What statistical analysis should I use?

Introduction About the A data file About the B data file About the C data file One sample t-test One sample median test **Binomial test** Chi-square goodness of fit Two independent samples t-test Wilcoxon-Mann-Whitney test Chi-square test (Contingency table) Fisher's exact test One-way ANOVA Kruskal Wallis test Paired t-test Wilcoxon signed rank sum test Sign test McNemar test One-way repeated measures ANOVA Bonferroni for pairwise comparisons Repeated measures logistic regression Factorial ANOVA

Friedman test Reshaping data Ordered logistic regression Factorial logistic regression Correlation Simple linear regression Non-parametric correlation Simple logistic regression Multiple regression Analysis of covariance Multiple logistic regression Discriminant analysis One-way MANOVA Multivariate multiple rearession Canonical correlation Factor analysis Normal probability plot Tukey's ladder of powers Median split Likert Scale Winsorize **General Linear Models** Epilogue

Lecture 1

Lecture 2

Lecture 3

Lecture 4

What statistical analysis should I use?

ANCOVA - Analysis of covariance ANOVA - One-way ANOVA ANOVA - One-way repeated measures ANOVA ANOVA - Factorial ANOVA **Binomial test** Bonferroni for pairwise comparisons Chi-square goodness of fit Chi-square fest (Contingency table) Correlation Correlation - Non-parametric correlation Correlation - Canonical correlation Data - About the A data file Data - About the B data file Data - About the C data file Discriminant analysis Epiloque Factor analysis Fisher's exact test Friedman test General Linear Models Introduction Kruskal Wallis test

Likert Scale Linear regression - Simple linear regression Logistic regression - Simple logistic regression Logistic regression - Repeated measures logistic regression Logistic regression - Ordered logistic regression Logistics regression - Factorial logistic regression Logistic regression - Multiple logistic regression MÁNOVA - One-way MANOVA McNemar test Median split Median test - One sample median test Multiple regression Multiple regression - Multivariate multiple regression Normal probability plot Reshaping data Sign test t test - One sample t-test t-test - Two independent samples t-test t-test - Paired t-test Tukey's ladder of powers Wilcoxon-Mann-Whitney test Wilcoxon signed rank sum test Winsorize

Introduction

For a useful general guide see <u>Policy: Twenty tips for</u> <u>interpreting scientific claims : Nature News & Comment</u> William J. Sutherland, David Spiegelhalter and Mark Burgman Nature Volume: 503, Pages: 335-337 Date published: (21 November 2013).

Some criticism has been made of their discussion of p values, see <u>Replication, statistical consistency, and publication bias</u> G. Francis, Journal of Mathematical Psychology, 57 (5) (2013), pp. 153–169.

Introduction

These examples are loosely based on a UCLA tutorial <u>sheet</u>. All can be realised via the syntax window, when appropriate command strokes are also indicated.

These pages show how to perform a number of statistical tests using SPSS. Each section gives a brief description of the aim of the statistical test, when it is used, an example showing the SPSS commands and SPSS (often abbreviated) output with a brief interpretation of the output.

About the A data file

Most of the examples in this document will use a data file called **A**, high school and beyond. This data file contains 200 observations from a sample of high school students with demographic information about the students, such as their gender (**female**), socio-economic status (**ses**) and ethnic background (**race**). It also contains a number of scores on standardized tests, including tests of reading (**read**), writing (**write**), mathematics (**math**) and social studies (**socst**).

About the A data file

Syntax:-

display dictionary

/VARIABLES id female race ses schtyp prog read write math science socst.

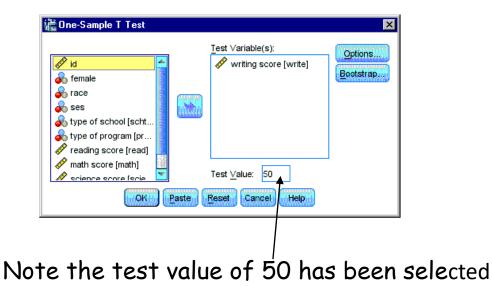
Variable	Position	Label	Value	Label
id	1			
female	2		.00 1.00	Male Female
race	3		1.00 2.00 3.00 4.00	Hispanic Asian african-amer White
ses	4		1.00 2.00 3.00	Low Middle High
schtyp	5	type of school	1.00 2.00	Public private
prog	6	type of program	1.00 2.00 3.00	general academic vocation
read	7	reading score		
write	8	writing score		
math	9	math score		
science	10	science score		
socst	11	social studies score		

About the A data file

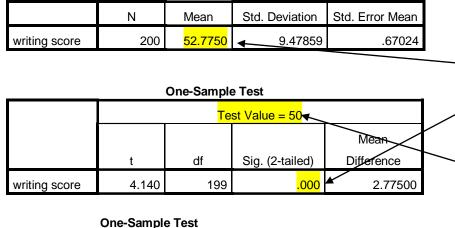
a 13a[1].s	13a[1].sav [DataSet1] - IBM SPSS Statistics Data Editor										
<u>F</u> ile Edit <u>V</u> iew <u>D</u> ata <u>Transform</u> <u>A</u> nalyze Direct <u>M</u> arketing <u>G</u> raphs <u>U</u> tilities Add- <u>o</u> ns <u>W</u> indow <u>H</u> elp											
			∽ 🖺		tt 🕺		- A	▲ 1€		-	
	id	female	race	ses	schtyp	prog	read	write	math	science	socst
1	70.00	male	white	low	public	general	57.00	52.00	41.00	47.00	57.00
2	121.00	female	white	middle	public	vocation	68.00	59.00	53.00	63.00	61.00
3	86.00	male	white	high	public	general	44.00	33.00	54.00	58.00	31.00
4	141.00	male	white	high	public	vocation	63.00	44.00	47.00	53.00	56.00
5	172.00	male	white	middle	public	academic	47.00	52.00	57.00	53.00	61.00
6	113.00	male	white	middle	public	academic	44.00	52.00	51.00	63.00	61.00
7	50.00	male	african-amer	middle	public	general	50.00	59.00	42.00	53.00	61.00
8	11.00	male	hispanic	middle	public	academic	34.00	46.00	45.00	39.00	36.00
9	84.00	male	white	middle	public	general	63.00	57.00	54.00	58.00	51.00
10	48.00	male	african-amer	middle	public	academic	57.00	55.00	52.00	50.00	51.00
11	75.00	male	white	middle	public	vocation	60.00	46.00	51.00	53.00	61.00
12	60.00	male	white	middle	public	academic	57.00	65.00	51.00	63.00	61.00
13	95.00	male	white	high	public	academic	73.00	60.00	71.00	61.00	71.00
14	104.00	male	white	high	public	academic	54.00	63.00	57.00	55.00	46.00
15	38.00	male	african-amer	low	public	academic	45.00	57.00	50.00	31.00	56.00
16	115.00	male	white	low	public	general	42.00	49.00	43.00	50.00	56.00
17	76.00	male	white	high	public	academic	47.00	52.00	51.00	50.00	56.00
18	195.00	male	white	middle	private	general	57.00	57.00	60.00	58.00	56.00
19	114.00	male	white	high	public	academic	68.00	65.00	62.00	55.00	61.00
20	85.00	male	white	middle	public	general	55.00	39.00	57.00	53.00	46.00

