DATA ANALYSIS

THROUGH

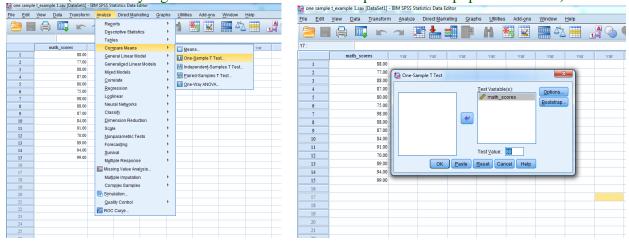
SPSS

INFERENTIAL ANALYSIS

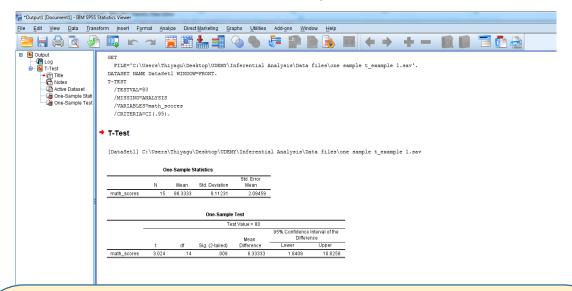
(A Text Tutorial)

K.THIYAGU.

Assistant Professor, Department of Education, Central University of Kerala, Kasaragod



One Sample 't' test (Sample mean vs Population Mean)


Path

Analyse – compare means – one sample t test

(is there any significant different between sample mean and population mean)

(Population Mean $\mu = 80$)

Decision rule for assessing if the test is significant (for $\alpha = .05$)

If $p \le .05$, the test is significant (the sample is significantly different than the population mean of $\mu = 80$)

If p > .05, the test is not significant (the sample is not significantly different than the population mean of $\mu = 80$)

Written results in APA format

The students who took the new program scored significantly higher that the untreated population of $\mu = 80$, t(14) = 3.02, p = .009

(can state p < .05 instead of p = .009, although p = .009 is more informative and therefore recommended)

Confidence Interval

- If Zero is not in the range of confident interval then it indicates that the test is statistically significant
- If Zero is in the range of confident interval then it indicates that the test is not statistically significant.

	On					
	N	Mean	Std. Deviation	Std. Error Mean	-	
math_scores	15	86.3333	8.11231	2.09459	=	
			One-Sample			
-			le:	st Value = 80	95% Confidence	Interval of the
				Mean	Differe	nce
	t	df	Sig. (2-tailed)	Difference	Lower	Upper

If it includes the value of 0 that means the test is not statistically significant. Otherwise (like interval not having 0) the test is statistically significant.

The interval is 1.84 to 10.82. And notice this does not include 0, therefore the test here was significant.

Effect Size

$$Cohen's - d = \frac{MeanDifference}{SD}$$

Cohen's d = 6.33 / 8.11 = .78

Cohen's guidelines for d

Small = .20, medium = .50 large = .80

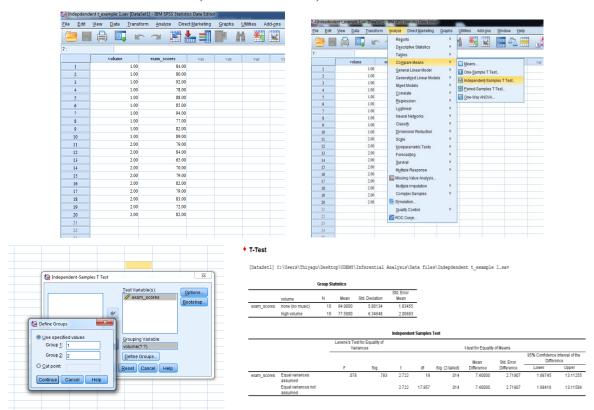
Medium effect size (almost large)

Interpretation: students who took the new math program scored .78 standard deviations higher on the math exam (than the untreated population of μ)

Independent Sample 't' test

Path

Analyse - compare means - Independent Samples T Test


Comparing two groups – One test

Independent Variable (Group):

Categorical / Grouping / Discrete Variable (Nominal) (2 Groups only)

Dependent Variable (Test Variable):

Continuous Variable (Interval / Ratio)

Decision rule for Levene's Test (for $\alpha = .05$)

If $p \le .05$, the variances is significantly different. Interpret the bottom row of result for t.

If p > .05, the variances are not significantly different. Interpret the top of results for t.

Decision rule for assessing if the test is significant (for $\alpha = .05$)

If $p \le .05$, the test is significant (the test scores differ significantly for the two groups {like no volume and high volume groups / male and female groups})

If p > .05, the test is not significant (the test scores do not differ significantly for the two groups)

Written results in APA format

People who studies in a quiet condition performed significantly better on an exam than those who studies with music playing at a high volume, t(18) = 2.72, p = .014

Confidence Interval

- If Zero is not in the range of confident interval then it indicates that the test is statistically significant
- If Zero is in the range of confident interval then it indicates that the test is not statistically significant.

