x)dFX(x). (3.3)

This result makes intuitive sense. Think of playing a game where we draw
X at random and then I pay you Y = r(X). Your average income is r(x) times
the chance that X = x, summed (or integrated) over all values of x. Here is
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a special case. Let A be an event and let r(x) = IA(x) where IA(x) = 1 if
x ∈ A and IA(x) = 0 if x /∈ A. Then

E(IA(X)) =
∫
IA(x)fX(x)dx =

∫
A

fX(x)dx = P(X ∈ A).

In other words, probability is a special case of expectation.

3.7 Example. Let X ∼ Unif(0, 1). Let Y = r(X) = eX . Then,

E(Y ) =
∫ 1

0

exf(x)dx =
∫ 1

0

exdx = e− 1.

Alternatively, you could find fY (y) which turns out to be fY (y) = 1/y for
1 < y < e. Then, E(Y ) =

∫ e
1
y f(y)dy = e− 1. �

3.8 Example. Take a stick of unit length and break it at random. Let Y be
the length of the longer piece. What is the mean of Y ? If X is the break point
then X ∼ Unif(0, 1) and Y = r(X) = max{X, 1 − X}. Thus, r(x) = 1 − x
when 0 < x < 1/2 and r(x) = x when 1/2 ≤ x < 1. Hence,

E(Y ) =
∫
r(x)dF (x) =

∫ 1/2

0

(1− x)dx+
∫ 1

1/2

x dx =
3
4
. �

Functions of several variables are handled in a similar way. If Z = r(X,Y )
then

E(Z) = E(r(X,Y )) =
∫ ∫

r(x, y)dF (x, y). (3.4)

3.9 Example. Let (X,Y ) have a jointly uniform distribution on the unit
square. Let Z = r(X,Y ) = X2 + Y 2. Then,

E(Z) =
∫ ∫

r(x, y)dF (x, y) =
∫ 1

0

∫ 1

0

(x2 + y2) dxdy

=
∫ 1

0

x2 dx+
∫ 1

0

y2 dy =
2
3
. �

The kth moment of X is defined to be E(Xk) assuming that E(|X|k) <∞.

3.10 Theorem. If the kth moment exists and if j < k then the jth moment
exists.

Proof. We have

E|X|j =
∫ ∞

−∞
|x|jfX(x)dx
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=
∫

|x|≤1

|x|jfX(x)dx+
∫

|x|>1

|x|jfX(x)dx

≤
∫

|x|≤1

fX(x)dx+
∫

|x|>1

|x|kfX(x)dx

≤ 1 + E(|X|k) <∞. �

The kth central moment is defined to be E((X − µ)k).

3.2 Properties of Expectations

3.11 Theorem. If X1, . . . , Xn are random variables and a1, . . . , an are con-
stants, then

E

(∑
i

aiXi

)
=

∑
i

aiE(Xi). (3.5)

3.12 Example. Let X ∼ Binomial(n, p). What is the mean of X? We could
try to appeal to the definition:

E(X) =
∫
x dFX(x) =

∑
x

xfX(x) =
n∑
x=0

x

(
n

x

)
px(1− p)n−x

but this is not an easy sum to evaluate. Instead, note that X =
∑n
i=1Xi

where Xi = 1 if the ith toss is heads and Xi = 0 otherwise. Then E(Xi) =
(p× 1) + ((1− p)× 0) = p and E(X) = E(

∑
iXi) =

∑
i E(Xi) = np. �

3.13 Theorem. Let X1, . . . , Xn be independent random variables. Then,

E

(
n∏
i=1

Xi

)
=

∏
i

E(Xi). (3.6)

Notice that the summation rule does not require independence but the
multiplication rule does.

3.3 Variance and Covariance

The variance measures the “spread” of a distribution. 1

1We can’t use E(X − µ) as a measure of spread since E(X − µ) = E(X) − µ = µ − µ = 0.
We can and sometimes do use E|X − µ| as a measure of spread but more often we use the
variance.
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3.14 Definition. Let X be a random variable with mean µ. The variance
of X — denoted by σ2 or σ2

X or V(X) or VX — is defined by

σ2 = E(X − µ)2 =
∫

(x− µ)2dF (x) (3.7)

assuming this expectation exists. The standard deviation is
sd(X) =

√
V(X) and is also denoted by σ and σX .

3.15 Theorem. Assuming the variance is well defined, it has the following
properties:

1. V(X) = E(X2)− µ2.

2. If a and b are constants then V(aX + b) = a2V(X).

3. If X1, . . . , Xn are independent and a1, . . . , an are constants, then

V

(
n∑
i=1

aiXi

)
=

n∑
i=1

a2
iV(Xi). (3.8)

3.16 Example. Let X ∼ Binomial(n, p). We write X =
∑
iXi where Xi = 1

if toss i is heads and Xi = 0 otherwise. Then X =
∑
iXi and the random

variables are independent. Also, P(Xi = 1) = p and P(Xi = 0) = 1−p. Recall
that

E(Xi) =
(
p× 1

)
+

(
(1− p)× 0

)
= p.

Now,

E(X2
i ) =

(
p× 12

)
+

(
(1− p)× 02

)
= p.

Therefore, V(Xi) = E(X2
i ) − p2 = p − p2 = p(1 − p). Finally, V(X) =

V(
∑
iXi) =

∑
i V(Xi) =

∑
i p(1 − p) = np(1 − p). Notice that V(X) = 0

if p = 1 or p = 0. Make sure you see why this makes intuitive sense. �

If X1, . . . , Xn are random variables then we define the sample mean to be

Xn =
1
n

n∑
i=1

Xi (3.9)

and the sample variance to be

S2
n =

1
n− 1

n∑
i=1

(
Xi −Xn

)2
. (3.10)
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3.17 Theorem. Let X1, . . . , Xn be iid and let µ = E(Xi), σ2 = V(Xi). Then

E(Xn) = µ, V(Xn) =
σ2

n
and E(S2

n) = σ2.

If X and Y are random variables, then the covariance and correlation be-
tween X and Y measure how strong the linear relationship is between X and
Y .

3.18 Definition. Let X and Y be random variables with means µX and
µY and standard deviations σX and σY . Define the covariance between
X and Y by

Cov(X,Y ) = E

(
(X − µX)(Y − µY )

)
(3.11)

and the correlation by

ρ = ρX,Y = ρ(X,Y ) =
Cov(X,Y )
σXσY

. (3.12)

3.19 Theorem. The covariance satisfies:

Cov(X,Y ) = E(XY )− E(X)E(Y ).

The correlation satisfies:

−1 ≤ ρ(X,Y ) ≤ 1.

If Y = aX + b for some constants a and b then ρ(X,Y ) = 1 if a > 0 and
ρ(X,Y ) = −1 if a < 0. If X and Y are independent, then Cov(X,Y ) = ρ = 0.
The converse is not true in general.

3.20 Theorem. V(X + Y ) = V(X) + V(Y ) + 2Cov(X,Y ) and V(X − Y ) =
V(X)+V(Y )−2Cov(X,Y ). More generally, for random variables X1, . . . , Xn,

V

(∑
i

aiXi

)
=

∑
i

a2
iV(Xi) + 2

∑∑
i<j

aiajCov(Xi, Xj).

3.4 Expectation and Variance of Important Random
Variables

Here we record the expectation of some important random variables:
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Distribution Mean Variance
Point mass at a a 0
Bernoulli(p) p p(1− p)
Binomial(n, p) np np(1− p)
Geometric(p) 1/p (1− p)/p2

Poisson(λ) λ λ
Uniform(a, b) (a+ b)/2 (b− a)2/12
Normal(µ, σ2) µ σ2

Exponential(β) β β2

Gamma(α, β) αβ αβ2

Beta(α, β) α/(α+ β) αβ/((α+ β)2(α+ β + 1))
tν 0 (if ν > 1) ν/(ν − 2) (if ν > 2)
χ2
p p 2p

Multinomial(n, p) np see below
Multivariate Normal(µ,Σ) µ Σ

We derived E(X) and V(X) for the Binomial in the previous section. The
calculations for some of the others are in the exercises.

The last two entries in the table are multivariate models which involve a
random vector X of the form

X =

 X1

...
Xk

 .

The mean of a random vector X is defined by

µ =

 µ1

...
µk

 =

 E(X1)
...

E(Xk)

 .

The variance-covariance matrix Σ is defined to be

V(X) =


V(X1) Cov(X1, X2) · · · Cov(X1, Xk)
Cov(X2, X1) V(X2) · · · Cov(X2, Xk)
...

...
...

...
Cov(Xk, X1) Cov(Xk, X2) · · · V(Xk)

 .
If X ∼ Multinomial(n, p) then E(X) = np = n(p1, . . . , pk) and

V(X) =


np1(1− p1) −np1p2 · · · −np1pk
−np2p1 np2(1− p2) · · · −np2pk
...

...
...

...
−npkp1 −npkp2 · · · npk(1− pk)

 .
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To see this, note that the marginal distribution of any one component of the
vector Xi ∼ Binomial(n, pi). Thus, E(Xi) = npi and V(Xi) = npi(1 − pi).
Note also that Xi +Xj ∼ Binomial(n, pi + pj). Thus, V(Xi +Xj) = n(pi +
pj)(1 − [pi + pj ]). On the other hand, using the formula for the variance
of a sum, we have that V(Xi + Xj) = V(Xi) + V(Xj) + 2Cov(Xi, Xj) =
npi(1 − pi) + npj(1 − pj) + 2Cov(Xi, Xj). If we equate this formula with
n(pi + pj)(1− [pi + pj ]) and solve, we get Cov(Xi, Xj) = −npipj .

Finally, here is a lemma that can be useful for finding means and variances
of linear combinations of multivariate random vectors.

3.21 Lemma. If a is a vector and X is a random vector with mean µ and
variance Σ, then E(aTX) = aTµ and V(aTX) = aTΣa. If A is a matrix then
E(AX) = Aµ and V(AX) = AΣAT .

3.5 Conditional Expectation

Suppose that X and Y are random variables. What is the mean of X among
those times when Y = y? The answer is that we compute the mean of X as
before but we substitute fX|Y (x|y) for fX(x) in the definition of expectation.

3.22 Definition. The conditional expectation of X given Y = y is

E(X|Y = y) =

{ ∑
x fX|Y (x|y) dx discrete case∫
x fX|Y (x|y) dx continuous case.

(3.13)

If r(x, y) is a function of x and y then

E(r(X,Y )|Y = y) =

{ ∑
r(x, y) fX|Y (x|y) dx discrete case∫
r(x, y) fX|Y (x|y) dx continuous case.

(3.14)

Warning! Here is a subtle point. Whereas E(X) is a number, E(X|Y = y)
is a function of y. Before we observe Y , we don’t know the value of E(X|Y = y)
so it is a random variable which we denote E(X|Y ). In other words, E(X|Y )
is the random variable whose value is E(X|Y = y) when Y = y. Similarly,
E(r(X,Y )|Y ) is the random variable whose value is E(r(X,Y )|Y = y) when
Y = y. This is a very confusing point so let us look at an example.

3.23 Example. Suppose we draw X ∼ Unif(0, 1). After we observe X = x,
we draw Y |X = x ∼ Unif(x, 1). Intuitively, we expect that E(Y |X = x) =



3.5 Conditional Expectation 55

(1 + x)/2. In fact, fY |X(y|x) = 1/(1− x) for x < y < 1 and

E(Y |X = x) =
∫ 1

x

y fY |X(y|x)dy =
1

1− x

∫ 1

x

y dy =
1 + x

2

as expected. Thus, E(Y |X) = (1 +X)/2. Notice that E(Y |X) = (1 +X)/2 is
a random variable whose value is the number E(Y |X = x) = (1 + x)/2 once
X = x is observed. �

3.24 Theorem (The Rule of Iterated Expectations). For random variables X

and Y , assuming the expectations exist, we have that

E [E(Y |X)] = E(Y ) and E [E(X|Y )] = E(X). (3.15)

More generally, for any function r(x, y) we have

E [E(r(X,Y )|X)] = E(r(X,Y )). (3.16)

Proof. We’ll prove the first equation. Using the definition of conditional
expectation and the fact that f(x, y) = f(x)f(y|x),

E [E(Y |X)] =
∫

E(Y |X = x)fX(x)dx =
∫ ∫

yf(y|x)dyf(x)dx

=
∫ ∫

yf(y|x)f(x)dxdy =
∫ ∫

yf(x, y)dxdy = E(Y ). �

3.25 Example. Consider example 3.23. How can we compute E(Y )? One
method is to find the joint density f(x, y) and then compute E(Y ) =

∫ ∫
yf(x, y)dxdy.

An easier way is to do this in two steps. First, we already know that E(Y |X) =
(1 +X)/2. Thus,

E(Y ) = EE(Y |X) = E

(
(1 +X)

2

)
=

(1 + E(X))
2

=
(1 + (1/2))

2
= 3/4. �

3.26 Definition. The conditional variance is defined as

V(Y |X = x) =
∫

(y − µ(x))2f(y|x)dy (3.17)

where µ(x) = E(Y |X = x).

3.27 Theorem. For random variables X and Y ,

V(Y ) = EV(Y |X) + VE(Y |X).
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3.28 Example. Draw a county at random from the United States. Then draw
n people at random from the county. Let X be the number of those people
who have a certain disease. If Q denotes the proportion of people in that
county with the disease, then Q is also a random variable since it varies from
county to county. Given Q = q, we have that X ∼ Binomial(n, q). Thus,
E(X|Q = q) = nq and V(X|Q = q) = nq(1 − q). Suppose that the random
variable Q has a Uniform (0,1) distribution. A distribution that is constructed
in stages like this is called a hierarchical model and can be written as

Q ∼ Uniform(0, 1)

X|Q = q ∼ Binomial(n, q).

Now, E(X) = EE(X|Q) = E(nQ) = nE(Q) = n/2. Let us compute the
variance of X. Now, V(X) = EV(X|Q) + VE(X|Q). Let’s compute these
two terms. First, EV(X|Q) = E[nQ(1 − Q)] = nE(Q(1 − Q)) = n

∫
q(1 −

q)f(q)dq = n
∫ 1

0
q(1 − q)dq = n/6. Next, VE(X|Q) = V(nQ) = n2V(Q) =

n2
∫

(q − (1/2))2dq = n2/12. Hence, V(X) = (n/6) + (n2/12). �

3.6 Moment Generating Functions

Now we will define the moment generating function which is used for finding
moments, for finding the distribution of sums of random variables and which
is also used in the proofs of some theorems.

3.29 Definition. The moment generating function mgf, or Laplace
transform, of X is defined by

ψX(t) = E(etX) =
∫
etxdF (x)

where t varies over the real numbers.

In what follows, we assume that the mgf is well defined for all t in some
open interval around t = 0. 2

When the mgf is well defined, it can be shown that we can interchange the
operations of differentiation and “taking expectation.” This leads to

ψ′(0) =
[
d

dt
EetX

]
t=0

= E

[
d

dt
etX

]
t=0

= E
[
XetX

]
t=0

= E(X).

2A related function is the characteristic function, defined by E(eitX) where i =
√−1. This

function is always well defined for all t.
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By taking k derivatives we conclude that ψ(k)(0) = E(Xk). This gives us a
method for computing the moments of a distribution.

3.30 Example. Let X ∼ Exp(1). For any t < 1,

ψX(t) = EetX =
∫ ∞

0

etxe−xdx =
∫ ∞

0

e(t−1)xdx =
1

1− t .

The integral is divergent if t ≥ 1. So, ψX(t) = 1/(1 − t) for all t < 1. Now,
ψ′(0) = 1 and ψ′′(0) = 2. Hence, E(X) = 1 and V(X) = E(X2)−µ2 = 2−1 =
1. �

3.31 Lemma. Properties of the mgf.
(1) If Y = aX + b, then ψY (t) = ebtψX(at).
(2) If X1, . . . , Xn are independent and Y =

∑
iXi, then ψY (t) =

∏
i ψi(t)

where ψi is the mgf of Xi.

3.32 Example. Let X ∼ Binomial(n, p). We know that X =
∑n

i=1Xi where
P(Xi = 1) = p and P(Xi = 0) = 1− p. Now ψi(t) = EeXit = (p× et) + ((1−
p)) = pet + q where q = 1− p. Thus, ψX(t) =

∏
i ψi(t) = (pet + q)n. �

Recall that X and Y are equal in distribution if they have the same distri-
bution function and we write X d= Y .

3.33 Theorem. Let X and Y be random variables. If ψX(t) = ψY (t) for all t
in an open interval around 0, then X

d= Y .

3.34 Example. Let X1 ∼ Binomial(n1, p) and X2 ∼ Binomial(n2, p) be inde-
pendent. Let Y = X1 +X2. Then,

ψY (t) = ψ1(t)ψ2(t) = (pet + q)n1(pet + q)n2 = (pet + q)n1+n2

and we recognize the latter as the mgf of a Binomial(n1 + n2, p) distribu-
tion. Since the mgf characterizes the distribution (i.e., there can’t be an-
other random variable which has the same mgf) we conclude that Y ∼
Binomial(n1 + n2, p). �
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Moment Generating Functions for Some Common Distributions

Distribution MGF ψ(t)

Bernoulli(p) pet + (1− p)
Binomial(n, p) (pet + (1− p))n

Poisson(λ) eλ(et−1)

Normal(µ,σ) exp
{
µt+ σ2t2

2

}
Gamma(α,β)

(
1

1−βt
)α

for t < 1/β

3.35 Example. Let Y1 ∼ Poisson(λ1) and Y2 ∼ Poisson(λ2) be independent.
The moment generating function of Y = Y1 +Y +2 is ψY (t) = ψY1(t)ψY2(t) =
eλ1(e

t−1)eλ2(e
t−1) = e(λ1+λ2)(e

t−1) which is the moment generating function
of a Poisson(λ1 + λ2). We have thus proved that the sum of two independent
Poisson random variables has a Poisson distribution. �

3.7 Appendix

Expectation as an Integral. The integral of a measurable function r(x)
is defined as follows. First suppose that r is simple, meaning that it takes
finitely many values a1, . . . , ak over a partition A1, . . . , Ak. Then define∫

r(x)dF (x) =
k∑
i=1

ai P(r(X) ∈ Ai).

The integral of a positive measurable function r is defined by
∫
r(x)dF (x) =

limi

∫
ri(x)dF (x) where ri is a sequence of simple functions such that ri(x) ≤

r(x) and ri(x)→ r(x) as i→∞. This does not depend on the particular se-
quence. The integral of a measurable function r is defined to be

∫
r(x)dF (x) =∫

r+(x)dF (x)−
∫
r−(x)dF (x) assuming both integrals are finite, where r+(x) =

max{r(x), 0} and r−(x) = −min{r(x), 0}.

3.8 Exercises

1. Suppose we play a game where we start with c dollars. On each play of
the game you either double or halve your money, with equal probability.
What is your expected fortune after n trials?
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2. Show that V(X) = 0 if and only if there is a constant c such that
P (X = c) = 1.

3. Let X1, . . . , Xn ∼ Uniform(0, 1) and let Yn = max{X1, . . . , Xn}. Find
E(Yn).

4. A particle starts at the origin of the real line and moves along the line in
jumps of one unit. For each jump the probability is p that the particle
will jump one unit to the left and the probability is 1−p that the particle
will jump one unit to the right. Let Xn be the position of the particle
after n units. Find E(Xn) and V(Xn). (This is known as a random
walk.)

5. A fair coin is tossed until a head is obtained. What is the expected
number of tosses that will be required?

6. Prove Theorem 3.6 for discrete random variables.

7. Let X be a continuous random variable with cdf F . Suppose that
P (X > 0) = 1 and that E(X) exists. Show that E(X) =

∫ ∞
0

P(X >

x)dx.

Hint: Consider integrating by parts. The following fact is helpful: if E(X)
exists then limx→∞ x[1− F (x)] = 0.

8. Prove Theorem 3.17.

9. (Computer Experiment.) Let X1, X2, . . . , Xn be N(0, 1) random variables
and let Xn = n−1

∑n
i=1Xi. Plot Xn versus n for n = 1, . . . , 10, 000.

Repeat for X1, X2, . . . , Xn ∼ Cauchy. Explain why there is such a dif-
ference.

10. Let X ∼ N(0, 1) and let Y = eX . Find E(Y ) and V(Y ).

11. (Computer Experiment: Simulating the Stock Market.) Let Y1, Y2, . . . be
independent random variables such that P (Yi = 1) = P (Yi = −1) =
1/2. Let Xn =

∑n
i=1 Yi. Think of Yi = 1 as “the stock price increased

by one dollar”, Yi = −1 as “the stock price decreased by one dollar”,
and Xn as the value of the stock on day n.

(a) Find E(Xn) and V(Xn).

(b) Simulate Xn and plot Xn versus n for n = 1, 2, . . . , 10, 000. Repeat
the whole simulation several times. Notice two things. First, it’s easy
to “see” patterns in the sequence even though it is random. Second,



60 3. Expectation

you will find that the four runs look very different even though they
were generated the same way. How do the calculations in (a) explain
the second observation?

12. Prove the formulas given in the table at the beginning of Section 3.4
for the Bernoulli, Poisson, Uniform, Exponential, Gamma, and Beta.
Here are some hints. For the mean of the Poisson, use the fact that
ea =

∑∞
x=0 a

x/x!. To compute the variance, first compute E(X(X−1)).
For the mean of the Gamma, it will help to multiply and divide by
Γ(α+ 1)/βα+1 and use the fact that a Gamma density integrates to 1.
For the Beta, multiply and divide by Γ(α+ 1)Γ(β)/Γ(α+ β + 1).

13. Suppose we generate a random variable X in the following way. First
we flip a fair coin. If the coin is heads, take X to have a Unif(0,1)
distribution. If the coin is tails, take X to have a Unif(3,4) distribution.

(a) Find the mean of X.

(b) Find the standard deviation of X.

14. Let X1, . . . , Xm and Y1, . . . , Yn be random variables and let a1, . . . , am

and b1, . . . , bn be constants. Show that

Cov

 m∑
i=1

aiXi,

n∑
j=1

bjYj

 =
m∑
i=1

n∑
j=1

aibjCov(Xi, Yj).

15. Let

fX,Y (x, y) =
{

1
3 (x+ y) 0 ≤ x ≤ 1, 0 ≤ y ≤ 2
0 otherwise.

Find V(2X − 3Y + 8).

16. Let r(x) be a function of x and let s(y) be a function of y. Show that

E(r(X)s(Y )|X) = r(X)E(s(Y )|X).

Also, show that E(r(X)|X) = r(X).

17. Prove that
V(Y ) = E V(Y | X) + V E(Y | X).

Hint: Let m = E(Y ) and let b(x) = E(Y |X = x). Note that E(b(X)) =
EE(Y |X) = E(Y ) = m. Bear in mind that b is a function of x. Now
write V(Y ) = E(Y −m)2 = E((Y − b(X)) + (b(X)−m))2. Expand the
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square and take the expectation. You then have to take the expectation
of three terms. In each case, use the rule of the iterated expectation:
E(stuff) = E(E(stuff|X)).

18. Show that if E(X|Y = y) = c for some constant c, then X and Y are
uncorrelated.

19. This question is to help you understand the idea of a sampling dis-
tribution. Let X1, . . . , Xn be iid with mean µ and variance σ2. Let
Xn = n−1

∑n
i=1Xi. Then Xn is a statistic, that is, a function of the

data. Since Xn is a random variable, it has a distribution. This distri-
bution is called the sampling distribution of the statistic. Recall from
Theorem 3.17 that E(Xn) = µ and V(Xn) = σ2/n. Don’t confuse the
distribution of the data fX and the distribution of the statistic fXn . To
make this clear, let X1, . . . , Xn ∼ Uniform(0, 1). Let fX be the density
of the Uniform(0, 1). Plot fX . Now let Xn = n−1

∑n
i=1Xi. Find E(Xn)

and V(Xn). Plot them as a function of n. Interpret. Now simulate the
distribution of Xn for n = 1, 5, 25, 100. Check that the simulated values
of E(Xn) and V(Xn) agree with your theoretical calculations. What do
you notice about the sampling distribution of Xn as n increases?

20. Prove Lemma 3.21.

21. Let X and Y be random variables. Suppose that E(Y |X) = X. Show
that Cov(X,Y ) = V(X).

22. Let X ∼ Uniform(0, 1). Let 0 < a < b < 1. Let

Y =
{

1 0 < x < b
0 otherwise

and let

Z =
{

1 a < x < 1
0 otherwise

(a) Are Y and Z independent? Why/Why not?

(b) Find E(Y |Z). Hint: What values z can Z take? Now find E(Y |Z = z).

23. Find the moment generating function for the Poisson, Normal, and
Gamma distributions.

24. Let X1, . . . , Xn ∼ Exp(β). Find the moment generating function of Xi.
Prove that

∑n
i=1Xi ∼ Gamma(n, β).





4
Inequalities

4.1 Probability Inequalities

Inequalities are useful for bounding quantities that might otherwise be hard
to compute. They will also be used in the theory of convergence which is
discussed in the next chapter. Our first inequality is Markov’s inequality.

4.1 Theorem (Markov’s inequality). Let X be a non-negative random
variable and suppose that E(X) exists. For any t > 0,

P(X > t) ≤ E(X)
t

. (4.1)

Proof. Since X > 0,

E(X) =
∫ ∞

0

xf(x)dx =
∫ t

0

xf(x)dx+
∫ ∞

t

xf(x)dx

≥
∫ ∞

t

xf(x)dx ≥ t
∫ ∞

t

f(x)dx = tP(X > t) �
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4.2 Theorem (Chebyshev’s inequality). Let µ = E(X) and σ2 = V(X).
Then,

P(|X − µ| ≥ t) ≤ σ2

t2
and P(|Z| ≥ k) ≤ 1

k2
(4.2)

where Z = (X − µ)/σ. In particular, P(|Z| > 2) ≤ 1/4 and
P(|Z| > 3) ≤ 1/9.

Proof. We use Markov’s inequality to conclude that

P(|X − µ| ≥ t) = P(|X − µ|2 ≥ t2) ≤ E(X − µ)2

t2
=
σ2

t2
.

The second part follows by setting t = kσ. �

4.3 Example. Suppose we test a prediction method, a neural net for example,
on a set of n new test cases. Let Xi = 1 if the predictor is wrong and Xi = 0
if the predictor is right. Then Xn = n−1

∑n
i=1Xi is the observed error rate.

Each Xi may be regarded as a Bernoulli with unknown mean p. We would
like to know the true — but unknown — error rate p. Intuitively, we expect
that Xn should be close to p. How likely is Xn to not be within ε of p? We
have that V(Xn) = V(X1)/n = p(1− p)/n and

P(|Xn − p| > ε) ≤ V(Xn)
ε2

=
p(1− p)
nε2

≤ 1
4nε2

since p(1− p) ≤ 1
4 for all p. For ε = .2 and n = 100 the bound is .0625. �

Hoeffding’s inequality is similar in spirit to Markov’s inequality but it is a
sharper inequality. We present the result here in two parts.

4.4 Theorem (Hoeffding’s Inequality). Let Y1, . . . , Yn be independent
observations such that
E(Yi) = 0 and ai ≤ Yi ≤ bi. Let ε > 0. Then, for any t > 0,

P

(
n∑
i=1

Yi ≥ ε
)
≤ e−tε

n∏
i=1

et
2(bi−ai)2/8. (4.3)
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4.5 Theorem. Let X1, . . . , Xn ∼ Bernoulli(p). Then, for any ε > 0,

P
(
|Xn − p| > ε

)
≤ 2e−2nε2 (4.4)

where Xn = n−1
∑n
i=1Xi.

4.6 Example. Let X1, . . . , Xn ∼ Bernoulli(p). Let n = 100 and ε = .2. We
saw that Chebyshev’s inequality yielded

P(|Xn − p| > ε) ≤ .0625.

According to Hoeffding’s inequality,

P(|Xn − p| > .2) ≤ 2e−2(100)(.2)2 = .00067

which is much smaller than .0625. �

Hoeffding’s inequality gives us a simple way to create a confidence inter-
val for a binomial parameter p. We will discuss confidence intervals in detail
later (see Chapter 6) but here is the basic idea. Fix α > 0 and let

εn =

√
1
2n

log
(

2
α

)
.

By Hoeffding’s inequality,

P
(
|Xn − p| > εn

)
≤ 2e−2nε2n = α.

Let C = (Xn− εn, Xn + εn). Then, P(p /∈ C) = P(|Xn− p| > εn) ≤ α. Hence,
P(p ∈ C) ≥ 1 − α, that is, the random interval C traps the true parameter
value p with probability 1−α; we call C a 1−α confidence interval. More on
this later.

The following inequality is useful for bounding probability statements about
Normal random variables.

4.7 Theorem (Mill’s Inequality). Let Z ∼ N(0, 1). Then,

P(|Z| > t) ≤
√

2
π

e−t2/2

t
.
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4.2 Inequalities For Expectations

This section contains two inequalities on expected values.

4.8 Theorem (Cauchy-Schwartz inequality). If X and Y have finite
variances then

E |XY | ≤
√

E(X2)E(Y 2). (4.5)

Recall that a function g is convex if for each x, y and each α ∈ [0, 1],

g(αx+ (1− α)y) ≤ αg(x) + (1− α)g(y).

If g is twice differentiable and g′′(x) ≥ 0 for all x, then g is convex. It can
be shown that if g is convex, then g lies above any line that touches g at
some point, called a tangent line. A function g is concave if −g is convex.
Examples of convex functions are g(x) = x2 and g(x) = ex. Examples of
concave functions are g(x) = −x2 and g(x) = log x.

4.9 Theorem (Jensen’s inequality). If g is convex, then

Eg(X) ≥ g(EX). (4.6)

If g is concave, then
Eg(X) ≤ g(EX). (4.7)

Proof. Let L(x) = a + bx be a line, tangent to g(x) at the point E(X).
Since g is convex, it lies above the line L(x). So,

Eg(X) ≥ EL(X) = E(a+ bX) = a+ bE(X) = L(E(X)) = g(EX). �

From Jensen’s inequality we see that E(X2) ≥ (EX)2 and if X is positive,
then E(1/X) ≥ 1/E(X). Since log is concave, E(logX) ≤ log E(X).

4.3 Bibliographic Remarks

Devroye et al. (1996) is a good reference on probability inequalities and their
use in statistics and pattern recognition. The following proof of Hoeffding’s
inequality is from that text.
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4.4 Appendix

Proof of Hoeffding’s Inequality. We will make use of the exact form of
Taylor’s theorem: if g is a smooth function, then there is a number ξ ∈ (0, u)
such that g(u) = g(0) + ug′(0) + u2

2 g
′′
(ξ).

Proof of Theorem 4.4. For any t > 0, we have, from Markov’s inequality,
that

P

(
n∑
i=1

Yi ≥ ε
)

= P

(
t

n∑
i=1

Yi ≥ tε
)

= P

(
et

∑n
i=1 Yi ≥ etε

)
≤ e−tεE

(
et

∑n
i=1 Yi

)
= e−tε∏

i

E(etYi). (4.8)

Since ai ≤ Yi ≤ bi, we can write Yi as a convex combination of ai and bi,
namely, Yi = αbi + (1 − α)ai where α = (Yi − ai)/(bi − ai). So, by the
convexity of ety we have

etYi ≤ Yi − ai
bi − ai

etbi +
bi − Yi
bi − ai

etai .

Take expectations of both sides and use the fact that E(Yi) = 0 to get

EetYi ≤ − ai
bi − ai

etbi +
bi

bi − ai
etai = eg(u) (4.9)

where u = t(bi − ai), g(u) = −γu+ log(1− γ + γeu) and γ = −ai/(bi − ai).
Note that g(0) = g′(0) = 0. Also, g

′′
(u) ≤ 1/4 for all u > 0. By Taylor’s

theorem, there is a ξ ∈ (0, u) such that

g(u) = g(0) + ug
′
(0) +

u2

2
g

′′
(ξ)

=
u2

2
g

′′
(ξ) ≤ u2

8
=
t2(bi − ai)2

8
.

Hence,
EetYi ≤ eg(u) ≤ et2(bi−ai)2/8.

The result follows from (4.8). �

Proof of Theorem 4.5. Let Yi = (1/n)(Xi − p). Then E(Yi) = 0 and
a ≤ Yi ≤ b where a = −p/n and b = (1 − p)/n. Also, (b − a)2 = 1/n2.
Applying Theorem 4.4 we get

P(Xn − p > ε) = P

(∑
i

Yi > ε

)
≤ e−tεet

2/(8n).

The above holds for any t > 0. In particular, take t = 4nε and we get P(Xn−
p > ε) ≤ e−2nε2 . By a similar argument we can show that P(Xn − p < −ε) ≤
e−2nε2 . Putting these together we get P

(
|Xn − p| > ε

)
≤ 2e−2nε2 . �
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4.5 Exercises

1. Let X ∼ Exponential(β). Find P(|X − µX | ≥ kσX) for k > 1. Compare
this to the bound you get from Chebyshev’s inequality.

2. Let X ∼ Poisson(λ). Use Chebyshev’s inequality to show that P(X ≥
2λ) ≤ 1/λ.

3. Let X1, . . . , Xn ∼ Bernoulli(p) and Xn = n−1
∑n
i=1Xi. Bound P(|Xn−

p| > ε) using Chebyshev’s inequality and using Hoeffding’s inequality.
Show that, when n is large, the bound from Hoeffding’s inequality is
smaller than the bound from Chebyshev’s inequality.

4. Let X1, . . . , Xn ∼ Bernoulli(p).

(a) Let α > 0 be fixed and define

εn =

√
1
2n

log
(

2
α

)
.

Let p̂n = n−1
∑n
i=1Xi. Define Cn = (p̂n − εn, p̂n + εn). Use Hoeffding’s

inequality to show that

P(Cn contains p) ≥ 1− α.

In practice, we truncate the interval so it does not go below 0 or above
1.

(b) (Computer Experiment.) Let’s examine the properties of this confi-
dence interval. Let α = 0.05 and p = 0.4. Conduct a simulation study
to see how often the interval contains p (called the coverage). Do this
for various values of n between 1 and 10000. Plot the coverage versus n.

(c) Plot the length of the interval versus n. Suppose we want the length
of the interval to be no more than .05. How large should n be?

5. Prove Mill’s inequality, Theorem 4.7. Hint. Note that P(|Z| > t) =
2P(Z > t). Now write out what P(Z > t) means and note that x/t > 1
whenever x > t.

6. Let Z ∼ N(0, 1). Find P(|Z| > t) and plot this as a function of t. From

Markov’s inequality, we have the bound P(|Z| > t) ≤ E|Z|k
tk

for any
k > 0. Plot these bounds for k = 1, 2, 3, 4, 5 and compare them to the
true value of P(|Z| > t). Also, plot the bound from Mill’s inequality.
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7. Let X1, . . . , Xn ∼ N(0, 1). Bound P(|Xn| > t) using Mill’s inequality,
where Xn = n−1

∑n
i=1Xi. Compare to the Chebyshev bound.





5
Convergence of Random Variables

5.1 Introduction

The most important aspect of probability theory concerns the behavior of
sequences of random variables. This part of probability is called large sample
theory, or limit theory, or asymptotic theory. The basic question is this:
what can we say about the limiting behavior of a sequence of random variables
X1, X2, X3, . . .? Since statistics and data mining are all about gathering data,
we will naturally be interested in what happens as we gather more and more
data.

In calculus we say that a sequence of real numbers xn converges to a limit
x if, for every ε > 0, |xn− x| < ε for all large n. In probability, convergence is
more subtle. Going back to calculus for a moment, suppose that xn = x for
all n. Then, trivially, limn→∞ xn = x. Consider a probabilistic version of this
example. Suppose that X1, X2, . . . is a sequence of random variables which
are independent and suppose each has a N(0, 1) distribution. Since these all
have the same distribution, we are tempted to say that Xn “converges” to
X ∼ N(0, 1). But this can’t quite be right since P(Xn = X) = 0 for all n.
(Two continuous random variables are equal with probability zero.)

Here is another example. Consider X1, X2, . . . where Xi ∼ N(0, 1/n). Intu-
itively, Xn is very concentrated around 0 for large n so we would like to say
that Xn converges to 0. But P(Xn = 0) = 0 for all n. Clearly, we need to
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develop some tools for discussing convergence in a rigorous way. This chapter
develops the appropriate methods.

There are two main ideas in this chapter which we state informally here:

1. The law of large numbers says that the sample averageXn = n−1
∑n
i=1Xi

converges in probability to the expectation µ = E(Xi). This means
that Xn is close to µ with high probability.

2. The central limit theorem says that
√
n(Xn−µ) converges in dis-

tribution to a Normal distribution. This means that the sample average
has approximately a Normal distribution for large n.

5.2 Types of Convergence

The two main types of convergence are defined as follows.

5.1 Definition. Let X1, X2, . . . be a sequence of random variables and let
X be another random variable. Let Fn denote the cdf of Xn and let F
denote the cdf of X.

1. Xn converges to X in probability, written Xn
P−→X, if, for every

ε > 0,
P(|Xn −X| > ε)→ 0 (5.1)

as n→∞.

2. Xn converges to X in distribution, written Xn � X, if

lim
n→∞Fn(t) = F (t) (5.2)

at all t for which F is continuous.

When the limiting random variable is a point mass, we change the notation
slightly. If P(X = c) = 1 and Xn

P−→X then we write Xn
P−→ c. Similarly, if

Xn � X we write Xn � c.
There is another type of convergence which we introduce mainly because it

is useful for proving convergence in probability.
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t

Fn(t)

t

F (t)

FIGURE 5.1. Example 5.3. Xn converges in distribution to X because Fn(t) con-
verges to F (t) at all points except t = 0. Convergence is not required at t = 0
because t = 0 is not a point of continuity for F .

5.2 Definition. Xn converges to X in quadratic mean (also called
convergence in L2), written Xn

qm−→X, if

E(Xn −X)2 → 0 (5.3)

as n→∞.

Again, if X is a point mass at c we write Xn
qm−→ c instead of Xn

qm−→X.

5.3 Example. Let Xn ∼ N(0, 1/n). Intuitively, Xn is concentrating at 0 so
we would like to say that Xn converges to 0. Let’s see if this is true. Let F be
the distribution function for a point mass at 0. Note that

√
nXn ∼ N(0, 1).

Let Z denote a standard normal random variable. For t < 0, Fn(t) = P(Xn <

t) = P(
√
nXn <

√
nt) = P(Z <

√
nt) → 0 since

√
nt → −∞. For t > 0,

Fn(t) = P(Xn < t) = P(
√
nXn <

√
nt) = P(Z <

√
nt) → 1 since

√
nt → ∞.

Hence, Fn(t)→ F (t) for all t �= 0 and so Xn � 0. Notice that Fn(0) = 1/2 �=
F (1/2) = 1 so convergence fails at t = 0. That doesn’t matter because t = 0
is not a continuity point of F and the definition of convergence in distribution
only requires convergence at continuity points. See Figure 5.1. Now consider
convergence in probability. For any ε > 0, using Markov’s inequality,

P(|Xn| > ε) = P(|Xn|2 > ε2)

≤ E(X2
n)

ε2
=

1
n

ε2
→ 0

as n→∞. Hence, Xn
P−→ 0. �

The next theorem gives the relationship between the types of convergence.
The results are summarized in Figure 5.2.

5.4 Theorem. The following relationships hold:
(a) Xn

qm−→X implies that Xn
P−→X.

(b) Xn
P−→X implies that Xn � X.

(c) If Xn � X and if P(X = c) = 1 for some real number c, then Xn
P−→X.
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In general, none of the reverse implications hold except the special case in
(c).

Proof. We start by proving (a). Suppose that Xn
qm−→X. Fix ε > 0. Then,

using Markov’s inequality,

P(|Xn −X| > ε) = P(|Xn −X|2 > ε2) ≤ E|Xn −X|2
ε2

→ 0.

Proof of (b). This proof is a little more complicated. You may skip it if you
wish. Fix ε > 0 and let x be a continuity point of F . Then

Fn(x) = P(Xn ≤ x) = P(Xn ≤ x,X ≤ x+ ε) + P(Xn ≤ x,X > x+ ε)

≤ P(X ≤ x+ ε) + P(|Xn −X| > ε)

= F (x+ ε) + P(|Xn −X| > ε).

Also,

F (x− ε) = P(X ≤ x− ε) = P(X ≤ x− ε,Xn ≤ x) + P(X ≤ x− ε,Xn > x)

≤ Fn(x) + P(|Xn −X| > ε).

Hence,

F (x− ε) − P(|Xn −X| > ε) ≤ Fn(x) ≤ F (x+ ε) + P(|Xn −X| > ε).

Take the limit as n→∞ to conclude that

F (x− ε) ≤ lim inf
n→∞ Fn(x) ≤ lim sup

n→∞
Fn(x) ≤ F (x+ ε).

This holds for all ε > 0. Take the limit as ε → 0 and use the fact that F is
continuous at x and conclude that limn Fn(x) = F (x).

Proof of (c). Fix ε > 0. Then,

P(|Xn − c| > ε) = P(Xn < c− ε) + P(Xn > c+ ε)

≤ P(Xn ≤ c− ε) + P(Xn > c+ ε)

= Fn(c− ε) + 1− Fn(c+ ε)

→ F (c− ε) + 1− F (c+ ε)

= 0 + 1− 1 = 0.

Let us now show that the reverse implications do not hold.
Convergence in probability does not imply convergence in quadratic

mean. Let U ∼ Unif(0, 1) and let Xn =
√
nI(0,1/n)(U). Then P(|Xn| > ε) =
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quadratic mean probability distribution

point-mass distribution

FIGURE 5.2. Relationship between types of convergence.

P(
√
nI(0,1/n)(U) > ε) = P(0 ≤ U < 1/n) = 1/n → 0. Hence, Xn

P−→ 0. But

E(X2
n) = n

∫ 1/n

0
du = 1 for all n so Xn does not converge in quadratic mean.

Convergence in distribution does not imply convergence in prob-

ability. Let X ∼ N(0, 1). Let Xn = −X for n = 1, 2, 3, . . .; hence Xn ∼
N(0, 1). Xn has the same distribution function as X for all n so, trivially,
limn Fn(x) = F (x) for all x. Therefore, Xn � X. But P(|Xn − X| > ε) =
P(|2X| > ε) = P(|X| > ε/2) �= 0. So Xn does not converge to X in probability.
�

Warning! One might conjecture that if Xn
P−→ b, then E(Xn)→ b. This is

not1 true. Let Xn be a random variable defined by P(Xn = n2) = 1/n and
P(Xn = 0) = 1 − (1/n). Now, P(|Xn| < ε) = P(Xn = 0) = 1 − (1/n) → 1.
Hence, Xn

P−→ 0. However, E(Xn) = [n2× (1/n)]+[0× (1− (1/n))] = n. Thus,
E(Xn)→∞.

Summary. Stare at Figure 5.2.
Some convergence properties are preserved under transformations.

5.5 Theorem. Let Xn, X, Yn, Y be random variables. Let g be a continuous
function.

(a) If Xn
P−→X and Yn

P−→Y , then Xn + Yn
P−→X + Y .

(b) If Xn
qm−→X and Yn

qm−→Y , then Xn + Yn
qm−→X + Y .

(c) If Xn � X and Yn � c, then Xn + Yn � X + c.
(d) If Xn

P−→X and Yn
P−→Y , then XnYn

P−→XY .
(e) If Xn � X and Yn � c, then XnYn � cX.
(f) If Xn

P−→X, then g(Xn)
P−→ g(X).

(g) If Xn � X, then g(Xn)� g(X).

Parts (c) and (e) are know as Slutzky’s theorem. It is worth noting that
Xn � X and Yn � Y does not in general imply that Xn + Yn � X + Y .

1We can conclude that E(Xn) → b if Xn is uniformly integrable. See the appendix.
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5.3 The Law of Large Numbers

Now we come to a crowning achievement in probability, the law of large num-
bers. This theorem says that the mean of a large sample is close to the mean
of the distribution. For example, the proportion of heads of a large number
of tosses is expected to be close to 1/2. We now make this more precise.

Let X1, X2, . . . be an iid sample, let µ = E(X1) and 2 σ2 = V(X1). Recall
that the sample mean is defined as Xn = n−1

∑n
i=1Xi and that E(Xn) = µ

and V(Xn) = σ2/n.

5.6 Theorem (The Weak Law of Large Numbers (WLLN)). 3

If X1, . . . , Xn are iid, then Xn
P−→µ.

Interpretation of the WLLN: The distribution of Xn becomes more

concentrated around µ as n gets large.

Proof. Assume that σ < ∞. This is not necessary but it simplifies the
proof. Using Chebyshev’s inequality,

P
(
|Xn − µ| > ε

)
≤ V(Xn)

ε2
=

σ2

nε2

which tends to 0 as n→∞. �

5.7 Example. Consider flipping a coin for which the probability of heads is
p. Let Xi denote the outcome of a single toss (0 or 1). Hence, p = P (Xi =
1) = E(Xi). The fraction of heads after n tosses is Xn. According to the law
of large numbers, Xn converges to p in probability. This does not mean that
Xn will numerically equal p. It means that, when n is large, the distribution
of Xn is tightly concentrated around p. Suppose that p = 1/2. How large
should n be so that P (.4 ≤ Xn ≤ .6) ≥ .7? First, E(Xn) = p = 1/2 and
V(Xn) = σ2/n = p(1− p)/n = 1/(4n). From Chebyshev’s inequality,

P(.4 ≤ Xn ≤ .6) = P(|Xn − µ| ≤ .1)

= 1− P(|Xn − µ| > .1)

≥ 1− 1
4n(.1)2

= 1− 25
n
.

The last expression will be larger than .7 if n = 84. �

2Note that µ = E(Xi) is the same for all i so we can define µ = E(Xi) for any i. By
convention, we often write µ = E(X1).

3There is a stronger theorem in the appendix called the strong law of large numbers.
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5.4 The Central Limit Theorem

The law of large numbers says that the distribution of Xn piles up near µ.
This isn’t enough to help us approximate probability statements about Xn.
For this we need the central limit theorem.

Suppose that X1, . . . , Xn are iid with mean µ and variance σ2. The central
limit theorem (CLT) says that Xn = n−1

∑
iXi has a distribution which is

approximately Normal with mean µ and variance σ2/n. This is remarkable
since nothing is assumed about the distribution of Xi, except the existence of
the mean and variance.

5.8 Theorem (The Central Limit Theorem (CLT)). Let X1, . . . , Xn be iid

with mean µ and variance σ2. Let Xn = n−1
∑n
i=1Xi. Then

Zn ≡
Xn − µ√

V(Xn)
=
√
n(Xn − µ)

σ
� Z

where Z ∼ N(0, 1). In other words,

lim
n→∞ P(Zn ≤ z) = Φ(z) =

∫ z

−∞

1√
2π
e−x2/2dx.

Interpretation: Probability statements aboutXn can be approximated

using a Normal distribution. It’s the probability statements that we

are approximating, not the random variable itself.

In addition to Zn � N(0, 1), there are several forms of notation to denote
the fact that the distribution of Zn is converging to a Normal. They all mean
the same thing. Here they are:

Zn ≈ N(0, 1)

Xn ≈ N

(
µ,

σ2

n

)
Xn − µ ≈ N

(
0,
σ2

n

)
√
n(Xn − µ) ≈ N

(
0, σ2

)
√
n(Xn − µ)

σ
≈ N(0, 1).

5.9 Example. Suppose that the number of errors per computer program has a
Poisson distribution with mean 5. We get 125 programs. Let X1, . . . , X125 be
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the number of errors in the programs. We want to approximate P(Xn < 5.5).
Let µ = E(X1) = λ = 5 and σ2 = V(X1) = λ = 5. Then,

P(Xn < 5.5) = P

(√
n(Xn − µ)

σ
<

√
n(5.5− µ)

σ

)
≈ P(Z < 2.5) = .9938. �

The central limit theorem tells us that Zn =
√
n(Xn−µ)/σ is approximately

N(0,1). However, we rarely know σ. Later, we will see that we can estimate
σ2 from X1, . . . , Xn by

S2
n =

1
n− 1

n∑
i=1

(Xi −Xn)2.

This raises the following question: if we replace σ with Sn, is the central limit
theorem still true? The answer is yes.

5.10 Theorem. Assume the same conditions as the CLT. Then,

√
n(Xn − µ)

Sn
� N(0, 1).

You might wonder, how accurate the normal approximation is. The answer
is given in the Berry-Essèen theorem.

5.11 Theorem (The Berry-Essèen Inequality). Suppose that E|X1|3 <∞. Then

sup
z
|P(Zn ≤ z)− Φ(z)| ≤ 33

4
E|X1 − µ|3√

nσ3
. (5.4)

There is also a multivariate version of the central limit theorem.

5.12 Theorem (Multivariate central limit theorem). Let X1, . . . , Xn be iid ran-
dom vectors where

Xi =


X1i

X2i

...
Xki


with mean

µ =


µ1

µ2

...
µk

 =


E(X1i)
E(X2i)

...
E(Xki)
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and variance matrix Σ. Let

X =


X1

X2

...
Xk

 .

where Xj = n−1
∑n
i=1Xji. Then,

√
n(X − µ)� N(0,Σ).

5.5 The Delta Method

If Yn has a limiting Normal distribution then the delta method allows us to
find the limiting distribution of g(Yn) where g is any smooth function.

5.13 Theorem (The Delta Method). Suppose that
√
n(Yn − µ)

σ
� N(0, 1)

and that g is a differentiable function such that g′(µ) �= 0. Then
√
n(g(Yn)− g(µ))
|g′(µ)|σ � N(0, 1).

In other words,

Yn ≈ N
(
µ,
σ2

n

)
implies that g(Yn) ≈ N

(
g(µ), (g′(µ))2

σ2

n

)
.

5.14 Example. Let X1, . . . , Xn be iid with finite mean µ and finite variance
σ2. By the central limit theorem,

√
n(Xn − µ)/σ � N(0, 1). Let Wn = eXn .

Thus, Wn = g(Xn) where g(s) = es. Since g′(s) = es, the delta method
implies that Wn ≈ N(eµ, e2µσ2/n). �

There is also a multivariate version of the delta method.

5.15 Theorem (The Multivariate Delta Method). Suppose that Yn = (Yn1, . . . , Ynk)
is a sequence of random vectors such that

√
n(Yn − µ)� N(0,Σ).
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Let g : Rk → R and let

∇g(y) =


∂g
∂y1
...
∂g
∂yk

 .

Let ∇µ denote ∇g(y) evaluated at y = µ and assume that the elements of ∇µ
are nonzero. Then

√
n(g(Yn)− g(µ))� N

(
0,∇TµΣ∇µ

)
.

5.16 Example. Let(
X11

X21

)
,

(
X12

X22

)
, . . . ,

(
X1n

X2n

)
be iid random vectors with mean µ = (µ1, µ2)T and variance Σ. Let

X1 =
1
n

n∑
i=1

X1i, X2 =
1
n

n∑
i=1

X2i

and define Yn = X1X2. Thus, Yn = g(X1, X2) where g(s1, s2) = s1s2. By the
central limit theorem,

√
n

(
X1 − µ1

X2 − µ2

)
� N(0,Σ).

Now

∇g(s) =

(
∂g
∂s1
∂g
∂s2

)
=

(
s2
s1

)
and so

∇TµΣ∇µ = (µ2 µ1)
(
σ11 σ12

σ12 σ22

)(
µ2

µ1

)
= µ2

2σ11 + 2µ1µ2σ12 + µ2
1σ22.

Therefore,

√
n(X1X2 − µ1µ2)� N

(
0, µ2

2σ11 + 2µ1µ2σ12 + µ2
1σ22

)
. �

5.6 Bibliographic Remarks

Convergence plays a central role in modern probability theory. For more de-
tails, see Grimmett and Stirzaker (1982), Karr (1993), and Billingsley (1979).
Advanced convergence theory is explained in great detail in van der Vaart
and Wellner (1996) and and van der Vaart (1998).
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5.7 Appendix

5.7.1 Almost Sure and L1 Convergence

We say that Xn converges almost surely to X, written Xn
as−→X, if

P({s : Xn(s)→ X(s)}) = 1.

We say that Xn converges in L1 to X, written Xn
L1−→X, if

E|Xn −X| → 0

as n→∞.

5.17 Theorem. Let Xn and X be random variables. Then:
(a) Xn

as−→X implies that Xn
P−→X.

(b) Xn
qm−→X implies that Xn

L1−→X.
(c) Xn

L1−→X implies that Xn
P−→X.

The weak law of large numbers says that Xn converges to E(X1) in proba-
bility. The strong law asserts that this is also true almost surely.

5.18 Theorem (The Strong Law of Large Numbers). Let X1, X2, . . . be iid. If
µ = E|X1| <∞ then Xn

as−→µ.

A sequence Xn is asymptotically uniformly integrable if

lim
M→∞

lim sup
n→∞

E (|Xn|I(|Xn| > M)) = 0.

5.19 Theorem. If Xn
P−→ b and Xn is asymptotically uniformly integrable,

then E(Xn)→ b.

5.7.2 Proof of the Central Limit Theorem

Recall that if X is a random variable, its moment generating function (mgf)
is ψX(t) = EetX . Assume in what follows that the mgf is finite in a neigh-
borhood around t = 0.

5.20 Lemma. Let Z1, Z2, . . . be a sequence of random variables. Let ψn be the
mgf of Zn. Let Z be another random variable and denote its mgf by ψ. If
ψn(t)→ ψ(t) for all t in some open interval around 0, then Zn � Z.
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proof of the central limit theorem. Let Yi = (Xi − µ)/σ. Then,
Zn = n−1/2

∑
i Yi. Let ψ(t) be the mgf of Yi. The mgf of

∑
i Yi is (ψ(t))n

and mgf of Zn is [ψ(t/
√
n)]n ≡ ξn(t). Now ψ′(0) = E(Y1) = 0, ψ′′(0) =

E(Y 2
1 ) = V(Y1) = 1. So,

ψ(t) = ψ(0) + tψ′(0) +
t2

2!
ψ′′(0) +

t3

3!
ψ′′′(0) + · · ·

= 1 + 0 +
t2

2
+
t3

3!
ψ′′′(0) + · · ·

= 1 +
t2

2
+
t3

3!
ψ′′′(0) + · · ·

Now,

ξn(t) =
[
ψ

(
t√
n

)]n
=

[
1 +

t2

2n
+

t3

3!n3/2
ψ′′′(0) + · · ·

]n
=

[
1 +

t2

2 + t3

3!n1/2ψ
′′′(0) + · · ·

n

]n
→ et

2/2

which is the mgf of a N(0,1). The result follows from the previous Theorem.
In the last step we used the fact that if an → a then(

1 +
an
n

)n
→ ea. �

5.8 Exercises

1. Let X1, . . . , Xn be iid with finite mean µ = E(X1) and finite variance
σ2 = V(X1). Let Xn be the sample mean and let S2

n be the sample
variance.

(a) Show that E(S2
n) = σ2.

(b) Show that S2
n

P−→σ2. Hint: Show that S2
n = cnn

−1
∑n
i=1X

2
i − dnX

2

n

where cn → 1 and dn → 1. Apply the law of large numbers to n−1
∑n
i=1X

2
i

and to Xn. Then use part (e) of Theorem 5.5.

2. Let X1, X2, . . . be a sequence of random variables. Show that Xn
qm−→ b

if and only if

lim
n→∞ E(Xn) = b and lim

n→∞ V(Xn) = 0.
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3. Let X1, . . . , Xn be iid and let µ = E(X1). Suppose that the variance is
finite. Show that Xn

qm−→µ.

4. Let X1, X2, . . . be a sequence of random variables such that

P

(
Xn =

1
n

)
= 1− 1

n2
and P (Xn = n) =

1
n2
.

Does Xn converge in probability? Does Xn converge in quadratic mean?

5. Let X1, . . . , Xn ∼ Bernoulli(p). Prove that

1
n

n∑
i=1

X2
i

P−→ p and
1
n

n∑
i=1

X2
i

qm−→ p.

6. Suppose that the height of men has mean 68 inches and standard de-
viation 2.6 inches. We draw 100 men at random. Find (approximately)
the probability that the average height of men in our sample will be at
least 68 inches.

7. Let λn = 1/n for n = 1, 2, . . .. Let Xn ∼ Poisson(λn).

(a) Show that Xn
P−→ 0.

(b) Let Yn = nXn. Show that Yn
P−→ 0.

8. Suppose we have a computer program consisting of n = 100 pages of
code. Let Xi be the number of errors on the ith page of code. Suppose
that the X ′

is are Poisson with mean 1 and that they are independent.
Let Y =

∑n
i=1Xi be the total number of errors. Use the central limit

theorem to approximate P(Y < 90).

9. Suppose that P(X = 1) = P(X = −1) = 1/2. Define

Xn =
{
X with probability 1− 1

n
en with probability 1

n .

Does Xn converge to X in probability? Does Xn converge to X in dis-
tribution? Does E(X −Xn)2 converge to 0?

10. Let Z ∼ N(0, 1). Let t > 0. Show that, for any k > 0,

P(|Z| > t) ≤ E|Z|k
tk

.

Compare this to Mill’s inequality in Chapter 4.
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11. Suppose that Xn ∼ N(0, 1/n) and let X be a random variable with
distribution F (x) = 0 if x < 0 and F (x) = 1 if x ≥ 0. Does Xn converge
to X in probability? (Prove or disprove). Does Xn converge to X in
distribution? (Prove or disprove).

12. Let X,X1, X2, X3, . . . be random variables that are positive and integer
valued. Show that Xn � X if and only if

lim
n→∞ P(Xn = k) = P(X = k)

for every integer k.

13. Let Z1, Z2, . . . be iid random variables with density f . Suppose that
P(Zi > 0) = 1 and that λ = limx↓0 f(x) > 0. Let

Xn = n min{Z1, . . . , Zn}.

Show that Xn � Z where Z has an exponential distribution with mean
1/λ.

14. Let X1, . . . , Xn ∼ Uniform(0, 1). Let Yn = X
2

n. Find the limiting distri-
bution of Yn.

15. Let (
X11

X21

)
,

(
X12

X22

)
, . . . ,

(
X1n

X2n

)
be iid random vectors with mean µ = (µ1, µ2) and variance Σ. Let

X1 =
1
n

n∑
i=1

X1i, X2 =
1
n

n∑
i=1

X2i

and define Yn = X1/X2. Find the limiting distribution of Yn.

16. Construct an example where Xn � X and Yn � Y but Xn + Yn does
not converge in distribution to X + Y .
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6
Models, Statistical Inference and
Learning

6.1 Introduction

Statistical inference, or “learning” as it is called in computer science, is the
process of using data to infer the distribution that generated the data. A
typical statistical inference question is:

Given a sample X1, . . . , Xn ∼ F , how do we infer F?

In some cases, we may want to infer only some feature of F such as its
mean.

6.2 Parametric and Nonparametric Models

A statistical model F is a set of distributions (or densities or regression
functions). A parametric model is a set F that can be parameterized by a
finite number of parameters. For example, if we assume that the data come
from a Normal distribution, then the model is

F =
{
f(x;µ, σ) =

1
σ
√

2π
exp

{
− 1

2σ2
(x− µ)2

}
, µ ∈ R, σ > 0

}
. (6.1)

This is a two-parameter model. We have written the density as f(x;µ, σ) to
show that x is a value of the random variable whereas µ and σ are parameters.
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In general, a parametric model takes the form

F =

{
f(x; θ) : θ ∈ Θ

}
(6.2)

where θ is an unknown parameter (or vector of parameters) that can take
values in the parameter space Θ. If θ is a vector but we are only interested in
one component of θ, we call the remaining parameters nuisance parameters.
A nonparametric model is a set F that cannot be parameterized by a finite
number of parameters. For example, FALL = {all cdf

′s} is nonparametric. 1

6.1 Example (One-dimensional Parametric Estimation). Let X1, . . ., Xn be in-
dependent Bernoulli(p) observations. The problem is to estimate the param-
eter p. �

6.2 Example (Two-dimensional Parametric Estimation). Suppose that X1, . . .,
Xn ∼ F and we assume that the pdf f ∈ F where F is given in (6.1). In
this case there are two parameters, µ and σ. The goal is to estimate the
parameters from the data. If we are only interested in estimating µ, then µ is
the parameter of interest and σ is a nuisance parameter. �

6.3 Example (Nonparametric estimation of the cdf). Let X1, . . ., Xn be inde-
pendent observations from a cdf F . The problem is to estimate F assuming
only that F ∈ FALL = {all cdf

′s}. �

6.4 Example (Nonparametric density estimation). Let X1, . . . , Xn be indepen-
dent observations from a cdf F and let f = F ′ be the pdf. Suppose we want
to estimate the pdf f . It is not possible to estimate f assuming only that
F ∈ FALL. We need to assume some smoothness on f . For example, we might
assume that f ∈ F = FDENS

⋂
FSOB where FDENS is the set of all probability

density functions and

FSOB =
{
f :

∫
(f ′′(x))2dx <∞

}
.

The class FSOB is called a Sobolev space; it is the set of functions that are
not “too wiggly.” �

6.5 Example (Nonparametric estimation of functionals). Let X1, . . ., Xn ∼ F .
Suppose we want to estimate µ = E(X1) =

∫
x dF (x) assuming only that

1The distinction between parametric and nonparametric is more subtle than this but we don’t
need a rigorous definition for our purposes.
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µ exists. The mean µ may be thought of as a function of F : we can write
µ = T (F ) =

∫
x dF (x). In general, any function of F is called a statis-

tical functional. Other examples of functionals are the variance T (F ) =∫
x2dF (x)−

(∫
xdF (x)

)2 and the median T (F ) = F−1(1/2). �

6.6 Example (Regression, prediction, and classification). Suppose we observe pairs
of data (X1, Y1), . . . (Xn, Yn). Perhaps Xi is the blood pressure of subject i
and Yi is how long they live. X is called a predictor or regressor or fea-
ture or independent variable. Y is called the outcome or the response
variable or the dependent variable. We call r(x) = E(Y |X = x) the re-
gression function. If we assume that r ∈ F where F is finite dimensional —
the set of straight lines for example — then we have a parametric regres-
sion model. If we assume that r ∈ F where F is not finite dimensional then
we have a nonparametric regression model. The goal of predicting Y for
a new patient based on their X value is called prediction. If Y is discrete
(for example, live or die) then prediction is instead called classification. If
our goal is to estimate the function r, then we call this regression or curve
estimation. Regression models are sometimes written as

Y = r(X) + ε (6.3)

where E(ε) = 0. We can always rewrite a regression model this way. To see
this, define ε = Y − r(X) and hence Y = Y + r(X) − r(X) = r(X) + ε.
Moreover, E(ε) = EE(ε|X) = E(E(Y − r(X))|X) = E(E(Y |X) − r(X)) =
E(r(X)− r(X)) = 0. �

What’s Next? It is traditional in most introductory courses to start with
parametric inference. Instead, we will start with nonparametric inference and
then we will cover parametric inference. In some respects, nonparametric in-
ference is easier to understand and is more useful than parametric inference.

Frequentists and Bayesians. There are many approaches to statistical
inference. The two dominant approaches are called frequentist inference
and Bayesian inference. We’ll cover both but we will start with frequentist
inference. We’ll postpone a discussion of the pros and cons of these two until
later.

Some Notation. If F = {f(x; θ) : θ ∈ Θ} is a parametric model, we write
Pθ(X ∈ A) =

∫
A
f(x; θ)dx and Eθ(r(X)) =

∫
r(x)f(x; θ)dx. The subscript θ

indicates that the probability or expectation is with respect to f(x; θ); it does
not mean we are averaging over θ. Similarly, we write Vθ for the variance.



90 6. Models, Statistical Inference and Learning

6.3 Fundamental Concepts in Inference

Many inferential problems can be identified as being one of three types: es-
timation, confidence sets, or hypothesis testing. We will treat all of these
problems in detail in the rest of the book. Here, we give a brief introduction
to the ideas.

6.3.1 Point Estimation

Point estimation refers to providing a single “best guess” of some quantity
of interest. The quantity of interest could be a parameter in a parametric
model, a cdf F , a probability density function f , a regression function r, or
a prediction for a future value Y of some random variable.

By convention, we denote a point estimate of θ by θ̂ or θ̂n. Remember

that θ is a fixed, unknown quantity. The estimate θ̂ depends on the

data so θ̂ is a random variable.

More formally, let X1, . . . , Xn be n iid data points from some distribution
F . A point estimator θ̂n of a parameter θ is some function of X1, . . . , Xn:

θ̂n = g(X1, . . . , Xn).

The bias of an estimator is defined by

bias(θ̂n) = Eθ(θ̂n)− θ. (6.4)

We say that θ̂n is unbiased if E(θ̂n) = θ. Unbiasedness used to receive much
attention but these days is considered less important; many of the estimators
we will use are biased. A reasonable requirement for an estimator is that it
should converge to the true parameter value as we collect more and more
data. This requirement is quantified by the following definition:

6.7 Definition. A point estimator θ̂n of a parameter θ is consistent if
θ̂n

P−→ θ.

The distribution of θ̂n is called the sampling distribution. The standard
deviation of θ̂n is called the standard error, denoted by se:

se = se(θ̂n) =
√

V(θ̂n). (6.5)

Often, the standard error depends on the unknown F . In those cases, se is
an unknown quantity but we usually can estimate it. The estimated standard
error is denoted by ŝe.
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6.8 Example. Let X1, . . . , Xn ∼ Bernoulli(p) and let p̂n = n−1
∑
iXi. Then

E(p̂n) = n−1
∑
i E(Xi) = p so p̂n is unbiased. The standard error is se =√

V(p̂n) =
√
p(1− p)/n. The estimated standard error is ŝe =

√
p̂(1− p̂)/n.

�

The quality of a point estimate is sometimes assessed by the mean squared
error, or mse defined by

mse = Eθ(θ̂n − θ)2. (6.6)

Keep in mind that Eθ(·) refers to expectation with respect to the distribution

f(x1, . . . , xn; θ) =
n∏
i=1

f(xi; θ)

that generated the data. It does not mean we are averaging over a distribution
for θ.

6.9 Theorem. The mse can be written as

mse = bias2(θ̂n) + Vθ(θ̂n). (6.7)

Proof. Let θn = Eθ(θ̂n). Then

Eθ(θ̂n − θ)2 = Eθ(θ̂n − θn + θn − θ)2

= Eθ(θ̂n − θn)2 + 2(θn − θ)Eθ(θ̂n − θn) + Eθ(θn − θ)2

= (θn − θ)2 + Eθ(θ̂n − θn)2

= bias2(θ̂n) + V(θ̂n)

where we have used the fact that Eθ(θ̂n − θn) = θn − θn = 0. �

6.10 Theorem. If bias→ 0 and se→ 0 as n→∞ then θ̂n is consistent, that
is, θ̂n

P−→ θ.

Proof. If bias → 0 and se → 0 then, by Theorem 6.9, MSE → 0. It
follows that θ̂n

qm−→ θ. (Recall Definition 5.2.) The result follows from part (b)
of Theorem 5.4. �

6.11 Example. Returning to the coin flipping example, we have that Ep(p̂n) =

p so the bias = p− p = 0 and se =
√
p(1− p)/n→ 0. Hence, p̂n

P−→ p, that is,
p̂n is a consistent estimator. �

Many of the estimators we will encounter will turn out to have, approxi-
mately, a Normal distribution.
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6.12 Definition. An estimator is asymptotically Normal if

θ̂n − θ
se

� N(0, 1). (6.8)

6.3.2 Confidence Sets

A 1 − α confidence interval for a parameter θ is an interval Cn = (a, b)
where a = a(X1, . . . , Xn) and b = b(X1, . . . , Xn) are functions of the data
such that

Pθ(θ ∈ Cn) ≥ 1− α, for all θ ∈ Θ. (6.9)

In words, (a, b) traps θ with probability 1−α. We call 1−α the coverage of
the confidence interval.

Warning! Cn is random and θ is fixed.
Commonly, people use 95 percent confidence intervals, which corresponds

to choosing α = 0.05. If θ is a vector then we use a confidence set (such as
a sphere or an ellipse) instead of an interval.

Warning! There is much confusion about how to interpret a confidence
interval. A confidence interval is not a probability statement about θ since
θ is a fixed quantity, not a random variable. Some texts interpret confidence
intervals as follows: if I repeat the experiment over and over, the interval will
contain the parameter 95 percent of the time. This is correct but useless since
we rarely repeat the same experiment over and over. A better interpretation
is this:

On day 1, you collect data and construct a 95 percent confidence

interval for a parameter θ1. On day 2, you collect new data and con-

struct a 95 percent confidence interval for an unrelated parameter θ2.

On day 3, you collect new data and construct a 95 percent confi-

dence interval for an unrelated parameter θ3. You continue this way

constructing confidence intervals for a sequence of unrelated param-

eters θ1, θ2, . . . Then 95 percent of your intervals will trap the true

parameter value. There is no need to introduce the idea of repeating

the same experiment over and over.

6.13 Example. Every day, newspapers report opinion polls. For example, they
might say that “83 percent of the population favor arming pilots with guns.”
Usually, you will see a statement like “this poll is accurate to within 4 points
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95 percent of the time.” They are saying that 83±4 is a 95 percent confidence
interval for the true but unknown proportion p of people who favor arming
pilots with guns. If you form a confidence interval this way every day for the
rest of your life, 95 percent of your intervals will contain the true parameter.
This is true even though you are estimating a different quantity (a different
poll question) every day. �

6.14 Example. The fact that a confidence interval is not a probability state-
ment about θ is confusing. Consider this example from Berger and Wolpert
(1984). Let θ be a fixed, known real number and let X1, X2 be independent
random variables such that P(Xi = 1) = P(Xi = −1) = 1/2. Now define
Yi = θ +Xi and suppose that you only observe Y1 and Y2. Define the follow-
ing “confidence interval” which actually only contains one point:

C =

{
{Y1 − 1} if Y1 = Y2

{(Y1 + Y2)/2} if Y1 �= Y2.