Index End

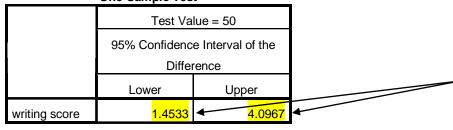
One sample t-test


A one sample t-test allows us to test whether a sample mean (of a normally distributed interval variable) significantly differs from a hypothesized value. For example, using the A data file, say we wish to test whether the average writing score (**write**) differs significantly from 50. Test variable writing score (write), Test value 50. We can do this as shown below.

Menu selection:- Analyze > Compare Means > One-Sample T test

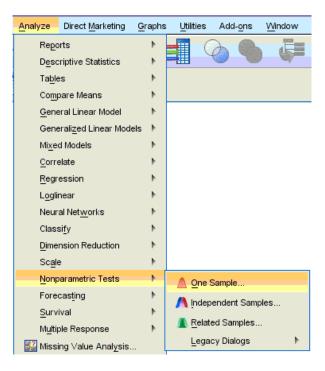

Syntax:- t-test /testval = 50 /variable = write.

One sample t-test


<u>A</u> nalyze	Direct <u>M</u> arketing	<u>G</u> raphs	Utilities	s Ado	l- <u>o</u> ns	Window	Help
Repo	orts	•		0		4	
D <u>e</u> so	riptive Statistics	•		C		and the second s	. 1 .
Table	s	•					
Com	oare Means		Me:	ans			
Gene	eral Linear Model	- Þ.	On On	e- <u>S</u> ampl	e T Test	-	
Gene	erali <u>z</u> ed Linear Mode	els 🕨	10073003	_			
Mi <u>x</u> e	d Models	- Þ.	Min Inde	epender	nt-Samp	les T Test	
Corre	elate	•	🛃 Pair	red-San	ples T 1	ſest	
<u>R</u> egr	ession	•	<u>[]</u> On	e-Way A	NOVA.		

One sample t-test

One-Sample Statistics

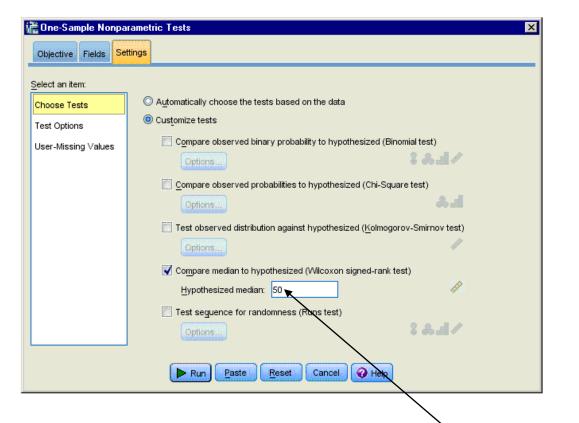

The mean of the variable write for this particular sample of students is 52.775, which is statistically significantly different from the test value of 50. We would conclude that this group of students has a significantly higher mean on the writing test than 50. This is consistent with the reported confidence interval (1.45,4.10) that is (51.45,54.10) which excludes 50, of course the midpoint is the mean.

Index End

A one sample median test allows us to test whether a sample median differs significantly from a hypothesized value. We will use the same variable, **write**, as we did in the one sample t-test example above, but we do not need to assume that it is interval and normally distributed (we only need to assume that **write** is an ordinal variable).

Menu selection:- Analyze > Nonparametric Tests > One Sample

Syntax:- nptests /onesample test (write) wilcoxon(testvalue = 50).



iii Or	ne-San	nple No	nparametric Tests	×
Obj	ective	Fields	Settings	
			nces in single fields using one or more nonparametric tests. Nonparametric tests do not assume your data I distribution.	
	-What is	s your ol	ojective?	
	Each o desire		corresponds to a distinct default configuration on the Settings Tab that you can further customize, if	
	C	Automa	tically compare observed data to hypothesized	
	C) Te <u>s</u> t se	quence for randomness	
	0	Custon	ize analysis	
	Descri	ption		
			lysis' allows you fine-grained control over the tests performed and their options. The Wilcoxon st is also available on the Settings tab.	
			Run Paste Reset Cancel Help	

Choose customize analysis

Cone-Sample Nonparametric To	ests		×
Objective Fields Settings			
이 Use predefined roles ④ Use custom field assignments			
Fields: Sort: None ♠ ♠ ♠ female ♣ race ♣ ses ♣ type of school ♣ type of program ♦ reading score ♦ math score ♦ science score ♦ social studies score		<u>T</u> est Fields:	
		8 🚓 🗐 🖉	
(Run Paste	Reset Cancel @ Help)

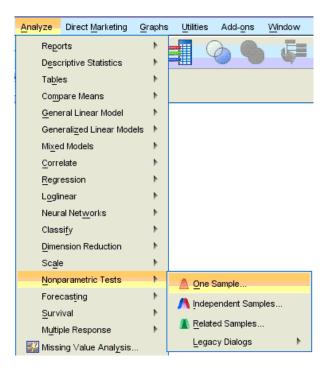
Only retain writing score

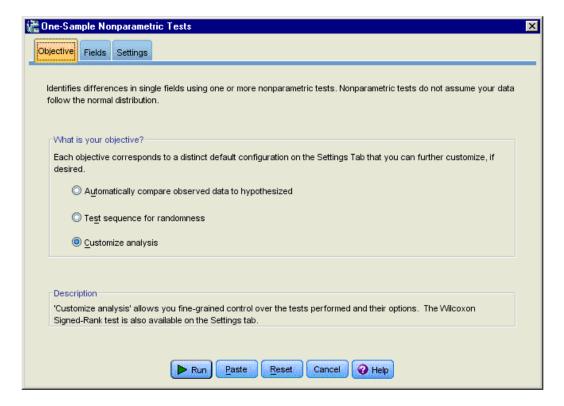
Choose tests tick "compare median..." and enter 50 as the desired value.