				Independer	it Samples	lest				
		Levene's Test Varia					t-test for Equality	of Means		
							95% Confidence Interval of Mean Std. Error Difference			
		F	Sig.	t	df	Sig. (2-tailed)	Difference	Difference	Lower	Upper
exam_scores	Equal variances assumed	.078	.783	2.722	18	.014	7.40000	2.71907	1.68745	13.11255
	Equal variances not assumed			2.722	17.857	.014	7.40000	2.71907	1.68416	13.11584

• In the above case, zero is not lies in the confidence interval, it means that the test is statistically significant

Effect Size

Cohen's Effect Size Table Cohen (1988) gave the following interpretation of d values that is still popular.

- Small d = 0.2 or 20% of σ
- Medium d = 0.5 or 50% of σ
- Large d = 0.8 or 80% of σ

Cohen's guidelines for d

Small = .20, medium = .50 large = .80

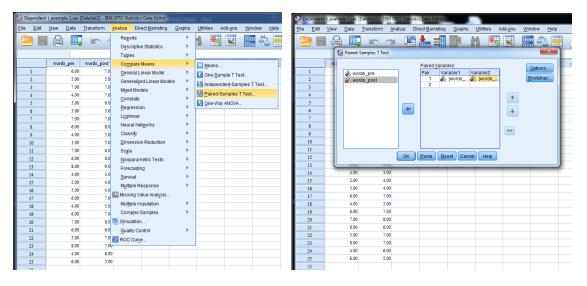
Formula for cohen's d:

$$d = t\sqrt{\frac{N_1 + N_2}{N_1 N_2}}$$

$$d = t\sqrt{\frac{N_1 + N_2}{N_1 N_2}}$$

$$d = 2.722\sqrt{\frac{10 + 10}{10x10}}$$

$$d = 1.22$$


In the above case d is 1.22. indicates that:

The students in the no volume condition scored 1.22 standard deviations higher on the exam than students in the high volume condition.

Dependent Sample 't' test

Path Analyse – compare means – Paired Samples T Test

Comparing two test scores – Single Group

→ T-Test

Paired Samples Statistics

		Mean	N	Std. Deviation	Std. Error Mean
Pair 1	words_pre	5.3600	25	1.57797	.31559
	words_post	6.1600	25	1.46287	.29257

Paired Samples Correlations

	Ν	Correlation	Sig.
Pair 1 words_pre & words_post	25	.696	.000

Paired Samples Test

		Paired Differences							
				Std. Error	95% Confidence Differ				
		Mean	Std. Deviation	Mean	Lower	Upper	t	df	Sig. (2-tailed)
Pair	1 words_pre - words_post	80000	1.19024	.23805	-1.29131	30869	-3.361	24	.003

Decision rule for assessing if the test is significant (for $\alpha = .05$)

If $p \le .05$, the test is significant (the number of words recalled differs significantly from pre to post)

If p > .05, the test is not significant (the number of words recalled does not differ significantly from pre to post)

Written results in APA format

People recalled significantly more words after using the imagery task as compared to before using the task, t (24) = 3.36, p = .003.

(can state p < .05 instead of p = .003 if desired.)

Effect Size (Dependent Sample 't' test)

Cohen's Effect Size Table Cohen (1988) gave the following interpretation of d values that is still popular.

- Small d = 0.2 or 20% of σ
- Medium d = 0.5 or 50% of σ
- Large d = 0.8 or 80% of σ

Cohen's guidelines for d

$$Small = .20$$
, $medium = .50$ $large = .80$

Formula for Cohen's d:

$$d = \frac{MeanDifference}{SD - of - the - difference}$$

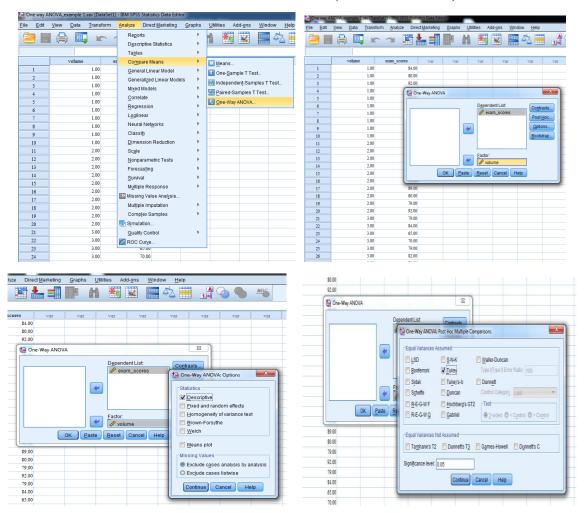
$$d = \frac{-0.80}{1.19}$$
$$d = -0.67 \text{ or.} 67$$
$$D = .67$$

In the above case d is .67 indicates that:

The posttest values were .67 SD higher than the pretest use which has a medium effect. Cohen's standards that indicates a medium effect size or effect size that is modern in nature.