You can check that, no matter what θ is, we have Pθ(θ ∈ C) = 3/4 so this
is a 75 percent confidence interval. Suppose we now do the experiment and
we get Y1 = 15 and Y2 = 17. Then our 75 percent confidence interval is {16}.
However, we are certain that θ = 16. If you wanted to make a probability
statement about θ you would probably say that P(θ ∈ C|Y1, Y2) = 1. There is
nothing wrong with saying that {16} is a 75 percent confidence interval. But
is it not a probability statement about θ. �

In Chapter 11 we will discuss Bayesian methods in which we treat θ as if it
were a random variable and we do make probability statements about θ. In
particular, we will make statements like “the probability that θ is in Cn, given
the data, is 95 percent.” However, these Bayesian intervals refer to degree-
of-belief probabilities. These Bayesian intervals will not, in general, trap the
parameter 95 percent of the time.

6.15 Example. In the coin flipping setting, let Cn = (p̂n− εn, p̂n+ εn) where
ε2n = log(2/α)/(2n). From Hoeffding’s inequality (4.4) it follows that

P(p ∈ Cn) ≥ 1− α

for every p. Hence, Cn is a 1− α confidence interval. �

As mentioned earlier, point estimators often have a limiting Normal dis-
tribution, meaning that equation (6.8) holds, that is, θ̂n ≈ N(θ, ŝe2). In this
case we can construct (approximate) confidence intervals as follows.
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6.16 Theorem (Normal-based Confidence Interval). Suppose that θ̂n ≈ N(θ, ŝe2).
Let Φ be the cdf of a standard Normal and let zα/2 = Φ−1(1 − (α/2)), that
is, P(Z > zα/2) = α/2 and P(−zα/2 < Z < zα/2) = 1− α where Z ∼ N(0, 1).
Let

Cn = (θ̂n − zα/2 ŝe, θ̂n + zα/2 ŝe). (6.10)

Then
Pθ(θ ∈ Cn)→ 1− α. (6.11)

Proof. Let Zn = (θ̂n − θ)/ŝe. By assumption Zn � Z where Z ∼ N(0, 1).
Hence,

Pθ(θ ∈ Cn) = Pθ

(
θ̂n − zα/2 ŝe < θ < θ̂n + zα/2 ŝe

)
= Pθ

(
−zα/2 <

θ̂n − θ
ŝe

< zα/2

)
→ P

(
−zα/2 < Z < zα/2

)
= 1− α. �

For 95 percent confidence intervals, α = 0.05 and zα/2 = 1.96 ≈ 2 leading
to the approximate 95 percent confidence interval θ̂n ± 2 ŝe.

6.17 Example. Let X1, . . . , Xn ∼ Bernoulli(p) and let p̂n = n−1
∑n
i=1Xi.

Then V(p̂n) = n−2
∑n
i=1 V(Xi) = n−2

∑n
i=1 p(1− p) = n−2np(1− p) = p(1−

p)/n. Hence, se =
√
p(1− p)/n and ŝe =

√
p̂n(1− p̂n)/n. By the Central

Limit Theorem, p̂n ≈ N(p, ŝe2). Therefore, an approximate 1 − α confidence
interval is

p̂n ± zα/2ŝe = p̂n ± zα/2

√
p̂n(1− p̂n)

n
.

Compare this with the confidence interval in example 6.15. The Normal-based
interval is shorter but it only has approximately (large sample) correct cover-
age. �

6.3.3 Hypothesis Testing

In hypothesis testing, we start with some default theory — called a null
hypothesis — and we ask if the data provide sufficient evidence to reject the
theory. If not we retain the null hypothesis. 2

2The term “retaining the null hypothesis” is due to Chris Genovese. Other terminology is
“accepting the null” or “failing to reject the null.”
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6.18 Example (Testing if a Coin is Fair). Let

X1, . . . , Xn ∼ Bernoulli(p)

be n independent coin flips. Suppose we want to test if the coin is fair. Let H0

denote the hypothesis that the coin is fair and let H1 denote the hypothesis
that the coin is not fair. H0 is called the null hypothesis and H1 is called
the alternative hypothesis. We can write the hypotheses as

H0 : p = 1/2 versus H1 : p �= 1/2.

It seems reasonable to reject H0 if T = |p̂n− (1/2)| is large. When we discuss
hypothesis testing in detail, we will be more precise about how large T should
be to reject H0. �

6.4 Bibliographic Remarks

Statistical inference is covered in many texts. Elementary texts include DeG-
root and Schervish (2002) and Larsen and Marx (1986). At the intermediate
level I recommend Casella and Berger (2002), Bickel and Doksum (2000), and
Rice (1995). At the advanced level, Cox and Hinkley (2000), Lehmann and
Casella (1998), Lehmann (1986), and van der Vaart (1998).

6.5 Appendix

Our definition of confidence interval requires that Pθ(θ ∈ Cn) ≥ 1 − α

for all θ ∈ Θ. A pointwise asymptotic confidence interval requires that
lim infn→∞ Pθ(θ ∈ Cn) ≥ 1 − α for all θ ∈ Θ. A uniform asymptotic con-
fidence interval requires that lim infn→∞ infθ∈Θ Pθ(θ ∈ Cn) ≥ 1 − α. The
approximate Normal-based interval is a pointwise asymptotic confidence in-
terval.

6.6 Exercises

1. Let X1, . . . , Xn ∼ Poisson(λ) and let λ̂ = n−1
∑n
i=1Xi. Find the bias,

se, and mse of this estimator.

2. Let X1, . . . , Xn ∼ Uniform(0, θ) and let θ̂ = max{X1, . . . , Xn}. Find the
bias, se, and mse of this estimator.
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3. Let X1, . . . , Xn ∼ Uniform(0, θ) and let θ̂ = 2Xn. Find the bias, se, and
mse of this estimator.



7
Estimating the cdf and Statistical
Functionals

The first inference problem we will consider is nonparametric estimation of the
cdf F . Then we will estimate statistical functionals, which are functions of
cdf, such as the mean, the variance, and the correlation. The nonparametric
method for estimating functionals is called the plug-in method.

7.1 The Empirical Distribution Function

Let X1, . . . , Xn ∼ F be an iid sample where F is a distribution function on
the real line. We will estimate F with the empirical distribution function,
which is defined as follows.

7.1 Definition. The empirical distribution function F̂n is the cdf

that puts mass 1/n at each data point Xi. Formally,

F̂n(x) =
∑n
i=1 I(Xi ≤ x)

n
(7.1)

where

I(Xi ≤ x) =
{

1 if Xi ≤ x
0 if Xi > x.
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FIGURE 7.1. Nerve data. Each vertical line represents one data point. The solid
line is the empirical distribution function. The lines above and below the middle
line are a 95 percent confidence band.

7.2 Example (Nerve Data). Cox and Lewis (1966) reported 799 waiting times
between successive pulses along a nerve fiber. Figure 7.1 shows the empirical
cdf F̂n. The data points are shown as small vertical lines at the bottom of
the plot. Suppose we want to estimate the fraction of waiting times between
.4 and .6 seconds. The estimate is F̂n(.6)− F̂n(.4) = .93− .84 = .09. �

7.3 Theorem. At any fixed value of x,

E

(
F̂n(x)

)
= F (x),

V

(
F̂n(x)

)
=

F (x)(1− F (x))
n

,

mse =
F (x)(1− F (x))

n
→ 0,

F̂n(x)
P−→ F (x).

7.4 Theorem (The Glivenko-Cantelli Theorem). Let X1, . . . , Xn ∼ F . Then 1

sup
x
|F̂n(x)− F (x)| P−→ 0.

Now we give an inequality that will be used to construct a confidence band.

1More precisely, supx |F̂n(x) − F (x)| converges to 0 almost surely.
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7.5 Theorem (The Dvoretzky-Kiefer-Wolfowitz (DKW) Inequality). Let X1, . . .,
Xn ∼ F . Then, for any ε > 0,

P

(
sup
x
|F (x)− F̂n(x)| > ε

)
≤ 2e−2nε2 . (7.2)

From the DKW inequality, we can construct a confidence set as follows:

A Nonparametric 1− α Confidence Band for F

Define,

L(x) = max{F̂n(x)− εn, 0}
U(x) = min{F̂n(x) + εn, 1}

where εn =

√
1
2n

log
(

2
α

)
.

It follows from (7.2) that for any F ,

P

(
L(x) ≤ F (x) ≤ U(x) for all x

)
≥ 1− α. (7.3)

7.6 Example. The dashed lines in Figure 7.1 give a 95 percent confidence

band using εn =
√

1
2n log

(
2
.05

)
= .048. �

7.2 Statistical Functionals

A statistical functional T (F ) is any function of F . Examples are the mean
µ =

∫
x dF (x), the variance σ2 =

∫
(x − µ)2 dF (x) and the median m =

F−1(1/2).

7.7 Definition. The plug-in estimator of θ = T (F ) is defined by

θ̂n = T (F̂n).

In other words, just plug in F̂n for the unknown F .

7.8 Definition. If T (F ) =
∫
r(x)dF (x) for some function r(x) then T is

called a linear functional.
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The reason T (F ) =
∫
r(x)dF (x) is called a linear functional is because T

satisfies
T (aF + bG) = aT (F ) + bT (G),

hence T is linear in its arguments. Recall that
∫
r(x)dF (x) is defined to be∫

r(x)f(x)dx in the continuous case and
∑

j r(xj)f(xj) in the discrete. The
empirical cdf F̂n(x) is discrete, putting mass 1/n at each Xi. Hence, if T (F ) =∫
r(x)dF (x) is a linear functional then we have:

7.9 Theorem. The plug-in estimator for linear functional
T (F ) =

∫
r(x)dF (x) is:

T (F̂n) =
∫
r(x)dF̂n(x) =

1
n

n∑
i=1

r(Xi). (7.4)

Sometimes we can find the estimated standard error se of T (F̂n) by doing
some calculations. However, in other cases it is not obvious how to estimate
the standard error. In the next chapter, we will discuss a general method for
finding ŝe. For now, let us just assume that somehow we can find ŝe.

In many cases, it turns out that

T (F̂n) ≈ N(T (F ), ŝe2). (7.5)

By equation (6.11), an approximate 1−α confidence interval for T (F ) is then

T (F̂n)± zα/2 ŝe. (7.6)

We will call this the Normal-based interval. For a 95 percent confidence
interval, zα/2 = z.05/2 = 1.96 ≈ 2 so the interval is

T (F̂n)± 2 ŝe.

7.10 Example (The mean). Let µ = T (F ) =
∫
x dF (x). The plug-in estima-

tor is µ̂ =
∫
x dF̂n(x) = Xn. The standard error is se =

√
V(Xn) = σ/

√
n. If

σ̂ denotes an estimate of σ, then the estimated standard error is σ̂/
√
n. (In

the next example, we shall see how to estimate σ.) A Normal-based confidence
interval for µ is Xn ± zα/2 ŝe. �

7.11 Example (The Variance). Let σ2 = T (F ) = V(X) =
∫
x2dF (x)−

(∫
xdF (x)

)2.
The plug-in estimator is

σ̂2 =
∫
x2dF̂n(x)−

(∫
xdF̂n(x)

)2
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=
1
n

n∑
i=1

X2
i −

(
1
n

n∑
i=1

Xi

)2

=
1
n

n∑
i=1

(Xi −Xn)2.

Another reasonable estimator of σ2 is the sample variance

S2
n =

1
n− 1

n∑
i=1

(Xi −Xn)2.

In practice, there is little difference between σ̂2 and S2
n and you can use either

one. Returning to the last example, we now see that the estimated standard
error of the estimate of the mean is ŝe = σ̂/

√
n. �

7.12 Example (The Skewness). Let µ and σ2 denote the mean and variance
of a random variable X. The skewness is defined to be

κ =
E(X − µ)3

σ3
=

∫
(x− µ)3dF (x){∫

(x− µ)2dF (x)
}3/2

.

The skewness measures the lack of symmetry of a distribution. To find the
plug-in estimate, first recall that µ̂ = n−1

∑
iXi and σ̂2 = n−1

∑
i(Xi − µ̂)2.

The plug-in estimate of κ is

κ̂ =
∫

(x− µ)3dF̂n(x){∫
(x− µ)2dF̂n(x)

}3/2
=

1
n

∑
i(Xi − µ̂)3

σ̂3
. �

7.13 Example (Correlation). Let Z = (X,Y ) and let ρ = T (F ) = E(X −
µX)(Y −µY )/(σxσy) denote the correlation between X and Y , where F (x, y)
is bivariate. We can write

T (F ) = a(T1(F ), T2(F ), T3(F ), T4(F ), T5(F ))

where

T1(F ) =
∫
x dF (z), T2(F ) =

∫
y dF (z), T3(F ) =

∫
xy dF (z),

T4(F ) =
∫
x2 dF (z), T5(F ) =

∫
y2 dF (z),

and
a(t1, . . . , t5) =

t3 − t1t2√
(t4 − t21)(t5 − t22)

.

Replace F with F̂n in T1(F ), . . . , T5(F ), and take

ρ̂ = a(T1(F̂n), T2(F̂n), T3(F̂n), T4(F̂n), T5(F̂n)).
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We get

ρ̂ =
∑
i(Xi −Xn)(Yi − Y n)√∑

i(Xi −Xn)2
√∑

i(Yi − Y n)2

which is called the sample correlation. �

7.14 Example (Quantiles). Let F be strictly increasing with density f . For
0 < p < 1, the pth quantile is defined by T (F ) = F−1(p). The estimate if
T (F ) is F̂−1

n (p). We have to be a bit careful since F̂n is not invertible. To
avoid ambiguity we define

F̂−1
n (p) = inf{x : F̂n(x) ≥ p}.

We call T (F̂n) = F̂−1
n (p) the pth sample quantile. �

Only in the first example did we compute a standard error or a confidence
interval. How shall we handle the other examples? When we discuss parametric
methods, we will develop formulas for standard errors and confidence intervals.
But in our nonparametric setting we need something else. In the next chapter,
we will introduce the bootstrap for getting standard errors and confidence
intervals.

7.15 Example (Plasma Cholesterol). Figure 7.2 shows histograms for plasma
cholesterol (in mg/dl) for 371 patients with chest pain (Scott et al. (1978)).
The histograms show the percentage of patients in 10 bins. The first histogram
is for 51 patients who had no evidence of heart disease while the second
histogram is for 320 patients who had narrowing of the arteries. Is the mean
cholesterol different in the two groups? Let us regard these data as samples
from two distributions F1 and F2. Let µ1 =

∫
xdF1(x) and µ2 =

∫
xdF2(x)

denote the means of the two populations. The plug-in estimates are µ̂1 =∫
xdF̂n,1(x) = Xn,1 = 195.27 and µ̂2 =

∫
xdF̂n,2(x) = Xn,2 = 216.19. Recall

that the standard error of the sample mean µ̂ = 1
n

∑n
i=1Xi is

se(µ̂) =

√√√√V

(
1
n

n∑
i=1

Xi

)
=

√√√√ 1
n2

n∑
i=1

V(Xi) =

√
nσ2

n2
=

σ√
n

which we estimate by

ŝe(µ̂) =
σ̂√
n

where

σ̂ =

√√√√ 1
n

n∑
i=1

(Xi −X)2.
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For the two groups this yields ŝe(µ̂1) = 5.0 and ŝe(µ̂2) = 2.4. Approximate 95
percent confidence intervals for µ1 and µ2 are µ̂1 ± 2ŝe(µ̂1) = (185, 205) and
µ̂2 ± 2ŝe(µ̂2) = (211, 221).

Now, consider the functional θ = T (F2)− T (F1) whose plug-in estimate is
θ̂ = µ̂2 − µ̂1 = 216.19− 195.27 = 20.92. The standard error of θ̂ is

se =
√

V(µ̂2 − µ̂1) =
√

V(µ̂2) + V(µ̂1) =
√

(se(µ̂1))2 + (se(µ̂2))2

and we estimate this by

ŝe =
√

(ŝe(µ̂1))2 + (ŝe(µ̂2))2 = 5.55.

An approximate 95 percent confidence interval for θ is θ̂±2 ŝe(θ̂n) = (9.8, 32.0).
This suggests that cholesterol is higher among those with narrowed arteries.
We should not jump to the conclusion (from these data) that cholesterol causes
heart disease. The leap from statistical evidence to causation is very subtle
and is discussed in Chapter 16. �

plasma cholesterol for patients without heart disease

100 150 200 250 300 350 400

plasma cholesterol for patients with heart disease

100 150 200 250 300 350 400

FIGURE 7.2. Plasma cholesterol for 51 patients with no heart disease and 320
patients with narrowing of the arteries.
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7.3 Bibliographic Remarks

The Glivenko-Cantelli theorem is the tip of the iceberg. The theory of dis-
tribution functions is a special case of what are called empirical processes
which underlie much of modern statistical theory. Some references on empiri-
cal processes are Shorack and Wellner (1986) and van der Vaart and Wellner
(1996).

7.4 Exercises

1. Prove Theorem 7.3.

2. Let X1, . . . , Xn ∼ Bernoulli(p) and let Y1, . . . , Ym ∼ Bernoulli(q). Find
the plug-in estimator and estimated standard error for p. Find an ap-
proximate 90 percent confidence interval for p. Find the plug-in esti-
mator and estimated standard error for p− q. Find an approximate 90
percent confidence interval for p− q.

3. (Computer Experiment.) Generate 100 observations from a N(0,1) dis-
tribution. Compute a 95 percent confidence band for the cdf F (as
described in the appendix). Repeat this 1000 times and see how often
the confidence band contains the true distribution function. Repeat us-
ing data from a Cauchy distribution.

4. Let X1, . . . , Xn ∼ F and let F̂n(x) be the empirical distribution func-
tion. For a fixed x, use the central limit theorem to find the limiting
distribution of F̂n(x).

5. Let x and y be two distinct points. Find Cov(F̂n(x), F̂n(y)).

6. Let X1, . . . , Xn ∼ F and let F̂ be the empirical distribution function.
Let a < b be fixed numbers and define θ = T (F ) = F (b) − F (a). Let
θ̂ = T (F̂n) = F̂n(b) − F̂n(a). Find the estimated standard error of θ̂.
Find an expression for an approximate 1− α confidence interval for θ.

7. Data on the magnitudes of earthquakes near Fiji are available on the
website for this book. Estimate the cdf F (x). Compute and plot a 95
percent confidence envelope for F (as described in the appendix). Find
an approximate 95 percent confidence interval for F (4.9)− F (4.3).
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8. Get the data on eruption times and waiting times between eruptions of
the Old Faithful geyser from the website. Estimate the mean waiting
time and give a standard error for the estimate. Also, give a 90 percent
confidence interval for the mean waiting time. Now estimate the median
waiting time. In the next chapter we will see how to get the standard
error for the median.

9. 100 people are given a standard antibiotic to treat an infection and
another 100 are given a new antibiotic. In the first group, 90 people
recover; in the second group, 85 people recover. Let p1 be the probability
of recovery under the standard treatment and let p2 be the probability of
recovery under the new treatment. We are interested in estimating θ =
p1 − p2. Provide an estimate, standard error, an 80 percent confidence
interval, and a 95 percent confidence interval for θ.

10. In 1975, an experiment was conducted to see if cloud seeding produced
rainfall. 26 clouds were seeded with silver nitrate and 26 were not. The
decision to seed or not was made at random. Get the data from

http://lib.stat.cmu.edu/DASL/Stories/CloudSeeding.html

Let θ be the difference in the mean precipitation from the two groups.
Estimate θ. Estimate the standard error of the estimate and produce a
95 percent confidence interval.





8
The Bootstrap

The bootstrap is a method for estimating standard errors and computing
confidence intervals. Let Tn = g(X1, . . . , Xn) be a statistic, that is, Tn is any
function of the data. Suppose we want to know VF (Tn), the variance of Tn.
We have written VF to emphasize that the variance usually depends on the
unknown distribution function F . For example, if Tn = Xn then VF (Tn) =
σ2/n where σ2 =

∫
(x−µ)2dF (x) and µ =

∫
xdF (x). Thus the variance of Tn

is a function of F . The bootstrap idea has two steps:

Step 1: Estimate VF (Tn) with VF̂n
(Tn).

Step 2: Approximate VF̂n
(Tn) using simulation.

For Tn = Xn, we have for Step 1 that VF̂n
(Tn) = σ̂2/n where σ̂2 = n−1

∑n
i=1(Xi−

Xn). In this case, Step 1 is enough. However, in more complicated cases we
cannot write down a simple formula for VF̂n

(Tn) which is why we need Step
2. Before proceeding, let us discuss the idea of simulation.
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8.1 Simulation

Suppose we draw an iid sample Y1, . . . , YB from a distribution G. By the law
of large numbers,

Y n =
1
B

B∑
j=1

Yj
P−→

∫
y dG(y) = E(Y )

as B → ∞. So if we draw a large sample from G, we can use the sample
mean Y n to approximate E(Y ). In a simulation, we can make B as large as
we like, in which case, the difference between Y n and E(Y ) is negligible. More
generally, if h is any function with finite mean then

1
B

B∑
j=1

h(Yj)
P−→

∫
h(y)dG(y) = E(h(Y ))

as B →∞. In particular,

1
B

B∑
j=1

(Yj − Y )2 =
1
B

B∑
j=1

Y 2
j −

(
1
B

B∑
j=1

Yj

)2

P−→
∫
y2dF (y)−

(∫
ydF (y)

)2

= V(Y ).

Hence, we can use the sample variance of the simulated values to approximate
V(Y ).

8.2 Bootstrap Variance Estimation

According to what we just learned, we can approximate VF̂n
(Tn) by simula-

tion. Now VF̂n
(Tn) means “the variance of Tn if the distribution of the data

is F̂n.” How can we simulate from the distribution of Tn when the data are
assumed to have distribution F̂n? The answer is to simulate X∗

1 , . . . , X
∗
n from

F̂n and then compute T ∗
n = g(X∗

1 , . . . , X
∗
n). This constitutes one draw from

the distribution of Tn. The idea is illustrated in the following diagram:

Real world F =⇒ X1, . . . , Xn =⇒ Tn = g(X1, . . . , Xn)
Bootstrap world F̂n =⇒ X∗

1 , . . . , X
∗
n =⇒ T ∗

n = g(X∗
1 , . . . , X

∗
n)

How do we simulate X∗
1 , . . . , X

∗
n from F̂n? Notice that F̂n puts mass 1/n at

each data point X1, . . . , Xn. Therefore,
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drawing an observation from F̂n is equivalent to drawing
one point at random from the original data set.

Thus, to simulate X∗
1 , . . . , X

∗
n ∼ F̂n it suffices to draw n observations with

replacement from X1, . . . , Xn. Here is a summary:

Bootstrap Variance Estimation

1. Draw X∗
1 , . . . , X

∗
n ∼ F̂n.

2. Compute T ∗
n = g(X∗

1 , . . . , X
∗
n).

3. Repeat steps 1 and 2, B times, to get T ∗
n,1, . . . , T

∗
n,B .

4. Let

vboot =
1
B

B∑
b=1

(
T ∗
n,b −

1
B

B∑
r=1

T ∗
n,r

)2

. (8.1)

8.1 Example. The following pseudocode shows how to use the bootstrap to
estimate the standard error of the median.

Bootstrap for The Median

Given data X = (X(1), ..., X(n)):

T <- median(X)

Tboot <- vector of length B

for(i in 1:B){

Xstar <- sample of size n from X (with replacement)

Tboot[i] <- median(Xstar)

}

se <- sqrt(variance(Tboot))

The following schematic diagram will remind you that we are using two
approximations:

VF (Tn)
not so small︷︸︸︷
≈ VF̂n

(Tn)
small︷︸︸︷
≈ vboot.

8.2 Example. Consider the nerve data. Let θ = T (F ) =
∫

(x−µ)3dF (x)/σ3 be
the skewness. The skewness is a measure of asymmetry. A Normal distribution,
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for example, has skewness 0. The plug-in estimate of the skewness is

θ̂ = T (F̂n) =
∫

(x− µ)3dF̂n(x)
σ̂3

=
1
n

∑n
i=1(Xi −Xn)3

σ̂3
= 1.76.

To estimate the standard error with the bootstrap we follow the same steps
as with the median example except we compute the skewness from each
bootstrap sample. When applied to the nerve data, the bootstrap, based on
B = 1, 000 replications, yields a standard error for the estimated skewness of
.16. �

8.3 Bootstrap Confidence Intervals

There are several ways to construct bootstrap confidence intervals. Here we
discuss three methods.

Method 1: The Normal Interval. The simplest method is the Normal interval

Tn ± zα/2 ŝeboot (8.2)

where ŝeboot =
√
vboot is the bootstrap estimate of the standard error. This

interval is not accurate unless the distribution of Tn is close to Normal.
Method 2: Pivotal Intervals. Let θ = T (F ) and θ̂n = T (F̂n) and define the

pivot Rn = θ̂n−θ. Let θ̂∗
n,1, . . . , θ̂

∗
n,B denote bootstrap replications of θ̂n. Let

H(r) denote the cdf of the pivot:

H(r) = PF (Rn ≤ r). (8.3)

Define C	n = (a, b) where

a = θ̂n −H−1
(
1− α

2

)
and b = θ̂n −H−1

(α
2

)
. (8.4)

It follows that

P(a ≤ θ ≤ b) = P(a− θ̂n ≤ θ − θ̂n ≤ b− θ̂n)
= P(θ̂n − b ≤ θ̂n − θ ≤ θ̂n − a)
= P(θ̂n − b ≤ Rn ≤ θ̂n − a)
= H(θ̂n − a)−H(θ̂n − b)

= H
(
H−1

(
1− α

2

))
−H

(
H−1

(α
2

))
= 1− α

2
− α

2
= 1− α.
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Hence, C	n is an exact 1− α confidence interval for θ. Unfortunately, a and b
depend on the unknown distribution H but we can form a bootstrap estimate
of H:

Ĥ(r) =
1
B

B∑
b=1

I(R∗
n,b ≤ r) (8.5)

where R∗
n,b = θ̂∗

n,b−θ̂n. Let r∗
β denote the β sample quantile of (R∗

n,1, . . . , R
∗
n,B)

and let θ∗
β denote the β sample quantile of (θ̂∗

n,1, . . . , θ̂
∗
n,B). Note that r∗

β =
θ∗
β− θ̂n. It follows that an approximate 1−α confidence interval is Cn = (â, b̂)

where

â = θ̂n − Ĥ−1
(
1− α

2

)
= θ̂n − r∗

1−α/2 = 2θ̂n − θ∗
1−α/2

b̂ = θ̂n − Ĥ−1
(α

2

)
= θ̂n − r∗

α/2 = 2θ̂n − θ∗
α/2.

In summary, the 1− α bootstrap pivotal confidence interval is

Cn =
(
2θ̂n − θ̂∗

1−α/2, 2θ̂n − θ̂∗
α/2

)
. (8.6)

8.3 Theorem. Under weak conditions on T (F ),

PF (T (F ) ∈ Cn)→ 1− α

as n→∞, where Cn is given in (8.6).

Method 3: Percentile Intervals. The bootstrap percentile interval is de-
fined by

Cn =
(
θ∗
α/2, θ

∗
1−α/2

)
.

The justification for this interval is given in the appendix.

8.4 Example. For estimating the skewness of the nerve data, here are the
various confidence intervals.

Method 95% Interval
Normal (1.44, 2.09)
Pivotal (1.48, 2.11)
Percentile (1.42, 2.03)

All these confidence intervals are approximate. The probability that T (F )
is in the interval is not exactly 1− α. All three intervals have the same level
of accuracy. There are more accurate bootstrap confidence intervals but they
are more complicated and we will not discuss them here.
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8.5 Example (The Plasma Cholesterol Data). Let us return to the cholesterol
data. Suppose we are interested in the difference of the medians. Pseudocode
for the bootstrap analysis is as follows:

x1 <- first sample

x2 <- second sample

n1 <- length(x1)

n2 <- length(x2)

th.hat <- median(x2) - median(x1)

B <- 1000

Tboot <- vector of length B

for(i in 1:B){

xx1 <- sample of size n1 with replacement from x1

xx2 <- sample of size n2 with replacement from x2

Tboot[i] <- median(xx2) - median(xx1)

}

se <- sqrt(variance(Tboot))

Normal <- (th.hat - 2*se, th.hat + 2*se)

percentile <- (quantile(Tboot,.025), quantile(Tboot,.975))

pivotal <- ( 2*th.hat-quantile(Tboot,.975),

2*th.hat-quantile(Tboot,.025) )

The point estimate is 18.5, the bootstrap standard error is 7.42 and the re-
sulting approximate 95 percent confidence intervals are as follows:

Method 95% Interval
Normal (3.7, 33.3)
Pivotal (5.0, 34.0)
Percentile (5.0, 33.3)

Since these intervals exclude 0, it appears that the second group has higher
cholesterol although there is considerable uncertainty about how much higher
as reflected in the width of the intervals. �

The next two examples are based on small sample sizes. In practice, sta-
tistical methods based on very small sample sizes might not be reliable. We
include the examples for their pedagogical value but we do want to sound a
note of caution about interpreting the results with some skepticism.

8.6 Example. Here is an example that was one of the first used to illustrate
the bootstrap by Bradley Efron, the inventor of the bootstrap. The data are
LSAT scores (for entrance to law school) and GPA.
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LSAT 576 635 558 578 666 580 555 661

651 605 653 575 545 572 594

GPA 3.39 3.30 2.81 3.03 3.44 3.07 3.00 3.43

3.36 3.13 3.12 2.74 2.76 2.88 3.96

Each data point is of the form Xi = (Yi, Zi) where Yi = LSATi and Zi =
GPAi. The law school is interested in the correlation

θ =
∫ ∫

(y − µY )(z − µZ)dF (y, z)√∫
(y − µY )2dF (y)

∫
(z − µZ)2dF (z)

.

The plug-in estimate is the sample correlation

θ̂ =
∑
i(Yi − Y )(Zi − Z)√∑

i(Yi − Y )2
∑
i(Zi − Z)2

.

The estimated correlation is θ̂ = .776. The bootstrap based on B = 1000
gives ŝe = .137. Figure 8.1 shows the data and a histogram of the bootstrap
replications θ̂∗

1 , . . . , θ̂
∗
B . This histogram is an approximation to the sampling

distribution of θ̂. The Normal-based 95 percent confidence interval is .78 ±
2ŝe = (.51, 1.00) while the percentile interval is (.46,.96). In large samples, the
two methods will show closer agreement. �

8.7 Example. This example is from Efron and Tibshirani (1993). When drug
companies introduce new medications, they are sometimes required to show
bioequivalence. This means that the new drug is not substantially different
than the current treatment. Here are data on eight subjects who used medi-
cal patches to infuse a hormone into the blood. Each subject received three
treatments: placebo, old-patch, new-patch.

subject placebo old new old − placebo new − old
1 9243 17649 16449 8406 -1200
2 9671 12013 14614 2342 2601
3 11792 19979 17274 8187 -2705
4 13357 21816 23798 8459 1982
5 9055 13850 12560 4795 -1290
6 6290 9806 10157 3516 351
7 12412 17208 16570 4796 -638
8 18806 29044 26325 10238 -2719
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FIGURE 8.1. Law school data. The top panel shows the raw data. The bottom panel
is a histogram of the correlations computed from each bootstrap sample.

Let Z = old − placebo and Y = new − old. The Food and Drug Adminis-
tration (FDA) requirement for bioequivalence is that |θ| ≤ .20 where

θ =
EF (Y )
EF (Z)

.

The plug-in estimate of θ is

θ̂ =
Y

Z
=
−452.3
6342

= −0.0713.

The bootstrap standard error is ŝe = 0.105. To answer the bioequivalence
question, we compute a confidence interval. From B = 1000 bootstrap repli-
cations we get the 95 percent interval (-0.24,0.15). This is not quite contained
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in (-0.20,0.20) so at the 95 percent level we have not demonstrated bioequiv-
alence. Figure 8.2 shows the histogram of the bootstrap values. �
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0
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60
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Bootstrap Samples

FIGURE 8.2. Patch data.

8.4 Bibliographic Remarks

The bootstrap was invented by Efron (1979). There are several books on these
topics including Efron and Tibshirani (1993), Davison and Hinkley (1997),
Hall (1992) and Shao and Tu (1995). Also, see section 3.6 of van der Vaart
and Wellner (1996).

8.5 Appendix

8.5.1 The Jackknife

There is another method for computing standard errors called the jackknife,
due to Quenouille (1949). It is less computationally expensive than the boot-
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strap but is less general. Let Tn = T (X1, . . . , Xn) be a statistic and T(−i) de-
note the statistic with the ith observation removed. Let Tn = n−1

∑n
i=1 T(−i).

The jackknife estimate of var(Tn) is

vjack =
n− 1
n

n∑
i=1

(T(−i) − Tn)2

and the jackknife estimate of the standard error is ŝejack = √vjack. Under
suitable conditions on T , it can be shown that vjack consistently estimates

var(Tn) in the sense that vjack/var(Tn) P−→ 1. However, unlike the bootstrap,
the jackknife does not produce consistent estimates of the standard error of
sample quantiles.

8.5.2 Justification For The Percentile Interval

Suppose there exists a monotone transformation U = m(T ) such that U ∼
N(φ, c2) where φ = m(θ). We do not suppose we know the transformation,
only that one exists. Let U∗

b = m(θ∗
n,b). Let u∗

β be the β sample quantile of
the U∗

b ’s. Since a monotone transformation preserves quantiles, we have that
u∗
α/2 = m(θ∗

α/2). Also, since U ∼ N(φ, c2), the α/2 quantile of U is φ− zα/2c.
Hence u∗

α/2 = φ− zα/2c. Similarly, u∗
1−α/2 = φ+ zα/2c. Therefore,

P(θ∗
α/2 ≤ θ ≤ θ∗

1−α/2) = P(m(θ∗
α/2) ≤ m(θ) ≤ m(θ∗

1−α/2))

= P(u∗
α/2 ≤ φ ≤ u∗

1−α/2)

= P(U − czα/2 ≤ φ ≤ U + czα/2)

= P(−zα/2 ≤
U − φ
c
≤ zα/2)

= 1− α.

An exact normalizing transformation will rarely exist but there may exist
approximate normalizing transformations.

8.6 Exercises

1. Consider the data in Example 8.6. Find the plug-in estimate of the
correlation coefficient. Estimate the standard error using the bootstrap.
Find a 95 percent confidence interval using the Normal, pivotal, and
percentile methods.
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2. (Computer Experiment.) Conduct a simulation to compare the various
bootstrap confidence interval methods. Let n = 50 and let T (F ) =∫

(x − µ)3dF (x)/σ3 be the skewness. Draw Y1, . . . , Yn ∼ N(0, 1) and
set Xi = eYi , i = 1, . . . , n. Construct the three types of bootstrap 95
percent intervals for T (F ) from the data X1, . . . , Xn. Repeat this whole
thing many times and estimate the true coverage of the three intervals.

3. Let
X1, . . . , Xn ∼ t3

where n = 25. Let θ = T (F ) = (q.75 − q.25)/1.34 where qp denotes the
pth quantile. Do a simulation to compare the coverage and length of the
following confidence intervals for θ: (i) Normal interval with standard
error from the bootstrap, (ii) bootstrap percentile interval, and (iii)
pivotal bootstrap interval.

4. Let X1, . . . , Xn be distinct observations (no ties). Show that there are(
2n− 1
n

)
distinct bootstrap samples.

Hint: Imagine putting n balls into n buckets.

5. LetX1, . . . , Xn be distinct observations (no ties). LetX∗
1 , . . . , X

∗
n denote

a bootstrap sample and letX
∗
n = n−1

∑n
i=1X

∗
i . Find: E(X

∗
n|X1, . . . , Xn),

V(X
∗
n|X1, . . . , Xn), E(X

∗
n) and V(X

∗
n).

6. (Computer Experiment.) Let X1, ..., Xn Normal(µ, 1). Let θ = eµ and let
θ̂ = eX . Create a data set (using µ = 5) consisting of n=100 observa-
tions.

(a) Use the bootstrap to get the se and 95 percent confidence interval
for θ.

(b) Plot a histogram of the bootstrap replications. This is an estimate
of the distribution of θ̂. Compare this to the true sampling distribution
of θ̂.

7. Let X1, ..., Xn ∼ Uniform(0, θ). Let θ̂ = Xmax = max{X1, ..., Xn}. Gen-
erate a data set of size 50 with θ = 1.

(a) Find the distribution of θ̂. Compare the true distribution of θ̂ to the
histograms from the bootstrap.
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(b) This is a case where the bootstrap does very poorly. In fact, we can
prove that this is the case. Show that P (θ̂ = θ̂) = 0 and yet P (θ̂∗ =
θ̂) ≈ .632. Hint: show that, P (θ̂∗ = θ̂) = 1− (1− (1/n))n then take the
limit as n gets large.

8. Let Tn = X
2

n, µ = E(X1), αk =
∫
|x−µ|kdF (x) and α̂k = n−1

∑n
i=1 |Xi−

Xn|k. Show that

vboot =
4X

2

nα̂2

n
+

4Xnα̂3

n2
+
α̂4

n3
.
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Parametric Inference

We now turn our attention to parametric models, that is, models of the form

F =
{
f(x; θ) : θ ∈ Θ

}
(9.1)

where the Θ ⊂ Rk is the parameter space and θ = (θ1, . . . , θk) is the param-
eter. The problem of inference then reduces to the problem of estimating the
parameter θ.

Students learning statistics often ask: how would we ever know that the
distribution that generated the data is in some parametric model? This is
an excellent question. Indeed, we would rarely have such knowledge which
is why nonparametric methods are preferable. Still, studying methods for
parametric models is useful for two reasons. First, there are some cases where
background knowledge suggests that a parametric model provides a reasonable
approximation. For example, counts of traffic accidents are known from prior
experience to follow approximately a Poisson model. Second, the inferential
concepts for parametric models provide background for understanding certain
nonparametric methods.

We begin with a brief discussion about parameters of interest and nuisance
parameters in the next section, then we will discuss two methods for estimat-
ing θ, the method of moments and the method of maximum likelihood.
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9.1 Parameter of Interest

Often, we are only interested in some function T (θ). For example, if X ∼
N(µ, σ2) then the parameter is θ = (µ, σ). If our goal is to estimate µ then
µ = T (θ) is called the parameter of interest and σ is called a nuisance
parameter. The parameter of interest might be a complicated function of θ
as in the following example.

9.1 Example. Let X1, . . . , Xn ∼ Normal(µ, σ2). The parameter is θ = (µ, σ)
and the parameter space is Θ = {(µ, σ) : µ ∈ R, σ > 0}. Suppose that Xi is
the outcome of a blood test and suppose we are interested in τ , the fraction
of the population whose test score is larger than 1. Let Z denote a standard
Normal random variable. Then

τ = P(X > 1) = 1− P(X < 1) = 1− P

(
X − µ
σ

<
1− µ
σ

)
= 1− P

(
Z <

1− µ
σ

)
= 1− Φ

(
1− µ
σ

)
.

The parameter of interest is τ = T (µ, σ) = 1− Φ((1− µ)/σ). �

9.2 Example. Recall that X has a Gamma(α, β) distribution if

f(x; α, β) =
1

βαΓ(α)
xα−1e−x/β , x > 0

where α, β > 0 and

Γ(α) =
∫ ∞

0

yα−1e−ydy

is the Gamma function. The parameter is θ = (α, β). The Gamma distri-
bution is sometimes used to model lifetimes of people, animals, and elec-
tronic equipment. Suppose we want to estimate the mean lifetime. Then
T (α, β) = Eθ(X1) = αβ. �

9.2 The Method of Moments

The first method for generating parametric estimators that we will study
is called the method of moments. We will see that these estimators are not
optimal but they are often easy to compute. They are are also useful as starting
values for other methods that require iterative numerical routines.
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Suppose that the parameter θ = (θ1, . . . , θk) has k components. For 1 ≤
j ≤ k, define the jth moment

αj ≡ αj(θ) = Eθ(Xj) =
∫
xjdFθ(x) (9.2)

and the jth sample moment

α̂j =
1
n

n∑
i=1

Xj
i . (9.3)

9.3 Definition. The method of moments estimator θ̂n is defined to be
the value of θ such that

α1(θ̂n) = α̂1

α2(θ̂n) = α̂2

...
...

...

αk(θ̂n) = α̂k. (9.4)

Formula (9.4) defines a system of k equations with k unknowns.

9.4 Example. Let X1, . . . , Xn ∼ Bernoulli(p). Then α1 = Ep(X) = p and
α̂1 = n−1

∑n
i=1Xi. By equating these we get the estimator

p̂n =
1
n

n∑
i=1

Xi. �

9.5 Example. Let X1, . . . , Xn ∼ Normal(µ, σ2). Then, α1 = Eθ(X1) = µ

and α2 = Eθ(X2
1 ) = Vθ(X1) + (Eθ(X1))2 = σ2 + µ2. We need to solve the

equations1

µ̂ =
1
n

n∑
i=1

Xi

σ̂2 + µ̂2 =
1
n

n∑
i=1

X2
i .

This is a system of 2 equations with 2 unknowns. The solution is

µ̂ = Xn

1Recall that V(X) = E(X2) − (E(X))2. Hence, E(X2) = V(X) + (E(X))2.
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σ̂2 =
1
n

n∑
i=1

(Xi −Xn)2. �

9.6 Theorem. Let θ̂n denote the method of moments estimator. Under appro-
priate conditions on the model, the following statements hold:

1. The estimate θ̂n exists with probability tending to 1.

2. The estimate is consistent: θ̂n
P−→ θ.

3. The estimate is asymptotically Normal:
√
n(θ̂n − θ)� N(0,Σ)

where
Σ = gEθ(Y Y T )gT ,

Y = (X,X2, . . . , Xk)T , g = (g1, . . . , gk) and gj = ∂α−1
j (θ)/∂θ.

The last statement in the theorem above can be used to find standard errors
and confidence intervals. However, there is an easier way: the bootstrap. We
defer discussion of this until the end of the chapter.

9.3 Maximum Likelihood

The most common method for estimating parameters in a parametric model is
the maximum likelihood method. Let X1, . . ., Xn be iid with pdf f(x; θ).

9.7 Definition. The likelihood function is defined by

Ln(θ) =
n∏
i=1

f(Xi; θ). (9.5)

The log-likelihood function is defined by �n(θ) = logLn(θ).

The likelihood function is just the joint density of the data, except that we
treat it is a function of the parameter θ. Thus, Ln : Θ → [0,∞). The
likelihood function is not a density function: in general, it is not true that
Ln(θ) integrates to 1 (with respect to θ).

9.8 Definition. The maximum likelihood estimator mle, denoted by
θ̂n, is the value of θ that maximizes Ln(θ).
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0.0 0.2 0.4 0.6 0.8 1.0
p

p̂n

FIGURE 9.1. Likelihood function for Bernoulli with n = 20 and
∑n

i=1Xi = 12. The
mle is p̂n = 12/20 = 0.6.

The maximum of �n(θ) occurs at the same place as the maximum of Ln(θ),
so maximizing the log-likelihood leads to the same answer as maximizing the
likelihood. Often, it is easier to work with the log-likelihood.

9.9 Remark. If we multiply Ln(θ) by any positive constant c (not depending
on θ) then this will not change the mle. Hence, we shall often drop constants
in the likelihood function.

9.10 Example. Suppose thatX1, . . . , Xn ∼ Bernoulli(p). The probability func-
tion is f(x; p) = px(1−p)1−x for x = 0, 1. The unknown parameter is p. Then,

Ln(p) =
n∏
i=1

f(Xi; p) =
n∏
i=1

pXi(1− p)1−Xi = pS(1− p)n−S

where S =
∑
iXi. Hence,

�n(p) = S log p+ (n− S) log(1− p).

Take the derivative of �n(p), set it equal to 0 to find that the mle is p̂n = S/n.
See Figure 9.1. �

9.11 Example. Let X1, . . . , Xn ∼ N(µ, σ2). The parameter is θ = (µ, σ) and
the likelihood function (ignoring some constants) is:

Ln(µ, σ) =
∏
i

1
σ

exp
{
− 1

2σ2
(Xi − µ)2

}

= σ−n exp

{
− 1

2σ2

∑
i

(Xi − µ)2
}
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= σ−n exp
{
−nS

2

2σ2

}
exp

{
−n(X − µ)2

2σ2

}
where X = n−1

∑
iXi is the sample mean and S2 = n−1

∑
i(Xi −X)2. The

last equality above follows from the fact that
∑
i(Xi−µ)2 = nS2 +n(X−µ)2

which can be verified by writing
∑
i(Xi − µ)2 =

∑
i(Xi −X +X − µ)2 and

then expanding the square. The log-likelihood is

�(µ, σ) = −n log σ − nS2

2σ2
− n(X − µ)2

2σ2
.

Solving the equations

∂�(µ, σ)
∂µ

= 0 and
∂�(µ, σ)
∂σ

= 0,

we conclude that µ̂ = X and σ̂ = S. It can be verified that these are indeed
global maxima of the likelihood. �

9.12 Example (A Hard Example). Here is an example that many people find
confusing. Let X1, . . . , Xn ∼ Unif(0, θ). Recall that

f(x; θ) =
{

1/θ 0 ≤ x ≤ θ
0 otherwise.

Consider a fixed value of θ. Suppose θ < Xi for some i. Then, f(Xi; θ) = 0
and hence Ln(θ) =

∏
i f(Xi; θ) = 0. It follows that Ln(θ) = 0 if any Xi > θ.

Therefore, Ln(θ) = 0 if θ < X(n) where X(n) = max{X1, . . . , Xn}. Now
consider any θ ≥ X(n). For every Xi we then have that f(Xi; θ) = 1/θ so that
Ln(θ) =

∏
i f(Xi; θ) = θ−n. In conclusion,

Ln(θ) =
{ (

1
θ

)n
θ ≥ X(n)

0 θ < X(n).

See Figure 9.2. Now Ln(θ) is strictly decreasing over the interval [X(n),∞).
Hence, θ̂n = X(n). �

The maximum likelihood estimators for the multivariate Normal and the
multinomial can be found in Theorems 14.5 and 14.3.

9.4 Properties of Maximum Likelihood Estimators

Under certain conditions on the model, the maximum likelihood estimator θ̂n
possesses many properties that make it an appealing choice of estimator. The
main properties of the mle are:
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FIGURE 9.2. Likelihood function for Uniform (0, θ). The vertical lines show the
observed data. The first three plots show f(x; θ) for three different values of θ.
When θ < X(n) = max{X1, . . . , Xn}, as in the first plot, f(X(n); θ) = 0 and
hence Ln(θ) =

∏n
i=1 f(Xi; θ) = 0. Otherwise f(Xi; θ) = 1/θ for each i and hence

Ln(θ) =
∏n

i=1 f(Xi; θ) = (1/θ)n. The last plot shows the likelihood function.
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1. The mle is consistent: θ̂n
P−→ θ	 where θ	 denotes the true value of the

parameter θ;

2. The mle is equivariant: if θ̂n is the mle of θ then g(θ̂n) is the mle of
g(θ);

3. The mle is asymptotically Normal: (θ̂ − θ	)/ŝe� N(0, 1); also, the
estimated standard error ŝe can often be computed analytically;

4. The mle is asymptotically optimal or efficient: roughly, this means
that among all well-behaved estimators, the mle has the smallest vari-
ance, at least for large samples;

5. The mle is approximately the Bayes estimator. (This point will be ex-
plained later.)

We will spend some time explaining what these properties mean and why
they are good things. In sufficiently complicated problems, these properties
will no longer hold and the mle will no longer be a good estimator. For now
we focus on the simpler situations where the mle works well. The properties
we discuss only hold if the model satisfies certain regularity conditions.
These are essentially smoothness conditions on f(x; θ). Unless otherwise
stated, we shall tacitly assume that these conditions hold.

9.5 Consistency of Maximum Likelihood Estimators

Consistency means that the mle converges in probability to the true value.
To proceed, we need a definition. If f and g are pdf’s, define the Kullback-
Leibler distance 2 between f and g to be

D(f, g) =
∫
f(x) log

(
f(x)
g(x)

)
dx. (9.6)

It can be shown that D(f, g) ≥ 0 and D(f, f) = 0. For any θ, ψ ∈ Θ write
D(θ, ψ) to mean D(f(x; θ), f(x; ψ)).

We will say that the model F is identifiable if θ �= ψ implies that D(θ, ψ) >
0. This means that different values of the parameter correspond to different
distributions. We will assume from now on the the model is identifiable.

2This is not a distance in the formal sense because D(f, g) is not symmetric.
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Let θ	 denote the true value of θ. Maximizing �n(θ) is equivalent to maxi-
mizing

Mn(θ) =
1
n

∑
i

log
f(Xi; θ)
f(Xi; θ	)

.

This follows since Mn(θ) = n−1(�n(θ)−�n(θ	)) and �n(θ	) is a constant (with
respect to θ). By the law of large numbers, Mn(θ) converges to

Eθ�

(
log

f(Xi; θ)
f(Xi; θ	)

)
=

∫
log

(
f(x; θ)
f(x; θ	)

)
f(x; θ	)dx

= −
∫

log
(
f(x; θ	)
f(x; θ)

)
f(x; θ	)dx

= −D(θ	, θ).

Hence, Mn(θ) ≈ −D(θ	, θ) which is maximized at θ	 since −D(θ	, θ	) = 0
and −D(θ	, θ) < 0 for θ �= θ	. Therefore, we expect that the maximizer will
tend to θ	. To prove this formally, we need more than Mn(θ)

P−→ −D(θ	, θ).
We need this convergence to be uniform over θ. We also have to make sure
that the function D(θ	, θ) is well behaved. Here are the formal details.

9.13 Theorem. Let θ	 denote the true value of θ. Define

Mn(θ) =
1
n

∑
i

log
f(Xi; θ)
f(Xi; θ	)

and M(θ) = −D(θ	, θ). Suppose that

sup
θ∈Θ
|Mn(θ)−M(θ)| P−→ 0 (9.7)

and that, for every ε > 0,

sup
θ:|θ−θ�|≥ε

M(θ) < M(θ	). (9.8)

Let θ̂n denote the mle. Then θ̂n
P−→ θ	.

The proof is in the appendix.

9.6 Equivariance of the mle

9.14 Theorem. Let τ = g(θ) be a function of θ. Let θ̂n be the mle of θ. Then
τ̂n = g(θ̂n) is the mle of τ .
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Proof. Let h = g−1 denote the inverse of g. Then θ̂n = h(τ̂n). For any τ ,
L(τ) =

∏
i f(xi;h(τ)) =

∏
i f(xi; θ) = L(θ) where θ = h(τ). Hence, for any τ ,

Ln(τ) = L(θ) ≤ L(θ̂) = Ln(τ̂). �

9.15 Example. Let X1, . . . , Xn ∼ N(θ, 1). The mlefor θ is θ̂n = Xn. Let
τ = eθ. Then, the mle for τ is τ̂ = eθ̂ = eX . �

9.7 Asymptotic Normality

It turns out that the distribution of θ̂n is approximately Normal and we can
compute its approximate variance analytically. To explore this, we first need
a few definitions.

9.16 Definition. The score function is defined to be

s(X; θ) =
∂ log f(X; θ)

∂θ
. (9.9)

The Fisher information is defined to be

In(θ) = Vθ

(
n∑
i=1

s(Xi; θ)

)

=
n∑
i=1

Vθ (s(Xi; θ)) . (9.10)

For n = 1 we will sometimes write I(θ) instead of I1(θ). It can be shown
that Eθ(s(X; θ)) = 0. It then follows that Vθ(s(X; θ)) = Eθ(s2(X; θ)). In fact,
a further simplification of In(θ) is given in the next result.

9.17 Theorem. In(θ) = nI(θ). Also,

I(θ) = −Eθ

(
∂2 log f(X; θ)

∂θ2

)

= −
∫ (

∂2 log f(x; θ)
∂θ2

)
f(x; θ)dx. (9.11)
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9.18 Theorem (Asymptotic Normality of the mle). Let se =
√

V(θ̂n).
Under appropriate regularity conditions, the following hold:

1. se ≈
√

1/In(θ) and
(θ̂n − θ)

se
� N(0, 1). (9.12)

2. Let ŝe =
√

1/In(θ̂n). Then,

(θ̂n − θ)
ŝe

� N(0, 1). (9.13)

The proof is in the appendix. The first statement says that θ̂n ≈ N(θ, se)
where the approximate standard error of θ̂n is se =

√
1/In(θ). The second

statement says that this is still true even if we replace the standard error by

its estimated standard error ŝe =
√

1/In(θ̂n).
Informally, the theorem says that the distribution of the mle can be ap-

proximated with N(θ, ŝe2). From this fact we can construct an (asymptotic)
confidence interval.

9.19 Theorem. Let

Cn =
(
θ̂n − zα/2 ŝe, θ̂n + zα/2 ŝe

)
.

Then, Pθ(θ ∈ Cn)→ 1− α as n→∞.

Proof. Let Z denote a standard normal random variable. Then,

Pθ(θ ∈ Cn) = Pθ

(
θ̂n − zα/2 ŝe ≤ θ ≤ θ̂n + zα/2 ŝe

)
= Pθ

(
−zα/2 ≤

θ̂n − θ
ŝe

≤ zα/2

)
→ P(−zα/2 < Z < zα/2) = 1− α. �

For α = .05, zα/2 = 1.96 ≈ 2, so:

θ̂n ± 2 ŝe (9.14)

is an approximate 95 percent confidence interval.
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When you read an opinion poll in the newspaper, you often see a statement
like: the poll is accurate to within one point, 95 percent of the time. They are
simply giving a 95 percent confidence interval of the form θ̂n ± 2 ŝe.

9.20 Example. Let X1, . . . , Xn ∼ Bernoulli(p). The mle is p̂n =
∑
iXi/n

and f(x; p) = px(1− p)1−x, log f(x; p) = x log p+ (1− x) log(1− p),

s(X; p) =
X

p
− 1−X

1− p ,

and
−s′(X; p) =

X

p2
+

1−X
(1− p)2 .

Thus,

I(p) = Ep(−s′(X; p)) =
p

p2
+

(1− p)
(1− p)2 =

1
p(1− p) .

Hence,

ŝe =
1√

In(p̂n)
=

1√
nI(p̂n)

=
{
p̂(1− p̂)

n

}1/2

.

An approximate 95 percent confidence interval is

p̂n ± 2
{
p̂n(1− p̂n)

n

}1/2

. �

9.21 Example. Let X1, . . . , Xn ∼ N(θ, σ2) where σ2 is known. The score
function is s(X; θ) = (X − θ)/σ2 and s′(X; θ) = −1/σ2 so that I1(θ) = 1/σ2.
The mle is θ̂n = Xn. According to Theorem 9.18, Xn ≈ N(θ, σ2/n). In this
case, the Normal approximation is actually exact. �

9.22 Example. Let X1, . . . , Xn ∼ Poisson(λ). Then λ̂n = Xn and some cal-
culations show that I1(λ) = 1/λ, so

ŝe =
1√

nI(λ̂n)
=

√
λ̂n
n
.

Therefore, an approximate 1−α confidence interval for λ is λ̂n±zα/2
√
λ̂n/n.

�

9.8 Optimality

Suppose that X1, . . . , Xn ∼ N(θ, σ2). The mle is θ̂n = Xn. Another reason-
able estimator of θ is the sample median θ̃n. The mle satisfies

√
n(θ̂n − θ)� N(0, σ2).
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It can be proved that the median satisfies

√
n(θ̃n − θ)� N

(
0, σ2π

2

)
.

This means that the median converges to the right value but has a larger
variance than the mle.

More generally, consider two estimators Tn and Un and suppose that

√
n(Tn − θ)� N(0, t2),

and that √
n(Un − θ)� N(0, u2).

We define the asymptotic relative efficiency of U to T by are(U, T ) = t2/u2.
In the Normal example, are(θ̃n, θ̂n) = 2/π = .63. The interpretation is that
if you use the median, you are effectively using only a fraction of the data.

9.23 Theorem. If θ̂n is the mle and θ̃n is any other estimator then 3

are(θ̃n, θ̂n) ≤ 1.

Thus, the mle has the smallest (asymptotic) variance and we say that the
mle is efficient or asymptotically optimal.

This result is predicated upon the assumed model being correct. If the model
is wrong, the mle may no longer be optimal. We will discuss optimality in
more generality when we discuss decision theory in Chapter 12.

9.9 The Delta Method

Let τ = g(θ) where g is a smooth function. The maximum likelihood esti-
mator of τ is τ̂ = g(θ̂). Now we address the following question: what is the
distribution of τ̂?

9.24 Theorem (The Delta Method). If τ = g(θ) where g is differentiable
and g′(θ) �= 0 then

(τ̂n − τ)
ŝe(τ̂)

� N(0, 1) (9.15)

3The result is actually more subtle than this but the details are too complicated to consider
here.
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where τ̂n = g(θ̂n) and
ŝe(τ̂n) = |g′(θ̂)| ŝe(θ̂n) (9.16)

Hence, if

Cn =
(
τ̂n − zα/2 ŝe(τ̂n), τ̂n + zα/2 ŝe(τ̂n)

)
(9.17)

then Pθ(τ ∈ Cn)→ 1− α as n→∞.

9.25 Example. Let X1, . . . , Xn ∼ Bernoulli(p) and let ψ = g(p) = log(p/(1−
p)). The Fisher information function is I(p) = 1/(p(1 − p)) so the estimated
standard error of the mle p̂n is

ŝe =

√
p̂n(1− p̂n)

n
.

The mle of ψ is ψ̂ = log p̂/(1 − p̂). Since, g′(p) = 1/(p(1 − p)), according to
the delta method

ŝe(ψ̂n) = |g′(p̂n)|ŝe(p̂n) =
1√

np̂n(1− p̂n)
.

An approximate 95 percent confidence interval is

ψ̂n ±
2√

np̂n(1− p̂n)
. �

9.26 Example. Let X1, . . . , Xn ∼ N(µ, σ2). Suppose that µ is known, σ is
unknown and that we want to estimate ψ = log σ. The log-likelihood is �(σ) =
−n log σ− 1

2σ2

∑
i(xi−µ)2. Differentiate and set equal to 0 and conclude that

σ̂n =

√∑
i(Xi − µ)2

n
.

To get the standard error we need the Fisher information. First,

log f(X;σ) = − log σ − (X − µ)2

2σ2

with second derivative
1
σ2
− 3(X − µ)2

σ4
,

and hence

I(σ) = − 1
σ2

+
3σ2

σ4
=

2
σ2
.
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Therefore, ŝe = σ̂n/
√

2n. Let ψ = g(σ) = log σ. Then, ψ̂n = log σ̂n. Since
g′ = 1/σ,

ŝe(ψ̂n) =
1
σ̂n

σ̂n√
2n

=
1√
2n
,

and an approximate 95 percent confidence interval is ψ̂n ± 2/
√

2n. �

9.10 Multiparameter Models

These ideas can directly be extended to models with several parameters. Let
θ = (θ1, . . . , θk) and let θ̂ = (θ̂1, . . . , θ̂k) be the mle. Let �n =

∑n
i=1 log f(Xi; θ),

Hjj =
∂2�n
∂θ2j

and Hjk =
∂2�n
∂θj∂θk

.

Define the Fisher Information Matrix by

In(θ) = −


Eθ(H11) Eθ(H12) · · · Eθ(H1k)
Eθ(H21) Eθ(H22) · · · Eθ(H2k)

...
...

...
...

Eθ(Hk1) Eθ(Hk2) · · · Eθ(Hkk)

 . (9.18)

Let Jn(θ) = I−1
n (θ) be the inverse of In.

9.27 Theorem. Under appropriate regularity conditions,

(θ̂ − θ) ≈ N(0, Jn).

Also, if θ̂j is the jth component of θ̂, then

(θ̂j − θj)
ŝej

� N(0, 1) (9.19)

where ŝe2
j = Jn(j, j) is the jth diagonal element of Jn. The approximate co-

variance of θ̂j and θ̂k is Cov(θ̂j , θ̂k) ≈ Jn(j, k).

There is also a multiparameter delta method. Let τ = g(θ1, . . . , θk) be a
function and let

∇g =


∂g
∂θ1
...
∂g
∂θk


be the gradient of g.



134 9. Parametric Inference

9.28 Theorem (Multiparameter delta method). Suppose that ∇g evaluated at
θ̂ is not 0. Let τ̂ = g(θ̂). Then

(τ̂ − τ)
ŝe(τ̂)

� N(0, 1)

where
ŝe(τ̂) =

√
(∇̂g)T Ĵn(∇̂g), (9.20)

Ĵn = Jn(θ̂n) and ∇̂g is ∇g evaluated at θ = θ̂.

9.29 Example. Let X1, . . . , Xn ∼ N(µ, σ2). Let τ = g(µ, σ) = σ/µ. In Excer-
cise 8 you will show that

In(µ, σ) =
[

n
σ2 0
0 2n

σ2

]
.

Hence,

Jn = I−1
n (µ, σ) =

1
n

[
σ2 0
0 σ2

2

]
.

The gradient of g is

∇g =

(
− σ
µ2

1
µ

)
.

Thus,

ŝe(τ̂) =
√

(∇̂g)T Ĵn(∇̂g) =
1√
n

√
1
µ̂4

+
σ̂2

2µ̂2
. �

9.11 The Parametric Bootstrap

For parametric models, standard errors and confidence intervals may also be
estimated using the bootstrap. There is only one change. In the nonparametric
bootstrap, we sampled X∗

1 , . . . , X
∗
n from the empirical distribution F̂n. In the

parametric bootstrap we sample instead from f(x; θ̂n). Here, θ̂n could be the
mle or the method of moments estimator.

9.30 Example. Consider example 9.29. To get the bootstrap standard er-
ror, simulate X1, . . . , X

∗
n ∼ N(µ̂, σ̂2), compute µ̂∗ = n−1

∑
iX

∗
i and σ̂2∗ =

n−1
∑
i(X

∗
i − µ̂∗)2. Then compute τ̂∗ = g(µ̂∗, σ̂∗) = σ̂∗/µ̂∗. Repeating this B

times yields bootstrap replications

τ̂∗
1 , . . . , τ̂

∗
B
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and the estimated standard error is

ŝeboot =

√∑B
b=1(τ̂

∗
b − τ̂)2
B

. �

The bootstrap is much easier than the delta method. On the other hand,
the delta method has the advantage that it gives a closed form expression for
the standard error.

9.12 Checking Assumptions

If we assume the data come from a parametric model, then it is a good idea to
check that assumption. One possibility is to check the assumptions informally
by inspecting plots of the data. For example, if a histogram of the data looks
very bimodal, then the assumption of Normality might be questionable. A
formal way to test a parametric model is to use a goodness-of-fit test. See
Section 10.8.

9.13 Appendix

9.13.1 Proofs

Proof of Theorem 9.13. Since θ̂n maximizes Mn(θ), we have Mn(θ̂n) ≥
Mn(θ	). Hence,

M(θ	)−M(θ̂n) = Mn(θ	)−M(θ̂n) +M(θ	)−Mn(θ	)

≤ Mn(θ̂n)−M(θ̂n) +M(θ	)−Mn(θ	)

≤ sup
θ
|Mn(θ)−M(θ)|+M(θ	)−Mn(θ	)

P−→ 0

where the last line follows from (9.7). It follows that, for any δ > 0,

P

(
M(θ̂n) < M(θ	)− δ

)
→ 0.

Pick any ε > 0. By (9.8), there exists δ > 0 such that |θ− θ	| ≥ ε implies that
M(θ) < M(θ	)− δ. Hence,

P(|θ̂n − θ	| > ε) ≤ P

(
M(θ̂n) < M(θ	)− δ

)
→ 0. �

Next we want to prove Theorem 9.18. First we need a lemma.
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9.31 Lemma. The score function satisfies

Eθ [s(X; θ)] = 0.

Proof. Note that 1 =
∫
f(x; θ)dx. Differentiate both sides of this equation

to conclude that

0 =
∂

∂θ

∫
f(x; θ)dx =

∫
∂

∂θ
f(x; θ)dx

=
∫ ∂f(x;θ)

∂θ

f(x; θ)
f(x; θ)dx =

∫
∂ log f(x; θ)

∂θ
f(x; θ)dx

=
∫
s(x; θ)f(x; θ)dx = Eθs(X; θ). �

Proof of Theorem 9.18. Let �(θ) = logL(θ). Then,

0 = �′(θ̂) ≈ �′(θ) + (θ̂ − θ)�′′(θ).

Rearrange the above equation to get θ̂− θ = −�′(θ)/�′′(θ) or, in other words,

√
n(θ̂ − θ) =

1√
n
�′(θ)

− 1
n�

′′(θ)
≡ TOP

BOTTOM
.

Let Yi = ∂ log f(Xi; θ)/∂θ. Recall that E(Yi) = 0 from the previous lemma
and also V(Yi) = I(θ). Hence,

TOP = n−1/2
∑
i

Yi =
√
nY =

√
n(Y − 0)�W ∼ N(0, I(θ))

by the central limit theorem. Let Ai = −∂2 log f(Xi; θ)/∂θ2. Then E(Ai) =
I(θ) and

BOTTOM = A
P−→ I(θ)

by the law of large numbers. Apply Theorem 5.5 part (e), to conclude that

√
n(θ̂ − θ)� W

I(θ)
d= N

(
0,

1
I(θ)

)
.

Assuming that I(θ) is a continuous function of θ, it follows that I(θ̂n)
P−→ I(θ).

Now

θ̂n − θ
ŝe

=
√
nI1/2(θ̂n)(θ̂n − θ)

=
{√

nI1/2(θ)(θ̂n − θ)
}√

I(θ̂n)
I(θ)

.
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The first term tends in distribution to N(0,1). The second term tends in
probability to 1. The result follows from Theorem 5.5 part (e). �

Outline of Proof of Theorem 9.24. Write

τ̂n = g(θ̂n) ≈ g(θ) + (θ̂n − θ)g′(θ) = τ + (θ̂n − θ)g′(θ).

Thus,
√
n(τ̂n − τ) ≈

√
n(θ̂n − θ)g′(θ),

and hence √
nI(θ)(τ̂n − τ)

g′(θ)
≈

√
nI(θ)(θ̂n − θ).

Theorem 9.18 tells us that the right-hand side tends in distribution to a N(0,1).
Hence, √

nI(θ)(τ̂n − τ)
g′(θ)

� N(0, 1)

or, in other words,
τ̂n ≈ N

(
τ, se2(τ̂n)

)
,

where

se2(τ̂n) =
(g′(θ))2

nI(θ)
.

The result remains true if we substitute θ̂n for θ by Theorem 5.5 part (e). �

9.13.2 Sufficiency

A statistic is a function T (Xn) of the data. A sufficient statistic is a statistic
that contains all the information in the data. To make this more formal, we
need some definitions.

9.32 Definition. Write xn ↔ yn if f(xn; θ) = c f(yn; θ) for some constant
c that might depend on xn and yn but not θ. A statistic T (xn) is
sufficient if T (xn)↔ T (yn) implies that xn ↔ yn.

Notice that if xn ↔ yn, then the likelihood function based on xn has the
same shape as the likelihood function based on yn. Roughly speaking, a statis-
tic is sufficient if we can calculate the likelihood function knowing only T (Xn).

9.33 Example. Let X1, . . . , Xn ∼ Bernoulli(p). Then L(p) = pS(1 − p)n−S

where S =
∑
iXi, so S is sufficient. �
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9.34 Example. Let X1, . . . , Xn ∼ N(µ, σ) and let T = (X,S). Then

f(Xn;µ, σ) =
(

1
σ
√

2π

)n
exp

{
−nS

2

2σ2

}
exp

{
−n(X − µ)2

2σ2

}
where S2 is the sample variance. The last expression depends on the data
only through T and therefore, T = (X,S) is a sufficient statistic. Note that
U = (17X,S) is also a sufficient statistic. If I tell you the value of U then you
can easily figure out T and then compute the likelihood. Sufficient statistics
are far from unique. Consider the following statistics for the N(µ, σ2) model:

T1(Xn) = (X1, . . . , Xn)

T2(Xn) = (X,S)

T3(Xn) = X

T4(Xn) = (X,S,X3).

The first statistic is just the whole data set. This is sufficient. The second
is also sufficient as we proved above. The third is not sufficient: you can’t
compute L(µ, σ) if I only tell you X. The fourth statistic T4 is sufficient. The
statistics T1 and T4 are sufficient but they contain redundant information.
Intuitively, there is a sense in which T2 is a “more concise” sufficient statistic
than either T1 or T4. We can express this formally by noting that T2 is a
function of T1 and similarly, T2 is a function of T4. For example, T2 = g(T4)
where g(a1, a2, a3) = (a1, a2). �

9.35 Definition. A statistic T is minimal sufficient if (i) it is
sufficient; and (ii) it is a function of every other sufficient statistic.

9.36 Theorem. T is minimal sufficient if the following is true:

T (xn) = T (yn) if and only if xn ↔ yn.

A statistic induces a partition on the set of outcomes. We can think of
sufficiency in terms of these partitions.