Finally select the "run" button

Null Hypothesis	Test	Siq.	Decision
Null hypothesis	1	Sig.	Decision
The median of writing score equals 50.00.	One-Sample Wilcoxon Signed Rank Test	.000	Reject the null hypothesis

We would conclude that this group of students has a significantly higher median on the writing test than 50.

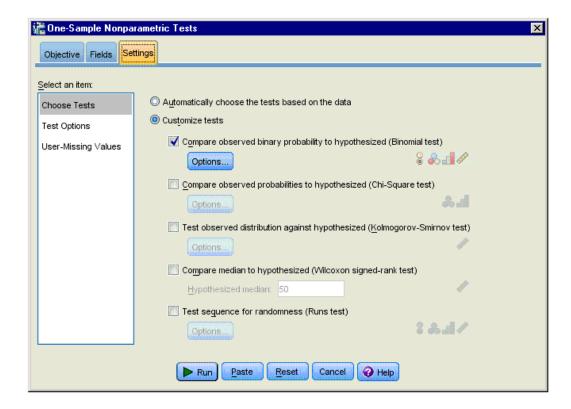

Index End


A one sample binomial test allows us to test whether the proportion of successes on a two-level categorical dependent variable significantly differs from a hypothesized value. For example, using the A data file, say we wish to test whether the proportion of females (**female**) differs significantly from 50%, i.e., from .5. We can do this as shown below.

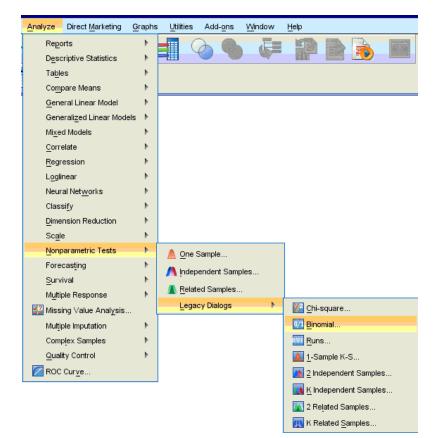
Two alternate approaches are available.

Either Menu selection:- Analyze > Nonparametric Tests > One Sample

Syntax:- npar tests /binomial (.5) = female.



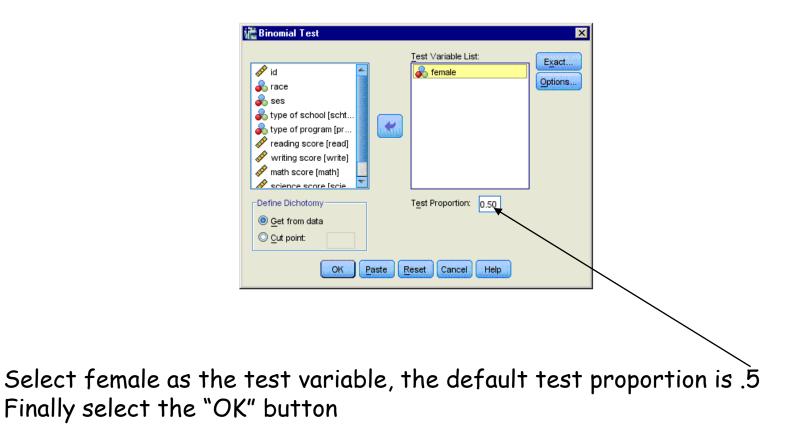
Choose customize analysis

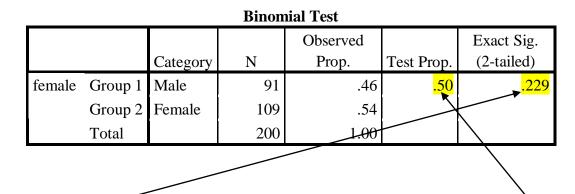

👬 One-Sample Nonparametric T	ests		×
Objective Fields Settings			
Use predefined roles			
 Use custom field assignments 			
Fields:		Test Fields:	
Sort: None 🕋 🔶 📢		_ 🗞 female	
id id			
ace 💑 race			
type of school			
reading score			
writing score			
math score			
science score			
social studies score			
		8 🚓 💷 🖉	
(Run Paste	Reset Cancel @ Help	

Only retain female

Choose tests tick "compare observed..." and under options

👬 Binomial Options 🛛 🔀
Hypothesized proportion: 0.5 • Confidence Interval Cligoper-Pearson (e.act) Jeffreys Likelihood ratio Define Success for Categorical Fields Outse first category found in data Specify success values Success Values: Value Outse first category found in data Specify success values Success Values: Value Outse first category found in data Success values: Update Outse first category found in data Success values: Update Outse first category found in data Success values: Update Outse first category found in data Success values: Update Outse first category found in data Success values: Update Success values: Update Subsection: Update Subsection: Subsection: </td
ired value. run" button




Or

Menu selection:- Analyze > Nonparametric Tests > Legacy Dialogs > Binomial

Syntax:-

npar tests /binomial (.5) = female.

The results indicate that there is no statistically significant difference (p = 0.229). In other words, the proportion of females in this sample does not significantly differ from the hypothesized value of 50%.

Chi-square goodness of fit

A chi-square goodness of fit test allows us to test whether the observed proportions for a categorical variable differ from hypothesized proportions. For example, let's suppose that we believe that the general population consists of 10% Hispanic, 10% Asian, 10% African American and 70% White folks. We want to test whether the observed proportions from our sample differ significantly from these hypothesized proportions. Note this example employs input data (10, 10, 10, 70), in addition to A.

Menu selection:- At present the drop down menu's cannot provide this analysis.

Syntax:- npar test /chisquare = race /expected = 10 10 10 70.

Chi-square goodness of fit

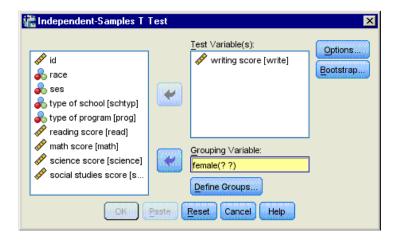
race						
	Observed	Expected				
	Ν	Ν	Residual			
hispanic	24	20.0	4.0			
asian	11	20.0	-9.0			
african-	20	20.0	.0			
amer						
white	145	140.0	5.0			
Total	200					

These results show that racial composition in our sample does not differ significantly from the hypothesized values that we supplied (chi-square with three degrees of freedom = 5.029,

Test StatisticsraceChi-Squaredf3Asymp..170

Sig.

a. 0 cells (.0%) have expected frequencies less than 5. The minimum expected cell frequency is 20.0.