ANOVA (Analysis of Variance)

Path


Analyse - compare means - One-way Anova

Independent Variable (Factor):

Categorical / Grouping / Discrete Variable (Nominal) (3 or more than three)

Dependent Variable (Dependent List):

Continuous Variable (Interval / Ratio)

Descriptives

exam_acorea	exam_acorea							
					95% Confiden Me			
	2	Mean	Std. Deviation	Std. Error	Lower Bound	Upper Bound	Minimum	Maximum
none (no music)	10	84.9000	5.80134	1.83455	80.7500	89.0500	77.00	94.00
low volume	10	84.2000	5.86515	1.85472	80.0043	88.3957	78.00	92.00
high volume	10	77.5000	6.34648	2.00693	72.9600	82.0400	65.00	84.00
Total	30	82.2000	6.71796	1.22653	79.6915	84.7085	65.00	94.00

ANOVA

exam_scores					
	Sum of Squares	df	Mean Square	F	Sig.
Between Groups	333.800	2	166.900	4.622	.019
Within Groups	975.000	27	36.111		
Total	1308.800	29			

Post Hoc Tests

		Multiple Comparis
Dependent Variable:	exam_scores	
man and a second second		

TUKEY HSD						
		Mean Difference (I-			95% Confide	ence Interval
(I) volume	(J) volume	J)	Std. Error	Sig.	Lower Bound	Upper Bound
none (no music)	low volume	.70000	2.68742	.963	-5.9632	7.3632
	high volume	7.40000	2.68742	.027	.7368	14.0632
low volume	none (no music)	70000	2.68742	.963	-7.3632	5.9632
	high volume	6.70000	2.68742	.049	.0368	13.3632
high volume	none (no music)	-7.40000	2.68742	.027	-14.0632	7368
I	low volume	-6.70000°	2 69742	049	-13 3632	- 0369

^{*.} The mean difference is significant at the 0.05 level.

Decision rule for assessing if the test is significant (for $\alpha = .05$)

If $p \le .05$, the test is significant (the test scores different significantly somewhere between the groups)

If p > .05, the test is not significant (the test scores do not differ significantly between the groups)

Written results in APA format

The level of volume of music played while studying had a significant impact on exam performance. F (2, 27) = 4.62, p = .019.

(can state p < .05 instead of p = .019, although reporting the exact p-value is more informative and therefore is recommended.)

ANOVA - POST HOC TEST

POST HOC TEST: Test conducted "after the fact". They are typically only conducted (interpreted) after a signficant ANOVA. Post hoc test are used to dive in and look for difference between groups, testing each possible pair of groups. The total alpha level used for the set of tests is .05 (for Tukey's test).

Post Hoc Tests

Multiple Comparisons

Dependent Variable: exam scores

Tukey HSD

		Mean Difference (I-			95% Confide	ence Interval
(I) volume	(J) volume	J)	Std. Error	Sig.	Lower Bound	Upper Bound
none (no music)	low volume	.70000	2.68742	.963	-5.9632	7.3632
	high volume	7.40000	2.68742	.027	.7368	14.0632
low volume	none (no music)	70000	2.68742	.963	-7.3632	5.9632
	high volume	6.70000	2.68742	.049	.0368	13.3632
high volume	none (no music)	-7.40000 [*]	2.68742	.027	-14.0632	7368
	low volume	-6.70000 [*]	2.68742	.049	-13.3632	0368

^{*.} The mean difference is significant at the 0.05 level.

Homogeneous Subsets

exam scores

Tukev HSD^a

		Subset for alpha = 0.05		
volume	N	1	2	
high volume	10	77.5000		
low volume	10		84.2000	
none (no music)	10		84.9000	
Sig.		1.000	.963	

Means for groups in homogeneous subsets are

a. Uses Harmonic Mean Sample Size = 10.000.

POST HOC TABLE FORMAT

	Mean	
None	Low	High
84.90	82.20	77.50

Multiple Comparision Table

Test	p-value	Significant
No musics vs. low volume	.963	No
No music vs high volume	.027	Yes (no > high)
Low volume vs high volume	.049	Yes (low > high)

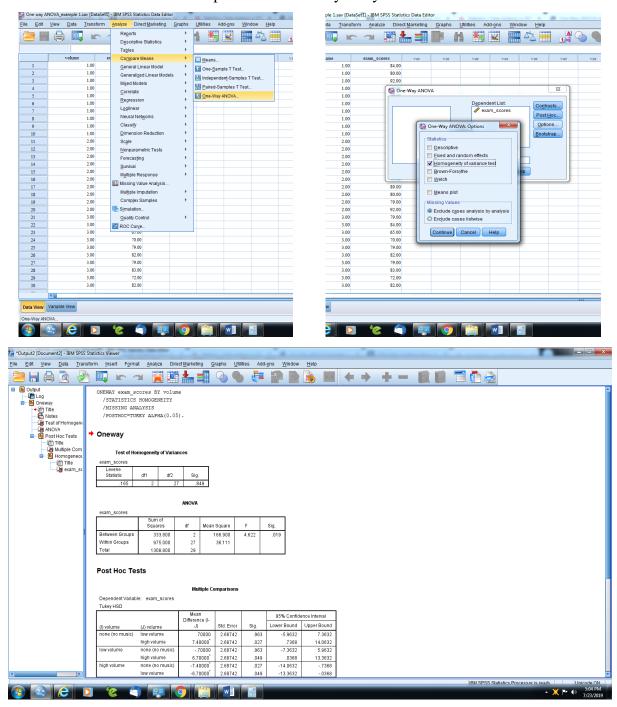
Homogeneous Subsets Table

- Groups that share the same column are not significantly different
- Groups that do not share the same column are signficantly different

Homogeneous Subsets

exam_scores Tukey HSD^a Subset for alpha 0.5 Not Ν significant volume high volume 77.5000 10 low volume 84.2000 10 none (no music) 10 84.9000 1.000 .963

Means for groups in homogeneous subsets are displayed.


a. Uses Harmonic Mean Sample Size = 10.000.