9.37 Example. Let X1, X2 ∼ Bernoulli(θ). Let V = X1, T =
∑
iXi and

U = (T,X1). Here is the set of outcomes and the statistics:

X1 X2 V T U

0 0 0 0 (0,0)
0 1 0 1 (1,0)
1 0 1 1 (1,1)
1 1 1 2 (2,1)
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The partitions induced by these statistics are:

V −→ {(0, 0), (0, 1)}, {(1, 0), (1, 1)}
T −→ {(0, 0)}, {(0, 1), (1, 0)}, {(1, 1)}
U −→ {(0, 0)}, {(0, 1)}, {(1, 0)}, {(1, 1)}.

Then V is not sufficient but T and U are sufficient. T is minimal sufficient;
U is not minimal since if xn = (1, 0) and yn = (0, 1), then xn ↔ yn yet
U(xn) �= U(yn). The statistic W = 17T generates the same partition as T . It
is also minimal sufficient. �

9.38 Example. For a N(µ, σ2) model, T = (X,S) is a minimal sufficient
statistic. For the Bernoulli model, T =

∑
iXi is a minimal sufficient statistic.

For the Poisson model, T =
∑
iXi is a minimal sufficient statistic. Check that

T = (
∑
iXi, X1) is sufficient but not minimal sufficient. Check that T = X1

is not sufficient. �

I did not give the usual definition of sufficiency. The usual definition is this:
T is sufficient if the distribution of Xn given T (Xn) = t does not depend on
θ. In other words, T is sufficient if f(x1, . . . , xn|t; θ) = h(x1, . . . , xn, t) where
h is some function that does not depend on θ.

9.39 Example. Two coin flips. Let X = (X1, X2) ∼ Bernoulli(p). Then T =
X1 +X2 is sufficient. To see this, we need the distribution of (X1, X2) given
T = t. Since T can take 3 possible values, there are 3 conditional distributions
to check. They are: (i) the distribution of (X1, X2) given T = 0:

P (X1 = 0, X2 = 0|t = 0) = 1, P (X1 = 0, X2 = 1|t = 0) = 0,

P (X1 = 1, X2 = 0|t = 0) = 0, P (X1 = 1, X2 = 1|t = 0) = 0;

(ii) the distribution of (X1, X2) given T = 1:

P (X1 = 0, X2 = 0|t = 1) = 0, P (X1 = 0, X2 = 1|t = 1) =
1
2
,

P (X1 = 1, X2 = 0|t = 1) =
1
2
, P (X1 = 1, X2 = 1|t = 1) = 0; and

(iii) the distribution of (X1, X2) given T = 2:

P (X1 = 0, X2 = 0|t = 2) = 0, P (X1 = 0, X2 = 1|t = 2) = 0,

P (X1 = 1, X2 = 0|t = 2) = 0, P (X1 = 1, X2 = 1|t = 2) = 1.

None of these depend on the parameter p. Thus, the distribution of X1, X2|T
does not depend on θ, so T is sufficient. �
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9.40 Theorem (Factorization Theorem). T is sufficient if and only if there are
functions g(t, θ) and h(x) such that f(xn; θ) = g(t(xn), θ)h(xn).

9.41 Example. Return to the two coin flips. Let t = x1 + x2. Then

f(x1, x2; θ) = f(x1; θ)f(x2; θ)

= θx1(1− θ)1−x1θx2(1− θ)1−x2

= g(t, θ)h(x1, x2)

where g(t, θ) = θt(1 − θ)2−t and h(x1, x2) = 1. Therefore, T = X1 + X2 is
sufficient. �

Now we discuss an implication of sufficiency in point estimation. Let θ̂ be
an estimator of θ. The Rao-Blackwell theorem says that an estimator should
only depend on the sufficient statistic, otherwise it can be improved. Let
R(θ, θ̂) = Eθ(θ − θ̂)2 denote the mse of the estimator.

9.42 Theorem (Rao-Blackwell). Let θ̂ be an estimator and let T be a sufficient
statistic. Define a new estimator by

θ̃ = E(θ̂|T ).

Then, for every θ, R(θ, θ̃) ≤ R(θ, θ̂).

9.43 Example. Consider flipping a coin twice. Let θ̂ = X1. This is a well-
defined (and unbiased) estimator. But it is not a function of the sufficient
statistic T = X1 +X2. However, note that θ̃ = E(X1|T ) = (X1 +X2)/2. By
the Rao-Blackwell Theorem, θ̃ has MSE at least as small as θ̂ = X1. The
same applies with n coin flips. Again define θ̂ = X1 and T =

∑
iXi. Then

θ̃ = E(X1|T ) = n−1
∑
iXi has improved mse. �

9.13.3 Exponential Families

Most of the parametric models we have studied so far are special cases of
a general class of models called exponential families. We say that {f(x; θ) :
θ ∈ Θ} is a one-parameter exponential family if there are functions η(θ),
B(θ), T (x) and h(x) such that

f(x; θ) = h(x)eη(θ)T (x)−B(θ).

It is easy to see that T (X) is sufficient. We call T the natural sufficient
statistic.
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9.44 Example. Let X ∼ Poisson(θ). Then

f(x; θ) =
θxe−θ

x!
=

1
x!
ex log θ−θ

and hence, this is an exponential family with η(θ) = log θ, B(θ) = θ, T (x) = x,
h(x) = 1/x!. �

9.45 Example. Let X ∼ Binomial(n, θ). Then

f(x; θ) =
(
n

x

)
θx(1− θ)n−x =

(
n

x

)
exp

{
x log

(
θ

1− θ

)
+ n log(1− θ)

}
.

In this case,

η(θ) = log
(

θ

1− θ

)
, B(θ) = −n log(θ)

and

T (x) = x, h(x) =
(
n

x

)
.

�

We can rewrite an exponential family as

f(x; η) = h(x)eηT (x)−A(η)

where η = η(θ) is called the natural parameter and

A(η) = log
∫
h(x)eηT (x)dx.

For example a Poisson can be written as f(x; η) = eηx−eη/x! where the natural
parameter is η = log θ.

Let X1, . . . , Xn be iid from an exponential family. Then f(xn; θ) is an
exponential family:

f(xn; θ) = hn(xn)hn(xn)eη(θ)Tn(xn)−Bn(θ)

where hn(xn) =
∏
i h(xi), Tn(x

n) =
∑
i T (xi) and Bn(θ) = nB(θ). This

implies that
∑
i T (Xi) is sufficient.

9.46 Example. Let X1, . . . , Xn ∼ Uniform(0, θ). Then

f(xn; θ) =
1
θn
I(x(n) ≤ θ)

where I is 1 if the term inside the brackets is true and 0 otherwise, and
x(n) = max{x1, . . . , xn}. Thus T (Xn) = max{X1, . . . , Xn} is sufficient. But
since T (Xn) �=

∑
i T (Xi), this cannot be an exponential family. �
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9.47 Theorem. Let X have density in an exponential family. Then,

E(T (X)) = A′(η), V(T (X)) = A′′(η).

If θ = (θ1, . . . , θk) is a vector, then we say that f(x; θ) has exponential
family form if

f(x; θ) = h(x) exp


k∑
j=1

ηj(θ)Tj(x)−B(θ)

 .

Again, T = (T1, . . . , Tk) is sufficient. An iid sample of size n also has expo-
nential form with sufficient statistic (

∑
i T1(Xi), . . . ,

∑
i Tk(Xi)).

9.48 Example. Consider the normal family with θ = (µ, σ). Now,

f(x; θ) = exp
{
µ

σ2
x− x2

2σ2
− 1

2

(
µ2

σ2
+ log(2πσ2)

)}
.

This is exponential with

η1(θ) =
µ

σ2
, T1(x) = x

η2(θ) = − 1
2σ2

, T2(x) = x2

B(θ) =
1
2

(
µ2

σ2
+ log(2πσ2)

)
, h(x) = 1.

Hence, with n iid samples, (
∑
iXi,

∑
iX

2
i ) is sufficient. �

As before we can write an exponential family as

f(x; η) = h(x) exp
{
TT (x)η −A(η)

}
,

where A(η) = log
∫
h(x)eT

T (x)ηdx. It can be shown that

E(T (X)) = Ȧ(η) V(T (X)) = Ä(η),

where the first expression is the vector of partial derivatives and the second
is the matrix of second derivatives.

9.13.4 Computing Maximum Likelihood Estimates

In some cases we can find the mle θ̂ analytically. More often, we need to
find the mle by numerical methods. We will briefly discuss two commonly
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used methods: (i) Newton-Raphson, and (ii) the EM algorithm. Both are
iterative methods that produce a sequence of values θ0, θ1, . . . that, under
ideal conditions, converge to the mle θ̂. In each case, it is helpful to use a
good starting value θ0. Often, the method of moments estimator is a good
starting value.

Newton-Raphson. To motivate Newton-Raphson, let’s expand the deriva-
tive of the log-likelihood around θj :

0 = �′(θ̂) ≈ �′(θj) + (θ̂ − θj)�′′
(θj).

Solving for θ̂ gives

θ̂ ≈ θj − �
′
(θj)

�′′(θj)
.

This suggests the following iterative scheme:

θ̂j+1 = θj − �
′
(θj)

�′′(θj)
.

In the multiparameter case, the mle θ̂ = (θ̂1, . . . , θ̂k) is a vector and the
method becomes

θ̂j+1 = θj −H−1�
′
(θj)

where �
′
(θj) is the vector of first derivatives and H is the matrix of second

derivatives of the log-likelihood.
The EM Algorithm. The letters EM stand for Expectation-Maximization.

The idea is to iterate between taking an expectation then maximizing. Sup-
pose we have data Y whose density f(y; θ) leads to a log-likelihood that is
hard to maximize. But suppose we can find another random variable Z such
that f(y; θ) =

∫
f(y, z; θ) dz and such that the likelihood based on f(y, z; θ)

is easy to maximize. In other words, the model of interest is the marginal of a
model with a simpler likelihood. In this case, we call Y the observed data and
Z the hidden (or latent or missing) data. If we could just “fill in” the missing
data, we would have an easy problem. Conceptually, the EM algorithm works
by filling in the missing data, maximizing the log-likelihood, and iterating.

9.49 Example (Mixture of Normals). Sometimes it is reasonable to assume that
the distribution of the data is a mixture of two normals. Think of heights of
people being a mixture of men and women’s heights. Let φ(y;µ, σ) denote
a normal density with mean µ and standard deviation σ. The density of a
mixture of two Normals is

f(y; θ) = (1− p)φ(y;µ0, σ0) + pφ(y;µ1, σ1).
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The idea is that an observation is drawn from the first normal with probability
p and the second with probability 1−p. However, we don’t know which Normal
it was drawn from. The parameters are θ = (µ0, σ0, µ1, σ1, p). The likelihood
function is

L(θ) =
n∏
i=1

[(1− p)φ(yi;µ0, σ0) + pφ(yi;µ1, σ1)] .

Maximizing this function over the five parameters is hard. Imaging that we
were given extra information telling us which of the two normals every observa-
tion came from. These “complete” data are of the form (Y1, Z1), . . . , (Yn, Zn),
where Zi = 0 represents the first normal and Zi = 1 represents the second.
Note that P(Zi = 1) = p. We shall soon see that the likelihood for the com-
plete data (Y1, Z1), . . . , (Yn, Zn) is much simpler than the likelihood for the
observed data Y1, . . . , Yn. �

Now we describe the EM algorithm.

The EM Algorithm

(0) Pick a starting value θ0. Now for j = 1, 2, . . . , repeat steps 1 and 2
below:
(1) (The E-step): Calculate

J(θ|θj) = Eθj

(
log

f(Y n, Zn; θ)
f(Y n, Zn; θj)

∣∣∣∣ Y n = yn
)
.

The expectation is over the missing data Zn treating θi and the observed
data Y n as fixed.
(2) Find θj+1 to maximize J(θ|θj).

We now show that the EM algorithm always increases the likelihood, that
is, L(θj+1) ≥ L(θj). Note that

J(θj+1|θj) = Eθj

(
log

f(Y n, Zn; θj+1)
f(Y n, Zn; θj)

∣∣∣∣ Y n = yn
)

= log
f(yn; θj+1)
f(yn; θj)

+ Eθj

(
log

f(Zn|Y n; θj+1)
f(Zn|Y n; θj)

∣∣∣∣ Y n = yn
)

and hence

L(θj+1)
L(θj)

= log
f(yn; θj+1)
f(yn; θj)
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= J(θj+1|θj)− Eθj

(
log

f(Zn|Y n; θj+1)
f(Zn|Y n; θj)

∣∣∣∣ Y n = yn
)

= J(θj+1|θj) +K(fj , fj+1)

where fj = f(yn; θj) and fj+1 = f(yn; θj+1) andK(f, g) =
∫
f(x) log(f(x)/g(x)) dx

is the Kullback-Leibler distance. Now, θj+1 was chosen to maximize J(θ|θj).
Hence, J(θj+1|θj) ≥ J(θj |θj) = 0. Also, by the properties of Kullback-Leibler
divergence, K(fj , fj+1) ≥ 0. Hence, L(θj+1) ≥ L(θj) as claimed.

9.50 Example (Continuation of Example 9.49). Consider again the mixture of
two normals but, for simplicity assume that p = 1/2, σ1 = σ2 = 1. The density
is

f(y;µ1, µ2) =
1
2
φ(y;µ0, 1) +

1
2
φ(y;µ1, 1).

Directly maximizing the likelihood is hard. Introduce latent variables Z1, . . . , Zn

where Zi = 0 if Yi is from φ(y;µ0, 1), and Zi = 1 if Yi is from φ(y;µ1, 1),
P(Zi = 1) = P (Zi = 0) = 1/2, f(yi|Zi = 0) = φ(y;µ0, 1) and f(yi|Zi = 1) =
φ(y;µ1, 1). So f(y) =

∑1
z=0 f(y, z) where we have dropped the parameters

from the density to avoid notational overload. We can write

f(z, y) = f(z)f(y|z) =
1
2
φ(y;µ0, 1)1−zφ(y;µ1, 1)z.

Hence, the complete likelihood is
n∏
i=1

φ(yi;µ0, 1)1−ziφ(yi;µ1, 1)zi .

The complete log-likelihood is then

�̃ = −1
2

n∑
i=1

(1− zi)(yi − µ0)−
1
2

n∑
i=1

zi(yi − µ1).

And so

J(θ|θj) = −1
2

n∑
i=1

(1− E(Zi|yn, θj))(yi − µ0)−
1
2

n∑
i=1

E(Zi|yn, θj))(yi − µ1).

Since Zi is binary, E(Zi|yn, θj) = P(Zi = 1|yn, θj) and, by Bayes’ theorem,

P(Zi = 1|yn, θi) =
f(yn|Zi = 1; θj)P(Zi = 1)

f(yn|Zi = 1; θj)P(Zi = 1) + f(yn|Zi = 0; θj)P(Zi = 0)

=
φ(yi;µ

j
1, 1) 1

2

φ(yi;µ
j
1, 1) 1

2 + φ(yi;µ
j
0, 1) 1

2

=
φ(yi;µ

j
1, 1)

φ(yi;µ
j
1, 1) + φ(yi;µ

j
0, 1)

= τ(i).
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Take the derivative of J(θ|θj) with respect to µ1 and µ2, set them equal to 0
to get

µ̂j+1
1 =

∑n
i=1 τiyi∑n
i=1 τi

and

µ̂j+1
0 =

∑n
i=1(1− τi)yi∑n
i=1(1− τi)

.

We then recompute τi using µ̂j+1
1 and µ̂j+1

0 and iterate. �

9.14 Exercises

1. LetX1, . . . , Xn ∼ Gamma(α, β). Find the method of moments estimator
for α and β.

2. Let X1, . . . , Xn ∼ Uniform(a, b) where a and b are unknown parameters
and a < b.

(a) Find the method of moments estimators for a and b.

(b) Find the mle â and b̂.

(c) Let τ =
∫
x dF (x). Find the mle of τ .

(d) Let τ̂ be the mle of τ . Let τ̃ be the nonparametric plug-in estimator
of τ =

∫
x dF (x). Suppose that a = 1, b = 3, and n = 10. Find the mse

of τ̂ by simulation. Find the mse of τ̃ analytically. Compare.

3. Let X1, . . . , Xn ∼ N(µ, σ2). Let τ be the .95 percentile, i.e. P(X < τ) =
.95.

(a) Find the mle of τ .

(b) Find an expression for an approximate 1−α confidence interval for
τ .

(c) Suppose the data are:

3.23 -2.50 1.88 -0.68 4.43 0.17

1.03 -0.07 -0.01 0.76 1.76 3.18

0.33 -0.31 0.30 -0.61 1.52 5.43

1.54 2.28 0.42 2.33 -1.03 4.00

0.39

Find the mle τ̂ . Find the standard error using the delta method. Find
the standard error using the parametric bootstrap.
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4. Let X1, . . . , Xn ∼ Uniform(0, θ). Show that the mle is consistent. Hint:
Let Y = max{X1, ..., Xn}. For any c, P(Y < c) = P(X1 < c,X2 <

c, ...,Xn < c) = P(X1 < c)P(X2 < c)...P(Xn < c).

5. Let X1, . . . , Xn ∼ Poisson(λ). Find the method of moments estimator,
the maximum likelihood estimator and the Fisher information I(λ).

6. Let X1, ..., Xn ∼ N(θ, 1). Define

Yi =
{

1 if Xi > 0
0 if Xi ≤ 0.

Let ψ = P(Y1 = 1).

(a) Find the maximum likelihood estimator ψ̂ of ψ.

(b) Find an approximate 95 percent confidence interval for ψ.

(c) Define ψ̃ = (1/n)
∑

i Yi. Show that ψ̃ is a consistent estimator of ψ.

(d) Compute the asymptotic relative efficiency of ψ̃ to ψ̂. Hint: Use the
delta method to get the standard error of the mle. Then compute the
standard error (i.e. the standard deviation) of ψ̃.

(e) Suppose that the data are not really normal. Show that ψ̂ is not
consistent. What, if anything, does ψ̂ converge to?

7. (Comparing two treatments.) n1 people are given treatment 1 and n2

people are given treatment 2. Let X1 be the number of people on treat-
ment 1 who respond favorably to the treatment and let X2 be the
number of people on treatment 2 who respond favorably. Assume that
X1 ∼ Binomial(n1, p1) X2 ∼ Binomial(n2, p2). Let ψ = p1 − p2.

(a) Find the mle ψ̂ for ψ.

(b) Find the Fisher information matrix I(p1, p2).

(c) Use the multiparameter delta method to find the asymptotic stan-
dard error of ψ̂.

(d) Suppose that n1 = n2 = 200, X1 = 160 and X2 = 148. Find ψ̂. Find
an approximate 90 percent confidence interval for ψ using (i) the delta
method and (ii) the parametric bootstrap.

8. Find the Fisher information matrix for Example 9.29.

9. Let X1, ..., Xn ∼ Normal(µ, 1). Let θ = eµ and let θ̂ = eX be the mle.
Create a data set (using µ = 5) consisting of n=100 observations.
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(a) Use the delta method to get ŝe and a 95 percent confidence interval
for θ. Use the parametric bootstrap to get ŝe and 95 percent confidence
interval for θ. Use the nonparametric bootstrap to get ŝe and 95 percent
confidence interval for θ. Compare your answers.

(b) Plot a histogram of the bootstrap replications for the parametric
and nonparametric bootstraps. These are estimates of the distribution
of θ̂. The delta method also gives an approximation to this distribution
namely, Normal(θ̂, se2). Compare these to the true sampling distribu-
tion of θ̂ (which you can get by simulation). Which approximation —
parametric bootstrap, bootstrap, or delta method — is closer to the true
distribution?

10. LetX1, ..., Xn ∼ Uniform(0, θ). The mle is θ̂ = X(n) = max{X1, ..., Xn}.
Generate a dataset of size 50 with θ = 1.

(a) Find the distribution of θ̂ analytically. Compare the true distribu-
tion of θ̂ to the histograms from the parametric and nonparametric
bootstraps.

(b) This is a case where the nonparametric bootstrap does very poorly.
Show that for the parametric bootstrap P(θ̂∗ = θ̂) = 0, but for the
nonparametric bootstrap P(θ̂∗ = θ̂) ≈ .632. Hint: show that, P(θ̂∗ =
θ̂) = 1 − (1 − (1/n))n then take the limit as n gets large. What is the
implication of this?



10
Hypothesis Testing and p-values

Suppose we want to know if exposure to asbestos is associated with lung
disease. We take some rats and randomly divide them into two groups. We
expose one group to asbestos and leave the second group unexposed. Then
we compare the disease rate in the two groups. Consider the following two
hypotheses:

The Null Hypothesis: The disease rate is the same in the two groups.

The Alternative Hypothesis: The disease rate is not the same in the two
groups.

If the exposed group has a much higher rate of disease than the unexposed
group then we will reject the null hypothesis and conclude that the evidence
favors the alternative hypothesis. This is an example of hypothesis testing.

More formally, suppose that we partition the parameter space Θ into two
disjoint sets Θ0 and Θ1 and that we wish to test

H0 : θ ∈ Θ0 versus H1 : θ ∈ Θ1. (10.1)

We call H0 the null hypothesis and H1 the alternative hypothesis.
Let X be a random variable and let X be the range of X. We test a hypoth-

esis by finding an appropriate subset of outcomes R ⊂ X called the rejection
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Retain Null Reject Null
H0 true

√
type I error

H1 true type II error
√

TABLE 10.1. Summary of outcomes of hypothesis testing.

region. If X ∈ R we reject the null hypothesis, otherwise, we do not reject
the null hypothesis:

X ∈ R =⇒ reject H0

X /∈ R =⇒ retain (do not reject) H0

Usually, the rejection region R is of the form

R =
{
x : T (x) > c

}
(10.2)

where T is a test statistic and c is a critical value. The problem in hy-
pothesis testing is to find an appropriate test statistic T and an appropriate
critical value c.

Warning! There is a tendency to use hypothesis testing methods even
when they are not appropriate. Often, estimation and confidence intervals are
better tools. Use hypothesis testing only when you want to test a well-defined
hypothesis.

Hypothesis testing is like a legal trial. We assume someone is innocent
unless the evidence strongly suggests that he is guilty. Similarly, we retain H0

unless there is strong evidence to reject H0. There are two types of errors we
can make. Rejecting H0 when H0 is true is called a type I error. Retaining
H0 when H1 is true is called a type II error. The possible outcomes for
hypothesis testing are summarized in Tab. 10.1.

10.1 Definition. The power function of a test with rejection region R is
defined by

β(θ) = Pθ(X ∈ R). (10.3)

The size of a test is defined to be

α = sup
θ∈Θ0

β(θ). (10.4)

A test is said to have level α if its size is less than or equal to α.
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A hypothesis of the form θ = θ0 is called a simple hypothesis. A hypoth-
esis of the form θ > θ0 or θ < θ0 is called a composite hypothesis. A test
of the form

H0 : θ = θ0 versus H1 : θ �= θ0

is called a two-sided test. A test of the form

H0 : θ ≤ θ0 versus H1 : θ > θ0

or
H0 : θ ≥ θ0 versus H1 : θ < θ0

is called a one-sided test. The most common tests are two-sided.

10.2 Example. Let X1, . . . , Xn ∼ N(µ, σ) where σ is known. We want to test
H0 : µ ≤ 0 versus H1 : µ > 0. Hence, Θ0 = (−∞, 0] and Θ1 = (0,∞).
Consider the test:

reject H0 if T > c

where T = X. The rejection region is

R =
{

(x1, . . . , xn) : T (x1, . . . , xn) > c

}
.

Let Z denote a standard Normal random variable. The power function is

β(µ) = Pµ
(
X > c

)
= Pµ

(√
n(X − µ)

σ
>

√
n(c− µ)
σ

)
= P

(
Z >

√
n(c− µ)
σ

)
= 1− Φ

(√
n(c− µ)
σ

)
.

This function is increasing in µ. See Figure 10.1. Hence

size = sup
µ≤0

β(µ) = β(0) = 1− Φ
(√

nc

σ

)
.

For a size α test, we set this equal to α and solve for c to get

c =
σΦ−1(1− α)√

n
.

We reject when X > σΦ−1(1− α)/
√
n. Equivalently, we reject when

√
n (X − 0)

σ
> zα.

where zα = Φ−1(1− α). �
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α

µ

β(µ)

H0 H1

FIGURE 10.1. The power function for Example 10.2. The size of the test is the
largest probability of rejecting H0 when H0 is true. This occurs at µ = 0 hence the
size is β(0). We choose the critical value c so that β(0) = α.

It would be desirable to find the test with highest power under H1, among
all size α tests. Such a test, if it exists, is called most powerful. Finding
most powerful tests is hard and, in many cases, most powerful tests don’t
even exist. Instead of going into detail about when most powerful tests exist,
we’ll just consider four widely used tests: the Wald test,1 the χ2 test, the
permutation test, and the likelihood ratio test.

10.1 The Wald Test

Let θ be a scalar parameter, let θ̂ be an estimate of θ and let ŝe be the
estimated standard error of θ̂.

1The test is named after Abraham Wald (1902–1950), who was a very influential mathe-
matical statistician. Wald died in a plane crash in India in 1950.
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10.3 Definition. The Wald Test

Consider testing

H0 : θ = θ0 versus H1 : θ �= θ0.

Assume that θ̂ is asymptotically Normal:

(θ̂ − θ0)
ŝe

� N(0, 1).

The size α Wald test is: reject H0 when |W | > zα/2 where

W =
θ̂ − θ0

ŝe
. (10.5)

10.4 Theorem. Asymptotically, the Wald test has size α, that is,

Pθ0
(
|W | > zα/2

)
→ α

as n→∞.

Proof. Under θ = θ0, (θ̂ − θ0)/ŝe � N(0, 1). Hence, the probability of
rejecting when the null θ = θ0 is true is

Pθ0
(
|W | > zα/2

)
= Pθ0

(
|θ̂ − θ0|

ŝe
> zα/2

)
→ P

(
|Z| > zα/2

)
= α

where Z ∼ N(0, 1). �

10.5 Remark. An alternative version of the Wald test statistic is W = (θ̂ −
θ0)/se0 where se0 is the standard error computed at θ = θ0. Both versions of
the test are valid.

Let us consider the power of the Wald test when the null hypothesis is false.

10.6 Theorem. Suppose the true value of θ is θ	 �= θ0. The power β(θ	) — the
probability of correctly rejecting the null hypothesis — is given (approximately)
by

1− Φ
(
θ0 − θ	

ŝe
+ zα/2

)
+ Φ

(
θ0 − θ	

ŝe
− zα/2

)
. (10.6)
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Recall that ŝe tends to 0 as the sample size increases. Inspecting (10.6)
closely we note that: (i) the power is large if θ	 is far from θ0, and (ii) the
power is large if the sample size is large.

10.7 Example (Comparing Two Prediction Algorithms). We test a prediction
algorithm on a test set of size m and we test a second prediction algorithm on
a second test set of size n. Let X be the number of incorrect predictions for
algorithm 1 and let Y be the number of incorrect predictions for algorithm
2. Then X ∼ Binomial(m, p1) and Y ∼ Binomial(n, p2). To test the null
hypothesis that p1 = p2 write

H0 : δ = 0 versus H1 : δ �= 0

where δ = p1 − p2. The mle is δ̂ = p̂1 − p̂2 with estimated standard error

ŝe =

√
p̂1(1− p̂1)

m
+
p̂2(1− p̂2)

n
.

The size α Wald test is to reject H0 when |W | > zα/2 where

W =
δ̂ − 0

ŝe
=

p̂1 − p̂2√
p̂1(1−p̂1)

m + p̂2(1−p̂2)
n

.

The power of this test will be largest when p1 is far from p2 and when the
sample sizes are large.

What if we used the same test set to test both algorithms? The two samples
are no longer independent. Instead we use the following strategy. Let Xi = 1
if algorithm 1 is correct on test case i and Xi = 0 otherwise. Let Yi = 1 if
algorithm 2 is correct on test case i, and Yi = 0 otherwise. DefineDi = Xi−Yi.
A typical dataset will look something like this:

Test Case Xi Yi Di = Xi − Yi
1 1 0 1
2 1 1 0
3 1 1 0
4 0 1 -1
5 0 0 0
...

...
...

...
n 0 1 -1

Let
δ = E(Di) = E(Xi)− E(Yi) = P(Xi = 1)− P(Yi = 1).

The nonparametric plug-in estimate of δ is δ̂ = D = n−1
∑n
i=1Di and ŝe(δ̂) =

S/
√
n, where S2 = n−1

∑n
i=1(Di −D)2. To test H0 : δ = 0 versus H1 : δ �= 0
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we use W = δ̂/ŝe and reject H0 if |W | > zα/2. This is called a paired
comparison. �

10.8 Example (Comparing Two Means). Let X1, . . . , Xm and Y1, . . ., Yn be
two independent samples from populations with means µ1 and µ2, respec-
tively. Let’s test the null hypothesis that µ1 = µ2. Write this as H0 : δ = 0
versus H1 : δ �= 0 where δ = µ1 − µ2. Recall that the nonparametric plug-in
estimate of δ is δ̂ = X − Y with estimated standard error

ŝe =

√
s21
m

+
s22
n

where s21 and s22 are the sample variances. The size α Wald test rejects H0

when |W | > zα/2 where

W =
δ̂ − 0

ŝe
=

X − Y√
s21
m + s22

n

. �

10.9 Example (Comparing Two Medians). Consider the previous example again
but let us test whether the medians of the two distributions are the same.
Thus, H0 : δ = 0 versus H1 : δ �= 0 where δ = ν1 − ν2 where ν1 and ν2 are
the medians. The nonparametric plug-in estimate of δ is δ̂ = ν̂1− ν̂2 where ν̂1
and ν̂2 are the sample medians. The estimated standard error ŝe of δ̂ can be
obtained from the bootstrap. The Wald test statistic is W = δ̂/ŝe. �

There is a relationship between the Wald test and the 1 − α asymptotic
confidence interval θ̂ ± ŝe zα/2.

10.10 Theorem. The size α Wald test rejects H0 : θ = θ0 versus H1 : θ �= θ0

if and only if θ0 /∈ C where

C = (θ̂ − ŝe zα/2, θ̂ + ŝe zα/2).

Thus, testing the hypothesis is equivalent to checking whether the null value
is in the confidence interval.

Warning! When we reject H0 we often say that the result is statistically
significant. A result might be statistically significant and yet the size of the
effect might be small. In such a case we have a result that is statistically sig-
nificant but not scientifically or practically significant. The difference between
statistical significance and scientific significance is easy to understand in light
of Theorem 10.10. Any confidence interval that excludes θ0 corresponds to re-
jecting H0. But the values in the interval could be close to θ0 (not scientifically
significant) or far from θ0 (scientifically significant). See Figure 10.2.
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θ0
θ

θ0
θ

FIGURE 10.2. Scientific significance versus statistical significance. A level α test
rejects H0 : θ = θ0 if and only if the 1 − α confidence interval does not include
θ0. Here are two different confidence intervals. Both exclude θ0 so in both cases the
test would reject H0. But in the first case, the estimated value of θ is close to θ0 so
the finding is probably of little scientific or practical value. In the second case, the
estimated value of θ is far from θ0 so the finding is of scientific value. This shows
two things. First, statistical significance does not imply that a finding is of scientific
importance. Second, confidence intervals are often more informative than tests.

10.2 p-values

Reporting “reject H0” or “retain H0” is not very informative. Instead, we
could ask, for every α, whether the test rejects at that level. Generally, if the
test rejects at level α it will also reject at level α′ > α. Hence, there is a
smallest α at which the test rejects and we call this number the p-value. See
Figure 10.3.

10.11 Definition. Suppose that for every α ∈ (0, 1) we have a size α test
with rejection region Rα. Then,

p-value = inf
{
α : T (Xn) ∈ Rα

}
.

That is, the p-value is the smallest level at which we can reject H0.

Informally, the p-value is a measure of the evidence against H0: the smaller
the p-value, the stronger the evidence against H0. Typically, researchers use
the following evidence scale:
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No

Yes

Reject?

α0 1

p-value

FIGURE 10.3. p-values explained. For each α we can ask: does our test reject H0

at level α? The p-value is the smallest α at which we do reject H0. If the evidence
against H0 is strong, the p-value will be small.

p-value evidence
< .01 very strong evidence against H0

.01 – .05 strong evidence against H0

.05 – .10 weak evidence against H0

> .1 little or no evidence against H0

Warning! A large p-value is not strong evidence in favor of H0. A large
p-value can occur for two reasons: (i) H0 is true or (ii) H0 is false but the test
has low power.

Warning! Do not confuse the p-value with P(H0|Data). 2 The p-value is
not the probability that the null hypothesis is true.

The following result explains how to compute the p-value.

2We discuss quantities like P(H0|Data) in the chapter on Bayesian inference.
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10.12 Theorem. Suppose that the size α test is of the form

reject H0 if and only if T (Xn) ≥ cα.

Then,
p-value = sup

θ∈Θ0

Pθ(T (Xn) ≥ T (xn))

where xn is the observed value of Xn. If Θ0 = {θ0} then

p-value = Pθ0(T (Xn) ≥ T (xn)).

We can express Theorem 10.12 as follows:

The p-value is the probability (under H0) of observing a value of the

test statistic the same as or more extreme than what was actually

observed.

10.13 Theorem. Let w = (θ̂ − θ0)/ŝe denote the observed value of the
Wald statistic W . The p-value is given by

p− value = Pθ0(|W | > |w|) ≈ P(|Z| > |w|) = 2Φ(−|w|) (10.7)

where Z ∼ N(0, 1).

To understand this last theorem, look at Figure 10.4.
Here is an important property of p-values.

10.14 Theorem. If the test statistic has a continuous distribution, then under
H0 : θ = θ0, the p-value has a Uniform (0,1) distribution. Therefore, if we
reject H0 when the p-value is less than α, the probability of a type I error is
α.

In other words, if H0 is true, the p-value is like a random draw from a
Unif(0, 1) distribution. If H1 is true, the distribution of the p-value will tend
to concentrate closer to 0.

10.15 Example. Recall the cholesterol data from Example 7.15. To test if the
means are different we compute

W =
δ̂ − 0

ŝe
=

X − Y√
s21
m + s22

n

=
216.2− 195.3√

52 + 2.42
= 3.78.
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|w|−|w|

α/2α/2

FIGURE 10.4. The p-value is the smallest α at which you would reject H0. To
find the p-value for the Wald test, we find α such that |w| and −|w| are just at the
boundary of the rejection region. Here, w is the observed value of the Wald statistic:
w = (θ̂ − θ0)/ŝe. This implies that the p-value is the tail area P(|Z| > |w|) where
Z ∼ N(0, 1).

To compute the p-value, let Z ∼ N(0, 1) denote a standard Normal random
variable. Then,

p-value = P(|Z| > 3.78) = 2P(Z < −3.78) = .0002

which is very strong evidence against the null hypothesis. To test if the me-
dians are different, let ν̂1 and ν̂2 denote the sample medians. Then,

W =
ν̂1 − ν̂2

ŝe
=

212.5− 194
7.7

= 2.4

where the standard error 7.7 was found using the bootstrap. The p-value is

p-value = P(|Z| > 2.4) = 2P(Z < −2.4) = .02

which is strong evidence against the null hypothesis. �

10.3 The χ2 Distribution

Before proceeding we need to discuss the χ2 distribution. Let Z1, . . . , Zk be
independent, standard Normals. Let V =

∑k
i=1 Z

2
i . Then we say that V has

a χ2 distribution with k degrees of freedom, written V ∼ χ2
k. The probability

density of V is

f(v) =
v(k/2)−1e−v/2

2k/2Γ(k/2)
for v > 0. It can be shown that E(V ) = k and V(V ) = 2k. We define the upper
α quantile χ2

k,α = F−1(1−α) where F is the cdf. That is, P(χ2
k > χ2

k,α) = α.
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t

α

FIGURE 10.5. The p-value is the smallest α at which we would reject H0. To find
the p-value for the χ2

k−1 test, we find α such that the observed value t of the test
statistic is just at the boundary of the rejection region. This implies that the p-value
is the tail area P(χ2

k−1 > t).

10.4 Pearson’s χ2 Test For Multinomial Data

Pearson’s χ2 test is used for multinomial data. Recall that ifX = (X1, . . . , Xk)
has a multinomial (n, p) distribution, then the mle of p is p̂ = (p̂1, . . . , p̂k) =
(X1/n, . . . ,Xk/n).

Let p0 = (p01, . . . , p0k) be some fixed vector and suppose we want to test

H0 : p = p0 versus H1 : p �= p0.

10.16 Definition. Pearson’s χ2 statistic is

T =
k∑
j=1

(Xj − np0j)2

np0j
=

k∑
j=1

(Xj − Ej)2
Ej

where Ej = E(Xj) = np0j is the expected value of Xj under H0.

10.17 Theorem. Under H0, T � χ2
k−1. Hence the test: reject H0 if T >

χ2
k−1,α has asymptotic level α. The p-value is P(χ2

k−1 > t) where t is the
observed value of the test statistic.

Theorem 10.17 is illustrated in Figure 10.5.
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10.18 Example (Mendel’s peas). Mendel bred peas with round yellow seeds
and wrinkled green seeds. There are four types of progeny: round yellow,
wrinkled yellow, round green, and wrinkled green. The number of each type
is multinomial with probability p = (p1, p2, p3, p4). His theory of inheritance
predicts that p is equal to

p0 ≡
(

9
16
,

3
16
,

3
16
,

1
16

)
.

In n = 556 trials he observed X = (315, 101, 108, 32). We will test H0 : p = p0

versus H1 : p �= p0. Since, np01 = 312.75, np02 = np03 = 104.25, and np04 =
34.75, the test statistic is

χ2 =
(315− 312.75)2

312.75
+

(101− 104.25)2

104.25

+
(108− 104.25)2

104.25
+

(32− 34.75)2

34.75
= 0.47.

The α = .05 value for a χ2
3 is 7.815. Since 0.47 is not larger than 7.815 we do

not reject the null. The p-value is

p-value = P(χ2
3 > .47) = .93

which is not evidence against H0. Hence, the data do not contradict Mendel’s
theory.3�

In the previous example, one could argue that hypothesis testing is not the
right tool. Hypothesis testing is useful to see if there is evidence to reject H0.
This is appropriate when H0 corresponds to the status quo. It is not useful for
proving that H0 is true. Failure to reject H0 might occur because H0 is true,
but it might occur just because the test has low power. Perhaps a confidence
set for the distance between p and p0 might be more useful in this example.

10.5 The Permutation Test

The permutation test is a nonparametric method for testing whether two
distributions are the same. This test is “exact,” meaning that it is not based
on large sample theory approximations. Suppose that X1, . . ., Xm ∼ FX and
Y1, . . ., Yn ∼ FY are two independent samples and H0 is the hypothesis that

3There is some controversy about whether Mendel’s results are “too good.”
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the two samples are identically distributed. This is the type of hypothesis we
would consider when testing whether a treatment differs from a placebo. More
precisely we are testing

H0 : FX = FY versus H1 : FX �= FY .

Let T (x1, . . . , xm, y1, . . . , yn) be some test statistic, for example,

T (X1, . . . , Xm, Y1, . . . , Yn) = |Xm − Y n|.

Let N = m+n and consider forming all N ! permutations of the data X1, . . .,
Xm, Y1, . . ., Yn. For each permutation, compute the test statistic T . Denote
these values by T1, . . . , TN !. Under the null hypothesis, each of these values is
equally likely. 4 The distribution P0 that puts mass 1/N ! on each Tj is called
the permutation distribution of T . Let tobs be the observed value of the
test statistic. Assuming we reject when T is large, the p-value is

p-value = P0(T > tobs) =
1
N !

N !∑
j=1

I(Tj > tobs).

10.19 Example. Here is a toy example to make the idea clear. Suppose the
data are: (X1, X2, Y1) = (1, 9, 3). Let T (X1, X2, Y1) = |X − Y | = 2. The
permutations are:

permutation value of T probability
(1,9,3) 2 1/6
(9,1,3) 2 1/6
(1,3,9) 7 1/6
(3,1,9) 7 1/6
(3,9,1) 5 1/6
(9,3,1) 5 1/6

The p-value is P(T > 2) = 4/6. �

Usually, it is not practical to evaluate all N ! permutations. We can approx-
imate the p-value by sampling randomly from the set of permutations. The
fraction of times Tj > tobs among these samples approximates the p-value.

4More precisely, under the null hypothesis, given the ordered data values,
X1, . . . , Xm, Y1, . . . , Yn is uniformly distributed over the N ! permutations of the data.
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Algorithm for Permutation Test

1. Compute the observed value of the test statistic
tobs = T (X1, . . . , Xm, Y1, . . . , Yn).

2. Randomly permute the data. Compute the statistic again using the
permuted data.

3. Repeat the previous step B times and let T1, . . . , TB denote the
resulting values.

4. The approximate p-value is

1
B

B∑
j=1

I(Tj > tobs).

10.20 Example. DNA microarrays allow researchers to measure the expres-
sion levels of thousands of genes. The data are the levels of messenger RNA
(mRNA) of each gene, which is thought to provide a measure of how much
protein that gene produces. Roughly, the larger the number, the more active
the gene. The table below, reproduced from Efron et al. (2001) shows the
expression levels for genes from ten patients with two types of liver cancer
cells. There are 2,638 genes in this experiment but here we show just the first
two. The data are log-ratios of the intensity levels of two different color dyes
used on the arrays.

Type I Type II
Patient 1 2 3 4 5 6 7 8 9 10
Gene 1 230 -1,350 -1,580 -400 -760 970 110 -50 -190 -200
Gene 2 470 -850 -.8 -280 120 390 -1730 -1360 -1 -330
...

...
...

...
...

...
...

...
...

...
...

Let’s test whether the median level of gene 1 is different between the two
groups. Let ν1 denote the median level of gene 1 of Type I and let ν2 denote the
median level of gene 1 of Type II. The absolute difference of sample medians
is T = |ν̂1 − ν̂2| = 710. Now we estimate the permutation distribution by
simulation and we find that the estimated p-value is .045. Thus, if we use a
α = .05 level of significance, we would say that there is evidence to reject the
null hypothesis of no difference. �
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In large samples, the permutation test usually gives similar results to a test
that is based on large sample theory. The permutation test is thus most useful
for small samples.

10.6 The Likelihood Ratio Test

The Wald test is useful for testing a scalar parameter. The likelihood ratio
test is more general and can be used for testing a vector-valued parameter.

10.21 Definition. Consider testing

H0 : θ ∈ Θ0 versus H1 : θ /∈ Θ0.

The likelihood ratio statistic is

λ = 2 log
(

supθ∈Θ L(θ)
supθ∈Θ0

L(θ)

)
= 2 log

(
L(θ̂)

L(θ̂0)

)

where θ̂ is the mle and θ̂0 is the mle when θ is restricted to lie in Θ0.

You might have expected to see the maximum of the likelihood over Θc
0

instead of Θ in the numerator. In practice, replacing Θc
0 with Θ has little

effect on the test statistic. Moreover, the theoretical properties of λ are much
simpler if the test statistic is defined this way.

The likelihood ratio test is most useful when Θ0 consists of all parameter
values θ such that some coordinates of θ are fixed at particular values.

10.22 Theorem. Suppose that θ = (θ1, . . . , θq, θq+1, . . . , θr). Let

Θ0 = {θ : (θq+1, . . . , θr) = (θ0,q+1, . . . , θ0,r)}.

Let λ be the likelihood ratio test statistic. Under H0 : θ ∈ Θ0,

λ(xn)� χ2
r−q,α

where r − q is the dimension of Θ minus the dimension of Θ0. The p-value
for the test is P(χ2

r−q > λ).

For example, if θ = (θ1, θ2, θ3, θ4, θ5) and we want to test the null hypothesis
that θ4 = θ5 = 0 then the limiting distribution has 5 − 3 = 2 degrees of
freedom.
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10.23 Example (Mendel’s Peas Revisited). Consider example 10.18 again. The
likelihood ratio test statistic for H0 : p = p0 versus H1 : p �= p0 is

λ = 2 log
(
L(p̂)
L(p0)

)
= 2

4∑
j=1

Xj log
(
p̂j
p0j

)

= 2
(

315 log
( 315

556
9
16

)
+ 101 log

( 101
556
3
16

)
+108 log

( 108
556
3
16

)
+ 32 log

( 32
556
1
16

))
= 0.48.

Under H1 there are four parameters. However, the parameters must sum to
one so the dimension of the parameter space is three. Under H0 there are no
free parameters so the dimension of the restricted parameter space is zero. The
difference of these two dimensions is three. Therefore, the limiting distribution
of λ under H0 is χ2

3 and the p-value is

p-value = P(χ2
3 > .48) = .92.

The conclusion is the same as with the χ2 test. �

When the likelihood ratio test and the χ2 test are both applicable, as in the
last example, they usually lead to similar results as long as the sample size is
large.

10.7 Multiple Testing

In some situations we may conduct many hypothesis tests. In example 10.20,
there were actually 2,638 genes. If we tested for a difference for each gene,
we would be conducting 2,638 separate hypothesis tests. Suppose each test
is conducted at level α. For any one test, the chance of a false rejection of
the null is α. But the chance of at least one false rejection is much higher.
This is the multiple testing problem. The problem comes up in many data
mining situations where one may end up testing thousands or even millions of
hypotheses. There are many ways to deal with this problem. Here we discuss
two methods.
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Consider m hypothesis tests:

H0i versus H1i, i = 1, . . . ,m

and let P1, . . . , Pm denote the m p-values for these tests.

The Bonferroni Method

Given p-values P1, . . . , Pm, reject null hypothesis H0i if

Pi <
α

m
.

10.24 Theorem. Using the Bonferroni method, the probability of falsely re-
jecting any null hypotheses is less than or equal to α.

Proof. Let R be the event that at least one null hypothesis is falsely
rejected. Let Ri be the event that the ith null hypothesis is falsely rejected.
Recall that if A1, . . . , Ak are events then P(

⋃k
i=1Ai) ≤

∑k
i=1 P(Ai). Hence,

P(R) = P

(
m⋃
i=1

Ri

)
≤

m∑
i=1

P(Ri) =
m∑
i=1

α

m
= α

from Theorem 10.14. �

10.25 Example. In the gene example, using α = .05, we have that .05/2, 638 =
.00001895375. Hence, for any gene with p-value less than .00001895375, we
declare that there is a significant difference. �

The Bonferroni method is very conservative because it is trying to make
it unlikely that you would make even one false rejection. Sometimes, a more
reasonable idea is to control the false discovery rate (FDR) which is de-
fined as the mean of the number of false rejections divided by the number of
rejections.

Suppose we reject all null hypotheses whose p-values fall below some thresh-
old. Let m0 be the number of null hypotheses that are true and let m1 =
m−m0. The tests can be categorized in a 2× 2 as in Table 10.2.

Define the False Discovery Proportion (FDP)

FDP =
{
V/R if R > 0
0 if R = 0.

The FDP is the proportion of rejections that are incorrect. Next define FDR =
E(FDP).
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H0 Not Rejected H0 Rejected Total
H0 True U V m0

H0 False T S m1

Total m−R R m

TABLE 10.2. Types of outcomes in multiple testing.

The Benjamini-Hochberg (BH) Method

1. Let P(1) < · · · < P(m) denote the ordered p-values.

2. Define

�i =
iα

Cmm
, and R = max

{
i : P(i) < �i

}
(10.8)

where Cm is defined to be 1 if the p-values are independent and
Cm =

∑m
i=1(1/i) otherwise.

3. Let T = P(R); we call T the BH rejection threshold.

4. Reject all null hypotheses H0i for which Pi ≤ T.

10.26 Theorem (Benjamini and Hochberg). If the procedure above is applied,
then regardless of how many nulls are true and regardless of the distribution
of the p-values when the null hypothesis is false,

FDR = E(FDP) ≤ m0

m
α ≤ α.

10.27 Example. Figure 10.6 shows six ordered p-values plotted as vertical
lines. If we tested at level α without doing any correction for multiple testing,
we would reject all hypotheses whose p-values are less than α. In this case,
the four hypotheses corresponding to the four smallest p-values are rejected.
The Bonferroni method rejects all hypotheses whose p-values are less than
α/m. In this case, this leads to no rejections. The BH threshold corresponds
to the last p-value that falls under the line with slope α. This leads to two
hypotheses being rejected in this case. �

10.28 Example. Suppose that 10 independent hypothesis tests are carried
leading to the following ordered p-values:

0.00017 0.00448 0.00671 0.00907 0.01220

0.33626 0.39341 0.53882 0.58125 0.98617
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Threshold

reject don’t reject

α

T

α/m

FIGURE 10.6. The Benjamini-Hochberg (BH) procedure. For uncorrected testing
we reject when Pi < α. For Bonferroni testing we reject when Pi < α/m. The BH
procedure rejects when Pi ≤ T . The BH threshold T corresponds to the rightmost
undercrossing of the upward sloping line.

With α = 0.05, the Bonferroni test rejects any hypothesis whose p-value is
less than α/10 = 0.005. Thus, only the first two hypotheses are rejected. For
the BH test, we find the largest i such that P(i) < iα/m, which in this case is
i = 5. Thus we reject the first five hypotheses. �

10.8 Goodness-of-fit Tests

There is another situation where testing arises, namely, when we want to check
whether the data come from an assumed parametric model. There are many
such tests; here is one.

Let F = {f(x; θ) : θ ∈ Θ} be a parametric model. Suppose the data take
values on the real line. Divide the line into k disjoint intervals I1, . . . , Ik. For
j = 1, . . . , k, let

pj(θ) =
∫
Ij

f(x; θ) dx

be the probability that an observation falls into interval Ij under the assumed
model. Here, θ = (θ1, . . . , θs) are the parameters in the assumed model. Let
Nj be the number of observations that fall into Ij . The likelihood for θ based
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on the counts N1, . . . , Nk is the multinomial likelihood

Q(θ) =
k∏
j=1

pi(θ)Nj .

Maximizing Q(θ) yields estimates θ̃ = (θ̃1, . . . , θ̃s) of θ. Now define the test
statistic

Q =
k∑
j=1

(Nj − npj(θ̃))2

npj(θ̃)
. (10.9)

10.29 Theorem. Let H0 be the null hypothesis that the data are iiddraws from
the model F = {f(x; θ) : θ ∈ Θ}. Under H − 0, the statistic Q defined in
equation (10.9) converges in distribution to a χ2

k−1−s random variable. Thus,
the (approximate) p-value for the test is P(χ2

k−1−s > q) where q denotes the
observed value of Q.

It is tempting to replace θ̃ in (10.9) with the mle θ̂. However, this will not
result in a statistic whose limiting distribution is a χ2

k−1−s. However, it can
be shown — due to a theorem of Herman Chernoff and Erich Lehmann from
1954 — that the p-value is bounded approximately by the p-values obtained
using a χ2

k−1−s and a χ2
k−1.

Goodness-of-fit testing has some serious limitations. If reject H0 then we
conclude we should not use the model. But if we do not reject H0 we can-
not conclude that the model is correct. We may have failed to reject simply
because the test did not have enough power. This is why it is better to use
nonparametric methods whenever possible rather than relying on parametric
assumptions.

10.9 Bibliographic Remarks

The most complete book on testing is Lehmann (1986). See also Chapter 8 of
Casella and Berger (2002) and Chapter 9 of Rice (1995). The FDR method is
due to Benjamini and Hochberg (1995). Some of the exercises are from Rice
(1995).
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10.10 Appendix

10.10.1 The Neyman-Pearson Lemma

In the special case of a simple null H0 : θ = θ0 and a simple alternative
H1 : θ = θ1 we can say precisely what the most powerful test is.

10.30 Theorem (Neyman-Pearson). Suppose we test H0 : θ = θ0 versus H1 :
θ = θ1. Let

T =
L(θ1)
L(θ0)

=
∏n
i=1 f(xi; θ1)∏n
i=1 f(xi; θ0)

.

Suppose we reject H0 when T > k. If we choose k so that Pθ0(T > k) = α

then this test is the most powerful, size α test. That is, among all tests with
size α, this test maximizes the power β(θ1).

10.10.2 The t-test

To test H0 : µ = µ0 where µ = E(Xi) is the mean, we can use the Wald test.
When the data are assumed to be Normal and the sample size is small, it is
common instead to use the t-test. A random variable T has a t-distribution
with k degrees of freedom if it has density

f(t) =
Γ
(
k+1
2

)
√
kπΓ

(
k
2

) (
1 + t2

k

)(k+1)/2
.

When the degrees of freedom k → ∞, this tends to a Normal distribution.
When k = 1 it reduces to a Cauchy.

Let X1, . . . , Xn ∼ N(µ, σ2) where θ = (µ, σ2) are both unknown. Suppose
we want to test µ = µ0 versus µ �= µ0. Let

T =
√
n(Xn − µ0)

Sn

where S2
n is the sample variance. For large samples T ≈ N(0, 1) under H0.

The exact distribution of T under H0 is tn−1. Hence if we reject when |T | >
tn−1,α/2 then we get a size α test. However, when n is moderately large, the
t-test is essentially identical to the Wald test.

10.11 Exercises

1. Prove Theorem 10.6.
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2. Prove Theorem 10.14.

3. Prove Theorem 10.10.

4. Prove Theorem 10.12.

5. Let X1, ..., Xn ∼ Uniform(0, θ) and let Y = max{X1, ..., Xn}. We want
to test

H0 : θ = 1/2 versus H1 : θ > 1/2.

The Wald test is not appropriate since Y does not converge to a Normal.
Suppose we decide to test this hypothesis by rejecting H0 when Y > c.

(a) Find the power function.

(b) What choice of c will make the size of the test .05?

(c) In a sample of size n = 20 with Y=0.48 what is the p-value? What
conclusion about H0 would you make?

(d) In a sample of size n = 20 with Y=0.52 what is the p-value? What
conclusion about H0 would you make?

6. There is a theory that people can postpone their death until after an
important event. To test the theory, Phillips and King (1988) collected
data on deaths around the Jewish holiday Passover. Of 1919 deaths, 922
died the week before the holiday and 997 died the week after. Think of
this as a binomial and test the null hypothesis that θ = 1/2. Report and
interpret the p-value. Also construct a confidence interval for θ.

7. In 1861, 10 essays appeared in the New Orleans Daily Crescent. They
were signed “Quintus Curtius Snodgrass” and some people suspected
they were actually written by Mark Twain. To investigate this, we will
consider the proportion of three letter words found in an author’s work.
From eight Twain essays we have:

.225 .262 .217 .240 .230 .229 .235 .217

From 10 Snodgrass essays we have:

.209 .205 .196 .210 .202 .207 .224 .223 .220 .201

(a) Perform a Wald test for equality of the means. Use the nonparamet-
ric plug-in estimator. Report the p-value and a 95 per cent confidence
interval for the difference of means. What do you conclude?

(b) Now use a permutation test to avoid the use of large sample methods.
What is your conclusion? (Brinegar (1963)).
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8. Let X1, . . . , Xn ∼ N(θ, 1). Consider testing

H0 : θ = 0 versus θ = 1.

Let the rejection region be R = {xn : T (xn) > c} where T (xn) =
n−1

∑n
i=1Xi.

(a) Find c so that the test has size α.

(b) Find the power under H1, that is, find β(1).

(c) Show that β(1)→ 1 as n→∞.

9. Let θ̂ be the mle of a parameter θ and let ŝe = {nI(θ̂)}−1/2 where I(θ)
is the Fisher information. Consider testing

H0 : θ = θ0 versus θ �= θ0.

Consider the Wald test with rejection region R = {xn : |Z| > zα/2}
where Z = (θ̂ − θ0)/ŝe. Let θ1 > θ0 be some alternative. Show that
β(θ1)→ 1.

10. Here are the number of elderly Jewish and Chinese women who died
just before and after the Chinese Harvest Moon Festival.

Week Chinese Jewish
-2 55 141
-1 33 145
1 70 139
2 49 161

Compare the two mortality patterns. (Phillips and Smith (1990)).

11. A randomized, double-blind experiment was conducted to assess the
effectiveness of several drugs for reducing postoperative nausea. The
data are as follows.

Number of Patients Incidence of Nausea
Placebo 80 45

Chlorpromazine 75 26
Dimenhydrinate 85 52

Pentobarbital (100 mg) 67 35
Pentobarbital (150 mg) 85 37
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(a) Test each drug versus the placebo at the 5 per cent level. Also, report
the estimated odds–ratios. Summarize your findings.

(b) Use the Bonferroni and the FDR method to adjust for multiple
testing. (Beecher (1959)).

12. Let X1, ..., Xn ∼ Poisson(λ).

(a) Let λ0 > 0. Find the size α Wald test for

H0 : λ = λ0 versus H1 : λ �= λ0.

(b) (Computer Experiment.) Let λ0 = 1, n = 20 and α = .05. Simulate
X1, . . . , Xn ∼ Poisson(λ0) and perform the Wald test. Repeat many
times and count how often you reject the null. How close is the type I
error rate to .05?

13. Let X1, . . . , Xn ∼ N(µ, σ2). Construct the likelihood ratio test for

H0 : µ = µ0 versus H1 : µ �= µ0.

Compare to the Wald test.

14. Let X1, . . . , Xn ∼ N(µ, σ2). Construct the likelihood ratio test for

H0 : σ = σ0 versus H1 : σ �= σ0.

Compare to the Wald test.

15. Let X ∼ Binomial(n, p). Construct the likelihood ratio test for

H0 : p = p0 versus H1 : p �= p0.

Compare to the Wald test.

16. Let θ be a scalar parameter and suppose we test

H0 : θ = θ0 versus H1 : θ �= θ0.

Let W be the Wald test statistic and let λ be the likelihood ratio test
statistic. Show that these tests are equivalent in the sense that

W 2

λ

P−→ 1

as n → ∞. Hint: Use a Taylor expansion of the log-likelihood �(θ) to
show that

λ ≈
(√

n(θ̂ − θ0)
)2(
− 1
n
�′′(θ̂)

)
.





11
Bayesian Inference

11.1 The Bayesian Philosophy

The statistical methods that we have discussed so far are known as frequen-
tist (or classical) methods. The frequentist point of view is based on the
following postulates:

F1 Probability refers to limiting relative frequencies. Probabilities are ob-
jective properties of the real world.

F2 Parameters are fixed, unknown constants. Because they are not fluctu-
ating, no useful probability statements can be made about parameters.

F3 Statistical procedures should be designed to have well-defined long run
frequency properties. For example, a 95 percent confidence interval should
trap the true value of the parameter with limiting frequency at least 95
percent.

There is another approach to inference called Bayesian inference. The
Bayesian approach is based on the following postulates:
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B1 Probability describes degree of belief, not limiting frequency. As such,
we can make probability statements about lots of things, not just data
which are subject to random variation. For example, I might say that
“the probability that Albert Einstein drank a cup of tea on August 1,
1948” is .35. This does not refer to any limiting frequency. It reflects my
strength of belief that the proposition is true.

B2 We can make probability statements about parameters, even though
they are fixed constants.

B3 We make inferences about a parameter θ by producing a probability
distribution for θ. Inferences, such as point estimates and interval esti-
mates, may then be extracted from this distribution.

Bayesian inference is a controversial approach because it inherently em-
braces a subjective notion of probability. In general, Bayesian methods pro-
vide no guarantees on long run performance. The field of statistics puts more
emphasis on frequentist methods although Bayesian methods certainly have
a presence. Certain data mining and machine learning communities seem to
embrace Bayesian methods very strongly. Let’s put aside philosophical ar-
guments for now and see how Bayesian inference is done. We’ll conclude this
chapter with some discussion on the strengths and weaknesses of the Bayesian
approach.

11.2 The Bayesian Method

Bayesian inference is usually carried out in the following way.

1. We choose a probability density f(θ) — called the prior distribution
— that expresses our beliefs about a parameter θ before we see any
data.

2. We choose a statistical model f(x|θ) that reflects our beliefs about x
given θ. Notice that we now write this as f(x|θ) instead of f(x; θ).

3. After observing data X1, . . . , Xn, we update our beliefs and calculate
the posterior distribution f(θ|X1, . . . , Xn).

To see how the third step is carried out, first suppose that θ is discrete and
that there is a single, discrete observation X. We should use a capital letter
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now to denote the parameter since we are treating it like a random variable,
so let Θ denote the parameter. Now, in this discrete setting,

P(Θ = θ|X = x) =
P(X = x,Θ = θ)

P(X = x)

=
P(X = x|Θ = θ)P(Θ = θ)∑
θ P(X = x|Θ = θ)P(Θ = θ)

which you may recognize from Chapter 1 as Bayes’ theorem. The version
for continuous variables is obtained by using density functions:

f(θ|x) =
f(x|θ)f(θ)∫
f(x|θ)f(θ)dθ

. (11.1)

If we have n iid observations X1, . . . , Xn, we replace f(x|θ) with

f(x1, . . . , xn|θ) =
n∏
i=1

f(xi|θ) = Ln(θ).

Notation. We will writeXn to mean (X1, . . . , Xn) and xn to mean (x1, . . . , xn).
Now,

f(θ|xn) =
f(xn|θ)f(θ)∫
f(xn|θ)f(θ)dθ

=
Ln(θ)f(θ)

cn
∝ Ln(θ)f(θ) (11.2)

where
cn =

∫
Ln(θ)f(θ)dθ (11.3)

is called the normalizing constant. Note that cn does not depend on θ. We
can summarize by writing:

Posterior is proportional to Likelihood times Prior

or, in symbols,
f(θ|xn) ∝ L(θ)f(θ).

You might wonder, doesn’t it cause a problem to throw away the constant
cn? The answer is that we can always recover the constant later if we need to.

What do we do with the posterior distribution? First, we can get a point
estimate by summarizing the center of the posterior. Typically, we use the
mean or mode of the posterior. The posterior mean is

θn =
∫
θf(θ|xn)dθ =

∫
θLn(θ)f(θ)∫
Ln(θ)f(θ)dθ

. (11.4)
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We can also obtain a Bayesian interval estimate. We find a and b such that∫ a
−∞ f(θ|xn)dθ =

∫ ∞
b
f(θ|xn)dθ = α/2. Let C = (a, b). Then

P(θ ∈ C|xn) =
∫ b

a

f(θ|xn) dθ = 1− α

so C is a 1− α posterior interval.

11.1 Example. Let X1, . . . , Xn ∼ Bernoulli(p). Suppose we take the uniform
distribution f(p) = 1 as a prior. By Bayes’ theorem, the posterior has the
form

f(p|xn) ∝ f(p)Ln(p) = ps(1− p)n−s = ps+1−1(1− p)n−s+1−1

where s =
∑n
i=1 xi is the number of successes. Recall that a random variable

has a Beta distribution with parameters α and β if its density is

f(p; α, β) =
Γ(α+ β)
Γ(α)Γ(β)

pα−1(1− p)β−1.

We see that the posterior for p is a Beta distribution with parameters s + 1
and n− s+ 1. That is,

f(p|xn) =
Γ(n+ 2)

Γ(s+ 1)Γ(n− s+ 1)
p(s+1)−1(1− p)(n−s+1)−1.

We write this as
p|xn ∼ Beta(s+ 1, n− s+ 1).

Notice that we have figured out the normalizing constant without actually
doing the integral

∫
Ln(p)f(p)dp. The mean of a Beta(α, β) distribution is

α/(α+ β) so the Bayes estimator is

p =
s+ 1
n+ 2

. (11.5)

It is instructive to rewrite the estimator as

p = λnp̂+ (1− λn)p̃ (11.6)

where p̂ = s/n is the mle, p̃ = 1/2 is the prior mean and λn = n/(n+2) ≈ 1.
A 95 percent posterior interval can be obtained by numerically finding a and
b such that

∫ b
a
f(p|xn) dp = .95.

Suppose that instead of a uniform prior, we use the prior p ∼ Beta(α, β).
If you repeat the calculations above, you will see that p|xn ∼ Beta(α+ s, β +
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n − s). The flat prior is just the special case with α = β = 1. The posterior
mean is

p =
α+ s

α+ β + n
=

(
n

α+ β + n

)
p̂+

(
α+ β

α+ β + n

)
p0

where p0 = α/(α+ β) is the prior mean. �

In the previous example, the prior was a Beta distribution and the posterior
was a Beta distribution. When the prior and the posterior are in the same
family, we say that the prior is conjugate with respect to the model.

11.2 Example. Let X1, . . . , Xn ∼ N(θ, σ2). For simplicity, let us assume that
σ is known. Suppose we take as a prior θ ∼ N(a, b2). In problem 1 in the
exercises it is shown that the posterior for θ is

θ|Xn ∼ N(θ, τ2) (11.7)

where
θ = wX + (1− w)a,

w =
1

se2

1
se2 + 1

b2

,
1
τ2

=
1

se2
+

1
b2
,

and se = σ/
√
n is the standard error of the mle X. This is another example

of a conjugate prior. Note that w → 1 and τ/se→ 1 as n→∞. So, for large
n, the posterior is approximately N(θ̂, se2). The same is true if n is fixed but
b→∞, which corresponds to letting the prior become very flat.

Continuing with this example, let us find C = (c, d) such that P(θ ∈
C|Xn) = .95. We can do this by choosing c and d such that P(θ < c|Xn) =
.025 and P(θ > d|Xn) = .025. So, we want to find c such that

P(θ < c|Xn) = P

(
θ − θ
τ

<
c− θ
τ

∣∣∣∣∣ Xn

)

= P

(
Z <

c− θ
τ

)
= .025.

We know that P(Z < −1.96) = .025. So,

c− θ
τ

= −1.96

implying that c = θ−1.96τ. By similar arguments, d = θ+1.96. So a 95 percent
Bayesian interval is θ±1.96 τ . Since θ ≈ θ̂ and τ ≈ se, the 95 percent Bayesian
interval is approximated by θ̂ ± 1.96 se which is the frequentist confidence
interval. �
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11.3 Functions of Parameters

How do we make inferences about a function τ = g(θ)? Remember in Chapter
3 we solved the following problem: given the density fX for X, find the density
for Y = g(X). We now simply apply the same reasoning. The posterior cdf

for τ is
H(τ |xn) = P(g(θ) ≤ τ |xn) =

∫
A

f(θ|xn)dθ

where A = {θ : g(θ) ≤ τ}. The posterior density is h(τ |xn) = H ′(τ |xn).

11.3 Example. Let X1, . . . , Xn ∼ Bernoulli(p) and f(p) = 1 so that p|Xn ∼
Beta(s+ 1, n− s+ 1) with s =

∑n
i=1 xi. Let ψ = log(p/(1− p)). Then

H(ψ|xn) = P(Ψ ≤ ψ|xn) = P

(
log

(
P

1− P

)
≤ ψ

∣∣∣∣∣ xn
)

= P

(
P ≤ eψ

1 + eψ

∣∣∣∣∣ xn
)

=
∫ eψ/(1+eψ)

0

f(p|xn) dp

=
Γ(n+ 2)

Γ(s+ 1)Γ(n− s+ 1)

∫ eψ/(1+eψ)

0

ps(1− p)n−s dp

and

h(ψ|xn) = H ′(ψ|xn)

=
Γ(n+ 2)

Γ(s+ 1)Γ(n− s+ 1)

(
eψ

1 + eψ

)s( 1
1 + eψ

)n−s
∂

(
eψ

1+eψ

)
∂ψ


=

Γ(n+ 2)
Γ(s+ 1)Γ(n− s+ 1)

(
eψ

1 + eψ

)s( 1
1 + eψ

)n−s( 1
1 + eψ

)2

=
Γ(n+ 2)

Γ(s+ 1)Γ(n− s+ 1)

(
eψ

1 + eψ

)s( 1
1 + eψ

)n−s+2

for ψ ∈ R. �

11.4 Simulation

The posterior can often be approximated by simulation. Suppose we draw
θ1, . . . , θB ∼ p(θ|xn). Then a histogram of θ1, . . . , θB approximates the poste-
rior density p(θ|xn). An approximation to the posterior mean θn = E(θ|xn) is
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B−1
∑B
j=1 θj . The posterior 1−α interval can be approximated by (θα/2, θ1−α/2)

where θα/2 is the α/2 sample quantile of θ1, . . . , θB .
Once we have a sample θ1, . . . , θB from f(θ|xn), let τi = g(θi). Then

τ1, . . . , τB is a sample from f(τ |xn). This avoids the need to do any analytical
calculations. Simulation is discussed in more detail in Chapter 24.

11.4 Example. Consider again Example 11.3. We can approximate the pos-
terior for ψ without doing any calculus. Here are the steps:

1. Draw P1, . . . , PB ∼ Beta(s+ 1, n− s+ 1).

2. Let ψi = log(Pi/(1− Pi)) for i = 1, . . . , B.

Now ψ1, . . . , ψB are iid draws from h(ψ|xn). A histogram of these values
provides an estimate of h(ψ|xn). �

11.5 Large Sample Properties of Bayes’ Procedures

In the Bernoulli and Normal examples we saw that the posterior mean was
close to the mle. This is true in greater generality.

11.5 Theorem. Let θ̂n be the mle and let ŝe = 1/
√
nI(θ̂n). Under appropriate

regularity conditions, the posterior is approximately Normal with mean θ̂n and
standard deviation ŝe. Hence, θn ≈ θ̂n. Also, if Cn = (θ̂n−zα/2ŝe, θ̂n+zα/2ŝe)
is the asymptotic frequentist 1 − α confidence interval, then Cn is also an
approximate 1− α Bayesian posterior interval:

P(θ ∈ Cn|Xn)→ 1− α.

There is also a Bayesian delta method. Let τ = g(θ). Then

τ |Xn ≈ N(τ̂ , s̃e2)

where τ̂ = g(θ̂) and s̃e = ŝe |g′(θ̂)|.