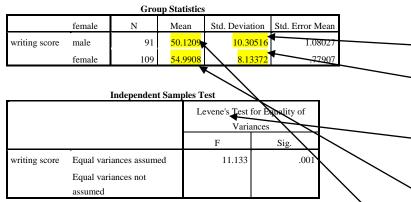

An independent samples t-test is used when you want to compare the means of a normally distributed interval dependent variable for two independent groups. For example, using the A data file, say we wish to test whether the mean for **write** is the same for males and females.

Menu selection:- Analyze > Compare Means > Independent Samples T test

Syntax:-

t-test groups = female(0 1) /variables = write.

Analyz	e Direct <u>M</u> arketing	<u>G</u> raphs	Utilities	Add- <u>o</u> ns	Window	Help
R	eports	•		20	, E	
D	escriptive Statistics	•				
Т	a <u>b</u> les	*				
c	o <u>m</u> pare Means	- F	Mear	าร		
g	eneral Linear Model	- Þ.	One.	Sample T Te	et	
G	enerali <u>z</u> ed Linear Mode	els 🕨	provide and			
N	li <u>x</u> ed Models	•		endent-Sam	ples T Test	
<u>c</u>	orrelate	•	🏭 <u>P</u> aire	d-Samples T	Test	
R	egression	•	<u>[]</u> One-	Way ANOV#	۹	
L	oglinear	- • · ·				
N	eural Net <u>w</u> orks	•				
С	lassi <u>f</u> y	•				
₫	imension Reduction	•				
s	c <u>a</u> le	•				
N	onparametric Tests	•				
F	orecasting	•				
s	urvival	•				
N	l <u>u</u> ltiple Response	•				
💕 N	lissing ∀alue Anal <u>y</u> sis					
N	lultiple Imputation	•				
С	omp <u>l</u> ex Samples	•				
G	uality Control	•				
R	OC Cur <u>v</u> e					


Independent-Samples T Test							
	Test ∀ariable(s):	Options					
🛷 id	👬 Define Groups 🛛 🗙 ej						
💑 race		Bootstrap					
💑 ses	Use specified values						
💑 type of school [sc	Group <u>1</u> : 0						
💑 type of program [Group 2: 1						
🛷 reading score [rea							
🛷 math score [math]	O <u>C</u> ut point:						
🛷 science score [sc							
🛷 social studies scc	Continue Cancel Help						
Lance Carlo	Mind Paster Reset Cancel Help						

Do not forget to define those "pesky" groups.

Levene's test

In statistics, Levene's test is an inferential statistic used to assess the equality of variances in different samples. Some common statistical procedures assume that variances of the populations from which different samples are drawn are equal. Levene's test assesses this assumption. It tests the null hypothesis that the population variances are equal (called homogeneity of variance or homoscedasticity). If the resulting P-value of Levene's test is less than some critical value (typically 0.05), the obtained differences in sample variances are unlikely to have occurred based on random sampling from a population with equal variances. Thus, the null hypothesis of equal variances is rejected and it is concluded that there is a difference between the variances in the population.

Levene, Howard (1960). "Robust tests for equality of variances". In Ingram Olkin, Harold Hotelling, et al. Stanford University Press. pp. 278–292.

	Indepe	endent Samp	les Test			-
			t-test for	Equality of Mean	ns 🔪	
					Mean	
		t	df	Sig. (2-tailed)	Difference	
writing score	Equal variances assumed	-3.734	198	.000	-4.86995	
	Equal variances not assumed	<mark>-3.656</mark>	169.707	<mark>.000</mark>	-4.86995	

		t-test for Equality of Means			
		95% Confidence Interval of the			
		Std. Error	d. Error Difference		
		Difference	Lower	Upper	
writing score	Equal variances assumed	1.30419	-7.44183	-2.29806	
	Equal variances not	1.33189	-7.49916	-2.24073	
	assumed			\sim	

Because the standard deviations for the two groups are not similar (10.3 and 8.1), we will use the "equal variances not assumed" test. This is supported by the Levene's test p = .001).

The results indicate that there is a statistically significant difference between the mean writing score for males and females (t = -3.656, p < .0005). In other words, females have a statistically significantly higher mean score on writing (54.99) than males (50.12).

This is supported by the negative confidence interval (male - female).

Group Statistics						
	female	Ν	Mean	Std. Deviation	Std. Error Mean	
writing score	male	91	<mark>50.1209</mark>	10.30516	1.08027	
	female	109	<mark>54.9908</mark>	<mark>8.13372</mark>	.77907	

Independent Samples Test				
		Levene's Test for Equality of Variances		
		F	Sig.	
writing score	Equal variances assumed	11.133	.001	
	Equal variances not assumed			

Independent Samples Test

		t-test for Equality of Means				
					Mean	
		t	df	Sig. (2-tailed)	Difference	
writing score	Equal variances assumed	-3.734	198	.000	-4.86995	
	Equal variances not	<mark>-3.656</mark>	169.707	.000	-4.86995	
	assumed					

Independent Samples Test

		t-test for Equality of Means				
			95% Confidence Interval of the			
		Std. Error	Difference			
			Lower	Upper	$\downarrow/$	
writing score	Equal variances assumed	1.30419	-7.44183	-2.29806	[/	
	Equal variances not	1.33189	-7.49916	-2.24073		
	assumed					

Does equality of variances matter in this case?

Wilcoxon-Mann-Whitney test

The Wilcoxon-Mann-Whitney test is a non-parametric analog to the independent samples t-test and can be used when you do not assume that the dependent variable is a normally distributed interval variable (you only assume that the variable is at least ordinal). You will notice that the SPSS syntax for the Wilcoxon-Mann-Whitney test is almost identical to that of the independent samples t-test. We will use the same data file (the A data file) and the same variables in this example as we did in the independent t-test example above and will not assume that write, our dependent variable, is normally distributed.

Menu selection:- Analyze > Nonparametric Tests > Legacy Dialogs > 2 Independent Samples

Syntax:-

npar test /m-w = write by female(0 1).

Wilcoxon-Mann-Whitney test

<u>The Mann-Whitney U: A Test for Assessing Whether Two Independent</u> <u>Samples Come from the Same Distribution</u> Nadim Nachar Tutorials in Quantitative Methods for Psychology 2008 **4(1)** 13-20

The Wilcoxon-Mann-Whitney test is sometimes used for comparing the efficacy of two treatments in trials. It is often presented as an alternative to a t test when the data are not normally distributed.

Whereas a t test is a test of population means, the Mann-Whitney test is commonly regarded as a test of population medians. This is not strictly true, and treating it as such can lead to inadequate analysis of data.