LEVENE'S EQUAL VARIANCE TEST

Path

Analyse – compare means – One-way Anova (Option – Homogeneity of variance test)

Levene's Test A homogeneity-of-variance test that is less dependent on the assumption of normality than most tests. For each case, it computes the absolute difference between the value of that case and its cell mean and performs a one-way analysis of variance on those differences.

RELATIONSHIP BETWEEN t-TEST and ANOVA (two groups only)

T-Test

[DataSet1] C:\Users\Thiyagu\Desktop\UDEMY\Inferential Analysis\Data files\Indepdendent t_example 1.sav

Group Statistics

	volume	N	Mean	Std. Deviation	Std. Error Mean
exam_scores	none (no music)	10	84.9000	5.80134	1.83455
	high volume	10	77.5000	6.34648	2.00693

Independent Samples Test

		Levene's Test for Equality of Variances		if t-test for Equality of Means						
				$\overline{}$			Mean	Std. Error	95% Confidence Differ	
		F	Sig.	t	df	Sig. (2-tailed)	Difference	Difference	Lower	Upper
exam_scores	Equal variances assumed	.078	.783	2.722	18	.014	7.40000	2.71907	1.68745	13.11255
	Equal variances not assumed			2.722	17.857	.014	7.40000	2.71907	1.68416	13.11584

ONEWAY exam_scores BY volume /MISSING ANALYSIS.

Oneway

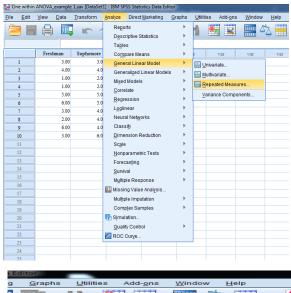
ANOVA

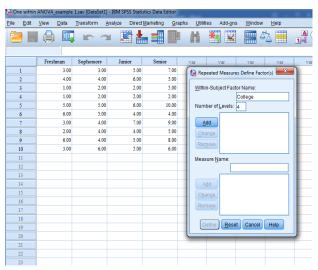
exam_scores						
	Sum of Squares	df	Mean Square	F	Sig.	
Between Groups	273.800	1	273.800	7.407	.014	ı
Within Groups	665.400	18	36.967	l		L
Total	939.200	19				_