11.6 Flat Priors, Improper Priors, and
“Noninformative” Priors

An important question in Bayesian inference is: where does one get the prior
f(θ)? One school of thought, called subjectivism says that the prior should
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reflect our subjective opinion about θ (before the data are collected). This may
be possible in some cases but is impractical in complicated problems especially
if there are many parameters. Moreover, injecting subjective opinion into the
analysis is contrary to the goal of making scientific inference as objective
as possible. An alternative is to try to define some sort of “noninformative
prior.” An obvious candidate for a noninformative prior is to use a flat prior
f(θ) ∝ constant.

In the Bernoulli example, taking f(p) = 1 leads to p|Xn ∼ Beta(s+ 1, n−
s+ 1) as we saw earlier, which seemed very reasonable. But unfettered use of
flat priors raises some questions.

Improper Priors. Let X ∼ N(θ, σ2) with σ known. Suppose we adopt
a flat prior f(θ) ∝ c where c > 0 is a constant. Note that

∫
f(θ)dθ = ∞ so

this is not a probability density in the usual sense. We call such a prior an
improper prior. Nonetheless, we can still formally carry out Bayes’ theorem
and compute the posterior density by multiplying the prior and the likelihood:
f(θ) ∝ Ln(θ)f(θ) ∝ Ln(θ). This gives θ|Xn ∼ N(X,σ2/n) and the resulting
point and interval estimators agree exactly with their frequentist counterparts.
In general, improper priors are not a problem as long as the resulting posterior
is a well-defined probability distribution.

Flat Priors are Not Invariant. Let X ∼ Bernoulli(p) and suppose we
use the flat prior f(p) = 1. This flat prior presumably represents our lack of
information about p before the experiment. Now let ψ = log(p/(1− p)). This
is a transformation of p and we can compute the resulting distribution for ψ,
namely,

fΨ(ψ) =
eψ

(1 + eψ)2

which is not flat. But if we are ignorant about p then we are also ignorant
about ψ so we should use a flat prior for ψ. This is a contradiction. In short,
the notion of a flat prior is not well defined because a flat prior on a parameter
does not imply a flat prior on a transformed version of the parameter. Flat
priors are not transformation invariant.

Jeffreys’ Prior. Jeffreys came up with a rule for creating priors. The
rule is: take

f(θ) ∝ I(θ)1/2

where I(θ) is the Fisher information function. This rule turns out to be trans-
formation invariant. There are various reasons for thinking that this prior
might be a useful prior but we will not go into details here.
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11.6 Example. Consider the Bernoulli (p) model. Recall that

I(p) =
1

p(1− p) .

Jeffreys’ rule says to use the prior

f(p) ∝
√
I(p) = p−1/2(1− p)−1/2.

This is a Beta (1/2,1/2) density. This is very close to a uniform density. �

In a multiparameter problem, the Jeffreys’ prior is defined to be f(θ) ∝√
|I(θ)| where |A| denotes the determinant of a matrix A and I(θ) is the

Fisher information matrix.

11.7 Multiparameter Problems

Suppose that θ = (θ1, . . . , θp). The posterior density is still given by

f(θ|xn) ∝ Ln(θ)f(θ). (11.8)

The question now arises of how to extract inferences about one parameter.
The key is to find the marginal posterior density for the parameter of interest.
Suppose we want to make inferences about θ1. The marginal posterior for θ1
is

f(θ1|xn) =
∫
· · ·

∫
f(θ1, · · · , θp|xn)dθ2 . . . dθp. (11.9)

In practice, it might not be feasible to do this integral. Simulation can help.
Draw randomly from the posterior:

θ1, . . . , θB ∼ f(θ|xn)

where the superscripts index the different draws. Each θj is a vector θj =
(θj1, . . . , θ

j
p). Now collect together the first component of each draw:

θ11, . . . , θ
B
1 .

These are a sample from f(θ1|xn) and we have avoided doing any integrals.

11.7 Example (Comparing Two Binomials). Suppose we have n1 control pa-
tients and n2 treatment patients and that X1 control patients survive while
X2 treatment patients survive. We want to estimate τ = g(p1, p2) = p2 − p1.
Then,

X1 ∼ Binomial(n1, p1) and X2 ∼ Binomial(n2, p2).
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If f(p1, p2) = 1, the posterior is

f(p1, p2|x1, x2) ∝ px1
1 (1− p1)n1−x1px2

2 (1− p2)n2−x2 .

Notice that (p1, p2) live on a rectangle (a square, actually) and that

f(p1, p2|x1, x2) = f(p1|x1)f(p2|x2)

where

f(p1|x1) ∝ px1
1 (1− p1)n1−x1 and f(p2|x2) ∝ px2

2 (1− p2)n2−x2

which implies that p1 and p2 are independent under the posterior. Also,
p1|x1 ∼ Beta(x1 + 1, n1 − x1 + 1) and p2|x2 ∼ Beta(x2 + 1, n2 − x2 + 1).
If we simulate P1,1, . . . , P1,B ∼ Beta(x1 + 1, n1− x1 + 1) and P2,1, . . . , P2,B ∼
Beta(x2 +1, n2−x2 +1), then τb = P2,b−P1,b, b = 1, . . . , B, is a sample from
f(τ |x1, x2). �

11.8 Bayesian Testing

Hypothesis testing from a Bayesian point of view is a complex topic. We
will only give a brief sketch of the main idea here. The Bayesian approach
to testing involves putting a prior on H0 and on the parameter θ and then
computing P(H0|Xn). Consider the case where θ is scalar and we are testing

H0 : θ = θ0 versus H1 : θ �= θ0.

It is usually reasonable to use the prior P(H0) = P(H1) = 1/2 (although this
is not essential in what follows). Under H1 we need a prior for θ. Denote this
prior density by f(θ). From Bayes’ theorem

P(H0|Xn = xn) =
f(xn|H0)P(H0)

f(xn|H0)P(H0) + f(xn|H1)P(H1)

=
1
2f(xn | θ0)

1
2f(xn | θ0) + 1

2f(xn | H1)

=
f(xn | θ0)

f(xn | θ0) +
∫
f(xn | θ)f(θ)dθ

=
L(θ0)

L(θ0) +
∫
L(θ)f(θ)dθ

.

We saw that, in estimation problems, the prior was not very influential and
that the frequentist and Bayesian methods gave similar answers. This is not
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the case in hypothesis testing. Also, one can’t use improper priors in testing
because this leads to an undefined constant in the denominator of the expres-
sion above. Thus, if you use Bayesian testing you must choose the prior f(θ)
very carefully. It is possible to get a prior-free bound on P(H0|Xn = xn).
Notice that 0 ≤

∫
L(θ)f(θ)dθ ≤ L(θ̂). Hence,

L(θ0)

L(θ0) + L(θ̂)
≤ P(H0|Xn = xn) ≤ 1.

The upper bound is not very interesting, but the lower bound is non-trivial.

11.9 Strengths and Weaknesses of Bayesian Inference

Bayesian inference is appealing when prior information is available since Bayes’
theorem is a natural way to combine prior information with data. Some peo-
ple find Bayesian inference psychologically appealing because it allows us to
make probability statements about parameters. In contrast, frequentist infer-
ence provides confidence sets Cn which trap the parameter 95 percent of the
time, but we cannot say that P(θ ∈ Cn|Xn) is .95. In the frequentist approach
we can make probability statements about Cn, not θ. However, psychological
appeal is not a compelling scientific argument for using one type of inference
over another.

In parametric models, with large samples, Bayesian and frequentist methods
give approximately the same inferences. In general, they need not agree.

Here are three examples that illustrate the strengths and weakness of Bayesian
inference. The first example is Example 6.14 revisited. This example shows
the psychological appeal of Bayesian inference. The second and third show
that Bayesian methods can fail.

11.8 Example (Example 6.14 revisited). We begin by reviewing the example.
Let θ be a fixed, known real number and let X1, X2 be independent random
variables such that P(Xi = 1) = P(Xi = −1) = 1/2. Now define Yi = θ +Xi

and suppose that you only observe Y1 and Y2. Let

C =

{
{Y1 − 1} if Y1 = Y2

{(Y1 + Y2)/2} if Y1 �= Y2.

This is a 75 percent confidence set since, no matter what θ is, Pθ(θ ∈ C) = 3/4.
Suppose we observe Y1 = 15 and Y2 = 17. Then our 75 percent confidence

interval is {16}. However, we are certain, in this case, that θ = 16. So calling
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this a 75 percent confidence set, bothers many people. Nonetheless, C is a
valid 75 percent confidence set. It will trap the true value 75 percent of the
time.

The Bayesian solution is more satisfying to many. For simplicity, assume
that θ is an integer. Let f(θ) be a prior mass function such that f(θ) > 0 for
every integer θ. When Y = (Y1, Y2) = (15, 17), the likelihood function is

L(θ) =
{

1/4 θ = 16
0 otherwise.

Applying Bayes’ theorem we see that

P(Θ = θ|Y = (15, 17)) =
{

1 θ = 16
0 otherwise.

Hence, P(θ ∈ C|Y = (15, 17)) = 1. There is nothing wrong with saying that
{16} is a 75 percent confidence interval. But is it not a probability statement
about θ. �

11.9 Example. This is a simplified version of the example in Robins and Ritov
(1997). The data consist of n iid triples

(X1, R1, Y1), . . . , (Xn, Yn, Rn).

Let B be a finite but very large number, like B = 100100. Any realistic sample
size n will be small compared to B. Let

θ = (θ1, . . . , θB)

be a vector of unknown parameters such that 0 ≤ θj ≤ 1 for 1 ≤ j ≤ B. Let

ξ = (ξ1, . . . , ξB)

be a vector of known numbers such that

0 < δ ≤ ξj ≤ 1− δ < 1, 1 ≤ j ≤ B,

where δ is some, small, positive number. Each data point (Xi, Ri, Yi) is drawn
in the following way:

1. Draw Xi uniformly from {1, . . . , B}.

2. Draw Ri ∼ Bernoulli(ξXi).

3. If Ri = 1, then draw Yi ∼ Bernoulli(θXi). If Ri = 0, do not draw Yi.
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The model may seem a little artificial but, in fact, it is caricature of some
real missing data problems in which some data points are not observed. In
this example, Ri = 0 can be thought of as meaning “missing.” Our goal is to
estimate

ψ = P(Yi = 1).

Note that

ψ = P(Yi = 1) =
B∑
j=1

P(Yi = 1|X = j)P(X = j)

=
1
B

B∑
j=1

θj ≡ g(θ)

so ψ = g(θ) is a function of θ.
Let us consider a Bayesian analysis first. The likelihood of a single obser-

vation is

f(Xi, Ri, Yi) = f(Xi)f(Ri|Xi)f(Yi|Xi)Ri .

The last term is raised to the power Ri since, if Ri = 0, then Yi is not observed
and hence that term drops out of the likelihood. Since f(Xi) = 1/B and that
Yi and Ri are Bernoulli,

f(Xi)f(Ri|Xi)f(Yi|Xi)Ri =
1
B
ξRiXi (1− ξXi)1−Ri θYiRiXi

(1− θXi)(1−Yi)Ri .

Thus, the likelihood function is

L(θ) =
n∏
i=1

f(Xi)f(Ri|Xi)f(Yi|Xi)Ri

=
n∏
i=1

1
B
ξRiXi (1− ξXi)1−Ri θYiRiXi

(1− θXi)(1−Yi)Ri

∝ θYiRiXi
(1− θXi)(1−Yi)Ri .

We have dropped all the terms involving B and the ξj ’s since these are known
constants, not parameters. The log-likelihood is

�(θ) =
n∑
i=1

YiRi log θXi + (1− Yi)Ri log(1− θXi)

=
B∑
j=1

nj log θj +
B∑
j=1

mj log(1− θj)
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where

nj = #{i : Yi = 1, Ri = 1, Xi = j}
mj = #{i : Yi = 0, Ri = 1, Xi = j}.

Now, nj = mj = 0 for most j since B is so much larger than n. This has
several implications. First, the mle for most θj is not defined. Second, for
most θj , the posterior distribution is equal to the prior distribution, since
those θj do not appear in the likelihood. Hence, f(θ|Data) ≈ f(θ). It follows
that f(ψ|Data) ≈ f(ψ). In other words, the data provide little information
about ψ in a Bayesian analysis.

Now we consider a frequentist solution. Define

ψ̂ =
1
n

n∑
i=1

RiYi
ξXi

. (11.10)

We will now show that this estimator is unbiased and has small mean-squared
error. It can be shown (see Exercise 7) that

E(ψ̂) = ψ and V(ψ̂) ≤ 1
nδ2

. (11.11)

Therefore, the mse is of order 1/n which goes to 0 fairly quickly as we collect
more data, no matter how large B is. The estimator defined in (11.10) is called
the Horwitz-Thompson estimator. It cannot be derived from a Bayesian or
likelihood point of view since it involves the terms ξXi . These terms drop
out of the log-likelihood and hence will not show up in any likelihood-based
method including Bayesian estimators.

The moral of the story is this. Bayesian methods are tied to the likeli-
hood function. But in high dimensional (and nonparametric) problems, the
likelihood may not yield accurate inferences. �

11.10 Example. Suppose that f is a probability density function and that

f(x) = cg(x)

where g(x) > 0 is a known function and c is unknown. In principle we can
compute c since

∫
f(x) dx = 1 implies that c = 1/

∫
g(x) dx. But in many cases

we can’t do the integral
∫
g(x) dx since g might be a complicated function and

x could be high dimensional. Despite the fact that c is not known, it is often
possible to draw a sample X1, . . . , Xn from f ; see Chapter 24. Can we use the
sample to estimate the normalizing constant c? Here is a frequentist solution:
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Let f̂n(x) be a consistent estimate of the density f . Chapter 20 explains how to
construct such an estimate. Choose any point x and note that c = f(x)/g(x).
Hence, ĉ = f̂(x)/g(x) is a consistent estimate of c. Now let us try to solve this
problem from a Bayesian approach. Let π(c) be a prior such that π(c) > 0 for
all c > 0. The likelihood function is

Ln(c) =
n∏
i=1

f(Xi) =
n∏
i=1

cg(Xi) = cn
n∏
i=1

g(Xi) ∝ cn.

Hence the posterior is proportional to cnπ(c). The posterior does not depend
on X1, . . . , Xn, so we come to the startling conclusion that, from the Bayesian
point of view, there is no information in the data about c. Moreover, the
posterior mean is ∫ ∞

0
cn+1π(c) dc∫ ∞

0
cnπ(c) dc

which tends to infinity as n increases. �

These last two examples illustrate an important point. Bayesians are slaves
to the likelihood function. When the likelihood goes awry, so will Bayesian
inference.

What should we conclude from all this? The important thing is to under-
stand that frequentist and Bayesian methods are answering different ques-
tions. To combine prior beliefs with data in a principled way, use Bayesian in-
ference. To construct procedures with guaranteed long run performance, such
as confidence intervals, use frequentist methods. Generally, Bayesian methods
run into problems when the parameter space is high dimensional. In particu-
lar, 95 percent posterior intervals need not contain the true value 95 percent
of the time (in the frequency sense).

11.10 Bibliographic Remarks

Some references on Bayesian inference include Carlin and Louis (1996), Gel-
man et al. (1995), Lee (1997), Robert (1994), and Schervish (1995). See Cox
(1993), Diaconis and Freedman (1986), Freedman (1999), Barron et al. (1999),
Ghosal et al. (2000), Shen and Wasserman (2001), and Zhao (2000) for discus-
sions of some of the technicalities of nonparametric Bayesian inference. The
Robins-Ritov example is discussed in detail in Robins and Ritov (1997) where
it is cast more properly as a nonparametric problem. Example 11.10 is due to
Edward George (personal communication). See Berger and Delampady (1987)
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and Kass and Raftery (1995) for a discussion of Bayesian testing. See Kass
and Wasserman (1996) for a discussion of noninformative priors.

11.11 Appendix

Proof of Theorem 11.5.
It can be shown that the effect of the prior diminishes as n increases so

that f(θ|Xn) ∝ Ln(θ)f(θ) ≈ Ln(θ). Hence, log f(θ|Xn) ≈ �(θ). Now, �(θ) ≈
�(θ̂)+(θ− θ̂)�′(θ̂)+ [(θ− θ̂)2/2]�′′(θ̂) = �(θ̂)+ [(θ− θ̂)2/2]�′′(θ̂) since �′(θ̂) = 0.
Exponentiating, we get approximately that

f(θ|Xn) ∝ exp

{
−1

2
(θ − θ̂)2
σ2
n

}

where σ2
n = −1/�′′(θ̂n). So the posterior of θ is approximately Normal with

mean θ̂ and variance σ2
n. Let �i = log f(Xi|θ), then

1
σ2
n

= −�′′(θ̂n) =
∑
i

−�′′i (θ̂n)

= n

(
1
n

)∑
i

−�′′i (θ̂n) ≈ nEθ

[
−�′′i (θ̂n)

]
= nI(θ̂n)

and hence σn ≈ se(θ̂). �

11.12 Exercises

1. Verify (11.7).

2. Let X1, ..., Xn ∼ Normal(µ, 1).

(a) Simulate a data set (using µ = 5) consisting of n=100 observations.

(b) Take f(µ) = 1 and find the posterior density. Plot the density.

(c) Simulate 1,000 draws from the posterior. Plot a histogram of the
simulated values and compare the histogram to the answer in (b).

(d) Let θ = eµ. Find the posterior density for θ analytically and by
simulation.

(e) Find a 95 percent posterior interval for µ.

(f) Find a 95 percent confidence interval for θ.
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3. Let X1, ..., Xn ∼ Uniform(0, θ). Let f(θ) ∝ 1/θ. Find the posterior
density.

4. Suppose that 50 people are given a placebo and 50 are given a new
treatment. 30 placebo patients show improvement while 40 treated pa-
tients show improvement. Let τ = p2− p1 where p2 is the probability of
improving under treatment and p1 is the probability of improving under
placebo.

(a) Find the mle of τ . Find the standard error and 90 percent confidence
interval using the delta method.

(b) Find the standard error and 90 percent confidence interval using the
parametric bootstrap.

(c) Use the prior f(p1, p2) = 1. Use simulation to find the posterior
mean and posterior 90 percent interval for τ .

(d) Let

ψ = log
((

p1

1− p1

)
÷

(
p2

1− p2

))
be the log-odds ratio. Note that ψ = 0 if p1 = p2. Find the mle of ψ.
Use the delta method to find a 90 percent confidence interval for ψ.

(e) Use simulation to find the posterior mean and posterior 90 percent
interval for ψ.

5. Consider the Bernoulli(p) observations

0 1 0 1 0 0 0 0 0 0

Plot the posterior for p using these priors: Beta(1/2,1/2), Beta(1,1),
Beta(10,10), Beta(100,100).

6. Let X1, . . . , Xn ∼ Poisson(λ).

(a) Let λ ∼ Gamma(α, β) be the prior. Show that the posterior is also
a Gamma. Find the posterior mean.

(b) Find the Jeffreys’ prior. Find the posterior.

7. In Example 11.9, verify (11.11).

8. Let X ∼ N(µ, 1). Consider testing

H0 : µ = 0 versus H1 : µ �= 0.
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Take P(H0) = P(H1) = 1/2. Let the prior for µ under H1 be µ ∼
N(0, b2). Find an expression for P(H0|X = x). Compare P(H0|X = x)
to the p-value of the Wald test. Do the comparison numerically for a
variety of values of x and b. Now repeat the problem using a sample of
size n. You will see that the posterior probability of H0 can be large even
when the p-value is small, especially when n is large. This disagreement
between Bayesian and frequentist testing is called the Jeffreys-Lindley
paradox.
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Statistical Decision Theory

12.1 Preliminaries

We have considered several point estimators such as the maximum likelihood
estimator, the method of moments estimator, and the posterior mean. In fact,
there are many other ways to generate estimators. How do we choose among
them? The answer is found in decision theory which is a formal theory for
comparing statistical procedures.

Consider a parameter θ which lives in a parameter space Θ. Let θ̂ be an
estimator of θ. In the language of decision theory, an estimator is sometimes
called a decision rule and the possible values of the decision rule are called
actions.

We shall measure the discrepancy between θ and θ̂ using a loss function
L(θ, θ̂). Formally, L maps Θ × Θ into R. Here are some examples of loss
functions:

L(θ, θ̂) = (θ − θ̂)2 squared error loss,
L(θ, θ̂) = |θ − θ̂| absolute error loss,
L(θ, θ̂) = |θ − θ̂|p Lp loss,
L(θ, θ̂) = 0 if θ = θ̂ or 1 if θ �= θ̂ zero–one loss,
L(θ, θ̂) =

∫
log

(
f(x; θ)

f(x; θ̂)

)
f(x; θ)dx Kullback–Leibler loss.
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Bear in mind in what follows that an estimator θ̂ is a function of the data.
To emphasize this point, sometimes we will write θ̂ as θ̂(X). To assess an
estimator, we evaluate the average loss or risk.

12.1 Definition. The risk of an estimator θ̂ is

R(θ, θ̂) = Eθ

(
L(θ, θ̂)

)
=

∫
L(θ, θ̂(x))f(x; θ)dx.

When the loss function is squared error, the risk is just the mse (mean
squared error):

R(θ, θ̂) = Eθ(θ̂ − θ)2 = mse = Vθ(θ̂) + bias2θ(θ̂).

In the rest of the chapter, if we do not state what loss function we are using,
assume the loss function is squared error.

12.2 Comparing Risk Functions

To compare two estimators we can compare their risk functions. However, this
does not provide a clear answer as to which estimator is better. Consider the
following examples.

12.2 Example. Let X ∼ N(θ, 1) and assume we are using squared error
loss. Consider two estimators: θ̂1 = X and θ̂2 = 3. The risk functions are
R(θ, θ̂1) = Eθ(X − θ)2 = 1 and R(θ, θ̂2) = Eθ(3− θ)2 = (3− θ)2. If 2 < θ < 4
then R(θ, θ̂2) < R(θ, θ̂1), otherwise, R(θ, θ̂1) < R(θ, θ̂2). Neither estimator
uniformly dominates the other; see Figure 12.1. �

12.3 Example. Let X1, . . . , Xn ∼ Bernoulli(p). Consider squared error loss
and let p̂1 = X. Since this has 0 bias, we have that

R(p, p̂1) = V(X) =
p(1− p)

n
.

Another estimator is
p̂2 =

Y + α

α+ β + n

where Y =
∑n
i=1Xi and α and β are positive constants. This is the posterior

mean using a Beta (α, β) prior. Now,

R(p, p̂2) = Vp(p̂2) + (biasp(p̂2))2
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FIGURE 12.1. Comparing two risk functions. Neither risk function dominates the
other at all values of θ.

= Vp

(
Y + α

α+ β + n

)
+

(
Ep

(
Y + α

α+ β + n

)
− p

)2

=
np(1− p)

(α+ β + n)2
+

(
np+ α

α+ β + n
− p

)2

.

Let α = β =
√
n/4. (In Example 12.12 we will explain this choice.) The

resulting estimator is

p̂2 =
Y +

√
n/4

n+
√
n

and the risk function is

R(p, p̂2) =
n

4(n+
√
n)2

.

The risk functions are plotted in figure 12.2. As we can see, neither estimator
uniformly dominates the other.

These examples highlight the need to be able to compare risk functions.
To do so, we need a one-number summary of the risk function. Two such
summaries are the maximum risk and the Bayes risk.

12.4 Definition. The maximum risk is

R(θ̂) = sup
θ
R(θ, θ̂) (12.1)

and the Bayes risk is

r(f, θ̂) =
∫
R(θ, θ̂)f(θ)dθ (12.2)

where f(θ) is a prior for θ.
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R
is

k

p

FIGURE 12.2. Risk functions for p̂1 and p̂2 in Example 12.3. The solid curve is
R(p̂1). The dotted line is R(p̂2).

12.5 Example. Consider again the two estimators in Example 12.3. We have

R(p̂1) = max
0≤p≤1

p(1− p)
n

=
1
4n

and
R(p̂2) = max

p

n

4(n+
√
n)2

=
n

4(n+
√
n)2

.

Based on maximum risk, p̂2 is a better estimator since R(p̂2) < R(p̂1). How-
ever, when n is large, R(p̂1) has smaller risk except for a small region in the
parameter space near p = 1/2. Thus, many people prefer p̂1 to p̂2. This il-
lustrates that one-number summaries like maximum risk are imperfect. Now
consider the Bayes risk. For illustration, let us take f(p) = 1. Then

r(f, p̂1) =
∫
R(p, p̂1)dp =

∫
p(1− p)

n
dp =

1
6n

and
r(f, p̂2) =

∫
R(p, p̂2)dp =

n

4(n+
√
n)2

.

For n ≥ 20, r(f, p̂2) > r(f, p̂1) which suggests that p̂1 is a better estimator.
This might seem intuitively reasonable but this answer depends on the choice
of prior. The advantage of using maximum risk, despite its problems, is that
it does not require one to choose a prior. �

These two summaries of the risk function suggest two different methods
for devising estimators: choosing θ̂ to minimize the maximum risk leads to
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minimax estimators; choosing θ̂ to minimize the Bayes risk leads to Bayes
estimators.

12.6 Definition. A decision rule that minimizes the Bayes risk is called a
Bayes rule. Formally, θ̂ is a Bayes rule with respect to the prior f if

r(f, θ̂) = inf
θ̃
r(f, θ̃) (12.3)

where the infimum is over all estimators θ̃. An estimator that minimizes
the maximum risk is called a minimax rule. Formally, θ̂ is minimax if

sup
θ
R(θ, θ̂) = inf

θ̃
sup
θ
R(θ, θ̃) (12.4)

where the infimum is over all estimators θ̃.

12.3 Bayes Estimators

Let f be a prior. From Bayes’ theorem, the posterior density is

f(θ|x) =
f(x|θ)f(θ)
m(x)

=
f(x|θ)f(θ)∫
f(x|θ)f(θ)dθ

(12.5)

where m(x) =
∫
f(x, θ)dθ =

∫
f(x|θ)f(θ)dθ is the marginal distribution of

X. Define the posterior risk of an estimator θ̂(x) by

r(θ̂|x) =
∫
L(θ, θ̂(x))f(θ|x)dθ. (12.6)

12.7 Theorem. The Bayes risk r(f, θ̂) satisfies

r(f, θ̂) =
∫
r(θ̂|x)m(x) dx.

Let θ̂(x) be the value of θ that minimizes r(θ̂|x). Then θ̂ is the Bayes estimator.

Proof. We can rewrite the Bayes risk as follows:

r(f, θ̂) =
∫
R(θ, θ̂)f(θ)dθ =

∫ (∫
L(θ, θ̂(x))f(x|θ)dx

)
f(θ)dθ

=
∫ ∫

L(θ, θ̂(x))f(x, θ)dxdθ =
∫ ∫

L(θ, θ̂(x))f(θ|x)m(x)dxdθ

=
∫ (∫

L(θ, θ̂(x))f(θ|x)dθ
)
m(x) dx =

∫
r(θ̂|x)m(x) dx.
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If we choose θ̂(x) to be the value of θ that minimizes r(θ̂|x) then we will mini-
mize the integrand at every x and thus minimize the integral

∫
r(θ̂|x)m(x)dx.

�

Now we can find an explicit formula for the Bayes estimator for some specific
loss functions.

12.8 Theorem. If L(θ, θ̂) = (θ − θ̂)2 then the Bayes estimator is

θ̂(x) =
∫
θf(θ|x)dθ = E(θ|X = x). (12.7)

If L(θ, θ̂) = |θ − θ̂| then the Bayes estimator is the median of the posterior
f(θ|x). If L(θ, θ̂) is zero–one loss, then the Bayes estimator is the mode of the
posterior f(θ|x).

Proof. We will prove the theorem for squared error loss. The Bayes rule
θ̂(x) minimizes r(θ̂|x) =

∫
(θ− θ̂(x))2f(θ|x)dθ. Taking the derivative of r(θ̂|x)

with respect to θ̂(x) and setting it equal to 0 yields the equation 2
∫

(θ −
θ̂(x))f(θ|x)dθ = 0. Solving for θ̂(x) we get 12.7. �

12.9 Example. Let X1, . . . , Xn ∼ N(µ, σ2) where σ2 is known. Suppose we
use a N(a, b2) prior for µ. The Bayes estimator with respect to squared error
loss is the posterior mean, which is

θ̂(X1, . . . , Xn) =
b2

b2 + σ2

n

X +
σ2

n

b2 + σ2

n

a. �

12.4 Minimax Rules

Finding minimax rules is complicated and we cannot attempt a complete
coverage of that theory here but we will mention a few key results. The main
message to take away from this section is: Bayes estimators with a constant
risk function are minimax.

12.10 Theorem. Let θ̂f be the Bayes rule for some prior f :

r(f, θ̂f ) = inf
θ̂
r(f, θ̂). (12.8)

Suppose that
R(θ, θ̂f ) ≤ r(f, θ̂f ) for all θ. (12.9)

Then θ̂f is minimax and f is called a least favorable prior.
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Proof. Suppose that θ̂f is not minimax. Then there is another rule θ̂0 such
that supθ R(θ, θ̂0) < supθ R(θ, θ̂f ). Since the average of a function is always
less than or equal to its maximum, we have that r(f, θ̂0) ≤ supθ R(θ, θ̂0).
Hence,

r(f, θ̂0) ≤ sup
θ
R(θ, θ̂0) < sup

θ
R(θ, θ̂f ) ≤ r(f, θ̂f )

which contradicts (12.8). �

12.11 Theorem. Suppose that θ̂ is the Bayes rule with respect to some
prior f . Suppose further that θ̂ has constant risk: R(θ, θ̂) = c for some c.
Then θ̂ is minimax.

Proof. The Bayes risk is r(f, θ̂) =
∫
R(θ, θ̂)f(θ)dθ = c and hence R(θ, θ̂) ≤

r(f, θ̂) for all θ. Now apply the previous theorem. �

12.12 Example. Consider the Bernoulli model with squared error loss. In
example 12.3 we showed that the estimator

p̂(Xn) =
∑n
i=1Xi +

√
n/4

n+
√
n

has a constant risk function. This estimator is the posterior mean, and hence
the Bayes rule, for the prior Beta(α, β) with α = β =

√
n/4. Hence, by the

previous theorem, this estimator is minimax. �

12.13 Example. Consider again the Bernoulli but with loss function

L(p, p̂) =
(p− p̂)2
p(1− p) .

Let

p̂(Xn) = p̂ =
∑n
i=1Xi

n
.

The risk is

R(p, p̂) = E

(
(p̂− p)2
p(1− p)

)
=

1
p(1− p)

(
p(1− p)

n

)
=

1
n

which, as a function of p, is constant. It can be shown that, for this loss
function, p̂(Xn) is the Bayes estimator under the prior f(p) = 1. Hence, p̂ is
minimax. �

A natural question to ask is: what is the minimax estimator for a Normal
model?
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θ
0 0.5-0.5

FIGURE 12.3. Risk function for constrained Normal with m=.5. The two short
dashed lines show the least favorable prior which puts its mass at two points.

12.14 Theorem. Let X1, . . . , Xn ∼ N(θ, 1) and let θ̂ = X. Then θ̂ is minimax
with respect to any well-behaved loss function. 1 It is the only estimator with
this property.

If the parameter space is restricted, then the theorem above does not apply
as the next example shows.

12.15 Example. Suppose that X ∼ N(θ, 1) and that θ is known to lie in the
interval [−m,m] where 0 < m < 1. The unique, minimax estimator under
squared error loss is

θ̂(X) = m tanh(mX)

where tanh(z) = (ez− e−z)/(ez + e−z). It can be shown that this is the Bayes
rule with respect to the prior that puts mass 1/2 at m and mass 1/2 at −m.
Moreover, it can be shown that the risk is not constant but it does satisfy
R(θ, θ̂) ≤ r(f, θ̂) for all θ; see Figure 12.3. Hence, Theorem 12.10 implies that
θ̂ is minimax. �

1“Well-behaved” means that the level sets must be convex and symmetric about the origin.
The result holds up to sets of measure 0.
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12.5 Maximum Likelihood, Minimax, and Bayes

For parametric models that satisfy weak regularity conditions, the maximum
likelihood estimator is approximately minimax. Consider squared error loss
which is squared bias plus variance. In parametric models with large samples,
it can be shown that the variance term dominates the bias so the risk of the
mle θ̂ roughly equals the variance:2

R(θ, θ̂) = Vθ(θ̂) + bias2 ≈ Vθ(θ̂).

As we saw in Chapter 9, the variance of the mle is approximately

V(θ̂) ≈ 1
nI(θ)

where I(θ) is the Fisher information. Hence,

nR(θ, θ̂) ≈ 1
I(θ)

. (12.10)

For any other estimator θ′, it can be shown that for large n, R(θ, θ′) ≥ R(θ, θ̂).
More precisely,

lim
ε→0

lim sup
n→∞

sup
|θ−θ′|<ε

nR(θ′, θ̂) ≥ 1
I(θ)

. (12.11)

This says that, in a local, large sample sense, the mle is minimax. It can also
be shown that the mle is approximately the Bayes rule.

In summary:

In most parametric models, with large samples, the mle is approxi-

mately minimax and Bayes.

There is a caveat: these results break down when the number of parameters
is large as the next example shows.

12.16 Example (Many Normal means). Let Yi ∼ N(θi, σ2/n), i = 1, . . . , n.
Let Y = (Y1, . . . , Yn) denote the data and let θ = (θ1, . . . , θn) denote the
unknown parameters. Assume that

θ ∈ Θn ≡
{

(θ1, . . . , θn) :
n∑
i=1

θ2i ≤ c2
}

2Typically, the squared bias is order O(n−2) while the variance is of order O(n−1).
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for some c > 0. In this model, there are as many parameters as observations. 3

The mle is θ̂ = Y = (Y1, . . . , Yn). Under the loss function L(θ, θ̂) =
∑n
i=1(θ̂i−

θi)2, the risk of the mle is R(θ, θ̂) = σ2. It can be shown that the minimax risk
is approximately σ2/(σ2 + c2) and one can find an estimator θ̃ that achieves
this risk. Since σ2/(σ2+c2) < σ2, we see that θ̃ has smaller risk than the mle.
In practice, the difference between the risks can be substantial. This shows
that maximum likelihood is not an optimal estimator in high dimensional
problems. �

12.6 Admissibility

Minimax estimators and Bayes estimators are “good estimators” in the sense
that they have small risk. It is also useful to characterize bad estimators.

12.17 Definition. An estimator θ̂ is inadmissible if there exists another
rule θ̂′ such that

R(θ, θ̂′) ≤ R(θ, θ̂) for all θ and

R(θ, θ̂′) < R(θ, θ̂) for at least one θ.

Otherwise, θ̂ is admissible.

12.18 Example. Let X ∼ N(θ, 1) and consider estimating θ with squared
error loss. Let θ̂(X) = 3. We will show that θ̂ is admissible. Suppose not.
Then there exists a different rule θ̂′ with smaller risk. In particular, R(3, θ̂′) ≤
R(3, θ̂) = 0. Hence, 0 = R(3, θ̂′) =

∫
(θ̂′(x) − 3)2f(x; 3)dx. Thus, θ̂′(x) = 3.

So there is no rule that beats θ̂. Even though θ̂ is admissible it is clearly a
bad decision rule. �

12.19 Theorem (Bayes Rules Are Admissible). Suppose that Θ ⊂ R and that
R(θ, θ̂) is a continuous function of θ for every θ̂. Let f be a prior density with
full support, meaning that, for every θ and every ε > 0,

∫ θ+ε
θ−ε f(θ)dθ > 0. Let

θ̂f be the Bayes’ rule. If the Bayes risk is finite then θ̂f is admissible.

Proof. Suppose θ̂f is inadmissible. Then there exists a better rule θ̂ such
that R(θ, θ̂) ≤ R(θ, θ̂f ) for all θ and R(θ0, θ̂) < R(θ0, θ̂f ) for some θ0. Let

3The many Normal means problem is more general than it looks. Many nonparametric esti-
mation problems are mathematically equivalent to this model.
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ν = R(θ0, θ̂f ) − R(θ0, θ̂) > 0. Since R is continuous, there is an ε > 0 such
that R(θ, θ̂f )−R(θ, θ̂) > ν/2 for all θ ∈ (θ0 − ε, θ0 + ε). Now,

r(f, θ̂f )− r(f, θ̂) =
∫
R(θ, θ̂f )f(θ)dθ −

∫
R(θ, θ̂)f(θ)dθ

=
∫ [

R(θ, θ̂f )−R(θ, θ̂)
]
f(θ)dθ

≥
∫ θ0+ε

θ0−ε

[
R(θ, θ̂f )−R(θ, θ̂)

]
f(θ)dθ

≥ ν

2

∫ θ0+ε

θ0−ε
f(θ)dθ

> 0.

Hence, r(f, θ̂f ) > r(f, θ̂). This implies that θ̂f does not minimize r(f, θ̂) which
contradicts the fact that θ̂f is the Bayes rule. �

12.20 Theorem. Let X1, . . . , Xn ∼ N(µ, σ2). Under squared error loss, X is
admissible.

The proof of the last theorem is quite technical and is omitted but the idea
is as follows: The posterior mean is admissible for any strictly positive prior.
Take the prior to be N(a, b2). When b2 is very large, the posterior mean is
approximately equal to X.

How are minimaxity and admissibility linked? In general, a rule may be one,
both, or neither. But here are some facts linking admissibility and minimaxity.

12.21 Theorem. Suppose that θ̂ has constant risk and is admissible. Then it
is minimax.

Proof. The risk is R(θ, θ̂) = c for some c. If θ̂ were not minimax then
there exists a rule θ̂′ such that

R(θ, θ̂′) ≤ sup
θ
R(θ, θ̂′) < sup

θ
R(θ, θ̂) = c.

This would imply that θ̂ is inadmissible. �

Now we can prove a restricted version of Theorem 12.14 for squared error
loss.

12.22 Theorem. Let X1, . . . , Xn ∼ N(θ, 1). Then, under squared error loss,
θ̂ = X is minimax.

Proof. According to Theorem 12.20, θ̂ is admissible. The risk of θ̂ is 1/n
which is constant. The result follows from Theorem 12.21. �
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Although minimax rules are not guaranteed to be admissible they are “close
to admissible.” Say that θ̂ is strongly inadmissible if there exists a rule θ̂′

and an ε > 0 such that R(θ, θ̂′) < R(θ, θ̂)− ε for all θ.

12.23 Theorem. If θ̂ is minimax, then it is not strongly inadmissible.

12.7 Stein’s Paradox

Suppose that X ∼ N(θ, 1) and consider estimating θ with squared error loss.
From the previous section we know that θ̂(X) = X is admissible. Now consider
estimating two, unrelated quantities θ = (θ1, θ2) and suppose that X1 ∼
N(θ1, 1) and X2 ∼ N(θ2, 1) independently, with loss L(θ, θ̂) =

∑2
j=1(θj−θ̂j)2.

Not surprisingly, θ̂(X) = X is again admissible where X = (X1, X2). Now
consider the generalization to k normal means. Let θ = (θ1, . . . , θk), X =
(X1, . . . , Xk) with Xi ∼ N(θi, 1) (independent) and loss L(θ, θ̂) =

∑k
j=1(θj −

θ̂j)2. Stein astounded everyone when he proved that, if k ≥ 3, then θ̂(X) = X

is inadmissible. It can be shown that the James-Stein estimator θ̂S has
smaller risk, where θ̂S = (θ̂S1 , . . . , θ̂

S
k ),

θ̂Si (X) =
(

1− k − 2∑
iX

2
i

)+

Xi (12.12)

and (z)+ = max{z, 0}. This estimator shrinks theXi’s towards 0. The message
is that, when estimating many parameters, there is great value in shrinking the
estimates. This observation plays an important role in modern nonparametric
function estimation.

12.8 Bibliographic Remarks

Aspects of decision theory can be found in Casella and Berger (2002), Berger
(1985), Ferguson (1967), and Lehmann and Casella (1998).

12.9 Exercises

1. In each of the following models, find the Bayes risk and the Bayes esti-
mator, using squared error loss.

(a) X ∼ Binomial(n, p), p ∼ Beta(α, β).



12.9 Exercises 205

(b) X ∼ Poisson(λ), λ ∼ Gamma(α, β).

(c) X ∼ N(θ, σ2) where σ2 is known and θ ∼ N(a, b2).

2. Let X1, . . . , Xn ∼ N(θ, σ2) and suppose we estimate θ with loss function
L(θ, θ̂) = (θ − θ̂)2/σ2. Show that X is admissible and minimax.

3. Let Θ = {θ1, . . . , θk} be a finite parameter space. Prove that the poste-
rior mode is the Bayes estimator under zero–one loss.

4. (Casella and Berger (2002).) Let X1, . . . , Xn be a sample from a distri-
bution with variance σ2. Consider estimators of the form bS2 where S2

is the sample variance. Let the loss function for estimating σ2 be

L(σ2, σ̂2) =
σ̂2

σ2
− 1− log

(
σ̂2

σ2

)
.

Find the optimal value of b that minimizes the risk for all σ2.

5. (Berliner (1983).) Let X ∼ Binomial(n, p) and suppose the loss function
is

L(p, p̂) =
(

1− p̂

p

)2

where 0 < p < 1. Consider the estimator p̂(X) = 0. This estimator falls
outside the parameter space (0, 1) but we will allow this. Show that
p̂(X) = 0 is the unique, minimax rule.

6. (Computer Experiment.) Compare the risk of the mle and the James-
Stein estimator (12.12) by simulation. Try various values of n and vari-
ous vectors θ. Summarize your results.
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Statistical Models and
Methods





13
Linear and Logistic Regression

Regression is a method for studying the relationship between a response
variable Y and a covariate X. The covariate is also called a predictor
variable or a feature. 1 One way to summarize the relationship between X
and Y is through the regression function

r(x) = E(Y |X = x) =
∫
y f(y|x)dy. (13.1)

Our goal is to estimate the regression function r(x) from data of the form

(Y1, X1), . . . , (Yn, Xn) ∼ FX,Y .

In this Chapter, we take a parametric approach and assume that r is linear.
In Chapters 20 and 21 we discuss nonparametric regression.

13.1 Simple Linear Regression

The simplest version of regression is when Xi is simple (one-dimensional) and
r(x) is assumed to be linear:

r(x) = β0 + β1x.

1The term “regression” is due to Sir Francis Galton (1822-1911) who noticed that tall and
short men tend to have sons with heights closer to the mean. He called this “regression towards
the mean.”
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FIGURE 13.1. Data on nearby stars. The solid line is the least squares line.

This model is called the the simple linear regression model. We will make
the further simplifying assumption that V(εi|X = x) = σ2 does not depend
on x. We can thus write the linear regression model as follows.

13.1 Definition. The Simple Linear Regression Model

Yi = β0 + β1Xi + εi (13.2)

where E(εi|Xi) = 0 and V(εi|Xi) = σ2.

13.2 Example. Figure 13.1 shows a plot of log surface temperature (Y) versus
log light intensity (X) for some nearby stars. Also on the plot is an estimated
linear regression line which will be explained shortly. �

The unknown parameters in the model are the intercept β0 and the slope
β1 and the variance σ2. Let β̂0 and β̂1 denote estimates of β0 and β1. The
fitted line is

r̂(x) = β̂0 + β̂1x. (13.3)

The predicted values or fitted values are Ŷi = r̂(Xi) and the residuals
are defined to be

ε̂i = Yi − Ŷi = Yi −
(
β̂0 + β̂1Xi

)
. (13.4)
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The residual sums of squares or rss, which measures how well the line fits
the data, is defined by rss =

∑n
i=1 ε̂

2
i .

13.3 Definition. The least squares estimates are the values β̂0 and β̂1

that minimize rss =
∑n
i=1 ε̂

2
i .

13.4 Theorem. The least squares estimates are given by

β̂1 =
∑n
i=1(Xi −Xn)(Yi − Y n)∑n

i=1(Xi −Xn)2
, (13.5)

β̂0 = Y n − β̂1Xn. (13.6)

An unbiased estimate of σ2 is

σ̂2 =
(

1
n− 2

) n∑
i=1

ε̂2i . (13.7)

13.5 Example. Consider the star data from Example 13.2. The least squares
estimates are β̂0 = 3.58 and β̂1 = 0.166. The fitted line r̂(x) = 3.58 + 0.166x
is shown in Figure 13.1. �

13.6 Example (The 2001 Presidential Election). Figure 13.2 shows the plot of
votes for Buchanan (Y) versus votes for Bush (X) in Florida. The least squares
estimates (omitting Palm Beach County) and the standard errors are

β̂0 = 66.0991 ŝe(β̂0) = 17.2926

β̂1 = 0.0035 ŝe(β̂1) = 0.0002.

The fitted line is

Buchanan = 66.0991 + 0.0035 Bush.

(We will see later how the standard errors were computed.) Figure 13.2 also
shows the residuals. The inferences from linear regression are most accurate
when the residuals behave like random normal numbers. Based on the residual
plot, this is not the case in this example. If we repeat the analysis replacing
votes with log(votes) we get

β̂0 = −2.3298 ŝe(β̂0) = 0.3529

β̂1 = 0.730300 ŝe(β̂1) = 0.0358.
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FIGURE 13.2. Voting Data for Election 2000. See example 13.6.

This gives the fit

log(Buchanan) = −2.3298 + 0.7303 log(Bush).

The residuals look much healthier. Later, we shall address the following ques-
tion: how do we see if Palm Beach County has a statistically plausible out-
come? �

13.2 Least Squares and Maximum Likelihood

Suppose we add the assumption that εi|Xi ∼ N(0, σ2), that is,

Yi|Xi ∼ N(µi, σ2)
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where µi = β0 + β1Xi. The likelihood function is

n∏
i=1

f(Xi, Yi) =
n∏
i=1

fX(Xi)fY |X(Yi|Xi)

=
n∏
i=1

fX(Xi)×
n∏
i=1

fY |X(Yi|Xi)

= L1 × L2

where L1 =
∏n
i=1 fX(Xi) and

L2 =
n∏
i=1

fY |X(Yi|Xi). (13.8)

The term L1 does not involve the parameters β0 and β1. We shall focus on
the second term L2 which is called the conditional likelihood, given by

L2 ≡ L(β0, β1, σ) =
n∏
i=1

fY |X(Yi|Xi) ∝ σ−n exp

{
− 1

2σ2

∑
i

(Yi − µi)2
}
.

The conditional log-likelihood is

�(β0, β1, σ) = −n log σ − 1
2σ2

n∑
i=1

(
Yi − (β0 + β1Xi)

)2

. (13.9)

To find the mle of (β0, β1) we maximize �(β0, β1, σ). From (13.9) we see that

maximizing the likelihood is the same as minimizing the rss

∑n
i=1

(
Yi−(β0 +

β1Xi)
)2

. Therefore, we have shown the following:

13.7 Theorem. Under the assumption of Normality, the least squares estima-
tor is also the maximum likelihood estimator.

We can also maximize �(β0, β1, σ) over σ, yielding the mle

σ̂2 =
1
n

∑
i

ε̂ 2
i . (13.10)

This estimator is similar to, but not identical to, the unbiased estimator.
Common practice is to use the unbiased estimator (13.7).
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13.3 Properties of the Least Squares Estimators

We now record the standard errors and limiting distribution of the least
squares estimator. In regression problems, we usually focus on the proper-
ties of the estimators conditional on Xn = (X1, . . . , Xn). Thus, we state the
means and variances as conditional means and variances.

13.8 Theorem. Let β̂T = (β̂0, β̂1)T denote the least squares estimators.
Then,

E(β̂|Xn) =
(
β0

β1

)
V(β̂|Xn) =

σ2

n s2X

(
1
n

∑n
i=1X

2
i −Xn

−Xn 1

)
(13.11)

where s2X = n−1
∑n
i=1(Xi −Xn)2.

The estimated standard errors of β̂0 and β̂1 are obtained by taking the
square roots of the corresponding diagonal terms of V(β̂|Xn) and inserting
the estimate σ̂ for σ. Thus,

ŝe(β̂0) =
σ̂

sX
√
n

√∑n
i=1X

2
i

n
(13.12)

ŝe(β̂1) =
σ̂

sX
√
n
. (13.13)

We should really write these as ŝe(β̂0|Xn) and ŝe(β̂1|Xn) but we will use the
shorter notation ŝe(β̂0) and ŝe(β̂1).

13.9 Theorem. Under appropriate conditions we have:

1. (Consistency): β̂0
P−→β0 and β̂1

P−→β1.

2. (Asymptotic Normality):

β̂0 − β0

ŝe(β̂0)
� N(0, 1) and

β̂1 − β1

ŝe(β̂1)
� N(0, 1).

3. Approximate 1− α confidence intervals for β0 and β1 are

β̂0 ± zα/2 ŝe(β̂0) and β̂1 ± zα/2 ŝe(β̂1). (13.14)
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4. The Wald test 2 for testing H0 : β1 = 0 versus H1 : β1 �= 0 is: reject H0

if |W | > zα/2 where W = β̂1/ŝe(β̂1).

13.10 Example. For the election data, on the log scale, a 95 percent confi-
dence interval is .7303± 2(.0358) = (.66, .80). The Wald statistics for testing
H0 : β1 = 0 versus H1 : β1 �= 0 is |W | = |.7303 − 0|/.0358 = 20.40 with a
p-value of P(|Z| > 20.40) ≈ 0. This is strong evidence that that the true slope
is not 0. �

13.4 Prediction

Suppose we have estimated a regression model r̂(x) = β̂0 + β̂1x from data
(X1, Y1), . . . , (Xn, Yn). We observe the value X = x∗ of the covariate for a
new subject and we want to predict their outcome Y∗. An estimate of Y∗ is

Ŷ∗ = β̂0 + β̂1x∗. (13.15)

Using the formula for the variance of the sum of two random variables,

V(Ŷ∗) = V(β̂0 + β̂1x∗) = V(β̂0) + x2
∗V(β̂1) + 2x∗Cov(β̂0, β̂1).

Theorem 13.8 gives the formulas for all the terms in this equation. The es-
timated standard error ŝe(Ŷ∗) is the square root of this variance, with σ̂2 in
place of σ2. However, the confidence interval for Y∗ is not of the usual form
Ŷ∗ ± zα/2ŝe. The reason for this is explained in Exercise 10. The correct form
of the confidence interval is given in the following theorem.

13.11 Theorem (Prediction Interval). Let

ξ̂ 2
n = σ̂2

(∑n
i=1(Xi −X∗)2

n
∑
i(Xi −X)2

+ 1
)
. (13.16)

An approximate 1− α prediction interval for Y∗ is

Ŷ∗ ± zα/2 ξ̂n. (13.17)

2Recall from equation (10.5) that the Wald statistic for testing H0 : β = β0 versus H1 :
β �= β0 is W = (β̂ − β0)/ŝe(β̂).
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13.12 Example (Election Data Revisited). On the log scale, our linear regres-
sion gives the following prediction equation:

log(Buchanan) = −2.3298 + 0.7303 log(Bush).

In Palm Beach, Bush had 152,954 votes and Buchanan had 3,467 votes. On the
log scale this is 11.93789 and 8.151045. How likely is this outcome, assuming
our regression model is appropriate? Our prediction for log Buchanan votes
-2.3298 + .7303 (11.93789)=6.388441. Now, 8.151045 is bigger than 6.388441
but is it “significantly” bigger? Let us compute a confidence interval. We
find that ξ̂n = .093775 and the approximate 95 percent confidence interval is
(6.200,6.578) which clearly excludes 8.151. Indeed, 8.151 is nearly 20 standard
errors from Ŷ∗. Going back to the vote scale by exponentiating, the confidence
interval is (493,717) compared to the actual number of votes which is 3,467.
�

13.5 Multiple Regression

Now suppose that the covariate is a vector of length k. The data are of the
form

(Y1, X1), . . . , (Yi, Xi), . . . , (Yn, Xn)

where

Xi = (Xi1, . . . , Xik).

Here, Xi is the vector of k covariate values for the ith observation. The linear
regression model is

Yi =
k∑
j=1

βjXij + εi (13.18)

for i = 1, . . . , n, where E(εi|X1i, . . . , Xki) = 0. Usually we want to include an
intercept in the model which we can do by setting Xi1 = 1 for i = 1, . . . , n. At
this point it will be more convenient to express the model in matrix notation.
The outcomes will be denoted by

Y =


Y1

Y2

...
Yn
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and the covariates will be denoted by

X =


X11 X12 . . . X1k

X21 X22 . . . X2k

...
...

...
...

Xn1 Xn2 . . . Xnk

 .

Each row is one observation; the columns correspond to the k covariates. Thus,
X is a (n× k) matrix. Let

β =

 β1

...
βk

 and ε =

 ε1
...
εn

 .

Then we can write (13.18) as

Y = Xβ + ε. (13.19)

The form of the least squares estimate is given in the following theorem.

13.13 Theorem. Assuming that the (k × k) matrix XTX is invertible,

β̂ = (XTX)−1XTY (13.20)

V(β̂|Xn) = σ2(XTX)−1 (13.21)

β̂ ≈ N(β, σ2(XTX)−1). (13.22)

The estimate regression function is r̂(x) =
∑k
j=1 β̂jxj . An unbiased esti-

mate of σ2 is

σ̂2 =
(

1
n− k

) n∑
i=1

ε̂ 2
i

where ε̂ = Xβ̂−Y is the vector of residuals. An approximate 1−α confidence
interval for βj is

β̂j ± zα/2ŝe(β̂j) (13.23)

where ŝe2(β̂j) is the jth diagonal element of the matrix σ̂2 (XTX)−1.

13.14 Example. Crime data on 47 states in 1960 can be obtained from
http://lib.stat.cmu.edu/DASL/Stories/USCrime.html.

If we fit a linear regression of crime rate on 10 variables we get the following:
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Covariate β̂j ŝe(β̂j) t value p-value

(Intercept) -589.39 167.59 -3.51 0.001 **
Age 1.04 0.45 2.33 0.025 *
Southern State 11.29 13.24 0.85 0.399
Education 1.18 0.68 1.7 0.093
Expenditures 0.96 0.25 3.86 0.000 ***
Labor 0.11 0.15 0.69 0.493
Number of Males 0.30 0.22 1.36 0.181
Population 0.09 0.14 0.65 0.518
Unemployment (14–24) -0.68 0.48 -1.4 0.165
Unemployment (25–39) 2.15 0.95 2.26 0.030 *
Wealth -0.08 0.09 -0.91 0.367

This table is typical of the output of a multiple regression program. The “t-
value” is the Wald test statistic for testing H0 : βj = 0 versus H1 : βj �= 0. The
asterisks denote “degree of significance” and more asterisks denote smaller
p-values. The example raises several important questions: (1) should we elim-
inate some variables from this model? (2) should we interpret these relation-
ships as causal? For example, should we conclude that low crime prevention
expenditures cause high crime rates? We will address question (1) in the next
section. We will not address question (2) until Chapter 16. �

13.6 Model Selection

Example 13.14 illustrates a problem that often arises in multiple regression.
We may have data on many covariates but we may not want to include all of
them in the model. A smaller model with fewer covariates has two advantages:
it might give better predictions than a big model and it is more parsimonious
(simpler). Generally, as you add more variables to a regression, the bias of the
predictions decreases and the variance increases. Too few covariates yields high
bias; this called underfitting. Too many covariates yields high variance; this
called overfitting. Good predictions result from achieving a good balance
between bias and variance.

In model selection there are two problems: (i) assigning a “score” to each
model which measures, in some sense, how good the model is, and (ii) search-
ing through all the models to find the model with the best score.

Let us first discuss the problem of scoring models. Let S ⊂ {1, . . . , k} and
let XS = {Xj : j ∈ S} denote a subset of the covariates. Let βS denote the
coefficients of the corresponding set of covariates and let β̂S denote the least
squares estimate of βS . Also, let XS denote the X matrix for this subset of
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covariates and define r̂S(x) to be the estimated regression function. The pre-
dicted values from model S are denoted by Ŷi(S) = r̂S(Xi). The prediction
risk is defined to be

R(S) =
n∑
i=1

E(Ŷi(S)− Y ∗
i )2 (13.24)

where Y ∗
i denotes the value of a future observation of Yi at covariate value

Xi. Our goal is to choose S to make R(S) small.
The training error is defined to be

R̂tr(S) =
n∑
i=1

(Ŷi(S)− Yi)2.

This estimate is very biased as an estimate of R(S).

13.15 Theorem. The training error is a downward-biased estimate of the pre-
diction risk:

E(R̂tr(S)) < R(S).

In fact,

bias(R̂tr(S)) = E(R̂tr(S))−R(S) = −2
∑
i=1

Cov(Ŷi, Yi). (13.25)

The reason for the bias is that the data are being used twice: to estimate
the parameters and to estimate the risk. When we fit a complex model with
many parameters, the covariance Cov(Ŷi, Yi) will be large and the bias of the
training error gets worse. Here are some better estimates of risk.

Mallow’s Cp statistic is defined by

R̂(S) = R̂tr(S) + 2|S|σ̂2 (13.26)

where |S| denotes the number of terms in S and σ̂2 is the estimate of σ2

obtained from the full model (with all covariates in the model). This is simply
the training error plus a bias correction. This estimate is named in honor of
Colin Mallows who invented it. The first term in (13.26) measures the fit of
the model while the second measure the complexity of the model. Think of
the Cp statistic as:

lack of fit + complexity penalty.

Thus, finding a good model involves trading off fit and complexity.
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A related method for estimating risk is AIC (Akaike Information Cri-
terion). The idea is to choose S to maximize

�S − |S| (13.27)

where �S is the log-likelihood of the model evaluated at the mle. 3 This can
be thought of “goodness of fit” minus “complexity.” In linear regression with
Normal errors (and taking σ equal to its estimate from the largest model),
maximizing AIC is equivalent to minimizing Mallow’s Cp; see Exercise 8. The
appendix contains more explanation about AIC.

Yet another method for estimating risk is leave-one-out cross-validation.
In this case, the risk estimator is

R̂CV (S) =
n∑
i=1

(Yi − Ŷ(i))2 (13.28)

where Ŷ(i) is the prediction for Yi obtained by fitting the model with Yi omit-
ted. It can be shown that

R̂CV (S) =
n∑
i=1

(
Yi − Ŷi(S)
1− Uii(S)

)2

(13.29)

where Uii(S) is the ith diagonal element of the matrix

U(S) = XS(XT
SXS)−1XT

S . (13.30)

Thus, one need not actually drop each observation and re-fit the model. A
generalization is k-fold cross-validation. Here we divide the data into k

groups; often people take k = 10. We omit one group of data and fit the
models to the remaining data. We use the fitted model to predict the data
in the group that was omitted. We then estimate the risk by

∑
i(Yi − Ŷi)2

where the sum is over the the data points in the omitted group. This process is
repeated for each of the k groups and the resulting risk estimates are averaged.

For linear regression, Mallows Cp and cross-validation often yield essentially
the same results so one might as well use Mallows’ method. In some of the
more complex problems we will discuss later, cross-validation will be more
useful.

Another scoring method is BIC (Bayesian information criterion). Here we
choose a model to maximize

BIC(S) = �S −
|S|
2

log n. (13.31)

3Some texts use a slightly different definition of AIC which involves multiplying the definition
here by 2 or -2. This has no effect on which model is selected.
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The BIC score has a Bayesian interpretation. Let S = {S1, . . . , Sm} denote
a set of models. Suppose we assign the prior P(Sj) = 1/m over the models.
Also, assume we put a smooth prior on the parameters within each model. It
can be shown that the posterior probability for a model is approximately,

P(Sj |data) ≈ eBIC(Sj)∑
r e

BIC(Sr)
.

Hence, choosing the model with highest BIC is like choosing the model with
highest posterior probability. The BIC score also has an information-theoretic
interpretation in terms of something called minimum description length. The
BIC score is identical to Mallows Cp except that it puts a more severe penalty
for complexity. It thus leads one to choose a smaller model than the other
methods.

Now let us turn to the problem of model search. If there are k covariates
then there are 2k possible models. We need to search through all these models,
assign a score to each one, and choose the model with the best score. If k is
not too large we can do a complete search over all the models. When k is large,
this is infeasible. In that case we need to search over a subset of all the models.
Two common methods are forward and backward stepwise regression.
In forward stepwise regression, we start with no covariates in the model. We
then add the one variable that leads to the best score. We continue adding
variables one at a time until the score does not improve. Backwards stepwise
regression is the same except that we start with the biggest model and drop
one variable at a time. Both are greedy searches; nether is guaranteed to
find the model with the best score. Another popular method is to do random
searching through the set of all models. However, there is no reason to expect
this to be superior to a deterministic search.

13.16 Example. We applied backwards stepwise regression to the crime data
using AIC. The following was obtained from the program R. This program
uses a slightly different definition of AIC. With their definition, we seek the
smallest (not largest) possible AIC. This is the same is minimizing Mallows
Cp.

The full model (which includes all covariates) has AIC= 310.37. In ascend-
ing order, the AIC scores for deleting one variable are as follows:

variable Pop Labor South Wealth Males U1 Educ. U2 Age Expend
AIC 308 309 309 309 310 310 312 314 315 324

For example, if we dropped Pop from the model and kept the other terms,
then the AIC score would be 308. Based on this information we drop “pop-



222 13. Linear and Logistic Regression

ulation” from the model and the current AIC score is 308. Now we consider
dropping a variable from the current model. The AIC scores are:

variable South Labor Wealth Males U1 Education U2 Age Expend
AIC 308 308 308 309 309 310 313 313 329

We then drop “Southern” from the model. This process is continued until
there is no gain in AIC by dropping any variables. In the end, we are left with
the following model:

Crime = 1.2 Age + .75 Education + .87 Expenditure

+ .34 Males − .86 U1 + 2.31 U2.

Warning! This does not yet address the question of which variables are
causes of crime. �

There is another method for model selection that avoids having to search
through all possible models. This method, which is due to Zheng and Loh
(1995), does not seek to minimize prediction errors. Rather, it assumes some
subset of the βj ’s are exactly equal to 0 and tries to find the true model,
that is, the smallest sub-model consisting of nonzero βj terms. The method
is carried out as follows.

Zheng-Loh Model Selection Method 4

1. Fit the full model with all k covariates and let Wj = β̂j/ŝe(β̂j) denote
the Wald test statistic for H0 : βj = 0 versus H1 : βj �= 0.

2. Order the test statistics from largest to smallest in absolute value:

|W(1)| ≥ |W(2)| ≥ · · · ≥ |W(k)|.

3. Let ĵ be the value of j that minimizes

rss(j) + j σ̂2 log n

where rss(j) is the residual sums of squares from the model with
the j largest Wald statistics.

4. Choose, as the final model, the regression with the ĵ terms with the
largest absolute Wald statistics.
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x0

1

FIGURE 13.3. The logistic function p = ex/(1 + ex).

Zheng and Loh showed that, under appropriate conditions, this method
chooses the true model with probability tending to one as the sample size
increases.

13.7 Logistic Regression

So far we have assumed that Yi is real valued. Logistic regression is a para-
metric method for regression when Yi ∈ {0, 1} is binary. For a k-dimensional
covariate X, the model is

pi ≡ pi(β) ≡ P(Yi = 1|X = x) =
eβ0+

∑k
j=1 βjxij

1 + eβ0+
∑k
j=1 βjxij

(13.32)

or, equivalently,

logit(pi) = β0 +
k∑
j=1

βjxij (13.33)

where

logit(p) = log
(

p

1− p

)
. (13.34)

The name “logistic regression” comes from the fact that ex/(1 + ex) is called
the logistic function. A plot of the logistic for a one-dimensional covariate is
shown in Figure 13.3.

Because the Yi’s are binary, the data are Bernoulli:

Yi|Xi = xi ∼ Bernoulli(pi).

Hence the (conditional) likelihood function is

L(β) =
n∏
i=1

pi(β)Yi(1− pi(β))1−Yi . (13.35)

4This is just one version of their method. In particular, the penalty j log n is only one choice
from a set of possible penalty functions.
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The mle β̂ has to be obtained by maximizing L(β) numerically. There is
a fast numerical algorithm called reweighted least squares. The steps are as
follows:

Reweighted Least Squares Algorithm

Choose starting values β̂0 = (β̂0
0 , . . . , β̂

0
k) and compute p0

i using equation
(13.32), for i = 1, . . . , n. Set s = 0 and iterate the following steps until
convergence.

1. Set
Zi = logit(psi ) +

Yi − psi
psi (1− psi )

, i = 1, . . . , n.

2. Let W be a diagonal matrix with (i, i) element equal to psi (1− psi ).

3. Set
β̂s = (XTWX)−1XTWY.

This corresponds to doing a (weighted) linear regression of Z on Y .

4. Set s = s+ 1 and go back to the first step.

The Fisher information matrix I can also be obtained numerically. The
estimate standard error of β̂j is the (j, j) element of J = I−1. Model selection
is usually done using the AIC score �S − |S|.

13.17 Example. The Coronary Risk-Factor Study (CORIS) data involve 462
males between the ages of 15 and 64 from three rural areas in South Africa,
(Rousseauw et al. (1983)). The outcome Y is the presence (Y = 1) or absence
(Y = 0) of coronary heart disease. There are 9 covariates: systolic blood
pressure, cumulative tobacco (kg), ldl (low density lipoprotein cholesterol),
adiposity, famhist (family history of heart disease), typea (type-A behavior),
obesity, alcohol (current alcohol consumption), and age. A logistic regression
yields the following estimates and Wald statistics Wj for the coefficients:
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Covariate β̂j ŝe Wj p-value
Intercept -6.145 1.300 -4.738 0.000
sbp 0.007 0.006 1.138 0.255
tobacco 0.079 0.027 2.991 0.003
ldl 0.174 0.059 2.925 0.003
adiposity 0.019 0.029 0.637 0.524
famhist 0.925 0.227 4.078 0.000
typea 0.040 0.012 3.233 0.001
obesity -0.063 0.044 -1.427 0.153
alcohol 0.000 0.004 0.027 0.979
age 0.045 0.012 3.754 0.000

Are you surprised by the fact that systolic blood pressure is not significant
or by the minus sign for the obesity coefficient? If yes, then you are confusing
association and causation. This issue is discussed in Chapter 16. The fact
that blood pressure is not significant does not mean that blood pressure is
not an important cause of heart disease. It means that it is not an important
predictor of heart disease relative to the other variables in the model. �

13.8 Bibliographic Remarks

A succinct book on linear regression is Weisberg (1985). A data-mining view
of regression is given in Hastie et al. (2001). The Akaike Information Criterion
(AIC) is due to Akaike (1973). The Bayesian Information Criterion (BIC) is
due to Schwarz (1978). References on logistic regression include Agresti (1990)
and Dobson (2001).

13.9 Appendix

The Akaike Information Criterion (AIC). Consider a set of models
{M1,M2, . . .}. Let f̂j(x) denote the estimated probability function obtained
by using the maximum likelihood estimator of model Mj . Thus, f̂j(x) =
f̂(x; β̂j) where β̂j is the mle of the set of parameters βj for model Mj . We
will use the loss function D(f, f̂) where

D(f, g) =
∑
x

f(x) log
(
f(x)
g(x)

)
is the Kullback-Leibler distance between two probability functions. The cor-
responding risk function is R(f, f̂) = E(D(f, f̂). Notice that D(f, f̂) = c −
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A(f, f̂) where c =
∑
x f(x) log f(x) does not depend on f̂ and

A(f, f̂) =
∑
x

f(x) log f̂(x).

Thus, minimizing the risk is equivalent to maximizing a(f, f̂) ≡ E(A(f, f̂)).
It is tempting to estimate a(f, f̂) by

∑
x f̂(x) log f̂(x) but, just as the train-

ing error in regression is a highly biased estimate of prediction risk, it is also
the case that

∑
x f̂(x) log f̂(x) is a highly biased estimate of a(f, f̂). In fact,

the bias is approximately equal to |Mj |. Thus:

13.18 Theorem. AIC(Mj) is an approximately unbiased estimate of a(f, f̂).

13.10 Exercises

1. Prove Theorem 13.4.

2. Prove the formulas for the standard errors in Theorem 13.8. You should
regard the Xi’s as fixed constants.

3. Consider the regression through the origin model:

Yi = βXi + ε.

Find the least squares estimate for β. Find the standard error of the
estimate. Find conditions that guarantee that the estimate is consistent.

4. Prove equation (13.25).

5. In the simple linear regression model, construct a Wald test for H0 :
β1 = 17β0 versus H1 : β1 �= 17β0.

6. Get the passenger car mileage data from

http://lib.stat.cmu.edu/DASL/Datafiles/carmpgdat.html

(a) Fit a simple linear regression model to predict MPG (miles per
gallon) from HP (horsepower). Summarize your analysis including a
plot of the data with the fitted line.

(b) Repeat the analysis but use log(MPG) as the response. Compare
the analyses.
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7. Get the passenger car mileage data from

http://lib.stat.cmu.edu/DASL/Datafiles/carmpgdat.html

(a) Fit a multiple linear regression model to predict MPG (miles per
gallon) from the other variables. Summarize your analysis.

(b) Use Mallow Cp to select a best sub-model. To search through the
models try (i) forward stepwise, (ii) backward stepwise. Summarize your
findings.

(c) Use the Zheng-Loh model selection method and compare to (b).

(d) Perform all possible regressions. Compare Cp and BIC. Compare the
results.

8. Assume a linear regression model with Normal errors. Take σ known.
Show that the model with highest AIC (equation (13.27)) is the model
with the lowest Mallows Cp statistic.