Mann-Whitney test is not just a test of medians: differences in spread can be important

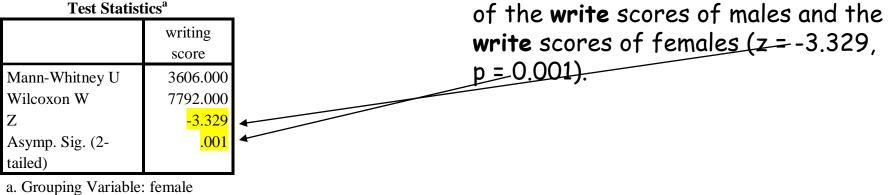
Anna Hart

British Medical Journal 2001 August 18; 323(7309): 391-393.

Paper

As is always the case, it is not sufficient merely to report a P value. In the case of the Mann-Whitney test, differences in spread may sometimes be as important as differences in medians, and these need to be made clear.

<u>A</u> nalyze	Direct <u>M</u> arketing	<u>G</u> raphs	Utilities	Add- <u>o</u> ns	Window	Help
Repo	irts	•		2	Æ	
Desc	riptive Statistics	- P			-	
Table	s	•				
Com	oare Means	- Þ.				
Gene	eral Linear Model	- Þ.				
Gene	erali <u>z</u> ed Linear Mod	els 🕨				
Mi <u>x</u> e	d Models	- Þ.				
Corre	elate	- Þ.				
<u>R</u> egr	ession	- Þ.				
Logli	near	•				
Neur	al Net <u>w</u> orks	- Þ.				
Class	si <u>f</u> y	- Þ.				
Dime	nsion Reduction	- Þ.				
Sc <u>a</u> le	e	•				
Nonp	arametric Tests	•	<u>(0</u> ne \$	Sample		
Fore	casting	•	🥂 Indep	endent Samp	les	
Surv	ival	•		ed Samples		
Multip	ble Response	•		cy Dialogs	•	
ジ Missi	ng Value Anal <u>y</u> sis.		Lega	cy Dialogs	r	Kana Chi-square
Multip	ole Imputation	•				0/1 <u>B</u> inomial
Com	olex Samples	- Þ				🕮 <u>R</u> uns
<u>Q</u> uali	ty Control	•				<u> 1</u> -Sample K-S
🖉 ROC	Cur <u>v</u> e					2 Independent Samples
						K Independent Samples
						📉 2 Related Samples
						K Related Samples


👬 Two-Independent-Samples Tests 🛛 🔀							
 ✓ id ✓ race ✓ ses ✓ type of school [scht ✓ type of program [pr ✓ reading score [read] 	Iest Variable List:	Exact Options					
math score [math] science score [scie	female(? ?) Define Groups]					
Test Type							
Mann-Whitney U	🔄 Kolmogorov-Smirnov Z						
Moses extreme reaction	s 🦳 <u>W</u> ald-Wolfowitz runs						
OK Paste Reset Cancel Help							

Note that Mann-Whitney has been selected.

👬 Two-Independent-Sa	amples Tests	×
 ✓ id ➢ race ➢ ses ➢ type of school [s ➢ type of program ✓ reading score [re 	Two Independent Sample X Froup <u>1</u> : 0 Sroup <u>2</u> : 1 Continue Cancel Help	Exact
· .	<u>K</u> olmogorov-Smirnov Z	
	Paste Reset Cancel Help	•

		Ranks		
			Mean	Sum of
	female	Ν	Rank	Ranks
writing	male	91	85.63	7792.00
score	female	109	112.92	12308.00
	Total	200		

The results suggest that there is a statistically significant difference between the underlying distributions of the write scores of males and the write scores of females (z = -3.329, p = 0.001).

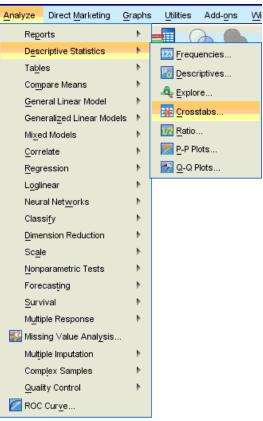
Index End

Chi-square test (Contingency table)

A chi-square test is used when you want to see if there is a relationship between two categorical variables. In SPSS, the **chisq** option is used on the **statistics** subcommand of the **crosstabs** command to obtain the test statistic and its associated p-value. Using the A data file, let's see if there is a relationship between the type of school attended (**schtyp**) and students' gender (**female**). Remember that the chi-square test assumes that the expected value for each cell is five or higher. This assumption is easily met in the examples below. However, if this assumption is not met in your data, please see the section on Fisher's exact test, below.

Two alternate approaches are available.

Either Menu selection:- Analyze > Tables > Custom Tables


Syntax:- crosstabs /tables = schtyp by female /statistic = chisq.

<u>A</u> nalyze	Direct <u>M</u> arketing	<u>G</u> raphs	Utilities	Add- <u>o</u> ns	<u>W</u> indow	F
Repo	rts	•				
D <u>e</u> sc	riptive Statistics	•				
Table	s		E Cust	om Tables		
Com	oare Means	•	Haltin	ole Response	e Sets	
Gene	eral Linear Model	• • •				
Gene	erali <u>z</u> ed Linear Mode	is 🕨				
Mi <u>x</u> e	d Models	- Þ.				
<u>C</u> orre	elate	- Þ.				
<u>R</u> egr	ession	- F				
L <u>o</u> glir	near	- Þ.				
Neur	al Net <u>w</u> orks	- Þ.				
Class	si <u>f</u> y	•				
Dime	nsion Reduction	- F				
Sc <u>a</u> le	•	- Þ.				
Nonp	arametric Tests	- Þ.				
Fore	casting	•				
Survi	ival	- F				
M <u>u</u> ltip	ole Response	- Þ.				
길 Missi	ng Value Anal <u>y</u> sis					
Mul <u>t</u> ip	ole Imputation	- Þ.				
Comp	ex Samples	•				
<u>Q</u> uali	ty Control	•				
🖉 ROC	Cur <u>v</u> e					

Custom Tables	tics	0	ptions					
<u>∨</u> ariables:						Normal	E Compact	Layer:
🖋 id	Γ				C <u>o</u> l:	umns		
💑 female 💑 race	۱					female		
💑 ses					male		female	
💑 type of school [scht 💑 type of program [prog]				public	Count	חחח	Count	
reading score [read]			type of school	private	г	ากกก	nnnn	
		Rows						
Define		1 Г	Summary Statist	ics			1	
N _{% Summary Statistics}			- 600	lumns lumn Variables		E Hide	Cat <u>e</u> gory Posit Default	tion:
			OK Pas	te <u>R</u> eset	Cancel	Help		

Drag selected variables to the row/column boxes

诺 Custom Tables	×							
Table Titles Test Statistics Options								
Compare column means (t-tests)	Compare column proportions (z-tests)							
Adjust p-values for multiple comparisons (Bonferroni method)	Adjust p-values for multiple comparisons (Bonferroni method)							
Estimate variance only from the categories compared (always done for multiple response variables)								
Identify Significant Differences								
In a separate table	In the main table using APA-style subscripts							
☑ Use subtotals in place of subtotaled categories ✓ Include multiple response variables in tests								
 Chi-square and column proportions tests apply to tables in which categorical variables exist in both the rows and columns. Column means tests apply to tables in which scale variables exist in the rows and categorical variables exist in the columns. Tests are not performed for tables in which category labels are moved out of their default table dimension. Totals are excluded from all tests. Subtotals are used only if the categories to which they apply are hidden or if specified above. Computed categories are excluded from significance tests. 								
OK Paste Re	eset Cancel Help							

Or

Menu selection:- Analyze > Descriptive Statistics > Crosstabs

Syntax:-

crosstabs /tables = schtyp by female /statistic = chisq.