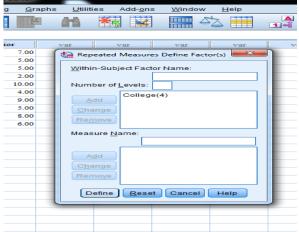
F = 7.407; t = 2.722

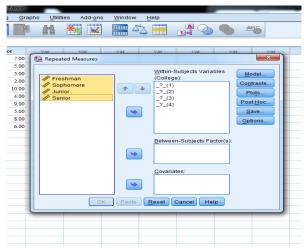
 $7.407 = 2.722 \times 2.722$

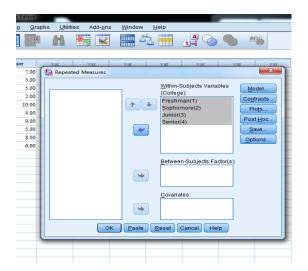
Therefore, with 2 groups

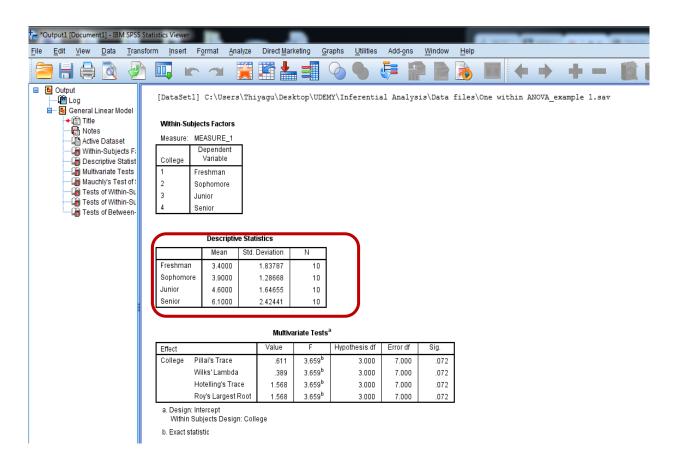

$$\mathbf{F} = \mathbf{t}^2$$

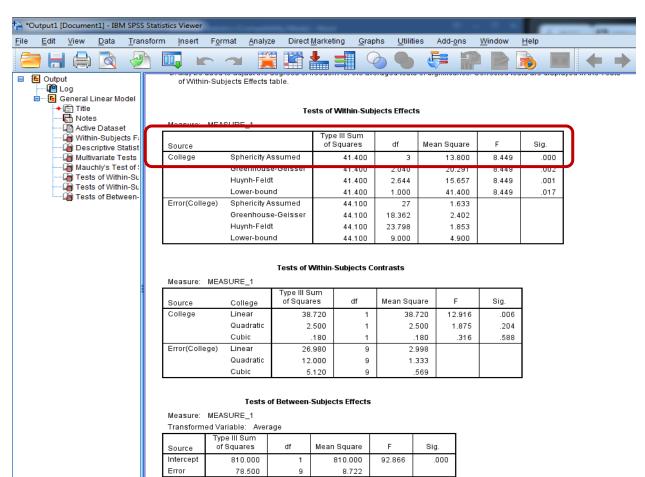

In other words, the one way ANOVA and t test are equivalent with two groups. they will provide the same answer or decison in terms of the hypothesis test (as they produce the exact same p-value); if your reject the null with the ANOVA, you will reject the null with the t-test. however, this propertly only applies with two groups.


Within ANOVA / Repeated Measures ANOVA


Path


Analyse - General Linear Model - Repeated Measures

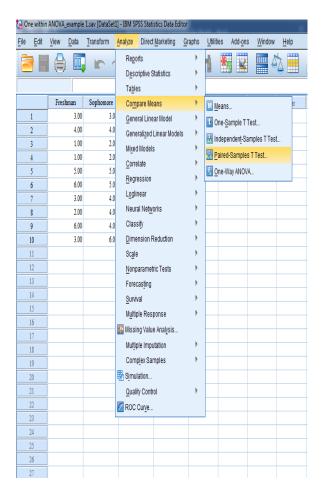


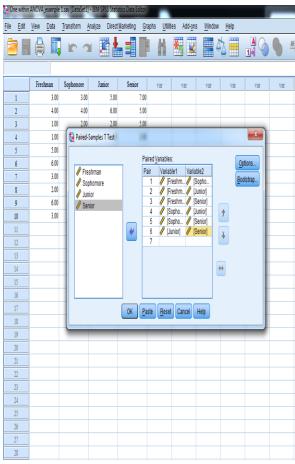


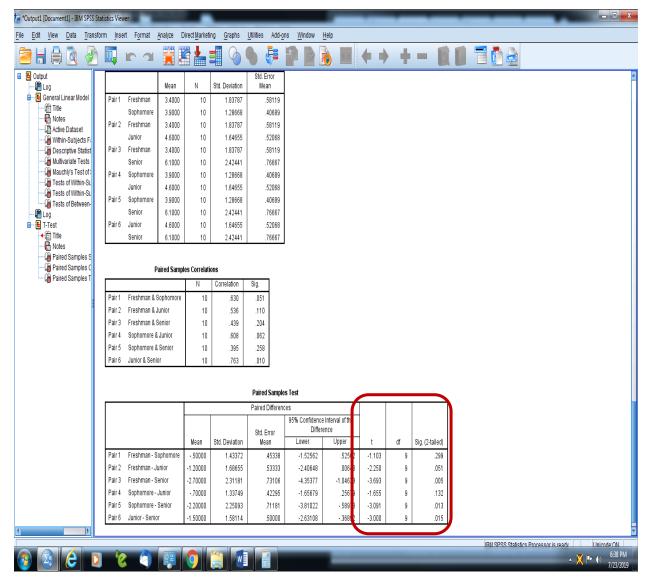
Decision rule for assessing if the test is significant (for $\alpha = .05$)

If $p \le .05$, the test is significant (attitudes towards e-texts were significantly different over the course of college)

If p > .05, the test is not significant (attitudes toward e-texts were not significantly different over the course of college)


Written results in APA format


Students' openness to e-texts changed over time, F(3, 27) = 8.449, p = .000.


Within ANOVA / Repeated Measures ANOVA – POST HOC TEST (by using paired sample t-test)

Path

Analyse – Compare means – paired sample t test

Alpha per test = total alpha / total number of post-hoc tests

Alpha per test = .05/6 = .008 (total alpha of .048)

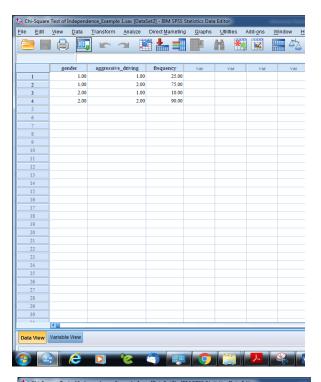
Decision rule for assessing if the test is significant (for $\alpha = .05$)

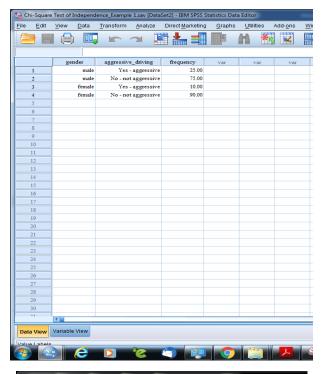
If $p \le .008$, the test is significant (attitudes towards e-texts were significantly different for the given pair in question)

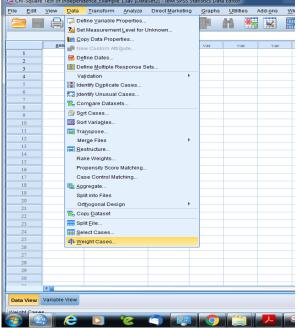
If p > .008, the test is not significant (attitudes toward e-texts were not significantly different for the given pair in question)

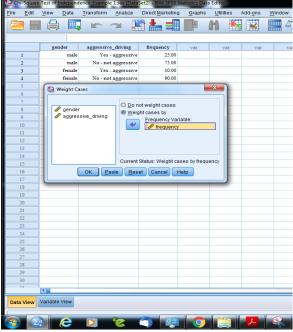
Written results in APA format

As seniors, students were significantly more open to using e-texts in their courses than they were as freshman, t(9) = 3.69, p = .005. No other differences were significant at an alpha level of .008 per (post-hoc) test.