9. In this question we will take a closer look at the AIC method. Let
X1, . . . , Xn be iid observations. Consider two modelsM0 andM1. Un-
der M0 the data are assumed to be N(0, 1) while under M1 the data
are assumed to be N(θ, 1) for some unknown θ ∈ R:

M0 : X1, . . . , Xn ∼ N(0, 1)

M1 : X1, . . . , Xn ∼ N(θ, 1), θ ∈ R.

This is just another way to view the hypothesis testing problem: H0 :
θ = 0 versus H1 : θ �= 0. Let �n(θ) be the log-likelihood function.
The AIC score for a model is the log-likelihood at the mle minus the
number of parameters. (Some people multiply this score by 2 but that
is irrelevant.) Thus, the AIC score forM0 is AIC0 = �n(0) and the AIC
score for M1 is AIC1 = �n(θ̂) − 1. Suppose we choose the model with
the highest AIC score. Let Jn denote the selected model:

Jn =
{

0 if AIC0 > AIC1

1 if AIC1 > AIC0.

(a) Suppose thatM0 is the true model, i.e. θ = 0. Find

lim
n→∞ P (Jn = 0) .

Now compute limn→∞ P (Jn = 0) when θ �= 0.
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(b) The fact that limn→∞ P (Jn = 0) �= 1 when θ = 0 is why some people
say that AIC “overfits.” But this is not quite true as we shall now see.
Let φθ(x) denote a Normal density function with mean θ and variance
1. Define

f̂n(x) =
{
φ0(x) if Jn = 0
φθ̂(x) if Jn = 1.

If θ = 0, show that D(φ0, f̂n)
p→ 0 as n→∞ where

D(f, g) =
∫
f(x) log

(
f(x)
g(x)

)
dx

is the Kullback-Leibler distance. Show also that D(φθ, f̂n)
p→ 0 if θ �= 0.

Hence, AIC consistently estimates the true density even if it “over-
shoots” the correct model.

(c) Repeat this analysis for BIC which is the log-likelihood minus (p/2) logn
where p is the number of parameters and n is sample size.

10. In this question we take a closer look at prediction intervals. Let θ =
β0 + β1X∗ and let θ̂ = β̂0 + β̂1X∗. Thus, Ŷ∗ = θ̂ while Y∗ = θ + ε. Now,
θ̂ ≈ N(θ, se2) where

se2 = V(θ̂) = V(β̂0 + β̂1x∗).

Note that V(θ̂) is the same as V(Ŷ∗). Now, θ̂±2
√

V(θ̂) is an approximate
95 percent confidence interval for θ = β0+β1x∗ using the usual argument
for a confidence interval. But, as you shall now show, it is not a valid
confidence interval for Y∗.

(a) Let s =
√

V(Ŷ∗). Show that

P(Ŷ∗ − 2s < Y∗ < Ŷ∗ + 2s) ≈ P

(
−2 < N

(
0, 1 +

σ2

s2

)
< 2

)
�= 0.95.

(b) The problem is that the quantity of interest Y∗ is equal to a param-
eter θ plus a random variable. We can fix this by defining

ξ2n = V(Ŷ∗) + σ2 =
[ ∑

i(xi − x∗)2

n
∑
i(xi − x)2

+ 1
]
σ2.

In practice, we substitute σ̂ for σ and we denote the resulting quantity
by ξ̂n. Now consider the interval Ŷ∗ ± 2 ξ̂n. Show that

P(Ŷ∗ − 2ξ̂n < Y∗ < Ŷ∗ + 2ξ̂n) ≈ P (−2 < N(0, 1) < 2) ≈ 0.95.
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11. Get the Coronary Risk-Factor Study (CORIS) data from the book web
site. Use backward stepwise logistic regression based on AIC to select a
model. Summarize your results.





14
Multivariate Models

In this chapter we revisit the Multinomial model and the multivariate Normal.
Let us first review some notation from linear algebra. In what follows, x and
y are vectors and A is a matrix.

Linear Algebra Notation

xT y inner product
∑
j xjyj

|A| determinant
AT transpose of A
A−1 inverse of A
I the identity matrix
tr(A) trace of a square matrix; sum of its diagonal elements
A1/2 square root matrix

The trace satisfies tr(AB) = tr(BA) and tr(A) + tr(B). Also, tr(a) = a if a
is a scalar. A matrix is positive definite if xTΣx > 0 for all nonzero vectors
x. If a matrix A is symmetric and positive definite, its square root A1/2 exists
and has the following properties: (1) A1/2 is symmetric; (2) A = A1/2A1/2;
(3) A1/2A−1/2 = A−1/2A1/2 = I where A−1/2 = (A1/2)−1.
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14.1 Random Vectors

Multivariate models involve a random vector X of the form

X =

 X1

...
Xk

 .

The mean of a random vector X is defined by

µ =

 µ1

...
µk

 =

 E(X1)
...

E(Xk)

 . (14.1)

The covariance matrix Σ, also written V(X), is defined to be

Σ =


V(X1) Cov(X1, X2) · · · Cov(X1, Xk)
Cov(X2, X1) V(X2) · · · Cov(X2, Xk)
...

...
...

...
Cov(Xk, X1) Cov(Xk, X2) · · · V(Xk)

 . (14.2)

This is also called the variance matrix or the variance–covariance matrix. The
inverse Σ−1 is called the precision matrix.

14.1 Theorem. Let a be a vector of length k and let X be a random vector
of the same length with mean µ and variance Σ. Then E(aTX) = aTµ and
V(aTX) = aTΣa. If A is a matrix with k columns, then E(AX) = Aµ and
V(AX) = AΣAT .

Now suppose we have a random sample of n vectors:
X11

X21

...
Xk1

 ,


X12

X22

...
Xk2

 , . . . ,


X1n

X2n

...
Xkn

 . (14.3)

The sample mean X is a vector defined by

X =

 X1

...
Xk
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where Xi = n−1
∑n
j=1Xij . The sample variance matrix, also called the co-

variance matrix or the variance–covariance matrix, is

S =


s11 s12 · · · s1k
s12 s22 · · · s2k
...

...
...

...
s1k s2k · · · skk

 (14.4)

where

sab =
1

n− 1

n∑
j=1

(Xaj −Xa)(Xbj −Xb).

It follows that E(X) = µ. and E(S) = Σ.

14.2 Estimating the Correlation

Consider n data points from a bivariate distribution:(
X11

X21

)
,

(
X12

X22

)
, · · · ,

(
X1n

X2n

)
.

Recall that the correlation between X1 and X2 is

ρ =
E((X1 − µ1)(X2 − µ2))

σ1σ2
(14.5)

where σ2
j = V(Xji), j = 1, 2. The nonparametric plug-in estimator is the

sample correlation 1

ρ̂ =
∑n
i=1(X1i −X1)(X2i −X2)

s1s2
(14.6)

where

s2j =
1

n− 1

n∑
i=1

(Xji −Xj)2.

We can construct a confidence interval for ρ by applying the delta method.
However, it turns out that we get a more accurate confidence interval by first
constructing a confidence interval for a function θ = f(ρ) and then applying

1More precisely, the plug-in estimator has n rather than n − 1 in the formula for sj but this
difference is small.
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the inverse function f−1. The method, due to Fisher, is as follows: Define f
and its inverse by

f(r) =
1
2

(
log(1 + r)− log(1− r)

)
f−1(z) =

e2z − 1
e2z + 1

.

Approximate Confidence Interval for The Correlation

1. Compute

θ̂ = f(ρ̂) =
1
2

(
log(1 + ρ̂)− log(1− ρ̂)

)
.

2. Compute the approximate standard error of θ̂ which can be shown to
be

ŝe(θ̂) =
1√
n− 3

.

3. An approximate 1− α confidence interval for θ = f(ρ) is

(a, b) ≡
(
θ̂ −

zα/2√
n− 3

, θ̂ +
zα/2√
n− 3

)
.

4. Apply the inverse transformation f−1(z) to get a confidence interval
for ρ: (

e2a − 1
e2a + 1

,
e2b − 1
e2b + 1

)
.

Yet another method for getting a confidence interval for ρ is to use the
bootstrap.

14.3 Multivariate Normal

Recall that a vector X has a multivariate Normal distribution, denoted by
X ∼ N(µ,Σ), if its density is

f(x; µ,Σ) =
1

(2π)k/2|Σ|1/2 exp
{
−1

2
(x− µ)TΣ−1(x− µ)

}
(14.7)

where µ is a vector of length k and Σ is a k × k symmetric, positive definite
matrix. Then E(X) = µ and V(X) = Σ.
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14.2 Theorem. The following properties hold:

1. If Z ∼ N(0, 1) and X = µ+ Σ1/2Z, then X ∼ N(µ,Σ).

2. If X ∼ N(µ,Σ), then Σ−1/2(X − µ) ∼ N(0, 1).

3. If X ∼ N(µ,Σ) a is a vector of the same length as X, then aTX ∼
N(aTµ, aTΣa).

4. Let
V = (X − µ)TΣ−1(X − µ).

Then V ∼ χ2
k.

14.3 Theorem. Given a random sample of size n from a N(µ,Σ), the log-
likelihood is (up to a constant not depending on µ or Σ) given by

�(µ,Σ) = −n
2

(X − µ)TΣ−1(X − µ)− n

2
tr(Σ−1S)− n

2
log |Σ|.

The mle is

µ̂ = X and Σ̂ =
(
n− 1
n

)
S. (14.8)

14.4 Multinomial

Let us now review the Multinomial distribution. The data take the form
X = (X1, . . . , Xk) where each Xj is a count. Think of drawing n balls (with
replacement) from an urn which has balls with k different colors. In this case,
Xj is the number of balls of the kth color. Let p = (p1, . . . , pk) where pj ≥ 0
and

∑k
j=1 pj = 1 and suppose that pj is the probability of drawing a ball of

color j.

14.4 Theorem. Let X ∼ Multinomial(n, p). Then the marginal distribution
of Xj is Xj ∼ Binomial(n, pj). The mean and variance of X are

E(X) =

 np1

...
npk


and

V(X) =


np1(1− p1) −np1p2 · · · −np1pk
−np1p2 np2(1− p2) · · · −np2pk

...
...

...
...

−np1pk −np2pk · · · npk(1− pk)

 .
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Proof. That Xj ∼ Binomial(n, pj) follows easily. Hence, E(Xj) = npj and
V(Xj) = npj(1− pj). To compute Cov(Xi, Xj) we proceed as follows: Notice
that Xi+Xj ∼ Binomial(n, pi+pj) and so V(Xi+Xj) = n(pi+pj)(1−pi−pj).
On the other hand,

V(Xi +Xj) = V(Xi) + V(Xj) + 2Cov(Xi, Xj)

= npi(1− pi) + npj(1− pj) + 2Cov(Xi, Xj).

Equating this last expression with n(pi+pj)(1−pi−pj) implies that Cov(Xi, Xj) =
−npipj . �

14.5 Theorem. The maximum likelihood estimator of p is

p̂ =

 p̂1

...
p̂k

 =


X1
n
...
Xk
n

 =
X

n
.

Proof. The log-likelihood (ignoring a constant) is

�(p) =
k∑
j=1

Xj log pj .

When we maximize � we have to be careful since we must enforce the con-
straint that

∑
j pj = 1. We use the method of Lagrange multipliers and instead

maximize

A(p) =
k∑
j=1

Xj log pj + λ

(∑
j

pj − 1
)
.

Now
∂A(p)
∂pj

=
Xj

pj
+ λ.

Setting ∂A(p)
∂pj

= 0 yields p̂j = −Xj/λ. Since
∑
j p̂j = 1 we see that λ = −n

and hence p̂j = Xj/n as claimed. �

Next we would like to know the variability of the mle. We can either
compute the variance matrix of p̂ directly or we can approximate the vari-
ability of the mle by computing the Fisher information matrix. These two
approaches give the same answer in this case. The direct approach is easy:
V(p̂) = V(X/n) = n−2V(X), and so

V(p̂) =
1
n

Σ
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where

Σ =


p1(1− p1) −p1p2 · · · −p1pk
−p1p2 p2(1− p2) · · · −p2pk

...
...

...
...

−p1pk −p2pk · · · pk(1− pk)

 .

For large n, p̂ has approximately a multivariate Normal distribution.

14.6 Theorem. As n→∞,
√
n(p̂− p)� N(0,Σ).

14.5 Bibliographic Remarks

Some references on multivariate analysis are Johnson and Wichern (1982) and
Anderson (1984). The method for constructing the confidence interval for the
correlation described in this chapter is due to Fisher (1921).

14.6 Appendix

Proof of Theorem 14.3. Denote the ith random vector by Xi. The log-
likelihood is

�(µ,Σ) =
n∑
i=1

f(Xi; µ,Σ)

= −kn
2

log(2π)− n

2
log |Σ| − 1

2

n∑
i=1

(Xi − µ)TΣ−1(Xi − µ).

Now,
n∑
i=1

(Xi − µ)TΣ−1(Xi − µ)

=
n∑
i=1

[(Xi −X) + (X − µ)]TΣ−1[(Xi −X) + (X − µ)]

=
n∑
i=1

[
(Xi −X)TΣ−1(Xi −X)

]
+ n(X − µ)TΣ−1(X − µ)

since
∑n
i=1(X

i−X)Σ−1(X−µ) = 0. Also, notice that (Xi−µ)TΣ−1(Xi−µ)
is a scalar, so

n∑
i=1

(Xi − µ)TΣ−1(Xi − µ) =
n∑
i=1

tr
[
(Xi − µ)TΣ−1(Xi − µ)

]
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=
n∑
i=1

tr
[
Σ−1(Xi − µ)(Xi − µ)T

]
= tr

[
Σ−1

n∑
i=1

(Xi − µ)(Xi − µ)T
]

= n tr
[
Σ−1S

]
and the conclusion follows. �

14.7 Exercises

1. Prove Theorem 14.1.

2. Find the Fisher information matrix for the mle of a Multinomial.

3. (Computer Experiment.) Write a function to generate nsim observations
from a Multinomial(n, p) distribution.

4. (Computer Experiment.) Write a function to generate nsim observations
from a Multivariate normal with given mean µ and covariance matrix
Σ.

5. (Computer Experiment.) Generate 100 random vectors from a N(µ,Σ)
distribution where

µ =
(

3
8

)
, Σ =

(
1 1
1 2

)
.

Plot the simulation as a scatterplot. Estimate the mean and covariance
matrix Σ. Find the correlation ρ between X1 and X2. Compare this
with the sample correlations from your simulation. Find a 95 percent
confidence interval for ρ. Use two methods: the bootstrap and Fisher’s
method. Compare.

6. (Computer Experiment.) Repeat the previous exercise 1000 times. Com-
pare the coverage of the two confidence intervals for ρ.



15
Inference About Independence

In this chapter we address the following questions:

(1) How do we test if two random variables are independent?

(2) How do we estimate the strength of dependence between two

random variables?

When Y and Z are not independent, we say that they are dependent or
associated or related. If Y and Z are associated, it does not imply that Y
causes Z or that Z causes Y . Causation is discussed in Chapter 16.

Recall that we write Y �Z to mean that Y and Z are independent and we
write Y ������ Z to mean that Y and Z are dependent.

15.1 Two Binary Variables

Suppose that Y and Z are both binary and consider data (Y1, Z1), . . ., (Yn, Zn).
We can represent the data as a two-by-two table:

Y = 0 Y = 1
Z = 0 X00 X01 X0·
Z = 1 X10 X11 X1·

X·0 X·1 n = X··
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where

Xij = number of observations for which Y = i and Z = j.

The dotted subscripts denote sums. Thus,

Xi· =
∑
j

Xij , X·j =
∑
i

Xij , n = X·· =
∑
i,j

Xij .

This is a convention we use throughout the remainder of the book. Denote
the corresponding probabilities by:

Y = 0 Y = 1
Z = 0 p00 p01 p0·
Z = 1 p10 p11 p1·

p·0 p·1 1

where pij = P(Z = i, Y = j). Let X = (X00, X01, X10, X11) denote the vector
of counts. Then X ∼ Multinomial(n, p) where p = (p00, p01, p10, p11). It is now
convenient to introduce two new parameters.

15.1 Definition. The odds ratio is defined to be

ψ =
p00p11

p01p10
. (15.1)

The log odds ratio is defined to be

γ = log(ψ). (15.2)

15.2 Theorem. The following statements are equivalent:

1. Y � Z.
2. ψ = 1.
3. γ = 0.
4. For i, j ∈ {0, 1}, pij = pi·p·j.

Now consider testing

H0 : Y � Z versus H1 : Y ������ Z. (15.3)

First we consider the likelihood ratio test. Under H1, X ∼ Multinomial(n, p)
and the mle is the vector p̂ = X/n. Under H0, we again have that X ∼
Multinomial(n, p) but the restricted mle is computed under the constraint
pij = pi·p·j This leads to the following test:
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15.3 Theorem. The likelihood ratio test statistic for (15.3) is

T = 2
1∑
i=0

1∑
j=0

Xij log
(
XijX··
Xi·X·j

)
. (15.4)

Under H0, T � χ2
1. Thus, an approximate level α test is obtained by

rejecting H0 when T > χ2
1,α.

Another popular test for independence is Pearson’s χ2 test.

15.4 Theorem. Pearson’s χ2 test statistic for independence is

U =
1∑
i=0

1∑
j=0

(Xij − Eij)2
Eij

(15.5)

where
Eij =

Xi·X·j
n

.

Under H0, U � χ2
1. Thus, an approximate level α test is obtained by

rejecting H0 when U > χ2
1,α.

Here is the intuition for the Pearson test. Under H0, pij = pi·p·j , so the
maximum likelihood estimator of pij under H0 is

p̂ij = p̂i·p̂·j =
Xi·
n

X·j
n
.

Thus, the expected number of observations in the (i,j) cell is

Eij = np̂ij =
Xi·X·j
n

.

The statistic U compares the observed and expected counts.

15.5 Example. The following data from Johnson and Johnson (1972) relate
tonsillectomy and Hodgkins disease. 1

Hodgkins Disease No Disease
Tonsillectomy 90 165 255
No Tonsillectomy 84 307 391
Total 174 472 646

1The data are actually from a case-control study; see the appendix for an explanation of
case-control studies.
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We would like to know if tonsillectomy is related to Hodgkins disease. The
likelihood ratio statistic is T = 14.75 and the p-value is P(χ2

1 > 14.75) = .0001.
The χ2 statistic is U = 14.96 and the p-value is P(χ2

1 > 14.96) = .0001. We re-
ject the null hypothesis of independence and conclude that tonsillectomy is as-
sociated with Hodgkins disease. This does not mean that tonsillectomies cause
Hodgkins disease. Suppose, for example, that doctors gave tonsillectomies to
the most seriously ill patients. Then the association between tonsillectomies
and Hodgkins disease may be due to the fact that those with tonsillectomies
were the most ill patients and hence more likely to have a serious disease. �

We can also estimate the strength of dependence by estimating the odds
ratio ψ and the log-odds ratio γ.

15.6 Theorem. The mle’s of ψ and γ are

ψ̂ =
X00X11

X01X10
, γ̂ = log ψ̂. (15.6)

The asymptotic standard errors (computed using the delta method) are

ŝe(γ̂) =
√

1
X00

+
1
X01

+
1
X10

+
1
X11

(15.7)

ŝe(ψ̂) = ψ̂ ŝe(γ̂). (15.8)

15.7 Remark. For small sample sizes, ψ̂ and γ̂ can have a very large variance.
In this case, we often use the modified estimator

ψ̂ =

(
X00 + 1

2

) (
X11 + 1

2

)(
X01 + 1

2

) (
X10 + 1

2

) . (15.9)

Another test for independence is the Wald test for γ = 0 given by W =
(γ̂ − 0)/ŝe(γ̂). A 1− α confidence interval for γ is γ̂ ± zα/2ŝe(γ̂).

A 1 − α confidence interval for ψ can be obtained in two ways. First, we
could use ψ̂ ± zα/2ŝe(ψ̂). Second, since ψ = eγ we could use

exp
{
γ̂ ± zα/2ŝe(γ̂)

}
. (15.10)

This second method is usually more accurate.

15.8 Example. In the previous example,

ψ̂ =
90× 307
165× 84

= 1.99

and
γ̂ = log(1.99) = .69.
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So tonsillectomy patients were twice as likely to have Hodgkins disease. The
standard error of γ̂ is √

1
90

+
1
84

+
1

165
+

1
307

= .18.

The Wald statistic is W = .69/.18 = 3.84 whose p-value is P(|Z| > 3.84) =
.0001, the same as the other tests. A 95 per cent confidence interval for γ is
γ̂±2(.18) = (.33, 1.05). A 95 per cent confidence interval for ψ is (e.33, e1.05) =
(1.39, 2.86). �

15.2 Two Discrete Variables

Now suppose that Y ∈ {1, . . . , I} and Z ∈ {1, . . . , J} are two discrete vari-
ables. The data can be represented as an I × J table of counts:

Y = 1 Y = 2 · · · Y = j · · · Y = J

Z = 1 X11 X12 · · · X1j · · · X1J X1·
...

...
...

...
...

...
...

...
Z = i Xi1 Xi2 · · · Xij · · · XiJ Xi·

...
...

...
...

...
...

...
...

Z = I XI1 XI2 · · · XIj · · · XIJ XI·
X·1 X·2 · · · X·j · · · X·J n

where

Xij = number of observations for which Z = i and Y = j.

Consider testing

H0 : Y � Z versus H1 : Y ������ Z. (15.11)

15.9 Theorem. The likelihood ratio test statistic for (15.11) is

T = 2
I∑
i=1

J∑
j=1

Xij log
(
Xij X··
Xi·X·j

)
. (15.12)

The limiting distribution of T under the null hypothesis of independence
is χ2

ν where ν = (I − 1)(J − 1). Pearson’s χ2 test statistic is

U =
I∑
i=1

J∑
j=1

(Xij − Eij)2
Eij

. (15.13)



244 15. Inference About Independence

Asymptotically, under H0, U has a χ2
ν distribution where

ν = (I − 1)(J − 1).

15.10 Example. These data are from Dunsmore et al. (1987). Patients with
Hodgkins disease are classified by their response to treatment and by histo-
logical type.

Type Positive Response Partial Response No Response
LP 74 18 12 104
NS 68 16 12 96
MC 154 54 58 266
LD 18 10 44 72

The χ2 test statistic is 75.89 with 2× 3 = 6 degrees of freedom. The p-value
is P(χ2

6 > 75.89) ≈ 0. The likelihood ratio test statistic is 68.30 with 2×3 = 6
degrees of freedom. The p-value is P(χ2

6 > 68.30) ≈ 0. Thus there is strong
evidence that response to treatment and histological type are associated. �

15.3 Two Continuous Variables

Now suppose that Y and Z are both continuous. If we assume that the joint
distribution of Y and Z is bivariate Normal, then we measure the dependence
between Y and Z by means of the correlation coefficient ρ. Tests, estimates,
and confidence intervals for ρ in the Normal case are given in the previous
chapter in Section 14.2. If we do not assume Normality then we can still use the
methods in Section 14.2 to draw inferences about the correlation ρ. However,
if we conclude that ρ is 0, we cannot conclude that Y and Z are independent,
only that they are uncorrelated. Fortunately, the reverse direction is valid:
if we conclude that Y and Z are correlated than we can conclude they are
dependent.

15.4 One Continuous Variable and One Discrete

Suppose that Y ∈ {1, . . . , I} is discrete and Z is continuous. Let Fi(z) =
P(Z ≤ z|Y = i) denote the cdf of Z conditional on Y = i.
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15.11 Theorem. When Y ∈ {1, . . . , I} is discrete and Z is continuous, then
Y � Z if and only if F1 = · · · = FI .

It follows from the previous theorem that to test for independence, we need
to test

H0 : F1 = · · · = FI versus H1 : not H0.

For simplicity, we consider the case where I = 2. To test the null hypothesis
that F1 = F2 we will use the two sample Kolmogorov-Smirnov test. Let
n1 denote the number of observations for which Yi = 1 and let n2 denote the
number of observations for which Yi = 2. Let

F̂1(z) =
1
n1

n∑
i=1

I(Zi ≤ z)I(Yi = 1)

and

F̂2(z) =
1
n2

n∑
i=1

I(Zi ≤ z)I(Yi = 2)

denote the empirical distribution function of Z given Y = 1 and Y = 2
respectively. Define the test statistic

D = sup
x
|F̂1(x)− F̂2(x)|.

15.12 Theorem. Let

H(t) = 1− 2
∞∑
j=1

(−1)j−1e−2j2t2 . (15.14)

Under the null hypothesis that F1 = F2,

lim
n→∞ P

(√
n1n2

n1 + n2
D ≤ t

)
= H(t).

It follows from the theorem that an approximate level α test is obtained by
rejecting H0 when √

n1n2

n1 + n2
D > H−1(1− α).

15.5 Appendix

Interpreting The Odds Ratios. Suppose event A as probability P(A).
The odds of A are defined as odds(A) = P(A)/(1 − P(A)). It follows that
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P(A) = odds(A)/(1 + odds(A)). Let E be the event that someone is exposed
to something (smoking, radiation, etc) and let D be the event that they get
a disease. The odds of getting the disease given that you are exposed are:

odds(D|E) =
P(D|E)

1− P(D|E)

and the odds of getting the disease given that you are not exposed are:

odds(D|Ec) =
P(D|Ec)

1− P(D|Ec) .

The odds ratio is defined to be

ψ =
odds(D|E)
odds(D|Ec) .

If ψ = 1 then disease probability is the same for exposed and unexposed. This
implies that these events are independent. Recall that the log-odds ratio is
defined as γ = log(ψ). Independence corresponds to γ = 0.

Consider this table of probabilities and corresponding table of data:
Dc D

Ec p00 p01 p0·
E p10 p11 p1·

p·0 p·1 1

Dc D

Ec X00 X01 X0·
E X10 X11 X1·

X·0 X·1 X··
Now

P(D|E) =
p11

p10 + p11
and P(D|Ec) =

p01

p00 + p01
,

and so

odds(D|E) =
p11

p10
and odds(D|Ec) =

p01

p00
,

and therefore,

ψ =
p11p00

p01p10
.

To estimate the parameters, we have to first consider how the data were
collected. There are three methods.

Multinomial Sampling. We draw a sample from the population and,
for each person, record their exposure and disease status. In this case, X =
(X00, X01, X10, X11) ∼ Multinomial(n, p). We then estimate the probabilities
in the table by p̂ij = Xij/n and

ψ̂ =
p̂11p̂00

p̂01p̂10
=
X11X00

X01X10
.
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Prospective Sampling. (Cohort Sampling). We get some exposed and
unexposed people and count the number with disease in each group. Thus,

X01 ∼ Binomial(X0·,P(D|Ec))
X11 ∼ Binomial(X1·,P(D|E)).

We should really write x0· and x1· instead of X0· and X1· since in this case,
these are fixed not random, but for notational simplicity I’ll keep using capital
letters. We can estimate P(D|E) and P(D|Ec) but we cannot estimate all the
probabilities in the table. Still, we can estimate ψ since ψ is a function of
P(D|E) and P(D|Ec). Now

P̂(D|E) =
X11

X1·
and P̂(D|Ec) =

X01

X0·
.

Thus,

ψ̂ =
X11X00

X01X10

just as before.
Case-Control (Retrospective) Sampling. Here we get some diseased

and non-diseased people and we observe how many are exposed. This is much
more efficient if the disease is rare. Hence,

X10 ∼ Binomial(X·0,P(E|Dc))

X11 ∼ Binomial(X·1,P(E|D)).

From these data we can estimate P(E|D) and P(E|Dc). Surprisingly, we can
also still estimate ψ. To understand why, note that

P(E|D) =
p11

p01 + p11
, 1− P(E|D) =

p01

p01 + p11
, odds(E|D) =

p11

p01
.

By a similar argument,
odds(E|Dc) =

p10

p00
.

Hence,
odds(E|D)
odds(E|Dc)

=
p11p00

p01p10
= ψ.

From the data, we form the following estimates:

P̂ (E|D) =
X11

X·1
, 1−P̂ (E|D) =

X01

X·1
, ôdds(E|D) =

X11

X01
, ôdds(E|Dc) =

X10

X00
.

Therefore,

ψ̂ =
X00X11

X01X10
.
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So in all three data collection methods, the estimate of ψ turns out to be the
same.

It is tempting to try to estimate P(D|E)−P(D|Ec). In a case-control design,
this quantity is not estimable. To see this, we apply Bayes’ theorem to get

P(D|E)− P(D|Ec) =
P(E|D)P(D)

P(E)
− P(Ec|D)P(D)

P(Ec)
.

Because of the way we obtained the data, P(D) is not estimable from the data.
However, we can estimate ξ = P(D|E)/P(D|Ec), which is called the relative
risk, under the rare disease assumption.

15.13 Theorem. Let ξ = P(D|E)/P(D|Ec). Then

ψ

ξ
→ 1

as P(D)→ 0.

Thus, under the rare disease assumption, the relative risk is approximately
the same as the odds ratio and, as we have seen, we can estimate the odds
ratio.

15.6 Exercises

1. Prove Theorem 15.2.

2. Prove Theorem 15.3.

3. Prove Theorem 15.6.

4. The New York Times (January 8, 2003, page A12) reported the following
data on death sentencing and race, from a study in Maryland: 2

Death Sentence No Death Sentence
Black Victim 14 641
White Victim 62 594

Analyze the data using the tools from this chapter. Interpret the results.
Explain why, based only on this information, you can’t make causal
conclusions. (The authors of the study did use much more information
in their full report.)

2The data here are an approximate re-creation using the information in the article.
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5. Analyze the data on the variables Age and Financial Status from:

http://lib.stat.cmu.edu/DASL/Datafiles/montanadat.html

6. Estimate the correlation between temperature and latitude using the
data from

http://lib.stat.cmu.edu/DASL/Datafiles/USTemperatures.html

Use the correlation coefficient. Provide estimates, tests, and confidence
intervals.

7. Test whether calcium intake and drop in blood pressure are associated.
Use the data in

http://lib.stat.cmu.edu/DASL/Datafiles/Calcium.html





16
Causal Inference

Roughly speaking, the statement “X causes Y ” means that changing the
value of X will change the distribution of Y . When X causes Y , X and Y

will be associated but the reverse is not, in general, true. Association does not
necessarily imply causation. We will consider two frameworks for discussing
causation. The first uses counterfactual random variables. The second, pre-
sented in the next chapter, uses directed acyclic graphs.

16.1 The Counterfactual Model

Suppose that X is a binary treatment variable where X = 1 means “treated”
and X = 0 means “not treated.” We are using the word “treatment” in a
very broad sense. Treatment might refer to a medication or something like
smoking. An alternative to “treated/not treated” is “exposed/not exposed”
but we shall use the former.

Let Y be some outcome variable such as presence or absence of disease.
To distinguish the statement “X is associated Y ” from the statement “X
causes Y ” we need to enrich our probabilistic vocabulary. Specifically, we will
decompose the response Y into a more fine-grained object.

We introduce two new random variables (C0, C1), called potential out-
comes with the following interpretation: C0 is the outcome if the subject is
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not treated (X = 0) and C1 is the outcome if the subject is treated (X = 1).
Hence,

Y =
{
C0 if X = 0
C1 if X = 1.

We can express the relationship between Y and (C0, C1) more succinctly by

Y = CX . (16.1)

Equation (16.1) is called the consistency relationship.
Here is a toy dataset to make the idea clear:

X Y C0 C1

0 4 4 *
0 7 7 *
0 2 2 *
0 8 8 *
1 3 * 3
1 5 * 5
1 8 * 8
1 9 * 9

The asterisks denote unobserved values. When X = 0 we don’t observe C1,
in which case we say that C1 is a counterfactual since it is the outcome
you would have had if, counter to the fact, you had been treated (X = 1).
Similarly, when X = 1 we don’t observe C0, and we say that C0 is counter-
factual. There are four types of subjects:

Type C0 C1

Survivors 1 1
Responders 0 1
Anti-responders 1 0
Doomed 0 0

Think of the potential outcomes (C0, C1) as hidden variables that contain all
the relevant information about the subject.

Define the average causal effect or average treatment effect to be

θ = E(C1)− E(C0). (16.2)

The parameter θ has the following interpretation: θ is the mean if everyone
were treated (X = 1) minus the mean if everyone were not treated (X = 0).
There are other ways of measuring the causal effect. For example, if C0 and
C1 are binary, we define the causal odds ratio

P(C1 = 1)
P(C1 = 0)

÷ P(C0 = 1)
P(C0 = 0)
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and the causal relative risk

P(C1 = 1)
P(C0 = 1)

.

The main ideas will be the same whatever causal effect we use. For simplicity,
we shall work with the average causal effect θ.

Define the association to be

α = E(Y |X = 1)− E(Y |X = 0). (16.3)

Again, we could use odds ratios or other summaries if we wish.

16.1 Theorem (Association Is Not Causation). In general, θ �= α.

16.2 Example. Suppose the whole population is as follows:

X Y C0 C1

0 0 0 0∗

0 0 0 0∗

0 0 0 0∗

0 0 0 0∗

1 1 1∗ 1
1 1 1∗ 1
1 1 1∗ 1
1 1 1∗ 1

Again, the asterisks denote unobserved values. Notice that C0 = C1 for every
subject, thus, this treatment has no effect. Indeed,

θ = E(C1)− E(C0) =
1
8

8∑
i=1

C1i −
1
8

8∑
i=1

C0i

=
0 + 0 + 0 + 0 + 1 + 1 + 1 + 1

8
− 0 + 0 + 0 + 0 + 1 + 1 + 1 + 1

8
= 0.

Thus, the average causal effect is 0. The observed data are only the X’s and
Y ’s, from which we can estimate the association:

α = E(Y |X = 1)− E(Y |X = 0)

=
1 + 1 + 1 + 1

4
− 0 + 0 + 0 + 0

4
= 1.

Hence, θ �= α.
To add some intuition to this example, imagine that the outcome variable

is 1 if “healthy” and 0 if “sick”. Suppose that X = 0 means that the subject
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does not take vitamin C and that X = 1 means that the subject does take
vitamin C. Vitamin C has no causal effect since C0 = C1 for each subject. In
this example there are two types of people: healthy people (C0, C1) = (1, 1)
and unhealthy people (C0, C1) = (0, 0). Healthy people tend to take vitamin
C while unhealthy people don’t. It is this association between (C0, C1) and
X that creates an association between X and Y . If we only had data on X

and Y we would conclude that X and Y are associated. Suppose we wrongly
interpret this causally and conclude that vitamin C prevents illness. Next we
might encourage everyone to take vitamin C. If most people comply with our
advice, the population will look something like this:

X Y C0 C1

0 0 0 0∗

1 0 0 0∗

1 0 0 0∗

1 0 0 0∗

1 1 1∗ 1
1 1 1∗ 1
1 1 1∗ 1
1 1 1∗ 1

Now α = (4/7) − (0/1) = 4/7. We see that α went down from 1 to 4/7.
Of course, the causal effect never changed but the naive observer who does
not distinguish association and causation will be confused because his advice
seems to have made things worse instead of better. �

In the last example, θ = 0 and α = 1. It is not hard to create examples in
which α > 0 and yet θ < 0. The fact that the association and causal effects
can have different signs is very confusing to many people.

The example makes it clear that, in general, we cannot use the association
to estimate the causal effect θ. The reason that θ �= α is that (C0, C1) was
not independent of X. That is, treatment assignment was not independent of
person type.

Can we ever estimate the causal effect? The answer is: sometimes. In par-
ticular, random assignment to treatment makes it possible to estimate θ.

16.3 Theorem. Suppose we randomly assign subjects to treatment and that
P(X = 0) > 0 and P(X = 1) > 0. Then α = θ. Hence, any consistent estima-
tor of α is a consistent estimator of θ. In particular, a consistent estimator
is

θ̂ = Ê(Y |X = 1)− Ê(Y |X = 0)
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= Y 1 − Y 0

is a consistent estimator of θ, where

Y 1 =
1
n1

n∑
i=1

YiXi, Y 0 =
1
n0

n∑
i=1

Yi(1−Xi),

n1 =
∑n
i=1Xi, and n0 =

∑n
i=1(1−Xi).

Proof. Since X is randomly assigned, X is independent of (C0, C1). Hence,

θ = E(C1)− E(C0)

= E(C1|X = 1)− E(C0|X = 0) since X � (C0, C1)

= E(Y |X = 1)− E(Y |X = 0) since Y = CX

= α.

The consistency follows from the law of large numbers. �

If Z is a covariate, we define the conditional causal effect by

θz = E(C1|Z = z)− E(C0|Z = z).

For example, if Z denotes gender with values Z = 0 (women) and Z = 1
(men), then θ0 is the causal effect among women and θ1 is the causal effect
among men. In a randomized experiment, θz = E(Y |X = 1, Z = z)−E(Y |X =
0, Z = z) and we can estimate the conditional causal effect using appropriate
sample averages.

Summary of the Counterfactual Model

Random variables: (C0, C1, X, Y ).
Consistency relationship: Y = CX .
Causal Effect: θ = E(C1)− E(C0).
Association: α = E(Y |X = 1)− E(Y |X = 0).
Random assignment =⇒ (C0, C1) �X =⇒ θ = α.

16.2 Beyond Binary Treatments

Let us now generalize beyond the binary case. Suppose that X ∈ X . For
example, X could be the dose of a drug in which case X ∈ R. The counterfac-
tual vector (C0, C1) now becomes the counterfactual function C(x) where



256 16. Causal Inference

0 1 2 3 4 5 6 7 8 9 10 11
0

1

2

3

4

5

6

7

x

C(x)

X

Y = C(X)

FIGURE 16.1. A counterfactual function C(x). The outcome Y is the value of the
curve C(x) evaluated at the observed dose X.

C(x) is the outcome a subject would have if he received dose x. The observed
response is given by the consistency relation

Y ≡ C(X). (16.4)

See Figure 16.1. The causal regression function is

θ(x) = E(C(x)). (16.5)

The regression function, which measures association, is r(x) = E(Y |X = x).

16.4 Theorem. In general, θ(x) �= r(x). However, when X is randomly as-
signed, θ(x) = r(x).

16.5 Example. An example in which θ(x) is constant but r(x) is not constant
is shown in Figure 16.2. The figure shows the counterfactual functions for
four subjects. The dots represent their X values X1, X2, X3, X4. Since Ci(x)
is constant over x for all i, there is no causal effect and hence

θ(x) =
C1(x) + C2(x) + C3(x) + C4(x)

4
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is constant. Changing the dose x will not change anyone’s outcome. The four
dots in the lower plot represent the observed data points Y1 = C1(X1), Y2 =
C2(X2), Y3 = C3(X3), Y4 = C4(X4). The dotted line represents the regression
r(x) = E(Y |X = x). Although there is no causal effect, there is an association
since the regression curve r(x) is not constant. �

16.3 Observational Studies and Confounding

A study in which treatment (or exposure) is not randomly assigned is called an
observational study. In these studies, subjects select their own value of the
exposure X. Many of the health studies you read about in the newspaper are
like this. As we saw, association and causation could in general be quite differ-
ent. This discrepancy occurs in non-randomized studies because the potential
outcome C is not independent of treatment X. However, suppose we could
find groupings of subjects such that, within groups, X and {C(x) : x ∈ X}
are independent. This would happen if the subjects are very similar within
groups. For example, suppose we find people who are very similar in age, gen-
der, educational background, and ethnic background. Among these people we
might feel it is reasonable to assume that the choice of X is essentially ran-
dom. These other variables are called confounding variables.1 If we denote
these other variables collectively as Z, then we can express this idea by saying
that

{C(x) : x ∈ X} �X|Z. (16.6)

Equation (16.6) means that, within groups of Z, the choice of treatment X
does not depend on type, as represented by {C(x) : x ∈ X}. If (16.6) holds
and we observe Z then we say that there is no unmeasured confounding.

16.6 Theorem. Suppose that (16.6) holds. Then,

θ(x) =
∫

E(Y |X = x, Z = z)dFZ(z)dz. (16.7)

If r̂(x, z) is a consistent estimate of the regression function E(Y |X = x, Z =
z), then a consistent estimate of θ(x) is

θ̂(x) =
1
n

n∑
i=1

r̂(x, Zi).

1A more precise definition of confounding is given in the next chapter.
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FIGURE 16.2. The top plot shows the counterfactual function C(x) for four sub-
jects. The dots represent their X values. Since Ci(x) is constant over x for all i, there
is no causal effect. Changing the dose will not change anyone’s outcome. The lower
plot shows the causal regression function θ(x) = (C1(x)+C2(x)+C3(x)+C4(x))/4.
The four dots represent the observed data points Y1 = C1(X1), Y2 = C2(X2),
Y3 = C3(X3), Y4 = C4(X4). The dotted line represents the regression
r(x) = E(Y |X = x). There is no causal effect since Ci(x) is constant for all i.
But there is an association since the regression curve r(x) is not constant.
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In particular, if r(x, z) = β0 + β1x+ β2z is linear, then a consistent estimate
of θ(x) is

θ̂(x) = β̂0 + β̂1x+ β̂2Zn (16.8)

where (β̂0, β̂1, β̂2) are the least squares estimators.

16.7 Remark. It is useful to compare equation (16.7) to E(Y |X = x) which
can be written as E(Y |X = x) =

∫
E(Y |X = x, Z = z)dFZ|X(z|x).

Epidemiologists call (16.7) the adjusted treatment effect. The process of
computing adjusted treatment effects is called adjusting (or controlling)
for confounding. The selection of what confounders Z to measure and con-
trol for requires scientific insight. Even after adjusting for confounders, we
cannot be sure that there are not other confounding variables that we missed.
This is why observational studies must be treated with healthy skepticism.
Results from observational studies start to become believable when: (i) the
results are replicated in many studies, (ii) each of the studies controlled for
plausible confounding variables, (iii) there is a plausible scientific explanation
for the existence of a causal relationship.

A good example is smoking and cancer. Numerous studies have shown a
relationship between smoking and cancer even after adjusting for many con-
founding variables. Moreover, in laboratory studies, smoking has been shown
to damage lung cells. Finally, a causal link between smoking and cancer has
been found in randomized animal studies. It is this collection of evidence
over many years that makes this a convincing case. One single observational
study is not, by itself, strong evidence. Remember that when you read the
newspaper.

16.4 Simpson’s Paradox

Simpson’s paradox is a puzzling phenomenon that is discussed in most statis-
tics texts. Unfortunately, most explanations are confusing (and in some cases
incorrect). The reason is that it is nearly impossible to explain the paradox
without using counterfactuals (or directed acyclic graphs).

Let X be a binary treatment variable, Y a binary outcome, and Z a third
binary variable such as gender. Suppose the joint distribution of X,Y, Z is
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Y = 1 Y = 0 Y = 1 Y = 0
X = 1 .1500 .2250 .1000 .0250
X = 0 .0375 .0875 .2625 .1125

Z = 1 (men) Z = 0 (women)

The marginal distribution for (X,Y ) is

Y = 1 Y = 0
X = 1 .25 .25 .50
X = 0 .30 .20 .50

.55 .45 1

From these tables we find that,

P(Y = 1|X = 1)− P(Y = 1|X = 0) = −0.1

P(Y = 1|X = 1, Z = 1)− P(Y = 1|X = 0, Z = 1) = 0.1

P(Y = 1|X = 1, Z = 0)− P(Y = 1|X = 0, Z = 0) = 0.1.

To summarize, we seem to have the following information:

Mathematical Statement English Statement?
P(Y = 1|X = 1) < P(Y = 1|X = 0) treatment is harmful

P(Y = 1|X = 1, Z = 1) > P(Y = 1|X = 0, Z = 1) treatment is beneficial to men
P(Y = 1|X = 1, Z = 0) > P(Y = 1|X = 0, Z = 0) treatment is beneficial to women

Clearly, something is amiss. There can’t be a treatment which is good for
men, good for women, but bad overall. This is nonsense. The problem is with
the set of English statements in the table. Our translation from math into
English is specious.

The inequality P(Y = 1|X = 1) < P(Y = 1|X = 0) does not
mean that treatment is harmful.

The phrase “treatment is harmful” should be written mathematically as
P(C1 = 1) < P(C0 = 1). The phrase “treatment is harmful for men” should
be written P(C1 = 1|Z = 1) < P(C0 = 1|Z = 1). The three mathematical
statements in the table are not at all contradictory. It is only the translation
into English that is wrong.

Let us now show that a real Simpson’s paradox cannot happen, that is,
there cannot be a treatment that is beneficial for men and women but harmful
overall. Suppose that treatment is beneficial for both sexes. Then

P(C1 = 1|Z = z) > P(C0 = 1|Z = z)
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for all z. It then follows that

P(C1 = 1) =
∑
z

P(C1 = 1|Z = z)P(Z = z)

>
∑
z

P(C0 = 1|Z = z)P(Z = z)

= P(C0 = 1).

Hence, P(C1 = 1) > P(C0 = 1), so treatment is beneficial overall. No paradox.

16.5 Bibliographic Remarks

The use of potential outcomes to clarify causation is due mainly to Jerzy Ney-
man and Donald Rubin. Later developments are due to Jamie Robins, Paul
Rosenbaum, and others. A parallel development took place in econometrics
by various people including James Heckman and Charles Manski. Texts on
causation include Pearl (2000), Rosenbaum (2002), Spirtes et al. (2000), and
van der Laan and Robins (2003).

16.6 Exercises

1. Create an example like Example 16.2 in which α > 0 and θ < 0.

2. Prove Theorem 16.4.

3. Suppose you are given data (X1, Y1), . . . , (Xn, Yn) from an observational
study, where Xi ∈ {0, 1} and Yi ∈ {0, 1}. Although it is not possible
to estimate the causal effect θ, it is possible to put bounds on θ. Find
upper and lower bounds on θ that can be consistently estimated from
the data. Show that the bounds have width 1.

Hint: Note that E(C1) = E(C1|X = 1)P(X = 1) + E(C1|X = 0)P(X =
0).

4. Suppose that X ∈ R and that, for each subject i, Ci(x) = β1ix. Each
subject has their own slope β1i. Construct a joint distribution on (β1, X)
such that P(β1 > 0) = 1 but E(Y |X = x) is a decreasing function of x,
where Y = C(X). Interpret.

5. Let X ∈ {0, 1} be a binary treatment variable and let (C0, C1) denote
the corresponding potential outcomes. Let Y = CX denote the observed
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response. Let F0 and F1 be the cumulative distribution functions for
C0 and C1. Assume that F0 and F1 are both continuous and strictly
increasing. Let θ = m1−m0 where m0 = F−1

0 (1/2) is the median of C0

and m1 = F−1
1 (1/2) is the median of C1. Suppose that the treatment X

is assigned randomly. Find an expression for θ involving only the joint
distribution of X and Y .



17
Directed Graphs and Conditional
Independence

17.1 Introduction

A directed graph consists of a set of nodes with arrows between some nodes.
An example is shown in Figure 17.1.

Graphs are useful for representing independence relations between variables.
They can also be used as an alternative to counterfactuals to represent causal
relationships. Some people use the phrase Bayesian network to refer to a
directed graph endowed with a probability distribution. This is a poor choice
of terminology. Statistical inference for directed graphs can be performed using

Y

X Z

FIGURE 17.1. A directed graph with vertices V = {X,Y, Z} and edges
E = {(Y,X), (Y, Z)}.
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frequentist or Bayesian methods, so it is misleading to call them Bayesian
networks.

Before getting into details about directed acyclic graphs (DAGs), we need
to discuss conditional independence.

17.2 Conditional Independence

17.1 Definition. Let X, Y and Z be random variables. X and Y are
conditionally independent given Z, written X � Y | Z, if

fX,Y |Z(x, y|z) = fX|Z(x|z)fY |Z(y|z). (17.1)

for all x, y and z.

Intuitively, this means that, once you know Z, Y provides no extra infor-
mation about X. An equivalent definition is that

f(x|y, z) = f(x|z). (17.2)

The conditional independence relation satisfies some basic properties.

17.2 Theorem. The following implications hold: 1

X � Y | Z =⇒ Y �X | Z
X � Y | Z and U = h(X) =⇒ U � Y | Z
X � Y | Z and U = h(X) =⇒ X � Y | (Z,U)

X � Y | Z and X �W |(Y,Z) =⇒ X � (W,Y ) | Z
X � Y | Z and X � Z | Y =⇒ X � (Y,Z).

17.3 DAGs

A directed graph G consists of a set of vertices V and an edge set E of
ordered pairs of vertices. For our purposes, each vertex will correspond to a
random variable. If (X,Y ) ∈ E then there is an arrow pointing from X to Y .
See Figure 17.1.

1The last property requires the assumption that all events have positive probability; the first
four do not.
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heart disease cough

overweight smoking

FIGURE 17.2. DAG for Example 17.4.

If an arrow connects two variables X and Y (in either direction) we say
that X and Y are adjacent. If there is an arrow from X to Y then X is a
parent of Y and Y is a child of X. The set of all parents of X is denoted
by πX or π(X). A directed path between two variables is a set of arrows
all pointing in the same direction linking one variable to the other such as:

X � � � Y

A sequence of adjacent vertices staring with X and ending with Y but
ignoring the direction of the arrows is called an undirected path. The se-
quence {X,Y, Z} in Figure 17.1 is an undirected path. X is an ancestor of
Y if there is a directed path from X to Y (or X = Y ). We also say that Y is
a descendant of X.

A configuration of the form:

X Y Z

is called a collider at Y . A configuration not of that form is called a non-
collider, for example,

X Y Z
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or

X Y Z

The collider property is path dependent. In Figure 17.7, Y is a collider on
the path {X,Y, Z} but it is a non-collider on the path {X,Y,W}. When the
variables pointing into the collider are not adjacent, we say that the collider
is unshielded. A directed path that starts and ends at the same variable is
called a cycle. A directed graph is acyclic if it has no cycles. In this case we
say that the graph is a directed acyclic graph or DAG. From now on, we
only deal with acyclic graphs.

17.4 Probability and DAGs

Let G be a DAG with vertices V = (X1, . . . , Xk).

17.3 Definition. If P is a distribution for V with probability function f ,
we say that P is Markov to G, or that G represents P, if

f(v) =
k∏
i=1

f(xi | πi) (17.3)

where πi are the parents of Xi. The set of distributions represented by G
is denoted by M(G).

17.4 Example. Figure 17.2 shows a DAG with four variables. The probability
function for this example factors as

f(overweight, smoking,heart disease, cough)

= f(overweight)× f(smoking)

× f(heart disease | overweight, smoking)

× f(cough | smoking). �

17.5 Example. For the DAG in Figure 17.3, P ∈ M(G) if and only if its
probability function f has the form

f(x, y, z, w) = f(x)f(y)f(z | x, y)f(w | z). �



17.5 More Independence Relations 267

Y

X

Z W

FIGURE 17.3. Another DAG.

The following theorem says that P ∈ M(G) if and only if the Markov
Condition holds. Roughly speaking, the Markov Condition means that every
variable W is independent of the “past” given its parents.

17.6 Theorem. A distribution P ∈M(G) if and only if the following Markov
Condition holds: for every variable W ,

W � W̃ | πW (17.4)

where W̃ denotes all the other variables except the parents and descendants
of W .

17.7 Example. In Figure 17.3, the Markov Condition implies that

X � Y and W � {X,Y } | Z. �

17.8 Example. Consider the DAG in Figure 17.4. In this case probability
function must factor like

f(a, b, c, d, e) = f(a)f(b|a)f(c|a)f(d|b, c)f(e|d).

The Markov Condition implies the following independence relations:

D �A | {B,C}, E � {A,B,C} | D and B � C | A �

17.5 More Independence Relations

The Markov Condition allows us to list some independence relations implied
by a DAG. These relations might imply other independence relations. Con-
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A

C

B

D E

FIGURE 17.4. Yet another DAG.

sider the DAG in Figure 17.5. The Markov Condition implies:

X1 �X2, X2 � {X1, X4}, X3 �X4 | {X1, X2},

X4 � {X2, X3} | X1, X5 � {X1, X2} | {X3, X4}

It turns out (but it is not obvious) that these conditions imply that

{X4, X5} �X2 | {X1, X3}.

How do we find these extra independence relations? The answer is “d-
separation” which means “directed separation.” d-separation can be summa-
rized by three rules. Consider the four DAG’s in Figure 17.6 and the DAG in
Figure 17.7. The first 3 DAG’s in Figure 17.6 have no colliders. The DAG in
the lower right of Figure 17.6 has a collider. The DAG in Figure 17.7 has a
collider with a descendant.



17.5 More Independence Relations 269

X1

X2

X3

X4

X5

FIGURE 17.5. And yet another DAG.

X Y Z X Y Z

X Y Z X Y Z

FIGURE 17.6. The first three DAG’s have no colliders. The fourth DAG in the lower
right corner has a collider at Y .

X Y Z

W

FIGURE 17.7. A collider with a descendant.
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X U V W Y

S1 S2

FIGURE 17.8. d-separation explained.

The Rules of d-Separation

Consider the DAGs in Figures 17.6 and 17.7.

1. When Y is not a collider, X and Z are d-connected, but they are
d-separated given Y .

2. If X and Z collide at Y , then X and Z are d-separated, but they
are d-connected given Y .

3. Conditioning on the descendant of a collider has the same effect as
conditioning on the collider. Thus in Figure 17.7, X and Z are
d-separated but they are d-connected given W .

Here is a more formal definition of d-separation. Let X and Y be distinct
vertices and let W be a set of vertices not containing X or Y . Then X and
Y are d-separated given W if there exists no undirected path U between
X and Y such that (i) every collider on U has a descendant in W , and (ii)
no other vertex on U is in W . If A,B, and W are distinct sets of vertices and
A and B are not empty, then A and B are d-separated given W if for every
X ∈ A and Y ∈ B, X and Y are d-separated given W . Sets of vertices that
are not d-separated are said to be d-connected.

17.9 Example. Consider the DAG in Figure 17.8. From the d-separation rules
we conclude that:
X and Y are d-separated (given the empty set);
X and Y are d-connected given {S1, S2};
X and Y are d-separated given {S1, S2, V }.

17.10 Theorem. 2 Let A, B, and C be disjoint sets of vertices. Then A�B | C
if and only if A and B are d-separated by C.

2We implicitly assume that P is faithful to G which means that P has no extra independence
relations other than those logically implied by the Markov Condition.
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late

aliens watch

FIGURE 17.9. Jordan’s alien example (Example 17.11). Was your friend kidnapped
by aliens or did you forget to set your watch?

17.11 Example. The fact that conditioning on a collider creates dependence
might not seem intuitive. Here is a whimsical example from Jordan (2004) that
makes this idea more palatable. Your friend appears to be late for a meeting
with you. There are two explanations: she was abducted by aliens or you forgot
to set your watch ahead one hour for daylight savings time. (See Figure 17.9.)
Aliens and Watch are blocked by a collider which implies they are marginally
independent. This seems reasonable since — before we know anything about
your friend being late — we would expect these variables to be independent.
We would also expect that P(Aliens = yes|Late = yes) > P(Aliens = yes);
learning that your friend is late certainly increases the probability that she
was abducted. But when we learn that you forgot to set your watch properly,
we would lower the chance that your friend was abducted. Hence, P(Aliens =
yes|Late = yes) �= P(Aliens = yes|Late = yes,Watch = no). Thus, Aliens and
Watch are dependent given Late. �

17.12 Example. Consider the DAG in Figure 17.2. In this example, over-

weight and smoking are marginally independent but they are dependent given
heart disease. �

Graphs that look different may actually imply the same independence re-
lations. If G is a DAG, we let I(G) denote all the independence statements
implied by G. Two DAGs G1 and G2 for the same variables V are Markov
equivalent if I(G1) = I(G2). Given a DAG G, let skeleton(G) denote the
undirected graph obtained by replacing the arrows with undirected edges.

17.13 Theorem. Two DAGs G1 and G2 are Markov equivalent if and only if
(i) skeleton(G1) = skeleton(G2) and (ii) G1 and G2 have the same unshielded
colliders.

17.14 Example. The first three DAGs in Figure 17.6 are Markov equivalent.
The DAG in the lower right of the Figure is not Markov equivalent to the
others. �
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17.6 Estimation for DAGs

Two estimation questions arise in the context of DAGs. First, given a DAG
G and data V1, . . . , Vn from a distribution f consistent with G, how do we
estimate f? Second, given data V1, . . . , Vn how do we estimate G? The first
question is pure estimation while the second involves model selection. These
are very involved topics and are beyond the scope of this book. We will just
briefly mention the main ideas.

Typically, one uses some parametric model f(x|πx; θx) for each conditional
density. The likelihood function is then

L(θ) =
n∏
i=1

f(Vi; θ) =
n∏
i=1

m∏
j=1

f(Xij |πj ; θj),

whereXij is the value ofXj for the ith data point and θj are the parameters for
the jth conditional density. We can then estimate the parameters by maximum
likelihood.

To estimate the structure of the DAG itself, we could fit every possible DAG
using maximum likelihood and use AIC (or some other method) to choose a
DAG. However, there are many possible DAGs so you would need much data
for such a method to be reliable. Also, searching through all possible DAGs
is a serious computational challenge. Producing a valid, accurate confidence
set for the DAG structure would require astronomical sample sizes. If prior
information is available about part of the DAG structure, the computational
and statistical problems are at least partly ameliorated.

17.7 Bibliographic Remarks

There are a number of texts on DAGs including Edwards (1995) and Jordan
(2004). The first use of DAGs for representing causal relationships was by
Wright (1934). Modern treatments are contained in Spirtes et al. (2000) and
Pearl (2000). Robins et al. (2003) discuss the problems with estimating causal
structure from data.

17.8 Appendix

Causation Revisited. We discussed causation in Chapter 16 using the idea
of counterfactual random variables. A different approach to causation uses
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X Y Z

FIGURE 17.10. Conditioning versus intervening.

DAGs. The two approaches are mathematically equivalent though they appear
to be quite different. In the DAG approach, the extra element is the idea of
intervention. Consider the DAG in Figure 17.10.

The probability function for a distribution consistent with this DAG has
the form f(x, y, z) = f(x)f(y|x)f(z|x, y). The following is pseudocode for
generating from this distribution.

For i = 1, . . . , n :

xi <− pX(xi)

yi <− pY |X(yi|xi)
zi <− pZ|X,Y (zi|xi, yi)

Suppose we repeat this code many times, yielding data (x1, y1, z1), . . . , (xn, yn, zn).
Among all the times that we observe Y = y, how often is Z = z? The answer
to this question is given by the conditional distribution of Z|Y . Specifically,

P(Z = z|Y = y) =
P(Y = y, Z = z)

P(Y = y)
=
f(y, z)
f(y)

=
∑
x f(x, y, z)
f(y)

=
∑
x f(x) f(y|x) f(z|x, y)

f(y)

=
∑
x

f(z|x, y)f(y|x) f(x)
f(y)

=
∑
x

f(z|x, y)f(x, y)
f(y)

=
∑
x

f(z|x, y) f(x|y).

Now suppose we intervene by changing the computer code. Specifically, sup-
pose we fix Y at the value y. The code now looks like this:

set Y = y

for i = 1, . . . , n

xi <− pX(xi)

zi <− pZ|X,Y (zi|xi, y)
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Having set Y = y, how often was Z = z? To answer, note that the inter-
vention has changed the joint probability to be

f∗(x, z) = f(x)f(z|x, y).

The answer to our question is given by the marginal distribution

f∗(z) =
∑
x

f∗(x, z) =
∑
x

f(x)f(z|x, y).

We shall denote this as P(Z = z|Y := y) or f(z|Y := y). We call P(Z =
z|Y = y) conditioning by observation or passive conditioning. We call
P(Z = z|Y := y) conditioning by intervention or active conditioning.

Passive conditioning is used to answer a predictive question like:
“Given that Joe smokes, what is the probability he will get lung cancer?”

Active conditioning is used to answer a causal question like:
“If Joe quits smoking, what is the probability he will get lung cancer?”

Consider a pair (G,P) where G is a DAG and P is a distribution for the
variables V of the DAG. Let p denote the probability function for P. Con-
sider intervening and fixing a variable X to be equal to x. We represent the
intervention by doing two things:

(1) Create a new DAG G∗ by removing all arrows pointing into X;
(2) Create a new distribution f∗(v) = P(V = v|X := x) by removing the

term f(x|πX) from f(v).
The new pair (G∗, f∗) represents the intervention “set X = x.”

17.15 Example. You may have noticed a correlation between rain and having
a wet lawn, that is, the variable “Rain” is not independent of the variable “Wet
Lawn” and hence pR,W (r, w) �= pR(r)pW (w) where R denotes Rain and W
denotes Wet Lawn. Consider the following two DAGs:

Rain −→Wet Lawn Rain←−Wet Lawn.

The first DAG implies that f(w, r) = f(r)f(w|r) while the second implies
that f(w, r) = f(w)f(r|w) No matter what the joint distribution f(w, r) is,
both graphs are correct. Both imply that R and W are not independent. But,
intuitively, if we want a graph to indicate causation, the first graph is right
and the second is wrong. Throwing water on your lawn doesn’t cause rain.
The reason we feel the first is correct while the second is wrong is because the
interventions implied by the first graph are correct.

Look at the first graph and form the intervention W = 1 where 1 denotes
“wet lawn.” Following the rules of intervention, we break the arrows into W
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to get the modified graph:

Rain set Wet Lawn =1

with distribution f∗(r) = f(r). Thus P(R = r | W := w) = P(R = r) tells us
that “wet lawn” does not cause rain.

Suppose we (wrongly) assume that the second graph is the correct causal
graph and form the intervention W = 1 on the second graph. There are no
arrows into W that need to be broken so the intervention graph is the same
as the original graph. Thus f∗(r) = f(r|w) which would imply that changing
“wet” changes “rain.” Clearly, this is nonsense.

Both are correct probability graphs but only the first is correct causally.
We know the correct causal graph by using background knowledge.

17.16 Remark. We could try to learn the correct causal graph from data but
this is dangerous. In fact it is impossible with two variables. With more than
two variables there are methods that can find the causal graph under certain
assumptions but they are large sample methods and, furthermore, there is no
way to ever know if the sample size you have is large enough to make the
methods reliable.

We can use DAGs to represent confounding variables. If X is a treatment
and Y is an outcome, a confounding variable Z is a variable with arrows into
both X and Y ; see Figure 17.11. It is easy to check, using the formalism of
interventions, that the following facts are true:

In a randomized study, the arrow between Z and X is broken. In this case,
even with Z unobserved (represented by enclosing Z in a circle), the causal
relationship between X and Y is estimable because it can be shown that
E(Y |X := x) = E(Y |X = x) which does not involve the unobserved Z. In
an observational study, with all confounders observed, we get E(Y |X := x) =∫

E(Y |X = x, Z = z)dFZ(z) as in formula (16.7). If Z is unobserved then we
cannot estimate the causal effect because E(Y |X := x) =

∫
E(Y |X = x, Z =

z)dFZ(z) involves the unobserved Z. We can’t just use X and Y since in this
case. P(Y = y|X = x) �= P(Y = y|X := x) which is just another way of saying
that causation is not association.

In fact, we can make a precise connection between DAGs and counterfac-
tuals as follows. Suppose that X and Y are binary. Define the confounding
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X Y

Z

X Y

Z

X Y

Z

FIGURE 17.11. Randomized study; Observational study with measured con-
founders; Observational study with unmeasured confounders. The circled variables
are unobserved.

variable Z by

Z =


1 if (C0, C1) = (0, 0)
2 if (C0, C1) = (0, 1)
3 if (C0, C1) = (1, 0)
4 if (C0, C1) = (1, 1).

From this, you can make the correspondence between the DAG approach and
the counterfactual approach explicit. I leave this for the interested reader.

17.9 Exercises

1. Show that (17.1) and (17.2) are equivalent.

2. Prove Theorem 17.2.

3. Let X, Y and Z have the following joint distribution:

Y = 0 Y = 1 Y = 0 Y = 1
X = 0 .405 .045 X = 0 .125 .125
X = 1 .045 .005 X = 1 .125 .125

Z = 0 Z = 1

(a) Find the conditional distribution of X and Y given Z = 0 and the
conditional distribution of X and Y given Z = 1.

(b) Show that X � Y |Z.

(c) Find the marginal distribution of X and Y .

(d) Show that X and Y are not marginally independent.

4. Consider the three DAGs in Figure 17.6 without a collider. Prove that
X � Z|Y .
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X Y1 Z1Y3Z3

Y4

Z4

Y2

Z2

FIGURE 17.12. DAG for exercise 7.

5. Consider the DAG in Figure 17.6 with a collider. Prove that X �Z and
that X and Z are dependent given Y .

6. Let X ∈ {0, 1}, Y ∈ {0, 1}, Z ∈ {0, 1, 2}. Suppose the distribution of
(X,Y, Z) is Markov to:

X −→ Y −→ Z

Create a joint distribution f(x, y, z) that is Markov to this DAG. Gen-
erate 1000 random vectors from this distribution. Estimate the distribu-
tion from the data using maximum likelihood. Compare the estimated
distribution to the true distribution. Let θ = (θ000, θ001, . . . , θ112) where
θrst = P(X = r, Y = s, Z = t). Use the bootstrap to get standard errors
and 95 percent confidence intervals for these 12 parameters.

7. Consider the DAG in Figure 17.12.

(a) Write down the factorization of the joint density.

(b) Prove that X � Zj .

8. Let V = (X,Y, Z) have the following joint distribution

X ∼ Bernoulli
(

1
2

)
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Y | X = x ∼ Bernoulli
(

e4x−2

1 + e4x−2

)
Z | X = x, Y = y ∼ Bernoulli

(
e2(x+y)−2

1 + e2(x+y)−2

)
.

(a) Find an expression for P(Z = z | Y = y). In particular, find P(Z =
1 | Y = 1).

(b) Write a program to simulate the model. Conduct a simulation and
compute P(Z = 1 | Y = 1) empirically. Plot this as a function of
the simulation size N . It should converge to the theoretical value you
computed in (a).

(c) (Refers to material in the appendix.) Write down an expression for
P(Z = 1 | Y := y). In particular, find P(Z = 1 | Y := 1).

(d) (Refers to material in the appendix.) Modify your program to sim-
ulate the intervention “set Y = 1.” Conduct a simulation and compute
P(Z = 1 | Y := 1) empirically. Plot this as a function of the simulation
size N . It should converge to the theoretical value you computed in (c).

9. This is a continuous, Gaussian version of the last question. Let V =
(X,Y, Z) have the following joint distribution

X ∼ Normal (0, 1)

Y | X = x ∼ Normal (αx, 1)

Z | X = x, Y = y ∼ Normal (βy + γx, 1).

Here, α, β and γ are fixed parameters. economists refer to models like
this as structural equation models.

(a) Find an explicit expression for f(z | y) and E(Z | Y = y) =
∫
zf(z |

y)dz.

(b) (Refers to material in the appendix.) Find an explicit expression
for f(z | Y := y) and then find E(Z | Y := y) ≡

∫
zf(z | Y := y)dy.

Compare to (b).

(c) Find the joint distribution of (Y,Z). Find the correlation ρ between
Y and Z.

(d) (Refers to material in the appendix.) Suppose that X is not observed
and we try to make causal conclusions from the marginal distribution of
(Y,Z). (Think of X as unobserved confounding variables.) In particular,
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suppose we declare that Y causes Z if ρ �= 0 and we declare that Y does
not cause Z if ρ = 0. Show that this will lead to erroneous conclusions.

(e) (Refers to material in the appendix.) Suppose we conduct a ran-
domized experiment in which Y is randomly assigned. To be concrete,
suppose that

X ∼ Normal(0, 1)

Y ∼ Normal(α, 1)

Z | X = x, Y = y ∼ Normal(βy + γx, 1).

Show that the method in (d) now yields correct conclusions (i.e., ρ = 0
if and only if f(z | Y := y) does not depend on y).





18
Undirected Graphs

Undirected graphs are an alternative to directed graphs for representing in-
dependence relations. Since both directed and undirected graphs are used in
practice, it is a good idea to be facile with both. The main difference between
the two is that the rules for reading independence relations from the graph
are different.

18.1 Undirected Graphs

An undirected graph G = (V,E) has a finite set V of vertices (or nodes)
and a set E of edges (or arcs) consisting of pairs of vertices. The vertices
correspond to random variablesX,Y, Z, . . . and edges are written as unordered
pairs. For example, (X,Y ) ∈ E means that X and Y are joined by an edge.
An example of a graph is in Figure 18.1.

Two vertices are adjacent, written X ∼ Y , if there is an edge between
them. In Figure 18.1, X and Y are adjacent but X and Z are not adjacent. A
sequence X0, . . . , Xn is called a path if Xi−1 ∼ Xi for each i. In Figure 18.1,
X,Y, Z is a path. A graph is complete if there is an edge between every pair
of vertices. A subset U ⊂ V of vertices together with their edges is called a
subgraph.
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�X

Y

Z

FIGURE 18.1. A graph with vertices V = {X,Y, Z}. The edge set is
E = {(X,Y ), (Y, Z)}.

�

�

�

�

Y

W X

Z

FIGURE 18.2. {Y,W} and {Z} are separated by {X}. Also, W and Z are separated
by {X,Y }.

If A,B and C are three distinct subsets of V , we say that C separates
A and B if every path from a variable in A to a variable in B intersects a
variable in C. In Figure 18.2 {Y,W} and {Z} are separated by {X}. Also, W
and Z are separated by {X,Y }.