👬 Crosstabs		×
 ✓ id ✓ race ✓ ses ✓ type of program [prog] ✓ reading score [read] ✓ writing score [write] ✓ math score [math] ✓ science score [science] ✓ social studies score [so 	Row(s):	Exact Statistics Cells Format Bootstrap
Display clustered <u>b</u> ar charts Suppress <u>t</u> ables	Display layer variables in table layers Paste Reset Cancel Help	

Crosstabs			[
id I	Crosstabs: Statistics	Exact	.1(1)
 race race ses type of prog reading scc writing scoi math score science sco social studio 	✓ Chi-square Correlations Nominal Ordinal ○ Contingency coefficient ④ Gamma ○ Phi and Cramer's ∨ ○ Somers' d ○ Lambda ○ Kendall's tau- ○ Uncertainty coefficient ○ Kendall's tau- Nominal by Interval ○ Kappa	-	
Display clust			
Suppress <u>t</u> al	OK Paste Reset Cancel Help		

Case Processing Summary Cases Valid Missing Total Ν Percent Ν Percent Ν Percent type of school * 200 100.0% .0% 200 100.0% 0 female

type of school * female Crosstabulation

Count

		Fen		
		Male	female	Total
type of	public	77	91	168
school	private	14	18	32
Total		91	109	200

Value

.047^a

.001

.047

.047

200

These results indicate that there is no statistically significant relationship between the type of school attended and gender (chi-square with one degree of freedom = 0.047, p = 0.828). Note 0 cells have expected count less than 5. If not use Fisher's

exact test.

a. 0 cells (.0%) have expected count less than 5. The minimum expected count is 14.56.

Chi-Square Tests

Df

Asymp. Sig.

(2-sided)

828

.981

.828

829

Exact Sig.

(2 sided)

.849

Exact Sig.

(1-sided)

.492

b. Computed only for a 2x2 table

Pearson Chi-Square

Fisher's Exact Test

Likelihood Ratio

Linear-by-Linear

N of Valid Cases

Association

Continuity Correction^b

Let's look at another example, this time looking at the relationship between gender (**female**) and socio-economic status (**ses**). The point of this example is that one (or both) variables may have more than two levels, and that the variables do not have to have the same number of levels. In this example, **female** has two levels (male and female) and **ses** has three levels (low, medium and high).

Menu selection:- Analyze > Tables > Custom Tables Using the previous menu's.

Syntax:- crosstabs /tables = female by ses /statistic = chisq.

Case Processing Summary									
Cases									
	Va	lid	Mis	sing	Total				
	Ν	Percent	Ν	Percent	Ν	Percent			
female * ses	200	100.0%	0	.0%	200	100.0%			

female * ses Crosstabulation

Count

			ses			
		low	middle	high	Total	
female	male	15	47	29	91	
	female	32	48	29	109	
Total		47	95	58	200	

Chi-Square Tests						
	Value	df	Asymp. Sig (2-sided)			
Pearson Chi-Square	4.577 ^a	2.	<mark>.101</mark>	X		
Likelihood Ratio	4.679	2	.096			
Linear-by-Linear	3.110	1	.078			
Association						
N of Valid Cases	200					

a. 0 cells (.0%) have expected count less than 5. The minimum expected count is 21.39.

Again we find that there is no statistically significant relationship between the variables (chi-square with two degrees of freedom = 4.577, p = 0.101).

Note the absence of Fisher's Exact Test!

Fisher's exact test

The Fisher's exact test is used when you want to conduct a chi-square test but one or more of your cells has an expected frequency of five or less. Remember that the chi-square test assumes that each cell has an expected frequency of five or more, but the Fisher's exact test has no such assumption and can be used regardless of how small the expected frequency is. In SPSS you can only perform a Fisher's exact test on a 2x2 table, and these results are presented by default. Please see the results from the chi squared example above.

<u>Chi-square test</u>

Fisher's exact test

A simple web search should reveal specific tools developed for different size tables. For example

Fisher's exact test for up to 6×6 tables For the more adventurous

For those interested in more detail, plus a worked example see.

Fisher's Exact Test or Paper only

When to Use Fisher's Exact Test Keith M. Bower American Society for Quality, Six Sigma Forum Magazine, **2(4)** 2003, 35-37.

Fisher's exact test

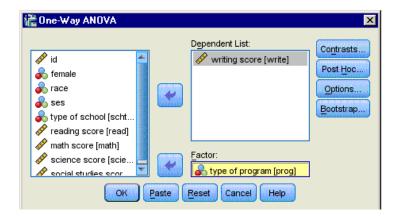
For larger examples you might try

Fisher's Exact Test

Algorithm 643

FEXACT - A Fortran Subroutine For Fisher's Exact Test On Unordered R x C Contingency-Tables Mehta, C.R. and Patel, N.R. ACM Transactions On Mathematical Software **12(2)** 154-161 1986.

A Remark On Algorithm-643 - FEXACT - An Algorithm For Performing Fisher's Exact Test In R x C Contingency-Tables Clarkson, D.B., Fan, Y.A. and Joe, H. ACM Transactions On Mathematical Software **19(4)** 484-488 1993.


Index End

A one-way analysis of variance (ANOVA) is used when you have a categorical independent variable (with two or more categories) and a normally distributed interval dependent variable and you wish to test for differences in the means of the dependent variable broken down by the levels of the independent variable. For example, using the A data file, say we wish to test whether the mean of **write** differs between the three program types (**prog**). The command for this test would be:

Menu selection:- Analyze > Compare Means > One-way ANOVA

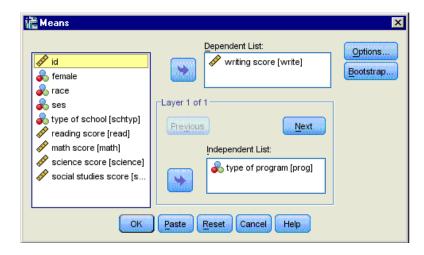
Syntax:- oneway write by prog.