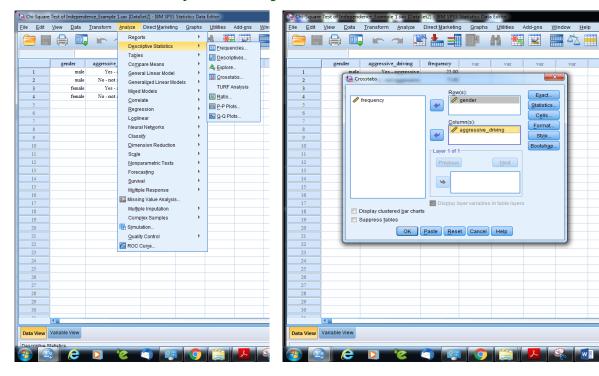

Test	p-value	Significant
Freshman vs Sophomore	.299	No
Freshman vs Junior	.051	No
Freshman vs Senior	.005	Yes (Senior more open than freshman)
Sophomore vs Junior	.132	No
Sophomore vs Senior	.013	No
Junior vs Senior	.015	No

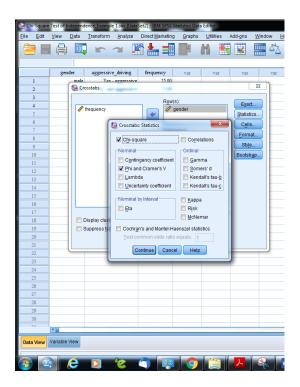

CHI-SQUARE TEST OF INDEPENDENCE

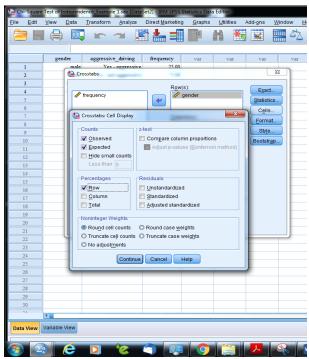

Chi squares test of intelligence - Measures whether there is a relationship between the two categorial variables

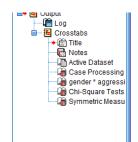

Path (Weight Cases)

Data – Weight Cases – (weight cases by)








Path (Chi square test of Independence)

Analyse – Descriptive Statistics – Crosstabs

gender * aggressive_driving Crosstabulation aggressive_driving No - not Yesaggressive gender male Count 25 100 Expected Count 17.5 82.5 100.0 % within gender 25.0% 75.0% 100.0% Count 90 100 10 Expected Count 17.5 82.5 100.0 % within gender 10.0% 90.0% 100.0% Total 35 165 200 Expected Count 165.0 200.0 35.0 % within gender 17.5% 82.5% 100.0%

Chi-Square Tests						
	Value	df	Asymp. Sig. (2-sided)	Exact Sig. (2- sided)	Exact Sig. (1- sided)	
Pearson Chi-Square	7.792 ^a	1	.005			
Continuity Correction	6.788	1	.009			
Likelihood Ratio	8.007	1	.005			
Fisher's Exact Test				.009	.004	
Linear-by-Linear Association	7.753	1	.005			
N of Valid Cases	200					
a. 0 cells (0.0%) have expected count less than 5. The minimum expected count is 17.50.						
b. Computed only for a 2x2	table					

Symmetric Meas	sures
	Va

_			Value	Approx. Sig.	
Г	Nominal by Nominal	Phi	.197	.005	
L		Cramer's V	.197	.005	
_	N of Valid Cases		200		

Phi and cramer's V is a effect size calculation in the chisquare test of independence.

Decision rule for assessing if the test is significant (for $\alpha = .05$)

If $p \le .05$, the test is significant (there is a significant relationship between two categorical variables {gender and aggressive driving behavior})

If p > .05, the test is not significant (there is a not significant relationship between two categorical variable)

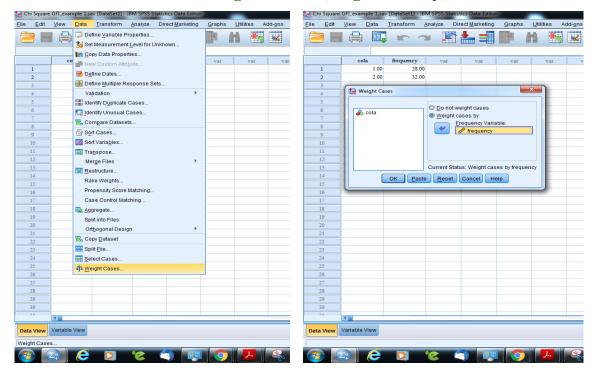
Written results in APA format

There is a significant relationship between gender and aggressive driving behaviors, $\chi^2(1, N = 200) = 7.79$, p = .005. Men were more likely to engage in aggressive driving than were women (25% to 10%).