18.2 Probability and Graphs

Let V be a set of random variables with distribution P. Construct a graph
with one vertex for each random variable in V . Omit the edge between a pair
of variables if they are independent given the rest of the variables:

no edge between X and Y ⇐⇒ X � Y |rest
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Z

FIGURE 18.3. X � Z|Y .

�

�
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Y

Z

FIGURE 18.4. No implied independence relations.

where “rest” refers to all the other variables besides X and Y . The resulting
graph is called a pairwise Markov graph. Some examples are shown in
Figures 18.3, 18.4, 18.5, and 18.6.

The graph encodes a set of pairwise conditional independence relations.
These relations imply other conditional independence relations. How can we
figure out what they are? Fortunately, we can read these other conditional
independence relations directly from the graph as well, as is explained in the
next theorem.

18.1 Theorem. Let G = (V,E) be a pairwise Markov graph for a distribution
P. Let A,B and C be distinct subsets of V such that C separates A and B.
Then A �B|C.

18.2 Remark. If A and B are not connected (i.e., there is no path from A to
B) then we may regard A and B as being separated by the empty set. Then
Theorem 18.1 implies that A �B.
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FIGURE 18.5. X � Z|{Y,W} and Y �W |{X,Z}.

� � � �

X Y Z W

FIGURE 18.6. Pairwise independence implies that X �Z|{Y,W}. But is X �Z|Y ?

The independence condition in Theorem 18.1 is called the global Markov
property. We thus see that the pairwise and global Markov properties are
equivalent. Let us state this more precisely. Given a graph G, let Mpair(G)
be the set of distributions which satisfy the pairwise Markov property: thus
P ∈ Mpair(G) if, under P, X � Y |rest if and only if there is no edge between
X and Y . Let Mglobal(G) be the set of distributions which satisfy the global
Markov property: thus P ∈ Mpair(G) if, under P, A � B|C if and only if C
separates A and B.

18.3 Theorem. Let G be a graph. Then, Mpair(G) = Mglobal(G).

Theorem 18.3 allows us to construct graphs using the simpler pairwise prop-
erty and then we can deduce other independence relations using the global
Markov property. Think how hard this would be to do algebraically. Returning
to 18.6, we now see that X � Z|Y and Y �W |Z.

18.4 Example. Figure 18.7 implies that X � Y , X � Z and X � (Y,Z). �

18.5 Example. Figure 18.8 implies that X �W |(Y,Z) and X � Z|Y . �
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Z

FIGURE 18.7. X � Y , X � Z and X � (Y, Z).

�

�

�

�

X Y

Z

W

FIGURE 18.8. X �W |(Y, Z) and X � Z|Y .

18.3 Cliques and Potentials

A clique is a set of variables in a graph that are all adjacent to each other. A
set of variables is a maximal clique if it is a clique and if it is not possible
to include another variable and still be a clique. A potential is any positive
function. Under certain conditions, it can be shown that P is Markov G if and
only if its probability function f can be written as

f(x) =
∏
C∈C ψC(xC)

Z
(18.1)

where C is the set of maximal cliques and

Z =
∑
x

∏
C∈C

ψC(xC).

18.6 Example. The maximal cliques for the graph in Figure 18.1 are C1 =
{X,Y } and C2 = {Y,Z}. Hence, if P is Markov to the graph, then its proba-
bility function can be written

f(x, y, z) ∝ ψ1(x, y)ψ2(y, z)

for some positive functions ψ1 and ψ2. �
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� �
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� �

X3 X5

X1

X2 X4

X6

FIGURE 18.9. The maximumly cliques of this graph are
{X1, X2}, {X1, X3}, {X2, X4}, {X3, X5}, {X2, X5, X6}.

18.7 Example. The maximal cliques for the graph in Figure 18.9 are

{X1, X2}, {X1, X3}, {X2, X4}, {X3, X5}, {X2, X5, X6}.

Thus we can write the probability function as

f(x1, x2, x3, x4, x5, x6) ∝ ψ12(x1, x2)ψ13(x1, x3)ψ24(x2, x4)

×ψ35(x3, x5)ψ256(x2, x5, x6). �

18.4 Fitting Graphs to Data

Given a data set, how do we find a graphical model that fits the data? As
with directed graphs, this is a big topic that we will not treat here. However,
in the discrete case, one way to fit a graph to data is to use a log-linear
model, which is the subject of the next chapter.

18.5 Bibliographic Remarks

Thorough treatments of undirected graphs can be found in Whittaker (1990)
and Lauritzen (1996). Some of the exercises below are from Whittaker (1990).

18.6 Exercises

1. Consider random variables (X1, X2, X3). In each of the following cases,
draw a graph that has the given independence relations.
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�

� � �

X1 X2 X4

X3

FIGURE 18.10.

� � � �

X1 X2 X3 X4

FIGURE 18.11.

(a) X1 �X3 | X2.

(b) X1 �X2 | X3 and X1 �X3 | X2.

(c) X1 �X2 | X3 and X1 �X3 | X2 and X2 �X3 | X1.

2. Consider random variables (X1, X2, X3, X4). In each of the following
cases, draw a graph that has the given independence relations.

(a) X1 �X3 | X2, X4 and X1 �X4 | X2, X3 and X2 �X4 | X1, X3.

(b) X1 �X2 | X3, X4 and X1 �X3 | X2, X4 and X2 �X3 | X1, X4.

(c) X1 �X3 | X2, X4 and X2 �X4 | X1, X3.

3. A conditional independence between a pair of variables is minimal if it
is not possible to use the Separation Theorem to eliminate any variable
from the conditioning set, i.e. from the right hand side of the bar Whit-
taker (1990). Write down the minimal conditional independencies from:
(a) Figure 18.10; (b) Figure 18.11; (c) Figure 18.12; (d) Figure 18.13.

4. Let X1, X2, X3 be binary random variables. Construct the likelihood
ratio test for

H0 : X1 �X2|X3 versus H1 : X1is not independent of X2|X3.

5. Here are breast cancer data from Morrison et al. (1973) on diagnostic
center (X1), nuclear grade (X2), and survival (X3):
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FIGURE 18.12.
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FIGURE 18.13.

X2 malignant malignant benign benign
X3 died survived died survived

X1 Boston 35 59 47 112
Glamorgan 42 77 26 76

(a) Treat this as a multinomial and find the maximum likelihood esti-
mator.

(b) If someone has a tumor classified as benign at the Glamorgan clinic,
what is the estimated probability that they will die? Find the standard
error for this estimate.
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(c) Test the following hypotheses:

X1 �X2|X3 versus X1 ������ X2|X3

X1 �X3|X2 versus X1 ������ X3|X2

X2 �X3|X1 versus X2 ������ X3|X1

Use the test from question 4. Based on the results of your tests, draw
and interpret the resulting graph.





19
Log-Linear Models

In this chapter we study log-linear models which are useful for modeling
multivariate discrete data. There is a strong connection between log-linear
models and undirected graphs.

19.1 The Log-Linear Model

Let X = (X1, . . . , Xm) be a discrete random vector with probability function

f(x) = P(X = x) = P(X1 = x1, . . . , Xm = xm)

where x = (x1, . . . , xm). Let rj be the number of values thatXj takes. Without
loss of generality, we can assume that Xj ∈ {0, 1, . . . , rj − 1}. Suppose now
that we have n such random vectors. We can think of the data as a sample
from a Multinomial with N = r1 × r2 × · · · × rm categories. The data can be
represented as counts in a r1×r2×· · ·×rm table. Let p = (p1, . . . , pN ) denote
the multinomial parameter.

Let S = {1, . . . ,m}. Given a vector x = (x1, . . . , xm) and a subset A ⊂ S,
let xA = (xj : j ∈ A). For example, if A = {1, 3} then xA = (x1, x3).
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19.1 Theorem. The joint probability function f(x) of a single random vector
X = (X1, . . . , Xm) can be written as

log f(x) =
∑
A⊂S

ψA(x) (19.1)

where the sum is over all subsets A of S = {1, . . . ,m} and the ψ’s satisfy the
following conditions:

1. ψ∅(x) is a constant;

2. For every A ⊂ S, ψA(x) is only a function of xA and not the rest of the
x′
js.

3. If i ∈ A and xi = 0, then ψA(x) = 0.

The formula in equation (19.1) is called the log-linear expansion of f .
Each ψA(x) may depend on some unknown parameters βA. Let β = (βA :
A ⊂ S) be the set of all these parameters. We will write f(x) = f(x;β) when
we want to emphasize the dependence on the unknown parameters β.

In terms of the multinomial, the parameter space is

P =
{
p = (p1, . . . , pN ) : pj ≥ 0,

N∑
j=1

pj = 1
}
.

This is an N − 1 dimensional space. In the log-linear representation, the pa-
rameter space is

Θ =
{
β = (β1, . . . , βN ) : β = β(p), p ∈ P

}
where β(p) is the set of β values associated with p. The set Θ is a N − 1
dimensional surface in RN . We can always go back and forth between the two
parameterizations we can write β = β(p) and p = p(β).

19.2 Example. Let X ∼ Bernoulli(p) where 0 < p < 1. We can write the
probability mass function for X as

f(x) = px(1− p)1−x = px1 p
1−x
2

for x = 0, 1, where p1 = p and p2 = 1− p. Hence,

log f(x) = ψ∅(x) + ψ1(x)
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where

ψ∅(x) = log(p2)

ψ1(x) = x log
(
p1

p2

)
.

Notice that ψ∅(x) is a constant (as a function of x) and ψ1(x) = 0 when x = 0.
Thus the three conditions of Theorem 19.1 hold. The log-linear parameters
are

β0 = log(p2), β1 = log
(
p1

p2

)
.

The original, multinomial parameter space is P = {(p1, p2) : pj ≥ 0, p1+p2 =
1}. The log-linear parameter space is

Θ =
{

(β0, β1) ∈ R2 : eβ0+β1 + eβ0 = 1.
}

Given (p1, p2) we can solve for (β0, β1). Conversely, given (β0, β1) we can solve
for (p1, p2). �

19.3 Example. Let X = (X1, X2) where X1 ∈ {0, 1} and X2 ∈ {0, 1, 2}. The
joint distribution of n such random vectors is a multinomial with 6 categories.
The multinomial parameters can be written as a 2-by-3 table as follows:

multinomial x2 0 1 2
x1 0 p00 p01 p02

1 p10 p11 p12

The n data vectors can be summarized as counts:

data x2 0 1 2
x1 0 C00 C01 C02

1 C10 C11 C12

For x = (x1, x2), the log-linear expansion takes the form

log f(x) = ψ∅(x) + ψ1(x) + ψ2(x) + ψ12(x)

where

ψ∅(x) = log p00

ψ1(x) = x1 log
(
p10

p00

)
ψ2(x) = I(x2 = 1) log

(
p01

p00

)
+ I(x2 = 2) log

(
p02

p00

)
ψ12(x) = I(x1 = 1, x2 = 1) log

(
p11p00

p01p10

)
+ I(x1 = 1, x2 = 2) log

(
p12p00

p02p10

)
.
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Convince yourself that the three conditions on the ψ’s of the theorem are
satisfied. The six parameters of this model are:

β1 = log p00 β2 = log
(
p10
p00

)
β3 = log

(
p01
p00

)
β4 = log

(
p02
p00

)
β5 = log

(
p11p00
p01p10

)
β6 = log

(
p12p00
p02p10

)
.

�

The next theorem gives an easy way to check for conditional independence
in a log-linear model.

19.4 Theorem. Let (Xa, Xb, Xc) be a partition of a vectors (X1, . . ., Xm).
Then Xb � Xc|Xa if and only if all the ψ-terms in the log-linear expansion
that have at least one coordinate in b and one coordinate in c are 0.

To prove this theorem, we will use the following lemma whose proof follows
easily from the definition of conditional independence.

19.5 Lemma. A partition (Xa, Xb, Xc) satisfies Xb � Xc|Xa if and only if
f(xa, xb, xc) = g(xa, xb)h(xa, xc) for some functions g and h

Proof. (Theorem 19.4.) Suppose that ψt is 0 whenever t has coordinates
in b and c. Hence, ψt is 0 if t �⊂ a

⋃
b or t �⊂ a

⋃
c. Therefore

log f(x) =
∑

t⊂a⋃
b

ψt(x) +
∑

t⊂a⋃
c

ψt(x)−
∑
t⊂a

ψt(x).

Exponentiating, we see that the joint density is of the form g(xa, xb)h(xa, xc).
By Lemma 19.5, Xb�Xc|Xa. The converse follows by reversing the argument.
�

19.2 Graphical Log-Linear Models

A log-linear model is graphical if missing terms correspond only to condi-
tional independence constraints.

19.6 Definition. Let log f(x) =
∑
A⊂S ψA(x) be a log-linear model. Then

f is graphical if all ψ-terms are nonzero except for any pair of
coordinates not in the edge set for some graph G. In other words,
ψA(x) = 0 if and only if {i, j} ⊂ A and (i, j) is not an edge.

Here is a way to think about the definition above:
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� � �

� �

X1 X2 X3

X5 X4

FIGURE 19.1. Graph for Example 19.7.

If you can add a term to the model and the graph does not change,

then the model is not graphical.

19.7 Example. Consider the graph in Figure 19.1.
The graphical log-linear model that corresponds to this graph is

log f(x) = ψ∅ + ψ1(x) + ψ2(x) + ψ3(x) + ψ4(x) + ψ5(x)

+ ψ12(x) + ψ23(x) + ψ25(x) + ψ34(x) + ψ35(x) + ψ45(x) + ψ235(x) + ψ345(x).

Let’s see why this model is graphical. The edge (1, 5) is missing in the graph.
Hence any term containing that pair of indices is omitted from the model. For
example,

ψ15, ψ125, ψ135, ψ145, ψ1235, ψ1245, ψ1345, ψ12345

are all omitted. Similarly, the edge (2, 4) is missing and hence

ψ24, ψ124, ψ234, ψ245, ψ1234, ψ1245, ψ2345, ψ12345

are all omitted. There are other missing edges as well. You can check that the
model omits all the corresponding ψ terms. Now consider the model

log f(x) = ψ∅(x) + ψ1(x) + ψ2(x) + ψ3(x) + ψ4(x) + ψ5(x)

+ ψ12(x) + ψ23(x) + ψ25(x) + ψ34(x) + ψ35(x) + ψ45(x).

This is the same model except that the three way interactions were removed.
If we draw a graph for this model, we will get the same graph. For example,
no ψ terms contain (1, 5) so we omit the edge between X1 and X5. But this is
not graphical since it has extra terms omitted. The independencies and graphs
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� � �

X2 X1 X3

FIGURE 19.2. Graph for Example 19.10.

for the two models are the same but the latter model has other constraints
besides conditional independence constraints. This is not a bad thing. It just
means that if we are only concerned about presence or absence of conditional
independences, then we need not consider such a model. The presence of the
three-way interaction ψ235 means that the strength of association between X2

and X3 varies as a function of X5. Its absence indicates that this is not so. �

19.3 Hierarchical Log-Linear Models

There is a set of log-linear models that is larger than the set of graphical
models and that are used quite a bit. These are the hierarchical log-linear
models.

19.8 Definition. A log-linear model is hierarchical if ψA = 0 and A ⊂ B
implies that ψB = 0.

19.9 Lemma. A graphical model is hierarchical but the reverse need not be
true.

19.10 Example. Let

log f(x) = ψ∅(x) + ψ1(x) + ψ2(x) + ψ3(x) + ψ12(x) + ψ13(x).

The model is hierarchical; its graph is given in Figure 19.2. The model is
graphical because all terms involving (2,3) are omitted. It is also hierarchical.
�

19.11 Example. Let

log f(x) = ψ∅(x) + ψ1(x) + ψ2(x) + ψ3(x) + ψ12(x) + ψ13(x) + ψ23(x).
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�

��

X3

X1 X2

FIGURE 19.3. The graph is complete. The model is hierarchical but not graphical.

� � �

X1 X2 X3

FIGURE 19.4. The model for this graph is not hierarchical.

The model is hierarchical. It is not graphical. The graph corresponding to this
model is complete; see Figure 19.3. It is not graphical because ψ123(x) = 0
which does not correspond to any pairwise conditional independence. �

19.12 Example. Let

log f(x) = ψ∅(x) + ψ3(x) + ψ12(x).

The graph corresponding is in Figure 19.4. This model is not hierarchical since
ψ2 = 0 but ψ12 is not. Since it is not hierarchical, it is not graphical either. �

19.4 Model Generators

Hierarchical models can be written succinctly using generators. This is most
easily explained by example. Suppose that X = (X1, X2, X3). Then, M =
1.2 + 1.3 stands for

log f = ψ∅ + ψ1 + ψ2 + ψ3 + ψ12 + ψ13.
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The formulaM = 1.2+1.3 says: “include ψ12 and ψ13.” We have to also include
the lower order terms or it won’t be hierarchical. The generator M = 1.2.3 is
the saturated model

log f = ψ∅ + ψ1 + ψ2 + ψ3 + ψ12 + ψ13 + ψ23 + ψ123.

The saturated models corresponds to fitting an unconstrained multinomial.
Consider M = 1 + 2 + 3 which means

log f = ψ∅ + ψ1 + ψ2 + ψ3.

This is the mutual independence model. Finally, consider M = 1.2 which has
log-linear expansion

log f = ψ∅ + ψ1 + ψ2 + ψ12.

This model makes X3|X2 = x2, X1 = x1 a uniform distribution.

19.5 Fitting Log-Linear Models to Data

Let β denote all the parameters in a log-linear model M . The loglikelihood
for β is

�(β) =
n∑
i=1

log f(Xi;β)

where f(Xi;β) is the probability function for the ith random vector Xi =
(Xi1, . . . , Xim) as give by equation (19.1). The mle β̂ generally has to be
found numerically. The Fisher information matrix is also found numerically
and we can then get the estimated standard errors from the inverse Fisher
information matrix.

When fitting log-linear models, one has to address the following model
selection problem: which ψ terms should we include in the model? This is
essentially the same as the model selection problem in linear regression.

One approach is is to use AIC. Let M denote some log-linear model. Differ-
ent models correspond to setting different ψ terms to 0. Now we choose the
model M which maximizes

AIC(M) = �̂(M)− |M | (19.2)

where |M | is the number of parameters in model M and �̂(M) is the value
of the log-likelihood evaluated at the mle for that model. Usually the model
search is restricted to hierarchical models. This reduces the search space. Some
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also claim that we should only search through the hierarchical models because
other models are less interpretable.

A different approach is based on hypothesis testing. The model that includes
all possible ψ-terms is called the saturated model and we denote it by Msat.
Now for each M we test the hypothesis

H0 : the true model is M versus H1 : the true model is Msat.

The likelihood ratio test for this hypothesis is called the deviance.

19.13 Definition. For any submodel M , define the deviance dev(M) by

dev(M) = 2(�̂sat − �̂M )

where �̂sat is the log-likelihood of the saturated model evaluated at the mle

and �̂M is the log-likelihood of the model M evaluated at its mle.

19.14 Theorem. The deviance is the likelihood ratio test statistic for

H0 : the model is M versus H1 : the model is Msat.

Under H0, dev(M) d→ χ2
ν with ν degrees of freedom equal to the difference in

the number of parameters between the saturated model and M .

One way to find a good model is to use the deviance to test every sub-model.
Every model that is not rejected by this test is then considered a plausible
model. However, this is not a good strategy for two reasons. First, we will end
up doing many tests which means that there is ample opportunity for making
Type I and Type II errors. Second, we will end up using models where we
failed to reject H0. But we might fail to reject H0 due to low power. The
result is that we end up with a bad model just due to low power.

After finding a “best model” this way we can draw the corresponding graph.

19.15 Example. The following breast cancer data are from Morrison et al.
(1973). The data are on diagnostic center (X1), nuclear grade (X2), and sur-
vival (X3):

X2 malignant malignant benign benign
X3 died survived died survived

X1 Boston 35 59 47 112
Glamorgan 42 77 26 76

The saturated log-linear model is:
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Center Grade Survival

FIGURE 19.5. The graph for Example 19.15.

Variable β̂j ŝe Wj p-value
(Intercept) 3.56 0.17 21.03 0.00 ***
center 0.18 0.22 0.79 0.42
grade 0.29 0.22 1.32 0.18
survival 0.52 0.21 2.44 0.01 *
center×grade -0.77 0.33 -2.31 0.02 *
center×survival 0.08 0.28 0.29 0.76
grade×survival 0.34 0.27 1.25 0.20
center×grade×survival 0.12 0.40 0.29 0.76

The best sub-model, selected using AIC and backward searching is:

Variable β̂j ŝe Wj p-value
(Intercept) 3.52 0.13 25.62 < 0.00 ***
center 0.23 0.13 1.70 0.08
grade 0.26 0.18 1.43 0.15
survival 0.56 0.14 3.98 6.65e-05 ***
center×grade -0.67 0.18 -3.62 0.00 ***
grade×survival 0.37 0.19 1.90 0.05

The graph for this model M is shown in Figure 19.5. To test the fit of this
model, we compute the deviance of M which is 0.6. The appropriate χ2 has
8− 6 = 2 degrees of freedom. The p-value is P(χ2

2 > .6) = .74. So we have no
evidence to suggest that the model is a poor fit. �

19.6 Bibliographic Remarks

For this chapter, I drew heavily on Whittaker (1990) which is an excellent
text on log-linear models and graphical models. Some of the exercises are from
Whittaker. A classic reference on log-linear models is Bishop et al. (1975).
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19.7 Exercises

1. Solve for the p′
ijs in terms of the β’s in Example 19.3.

2. Prove Lemma 19.5.

3. Prove Lemma 19.9.

4. Consider random variables (X1, X2, X3, X4). Suppose the log-density is

log f(x) = ψ∅(x) + ψ12(x) + ψ13(x) + ψ24(x) + ψ34(x).

(a) Draw the graph G for these variables.

(b) Write down all independence and conditional independence relations
implied by the graph.

(c) Is this model graphical? Is it hierarchical?

5. Suppose that parameters p(x1, x2, x3) are proportional to the following
values:

x2 0 0 1 1
x3 0 1 0 1

x1 0 2 8 4 16
1 16 128 32 256

Find the ψ-terms for the log-linear expansion. Comment on the model.

6. Let X1, . . . , X4 be binary. Draw the independence graphs correspond-
ing to the following log-linear models. Also, identify whether each is
graphical and/or hierarchical (or neither).

(a) log f = 7 + 11x1 + 2x2 + 1.5x3 + 17x4

(b) log f = 7 + 11x1 + 2x2 + 1.5x3 + 17x4 + 12x2x3 + 78x2x4 + 3x3x4 +
32x2x3x4

(c) log f = 7+11x1+2x2+1.5x3+17x4+12x2x3+3x3x4+x1x4+2x1x2

(d) log f = 7 + 5055x1x2x3x4





20
Nonparametric Curve Estimation

In this Chapter we discuss nonparametric estimation of probability density
functions and regression functions which we refer to as curve estimation or
smoothing.

In Chapter 7 we saw that it is possible to consistently estimate a cumulative
distribution function F without making any assumptions about F . If we want
to estimate a probability density function f(x) or a regression function r(x) =
E(Y |X = x) the situation is different. We cannot estimate these functions
consistently without making some smoothness assumptions. Correspondingly,
we need to perform some sort of smoothing operation on the data.

An example of a density estimator is a histogram, which we discuss in
detail in Section 20.2. To form a histogram estimator of a density f , we divide
the real line to disjoint sets called bins. The histogram estimator is a piecewise
constant function where the height of the function is proportional to number
of observations in each bin; see Figure 20.3. The number of bins is an example
of a smoothing parameter. If we smooth too much (large bins) we get a
highly biased estimator while if we smooth too little (small bins) we get a
highly variable estimator. Much of curve estimation is concerned with trying
to optimally balance variance and bias.



304 20. Nonparametric Curve Estimation

ĝ(x)

This is a function of the data This is the point at which we are
evaluating ĝ(·)

FIGURE 20.1. A curve estimate ĝ is random because it is a function of the data.
The point x at which we evaluate ĝ is not a random variable.

20.1 The Bias-Variance Tradeoff

Let g denote an unknown function such as a density function or a regression
function. Let ĝn denote an estimator of g. Bear in mind that ĝn(x) is a random
function evaluated at a point x. The estimator is random because it depends
on the data. See Figure 20.1.

As a loss function, we will use the integrated squared error (ISE): 1

L(g, ĝn) =
∫

(g(u)− ĝn(u))2 du. (20.1)

The risk or mean integrated squared error (MISE) with respect to
squared error loss is

R(f, f̂) = E

(
L(g, ĝ)

)
. (20.2)

20.1 Lemma. The risk can be written as

R(g, ĝn) =
∫
b2(x) dx+

∫
v(x) dx (20.3)

where
b(x) = E(ĝn(x))− g(x) (20.4)

is the bias of ĝn(x) at a fixed x and

v(x) = V(ĝn(x)) = E

((
ĝn(x)− E

(
ĝn(x)

)2)) (20.5)

is the variance of ĝn(x) at a fixed x.

1We could use other loss functions. The results are similar but the analysis is much more
complicated.
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FIGURE 20.2. The Bias-Variance trade-off. The bias increases and the variance de-
creases with the amount of smoothing. The optimal amount of smoothing, indicated
by the vertical line, minimizes the risk = bias2 + variance.

In summary,

RISK = BIAS2 + VARIANCE. (20.6)

When the data are oversmoothed, the bias term is large and the variance
is small. When the data are undersmoothed the opposite is true; see Figure
20.2. This is called the bias-variance tradeoff. Minimizing risk corresponds
to balancing bias and variance.

20.2 Histograms

Let X1, . . . , Xn be iid on [0, 1] with density f . The restriction to [0, 1] is not
crucial; we can always rescale the data to be on this interval. Let m be an
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integer and define bins

B1 =
[
0,

1
m

)
, B2 =

[
1
m
,

2
m

)
, . . . , Bm =

[
m− 1
m

, 1
]
. (20.7)

Define the binwidth h = 1/m, let νj be the number of observations in Bj ,
let p̂j = νj/n and let pj =

∫
Bj
f(u)du.

The histogram estimator is defined by

f̂n(x) =


p̂1/h x ∈ B1

p̂2/h x ∈ B2

...
...

p̂m/h x ∈ Bm

which we can write more succinctly as

f̂n(x) =
n∑
j=1

p̂j
h
I(x ∈ Bj). (20.8)

To understand the motivation for this estimator, let pj =
∫
Bj
f(u)du and note

that, for x ∈ Bj and h small,

E(f̂n(x)) =
E(p̂j)
h

=
pj
h

=

∫
Bj
f(u)du

h
≈ f(x)h

f(x)
= f(x).

20.2 Example. Figure 20.3 shows three different histograms based on n =
1, 266 data points from an astronomical sky survey. Each data point repre-
sents the distance from us to a galaxy. The galaxies lie on a “pencilbeam”
pointing directly from the Earth out into space. Because of the finite speed of
light, looking at galaxies farther and farther away corresponds to looking back
in time. Choosing the right number of bins involves finding a good tradeoff
between bias and variance. We shall see later that the top left histogram has
too few bins resulting in oversmoothing and too much bias. The bottom left
histogram has too many bins resulting in undersmoothing and too few bins.
The top right histogram is just right. The histogram reveals the presence of
clusters of galaxies. Seeing how the size and number of galaxy clusters varies
with time, helps cosmologists understand the evolution of the universe. �

The mean and variance of f̂n(x) are given in the following Theorem.

20.3 Theorem. Consider fixed x and fixed m, and let Bj be the bin containing
x. Then,

E(f̂n(x)) =
pj
h

and V(f̂n(x)) =
pj(1− pj)

nh2
. (20.9)
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FIGURE 20.3. Three versions of a histogram for the astronomy data. The top left
histogram has too few bins. The bottom left histogram has too many bins. The top
right histogram is just right. The lower, right plot shows the estimated risk versus
the number of bins.
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Let’s take a closer look at the bias-variance tradeoff using equation (20.9).
Consider some x ∈ Bj . For any other u ∈ Bj ,

f(u) ≈ f(x) + (u− x)f ′(x)

and so

pj =
∫
Bj

f(u)du ≈
∫
Bj

(
f(x) + (u− x)f ′(x)

)
du

= f(x)h+ hf ′(x)
(
h

(
j − 1

2

)
− x

)
.

Therefore, the bias b(x) is

b(x) = E(f̂n(x))− f(x) =
pj
h
− f(x)

≈
f(x)h+ hf ′(x)

(
h
(
j − 1

2

)
− x

)
h

− f(x)

= f ′(x)
(
h

(
j − 1

2

)
− x

)
.

If x̃j is the center of the bin, then∫
Bj

b2(x) dx ≈
∫
Bj

(f ′(x))2
(
h

(
j − 1

2

)
− x

)2

dx

≈ (f ′(x̃j))2
∫
Bj

(
h

(
j − 1

2

)
− x

)2

dx

= (f ′(x̃j))2
h3

12
.

Therefore,∫ 1

0

b2(x)dx =
m∑
j=1

∫
Bj

b2(x)dx ≈
m∑
j=1

(f ′(x̃j))2
h3

12

=
h2

12

m∑
j=1

h (f ′(x̃j))2 ≈
h2

12

∫ 1

0

(f ′(x))2dx.

Note that this increases as a function of h. Now consider the variance. For h
small, 1− pj ≈ 1, so

v(x) ≈ pj
nh2

=
f(x)h+ hf ′(x)

(
h
(
j − 1

2

)
− x

)
nh2

≈ f(x)
nh
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where we have kept only the dominant term. So,∫ 1

0

v(x)dx ≈ 1
nh
.

Note that this decreases with h. Putting all this together, we get:

20.4 Theorem. Suppose that
∫

(f ′(u))2du <∞. Then

R(f̂n, f) ≈ h2

12

∫
(f ′(u))2du+

1
nh
. (20.10)

The value h∗ that minimizes (20.10) is

h∗ =
1

n1/3

(
6∫

(f ′(u))2du

)1/3

. (20.11)

With this choice of binwidth,

R(f̂n, f) ≈ C

n2/3
(20.12)

where C = (3/4)2/3
(∫

(f ′(u))2du
)1/3

.

Theorem 20.4 is quite revealing. We see that with an optimally chosen bin-
width, the MISE decreases to 0 at rate n−2/3. By comparison, most parametric
estimators converge at rate n−1. The slower rate of convergence is the price
we pay for being nonparametric. The formula for the optimal binwidth h∗ is
of theoretical interest but it is not useful in practice since it depends on the
unknown function f .

A practical way to choose the binwidth is to estimate the risk function
and minimize over h. Recall that the loss function, which we now write as a
function of h, is

L(h) =
∫

(f̂n(x)− f(x))2 dx

=
∫
f̂ 2
n (x) dx− 2

∫
f̂n(x)f(x)dx+

∫
f2(x) dx.

The last term does not depend on the binwidth h so minimizing the risk is
equivalent to minimizing the expected value of

J(h) =
∫
f̂ 2
n (x) dx− 2

∫
f̂n(x)f(x)dx.
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We shall refer to E(J(h)) as the risk, although it differs from the true risk by
the constant term

∫
f2(x) dx.

20.5 Definition. The cross-validation estimator of risk is

Ĵ(h) =
∫ (

f̂n(x)
)2

dx− 2
n

n∑
i=1

f̂(−i)(Xi) (20.13)

where f̂(−i) is the histogram estimator obtained after removing the ith

observation. We refer to Ĵ(h) as the cross-validation score or estimated
risk.

20.6 Theorem. The cross-validation estimator is nearly unbiased:

E(Ĵ(x)) ≈ E(J(x)).

In principle, we need to recompute the histogram n times to compute Ĵ(h).
Moreover, this has to be done for all values of h. Fortunately, there is a
shortcut formula.

20.7 Theorem. The following identity holds:

Ĵ(h) =
2

(n− 1)h
− n+ 1

(n− 1)

m∑
j=1

p̂ 2
j . (20.14)

20.8 Example. We used cross-validation in the astronomy example. The cross-
validation function is quite flat near its minimum. Any m in the range of 73 to
310 is an approximate minimizer but the resulting histogram does not change
much over this range. The histogram in the top right plot in Figure 20.3 was
constructed using m = 73 bins. The bottom right plot shows the estimated
risk, or more precisely, Â, plotted versus the number of bins. �

Next we want a confidence set for f . Suppose f̂n is a histogram with m bins
and binwidth h = 1/m. We cannot realistically make confidence statements
about the fine details of the true density f . Instead, we shall make confidence
statements about f at the resolution of the histogram. To this end, define

fn(x) = E(f̂n(x)) =
pj
h

for x ∈ Bj (20.15)

where pj =
∫
Bj
f(u)du. Think of f(x) as a “histogramized” version of f .
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20.9 Definition. A pair of functions (�n(x), un(x)) is a 1− α confidence
band (or confidence envelope) if

P

(
�(x) ≤ fn(x) ≤ u(x) for all x

)
≥ 1− α. (20.16)

20.10 Theorem. Let m = m(n) be the number of bins in the histogram f̂n.
Assume that m(n)→∞ and m(n) log n/n→ 0 as n→∞. Define

�n(x) =
(

max
{√

f̂n(x)− c, 0
})2

un(x) =
(√

f̂n(x) + c

)2

(20.17)

where

c =
zα/(2m)

2

√
m

n
. (20.18)

Then, (�n(x), un(x)) is an approximate 1− α confidence band.

Proof. Here is an outline of the proof. From the central limit theorem, p̂j ≈
N(pj , pj(1− pj)/n). By the delta method,

√
p̂j ≈ N(√pj , 1/(4n)). Moreover,

it can be shown that the
√
p̂j ’s are approximately independent. Therefore,

2
√
n

(√
p̂j −

√
pj

)
≈ Zj (20.19)

where Z1, . . . , Zm ∼ N(0, 1). Let

A =
{
�n(x) ≤ fn(x) ≤ un(x) for all x

}
=

{
max
x

∣∣∣∣√f̂n(x)−
√
f(x)

∣∣∣∣ ≤ c}.
Then,

P(Ac) = P

(
max
x

∣∣∣∣√f̂n(x)−
√
f(x)

∣∣∣∣ > c

)
= P

(
max
j

∣∣∣∣∣
√
p̂j
h
−

√
pj
h

∣∣∣∣∣ > c

)

= P

(
max
j

2
√
n
∣∣∣√p̂j −

√
pj

∣∣∣ > zα/(2m)

)
≈ P

(
max
j
|Zj | > zα/(2m)

)
≤

m∑
j=1

P
(
|Zj | > zα/(2m)

)
=

m∑
j=1

α

m
= α. �
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FIGURE 20.4. 95 percent confidence envelope for astronomy data using m = 73
bins.

20.11 Example. Figure 20.4 shows a 95 percent confidence envelope for the
astronomy data. We see that even with over 1,000 data points, there is still
substantial uncertainty. �

20.3 Kernel Density Estimation

Histograms are discontinuous. Kernel density estimators are smoother and
they converge faster to the true density than histograms.

Let X1, . . . , Xn denote the observed data, a sample from f . In this chap-
ter, a kernel is defined to be any smooth function K such that K(x) ≥ 0,∫
K(x) dx = 1,

∫
xK(x)dx = 0 and σ2

K ≡
∫
x2K(x)dx > 0. Two examples of

kernels are the Epanechnikov kernel

K(x) =
{

3
4 (1− x2/5)/

√
5 |x| <

√
5

0 otherwise
(20.20)

and the Gaussian (Normal) kernel K(x) = (2π)−1/2e−x2/2.
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FIGURE 20.5. A kernel density estimator f̂ . At each point x, f̂(x) is the average
of the kernels centered over the data points Xi. The data points are indicated by
short vertical bars.

20.12 Definition. Given a kernel K and a positive number h, called the
bandwidth, the kernel density estimator is defined to be

f̂(x) =
1
n

n∑
i=1

1
h
K

(
x−Xi

h

)
. (20.21)

An example of a kernel density estimator is show in Figure 20.5. The kernel
estimator effectively puts a smoothed-out lump of mass of size 1/n over each
data point Xi. The bandwidth h controls the amount of smoothing. When h
is close to 0, f̂n consists of a set of spikes, one at each data point. The height
of the spikes tends to infinity as h→ 0. When h→∞, f̂n tends to a uniform
density.
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20.13 Example. Figure 20.6 shows kernel density estimators for the astron-
omy data using three different bandwidths. In each case we used a Gaussian
kernel. The properly smoothed kernel density estimator in the top right panel
shows similar structure as the histogram. However, it is easier to see the clus-
ters with the kernel estimator. �

To construct a kernel density estimator, we need to choose a kernel K and
a bandwidth h. It can be shown theoretically and empirically that the choice
of K is not crucial. 2 However, the choice of bandwidth h is very important.
As with the histogram, we can make a theoretical statement about how the
risk of the estimator depends on the bandwidth.

20.14 Theorem. Under weak assumptions on f and K,

R(f, f̂n) ≈
1
4
σ4
Kh

4

∫
(f

′′
(x))2 +

∫
K2(x)dx
nh

(20.22)

where σ2
K =

∫
x2K(x)dx. The optimal bandwidth is

h∗ =
c
−2/5
1 c

1/5
2 c

−1/5
3

n1/5
(20.23)

where c1 =
∫
x2K(x)dx, c2 =

∫
K(x)2dx and c3 =

∫
(f ′′(x))2dx. With this

choice of bandwidth,
R(f, f̂n) ≈

c4
n4/5

for some constant c4 > 0.

Proof. WriteKh(x,X) = h−1K ((x−X)/h) and f̂n(x) = n−1
∑
iKh(x,Xi).

Thus, E[f̂n(x)] = E[Kh(x,X)] and V[f̂n(x)] = n−1V[Kh(x,X)]. Now,

E[Kh(x,X)] =
∫

1
h
K

(
x− t
h

)
f(t) dt

=
∫
K(u)f(x− hu) du

=
∫
K(u)

[
f(x)− hf ′

(x) +
1
2
f

′′
(x) + · · ·

]
du

= f(x) +
1
2
h2f

′′
(x)

∫
u2K(u) du · · ·

since
∫
K(x) dx = 1 and

∫
xK(x) dx = 0. The bias is

E[Kh(x,X)]− f(x) ≈ 1
2
σ2
kh

2f
′′
(x).

2It can be shown that the Epanechnikov kernel is optimal in the sense of giving smallest
asymptotic mean squared error, but it is really the choice of bandwidth which is crucial.
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FIGURE 20.6. Kernel density estimators and estimated risk for the astronomy data.
Top left: oversmoothed. Top right: just right (bandwidth chosen by cross-validation).
Bottom left: undersmoothed. Bottom right: cross-validation curve as a function of
bandwidth h. The bandwidth was chosen to be the value of h where the curve is a
minimum.
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By a similar calculation,

V[f̂n(x)] ≈
f(x)

∫
K2(x) dx
nhn

.

The result follows from integrating the squared bias plus the variance. �

We see that kernel estimators converge at rate n−4/5 while histograms con-
verge at the slower rate n−2/3. It can be shown that, under weak assumptions,
there does not exist a nonparametric estimator that converges faster than
n−4/5.

The expression for h∗ depends on the unknown density f which makes
the result of little practical use. As with the histograms, we shall use cross-
validation to find a bandwidth. Thus, we estimate the risk (up to a constant)
by

Ĵ(h) =
∫
f̂2(x)dz − 2

n

n∑
i=1

f̂−i(Xi) (20.24)

where f̂−i is the kernel density estimator after omitting the ith observation.

20.15 Theorem. For any h > 0,

E

[
Ĵ(h)

]
= E [J(h)] .

Also,

Ĵ(h) ≈ 1
hn2

∑
i

∑
j

K∗
(
Xi −Xj

h

)
+

2
nh
K(0) (20.25)

where K∗(x) = K(2)(x) − 2K(x) and K(2)(z) =
∫
K(z − y)K(y)dy. In par-

ticular, if K is a N(0,1) Gaussian kernel then K(2)(z) is the N(0, 2) density.

We then choose the bandwidth hn that minimizes Ĵ(h).3 A justification for
this method is given by the following remarkable theorem due to Stone.

20.16 Theorem (Stone’s Theorem). Suppose that f is bounded. Let f̂h denote
the kernel estimator with bandwidth h and let hn denote the bandwidth chosen
by cross-validation. Then,

∫ (
f(x)− f̂hn(x)

)2

dx

infh
∫ (

f(x)− f̂h(x)
)2

dx

P−→ 1. (20.26)

3For large data sets, f̂ and (20.25) can be computed quickly using the fast Fourier transform.
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20.17 Example. The top right panel of Figure 20.6 is based on cross-validation.
These data are rounded which problems for cross-validation. Specifically, it
causes the minimizer to be h = 0. To overcome this problem, we added a
small amount of random Normal noise to the data. The result is that Ĵ(h) is
very smooth with a well defined minimum. �

20.18 Remark. Do not assume that, if the estimator f̂ is wiggly, then cross-
validation has let you down. The eye is not a good judge of risk.

To construct confidence bands, we use something similar to histograms.
Again, the confidence band is for the smoothed version,

fn = E(f̂n(x)) =
∫

1
h
K

(
x− u
h

)
f(u) du,

of the true density f . 4 Assume the density is on an interval (a, b). The band
is

�n(x) = f̂n(x)− q se(x), un(x) = f̂n(x) + q se(x) (20.27)

where

se(x) =
s(x)√
n
,

s2(x) =
1

n− 1

n∑
i=1

(Yi(x)− Y n(x))2,

Yi(x) =
1
h
K

(
x−Xi

h

)
,

q = Φ−1

(
1 + (1− α)1/m

2

)
,

m =
b− a
ω

where ω is the width of the kernel. In case the kernel does not have finite
width then we take ω to be the effective width, that is, the range over which
the kernel is non-negligible. In particular, we take ω = 3h for the Normal
kernel.

20.19 Example. Figure 20.7 shows approximate 95 percent confidence bands
for the astronomy data. �

4This is a modified version of the band described in Chaudhuri and Marron (1999).
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FIGURE 20.7. 95 percent confidence bands for kernel density estimate for the as-
tronomy data.

Suppose now that the data Xi = (Xi1, . . . , Xid) are d-dimensional. The ker-
nel estimator can easily be generalized to d dimensions. Let h = (h1, . . . , hd)
be a vector of bandwidths and define

f̂n(x) =
1
n

n∑
i=1

Kh(x−Xi) (20.28)

where

Kh(x−Xi) =
1

nh1 · · ·hd


d∏
j=1

K

(
xi −Xij

hj

) (20.29)

where h1, . . . , hd are bandwidths. For simplicity, we might take hj = sjh where
sj is the standard deviation of the jth variable. There is now only a single
bandwidth h to choose. Using calculations like those in the one-dimensional
case, the risk is given by

R(f, f̂n) ≈ 1
4
σ4
K

 d∑
j=1

h4
j

∫
f2
jj(x)dx+

∑
j =k

h2
jh

2
k

∫
fjjfkkdx


+

(∫
K2(x)dx

)d
nh1 · · ·hd

where fjj is the second partial derivative of f . The optimal bandwidth satisfies
hi ≈ c1n

−1/(4+d), leading to a risk of order n−4/(4+d). From this fact, we see
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that the risk increases quickly with dimension, a problem usually called the
curse of dimensionality. To get a sense of how serious this problem is,
consider the following table from Silverman (1986) which shows the sample
size required to ensure a relative mean squared error less than 0.1 at 0 when
the density is multivariate normal and the optimal bandwidth is selected:

Dimension Sample Size
1 4
2 19
3 67
4 223
5 768
6 2790
7 10,700
8 43,700
9 187,000

10 842,000

This is bad news indeed. It says that having 842,000 observations in a ten-
dimensional problem is really like having 4 observations in a one-dimensional
problem.

20.4 Nonparametric Regression

Consider pairs of points (x1, Y1), . . . , (xn, Yn) related by

Yi = r(xi) + εi (20.30)

where E(εi) = 0. We have written the xi’s in lower case since we will treat
them as fixed. We can do this since, in regression, it is only the mean of Y
conditional on x that we are interested in. We want to estimate the regression
function r(x) = E(Y |X = x).

There are many nonparametric regression estimators. Most involve esti-
mating r(x) by taking some sort of weighted average of the Yi’s, giving higher
weight to those points near x. A popular version is the Nadaraya-Watson
kernel estimator.

20.20 Definition. The Nadaraya-Watson kernel estimator is defined
by

r̂(x) =
n∑
i=1

wi(x)Yi (20.31)
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where K is a kernel and the weights wi(x) are given by

wi(x) =
K

(
x−xi
h

)∑n
j=1K

(
x−xj
h

) . (20.32)

The form of this estimator comes from first estimating the joint density
f(x, y) using kernel density estimation and then inserting the estimate into
the formula,

r(x) = E(Y |X = x) =
∫
yf(y|x)dy =

∫
yf(x, y)dy∫
f(x, y)dy

.

20.21 Theorem. Suppose that V(εi) = σ2. The risk of the Nadaraya-Watson
kernel estimator is

R(r̂n, r) ≈ h4

4

(∫
x2K2(x)dx

)4 ∫ (
r′′(x) + 2r′(x)

f ′(x)
f(x)

)2

dx

+
∫
σ2

∫
K2(x)dx

nhf(x)
dx. (20.33)

The optimal bandwidth decreases at rate n−1/5 and with this choice the risk
decreases at rate n−4/5.

In practice, to choose the bandwidth h we minimize the cross validation
score

Ĵ(h) =
n∑
i=1

(Yi − r̂−i(xi))2 (20.34)

where r̂−i is the estimator we get by omitting the ith variable. Fortunately,
there is a shortcut formula for computing Ĵ .

20.22 Theorem. Ĵ can be written as

Ĵ(h) =
n∑
i=1

(Yi − r̂(xi))2
1(

1− K(0)∑n
j=1K

(
xi−xj
h

)
)2 . (20.35)

20.23 Example. Figures 20.8 shows cosmic microwave background (CMB)
data from BOOMERaNG (Netterfield et al. (2002)), Maxima (Lee et al.
(2001)), and DASI (Halverson et al. (2002))). The data consist of n pairs
(x1, Y1), . . ., (xn, Yn) where xi is called the multipole moment and Yi is the
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estimated power spectrum of the temperature fluctuations. What you are see-
ing are sound waves in the cosmic microwave background radiation which is
the heat, left over from the big bang. If r(x) denotes the true power spectrum,
then

Yi = r(xi) + εi

where εi is a random error with mean 0. The location and size of peaks in
r(x) provides valuable clues about the behavior of the early universe. Figure
20.8 shows the fit based on cross-validation as well as an undersmoothed and
oversmoothed fit. The cross-validation fit shows the presence of three well-
defined peaks, as predicted by the physics of the big bang. �

The procedure for finding confidence bands is similar to that for density
estimation. However, we first need to estimate σ2. Suppose that the xi’s are
ordered. Assuming r(x) is smooth, we have r(xi+1)− r(xi) ≈ 0 and hence

Yi+1 − Yi =
[
r(xi+1) + εi+1

]
−

[
r(xi) + εi

]
≈ εi+1 − εi

and hence

V(Yi+1 − Yi) ≈ V(εi+1 − εi) = V(εi+1) + V(εi) = 2σ2.

We can thus use the average of the n− 1 differences Yi+1−Yi to estimate σ2.
Hence, define

σ̂2 =
1

2(n− 1)

n−1∑
i=1

(Yi+1 − Yi)2. (20.36)

As with density estimate, the confidence band is for the smoothed version
rn(x) = E(r̂n(x)) of the true regression function r.
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FIGURE 20.8. Regression analysis of the CMB data. The first fit is undersmoothed,
the second is oversmoothed, and the third is based on cross-validation. The last
panel shows the estimated risk versus the bandwidth of the smoother. The data are
from BOOMERaNG, Maxima, and DASI.
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Confidence Bands for Kernel Regression

An approximate 1− α confidence band for rn(x) is

�n(x) = r̂n(x)− q ŝe(x), un(x) = r̂n(x) + q ŝe(x) (20.37)

where

ŝe(x) = σ̂

√√√√ n∑
i=1

w2
i (x),

q = Φ−1

(
1 + (1− α)1/m

2

)
,

m =
b− a
ω

,

σ̂ is defined in (20.36) and ω is the width of the kernel. In case the kernel
does not have finite width then we take ω to be the effective width, that
is, the range over which the kernel is non-negligible. In particular, we take
ω = 3h for the Normal kernel.

20.24 Example. Figure 20.9 shows a 95 percent confidence envelope for the
CMB data. We see that we are highly confident of the existence and position
of the first peak. We are more uncertain about the second and third peak.
At the time of this writing, more accurate data are becoming available that
apparently provide sharper estimates of the second and third peak. �

The extension to multiple regressors X = (X1, . . . , Xp) is straightforward.
As with kernel density estimation we just replace the kernel with a multivari-
ate kernel. However, the same caveats about the curse of dimensionality apply.
In some cases, we might consider putting some restrictions on the regression
function which will then reduce the curse of dimensionality. For example,
additive regression is based on the model

Y =
p∑
j=1

rj(Xj) + ε. (20.38)

Now we only need to fit p one-dimensional functions. The model can be en-
riched by adding various interactions, for example,

Y =
p∑
j=1

rj(Xj) +
∑
j<k

rjk(XjXk) + ε. (20.39)

Additive models are usually fit by an algorithm called backfitting.
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FIGURE 20.9. 95 percent confidence envelope for the CMB data.

Backfitting

1. Initialize r1(x1), . . . , rp(xp).

2. For j = 1, . . . , p:

(a) Let εi = Yi −
∑
s=j rs(xi).

(b) Let rj be the function estimate obtained by regressing the εi’s
on the jth covariate.

3. If converged STOP. Else, go back to step 2.

Additive models have the advantage that they avoid the curse of dimension-
ality and they can be fit quickly, but they have one disadvantage: the model
is not fully nonparametric. In other words, the true regression function r(x)
may not be of the form (20.38).

20.5 Appendix

Confidence Sets and Bias. The confidence bands we computed are not
for the density function or regression function but rather for the smoothed
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function. For example, the confidence band for a kernel density estimate with
bandwidth h is a band for the function one gets by smoothing the true function
with a kernel with the same bandwidth. Getting a confidence set for the true
function is complicated for reasons we now explain.

Let f̂n(x) denote an estimate of the function f(x). Denote the mean and
standard deviation of f̂n(x) by fn(x) and sn(x). Then,

f̂n(x)− f(x)
sn(x)

=
f̂n(x)− fn(x)

sn(x)
+
fn(x)− f(x)

sn(x)
.

Typically, the first term converges to a standard Normal from which one de-
rives confidence bands. The second term is the bias divided by the standard
deviation. In parametric inference, the bias is usually smaller than the stan-
dard deviation of the estimator so this term goes to 0 as the sample size
increases. In nonparametric inference, optimal smoothing leads us to balance
the bias and the standard deviation. Thus the second term does not vanish
even with large sample sizes. This means that the confidence interval will not
be centered around the true function f .

20.6 Bibliographic Remarks

Two very good books on density estimation are Scott (1992) and Silverman
(1986). The literature on nonparametric regression is very large. Two good
starting points are Hardle (1990) and Loader (1999). The latter emphasizes a
class of techniques called local likelihood methods.

20.7 Exercises

1. Let X1, . . . , Xn ∼ f and let f̂n be the kernel density estimator using the
boxcar kernel:

K(x) =
{

1 − 1
2 < x < 1

2
0 otherwise.

(a) Show that

E(f̂(x)) =
1
h

∫ x+(h/2)

x−(h/2)

f(y)dy

and

V(f̂(x)) =
1
nh2

∫ x+(h/2)

x−(h/2)

f(y)dy −
(∫ x+(h/2)

x−(h/2)

f(y)dy

)2
 .
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(b) Show that if h→ 0 and nh→∞ as n→∞, then f̂n(x)
P−→ f(x).

2. Get the data on fragments of glass collected in forensic work from the
book website. Estimate the density of the first variable (refractive in-
dex) using a histogram and use a kernel density estimator. Use cross-
validation to choose the amount of smoothing. Experiment with different
binwidths and bandwidths. Comment on the similarities and differences.
Construct 95 percent confidence bands for your estimators.

3. Consider the data from question 2. Let Y be refractive index and let
x be aluminum content (the fourth variable). Perform a nonparametric
regression to fit the model Y = f(x)+ε. Use cross-validation to estimate
the bandwidth. Construct 95 percent confidence bands for your estimate.

4. Prove Lemma 20.1.

5. Prove Theorem 20.3.

6. Prove Theorem 20.7.

7. Prove Theorem 20.15.

8. Consider regression data (x1, Y1), . . . , (xn, Yn). Suppose that 0 ≤ xi ≤ 1
for all i. Define bins Bj as in equation (20.7). For x ∈ Bj define

r̂n(x) = Y j

where Y j is the mean of all the Yi’s corresponding to those xi’s in Bj .
Find the approximate risk of this estimator. From this expression for
the risk, find the optimal bandwidth. At what rate does the risk go to
zero?

9. Show that with suitable smoothness assumptions on r(x), σ̂2 in equation
(20.36) is a consistent estimator of σ2.

10. Prove Theorem 20.22.
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Smoothing Using Orthogonal Functions

In this chapter we will study an approach to nonparametric curve estima-
tion based on orthogonal functions. We begin with a brief introduction to
the theory of orthogonal functions, then we turn to density estimation and
regression.

21.1 Orthogonal Functions and L2 Spaces

Let v = (v1, v2, v3) denote a three-dimensional vector, that is, a list of three
real numbers. Let V denote the set of all such vectors. If a is a scalar (a
number) and v is a vector, we define av = (av1, av2, av3). The sum of vectors
v and w is defined by v+w = (v1 +w1, v2 +w2, v3 +w3). The inner product
between two vectors v and w is defined by 〈v, w〉 =

∑3
i=1 viwi. The norm

(or length) of a vector v is defined by

||v|| =
√
〈v, v〉 =

√√√√ 3∑
i=1

v2
i . (21.1)

Two vectors are orthogonal (or perpendicular) if 〈v, w〉 = 0. A set of
vectors are orthogonal if each pair in the set is orthogonal. A vector is normal
if ||v|| = 1.
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Let φ1 = (1, 0, 0), φ2 = (0, 1, 0), φ3 = (0, 0, 1). These vectors are said to be
an orthonormal basis for V since they have the following properties:
(i) they are orthogonal;
(ii) they are normal;
(iii) they form a basis for V, which means that any v ∈ V can be written as a
linear combination of φ1, φ2, φ3:

v =
3∑
j=1

βjφj where βj = 〈φj , v〉. (21.2)

For example, if v = (12, 3, 4) then v = 12φ1 + 3φ2 + 4φ3. There are other
orthonormal bases for V, for example,

ψ1 =
(

1√
3
,

1√
3
,

1√
3

)
, ψ2 =

(
1√
2
,− 1√

2
, 0
)
, ψ3 =

(
1√
6
,

1√
6
,− 2√

6

)
.

You can check that these three vectors also form an orthonormal basis for V.
Again, if v is any vector then we can write

v =
3∑
j=1

βjψj where βj = 〈ψj , v〉.

For example, if v = (12, 3, 4) then

v = 10.97ψ1 + 6.36ψ2 + 2.86ψ3.

Now we make the leap from vectors to functions. Basically, we just replace
vectors with functions and sums with integrals. Let L2(a, b) denote all func-
tions defined on the interval [a, b] such that

∫ b
a
f(x)2dx <∞:

L2(a, b) =

{
f : [a, b]→ R,

∫ b

a

f(x)2dx <∞
}
. (21.3)

We sometimes write L2 instead of L2(a, b). The inner product between two
functions f, g ∈ L2 is defined by

∫
f(x)g(x)dx. The norm of f is

||f || =

√∫
f(x)2dx. (21.4)

Two functions are orthogonal if
∫
f(x)g(x)dx = 0. A function is normal if

||f || = 1.
A sequence of functions φ1, φ2, φ3, . . . is orthonormal if

∫
φ2
j (x)dx = 1 for

each j and
∫
φi(x)φj(x)dx = 0 for i �= j. An orthonormal sequence is com-

plete if the only function that is orthogonal to each φj is the zero function.
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In this case, the functions φ1, φ2, φ3, . . . form in basis, meaning that if f ∈ L2

then f can be written as1

f(x) =
∞∑
j=1

βjφj(x), where βj =
∫ b

a

f(x)φj(x)dx. (21.5)

A useful result is Parseval’s relation which says that

||f ||2 ≡
∫
f2(x) dx =

∞∑
j=1

β2
j ≡ ||β||2 (21.6)

where β = (β1, β2, . . .).

21.1 Example. An example of an orthonormal basis for L2(0, 1) is the cosine
basis defined as follows. Let φ0(x) = 1 and for j ≥ 1 define

φj(x) =
√

2 cos(jπx). (21.7)

The first six functions are plotted in Figure 21.1. �

21.2 Example. Let

f(x) =
√
x(1− x) sin

(
2.1π

(x+ .05)

)
which is called the “doppler function.” Figure 21.2 shows f (top left) and its
approximation

fJ(x) =
J∑
j=1

βjφj(x)

with J equal to 5 (top right), 20 (bottom left), and 200 (bottom right).
As J increases we see that fJ(x) gets closer to f(x). The coefficients βj =∫ 1

0
f(x)φj(x)dx were computed numerically. �

21.3 Example. The Legendre polynomials on [−1, 1] are defined by

Pj(x) =
1

2jj!
dj

dxj
(x2 − 1)j , j = 0, 1, 2, . . . (21.8)

It can be shown that these functions are complete and orthogonal and that∫ 1

−1

P 2
j (x)dx =

2
2j + 1

. (21.9)

1The equality in the displayed equation means that
∫

(f(x)−fn(x))2dx → 0 where fn(x) =∑n
j=1 βjφj(x).
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FIGURE 21.1. The first six functions in the cosine basis.

FIGURE 21.2. Approximating the doppler function with its expansion
in the cosine basis. The function f (top left) and its approximation
fJ(x) =

∑J
j=1 βjφj(x) with J equal to 5 (top right), 20 (bottom left),

and 200 (bottom right). The coefficients βj =
∫ 1
0 f(x)φj(x)dx were

computed numerically.
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It follows that the functions φj(x) =
√

(2j + 1)/2Pj(x), j = 0, 1, . . . form an
orthonormal basis for L2(−1, 1). The first few Legendre polynomials are:

P0(x) = 1,

P1(x) = x,

P2(x) =
1
2

(
3x2 − 1

)
, and

P3(x) =
1
2

(
5x3 − 3x

)
.

These polynomials may be constructed explicitly using the following recursive
relation:

Pj+1(x) =
(2j + 1)xPj(x)− jPj−1(x)

j + 1
. � (21.10)

The coefficients β1, β2, . . . are related to the smoothness of the function f .
To see why, note that if f is smooth, then its derivatives will be finite. Thus we
expect that, for some k,

∫ 1

0
(f (k)(x))2dx <∞ where f (k) is the kth derivative

of f . Now consider the cosine basis (21.7) and let f(x) =
∑∞

j=0 βjφj(x). Then,∫ 1

0

(f (k)(x))2dx = 2
∞∑
j=1

β2
j (πj)

2k.

The only way that
∑∞
j=1 β

2
j (πj)

2k can be finite is if the βj ’s get small when
j gets large. To summarize:

If the function f is smooth, then the coefficients βj will be small

when j is large.

For the rest of this chapter, assume we are using the cosine basis unless
otherwise specified.

21.2 Density Estimation

Let X1, . . . , Xn be iid observations from a distribution on [0, 1] with density
f . Assuming f ∈ L2 we can write

f(x) =
∞∑
j=0

βjφj(x)

where φ1, φ2, . . . is an orthonormal basis. Define

β̂j =
1
n

n∑
i=1

φj(Xi). (21.11)
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21.4 Theorem. The mean and variance of β̂j are

E

(
β̂j

)
= βj , V

(
β̂j

)
=
σ2
j

n
(21.12)

where
σ2
j = V(φj(Xi)) =

∫
(φj(x)− βj)2f(x)dx. (21.13)

Proof. The mean is

E

(
β̂j

)
=

1
n

n∑
i=1

E (φj(Xi))

= E (φj(X1))

=
∫
φj(x)f(x)dx = βj .

The calculation for the variance is similar. �

Hence, β̂j is an unbiased estimate of βj . It is tempting to estimate f by∑∞
j=1 β̂jφj(x) but this turns out to have a very high variance. Instead, consider

the estimator

f̂(x) =
J∑
j=1

β̂jφj(x). (21.14)

The number of terms J is a smoothing parameter. Increasing J will decrease
bias while increasing variance. For technical reasons, we restrict J to lie in
the range

1 ≤ J ≤ p

where p = p(n) =
√
n. To emphasize the dependence of the risk function on

J , we write the risk function as R(J).

21.5 Theorem. The risk of f̂ is

R(J) =
J∑
j=1

σ2
j

n
+

∞∑
j=J+1

β2
j . (21.15)

An estimate of the risk is

R̂(J) =
J∑
j=1

σ̂2
j

n
+

p∑
j=J+1

(
β̂2
j −

σ̂2
j

n

)
+

(21.16)

where a+ = max{a, 0} and

σ̂2
j =

1
n− 1

n∑
i=1

(
φj(Xi)− β̂j

)2

. (21.17)
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To motivate this estimator, note that σ̂2
j is an unbiased estimate of σ2

j and
β̂2
j − σ̂2

j is an unbiased estimator of β2
j . We take the positive part of the latter

term since we know that β2
j cannot be negative. We now choose 1 ≤ Ĵ ≤ p to

minimize R̂(f̂ , f). Here is a summary:

Summary of Orthogonal Function Density Estimation

1. Let

β̂j =
1
n

n∑
i=1

φj(Xi).

2. Choose Ĵ to minimize R̂(J) over 1 ≤ J ≤ p =
√
n where R̂ is given in

equation (21.16).

3. Let

f̂(x) =
Ĵ∑
j=1

β̂jφj(x).

The estimator f̂n can be negative. If we are interested in exploring the
shape of f , this is not a problem. However, if we need our estimate to be a
probability density function, we can truncate the estimate and then normalize
it. That is, we take f̂∗ = max{f̂n(x), 0}/

∫ 1

0
max{f̂n(u), 0}du.

Now let us construct a confidence band for f . Suppose we estimate f using
J orthogonal functions. We are essentially estimating fJ(x) =

∑J
j=1 βjφj(x)

not the true density f(x) =
∑∞

j=1 βjφj(x). Thus, the confidence band should
be regarded as a band for fJ(x).

21.6 Theorem. An approximate 1 − α confidence band for fJ is (�(x), u(x))
where

�(x) = f̂n(x)− c, u(x) = f̂n(x) + c (21.18)

where

c = K2

√
Jχ2

J,α

n
(21.19)

and
K = max

1≤j≤J
max
x
|φj(x)|.

For the cosine basis, K =
√

2.

Proof. Here is an outline of the proof. Let L =
∑J
j=1(β̂j − βj)2. By the

central limit theorem, β̂j ≈ N(βj , σ2
j /n). Hence, β̂j ≈ βj + σjεj/

√
n where
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εj ∼ N(0, 1), and therefore

L ≈ 1
n

J∑
j=1

σ2
j ε

2
j ≤

K2

n

J∑
j=1

ε2j
d=
K2

n
χ2
J . (21.20)

Thus we have, approximately, that

P

(
L >

K2

n
χ2
J,α

)
≤ P

(
K2

n
χ2
J >

K2

n
χ2
J,α

)
= α.

Also,

max
x
|f̂J(x)− fJ(x)| ≤ max

x

J∑
j=1

|φj(x)| |β̂j − βj |

≤ K
J∑
j=1

|β̂j − βj |

≤
√
J K

√√√√ J∑
j=1

(β̂j − βj)2

=
√
J K
√
L

where the third inequality is from the Cauchy-Schwartz inequality (Theorem
4.8). So,

P

max
x
|f̂J(x)− fJ(x)| > K2

√
Jχ2

J,α

n

 ≤ P

√J K√L > K2

√
Jχ2

J,α

n


= P

√L > K

√
χ2
J,α

n


= P

(
L >

K2χ2
J,α

n

)
≤ α. �

21.7 Example. Let

f(x) =
5
6
φ(x; 0, 1) +

1
6

5∑
j=1

φ(x;µj , .1)

where φ(x;µ, σ) denotes a Normal density with mean µ and standard deviation
σ, and (µ1, . . . , µ5) = (−1,−1/2, 0, 1/2, 1). Marron and Wand (1992) call this
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FIGURE 21.3. The top plot is the true density for the Bart Simpson distribution
(rescaled to have most of its mass between 0 and 1). The bottom plot is the orthog-
onal function density estimate and 95 percent confidence band.

“the claw” although the “Bart Simpson” might be more appropriate. Figure
21.3 shows the true density as well as the estimated density based on n =
5, 000 observations and a 95 percent confidence band. The density has been
rescaled to have most of its mass between 0 and 1 using the transformation
y = (x+ 3)/6. �

21.3 Regression

Consider the regression model

Yi = r(xi) + εi, i = 1, . . . , n (21.21)

where the εi are independent with mean 0 and variance σ2. We will initially
focus on the special case where xi = i/n. We assume that r ∈ L2(0, 1) and
hence we can write

r(x) =
∞∑
j=1

βjφj(x) where βj =
∫ 1

0

r(x)φj(x)dx (21.22)

where φ1, φ2, . . . where is an orthonormal basis for [0, 1].
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Define

β̂j =
1
n

n∑
i=1

Yi φj(xi), j = 1, 2, . . . (21.23)

Since β̂j is an average, the central limit theorem tells us that β̂j will be
approximately Normally distributed.

21.8 Theorem.

β̂j ≈ N
(
βj ,

σ2

n

)
. (21.24)

Proof. The mean of β̂j is

E(β̂j) =
1
n

n∑
i=1

E(Yi)φj(xi) =
1
n

n∑
i=1

r(xi)φj(xi)

≈
∫
r(x)φj(x)dx = βj

where the approximate equality follows from the definition of a Riemann in-
tegral:

∑
i ∆nh(xi)→

∫ 1

0
h(x)dx where ∆n = 1/n. The variance is

V(β̂j) =
1
n2

n∑
i=1

V(Yi)φ2
j (xi)

=
σ2

n2

n∑
i=1

φ2
j (xi) =

σ2

n

1
n

n∑
i=1

φ2
j (xi)

≈ σ2

n

∫
φ2
j (x)dx =

σ2

n

since
∫
φ2
j (x)dx = 1. �

Let

r̂(x) =
J∑
j=1

β̂jφj(x),

and let
R(J) = E

∫
(r(x)− r̂(x))2 dx

be the risk of the estimator.

21.9 Theorem. The risk R(J) of the estimator r̂n(x) =
∑J
j=1 β̂jφj(x) is

R(J) =
Jσ2

n
+

∞∑
j=J+1

β2
j . (21.25)
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To estimate for σ2 = V(εi) we use

σ̂2 =
n

k

n∑
i=n−k+1

β̂2
j (21.26)

where k = n/4. To motivate this estimator, recall that if f is smooth, then
βj ≈ 0 for large j. So, for j ≥ k, β̂j ≈ N(0, σ2/n) and thus, β̂j ≈ σZj/

√
n for

for j ≥ k, where Zj ∼ N(0, 1). Therefore,

σ̂2 =
n

k

n∑
i=n−k+1

β̂2
j ≈

n

k

n∑
i=n−k+1

(
σ√
n
β̂j

)2

=
σ2

k

n∑
i=n−k+1

β̂2
j =

σ2

k
χ2
k

since a sum of k Normals has a χ2
k distribution. Now E(χ2

k) = k and hence
E(σ̂2) ≈ σ2. Also, V(χ2

k) = 2k and hence V(σ̂2) ≈ (σ4/k2)(2k) = (2σ4/k)→ 0
as n → ∞. Thus we expect σ̂2 to be a consistent estimator of σ2. There is
nothing special about the choice k = n/4. Any k that increases with n at an
appropriate rate will suffice.

We estimate the risk with

R̂(J) = J
σ̂2

n
+

n∑
j=J+1

(
β̂2
j −

σ̂2

n

)
+

. (21.27)

21.10 Example. Figure 21.4 shows the doppler function f and n = 2, 048
observations generated from the model

Yi = r(xi) + εi

where xi = i/n, εi ∼ N(0, (.1)2). The figure shows the data and the estimated
function. The estimate was based on Ĵ = 234 terms. �

We are now ready to give a complete description of the method.

Orthogonal Series Regression Estimator

1. Let

β̂j =
1
n

n∑
i=1

Yiφj(xi), j = 1, . . . , n.

2. Let

σ̂2 =
n

k

n∑
i=n−k+1

β̂2
j (21.28)
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FIGURE 21.4. Data from the doppler test function and the estimated function. See
Example 21.10.

where k ≈ n/4.

3. For 1 ≤ J ≤ n, compute the risk estimate

R̂(J) = J
σ̂2

n
+

n∑
j=J+1

(
β̂2
j −

σ̂2

n

)
+

.

4. Choose Ĵ ∈ {1, . . . n} to minimize R̂(J).

5. Let

r̂(x) =
Ĵ∑
j=1

β̂jφj(x).

Finally, we turn to confidence bands. As before, these bands are not really
for the true function r(x) but rather for the smoothed version of the function

rJ(x) =
∑Ĵ
j=1 βjφj(x).

21.11 Theorem. Suppose the estimate r̂ is based on J terms and σ̂ is defined
as in equation (21.28). Assume that J < n − k + 1. An approximate 1 − α
confidence band for rJ is (�, u) where

�(x) = r̂n(x)− c, u(x) = r̂n(x) + c, (21.29)

where

c =
a(x) σ̂ χJ,α√

n
, a(x) =

√√√√ J∑
j=1

φ2
j (x),
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and σ̂ is given in equation (21.28).