Analyze	Direct <u>M</u> arketing	<u>G</u> raphs	Utilities	Add- <u>o</u> ns	Window	Help
Repo	orts	•		2		
D <u>e</u> so	criptive Statistics	- F				18
Ta <u>b</u> le	es					
Com	pare Means	-	Mean	s		
Gene	eral Linear Model	•		Sample T Te:	e+	
Gene	erali <u>z</u> ed Linear Mode	els 🕨	provident 1			
Mi <u>x</u> e	d Models		indep 📷	endent-Sam	ples T Test	
Corr	elate	•	🕌 <u>P</u> aire	d-Samples T	Test	
<u>R</u> egr	ession		One-	Way ANOVA	۸	
L <u>o</u> gli	near	- • T				
Neur	al Net <u>w</u> orks					
Clas	si <u>f</u> y	*				
Dime	nsion Reduction					
Sc <u>a</u> l	e					
Non	parametric Tests					
Fore	casting	•				
<u>S</u> urv	ival					
M <u>u</u> lti	ple Response					
🏭 Miss	ing ∀alue Anal <u>y</u> sis.					
Multi	ple Imputation					
Com	plex Samples					
<u>Q</u> ual	ity Control					
ROC	Cur <u>v</u> e					

ANOVA

writing goorg

writing score					
	Sum of		Mean		
	Squares	df	Square	F	Sig.
Between	3175.698	2	1587.849	21.275	<mark>.000</mark>
Groups					†
Within Groups	14703.177	197	74.635		
Total	17878.875	199			


The mean of the dependent variable differs significantly among the levels of program type. However, we do not know if the difference is between only two of the levels or all three of the levels.

To see the mean of write for each level of program type,

Menu selection: - Analyze > Compare Means > Means

Syntax:- means tables = write by prog.

<u>A</u> nalyze	Direct <u>M</u> arketing	Graphs	Utilities	Add- <u>o</u> ns	Window	Help
Repo	irts	•		2		5
Desc	riptive Statistics	•			- Contraction	
Table	s	- Þ-				
Com	oare Means		M Mean	IS		
Gene	eral Linear Model	- Þ-	_	Sample T Te	et	
Gene	erali <u>z</u> ed Linear Mode	els 🕨				
Mi <u>x</u> e	d Models				ples T Test	
<u>C</u> orre	elate		Paire	d-Samples T	Test	
<u>R</u> egr	ession	•	🚺 <u>O</u> ne-)	Way ANO∀A	۸	
Logli	near	- • I				
Neur	al Net <u>w</u> orks	•				
Class	si <u>f</u> y	•				
Dime	nsion Reduction	•				
Sc <u>a</u> le	9	•				
Nonp	arametric Tests	•				
Fore	casting					
Survi	ival	•				
Multip	ole Response	•				
🏭 Missi	ng Value Anal <u>v</u> sis.					
Multip	ole Imputation	•				
Com	olex Samples	•				
<u>Q</u> uali	ty Control	•				
🖉 ROC	Cur <u>v</u> e					

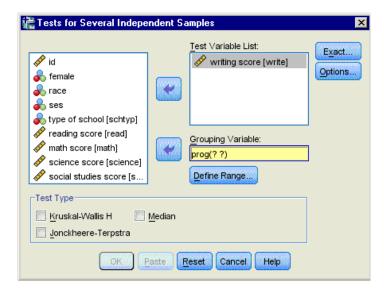
One-way ANOVA Case Processing Summary

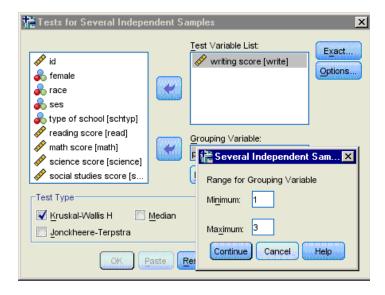
Cases Included Excluded Total Percent Percent Percent Ν Ν Ν writing score * type of 200 100.0% .0% 200 100.0% 0 program

Report

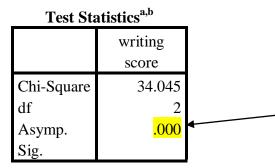
writing score			
type of			Std.
program	Mean	Ν	Deviation
general	51.3333	45	9.39778
academic	<mark>56.2571</mark>	105	7.94334
vocation	<mark>46.7600</mark>	50	9.31875
Total	52.7750	200	9.47859

From this we can see that the students in the academic program have the highest mean writing score, while students in the vocational program have the lowest. For a more detailed analysis refer to <u>Bonferroni for pairwise comparisons</u>.


Index End


The Kruskal Wallis test is used when you have one independent variable with two or more levels and an ordinal dependent variable. In other words, it is the non-parametric version of ANOVA and a generalized form of the Mann-Whitney test method since it permits two or more groups. We will use the same data file as the one way ANOVA example above (the A data file) and the same variables as in the example above, but we will not assume that **write** is a normally distributed interval variable.

Menu selection:- Analyze > Nonparametric Tests > Legacy Dialogs > k Independent Samples


Syntax:- npar tests /k-w = write by prog (1,3).

<u>Analyze</u> Direct <u>M</u> arketing <u>G</u> raph	s <u>U</u> tilities Add- <u>o</u> ns <u>W</u> indow	Help
Reports 🕨 🕨		
D <u>e</u> scriptive Statistics ▶		
Ta <u>b</u> les ▶		
Compare Means 🛛 🕨 🕨		
General Linear Model		
Generalized Linear Models 🕨 🕨		
Mixed Models		
<u>C</u> orrelate ►		
Regression 🕨 🕨		
L <u>o</u> glinear ▶		
Neural Net <u>w</u> orks		
Classi <u>f</u> y		
Dimension Reduction		
Sc <u>a</u> le ▶		1
Nonparametric Tests	🛕 One Sample	
Forecasting	\Lambda Independent Samples	
<u>S</u> urvival	Related Samples	
Multiple Response	Legacy Dialogs	
疑 Missing Value Anal <u>y</u> sis		Chi-square
Multiple Imputation		<u>9/1</u> <u>B</u> inomial
Complex Samples		***** <u>R</u> uns
Quality Control		<u> 1</u> -Sample K-S
🖉 ROC Cur <u>v</u> e		2 Independent Samples
		K Independent Samples
		📉 2 Related Samples
		🔣 K Related <u>S</u> amples

	Ranks					
	type of		Mean			
	program	Ν	Rank			
writing	general	45	90.64			
score	academic	105	121.56			
	vocation	50	65.14			
	Total	200				

a. Kruskal Wallis Testb. Grouping Variable: type of program

If some of the scores receive tied ranks, then a correction factor is used, yielding a slightly different value of chi-squared. With or without ties, the results indicate that there is a statistically significant difference ($p \le .0005$) among the three type of programs.