(Can report p < .05 instead of p = .005 if desired)

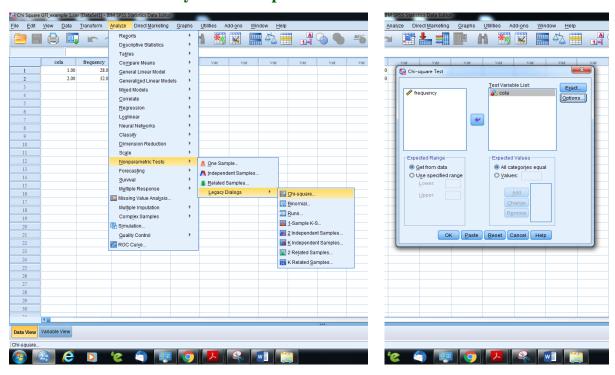
Effect Size

Cramer's V – applies to table where at least one variable had only two categories; for example, 2 x 2 tables, 2 x 3 tables etc.


Small = .10, Medium = .30, Large = .50

Cramer's V = .197 small effect size in this study.

CHI-SQUARE TEST OF GOODNESS OF FIT


Path (Weight Cases)

Data – Weight Cases – (weight cases by)

Path (Chi square test – Goodness of fit)

Analyse – Descriptive Statistics – Crosstabs

Test Statistics

Chi-Square Test

Frequencies

cola

	Observed N	Expected N	Residual
Cola A	28	30.0	-2.0
Cola B	32	30.0	2.0
Total	60		

Test Statistics

	cola
Chi-Square	.267ª
df	1
Asymp. Sig.	.606

 a. 0 cells (0.0%) have expected frequencies less than 5. The minimum expected cell frequency is 30.0.

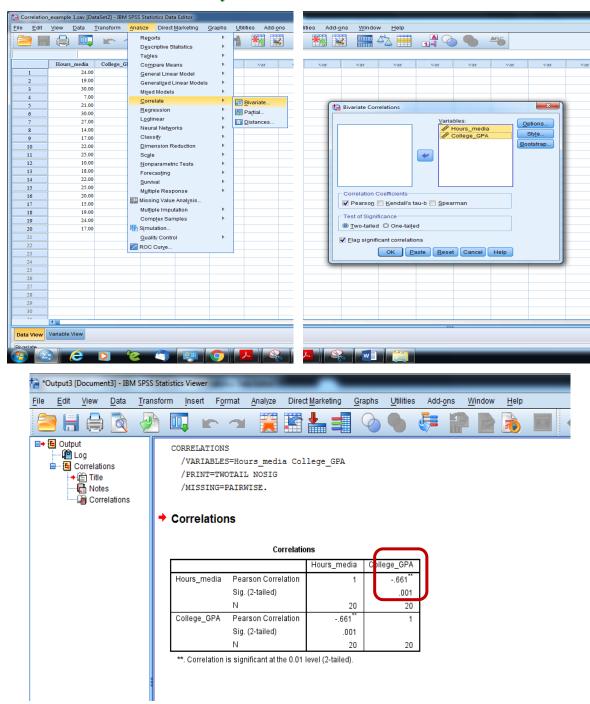
Decision rule for assessing if the test is significant (for $\alpha = .05$)

If $p \le .05$, the test is significant (there is a preference for one of the two types of colas)

If p > .05, the test is not significant (there is a not preference for one of the two types of colas)

Written results in APA format

There was not a significant preference for either type of cola, $\chi^2(1, N = 60) = 0.27$, p = .606.


(Can report p < .05 instead of p = .606 if desired)

CORRELATION

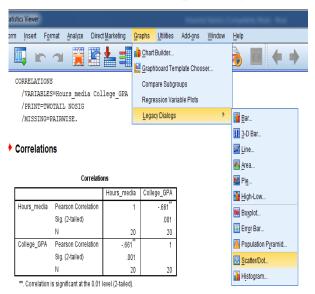
Pearson Correlation: Measures the degree of the linear relationship between two variables. By linear relationship we meant that the relationship can be well-characterized by a straight line. Correlation ranged from -1.0 to +1.0. Pearson correlation is given by the letter r.