Proof. Let L =
∑J
j=1(β̂j − βj)2. By the central limit theorem, β̂j ≈

N(βj , σ2/n). Hence, β̂j ≈ βj + σεj/
√
n where εj ∼ N(0, 1) and therefore

L ≈ σ2

n

J∑
j=1

ε2j
d=
σ2

n
χ2
J .

Thus,

P

(
L >

σ2

n
χ2
J,α

)
= P

(
σ2

n
χ2
J >

σ2

n
χ2
J,α

)
= α.

Also,

|r̂(x)− rJ(x)| ≤
J∑
j=1

|φj(x)| |β̂j − βj |

≤

√√√√ J∑
j=1

φ2
j (x)

√√√√ J∑
j=1

(β̂j − β2
j )

≤ a(x)
√
L

by the Cauchy-Schwartz inequality (Theorem 4.8). So,

P

(
max
x

|f̂J(x)− f(x)|
a(x)

>
σ̂χJ,α√

n

)
≤ P

(√
L >

σ̂χJ,α√
n

)
= α

and the result follows. �

21.12 Example. Figure 21.5 shows the confidence envelope for the doppler
signal. The first plot is based on J = 234 (the value of J that minimizes the
estimated risk). The second is based on J = 45 ≈

√
n. Larger J yields a higher

resolution estimator at the cost of large confidence bands. Smaller J yields a
lower resolution estimator but has tighter confidence bands. �

So far, we have assumed that the xi’s are of the form {1/n, 2/n, . . . , 1}.
If the xi’s are on interval [a, b], then we can rescale them so that are in the
interval [0, 1]. If the xi’s are not equally spaced, the methods we have discussed
still apply so long as the xi’s “fill out” the interval [0,1] in such a way so as to
not be too clumped together. If we want to treat the xi’s as random instead
of fixed, then the method needs significant modifications which we shall not
deal with here.
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FIGURE 21.5. Estimates and confidence bands for the doppler test function using
n = 2, 048 observations. First plot: J = 234 terms. Second plot: J = 45 terms.

21.4 Wavelets

Suppose there is a sharp jump in a regression function f at some point x
but that f is otherwise very smooth. Such a function f is said to be spa-
tially inhomogeneous. The doppler function is an example of a spatially
inhomogeneous function; it is smooth for large x and unsmooth for small x.

It is hard to estimate f using the methods we have discussed so far. If we
use a cosine basis and only keep low order terms, we will miss the peak; if
we allow higher order terms we will find the peak but we will make the rest
of the curve very wiggly. Similar comments apply to kernel regression. If we
use a large bandwidth, then we will smooth out the peak; if we use a small
bandwidth, then we will find the peak but we will make the rest of the curve
very wiggly.

One way to estimate inhomogeneous functions is to use a more carefully
chosen basis that allows us to place a “blip” in some small region without
adding wiggles elsewhere. In this section, we describe a special class of bases
called wavelets, that are aimed at fixing this problem. Statistical inference
using wavelets is a large and active area. We will just discuss a few of the
main ideas to get a flavor of this approach.

We start with a particular wavelet called the Haar wavelet. The Haar
father wavelet or Haar scaling function is defined by

φ(x) =
{

1 if 0 ≤ x < 1
0 otherwise. (21.30)
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The mother Haar wavelet is defined by

ψ(x) =
{
−1 if 0 ≤ x ≤ 1

2 ,
1 if 1

2 < x ≤ 1. (21.31)

For any integers j and k define

ψj,k(x) = 2j/2ψ(2jx− k). (21.32)

The function ψj,k has the same shape as ψ but it has been rescaled by a factor
of 2j/2 and shifted by a factor of k.

See Figure 21.6 for some examples of Haar wavelets. Notice that for large
j, ψj,k is a very localized function. This makes it possible to add a blip to a
function in one place without adding wiggles elsewhere. Increasing j is like
looking in a microscope at increasing degrees of resolution. In technical terms,
we say that wavelets provide a multiresolution analysis of L2(0, 1).

-2

-1

0

1

2

-2

-1

0

1

2

FIGURE 21.6. Some Haar wavelets. Left: the mother wavelet ψ(x); Right: ψ2,2(x).

Let

Wj = {ψjk, k = 0, 1, . . . , 2j − 1}

be the set of rescaled and shifted mother wavelets at resolution j.

21.13 Theorem. The set of functions{
φ,W0,W1,W2, . . . ,

}
is an orthonormal basis for L2(0, 1).
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It follows from this theorem that we can expand any function f ∈ L2(0, 1) in
this basis. Because each Wj is itself a set of functions, we write the expansion
as a double sum:

f(x) = αφ(x) +
∞∑
j=0

2j−1∑
k=0

βj,kψj,k(x) (21.33)

where

α =
∫ 1

0

f(x)φ(x) dx, βj,k =
∫ 1

0

f(x)ψj,k(x) dx.

We call α the scaling coefficient and the βj,k’s are called the detail
coefficients. We call the finite sum

fJ(x) = αφ(x) +
J−1∑
j=0

2j−1∑
k=0

βj,kψj,k(x) (21.34)

the resolution J approximation to f . The total number of terms in this sum
is

1 +
J−1∑
j=0

2j = 1 + 2J − 1 = 2J .

21.14 Example. Figure 21.7 shows the doppler signal, and its reconstruction
using J = 3, 5 and J = 8. �

Haar wavelets are localized, meaning that they are zero outside an interval.
But they are not smooth. This raises the question of whether there exist
smooth, localized wavelets that from an orthonormal basis. In 1988, Ingrid
Daubechie showed that such wavelets do exist. These smooth wavelets are
difficult to describe. They can be constructed numerically but there is no
closed form formula for the smoother wavelets. To keep things simple, we will
continue to use Haar wavelets.

Consider the regression model Yi = r(xi) + σεi where εi ∼ N(0, 1) and
xi = i/n. To simplify the discussion we assume that n = 2J for some J .

There is one major difference between estimation using wavelets instead of
a cosine (or polynomial) basis. With the cosine basis, we used all the terms
1 ≤ j ≤ J for some J . The number of terms J acted as a smoothing parameter.
With wavelets, we control smoothing using a method called thresholding
where we keep a term in the function approximation if its coefficient is large,
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FIGURE 21.7. The doppler signal and its reconstruction
fJ(x) = αφ(x) +

∑J−1
j=0

∑
k βj,kψj,k(x) based on J = 3, J = 5, and J = 8.

otherwise, we throw out that term. There are many versions of thresholding.
The simplest is called hard, universal thresholding. Let J = log2(n) and define

α̂ =
1
n

∑
i

φk(xi)Yi and Dj,k =
1
n

∑
i

ψj,k(xi)Yi (21.35)

for 0 ≤ j ≤ J − 1.

Haar Wavelet Regression

1. Compute α̂ and Dj,k as in (21.35), for 0 ≤ j ≤ J − 1.

2. Estimate σ; see (21.37).

3. Apply universal thresholding:

β̂j,k =

{
Dj,k if |Dj,k| > σ̂

√
2 log n
n

0 otherwise.

}
(21.36)

4. Set f̂(x) = α̂φ(x) +
∑J−1
j=j0

∑2j−1
k=0 β̂j,kψj,k(x).
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In practice, we do not compute Sk and Dj,k using (21.35). Instead, we use
the discrete wavelet transform (DWT) which is very fast. The DWT for
Haar wavelets is described in the appendix. The estimate of σ is

σ̂ =
√
n×

median
(
|DJ−1,k| : k = 0, . . . , 2J−1 − 1

)
0.6745

. (21.37)

The estimate for σ may look strange. It is similar to the estimate we used
for the cosine basis but it is designed to be insensitive to sharp peaks in the
function.

To understand the intuition behind universal thresholding, consider what
happens when there is no signal, that is, when βj,k = 0 for all j and k.

21.15 Theorem. Suppose that βj,k = 0 for all j and k and let β̂j,k be the
universal threshold estimator. Then

P(β̂j,k = 0 for all j, k)→ 1

as n→∞.

Proof. To simplify the proof, assume that σ is known. Now Dj,k ≈
N(0, σ2/n). We will need Mill’s inequality (Theorem 4.7): if Z ∼ N(0, 1)
then P(|Z| > t) ≤ (c/t)e−t2/2 where c =

√
2/π is a constant. Thus,

P(max |Dj,k| > λ) ≤
∑
j,k

P(|Dj,k| > λ) =
∑
j,k

P

(√
n|Dj,k|
σ

>

√
nλ

σ

)

≤
∑
j,k

cσ

λ
√
n

exp
{
−1

2
nλ2

σ2

}
=

c√
2 log n

→ 0. �

21.16 Example. Consider Yi = r(xi) + σεi where f is the doppler signal,
σ = .1 and n = 2, 048. Figure 21.8 shows the data and the estimated function
using universal thresholding. Of course, the estimate is not smooth since Haar
wavelets are not smooth. Nonetheless, the estimate is quite accurate. �
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FIGURE 21.8. Estimate of the Doppler function using Haar wavelets and universal
thresholding.

21.5 Appendix

The DWT for Haar Wavelets. Let y be the vector of Yi’s (length n) and
let J = log2(n). Create a list D with elements

D[[0]], . . . , D[[J − 1]].

Set:
temp← y/

√
n.

Then do:

for(j in (J − 1) : 0){
m ← 2j

I ← (1 : m)

D[[j]] ←
(
temp[2 ∗ I]− temp[(2 ∗ I)− 1]

)
/
√

2

temp ←
(
temp[2 ∗ I] + temp[(2 ∗ I)− 1]

)
/
√

2

}
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21.6 Bibliographic Remarks

Efromovich (1999) is a reference for orthogonal function methods. See also
Beran (2000) and Beran and Dümbgen (1998). An introduction to wavelets is
given in Ogden (1997). A more advanced treatment can be found in Härdle
et al. (1998). The theory of statistical estimation using wavelets has been
developed by many authors, especially David Donoho and Ian Johnstone. See
Donoho and Johnstone (1994), Donoho and Johnstone (1995), Donoho et al.
(1995), and Donoho and Johnstone (1998).

21.7 Exercises

1. Prove Theorem 21.5.

2. Prove Theorem 21.9.

3. Let

ψ1 =
(

1√
3
,

1√
3
,

1√
3

)
, ψ2 =

(
1√
2
,− 1√

2
, 0
)
, ψ3 =

(
1√
6
,

1√
6
,− 2√

6

)
.

Show that these vectors have norm 1 and are orthogonal.

4. Prove Parseval’s relation equation (21.6).

5. Plot the first five Legendre polynomials. Verify, numerically, that they
are orthonormal.

6. Expand the following functions in the cosine basis on [0, 1]. For (a)
and (b), find the coefficients βj analytically. For (c) and (d), find the
coefficients βj numerically, i.e.

βj =
∫ 1

0

f(x)φj(x) ≈
1
N

N∑
r=1

f
( r

N

)
φj

( r

N

)
for some large integer N . Then plot the partial sum

∑n
j=1 βjφj(x) for

increasing values of n.

(a) f(x) =
√

2 cos(3πx).

(b) f(x) = sin(πx).

(c) f(x) =
∑11

j=1 hjK(x−tj) where K(t) = (1+sign(t))/2, sign(x) = −1
if x < 0, sign(x) = 0 if x = 0, sign(x) = 1 if x > 0,
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(tj) = (.1, .13, .15, .23, .25, .40, .44, .65, .76, .78, .81),

(hj) = (4,−5, 3,−4, 5,−4.2, 2.1, 4.3,−3.1, 2.1,−4.2).

(d) f =
√
x(1− x) sin

(
2.1π

(x+.05)

)
.

7. Consider the glass fragments data from the book’s website. Let Y be
refractive index and let X be aluminum content (the fourth variable).

(a) Do a nonparametric regression to fit the model Y = f(x) + ε using
the cosine basis method. The data are not on a regular grid. Ignore this
when estimating the function. (But do sort the data first according to
x.) Provide a function estimate, an estimate of the risk, and a confidence
band.

(b) Use the wavelet method to estimate f .

8. Show that the Haar wavelets are orthonormal.

9. Consider again the doppler signal:

f(x) =
√
x(1− x) sin

(
2.1π

x+ 0.05

)
.

Let n = 1, 024, σ = 0.1, and let (x1, . . . , xn) = (1/n, . . . , 1). Generate
data

Yi = f(xi) + σεi

where εi ∼ N(0, 1).

(a) Fit the curve using the cosine basis method. Plot the function esti-
mate and confidence band for J = 10, 20, . . . , 100.

(b) Use Haar wavelets to fit the curve.

10. (Haar density Estimation.) Let X1, . . . , Xn ∼ f for some density f on
[0, 1]. Let’s consider constructing a wavelet histogram. Let φ and ψ be
the Haar father and mother wavelet. Write

f(x) ≈ φ(x) +
J−1∑
j=0

2j−1∑
k=0

βj,kψj,k(x)

where J ≈ log2(n). Let

β̂j,k =
1
n

n∑
i=1

ψj,k(Xi).
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(a) Show that β̂j,k is an unbiased estimate of βj,k.

(b) Define the Haar histogram

f̂(x) = φ(x) +
B∑
j=0

2j−1∑
k=0

β̂j,kψj,k(x)

for 0 ≤ B ≤ J − 1.

(c) Find an approximate expression for the MSE as a function of B.

(d) Generate n = 1, 000 observations from a Beta (15,4) density. Es-
timate the density using the Haar histogram. Use leave-one-out cross
validation to choose B.

11. In this question, we will explore the motivation for equation (21.37). Let
X1, . . . , Xn ∼ N(0, σ2). Let

σ̂ =
√
n× median (|X1|, . . . , |Xn|)

0.6745
.

(a) Show that E(σ̂) = σ.

(b) Simulate n = 100 observations from a N(0,1) distribution. Compute
σ̂ as well as the usual estimate of σ. Repeat 1,000 times and compare
the MSE.

(c) Repeat (b) but add some outliers to the data. To do this, simulate
each observation from a N(0,1) with probability .95 and simulate each
observation from a N(0,10) with probability .95.

12. Repeat question 6 using the Haar basis.



22
Classification

22.1 Introduction

The problem of predicting a discrete random variable Y from another random
variable X is called classification, supervised learning, discrimination,
or pattern recognition.

Consider iid data (X1, Y1), . . . , (Xn, Yn) where

Xi = (Xi1, . . . , Xid) ∈ X ⊂ Rd

is a d-dimensional vector and Yi takes values in some finite set Y. A classifi-
cation rule is a function h : X → Y. When we observe a new X, we predict
Y to be h(X).

22.1 Example. Here is a an example with fake data. Figure 22.1 shows 100
data points. The covariate X = (X1, X2) is 2-dimensional and the outcome
Y ∈ Y = {0, 1}. The Y values are indicated on the plot with the triangles
representing Y = 1 and the squares representing Y = 0. Also shown is a linear
classification rule represented by the solid line. This is a rule of the form

h(x) =
{

1 if a+ b1x1 + b2x2 > 0
0 otherwise.

Everything above the line is classified as a 0 and everything below the line is
classified as a 1. �
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FIGURE 22.1. Two covariates and a linear decision boundary. � means Y = 1.� means Y = 0. These two groups are perfectly separated by the linear decision
boundary; you probably won’t see real data like this.

22.2 Example. Recall the the Coronary Risk-Factor Study (CORIS) data
from Example 13.17. There are 462 males between the ages of 15 and 64 from
three rural areas in South Africa. The outcome Y is the presence (Y = 1) or
absence (Y = 0) of coronary heart disease and there are 9 covariates: systolic
blood pressure, cumulative tobacco (kg), ldl (low density lipoprotein choles-
terol), adiposity, famhist (family history of heart disease), typea (type-A be-
havior), obesity, alcohol (current alcohol consumption), and age. I computed
a linear decision boundary using the LDA method based on two of the co-
variates, systolic blood pressure and tobacco consumption. The LDA method
will be explained shortly. In this example, the groups are hard to tell apart.
In fact, 141 of the 462 subjects are misclassified using this classification rule.
�

At this point, it is worth revisiting the Statistics/Data Mining dictionary:

Statistics Computer Science Meaning
classification supervised learning predicting a discrete Y from X
data training sample (X1, Y1), . . . , (Xn, Yn)
covariates features the Xi’s
classifier hypothesis map h : X → Y
estimation learning finding a good classifier

22.2 Error Rates and the Bayes Classifier

Our goal is to find a classification rule h that makes accurate predictions. We
start with the following definitions:
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22.3 Definition. The true error rate1of a classifier h is

L(h) = P({h(X) �= Y }) (22.1)

and the empirical error rate or training error rate is

L̂n(h) =
1
n

n∑
i=1

I(h(Xi) �= Yi). (22.2)

First we consider the special case where Y = {0, 1}. Let

r(x) = E(Y |X = x) = P(Y = 1|X = x)

denote the regression function. From Bayes’ theorem we have that

r(x) = P(Y = 1|X = x)

=
f(x|Y = 1)P(Y = 1)

f(x|Y = 1)P(Y = 1) + f(x|Y = 0)P(Y = 0)

=
πf1(x)

πf1(x) + (1− π)f0(x)
(22.3)

where

f0(x) = f(x|Y = 0)

f1(x) = f(x|Y = 1)

π = P(Y = 1).

22.4 Definition. The Bayes classification rule h∗ is

h∗(x) =
{

1 if r(x) > 1
2

0 otherwise. (22.4)

The set D(h) = {x : P(Y = 1|X = x) = P(Y = 0|X = x)} is called the
decision boundary.

Warning! The Bayes rule has nothing to do with Bayesian inference. We
could estimate the Bayes rule using either frequentist or Bayesian methods.

The Bayes rule may be written in several equivalent forms:

1One can use other loss functions. For simplicity we will use the error rate as our loss function.
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h∗(x) =
{

1 if P(Y = 1|X = x) > P(Y = 0|X = x)
0 otherwise (22.5)

and

h∗(x) =
{

1 if πf1(x) > (1− π)f0(x)
0 otherwise. (22.6)

22.5 Theorem. The Bayes rule is optimal, that is, if h is any other classifi-
cation rule then L(h∗) ≤ L(h).

The Bayes rule depends on unknown quantities so we need to use the data
to find some approximation to the Bayes rule. At the risk of oversimplifying,
there are three main approaches:

1. Empirical Risk Minimization. Choose a set of classifiers H and find ĥ ∈ H
that minimizes some estimate of L(h).

2. Regression. Find an estimate r̂ of the regression function r and define

ĥ(x) =
{

1 if r̂(x) > 1
2

0 otherwise.

3. Density Estimation. Estimate f0 from the Xi’s for which Yi = 0, estimate
f1 from the Xi’s for which Yi = 1 and let π̂ = n−1

∑n
i=1 Yi. Define

r̂(x) = P̂(Y = 1|X = x) =
π̂f̂1(x)

π̂f̂1(x) + (1− π̂)f̂0(x)

and

ĥ(x) =
{

1 if r̂(x) > 1
2

0 otherwise.

Now let us generalize to the case where Y takes on more than two values
as follows.

22.6 Theorem. Suppose that Y ∈ Y = {1, . . . ,K}. The optimal rule is

h(x) = argmaxk P(Y = k|X = x) (22.7)

= argmaxkπk fk(x) (22.8)

where

P(Y = k|X = x) =
fk(x)πk∑
r fr(x)πr

, (22.9)

πr = P (Y = r), fr(x) = f(x|Y = r) and argmaxk means “the value of k
that maximizes that expression.”
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22.3 Gaussian and Linear Classifiers

Perhaps the simplest approach to classification is to use the density estima-
tion strategy and assume a parametric model for the densities. Suppose that
Y = {0, 1} and that f0(x) = f(x|Y = 0) and f1(x) = f(x|Y = 1) are both
multivariate Gaussians:

fk(x) =
1

(2π)d/2|Σk|1/2
exp

{
−1

2
(x− µk)TΣ−1

k (x− µk)
}
, k = 0, 1.

Thus, X|Y = 0 ∼ N(µ0,Σ0) and X|Y = 1 ∼ N(µ1,Σ1).

22.7 Theorem. If X|Y = 0 ∼ N(µ0,Σ0) and X|Y = 1 ∼ N(µ1,Σ1), then the
Bayes rule is

h∗(x) =

{
1 if r21 < r20 + 2 log

(
π1
π0

)
+ log

(
|Σ0|
|Σ1|

)
0 otherwise

(22.10)

where
r2i = (x− µi)TΣ−1

i (x− µi), i = 1, 2 (22.11)

is the Manalahobis distance. An equivalent way of expressing the Bayes’
rule is

h∗(x) = argmaxkδk(x)

where

δk(x) = −1
2

log |Σk| −
1
2
(x− µk)TΣ−1

k (x− µk) + log πk (22.12)

and |A| denotes the determinant of a matrix A.

The decision boundary of the above classifier is quadratic so this procedure
is called quadratic discriminant analysis (QDA). In practice, we use
sample estimates of π, µ1, µ2,Σ0,Σ1 in place of the true value, namely:

π̂0 =
1
n

n∑
i=1

(1− Yi), π̂1 =
1
n

n∑
i=1

Yi

µ̂0 =
1
n0

∑
i: Yi=0

Xi, µ̂1 =
1
n1

∑
i: Yi=1

Xi

S0 =
1
n0

∑
i: Yi=0

(Xi − µ̂0)(Xi − µ̂0)T , S1 =
1
n1

∑
i: Yi=1

(Xi − µ̂1)(Xi − µ̂1)T

where n0 =
∑
i(1− Yi) and n1 =

∑
i Yi.
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A simplification occurs if we assume that Σ0 = Σ0 = Σ. In that case, the
Bayes rule is

h∗(x) = argmaxkδk(x) (22.13)

where now
δk(x) = xTΣ−1µk −

1
2
µTkΣ−1 + log πk. (22.14)

The parameters are estimated as before, except that the mle of Σ is

S =
n0S0 + n1S1

n0 + n1
.

The classification rule is

h∗(x) =
{

1 if δ1(x) > δ0(x)
0 otherwise (22.15)

where
δj(x) = xTS−1µ̂j −

1
2
µ̂Tj S

−1µ̂j + log π̂j

is called the discriminant function. The decision boundary {x : δ0(x) =
δ1(x)} is linear so this method is called linear discrimination analysis
(LDA).

22.8 Example. Let us return to the South African heart disease data. The
decision rule in in Example 22.2 was obtained by linear discrimination. The
outcome was

classified as 0 classified as 1
y = 0 277 25
y = 1 116 44

The observed misclassification rate is 141/462 = .31. Including all the covari-
ates reduces the error rate to .27. The results from quadratic discrimination
are

classified as 0 classified as 1
y = 0 272 30
y = 1 113 47

which has about the same error rate 143/462 = .31. Including all the covariates
reduces the error rate to .26. In this example, there is little advantage to QDA
over LDA. �

Now we generalize to the case where Y takes on more than two values.
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22.9 Theorem. Suppose that Y ∈ {1, . . . ,K}. If fk(x) = f(x|Y = k) is
Gaussian, the Bayes rule is

h(x) = argmaxkδk(x)

where

δk(x) = −1
2

log |Σk| −
1
2
(x− µk)TΣ−1

k (x− µk) + log πk. (22.16)

If the variances of the Gaussians are equal, then

δk(x) = xTΣ−1µk −
1
2
µTkΣ−1 + log πk. (22.17)

We estimate δk(x) by by inserting estimates of µk, Σk and πk. There is
another version of linear discriminant analysis due to Fisher. The idea is
to first reduce the dimension of covariates to one dimension by projecting
the data onto a line. Algebraically, this means replacing the covariate X =
(X1, . . . , Xd) with a linear combination U = wTX =

∑d
j=1 wjXj . The goal is

to choose the vector w = (w1, . . . , wd) that “best separates the data.” Then
we perform classification with the one-dimensional covariate Z instead of X.

We need define what we mean by separation of the groups. We would like
the two groups to have means that are far apart relative to their spread. Let
µj denote the mean of X for Yj and let Σ be the variance matrix of X. Then
E(U |Y = j) = E(wTX|Y = j) = wTµj and V(U) = wTΣw. 2 Define the
separation by

J(w) =
(E(U |Y = 0)− E(U |Y = 1))2

wTΣw

=
(wTµ0 − wTµ1)2

wTΣw

=
wT (µ0 − µ1)(µ0 − µ1)Tw

wTΣw
.

We estimate J as follows. Let nj =
∑n
i=1 I(Yi = j) be the number of obser-

vations in group j, let Xj be the sample mean vector of the X’s for group j,
and let Sj be the sample covariance matrix in group j. Define

Ĵ(w) =
wTSBw

wTSWw
(22.18)

2The quantity J arises in physics, where it is called the Rayleigh coefficient.
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where

SB = (X0 −X1)(X0 −X1)T

SW =
(n0 − 1)S0 + (n1 − 1)S1

(n0 − 1) + (n1 − 1)
.

22.10 Theorem. The vector

w = S−1
W (X0 −X1) (22.19)

is a minimizer of Ĵ(w). We call

U = wTX = (X0 −X1)TS−1
W X (22.20)

the Fisher linear discriminant function. The midpoint m between X0 and
X1 is

m =
1
2
(X0 +X1) =

1
2
(X0 −X1)TS−1

B (X0 +X1) (22.21)

Fisher’s classification rule is

h(x) =
{

0 if wTX ≥ m
1 if wTX < m.

Fisher’s rule is the same as the Bayes linear classifier in equation (22.14)
when π̂ = 1/2.

22.4 Linear Regression and Logistic Regression

A more direct approach to classification is to estimate the regression function
r(x) = E(Y |X = x) without bothering to estimate the densities fk. For the
rest of this section, we will only consider the case where Y = {0, 1}. Thus,
r(x) = P(Y = 1|X = x) and once we have an estimate r̂, we will use the
classification rule

ĥ(x) =
{

1 if r̂(x) > 1
2

0 otherwise. (22.22)

The simplest regression model is the linear regression model

Y = r(x) + ε = β0 +
d∑
j=1

βjXj + ε (22.23)

where E(ε) = 0. This model can’t be correct since it does not force Y = 0 or
1. Nonetheless, it can sometimes lead to a decent classifier.
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Recall that the least squares estimate of β = (β0, β1, . . . , βd)T minimizes
the residual sums of squares

rss(β) =
n∑
i=1

(
Yi − β0 −

d∑
j=1

Xijβj

)2

.

Let X denote the N × (d+ 1) matrix of the form

X =


1 X11 . . . X1d

1 X21 . . . X2d

...
...

...
...

1 Xn1 . . . Xnd

 .
Also let Y = (Y1, . . . , Yn)T . Then,

RSS(β) = (Y −Xβ)T (Y −Xβ)

and the model can be written as

Y = Xβ + ε

where ε = (ε1, . . . , εn)T . From Theorem 13.13,

β̂ = (XTX)−1XTY.

The predicted values are
Ŷ = Xβ̂.

Now we use (22.22) to classify, where r̂(x) = β̂0 +
∑
j β̂jxj .

An alternative is to use logistic regression which was also discussed in Chap-
ter 13. The model is

r(x) = P(Y = 1|X = x) =
eβ0+

∑
j βjxj

1 + eβ0+
∑
j βjxj

(22.24)

and the mle β̂ is obtained numerically.

22.11 Example. Let us return to the heart disease data. The mle is given in
Example 13.17. The error rate, using this model for classification, is .27. The
error rate from a linear regression is .26.

We can get a better classifier by fitting a richer model. For example, we
could fit

logit P(Y = 1|X = x) = β0 +
∑
j

βjxj +
∑
j,k

βjkxjxk. (22.25)
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More generally, we could add terms of up to order r for some integer r. Large
values of r give a more complicated model which should fit the data better.
But there is a bias–variance tradeoff which we’ll discuss later.

22.12 Example. If we use model (22.25) for the heart disease data with r = 2,
the error rate is reduced to .22. �

22.5 Relationship Between Logistic Regression and
LDA

LDA and logistic regression are almost the same thing. If we assume that each
group is Gaussian with the same covariance matrix, then we saw earlier that

log
(

P(Y = 1|X = x)
P(Y = 0|X = x)

)
= log

(
π0

π1

)
− 1

2
(µ0 + µ1)TΣ−1(µ1 − µ0)

+ xTΣ−1(µ1 − µ0)

≡ α0 + αTx.

On the other hand, the logistic model is, by assumption,

log
(

P(Y = 1|X = x)
P(Y = 0|X = x)

)
= β0 + βTx.

These are the same model since they both lead to classification rules that are
linear in x. The difference is in how we estimate the parameters.

The joint density of a single observation is f(x, y) = f(x|y)f(y) = f(y|x)f(x).
In LDA we estimated the whole joint distribution by maximizing the likeli-
hood ∏

i

f(xi, yi) =
∏
i

f(xi|yi)︸ ︷︷ ︸
Gaussian

∏
i

f(yi)︸ ︷︷ ︸
Bernoulli

. (22.26)

In logistic regression we maximized the conditional likelihood
∏
i f(yi|xi) but

we ignored the second term f(xi):∏
i

f(xi, yi) =
∏
i

f(yi|xi)︸ ︷︷ ︸
logistic

∏
i

f(xi)︸ ︷︷ ︸
ignored

. (22.27)

Since classification only requires knowing f(y|x), we don’t really need to es-
timate the whole joint distribution. Logistic regression leaves the marginal
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distribution f(x) unspecified so it is more nonparametric than LDA. This is
an advantage of the logistic regression approach over LDA.

To summarize: LDA and logistic regression both lead to a linear classi-
fication rule. In LDA we estimate the entire joint distribution f(x, y) =
f(x|y)f(y). In logistic regression we only estimate f(y|x) and we don’t bother
estimating f(x).

22.6 Density Estimation and Naive Bayes

The Bayes rule is h(x) = argmaxk πk fk(x). If we can estimate πk and fk

then we can estimate the Bayes classification rule. Estimating πk is easy but
what about fk? We did this previously by assuming fk was Gaussian. An-
other strategy is to estimate fk with some nonparametric density estimator
f̂k such as a kernel estimator. But if x = (x1, . . . , xd) is high-dimensional,
nonparametric density estimation is not very reliable. This problem is amelio-
rated if we assume thatX1, . . . , Xd are independent, for then, fk(x1, . . . , xd) =∏d
j=1 fkj(xj). This reduces the problem to d one-dimensional density estima-

tion problems, within each of the k groups. The resulting classifier is called
the naive Bayes classifier. The assumption that the components of X are
independent is usually wrong yet the resulting classifier might still be accu-
rate. Here is a summary of the steps in the naive Bayes classifier:

The Naive Bayes Classifier

1. For each group k, compute an estimate f̂kj of the density fkj for Xj ,
using the data for which Yi = k.

2. Let

f̂k(x) = f̂k(x1, . . . , xd) =
d∏
j=1

f̂kj(xj).

3. Let

π̂k =
1
n

n∑
i=1

I(Yi = k)

where I(Yi = k) = 1 if Yi = k and I(Yi = k) = 0 if Yi �= k.

4. Let
h(x) = argmaxk π̂k f̂k(x).
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0 1

Blood Pressure 1

Age

< 100 ≥ 100

< 50 ≥ 50

FIGURE 22.2. A simple classification tree.

The naive Bayes classifier is popular when x is high-dimensional and dis-
crete. In that case, f̂kj(xj) is especially simple.

22.7 Trees

Trees are classification methods that partition the covariate space X into
disjoint pieces and then classify the observations according to which partition
element they fall in. As the name implies, the classifier can be represented as
a tree.

For illustration, suppose there are two covariates, X1 = age and X2 = blood
pressure. Figure 22.2 shows a classification tree using these variables.

The tree is used in the following way. If a subject has Age ≥ 50 then we
classify him as Y = 1. If a subject has Age < 50 then we check his blood
pressure. If systolic blood pressure is < 100 then we classify him as Y = 1,
otherwise we classify him as Y = 0. Figure 22.3 shows the same classifier as
a partition of the covariate space.

Here is how a tree is constructed. First, suppose that y ∈ Y = {0, 1} and
that there is only a single covariate X. We choose a split point t that divides
the real line into two sets A1 = (−∞, t] and A2 = (t,∞). Let p̂s(j) be the
proportion of observations in As such that Yi = j:

p̂s(j) =
∑n
i=1 I(Yi = j,Xi ∈ As)∑n

i=1 I(Xi ∈ As)
(22.28)

for s = 1, 2 and j = 0, 1. The impurity of the split t is defined to be

I(t) =
2∑
s=1

γs (22.29)
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FIGURE 22.3. Partition representation of classification tree.

where

γs = 1−
1∑
j=0

p̂s(j)2. (22.30)

This particular measure of impurity is known as the Gini index. If a partition
element As contains all 0’s or all 1’s, then γs = 0. Otherwise, γs > 0. We
choose the split point t to minimize the impurity. (Other indices of impurity
besides can be used besides the Gini index.)

When there are several covariates, we choose whichever covariate and split
that leads to the lowest impurity. This process is continued until some stopping
criterion is met. For example, we might stop when every partition element has
fewer than n0 data points, where n0 is some fixed number. The bottom nodes
of the tree are called the leaves. Each leaf is assigned a 0 or 1 depending on
whether there are more data points with Y = 0 or Y = 1 in that partition
element.

This procedure is easily generalized to the case where Y ∈ {1, . . . ,K}. We
simply define the impurity by

γs = 1−
k∑
j=1

p̂s(j)2 (22.31)

where p̂i(j) is the proportion of observations in the partition element for which
Y = j.
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tobacco

< 0.51 ≥ 0.51

age

< 31.5 ≥ 31.5

age

< 50.5 ≥ 50.5

tobacco

< 7.47 ≥ 7.47

0 0 0

0 1
FIGURE 22.4. A classification tree for the heart disease data using two covariates.

22.13 Example. A classification tree for the heart disease data yields a mis-
classification rate of .21. If we build a tree using only tobacco and age, the
misclassification rate is then .29. The tree is shown in Figure 22.4. �

Our description of how to build trees is incomplete. If we keep splitting
until there are few cases in each leaf of the tree, we are likely to overfit the
data. We should choose the complexity of the tree in such a way that the
estimated true error rate is low. In the next section, we discuss estimation of
the error rate.

22.8 Assessing Error Rates and Choosing a Good
Classifier

How do we choose a good classifier? We would like to have a classifier h with
a low true error rate L(h). Usually, we can’t use the training error rate L̂n(h)
as an estimate of the true error rate because it is biased downward.

22.14 Example. Consider the heart disease data again. Suppose we fit a se-
quence of logistic regression models. In the first model we include one co-
variate. In the second model we include two covariates, and so on. The ninth
model includes all the covariates. We can go even further. Let’s also fit a tenth
model that includes all nine covariates plus the first covariate squared. Then
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we fit an eleventh model that includes all nine covariates plus the first covari-
ate squared and the second covariate squared. Continuing this way we will get
a sequence of 18 classifiers of increasing complexity. The solid line in Figure
22.5 shows the observed classification error which steadily decreases as we
make the model more complex. If we keep going, we can make a model with
zero observed classification error. The dotted line shows the 10-fold cross-
validation estimate of the error rate (to be explained shortly) which is a
better estimate of the true error rate than the observed classification error.
The estimated error decreases for a while then increases. This is essentially
the bias–variance tradeoff phenomenon we have seen in Chapter 20. �

number of terms in model

error rate

0.26

0.30

0.34

5 15

FIGURE 22.5. The solid line is the observed error rate and dashed line is the
cross-validation estimate of true error rate.

There are many ways to estimate the error rate. We’ll consider two: cross-
validation and probability inequalities.

Cross-Validation. The basic idea of cross-validation, which we have al-
ready encountered in curve estimation, is to leave out some of the data when
fitting a model. The simplest version of cross-validation involves randomly
splitting the data into two pieces: the training set T and the validation
set V. Often, about 10 per cent of the data might be set aside as the validation
set. The classifier h is constructed from the training set. We then estimate
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Training Data T Validation Data V︸ ︷︷ ︸
ĥ

︸ ︷︷ ︸
L̂

FIGURE 22.6. Cross-validation. The data are divided into two groups: the training
data and the validation data. The training data are used to produce an estimated
classifier ĥ. Then, ĥ is applied to the validation data to obtain an estimate L̂ of the
error rate of ĥ.

the error by

L̂(h) =
1
m

∑
Xi∈V

I(h(Xi) �= YI). (22.32)

where m is the size of the validation set. See Figure 22.6.
Another approach to cross-validation is K-fold cross-validation which is

obtained from the following algorithm.

K-fold cross-validation.

1. Randomly divide the data into K chunks of approximately equal size.
A common choice is K = 10.

2. For k = 1 to K, do the following:

(a) Delete chunk k from the data.

(b) Compute the classifier ĥ(k) from the rest of the data.

(c) Use ĥ(k) to the predict the data in chunk k. Let L̂(k) denote
the observed error rate.

3. Let

L̂(h) =
1
K

K∑
k=1

L̂(k). (22.33)

22.15 Example. We applied 10-fold cross-validation to the heart disease data.
The minimum cross-validation error as a function of the number of leaves
occurred at six. Figure 22.7 shows the tree with six leaves. �
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age

< 31.5 ≥ 31.5

age

< 50.5 ≥ 50.5

type A

< 68.5 ≥ 68.5

family history

no yes

tobacco

< 7.605 ≥ 7.605

0

0 1

0 1

1

FIGURE 22.7. Smaller classification tree with size chosen by cross-validation.

Probability Inequalities. Another approach to estimating the error rate
is to find a confidence interval for L̂n(h) using probability inequalities. This
method is useful in the context of empirical risk minimization.

Let H be a set of classifiers, for example, all linear classifiers. Empirical risk
minimization means choosing the classifier ĥ ∈ H to minimize the training
error L̂n(h), also called the empirical risk. Thus,

ĥ = argminh∈HL̂n(h) = argminh∈H

(
1
n

∑
i

I(h(Xi) �= Yi)

)
. (22.34)

Typically, L̂n(ĥ) underestimates the true error rate L(ĥ) because ĥ was chosen
to make L̂n(ĥ) small. Our goal is to assess how much underestimation is taking
place. Our main tool for this analysis is Hoeffding’s inequality (Theorem
4.5). Recall that if X1, . . . , Xn ∼ Bernoulli(p), then, for any ε > 0,

P (|p̂− p| > ε) ≤ 2e−2nε2 (22.35)

where p̂ = n−1
∑n
i=1Xi.
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First, suppose that H = {h1, . . . , hm} consists of finitely many classifiers.
For any fixed h, L̂n(h) converges in almost surely to L(h) by the law of large
numbers. We will now establish a stronger result.

22.16 Theorem (Uniform Convergence). Assume H is finite and has m ele-
ments. Then,

P

(
max
h∈H
|L̂n(h)− L(h)| > ε

)
≤ 2me−2nε2 .

Proof. We will use Hoeffding’s inequality and we will also use the fact
that if A1, . . . , Am is a set of events then P(

⋃m
i=1Ai) ≤

∑m
i=1 P(Ai). Now,

P

(
max
h∈H
|L̂n(h)− L(h)| > ε

)
= P

( ⋃
h∈H
|L̂n(h)− L(h)| > ε

)
≤

∑
H∈H

P

(
|L̂n(h)− L(h)| > ε

)
≤

∑
H∈H

2e−2nε2 = 2me−2nε2 . �

22.17 Theorem. Let

ε =

√
2
n

log
(

2m
α

)
.

Then L̂n(ĥ)± ε is a 1− α confidence interval for L(ĥ).

Proof. This follows from the fact that

P(|L̂n(ĥ)− L(ĥ)| > ε) ≤ P

(
max
h∈H
|L̂n(ĥ)− L(ĥ)| > ε

)
≤ 2me−2nε2 = α. �

WhenH is large the confidence interval for L(ĥ) is large. The more functions
there are in H the more likely it is we have “overfit” which we compensate
for by having a larger confidence interval.

In practice we usually use sets H that are infinite, such as the set of linear
classifiers. To extend our analysis to these cases we want to be able to say
something like

P

(
sup
h∈H
|L̂n(h)− L(h)| > ε

)
≤ something not too big.

One way to develop such a generalization is by way of the Vapnik-Chervonenkis
or VC dimension.
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Let A be a class of sets. Give a finite set F = {x1, . . . , xn} let

NA(F ) = #
{
F

⋂
A : A ∈ A

}
(22.36)

be the number of subsets of F “picked out” by A. Here #(B) denotes the
number of elements of a set B. The shatter coefficient is defined by

s(A, n) = max
F∈Fn

NA(F ) (22.37)

where Fn consists of all finite sets of size n. Now let X1, . . . , Xn ∼ P and let

Pn(A) =
1
n

∑
i

I(Xi ∈ A)

denote the empirical probability measure. The following remarkable the-
orem bounds the distance between P and Pn.

22.18 Theorem (Vapnik and Chervonenkis (1971)). For any P, n and ε > 0,

P

{
sup
A∈A
|Pn(A)− P(A)| > ε

}
≤ 8s(A, n)e−nε2/32. (22.38)

The proof, though very elegant, is long and we omit it. If H is a set of
classifiers, define A to be the class of sets of the form {x : h(x) = 1}. We
then define s(H, n) = s(A, n).

22.19 Theorem.

P

{
sup
h∈H
|L̂n(h)− L(h)| > ε

}
≤ 8s(H, n)e−nε2/32.

A 1− α confidence interval for L(ĥ) is L̂n(ĥ)± εn where

ε2n =
32
n

log
(

8s(H, n)
α

)
.

These theorems are only useful if the shatter coefficients do not grow too
quickly with n. This is where VC dimension enters.

22.20 Definition. The VC (Vapnik-Chervonenkis) dimension of a class of
sets A is defined as follows. If s(A, n) = 2n for all n, set V C(A) =∞.
Otherwise, define V C(A) to be the largest k for which s(A, n) = 2k.

Thus, the VC-dimension is the size of the largest finite set F that can be
shattered by A meaning that A picks out each subset of F . If H is a set of
classifiers we define V C(H) = V C(A) where A is the class of sets of the form
{x : h(x) = 1} as h varies in H. The following theorem shows that if A has
finite VC-dimension, then the shatter coefficients grow as a polynomial in n.
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22.21 Theorem. If A has finite VC-dimension v, then

s(A, n) ≤ nv + 1.

22.22 Example. Let A = {(−∞, a]; a ∈ R}. The A shatters every 1-point
set {x} but it shatters no set of the form {x, y}. Therefore, V C(A) = 1. �

22.23 Example. Let A be the set of closed intervals on the real line. Then
A shatters S = {x, y} but it cannot shatter sets with 3 points. Consider
S = {x, y, z} where x < y < z. One cannot find an interval A such that
A
⋂
S = {x, z}. So, V C(A) = 2. �

22.24 Example. Let A be all linear half-spaces on the plane. Any 3-point
set (not all on a line) can be shattered. No 4 point set can be shattered.
Consider, for example, 4 points forming a diamond. Let T be the left and
rightmost points. This can’t be picked out. Other configurations can also be
seen to be unshatterable. So V C(A) = 3. In general, halfspaces in Rd have
VC dimension d+ 1. �

22.25 Example. Let A be all rectangles on the plane with sides parallel to
the axes. Any 4 point set can be shattered. Let S be a 5 point set. There is
one point that is not leftmost, rightmost, uppermost, or lowermost. Let T be
all points in S except this point. Then T can’t be picked out. So V C(A) = 4.
�

22.26 Theorem. Let x have dimension d and let H be th set of linear classi-
fiers. The VC-dimension of H is d+1. Hence, a 1−α confidence interval for
the true error rate is L̂(ĥ)± ε where

ε2n =
32
n

log
(

8(nd+1 + 1)
α

)
.

22.9 Support Vector Machines

In this section we consider a class of linear classifiers called support vector
machines. Throughout this section, we assume that Y is binary. It will be
convenient to label the outcomes as −1 and +1 instead of 0 and 1. A linear
classifier can then be written as

h(x) = sign
(
H(x)

)
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where x = (x1, . . . , xd),

H(x) = a0 +
d∑
i=1

aixi

and

sign(z) =


−1 if z < 0

0 if z = 0
1 if z > 0.

First, suppose that the data are linearly separable, that is, there exists
a hyperplane that perfectly separates the two classes.

22.27 Lemma. The data can be separated by some hyperplane if and only if
there exists a hyperplane H(x) = a0 +

∑d
i=1 aixi such that

YiH(xi) ≥ 1, i = 1, . . . , n. (22.39)

Proof. Suppose the data can be separated by a hyperplane W (x) = b0 +∑d
i=1 bixi. It follows that there exists some constant c such that Yi = 1 implies

W (Xi) ≥ c and Yi = −1 implies W (Xi) ≤ −c. Therefore, YiW (Xi) ≥ c for
all i. Let H(x) = a0 +

∑d
i=1 aixi where aj = bj/c. Then YiH(Xi) ≥ 1 for all

i. The reverse direction is straightforward. �

In the separable case, there will be many separating hyperplanes. How
should we choose one? Intuitively, it seems reasonable to choose the hyper-
plane “furthest” from the data in the sense that it separates the +1s and -1s
and maximizes the distance to the closest point. This hyperplane is called the
maximum margin hyperplane. The margin is the distance to from the
hyperplane to the nearest point. Points on the boundary of the margin are
called support vectors. See Figure 22.8.

22.28 Theorem. The hyperplane Ĥ(x) = â0 +
∑d
i=1 âixi that separates the

data and maximizes the margin is given by minimizing (1/2)
∑d
j=1 a

2
j subject

to (22.39).

It turns out that this problem can be recast as a quadratic programming
problem. Let 〈Xi, Xk〉 = XT

i Xk denote the inner product of Xi and Xk.

22.29 Theorem. Let Ĥ(x) = â0 +
∑d
i=1 âixi denote the optimal (largest mar-

gin) hyperplane. Then, for j = 1, . . . , d,

âj =
n∑
i=1

α̂iYiXj(i)
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H(x) = a0 + aTx = 0

FIGURE 22.8. The hyperplane H(x) has the largest margin of all hyperplanes that
separate the two classes.

where Xj(i) is the value of the covariate Xj for the ith data point, and α̂ =
(α̂1, . . . , α̂n) is the vector that maximizes

n∑
i=1

αi −
1
2

n∑
i=1

n∑
k=1

αiαkYiYk〈Xi, Xk〉 (22.40)

subject to
αi ≥ 0

and
0 =

∑
i

αiYi.

The points Xi for which α̂ �= 0 are called support vectors. â0 can be found
by solving

α̂i

(
Yi(XT

i â+ β̂0

)
= 0

for any support point Xi. Ĥ may be written as

Ĥ(x) = α̂0 +
n∑
i=1

α̂iYi〈x,Xi〉.

There are many software packages that will solve this problem quickly. If
there is no perfect linear classifier, then one allows overlap between the groups



22.10 Kernelization 371

by replacing the condition (22.39) with

YiH(xi) ≥ 1− ξi, ξi ≥ 0, i = 1, . . . , n. (22.41)

The variables ξ1, . . . , ξn are called slack variables.
We now maximize (22.40) subject to

0 ≤ ξi ≤ c, i = 1, . . . , n

and
n∑
i=1

αiYi = 0.

The constant c is a tuning parameter that controls the amount of overlap.

22.10 Kernelization

There is a trick called kernelization for improving a computationally simple
classifier h. The idea is to map the covariate X — which takes values in X —
into a higher dimensional space Z and apply the classifier in the bigger space
Z. This can yield a more flexible classifier while retaining computationally
simplicity.

The standard example of this idea is illustrated in Figure 22.9. The covariate
x = (x1, x2). The Yis can be separated into two groups using an ellipse. Define
a mapping φ by

z = (z1, z2, z3) = φ(x) = (x2
1,
√

2x1x2, x
2
2).

Thus, φ maps X = R2 into Z = R3. In the higher-dimensional space Z, the
Yi’s are separable by a linear decision boundary. In other words,

a linear classifier in a higher-dimensional space corresponds to a non-

linear classifier in the original space.

The point is that to get a richer set of classifiers we do not need to give up the
convenience of linear classifiers. We simply map the covariates to a higher-
dimensional space. This is akin to making linear regression more flexible by
using polynomials.

There is a potential drawback. If we significantly expand the dimension
of the problem, we might increase the computational burden. For example,
if x has dimension d = 256 and we wanted to use all fourth-order terms,
then z = φ(x) has dimension 183,181,376. We are spared this computational
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FIGURE 22.9. Kernelization. Mapping the covariates into a higher-dimensional
space can make a complicated decision boundary into a simpler decision bound-
ary.

nightmare by the following two facts. First, many classifiers do not require
that we know the values of the individual points but, rather, just the inner
product between pairs of points. Second, notice in our example that the inner
product in Z can be written

〈z, z̃〉 = 〈φ(x), φ(x̃)〉
= x2

1x̃
2
1 + 2x1x̃1x2x̃2 + x2

2x̃
2
2

= (〈x, x̃〉)2 ≡ K(x, x̃).

Thus, we can compute 〈z, z̃〉 without ever computing Zi = φ(Xi).
To summarize, kernelization involves finding a mapping φ : X → Z and a

classifier such that:

1. Z has higher dimension than X and so leads a richer set of classifiers.

2. The classifier only requires computing inner products.

3. There is a function K, called a kernel, such that 〈φ(x), φ(x̃)〉 = K(x, x̃).

4. Everywhere the term 〈x, x̃〉 appears in the algorithm, replace it with
K(x, x̃).
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In fact, we never need to construct the mapping φ at all. We only need
to specify a kernel K(x, x̃) that corresponds to 〈φ(x), φ(x̃)〉 for some φ. This
raises an interesting question: given a function of two variables K(x, y), does
there exist a function φ(x) such that K(x, y) = 〈φ(x), φ(y)〉? The answer is
provided by Mercer’s theorem which says, roughly, that if K is positive
definite — meaning that∫ ∫

K(x, y)f(x)f(y)dxdy ≥ 0

for square integrable functions f — then such a φ exists. Examples of com-
monly used kernels are:

polynomial K(x, x̃) =
(
〈x, x̃〉+ a

)r
sigmoid K(x, x̃) = tanh(a〈x, x̃〉+ b)

Gaussian K(x, x̃) = exp
(
−||x− x̃||2/(2σ2)

)
Let us now see how we can use this trick in LDA and in support vector

machines.
Recall that the Fisher linear discriminant method replaces X with U =

wTX where w is chosen to maximize the Rayleigh coefficient

J(w) =
wTSBw

wTSWw
,

SB = (X0 −X1)(X0 −X1)T

and

SW =
(

(n0 − 1)S0

(n0 − 1) + (n1 − 1)

)
+

(
(n1 − 1)S1

(n0 − 1) + (n1 − 1)

)
.

In the kernelized version, we replace Xi with Zi = φ(Xi) and we find w to
maximize

J(w) =
wT S̃Bw

wT S̃Ww
(22.42)

where
S̃B = (Z0 − Z1)(Z0 − Z1)T

and

SW =

(
(n0 − 1)S̃0

(n0 − 1) + (n1 − 1)

)
+

(
(n1 − 1)S̃1

(n0 − 1) + (n1 − 1)

)
.

Here, S̃j is the sample of covariance of the Zi’s for which Y = j. However, to
take advantage of kernelization, we need to re-express this in terms of inner
products and then replace the inner products with kernels.
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It can be shown that the maximizing vector w is a linear combination of
the Zi’s. Hence we can write

w =
n∑
i=1

αiZi.

Also,

Zj =
1
nj

n∑
i=1

φ(Xi)I(Yi = j).

Therefore,

wTZj =
( n∑
i=1

αiZi

)T( 1
nj

n∑
i=1

φ(Xi)I(Yi = j)
)

=
1
nj

n∑
i=1

n∑
s=1

αiI(Ys = j)ZTi φ(Xs)

=
1
nj

n∑
i=1

αi

n∑
s=1

I(Ys = j)φ(Xi)Tφ(Xs)

=
1
nj

n∑
i=1

αi

n∑
s=1

I(Ys = j)K(Xi, Xs)

= αTMj

where Mj is a vector whose ith component is

Mj(i) =
1
nj

n∑
s=1

K(Xi, Xs)I(Yi = j).

It follows that
wT S̃Bw = αTMα

where M = (M0 −M1)(M0 −M1)T . By similar calculations, we can write

wT S̃Ww = αTNα

where

N = K0

(
I − 1

n0
1
)
KT

0 +K1

(
I − 1

n1
1
)
KT

1 ,

I is the identity matrix, 1 is a matrix of all one’s, and Kj is the n × nj

matrix with entries (Kj)rs = K(xr, xs) with xs varying over the observations
in group j. Hence, we now find α to maximize

J(α) =
αTMα

αTNα
.
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All the quantities are expressed in terms of the kernel. Formally, the solution
is α = N−1(M0 −M1). However, N might be non-invertible. In this case one
replaces N by N + bI, for some constant b. Finally, the projection onto the
new subspace can be written as

U = wTφ(x) =
n∑
i=1

αiK(xi, x).

The support vector machine can similarly be kernelized. We simply replace
〈Xi, Xj〉 with K(Xi, Xj). For example, instead of maximizing (22.40), we now
maximize

n∑
i=1

αi −
1
2

n∑
i=1

n∑
k=1

αiαkYiYkK(Xi, Xj). (22.43)

The hyperplane can be written as Ĥ(x) = â0 +
∑n
i=1 α̂iYiK(X,Xi).

22.11 Other Classifiers

There are many other classifiers and space precludes a full discussion of all of
them. Let us briefly mention a few.

The k-nearest-neighbors classifier is very simple. Given a point x, find
the k data points closest to x. Classify x using the majority vote of these k
neighbors. Ties can be broken randomly. The parameter k can be chosen by
cross-validation.

Bagging is a method for reducing the variability of a classifier. It is most
helpful for highly nonlinear classifiers such as trees. We draw B bootstrap
samples from the data. The bth bootstrap sample yields a classifier hb. The
final classifier is

ĥ(x) =
{

1 if 1
B

∑B
b=1 hb(x) ≥ 1

2
0 otherwise.

Boosting is a method for starting with a simple classifier and gradually
improving it by refitting the data giving higher weight to misclassified samples.
Suppose that H is a collection of classifiers, for example, trees with only
one split. Assume that Yi ∈ {−1, 1} and that each h is such that h(x) ∈
{−1, 1}. We usually give equal weight to all data points in the methods we
have discussed. But one can incorporate unequal weights quite easily in most
algorithms. For example, in constructing a tree, we could replace the impurity
measure with a weighted impurity measure. The original version of boosting,
called AdaBoost, is as follows.
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1. Set the weights wi = 1/n, i = 1, . . . , n.

2. For j = 1, . . . , J , do the following steps:

(a) Constructing a classifier hj from the data using the weights w1, . . . , wn.

(b) Compute the weighted error estimate:

L̂j =
∑n
i=1 wiI(Yi �= hj(Xi))∑n

i=1 wi
.

(c) Let αj = log((1− L̂j)/L̂j).

(d) Update the weights:

wi ←− wieαjI(Yi =hj(Xi))

3. The final classifier is

ĥ(x) = sign
( J∑
j=1

αjhj(x)
)
.

There is now an enormous literature trying to explain and improve on
boosting. Whereas bagging is a variance reduction technique, boosting can
be thought of as a bias reduction technique. We starting with a simple —
and hence highly-biased — classifier, and we gradually reduce the bias. The
disadvantage of boosting is that the final classifier is quite complicated.

Neural Networks are regression models of the form 3

Y = β0 +
p∑
j=1

βjσ(α0 + αTX)

where σ is a smooth function, often taken to be σ(v) = ev/(1 + ev). This
is really nothing more than a nonlinear regression model. Neural nets were
fashionable for some time but they pose great computational difficulties. In
particular, one often encounters multiple minima when trying to find the least
squares estimates of the parameters. Also, the number of terms p is essentially
a smoothing parameter and there is the usual problem of trying to choose p
to find a good balance between bias and variance.

3This is the simplest version of a neural net. There are more complex versions of the model.
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22.12 Bibliographic Remarks

The literature on classification is vast and is growing quickly. An excellent
reference is Hastie et al. (2001). For more on the theory, see Devroye et al.
(1996) and Vapnik (1998). Two recent books on kernels are Scholkopf and
Smola (2002) and Herbich (2002).

22.13 Exercises

1. Prove Theorem 22.5.

2. Prove Theorem 22.7.

3. Download the spam data from:

http://www-stat.stanford.edu/∼tibs/ElemStatLearn/index.html

The data file can also be found on the course web page. The data con-
tain 57 covariates relating to email messages. Each email message was
classified as spam (Y=1) or not spam (Y=0). The outcome Y is the last
column in the file. The goal is to predict whether an email is spam or
not.

(a) Construct classification rules using (i) LDA, (ii) QDA, (iii) logistic
regression, and (iv) a classification tree. For each, report the observed
misclassification error rate and construct a 2-by-2 table of the form

ĥ(x) = 0 ĥ(x) = 1
Y = 0 ?? ??
Y = 1 ?? ??

(b) Use 5-fold cross-validation to estimate the prediction accuracy of
LDA and logistic regression.

(c) Sometimes it helps to reduce the number of covariates. One strategy
is to compare Xi for the spam and email group. For each of the 57
covariates, test whether the mean of the covariate is the same or different
between the two groups. Keep the 10 covariates with the smallest p-
values. Try LDA and logistic regression using only these 10 variables.
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4. Let A be the set of two-dimensional spheres. That is, A ∈ A if A =
{(x, y) : (x−a)2+(y−b)2 ≤ c2} for some a, b, c. Find the VC-dimension
of A.

5. Classify the spam data using support vector machines. Free software for
the support vector machine is at http://svmlight.joachims.org/

6. Use VC theory to get a confidence interval on the true error rate of the
LDA classifier for the iris data (from the book web site).

7. Suppose that Xi ∈ R and that Yi = 1 whenever |Xi| ≤ 1 and Yi = 0
whenever |Xi| > 1. Show that no linear classifier can perfectly classify
these data. Show that the kernelized data Zi = (Xi, X

2
i ) can be linearly

separated.

8. Repeat question 5 using the kernel K(x, x̃) = (1 + xT x̃)p. Choose p by
cross-validation.

9. Apply the k nearest neighbors classifier to the “iris data.” Choose k by
cross-validation.

10. (Curse of Dimensionality.) Suppose that X has a uniform distribution
on the d-dimensional cube [−1/2, 1/2]d. Let R be the distance from the
origin to the closest neighbor. Show that the median of R is


(
1−

(
1
2

)1/n
)

vd(1)

1/d

where

vd(r) = rd
πd/2

Γ((d/2) + 1)

is the volume of a sphere of radius r. For what dimension d does the
median of R exceed the edge of the cube when n = 100, n = 1, 000,
n = 10, 000? (Hastie et al. (2001), p. 22–27.)

11. Fit a tree to the data in question 3. Now apply bagging and report your
results.

12. Fit a tree that uses only one split on one variable to the data in question
3. Now apply boosting.
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13. Let r(x) = P(Y = 1|X = x) and let r̂(x) be an estimate of r(x). Consider
the classifier

h(x) =
{

1 if r̂(x) ≥ 1/2
0 otherwise.

Assume that r̂(x) ≈ N(r(x), σ2(x)) for some functions r(x) and σ2(x).
Show that, for fixed x,

P(Y �= h(x)) ≈ P(Y �= h∗(x))

+

∣∣∣∣∣2r(x)− 1

∣∣∣∣∣ ×
1− Φ

 sign
(
r(x)− (1/2)

)
(r(x)− (1/2))

σ(x)




where Φ is the standard Normal cdf and h∗ is the Bayes rule. Regard

sign
(

(r(x)− (1/2))(r(x)− (1/2))
)

as a type of bias term. Explain the

implications for the bias–variance tradeoff in classification (Friedman
(1997)).

Hint: first show that

P(Y �= h(x)) = |2r(x)− 1|P(h(x) �= h∗(x)) + P(Y �= h∗(x)).





23
Probability Redux: Stochastic Processes

23.1 Introduction

Most of this book has focused on iid sequences of random variables. Now we
consider sequences of dependent random variables. For example, daily tem-
peratures will form a sequence of time-ordered random variables and clearly
the temperature on one day is not independent of the temperature on the
previous day.

A stochastic process {Xt : t ∈ T} is a collection of random variables.
We shall sometimes write X(t) instead of Xt. The variables Xt take values in
some set X called the state space. The set T is called the index set and
for our purposes can be thought of as time. The index set can be discrete
T = {0, 1, 2, . . .} or continuous T = [0,∞) depending on the application.

23.1 Example (iid observations). A sequence of iid random variables can be
written as {Xt : t ∈ T} where T = {1, 2, 3, . . . , }. Thus, a sequence of iid

random variables is an example of a stochastic process. �

23.2 Example (The Weather). Let X = {sunny, cloudy}. A typical sequence
(depending on where you live) might be

sunny, sunny, cloudy, sunny, cloudy, cloudy, · · ·

This process has a discrete state space and a discrete index set. �



382 23. Probability Redux: Stochastic Processes

time

price

FIGURE 23.1. Stock price over ten week period.

23.3 Example (Stock Prices). Figure 23.1 shows the price of a fictitious stock
over time. The price is monitored continuously so the index set T is continuous.
Price is discrete but for all practical purposes we can treat it as a continuous
variable. �

23.4 Example (Empirical Distribution Function). Let X1, . . . , Xn ∼ F where
F is some cdf on [0,1]. Let

F̂n(t) =
1
n

n∑
i=1

I(Xi ≤ t)

be the empirical cdf. For any fixed value t, F̂n(t) is a random variable. But
the whole empirical cdf {

F̂n(t) : t ∈ [0, 1]
}

is a stochastic process with a continuous state space and a continuous index
set. �

We end this section by recalling a basic fact. If X1, . . . , Xn are random
variables, then we can write the joint density as

f(x1, . . . , xn) = f(x1)f(x2|x1) · · · f(xn|x1, . . . , xn−1)

=
n∏
i=1

f(xi|pasti) (23.1)
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where pasti = (X1, . . . , Xi−1).

23.2 Markov Chains

A Markov chain is a stochastic process for which the distribution of Xt de-
pends only on Xt−1. In this section we assume that the state space is dis-
crete, either X = {1, . . . , N} or X = {1, 2, . . . , } and that the index set is
T = {0, 1, 2, . . .}. Typically, most authors write Xn instead of Xt when dis-
cussing Markov chains and I will do so as well.

23.5 Definition. The process {Xn : n ∈ T} is a Markov chain if

P(Xn = x | X0, . . . , Xn−1) = P(Xn = x | Xn−1) (23.2)

for all n and for all x ∈ X .

For a Markov chain, equation (23.1) simplifies to

f(x1, . . . , xn) = f(x1)f(x2|x1)f(x3|x2) · · · f(xn|xn−1).

A Markov chain can be represented by the following DAG:

X0 X1 X2 · · · Xn · · ·

Each variable has a single parent, namely, the previous observation.
The theory of Markov chains is a very rich and complex. We have to get

through many definitions before we can do anything interesting. Our goal is
to answer the following questions:

1. When does a Markov chain “settle down” into some sort of equilibrium?

2. How do we estimate the parameters of a Markov chain?

3. How can we construct Markov chains that converge to a given equilib-
rium distribution and why would we want to do that?

We will answer questions 1 and 2 in this chapter. We will answer question
3 in the next chapter. To understand question 1, look at the two chains in
Figure 23.2. The first chain oscillates all over the place and will continue to
do so forever. The second chain eventually settles into an equilibrium. If we
constructed a histogram of the first process, it would keep changing as we got
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more and more observations. But a histogram from the second chain would
eventually converge to some fixed distribution.

time time
FIGURE 23.2. Two Markov chains. The first chain does not settle down into an
equilibrium. The second does.

Transition Probabilities. The key quantities of a Markov chain are the
probabilities of jumping from one state into another state. A Markov chain is
homogeneous if P(Xn+1 = j|Xn = i) does not change with time. Thus, for
a homogeneous Markov chain, P(Xn+1 = j|Xn = i) = P(X1 = j|X0 = i). We
shall only deal with homogeneous Markov chains.

23.6 Definition. We call

pij ≡ P(Xn+1 = j|Xn = i) (23.3)

the transition probabilities. The matrix P whose (i, j) element is pij
is called the transition matrix.

We will only consider homogeneous chains. Notice that P has two proper-
ties: (i) pij ≥ 0 and (ii)

∑
i pij = 1. Each row can be regarded as a probability

mass function.

23.7 Example (Random Walk With Absorbing Barriers). Let X = {1, . . . , N}.
Suppose you are standing at one of these points. Flip a coin with P(Heads) = p

and P(Tails) = q = 1 − p. If it is heads, take one step to the right. If it is
tails, take one step to the left. If you hit one of the endpoints, stay there. The
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transition matrix is

P =


1 0 0 0 · · · 0 0
q 0 p 0 · · · 0 0
0 q 0 p · · · 0 0
· · · · · · · · · · · · · · · · · · · · ·
0 0 0 0 q 0 p
0 0 0 0 0 0 1

 . �

23.8 Example. Suppose the state space is X = {sunny, cloudy}. Then X1,
X2, . . . represents the weather for a sequence of days. The weather today
clearly depends on yesterday’s weather. It might also depend on the weather
two days ago but as a first approximation we might assume that the depen-
dence is only one day back. In that case the weather is a Markov chain and a
typical transition matrix might be

Sunny Cloudy
Sunny 0.4 0.6
Cloudy 0.8 0.2

For example, if it is sunny today, there is a 60 per cent chance it will be cloudy
tomorrow. �

Let
pij(n) = P(Xm+n = j|Xm = i) (23.4)

be the probability of of going from state i to state j in n steps. Let Pn be the
matrix whose (i, j) element is pij(n). These are called the n-step transition
probabilities.

23.9 Theorem (The Chapman-Kolmogorov equations). The n-step probabilities
satisfy

pij(m+ n) =
∑
k

pik(m)pkj(n). (23.5)

Proof. Recall that, in general,

P(X = x, Y = y) = P(X = x)P(Y = y|X = x).

This fact is true in the more general form

P(X = x, Y = y|Z = z) = P(X = x|Z = z)P(Y = y|X = x, Z = z).

Also, recall the law of total probability:

P(X = x) =
∑
y

P(X = x, Y = y).
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Using these facts and the Markov property we have

pij(m+ n) = P(Xm+n = j|X0 = i)

=
∑
k

P(Xm+n = j,Xm = k|X0 = i)

=
∑
k

P(Xm+n = j|Xm = k,X0 = i)P(Xm = k|X0 = i)

=
∑
k

P(Xm+n = j|Xm = k)P(Xm = k|X0 = i)

=
∑
k

pik(m)pkj(n). �

Look closely at equation (23.5). This is nothing more than the equation for
matrix multiplication. Hence we have shown that

Pm+n = PmPn. (23.6)

By definition, P1 = P. Using the above theorem, P2 = P1+1 = P1P1 =
PP = P2. Continuing this way, we see that

Pn = Pn ≡ P×P× · · · ×P︸ ︷︷ ︸
multiply the matrix n times

. (23.7)

Let µn = (µn(1), . . . , µn(N)) be a row vector where

µn(i) = P(Xn = i) (23.8)

is the marginal probability that the chain is in state i at time n. In particular,
µ0 is called the initial distribution. To simulate a Markov chain, all you
need to know is µ0 and P. The simulation would look like this:

Step 1: Draw X0 ∼ µ0. Thus, P(X0 = i) = µ0(i).
Step 2: Denote the outcome of step 1 by i. Draw X1 ∼ P. In other words,
P(X1 = j|X0 = i) = pij .
Step 3: Suppose the outcome of step 2 is j. Draw X2 ∼ P. In other words,
P(X2 = k|X1 = j) = pjk.

And so on.

It might be difficult to understand the meaning of µn. Imagine simulating
the chain many times. Collect all the outcomes at time n from all the chains.
This histogram would look approximately like µn. A consequence of theorem
23.9 is the following:
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23.10 Lemma. The marginal probabilities are given by

µn = µ0Pn.

Proof.

µn(j) = P(Xn = j)

=
∑
i

P(Xn = j|X0 = i)P (X0 = i)

=
∑
i

µ0(i)pij(n) = µ0Pn. �

Summary of Terminology

1. Transition matrix: P(i, j) = P(Xn+1 = j|Xn = i) = pij .

2. n-step matrix: Pn(i, j) = P(Xn+m = j|Xm = i).

3. Pn = Pn.

4. Marginal: µn(i) = P(Xn = i).

5. µn = µ0Pn.

States. The states of a Markov chain can be classified according to various
properties.

23.11 Definition. We say that i reaches j (or j is accessible from i) if
pij(n) > 0 for some n, and we write i→ j. If i→ j and j → i then we
write i↔ j and we say that i and j communicate.

23.12 Theorem. The communication relation satisfies the following proper-
ties:

1. i↔ i.

2. If i↔ j then j ↔ i.

3. If i↔ j and j ↔ k then i↔ k.

4. The set of states X can be written as a disjoint union of classes X =
X1

⋃
X2

⋃
· · · where two states i and j communicate with each other if

and only if they are in the same class.
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If all states communicate with each other, then the chain is called irre-
ducible. A set of states is closed if, once you enter that set of states you
never leave. A closed set consisting of a single state is called an absorbing
state.

23.13 Example. Let X = {1, 2, 3, 4} and

P =


1
3

2
3 0 0

2
3

1
3 0 0

1
4

1
4

1
4

1
4

0 0 0 1


The classes are {1, 2}, {3} and {4}. State 4 is an absorbing state. �

Suppose we start a chain in state i. Will the chain ever return to state i?
If so, that state is called persistent or recurrent.

23.14 Definition. State i is recurrent or persistent if

P(Xn = i for some n ≥ 1 | X0 = i) = 1.

Otherwise, state i is transient.

23.15 Theorem. A state i is recurrent if and only if∑
n

pii(n) =∞. (23.9)

A state i is transient if and only if∑
n

pii(n) <∞. (23.10)

Proof. Define

In =
{

1 if Xn = i
0 if Xn �= i.

The number of times that the chain is in state i is Y =
∑∞
n=0 In. The mean

of Y , given that the chain starts in state i, is

E(Y |X0 = i) =
∞∑
n=0

E(In|X0 = i) =
∞∑
n=0

P(Xn = i|X0 = i) =
∞∑
n=0

pii(n).

Define ai = P(Xn = i for some n ≥ 1 | X0 = i). If i is recurrent, ai = 1. Thus,
the chain will eventually return to i. Once it does return to i, we argue again
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that since ai = 1, the chain will return to state i again. By repeating this
argument, we conclude that E(Y |X0 = i) =∞. If i is transient, then ai < 1.
When the chain is in state i, there is a probability 1−ai > 0 that it will never
return to state i. Thus, the probability that the chain is in state i exactly n
times is an−1

i (1− ai). This is a geometric distribution which has finite mean.
�

23.16 Theorem. Facts about recurrence.

1. If state i is recurrent and i↔ j, then j is recurrent.

2. If state i is transient and i↔ j, then j is transient.

3. A finite Markov chain must have at least one recurrent state.

4. The states of a finite, irreducible Markov chain are all recurrent.

23.17 Theorem (Decomposition Theorem). The state space X can be written
as the disjoint union

X = XT
⋃
X1

⋃
X2 · · ·

where XT are the transient states and each Xi is a closed, irreducible set of
recurrent states.

23.18 Example (Random Walk). Let X = {. . . ,−2,−1, 0, 1, 2, . . . , } and sup-
pose that pi,i+1 = p, pi,i−1 = q = 1− p. All states communicate, hence either
all the states are recurrent or all are transient. To see which, suppose we start
at X0 = 0. Note that

p00(2n) =
(

2n
n

)
pnqn (23.11)

since the only way to get back to 0 is to have n heads (steps to the right) and
n tails (steps to the left). We can approximate this expression using Stirling’s
formula which says that

n! ∼ nn
√
ne−n√2π.

Inserting this approximation into (23.11) shows that

p00(2n) ∼ (4pq)n√
nπ

.

It is easy to check that
∑
n p00(n) < ∞ if and only if

∑
n p00(2n) < ∞.

Moreover,
∑
n p00(2n) = ∞ if and only if p = q = 1/2. By Theorem (23.15),

the chain is recurrent if p = 1/2 otherwise it is transient. �
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Convergence of Markov Chains. To discuss the convergence of chains,
we need a few more definitions. Suppose that X0 = i. Define the recurrence
time

Tij = min{n > 0 : Xn = j} (23.12)

assuming Xn ever returns to state i, otherwise define Tij = ∞. The mean
recurrence time of a recurrent state i is

mi = E(Tii) =
∑
n

nfii(n) (23.13)

where

fij(n) = P(X1 �= j,X2 �= j, . . . , Xn−1 �= j,Xn = j|X0 = i).

A recurrent state is null if mi = ∞ otherwise it is called non-null or posi-
tive.

23.19 Lemma. If a state is null and recurrent, then pnii → 0.

23.20 Lemma. In a finite state Markov chain, all recurrent states are positive.

Consider a three-state chain with transition matrix 0 1 0
0 0 1
1 0 0

 .
Suppose we start the chain in state 1. Then we will be in state 3 at times 3, 6,
9, . . . . This is an example of a periodic chain. Formally, the period of state i
is d if pii(n) = 0 whenever n is not divisible by d and d is the largest integer
with this property. Thus, d = gcd{n : pii(n) > 0} where gcd means “greater
common divisor.” State i is periodic if d(i) > 1 and aperiodic if d(i) = 1.
A state with period 1 is called aperiodic.

23.21 Lemma. If state i has period d and i↔ j then j has period d.

23.22 Definition. A state is ergodic if it is recurrent, non-null and
aperiodic. A chain is ergodic if all its states are ergodic.

Let π = (πi : i ∈ X ) be a vector of non-negative numbers that sum to one.
Thus π can be thought of as a probability mass function.

23.23 Definition. We say that π is a stationary (or invariant)
distribution if π = πP.
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Here is the intuition. Draw X0 from distribution π and suppose that π is a
stationary distribution. Now draw X1 according to the transition probability
of the chain. The distribution of X1 is then µ1 = µ0P = πP = π. The
distribution of X2 is πP2 = (πP)P = πP = π. Continuing this way, we see
that the distribution of Xn is πPn = π. In other words:

If at any time the chain has distribution π, then it will continue to

have distribution π forever.

23.24 Definition. We say that a chain has limiting distribution if

Pn →


π
π
...
π


for some π, that is, πj = limn→∞ Pn

ij exists and is independent of i.

Here is the main theorem about convergence. The theorem says that an
ergodic chain converges to its stationary distribution. Also, sample averages
converge to their theoretical expectations under the stationary distribution.

23.25 Theorem. An irreducible, ergodic Markov chain has a unique
stationary distribution π. The limiting distribution exists and is equal to
π. If g is any bounded function, then, with probability 1,

lim
N→∞

1
N

N∑
n=1

g(Xn)→ Eπ(g) ≡
∑
j

g(j)πj . (23.14)

Finally, there is another definition that will be useful later. We say that π
satisfies detailed balance if

πipij = pjiπj . (23.15)

Detailed balance guarantees that π is a stationary distribution.

23.26 Theorem. If π satisfies detailed balance, then π is a stationary distri-
bution.

Proof. We need to show that πP = π. The jth element of πP is
∑
i πipij =∑

i πjpji = πj
∑
i pji = πj . �
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The importance of detailed balance will become clear when we discuss
Markov chain Monte Carlo methods in Chapter 24.

Warning! Just because a chain has a stationary distribution does not mean
it converges.

23.27 Example. Let

P =

 0 1 0
0 0 1
1 0 0

 .
Let π = (1/3, 1/3, 1/3). Then πP = π so π is a stationary distribution. If
the chain is started with the distribution π it will stay in that distribution.
Imagine simulating many chains and checking the marginal distribution at
each time n. It will always be the uniform distribution π. But this chain does
not have a limit. It continues to cycle around forever. �

Examples of Markov Chains.

23.28 Example. Let X = {1, 2, 3, 4, 5, 6}. Let

P =



1
2

1
2 0 0 0 0

1
4

3
4 0 0 0 0

1
4

1
4

1
4

1
4 0 0

1
4 0 1

4
1
4 0 1

4

0 0 0 0 1
2

1
2

0 0 0 0 1
2

1
2


Then C1 = {1, 2} and C2 = {5, 6} are irreducible closed sets. States 3 and
4 are transient because of the path 3 → 4 → 6 and once you hit state 6
you cannot return to 3 or 4. Since pii(1) > 0, all the states are aperiodic. In
summary, 3 and 4 are transient while 1, 2, 5, and 6 are ergodic. �

23.29 Example (Hardy-Weinberg). Here is a famous example from genetics.
Suppose a gene can be type A or type a. There are three types of people (called
genotypes): AA, Aa, and aa. Let (p, q, r) denote the fraction of people of each
genotype. We assume that everyone contributes one of their two copies of the
gene at random to their children. We also assume that mates are selected at
random. The latter is not realistic however, it is often reasonable to assume
that you do not choose your mate based on whether they are AA, Aa, or
aa. (This would be false if the gene was for eye color and if people chose
mates based on eye color.) Imagine if we pooled everyone’s genes together.
The proportion of A genes is P = p+ (q/2) and the proportion of a genes is
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Q = r + (q/2). A child is AA with probability P 2, aA with probability 2PQ,
and aa with probability Q2. Thus, the fraction of A genes in this generation
is

P 2 + PQ =
(
p+

q

2

)2

+
(
p+

q

2

)(
r +

q

2

)
.

However, r = 1 − p − q. Substitute this in the above equation and you get
P 2 + PQ = P . A similar calculation shows that the fraction of “a” genes is
Q. We have shown that the proportion of type A and type a is P and Q and
this remains stable after the first generation. The proportion of people of type
AA, Aa, aa is thus (P 2, 2PQ,Q2) from the second generation and on. This is
called the Hardy-Weinberg law.

Assume everyone has exactly one child. Now consider a fixed person and
let Xn be the genotype of their nth descendant. This is a Markov chain with
state space X = {AA,Aa, aa}. Some basic calculations will show you that the
transition matrix is  P Q 0

P
2

P+Q
2

Q
2

0 P Q

 .
The stationary distribution is π = (P 2, 2PQ,Q2). �

23.30 Example (Markov chain Monte Carlo). In Chapter 24 we will present a
simulation method called Markov chain Monte Carlo (MCMC). Here is a brief
description of the idea. Let f(x) be a probability density on the real line and
suppose that f(x) = cg(x) where g(x) is a known function and c > 0 is
unknown. In principle, we can compute c since

∫
f(x)dx = 1 implies that

c = 1/
∫
g(x)dx. However, it may not be feasible to perform this integral, nor

is it necessary to know c in the following algorithm. Let X0 be an arbitrary
starting value. Given X0, . . . , Xi, draw Xi+1 as follows. First, draw W ∼
N(Xi, b

2) where b > 0 is some fixed constant. Let

r = min
{
g(W )
g(Xi)

, 1
}
.

Draw U ∼ Uniform(0, 1) and set

Xi+1 =
{
W if U < r
Xi if U ≥ r.

We will see in Chapter 24 that, under weak conditions, X0, X1, . . . , is an
ergodic Markov chain with stationary distribution f . Hence, we can regard
the draws as a sample from f . �



394 23. Probability Redux: Stochastic Processes

Inference for Markov Chains. Consider a chain with finite state space
X = {1, 2, . . . , N}. Suppose we observe n observations X1, . . . , Xn from this
chain. The unknown parameters of a Markov chain are the initial probabilities
µ0 = (µ0(1), µ0(2), . . . , ) and the elements of the transition matrix P. Each
row of P is a multinomial distribution. So we are essentially estimating N

distributions (plus the initial probabilities). Let nij be the observed number
of transitions from state i to state j. The likelihood function is

L(µ0,P) = µ0(x0)
n∏
r=1

pXr−1,Xr = µ0(x0)
N∏
i=1

N∏
j=1

p
nij
ij .

There is only one observation on µ0 so we can’t estimate that. Rather, we
focus on estimating P. The mle is obtained by maximizing L(µ0,P) subject
to the constraint that the elements are non-negative and the rows sum to 1.
The solution is

p̂ij =
nij
ni

where ni =
∑N
j=1 nij . Here we are assuming that ni > 0. If not, then we set

p̂ij = 0 by convention.

23.31 Theorem (Consistency and Asymptotic Normality of the mle). Assume that
the chain is ergodic. Let p̂ij(n) denote the mle after n observations. Then

p̂ij(n) P−→ pij. Also, [√
Ni(n)(p̂ij − pij)

]
� N(0,Σ)

where the left-hand side is a matrix, Ni(n) =
∑n
r=1 I(Xr = i) and

Σij,k� =


pij(1− pij) (i, j) = (k, �)
−pijpi� i = k, j �= �
0 otherwise.

23.3 Poisson Processes

The Poisson process arises when we count occurrences of events over time, for
example, traffic accidents, radioactive decay, arrival of email messages, etc.
As the name suggests, the Poisson process is intimately related to the Poisson
distribution. Let’s first review the Poisson distribution.

Recall that X has a Poisson distribution with parameter λ — written X ∼
Poisson(λ) — if

P(X = x) ≡ p(x; λ) =
e−λλx

x!
, x = 0, 1, 2, . . .
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Also recall that E(X) = λ and V(X) = λ. If X ∼ Poisson(λ), Y ∼ Poisson(ν)
andX�Y , thenX+Y ∼ Poisson(λ+ν). Finally, ifN ∼ Poisson(λ) and Y |N =
n ∼ Binomial(n, p), then the marginal distribution of Y is Y ∼ Poisson(λp).

Now we describe the Poisson process. Imagine that you are at your com-
puter. Each time a new email message arrives you record the time. Let Xt be
the number of messages you have received up to and including time t. Then,
{Xt : t ∈ [0,∞)} is a stochastic process with state space X = {0, 1, 2, . . .}.
A process of this form is called a counting process. A Poisson process is
a counting process that satisfies certain conditions. In what follows, we will
sometimes write X(t) instead of Xt. Also, we need the following notation.
Write f(h) = o(h) if f(h)/h → 0 as h → 0. This means that f(h) is smaller
than h when h is close to 0. For example, h2 = o(h).

23.32 Definition. A Poisson process is a stochastic process
{Xt : t ∈ [0,∞)} with state space X = {0, 1, 2, . . .} such that

1. X(0) = 0.

2. For any 0 = t0 < t1 < t2 < · · · < tn, the increments

X(t1)−X(t0), X(t2)−X(t1), · · · , X(tn)−X(tn−1)

are independent.

3. There is a function λ(t) such that

P(X(t+ h)−X(t) = 1) = λ(t)h+ o(h) (23.16)

P(X(t+ h)−X(t) ≥ 2) = o(h). (23.17)

We call λ(t) the intensity function.

The last condition means that the probability of an event in [t, t + h] is
approximately hλ(t) while the probability of more than one event is small.

23.33 Theorem. If Xt is a Poisson process with intensity function λ(t), then

X(s+ t)−X(s) ∼ Poisson(m(s+ t)−m(s))

where

m(t) =
∫ t

0

λ(s) ds.

In particular, X(t) ∼ Poisson(m(t)). Hence, E(X(t)) = m(t) and V(X(t)) =
m(t).
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23.34 Definition. A Poisson process with intensity function λ(t) ≡ λ for
some λ > 0 is called a homogeneous Poisson process with rate λ. In
this case,

X(t) ∼ Poisson(λt).

Let X(t) be a homogeneous Poisson process with rate λ. Let Wn be the
time at which the nth event occurs and set W0 = 0. The random variables
W0,W1, . . . , are called waiting times. Let Sn = Wn+1−Wn. Then S0, S1, . . . ,

are called sojourn times or interarrival times.

23.35 Theorem. The sojourn times S0, S1, . . . are iid random variables. Their
distribution is exponential with mean 1/λ, that is, they have density

f(s) = λe−λs, s ≥ 0.

The waiting time Wn ∼ Gamma(n, 1/λ) i.e., it has density

f(w) =
1

Γ(n)
λnwn−1e−λt.

Hence, E(Wn) = n/λ and V(Wn) = n/λ2.

Proof. First, we have

P(S1 > t) = P(X(t) = 0) = e−λt

with shows that the cdf for S1 is 1−e−λt. This shows the result for S1. Now,

P(S2 > t|S1 = s) = P(no events in (s, s+ t]|S1 = s)

= P(no events in (s, s+ t]) (increments are independent)

= e−λt.

Hence, S2 has an exponential distribution and is independent of S1. The result
follows by repeating the argument. The result for Wn follows since a sum of
exponentials has a Gamma distribution. �

23.36 Example. Figure 23.3 shows requests to a WWW server in Calgary.1

Assuming that this is a homogeneous Poisson process,N ≡ X(T ) ∼ Poisson(λT ).
The likelihood is

L(λ) ∝ e−λT (λT )N

1See http://ita.ee.lbl.gov/html/contrib/Calgary-HTTP.html for more information.
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0 400 800 1200
time

FIGURE 23.3. Hits on a web server. Each vertical line represents one event.

which is maximized at

λ̂ =
N

T
= 48.0077

in units per minute. Let’s now test the assumption that the data follow a ho-
mogeneous Poisson process using a goodness-of-fit test. We divide the interval
[0, T ] into 4 equal length intervals I1, I2, I3, I4. If the process is a homogeneous
Poisson process then, given the total number of events, the probability that an
event falls into any of these intervals must be equal. Let pi be the probability
of a point being in Ii. The null hypothesis is that p1 = p2 = p3 = p4 = 1/4.
We can test this hypothesis using either a likelihood ratio test or a χ2 test.
The latter is

4∑
i=1

(Oi − Ei)2
Ei

where Oi is the number of observations in Ii and Ei = n/4 is the expected
number under the null. This yields χ2 = 252 with a p-value near 0. This is
strong evidence against the null so we reject the hypothesis that the data are
from a homogeneous Poisson process. This is hardly surprising since we would
expect the intensity to vary as a function of time. �

23.4 Bibliographic Remarks

This is standard material and there are many good references including Grim-
mett and Stirzaker (1982), Taylor and Karlin (1994), Guttorp (1995), and
Ross (2002). The following exercises are from those texts.
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23.5 Exercises

1. Let X0, X1, . . . be a Markov chain with states {0, 1, 2} and transition
matrix

P =

 0.1 0.2 0.7
0.9 0.1 0.0
0.1 0.8 0.1


Assume that µ0 = (0.3, 0.4, 0.3). Find P(X0 = 0, X1 = 1, X2 = 2) and
P(X0 = 0, X1 = 1, X2 = 1).

2. Let Y1, Y2, . . . be a sequence of iid observations such that P(Y = 0) =
0.1, P(Y = 1) = 0.3, P(Y = 2) = 0.2, P(Y = 3) = 0.4. Let X0 = 0 and
let

Xn = max{Y1, . . . , Yn}.

Show that X0, X1, . . . is a Markov chain and find the transition matrix.

3. Consider a two-state Markov chain with states X = {1, 2} and transition
matrix

P =
[

1− a a
b 1− b

]
where 0 < a < 1 and 0 < b < 1. Prove that

lim
n→∞ Pn =

[ b
a+b

a
a+b

b
a+b

a
a+b

]
.

4. Consider the chain from question 3 and set a = .1 and b = .3. Simulate
the chain. Let

p̂n(1) =
1
n

n∑
i=1

I(Xi = 1)

p̂n(2) =
1
n

n∑
i=1

I(Xi = 2)

be the proportion of times the chain is in state 1 and state 2. Plot p̂n(1)
and p̂n(2) versus n and verify that they converge to the values predicted
from the answer in the previous question.

5. An important Markov chain is the branching process which is used in
biology, genetics, nuclear physics, and many other fields. Suppose that
an animal has Y children. Let pk = P(Y = k). Hence, pk ≥ 0 for all
k and

∑∞
k=0 pk = 1. Assume each animal has the same lifespan and
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that they produce offspring according to the distribution pk. Let Xn be
the number of animals in the nth generation. Let Y (n)

1 , . . . , Y
(n)
Xn

be the
offspring produced in the nth generation. Note that

Xn+1 = Y
(n)
1 + · · ·+ Y

(n)
Xn

.

Let µ = E(Y ) and σ2 = V(Y ). Assume throughout this question that
X0 = 1. Let M(n) = E(Xn) and V (n) = V(Xn).

(a) Show that M(n+ 1) = µM(n) and V (n+ 1) = σ2M(n) + µ2V (n).

(b) Show that M(n) = µn and that V (n) = σ2µn−1(1+µ+ · · ·+µn−1).

(c) What happens to the variance if µ > 1? What happens to the vari-
ance if µ = 1? What happens to the variance if µ < 1?

(d) The population goes extinct if Xn = 0 for some n. Let us thus define
the extinction time N by

N = min{n : Xn = 0}.

Let F (n) = P(N ≤ n) be the cdf of the random variable N . Show that

F (n) =
∞∑
k=0

pk(F (n− 1))k, n = 1, 2, . . .

Hint: Note that the event {N ≤ n} is the same as event {Xn = 0}.
Thus, P({N ≤ n}) = P({Xn = 0}). Let k be the number of offspring
of the original parent. The population becomes extinct at time n if and
only if each of the k sub-populations generated from the k offspring goes
extinct in n− 1 generations.

(e) Suppose that p0 = 1/4, p1 = 1/2, p2 = 1/4. Use the formula from
(5d) to compute the cdf F (n).

6. Let

P =

 0.40 0.50 0.10
0.05 0.70 0.25
0.05 0.50 0.45


Find the stationary distribution π.

7. Show that if i is a recurrent state and i↔ j, then j is a recurrent state.
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8. Let

P =



1
3 0 1

3 0 0 1
3

1
2

1
4

1
4 0 0 0

0 0 0 0 1 0
1
4

1
4

1
4 0 0 1

4
0 0 1 0 0 0
0 0 0 0 0 1


Which states are transient? Which states are recurrent?

9. Let

P =
[

0 1
1 0

]
Show that π = (1/2, 1/2) is a stationary distribution. Does this chain
converge? Why/why not?

10. Let 0 < p < 1 and q = 1− p. Let

P =


q p 0 0 0
q 0 p 0 0
q 0 0 p 0
q 0 0 0 p
1 0 0 0 0


Find the limiting distribution of the chain.

11. Let X(t) be an inhomogeneous Poisson process with intensity function
λ(t) > 0. Let Λ(t) =

∫ t
0
λ(u)du. Define Y (s) = X(t) where s = Λ(t).

Show that Y (s) is a homogeneous Poisson process with intensity λ = 1.

12. Let X(t) be a Poisson process with intensity λ. Find the conditional
distribution of X(t) given that X(t+ s) = n.

13. Let X(t) be a Poisson process with intensity λ. Find the probability
that X(t) is odd, i.e. P(X(t) = 1, 3, 5, . . .).

14. Suppose that people logging in to the University computer system is
described by a Poisson process X(t) with intensity λ. Assume that a
person stays logged in for some random time with cdf G. Assume these
times are all independent. Let Y (t) be the number of people on the
system at time t. Find the distribution of Y (t).

15. Let X(t) be a Poisson process with intensity λ. Let W1,W2, . . . , be the
waiting times. Let f be an arbitrary function. Show that

E

X(t)∑
i=1

f(Wi)

 = λ

∫ t

0

f(w)dw.
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16. A two-dimensional Poisson point process is a process of random points
on the plane such that (i) for any set A, the number of points falling
in A is Poisson with mean λµ(A) where µ(A) is the area of A, (ii) the
number of events in non-overlapping regions is independent. Consider
an arbitrary point x0 in the plane. Let X denote the distance from x0

to the nearest random point. Show that

P(X > t) = e−λπt2

and
E(X) =

1
2
√
λ
.





24
Simulation Methods

In this chapter we will show how simulation can be used to approximate inte-
grals. Our leading example is the problem of computing integrals in Bayesian
inference but the techniques are widely applicable. We will look at three inte-
gration methods: (i) basic Monte Carlo integration, (ii) importance sampling,
and (iii) Markov chain Monte Carlo (MCMC).

24.1 Bayesian Inference Revisited

Simulation methods are especially useful in Bayesian inference so let us briefly
review the main ideas in Bayesian inference. See Chapter 11 for more details.

Given a prior f(θ) and data Xn = (X1, . . . , Xn) the posterior density is

f(θ|Xn) =
L(θ)f(θ)

c

where L(θ) is the likelihood function and

c =
∫
L(θ)f(θ) dθ

is the normalizing constant. The posterior mean is

θ =
∫
θf(θ|Xn)dθ =

∫
θL(θ)f(θ)dθ

c
.



404 24. Simulation Methods

If θ = (θ1, . . . , θk) is multidimensional, then we might be interested in the
posterior for one of the components, θ1, say. This marginal posterior density
is

f(θ1|Xn) =
∫ ∫

· · ·
∫
f(θ1, . . . , θk|Xn)dθ2 · · · dθk

which involves high-dimensional integration.
When θ is high-dimensional, it may not be feasible to calculate these inte-

grals analytically. Simulation methods will often be helpful.

24.2 Basic Monte Carlo Integration

Suppose we want to evaluate the integral

I =
∫ b

a

h(x) dx

for some function h. If h is an “easy” function like a polynomial or trigono-
metric function, then we can do the integral in closed form. If h is complicated
there may be no known closed form expression for I. There are many numer-
ical techniques for evaluating I such as Simpson’s rule, the trapezoidal rule
and Gaussian quadrature. Monte Carlo integration is another approach for
approximating I which is notable for its simplicity, generality and scalability.

Let us begin by writing

I =
∫ b

a

h(x)dx =
∫ b

a

w(x)f(x)dx (24.1)

where w(x) = h(x)(b−a) and f(x) = 1/(b−a). Notice that f is the probability
density for a uniform random variable over (a, b). Hence,

I = Ef (w(X))

where X ∼ Unif(a, b). If we generate X1, . . . , XN ∼ Unif(a, b), then by the
law of large numbers

Î ≡ 1
N

N∑
i=1

w(Xi)
P−→E(w(X)) = I. (24.2)

This is the basic Monte Carlo integration method. We can also compute
the standard error of the estimate

ŝe =
s√
N
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where

s2 =
∑N
i=1(Yi − Î)2
N − 1

where Yi = w(Xi). A 1−α confidence interval for I is Î±zα/2ŝe. We can take
N as large as we want and hence make the length of the confidence interval
very small.

24.1 Example. Let h(x) = x3. Then, I =
∫ 1

0
x3dx = 1/4. Based on N =

10, 000 observations from a Uniform(0, 1) we get Î = .248 with a standard
error of .0028. �

A generalization of the basic method is to consider integrals of the form

I =
∫
h(x)f(x)dx (24.3)

where f(x) is a probability density function. Taking f to be a Uniform (a,b)
gives us the special case above. Now we draw X1, . . . , XN ∼ f and take

Î ≡ 1
N

N∑
i=1

h(Xi)

as before.

24.2 Example. Let

f(x) =
1√
2π
e−x2/2

be the standard Normal pdf. Suppose we want to compute the cdf at some
point x:

I =
∫ x

−∞
f(s)ds = Φ(x).

Write
I =

∫
h(s)f(s)ds

where

h(s) =
{

1 s < x
0 s ≥ x.

Now we generate X1, . . . , XN ∼ N(0, 1) and set

Î =
1
N

∑
i

h(Xi) =
number of observations ≤ x

N
.

For example, with x = 2, the true answer is Φ(2) = .9772 and the Monte
Carlo estimate with N = 10, 000 yields .9751. Using N = 100, 000 we get
.9771. �
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24.3 Example (Bayesian Inference for Two Binomials). LetX ∼ Binomial(n, p1)
and Y ∼ Binomial(m, p2). We would like to estimate δ = p2 − p1. The mle

is δ̂ = p̂2 − p̂1 = (Y/m)− (X/n). We can get the standard error ŝe using the
delta method which yields

ŝe =

√
p̂1(1− p̂1)

n
+
p̂2(1− p̂2)

m

and then construct a 95 percent confidence interval δ̂ ± 2 ŝe. Now consider a
Bayesian analysis. Suppose we use the prior f(p1, p2) = f(p1)f(p2) = 1, that
is, a flat prior on (p1, p2). The posterior is

f(p1, p2|X,Y ) ∝ pX1 (1− p1)n−X pY2 (1− p2)m−Y .

The posterior mean of δ is

δ =
∫ 1

0

∫ 1

0

δ(p1, p2)f(p1, p2|X,Y ) =
∫ 1

0

∫ 1

0

(p2 − p1)f(p1, p2|X,Y ).

If we want the posterior density of δ we can first get the posterior cdf

F (c|X,Y ) = P (δ ≤ c|X,Y ) =
∫
A

f(p1, p2|X,Y )

where A = {(p1, p2) : p2 − p1 ≤ c}. The density can then be obtained by
differentiating F .

To avoid all these integrals, let’s use simulation. Note that f(p1, p2|X,Y ) =
f(p1|X)f(p2|Y ) which implies that p1 and p2 are independent under the pos-
terior distribution. Also, we see that p1|X ∼ Beta(X+1, n−X+1) and p2|Y ∼
Beta(Y +1,m−Y +1). Hence, we can simulate (P (1)

1 , P
(1)
2 ), . . . , (P (N)

1 , P
(N)
2 )

from the posterior by drawing

P
(i)
1 ∼ Beta(X + 1, n−X + 1)

P
(i)
2 ∼ Beta(Y + 1,m− Y + 1)

for i = 1, . . . , N . Now let δ(i) = P
(i)
2 − P (i)

1 . Then,

δ ≈ 1
N

∑
i

δ(i).

We can also get a 95 percent posterior interval for δ by sorting the simulated
values, and finding the .025 and .975 quantile. The posterior density f(δ|X,Y )
can be obtained by applying density estimation techniques to δ(1), . . . , δ(N)

or, simply by plotting a histogram. For example, suppose that n = m = 10,
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−0.6 0.0 0.6

FIGURE 24.1. Posterior of δ from simulation.

X = 8 and Y = 6. From a posterior sample of size 1000 we get a 95 percent
posterior interval of (-0.52,0.20). The posterior density can be estimated from
a histogram of the simulated values as shown in Figure 24.1. �

24.4 Example (Bayesian Inference for Dose Response). Suppose we conduct an
experiment by giving rats one of ten possible doses of a drug, denoted by
x1 < x2 < . . . < x10. For each dose level xi we use n rats and we observe
Yi, the number that survive. Thus we have ten independent binomials Yi ∼
Binomial(n, pi). Suppose we know from biological considerations that higher
doses should have higher probability of death. Thus, p1 ≤ p2 ≤ · · · ≤ p10. We
want to estimate the dose at which the animals have a 50 percent chance of
dying. This is called the LD50. Formally, δ = xj where

j = min{i : pi ≥ .50}.

Notice that δ is implicitly a (complicated) function of p1, . . . , p10 so we can
write δ = g(p1, . . . , p10) for some g. This just means that if we know (p1, . . . , p10)
then we can find δ. The posterior mean of δ is∫ ∫

· · ·
∫
A

g(p1, . . . , p10)f(p1, . . . , p10|Y1, . . . , Y10)dp1dp2 . . . dp10.

The integral is over the region

A = {(p1, . . . , p10) : p1 ≤ · · · ≤ p10}.

The posterior cdf of δ is

F (c|Y1, . . . , Y10) = P(δ ≤ c|Y1, . . . , Y10)

=
∫ ∫

· · ·
∫
B

f(p1, . . . , p10|Y1, . . . , Y10)dp1dp2 . . . dp10
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where

B = A
⋂{

(p1, . . . , p10) : g(p1, . . . , p10) ≤ c
}
.

We need to do a 10-dimensional integral over a restricted region A. Instead,
we will use simulation. Let us take a flat prior truncated over A. Except for
the truncation, each Pi has once again a Beta distribution. To draw from the
posterior we do the following steps:

(1) Draw Pi ∼ Beta(Yi + 1, n− Yi + 1), i = 1, . . . , 10.
(2) If P1 ≤ P2 ≤ · · · ≤ P10 keep this draw. Otherwise, throw it away and

draw again until you get one you can keep.
(3) Let δ = xj where

j = min{i : Pi > .50}.

We repeat this N times to get δ(1), . . . , δ(N) and take

E(δ|Y1, . . . , Y10) ≈
1
N

∑
i

δ(i).

δ is a discrete variable. We can estimate its probability mass function by

P(δ = xj |Y1, . . . , Y10) ≈
1
N

N∑
i=1

I(δ(i) = j).

For example, consider the following data:

Dose 1 2 3 4 5 6 7 8 9 10
Number of animals ni 15 15 15 15 15 15 15 15 15 15
Number of survivors Yi 0 0 2 2 8 10 12 14 15 14

The posterior draws for p1, . . . , p10 are shown in the second panel in the
figure. We find that that δ = 4.04 with a 95 percent interval of (3,5). �

24.3 Importance Sampling

Consider again the integral I =
∫
h(x)f(x)dx where f is a probability density.

The basic Monte Carlo method involves sampling from f . However, there
are cases where we may not know how to sample from f . For example, in
Bayesian inference, the posterior density density is is obtained by multiplying
the likelihood L(θ) times the prior f(θ). There is no guarantee that f(θ|x)
will be a known distribution like a Normal or Gamma or whatever.
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Importance sampling is a generalization of basic Monte Carlo which over-
comes this problem. Let g be a probability density that we know how to
simulate from. Then

I =
∫
h(x)f(x)dx =

∫
h(x)f(x)
g(x)

g(x)dx = Eg(Y ) (24.4)

where Y = h(X)f(X)/g(X) and the expectation Eg(Y ) is with respect to g.
We can simulate X1, . . . , XN ∼ g and estimate I by

Î =
1
N

∑
i

Yi =
1
N

∑
i

h(Xi)f(Xi)
g(Xi)

. (24.5)

This is called importance sampling. By the law of large numbers, Î P−→ I.
However, there is a catch. It’s possible that Î might have an infinite standard
error. To see why, recall that I is the mean of w(x) = h(x)f(x)/g(x). The
second moment of this quantity is

Eg(w2(X)) =
∫ (

h(x)f(x)
g(x)

)2

g(x)dx =
∫
h2(x)f2(x)

g(x)
dx. (24.6)

If g has thinner tails than f , then this integral might be infinite. To avoid this,
a basic rule in importance sampling is to sample from a density g with thicker
tails than f . Also, suppose that g(x) is small over some set A where f(x) is
large. Again, the ratio of f/g could be large leading to a large variance. This
implies that we should choose g to be similar in shape to f . In summary, a
good choice for an importance sampling density g should be similar to f but
with thicker tails. In fact, we can say what the optimal choice of g is.

24.5 Theorem. The choice of g that minimizes the variance of Î is

g∗(x) =
|h(x)|f(x)∫
|h(s)|f(s)ds

.

Proof. The variance of w = fh/g is

Eg(w2)− (E(w2))2 =
∫
w2(x)g(x)dx−

(∫
w(x)g(x)dx

)2

=
∫
h2(x)f2(x)
g2(x)

g(x)dx−
(∫

h(x)f(x)
g(x)

g(x)dx
)2

=
∫
h2(x)f2(x)
g2(x)

g(x)dx−
(∫

h(x)f(x)dx
)2

.
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The second integral does not depend on g, so we only need to minimize the
first integral. From Jensen’s inequality (Theorem 4.9) we have

Eg(W 2) ≥ (Eg(|W |))2 =
(∫
|h(x)|f(x)dx

)2

.

This establishes a lower bound on Eg(W 2). However, Eg∗(W 2) equals this
lower bound which proves the claim. �

This theorem is interesting but it is only of theoretical interest. If we did
not know how to sample from f then it is unlikely that we could sample from
|h(x)|f(x)/

∫
|h(s)|f(s)ds. In practice, we simply try to find a thick-tailed

distribution g which is similar to f |h|.

24.6 Example (Tail Probability). Let’s estimate I = P(Z > 3) = .0013 where
Z ∼ N(0, 1). Write I =

∫
h(x)f(x)dx where f(x) is the standard Normal

density and h(x) = 1 if x > 3, and 0 otherwise. The basic Monte Carlo
estimator is Î = N−1

∑
i h(Xi) where X1, . . . , XN ∼ N(0, 1). Using N = 100

we find (from simulating many times) that E(Î) = .0015 and V(Î) = .0039.
Notice that most observations are wasted in the sense that most are not near
the right tail. Now we will estimate this with importance sampling taking g
to be a Normal(4,1) density. We draw values from g and the estimate is now
Î = N−1

∑
i f(Xi)h(Xi)/g(Xi). In this case we find that E(Î) = .0011 and

V(Î) = .0002. We have reduced the standard deviation by a factor of 20. �

24.7 Example (Measurement Model With Outliers). Suppose we have measure-
ments X1, . . . , Xn of some physical quantity θ. A reasonable model is

Xi = θ + εi.

If we assume that εi ∼ N(0, 1) then Xi ∼ N(θi, 1). However, when taking
measurements, it is often the case that we get the occasional wild observation,
or outlier. This suggests that a Normal might be a poor model since Normals
have thin tails which implies that extreme observations are rare. One way to
improve the model is to use a density for εi with a thicker tail, for example,
a t-distribution with ν degrees of freedom which has the form

t(x) =
Γ
(
ν+1
2

)
Γ
(
ν
2

) 1
νπ

(
1 +

x2

ν

)−(ν+1)/2

.

Smaller values of ν correspond to thicker tails. For the sake of illustration we
will take ν = 3. Suppose we observe n Xi = θ + εi, i = 1, . . . , n where εi has
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a t distribution with ν = 3. We will take a flat prior on θ. The likelihood is
L(θ) =

∏n
i=1 t(Xi − θ) and the posterior mean of θ is

θ =
∫
θL(θ)dθ∫
L(θ)dθ

.

We can estimate the top and bottom integral using importance sampling. We
draw θ1, . . . , θN ∼ g and then

θ ≈
1
N

∑N
j=1

θjL(θj)
g(θj)

1
N

∑N
j=1

L(θj)
g(θj)

.

To illustrate the idea, we drew n = 2 observations. The posterior mean (com-
puted numerically) is -0.54. Using a Normal importance sampler g yields an
estimate of -0.74. Using a Cauchy (t-distribution with 1 degree of freedom)
importance sampler yields an estimate of -0.53. �

24.4 MCMC Part I: The Metropolis–Hastings
Algorithm

Consider once more the problem of estimating the integral I =
∫
h(x)f(x)dx.

Now we introduce Markov chain Monte Carlo (MCMC) methods. The idea is
to construct a Markov chain X1, X2, . . . , whose stationary distribution is f .
Under certain conditions it will then follow that

1
N

N∑
i=1

h(Xi)
P−→Ef (h(X)) = I.

This works because there is a law of large numbers for Markov chains; see
Theorem 23.25.

The Metropolis–Hastings algorithm is a specific MCMC method that
works as follows. Let q(y|x) be an arbitrary, friendly distribution (i.e., we
know how to sample from q(y|x)). The conditional density q(y|x) is called
the proposal distribution. The Metropolis–Hastings algorithm creates a
sequence of observations X0, X1, . . . , as follows.

Metropolis–Hastings Algorithm

Choose X0 arbitrarily. Suppose we have generated X0, X1, . . . , Xi. To
generate Xi+1 do the following:
(1) Generate a proposal or candidate value Y ∼ q(y|Xi).



412 24. Simulation Methods

(2) Evaluate r ≡ r(Xi, Y ) where

r(x, y) = min
{
f(y)
f(x)

q(x|y)
q(y|x) , 1

}
.

(3) Set

Xi+1 =
{
Y with probability r
Xi with probability 1− r.

24.8 Remark. A simple way to execute step (3) is to generate U ∼ (0, 1). If
U < r set Xi+1 = Y otherwise set Xi+1 = Xi.

24.9 Remark. A common choice for q(y|x) is N(x, b2) for some b > 0. This
means that the proposal is draw from a Normal, centered at the current
value. In this case, the proposal density q is symmetric, q(y|x) = q(x|y), and
r simplifies to

r = min
{
f(Y )
f(Xi)

, 1
}
.

By construction, X0, X1, . . . is a Markov chain. But why does this Markov
chain have f as its stationary distribution? Before we explain why, let us first
do an example.

24.10 Example. The Cauchy distribution has density

f(x) =
1
π

1
1 + x2

.

Our goal is to simulate a Markov chain whose stationary distribution is f .
As suggested in the remark above, we take q(y|x) to be a N(x, b2). So in this
case,

r(x, y) = min
{
f(y)
f(x)

, 1
}

= min
{

1 + x2

1 + y2
, 1

}
.

So the algorithm is to draw Y ∼ N(Xi, b
2) and set

Xi+1 =
{
Y with probability r(Xi, Y )
Xi with probability 1− r(Xi, Y ).

The simulator requires a choice of b. Figure 24.2 shows three chains of length
N = 1, 000 using b = .1, b = 1 and b = 10. Setting b = .1 forces the chain
to take small steps. As a result, the chain doesn’t “explore” much of the
sample space. The histogram from the sample does not approximate the true
density very well. Setting b = 10 causes the proposals to often be far in the
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FIGURE 24.2. Three Metropolis chains corresponding to b = .1, b = 1, b = 10.

tails, making r small and hence we reject the proposal and keep the chain
at its current position. The result is that the chain “gets stuck” at the same
place quite often. Again, this means that the histogram from the sample does
not approximate the true density very well. The middle choice avoids these
extremes and results in a Markov chain sample that better represents the
density sooner. In summary, there are tuning parameters and the efficiency
of the chain depends on these parameters. We’ll discuss this in more detail
later. �

If the sample from the Markov chain starts to “look like” the target distri-
bution f quickly, then we say that the chain is “mixing well.” Constructing a
chain that mixes well is somewhat of an art.

Why It Works. Recall from Chapter 23 that a distribution π satisfies
detailed balance for a Markov chain if

pijπi = pjiπj .

We showed that if π satisfies detailed balance, then it is a stationary distri-
bution for the chain.

Because we are now dealing with continuous state Markov chains, we will
change notation a little and write p(x, y) for the probability of making a
transition from x to y. Also, let’s use f(x) instead of π for a distribution. In



414 24. Simulation Methods

this new notation, f is a stationary distribution if f(x) =
∫
f(y)p(y, x)dy and

detailed balance holds for f if

f(x)p(x, y) = f(y)p(y, x). (24.7)

Detailed balance implies that f is a stationary distribution since, if detailed
balance holds, then∫

f(y)p(y, x)dy =
∫
f(x)p(x, y)dy = f(x)

∫
p(x, y)dy = f(x)

which shows that f(x) =
∫
f(y)p(y, x)dy as required. Our goal is to show that

f satisfies detailed balance which will imply that f is a stationary distribution
for the chain.

Consider two points x and y. Either

f(x)q(y|x) < f(y)q(x|y) or f(x)q(y|x) > f(y)q(x|y).

We will ignore ties (which occur with probability zero for continuous distribu-
tions). Without loss of generality, assume that f(x)q(y|x) > f(y)q(x|y). This
implies that

r(x, y) =
f(y)
f(x)

q(x|y)
q(y|x)

and that r(y, x) = 1. Now p(x, y) is the probability of jumping from x to y.
This requires two things: (i) the proposal distribution must generate y, and
(ii) you must accept y. Thus,

p(x, y) = q(y|x)r(x, y) = q(y|x)f(y)
f(x)

q(x|y)
q(y|x) =

f(y)
f(x)

q(x|y).

Therefore,

f(x)p(x, y) = f(y)q(x|y). (24.8)

On the other hand, p(y, x) is the probability of jumping from y to x. This
requires two things: (i) the proposal distribution must generate x, and (ii) you
must accept x. This occurs with probability p(y, x) = q(x|y)r(y, x) = q(x|y).
Hence,

f(y)p(y, x) = f(y)q(x|y). (24.9)

Comparing (24.8) and (24.9), we see that we have shown that detailed balance
holds.
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24.5 MCMC Part II: Different Flavors

There are different types of MCMC algorithm. Here we will consider a few of
the most popular versions.

Random-Walk-Metropolis–Hastings. In the previous section we con-
sidered drawing a proposal Y of the form

Y = Xi + εi

where εi comes from some distribution with density g. In other words, q(y|x) =
g(y − x). We saw that in this case,

r(x, y) = min
{

1,
f(y)
f(x)

}
.

This is called a random-walk-Metropolis–Hastings method. The reason
for the name is that, if we did not do the accept–reject step, we would be
simulating a random walk. The most common choice for g is a N(0, b2). The
hard part is choosing b so that the chain mixes well. A good rule of thumb is:
choose b so that you accept the proposals about 50 percent of the time.

Warning! This method doesn’t make sense unless X takes values on the
whole real line. If X is restricted to some interval then it is best to transform
X. For example, if X ∈ (0,∞) then you might take Y = logX and then
simulate the distribution for Y instead of X.

Independence-Metropolis–Hastings. This is an importance-sampling
version of MCMC. We draw the proposal from a fixed distribution g. Gen-
erally, g is chosen to be an approximation to f . The acceptance probability
becomes

r(x, y) = min
{

1,
f(y)
f(x)

g(x)
g(y)

}
.

Gibbs Sampling. The two previous methods can be easily adapted, in
principle, to work in higher dimensions. In practice, tuning the chains to make
them mix well is hard. Gibbs sampling is a way to turn a high-dimensional
problem into several one-dimensional problems.

Here’s how it works for a bivariate problem. Suppose that (X,Y ) has den-
sity fX,Y (x, y). First, suppose that it is possible to simulate from the condi-
tional distributions fX|Y (x|y) and fY |X(y|x). Let (X0, Y0) be starting values.
Assume we have drawn (X0, Y0), . . . , (Xn, Yn). Then the Gibbs sampling al-
gorithm for getting (Xn+1, Yn+1) is:
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Gibbs Sampling

Xn+1 ∼ fX|Y (x|Yn)
Yn+1 ∼ fY |X(y|Xn+1)

repeat

This generalizes in the obvious way to higher dimensions.

24.11 Example (Normal Hierarchical Model). Gibbs sampling is very useful
for a class of models called hierarchical models. Here is a simple case.
Suppose we draw a sample of k cities. From each city we draw ni people and
observe how many people Yi have a disease. Thus, Yi ∼ Binomial(ni, pi). We
are allowing for different disease rates in different cities. We can also think of
the p′

is as random draws from some distribution F . We can write this model
in the following way:

Pi ∼ F

Yi|Pi = pi ∼ Binomial(ni, pi).

We are interested in estimating the p′
is and the overall disease rate

∫
p dF (p).

To proceed, it will simplify matters if we make some transformations that
allow us to use some Normal approximations. Let p̂i = Yi/ni. Recall that
p̂i ≈ N(pi, si) where si =

√
p̂i(1− p̂i)/ni. Let ψi = log(pi/(1 − pi)) and

define Zi ≡ ψ̂i = log(p̂i/(1− p̂i)). By the delta method,

ψ̂i ≈ N(ψi, σ2
i )

where σ2
i = 1/(np̂i(1− p̂i)). Experience shows that the Normal approximation

for ψ is more accurate than the Normal approximation for p so we shall work
with ψ. We shall treat σi as known. Furthermore, we shall take the distribution
of the ψ′

is to be Normal. The hierarchical model is now

ψi ∼ N(µ, τ2)

Zi|ψi ∼ N(ψi, σ2
i ).

As yet another simplification we take τ = 1. The unknown parameter are
θ = (µ, ψ1, . . . , ψk). The likelihood function is

L(θ) ∝
∏
i

f(ψi|µ)
∏
i

f(Zi|ψ)

∝
∏
i

exp
{
−1

2
(ψi − µ)2

}
exp

{
− 1

2σ2
i

(Zi − ψi)2
}
.
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If we use the prior f(µ) ∝ 1 then the posterior is proportional to the likelihood.
To use Gibbs sampling, we need to find the conditional distribution of each
parameter conditional on all the others. Let us begin by finding f(µ|rest)
where “rest” refers to all the other variables. We can throw away any terms
that don’t involve µ. Thus,

f(µ|rest) ∝
∏
i

exp
{
−1

2
(ψi − µ)2

}
∝ exp

{
−k

2
(µ− b)2

}
where

b =
1
k

∑
i

ψi.

Hence we see that µ|rest ∼ N(b, 1/k). Next we will find f(ψ|rest). Again, we
can throw away any terms not involving ψi leaving us with

f(ψi|rest) ∝ exp
{
−1

2
(ψi − µ)2

}
exp

{
− 1

2σ2
i

(Zi − ψi)2
}

∝ exp
{
− 1

2d2
i

(ψi − ei)2
}

where

ei =
Zi
σ2
i

+ µ

1 + 1
σ2
i

and d2
i =

1
1 + 1

σ2
i

and so ψi|rest ∼ N(ei, d2
i ). The Gibbs sampling algorithm then involves iter-

ating the following steps N times:

draw µ ∼ N(b, v2)

draw ψ1 ∼ N(e1, d2
1)

...
...

draw ψk ∼ N(ek, d2
k).

It is understood that at each step, the most recently drawn version of each
variable is used.

We generated a numerical example with k = 20 cities and n = 20 people
from each city. After running the chain, we can convert each ψi back into pi
by way of pi = eψi/(1 + eψi). The raw proportions are shown in Figure 24.4.
Figure 24.3 shows “trace plots” of the Markov chain for p1 and µ. Figure
24.4 shows the posterior for µ based on the simulated values. The second
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panel of Figure 24.4 shows the raw proportions and the Bayes estimates. Note
that the Bayes estimates are “shrunk” together. The parameter τ controls
the amount of shrinkage. We set τ = 1 but, in practice, we should treat τ as
another unknown parameter and let the data determine how much shrinkage
is needed. �

0 500 1000

0.
0

0.
5

1.
0

0 500 1000−0
.5

0.
0

0.
5

FIGURE 24.3. Posterior simulation for Example 24.11. The top panel shows simu-
lated values of p1. The top panel shows simulated values of µ.

So far we assumed that we know how to draw samples from the conditionals
fX|Y (x|y) and fY |X(y|x). If we don’t know how, we can still use the Gibbs
sampling algorithm by drawing each observation using a Metropolis–Hastings
step. Let q be a proposal distribution for x and let q̃ be a proposal distribution
for y. When we do a Metropolis step for X, we treat Y as fixed. Similarly,
when we do a Metropolis step for Y , we treat X as fixed. Here are the steps:
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Metropolis within Gibbs

(1a) Draw a proposal Z ∼ q(z|Xn).
(1b) Evaluate

r = min
{
f(Z, Yn)
f(Xn, Yn)

q(Xn|Z)
q(Z|Xn)

, 1
}
.

(1c) Set

Xn+1 =
{
Z with probability r
Xn with probability 1− r.

(2a) Draw a proposal Z ∼ q̃(z|Yn).

(2b) Evaluate

r = min
{
f(Xn+1, Z)
f(Xn+1, Yn)

q̃(Yn|Z)
q̃(Z|Yn)

, 1
}
.

(2c) Set

Yn+1 =
{
Z with probability r
Yn with probability 1− r.

Again, this generalizes to more than two dimensions.

−0.6 0.0 0.6

0.0 0.5 1.0

FIGURE 24.4. Example 24.11. Top panel: posterior histogram of µ. Lower panel:
raw proportions and the Bayes posterior estimates. The Bayes estimates have been
shrunk closer together than the raw proportions.
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24.6 Bibliographic Remarks

MCMC methods go back to the effort to build the atomic bomb in World War
II. They were used in various places after that, especially in spatial statistics.
There was a new surge of interest in the 1990s that still continues. My main
reference for this chapter was Robert and Casella (1999). See also Gelman
et al. (1995) and Gilks et al. (1998).

24.7 Exercises

1. Let

I =
∫ 2

1

e−x2/2

√
2π

dx.

(a) Estimate I using the basic Monte Carlo method. Use N = 100, 000.
Also, find the estimated standard error.

(b) Find an (analytical) expression for the standard error of your esti-
mate in (a). Compare to the estimated standard error.

(c) Estimate I using importance sampling. Take g to be N(1.5, v2) with
v = .1, v = 1 and v = 10. Compute the (true) standard errors in each
case. Also, plot a histogram of the values you are averaging to see if
there are any extreme values.

(d) Find the optimal importance sampling function g∗. What is the
standard error using g∗?

2. Here is a way to use importance sampling to estimate a marginal density.
Let fX,Y (x, y) be a bivariate density and let (X1, X2), . . . , (XN , YN ) ∼
fX,Y .

(a) Let w(x) be an arbitrary probability density function. Let

f̂X(x) =
1
N

N∑
i=1

fX,Y (x, Yi)w(Xi)
fX,Y (Xi, Yi)

.

Show that, for each x,
f̂X(x)

p→ fX(x).

Find an expression for the variance of this estimator.

(b) Let Y ∼ N(0, 1) and X|Y = y ∼ N(y, 1 + y2). Use the method in
(a) to estimate fX(x).
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3. Here is a method called accept–reject sampling for drawing observa-
tions from a distribution.

(a) Suppose that f is some probability density function. Let g be any
other density and suppose that f(x) ≤ Mg(x) for all x, where M is a
known constant. Consider the following algorithm:

(step 1): Draw X ∼ g and U ∼ Unif(0, 1);

(step 2): If U ≤ f(X)/(Mg(X)) set Y = X, otherwise go back to step
1. (Keep repeating until you finally get an observation.)

Show that the distribution of Y is f .

(b) Let f be a standard Normal density and let g(x) = 1/(1 + x2) be
the Cauchy density. Apply the method in (a) to draw 1,000 observations
from the Normal distribution. Draw a histogram of the sample to verify
that the sample appears to be Normal.

4. A random variable Z has a inverse Gaussian distribution if it has
density

f(z) ∝ z−3/2 exp
{
−θ1z −

θ2
z

+ 2
√
θ1θ2 + log

(√
2θ2

)}
, z > 0

where θ1 > 0 and θ2 > 0 are parameters. It can be shown that

E(Z) =
√
θ2
θ1

and E

(
1
Z

)
=

√
θ1
θ2

+
1

2θ2
.

(a) Let θ1 = 1.5 and θ2 = 2. Draw a sample of size 1,000 using the
independence-Metropolis–Hastings method. Use a Gamma distribution
as the proposal density. To assess the accuracy, compare the mean of Z
and 1/Z from the sample to the theoretical means Try different Gamma
distributions to see if you can get an accurate sample.

(b) Draw a sample of size 1,000 using the random-walk-Metropolis–
Hastings method. Since z > 0 we cannot just use a Normal density.
One strategy is this. Let W = logZ. Find the density of W . Use the
random-walk-Metropolis–Hastings method to get a sample W1, . . . ,WN

and let Zi = eWi . Assess the accuracy of the simulation as in part (a).

5. Get the heart disease data from the book web site. Consider a Bayesian
analysis of the logistic regression model

P(Y = 1|X = x) =
eβ0+

∑k
j=1 βjxj

1 + eβ0+
∑k
j=1 βjxj

.
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Use the flat prior f(β0, . . . , βk) ∝ 1. Use the Gibbs–Metropolis algorithm
to draw a sample of size 10,000 from the posterior f(β0, β1|data). Plot
histograms of the posteriors for the βj ’s. Get the posterior mean and a
95 percent posterior interval for each βj .

(b) Compare your analysis to a frequentist approach using maximum
likelihood.
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List of Symbols

General Symbols

R real numbers
infx∈A f(x) infimum: the largest number y such that

y ≤ f(x) for all x ∈ A
think of this as the minimum of f

supx∈A f(x) supremum: the smallest number y such that
y ≥ f(x) for all x ∈ A
think of this as the maximum of f

n! n× (n− 1)× (n− 2)× · · · × 3× 2× 1(
n
k

)
n!

k!(n−k)!
Γ(α) Gamma function

∫ ∞
0
yα−1e−ydy

Ω sample space (set of outcomes)
ω outcome, element, point
A event (subset of Ω)
IA(ω) indicator function; 1 if ω ∈ A and 0 otherwise
|A| number of points in set A

Probability Symbols

P(A) probability of event A
A �B A and B are independent
A ������ B A and B are dependent
FX cumulative distribution function

FX(x) = P(X ≤ x)
fX probability density (or mass) function
X ∼ F X has distribution F
X ∼ f X has density f
X

d= Y X and Y have the same distribution
iid independent and identically distributed
X1, . . . , Xn ∼ F iid sample of size n from F
φ standard Normal probability density
Φ standard Normal distribution function
zα upper α quantile of N(0, 1): zα = Φ−1(1− α)
E(X) =

∫
x dF (x) expected value (mean) of random variable X

E(r(X)) =
∫
r(x)dF (x) expected value (mean) of r(X)

V(X) variance of random variable X
Cov(X,Y ) covariance between X and Y
X1, . . . , Xn data
n sample size
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Convergence Symbols

P−→ convergence in probability
� convergence in distribution
qm−→ convergence in quadratic mean
Xn ≈ N(µ, σ2

n) (Xn − µ)/σn � N(0, 1)
xn = o(an) xn/an → 0
xn = O(an) |xn/an| is bounded for large n
Xn = oP (an) Xn/an

P−→ 0
Xn = OP (an) |Xn/an| is bounded in probability for large n

Statistical Models

F statistical model; a set of distribution functions,
density functions or regression functions

θ parameter
θ̂ estimate of parameter
T (F ) statistical functional (the mean, for example)
Ln(θ) likelihood function

Useful Math Facts

ex =
∑∞
k=0

xk

k! = 1 + x+ x2

2! + · · ·∑∞
j=k r

j = rk

1−r for 0 < r < 1

limn→∞
(
1 + a

n

)n = ea

Stirling’s approximation: n! ≈ nne−n√2πn

The Gamma function. The Gamma function is defined by

Γ(α) =
∫ ∞

0

yα−1e−ydy

for α ≥ 0. If α > 1 then Γ(α) = (α−1)Γ(α−1). If n is a positive integer then
Γ(n) = (n− 1)!. Some special values are: Γ(1) = 1 and Γ(1/2) =

√
π.
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χ2 distribution, 30

accept-reject sampling, 421
accessible, 387
actions, 193
acyclic, 266
additive regression, 323
adjacent, 281
adjusted treatment effect, 259
admissibility

Bayes rules, 202
admissible, 202
AIC (Akaike Information Criterion),

220
Aliens, 271
alternative hypothesis, 95, 149
ancestor, 265
aperiodic, 390
arcs, 281
associated, 239
association, 253

association is not causation, 16.1,
253

assume, 8
asymptotic Normality, 128
asymptotic theory, 71
asymptotically Normal, 92, 126
asymptotically optimal, 126
asymptotically uniformly integrable,

81
average causal effect, 252
average treatment effect, 252
Axiom 1, 5
Axiom 2, 5
Axiom 3, 5
axioms of probability, 5

backfitting, 324
bagging, 375
bandwidth, 313
Bayes classification rule, 351
Bayes Estimators, 197
Bayes risk, 195



Index 435

Bayes rules, 197
admissibility, 202

Bayes’ Theorem, 12, 1.17, 12
Bayesian inference, 89, 175

strengths and weaknesses, 185
Bayesian network, 263
Bayesian philosophy, 175
Bayesian testing, 184
Benjamini and Hochberg, 10.26, 167
Benjamini-Hochberg (BH) method,

167
Bernoulli distribution, 26, 29
Beta distribution, 30
bias-variance tradeoff, 305
Bibliographic Remarks, 13
Binomial distribution, 26
bins, 303, 306
binwidth, 306
bivariate distribution, 31
Bonferroni method, 166
boosting, 375
bootstrap, 107

parametric, 134
Bootstrap Confidence Intervals, 110
bootstrap percentile interval, 111
bootstrap pivotal confidence, 111
Bootstrap variance estimation, 109
branching process, 398

candidate, 411
Cauchy distribution, 30
Cauchy-Schwartz inequality, 4.8, 66
causal odds ratio, 252
causal regression function, 256
causal relative risk, 253
Central Limit Theorem (CLT), 5.8,

77
Chapman-Kolmogorov equations, 23.9,

385

Chebyshev’s inequality, 4.2, 64
checking assumptions, 135
child, 265
classes, 387
classification, 349
classification rule, 349
classification trees, 360
classifier

assessing error rate, 362
clique, 285
closed, 388
CLT, 77
collider, 265
comparing risk functions, 194
complete, 281, 328
composite hypothesis, 151
Computer Experiment, 16, 17
concave, 66
conditional causal effect, 255
conditional distribution, 36
conditional expectation, 54
conditional independence, 264

minimal, 287
conditional likelihood, 213
Conditional Probability, 10
conditional probability, 10, 10
conditional probability density func-

tion, 37
conditional probability mass func-

tion, 36
conditioning by intervention, 274
conditioning by observation, 274
confidence band, 99
confidence bands, 323
confidence interval, 65, 92
confidence set, 92
confounding variables, 257
conjugate, 179
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consistency relationship, 252
consistent, 90, 126
continuity of probabilities, 1.8, 7
continuous, 23
converges in distribution, 72
converges in probability, 72
convex, 66
correlation, 52

confidence interval, 234
cosine basis, 329
counterfactual, 251, 252
counting process, 395
covariance, 52
covariance matrix, 232
covariate, 209
coverage, 92
critical value, 150
cross-validation, 363
cross-validation estimator of risk,

310
cumulative distribution function, 20
curse of dimensionality, 319
curve estimation, 89, 303

d-connected, 270
d-separated, 270
DAG, 266
data mining, vii
decision rule, 193
decision theory, 193
decomposition theorem, 23.17, 389
delta method, 5.13, 79, 131
density estimation, 312

kernel approach, 312
orthogonal function approach,

331
dependent, 34, 239
dependent variable, 89
derive, 8

descendant, 265
detail coefficients, 342
detailed balance, 391, 413
deviance, 299
directed acyclic graph, 266
directed graph, 264
directed path, 265
discrete, 22
discrete uniform distribution, 26
discrete wavelet transform (DWT),

344
discriminant function, 354
discrimination, 349
disjoint, 5
distribution

χ2, 30
Bernoulli, 26, 29
Beta, 30
Binomial, 26
Cauchy, 30
conditional, 36
discrete uniform, 26
Gaussian, 28
Geometric, 26
Multinomial, 39
multivariate Normal, 39
Normal, 28
point mass, 26
Poisson, 27
t, 30
Uniform, 27

Dvoretzky-Kiefer-Wolfowitz (DKW)
inequality, 7.5, 98

edges, 281
efficient, 126, 131
elements, 3
EM algorithm, 144
empirical distribution function, 97
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empirical error rate, 351
empirical probability measure, 367
empirical risk minimization, 352, 365
Epanechnikov kernel, 312
equal in distribution, 25
equivariant, 126
ergodic, 390
Events, 3
events, 3
evidence, 157
Exercises, 13
expectation, 47

conditional, 54
expected value, 47
exponential families, 140

faithful, 270
false discovery proportion, 166
false discovery rate, 166
FDP, 166
FDR, 166
feature, 89, 209
first moment, 47
first quartile, 25
Fisher information, 128
Fisher information matrix, 133
Fisher linear discriminant function,

356
fitted line, 210
fitted values, 210
frequentist (or classical), 175
frequentist inference, 89

Gamma function, 29
Gaussian classifier, 353
Gaussian distribution, 28
Geometric distribution, 26
Gibbs sampling, 416
Gini index, 361

Glivenko-Cantelli theorem, 7.4, 98
goodness-of-fit tests, 168
graphical, 294
graphical log-linear models, 294

Haar father wavelet, 340
Haar scaling function, 340
Haar wavelet regression, 343
hierarchical log-linear model, 296
hierarchical model, 56
hierarchical models, 416
histogram, 303, 305
histogram estimator, 306
Hoeffding’s inequality, 4.4, 64, 365
homogeneous, 384
homogeneous Poisson process, 396
Horwitz-Thompson, 188
hypothesis testing, 94

identifiable, 126
importance sampling, 408
impurity, 360
inadmissible, 202
independent, 8, 8, 34
Independent Events, 8
independent random variables, 34
independent variable, 89
index set, 381
indicator function, 5
inequalities, 63
inner product, 327
integrated squared error (ISE), 304
intensity function, 395
interarrival times, 396
intervene, 273
intervention, 273
Introduction, 3
invariant, 390
inverse Gaussian distribution, 421
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irreducible, 388
iterated expectations, 3.24, 55

jackknife, 115
James-Stein estimator, 204
Jeffreys-Lindley paradox, 192
Jensen’s inequality, 4.9, 66
joint mass function, 31

K-fold cross-validation, 364
k-nearest-neighbors, 375
kernel, 312
kernel density estimator, 312, 313
kernelization, 371
Kolmogorov-Smirnov test, 245
Kullback-Leibler distance, 126

Laplace transform, 56
large sample theory, 71
law of large numbers, 72
law of total probability, 1.16, 12
lazy, 3.6, 48
least favorable prior, 198
least squares estimates, 211
leave-one-out cross-validation, 220
leaves, 361
Legendre polynomials, 329
length, 327
level, 150
likelihood function, 122
likelihood ratio statistic, 164
likelihood ratio test, 164
limit theory, 71
limiting distribution, 391
linear algebra notation, 231
linear classifier, 353
linearly separable, 369
log odds ratio, 240
log-likelihood function, 122

log-linear expansion, 292
log-linear model, 286
log-linear models, 291
logistic regression, 223
loss function, 193

machine learning, vii
Manalahobis distance, 353
marginal Distribution, 33
marginal distribution, 197
Markov chain, 383, 383
Markov condition, 267
Markov equivalent, 271
Markov’s inequality, 4.1, 63
maximal clique, 285
maximum likelihood, 122
maximum likelihood estimates

computing, 142
maximum likelihood estimator

consistent, 126
maximum risk, 195
mean, 47
mean integrated squared error (MISE),

304
mean recurrence time, 390
mean squared error, 91
measurable, 13, 43
median, 25

bootstrap, 109
Mercer’s theorem, 373
method of moments estimator, 121
Metropolis within Gibbs, 419
Metropolis–Hastings algorithm, 411
Mill’s inequality, 4.7, 65
minimal conditional independence,

287
minimal sufficient, 138
minimax rule, 197, 198
missing data, 187
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mixture of Normals, 143
model generator, 297
model selection, 218
moment generating function, 56
moments, 49
monotone decreasing, 5
monotone increasing, 5
Monte Carlo integration, 404
Monte Carlo integration method,

404
Monty Hall, 14
most powerful, 152
mother Haar wavelet, 341
MSE, 91
Multinomial, 235
Multinomial distribution, 39
multiparameter models, 133
multiple regression, 216
multiple testing, 165
multiresolution analysis, 341
Multivariate central limit theorem,

5.12, 78
Multivariate Delta Method, 5.15,

79
multivariate Normal, 234
multivariate Normal distribution, 39
mutually exclusive, 5

Nadaraya-Watson kernel estimator,
319

naive Bayes classifier, 359
natural parameter, 141
natural sufficient statistic, 140
neural networks, 376
Newton-Raphson, 143
Neyman-Pearson, 10.30, 170
nodes, 281
non-collider, 265
non-null, 390

nonparametric model, 88
nonparametric regression, 319

kernel approach, 319
orthogonal function approach,

337
norm, 327
normal, 327
Normal distribution, 28
Normal-based confidence interval,

6.16, 94
normalizing constant, 177, 403
not, 10
nuisance parameter, 120
nuisance parameters, 88
null, 390
null hypothesis, 94, 149

observational studies, 257
odds ratio, 240
olive statistics, i
one-parameter exponential family,

140
one-sided test, 151
optimality, 130
orthogonal, 327
orthogonal functions, 327
orthonormal, 328
orthonormal basis, 328
outcome, 89
overfitting, 218

p-value, 156, 157
pairwise Markov graph, 283
parameter of interest, 120
parameter space, 88
parameters, 26
parametric bootstrap, 134
parametric model, 87
parent, 265
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Parseval’s relation, 329
partition, 5
path, 281
Pearson’s χ2 test, 241
period, 390
periodic, 390
permutation distribution, 162
permutation test, 161
permutation test:algorithm, 163
perpendicular, 327
persistent, 388
pivot, 110
plug-in estimator, 99
point estimation, 90
point mass distribution, 26
pointwise asymptotic, 95
Poisson distribution, 27
Poisson process, 394, 395
positive definite, 231
posterior, 176

large sample properties, 181
posterior risk, 197
potential, 285
potential outcomes, 251
power function, 150
precision matrix, 232
predicted values, 210
prediction, 89, 215
prediction interval, 13.11, 215
prediction risk, 219
predictor, 89
predictor variable, 209
prior distribution, 176
Probability, 5
probability, 5
probability distribution, 5, 5
probability function, 22
probability inequalities, 63

probability mass function, 22
probability measure, 5, 5
Probability on Finite Sample Spaces,

7
proposal, 411

quadratic discriminant analysis (QDA),
353

quantile function, 25
quantiles, 102

random variable, 19
independent, 34

random vector, 38, 232
random walk, 59
random-walk-Metropolis-Hastings,

415
realizations, 3
recurrence time, 390
recurrent, 388
regression, 89, 209, 335

nonparametric, 319
regression function, 89, 209, 351
regression through the origin, 226
regressor, 89
rejection region, 150
relative risk, 248
represents, 266
residual sums of squares, 211
residuals, 210
response variable, 89, 209
reweighted least squares, 224
risk, 194, 304
rule of the lazy statistician, 3.6, 48
Rules of d-separation, 270

sample correlation, 102
sample mean, 51
sample outcomes, 3
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sample quantile, 102
sample space, 3
Sample Spaces and Events, 3
sample variance, 51
sampling distribution, 90
saturated model, 298, 299
scaling coefficient, 342
score function, 128
se, 90
shatter coefficient, 367
shattered, 367
simple hypothesis, 151
simple linear regression, 210
Simpson’s paradox, 259
simulation, 108, 180
size, 150
slack variables, 371
Slutzky’s theorem, 75
smoothing, 303
smoothing parameter, 303
Sobolev space, 88
sojourn times, 396
spatially inhomogeneous, 340
standard deviation, 51
standard error, 90
standard Normal distribution, 28
state space, 381
stationary, 390
statistic, 61, 107, 137
statistical functional, 89, 99
statistical model, 87
Stein’s paradox, 204
stochastic process, 381
Stone’s theorem, 20.16, 316
strong law of large numbers, 5.18,

81
strongly inadmissible, 204
subjectivism, 181

sufficiency, 137
sufficient statistic, 137
Summary of Terminology, 4
supervised learning, 349
support vector machines, 368
support vectors, 370

t distribution, 30
t-test, 170
test statistic, 150
third quartile, 25
thresholding, 342
training error, 219
training error rate, 351
training set, 363
transformations of random variables,

41
transient, 388
true error rate, 351
two-sided test, 151
type I error, 150
type II error, 150
types of convergence, 72

unbiased, 90
underfitting, 218
undirected graph, 281
uniform asymptotic, 95
Uniform distribution, 27
unshielded collider, 266

validation set, 363
Vapnik-Chervonenkis, 366
variance, 51

conditional, 55
variance-covariance matrix, 53
vertices, 281

waiting times, 396
Wald test, 153
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wavelets, 340
weak law of large numbers (WLLN),

5.6, 76

Zheng-Loh method, 222
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