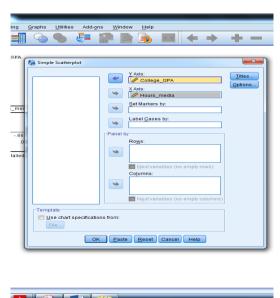
Path (Pearson Product Moment Correlation)

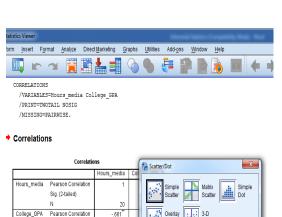
Analyse - Correlate - Bivariate

Decision rule for assessing if the test is significant (for $\alpha = .05$)

If $p \le .05$, the test is significant (there is a significant relationship between the two variables)

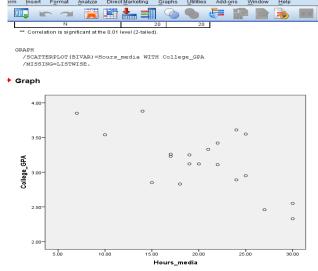

If p > .05, the test is not significant (there is a not significant relationship between the two variables)

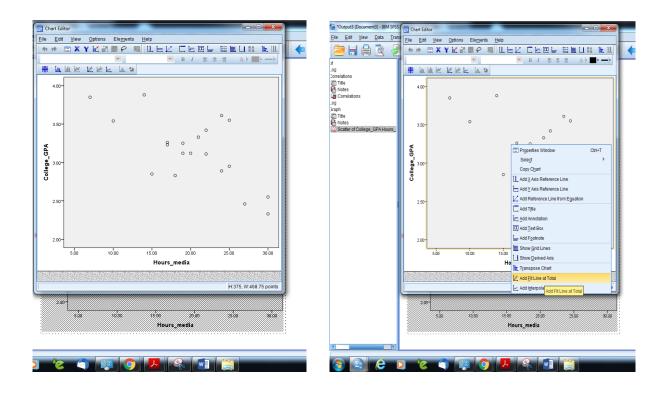

Written results in APA format

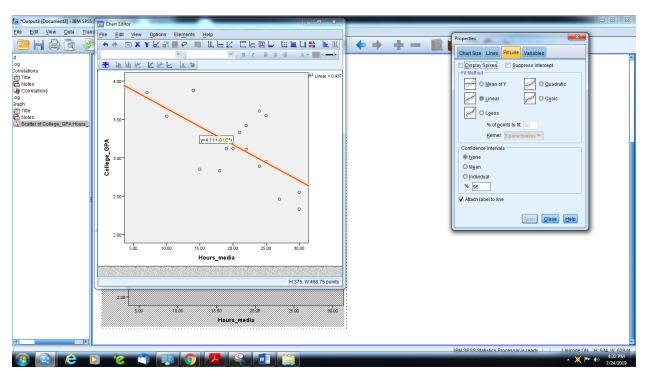

There is a significant negative relationship between hours of media watched and college GPA, r(18) = -0.66, p = .001

Path (Scatter Diagram)

Graph - Legacy dialogue - Scatter / Dot



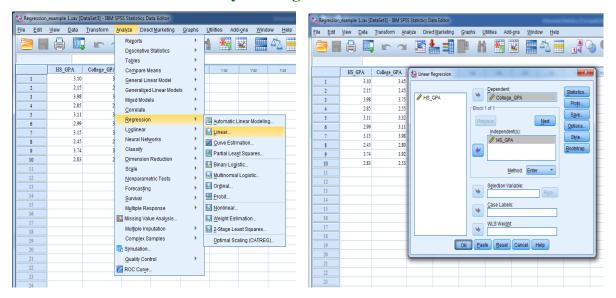

.001

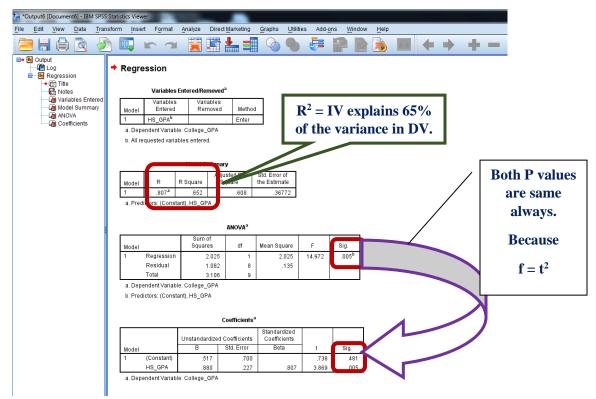

Define Cancel Help

Sig. (2-tailed)

**. Correlation is significant at the 0.01 level (2-tailed).

SIMPLE REGRESSION


Simple Regression: Use scores on one variable X to predict scores on another variable Y.


- X = Predictor or Independent Variable (IV)
- Y = Criterion or Dependent Variable (DV)

(Simple regression uses one X; multiple regression uses two or more Xs)

Path

Analyse - Regression - Linear

Model Summary Table – Output

R = Multiple Correlation Coefficient; in simple regression is it equal to the Pearson correlation

 $R(Square) = R^2$ = the amount of variance in the DV (Criterion) that is accounted for or explained by the IV (Predictor)

ANOVA Table or coefficient table

Decision rule for assessing if the test is significant (for $\alpha = .05$)

If $p \le .05$, the test is significant (IV is a significant predictor of DV)

If p > .05, the test is not significant (IV is not a significant predictor of DV)

Written results in APA format

Using ANOVA Table:

High school GPA was a significant predictor of college GPA, F(1,8) = 14.97, p = .005, $R^2 = .65$

Using Coefficient Table:

High school GPA was a significant predictor of college GPA, β = .81, t (8) = 3.87, p = .005, R² = .65

$$\mathbf{F} = \mathbf{t}^2$$
 in simple regression
14.972 = 3.869²

Regression Equation:

$$\hat{Y}_{College_GPA} = .517 + .880(HS - GPA)$$