Index End

A paired (samples) t-test is used when you have two related observations (i.e., two observations per subject) and you want to see if the means on these two normally distributed interval variables differ from one another. For example, using the A data file we will test whether the mean of **read** is equal to the mean of **write**.

Menu selection:- Analyze > Compare Means > Paired-Samples T test

Syntax:- t-test pairs = read with write (paired).

<u>A</u> nalyze	Direct <u>M</u> arketing	Graphs	Utilities	Add- <u>o</u> ns	<u>W</u> indow	Help
Repo	orts	•		2	Ē	
Desc	criptive Statistics	- F				
Ta <u>b</u> le	es	- >				
Com	pare Means	-	Mean	s		
Gene	eral Linear Model	- >	One-	Sample T Te:	st	
Gene	erali <u>z</u> ed Linear Mode	els 🕨		_		
Mi <u>x</u> e	d Models	- F		enden <u>t</u> -Sam		
Corr	elate	- >	Paire	d-Samples T	Test	
<u>R</u> egr	ession	- F	🚺 <u>O</u> ne-\	Way ANO∨A	۹	
L <u>o</u> gli	near	- • T				
Neur	al Net <u>w</u> orks	- F				
Clas	si <u>f</u> y	- Þ.				
Dime	nsion Reduction	•				
Scal	e	•				
Non	parametric Tests	•				
Fore	casting	•				
Surv	ival	•				
M <u>u</u> lti	ple Response	•				
🎉 Miss	ing ∀alue Anal <u>y</u> sis.					
Multi	ple Imputation	•				
Com	plex Samples	•				
Qual	ity Control					
🖉 ROC	Cur <u>v</u> e					

🕌 Paired-Samples T Test		Paired Va	riables:			×	
id id		Pair	Variable1	Variable2		Options	
Semale		1	🔗 reading	🗳 writing s		<u>B</u> ootstrap	
ace		2					
💰 ses					auton		
type of school [schtyp]					1. A		
💑 type of program [prog]							
💉 reading score [read]	Canada						
🔗 writing score [write]							
math score [math]							
science score [science]					United		
🛷 social studies score [s							
	OK Paste Reset Cancel Help						

Paired Samples Statistics						
				Std.	Std. Error	
		Mean	Ν	Deviation	Mean	
Pair 1	reading score	52.2300	200	10.25294	.72499	
	writing score	52.7750	200	9.47859	.67024	

Paired Samples Correlations					
		Correlatio			
	Ν	n	Sig.		
Pair 1 reading score &	200	597	000		

writing score

	Paired Samples Test						
		Paired Differences					
			Std.	Std. Error			
		Mean	Deviation	Mean			
Pair 1	reading score - writing	54500	8.88667	.62838			
	score						

These results indicate that the mean of **read** is not statistically significantly different from the mean of **write** (t = -0.867, p = 0.387).

The confidence interval includes the origin (no difference).

		Paired Di			
		95% Confidence Interval of the Difference			
		Lower	Upper	t	
Pair 1	reading score - writing score	-1.78414	.69414	<mark>867</mark>	

Paired Samples Test

			Sig. (2-	
		df	tailed)	
Pair 1	reading score - writing	199	<mark>.387</mark>	×
	score			

Index End

Wilcoxon signed rank sum test

The Wilcoxon signed rank sum test is the non-parametric version of a paired samples t-test. You use the Wilcoxon signed rank sum test when you do not wish to assume that the difference between the two variables is interval and normally distributed (but you do assume the difference is ordinal). We will use the same example as above, but we will not assume that the difference between **read** and **write** is interval and normally distributed.

Menu selection:- Analyze > Nonparametric Tests > Legacy Dialogs > 2 Related Samples

Syntax:- npar test /wilcoxon = write with read (paired).

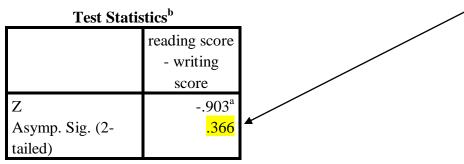
Wilcoxon signed rank sum test

<u>Analyze</u> Direct <u>M</u> arketing <u>G</u>	raphs	Utilities	Add- <u>o</u> ns	Window	Help
Reports	۶.		20		
Descriptive Statistics	۶.				
Ta <u>b</u> les	۶.				
Compare Means	۶.				
<u>G</u> eneral Linear Model	۶.				
Generali <u>z</u> ed Linear Models	۶.				
Mixed Models	۶.				
<u>C</u> orrelate	۶.				
<u>R</u> egression	۶.				
L <u>o</u> glinear	۶.				
Neural Net <u>w</u> orks	۶.				
Classi <u>f</u> y	۶.				
Dimension Reduction	۶.				
Sc <u>a</u> le	*				_
<u>N</u> onparametric Tests	*	🛕 One	Sample		
Forecasting	•	/ Indep	endent Samp	les	
<u>S</u> urvival	•		ed Samples		
Multiple Response	•				
疑 Missing Value Anal <u>y</u> sis		Lega	cy Dialogs	•	Kana Chi-square
Multiple Imputation	۶.				0/1 <u>B</u> inomial
Complex Samples	۶.				AAB <u>R</u> uns
<u>Q</u> uality Control	۴.				<u> 1</u> -Sample K-S
🔀 ROC Cur <u>v</u> e					Independent Samples
					K Independent Samples
					2 Related Samples
					🔣 K Related <u>S</u> amples

Wilcoxon signed rank sum test

🕌 Two-Related-Samples Te	sts					×
		Test Pairs	s:			Exact
🛷 id		Pair		Variable2		
💦 female		1	💞 writing s	🔗 reading	7	Options
💦 race		2				
💦 ses	HILLING OF					
💑 type of school [schtyp]					anna -	
💑 type of program [prog]						
💉 reading score [read]						
writing score [write]		Test Ty	pe			
💉 math score [math]		Vilo	oxon			
science score [science]		Sign	1			
social studies score [s		McN	lemar			
		Mar	ginal <u>H</u> omogeneit	у		
((Paste	Reset Cancel	Help		

Wilcoxon signed rank sum test


	Ranl	KS		
			Mean	Sum of
		Ν	Rank	Ranks
reading score - writing	Negative	97 ^a	95.47	9261.00
score	Ranks			
	Positive Ranks	88 ^b	90.27	7944.00
	Ties	15 ^c		
	Total	200		

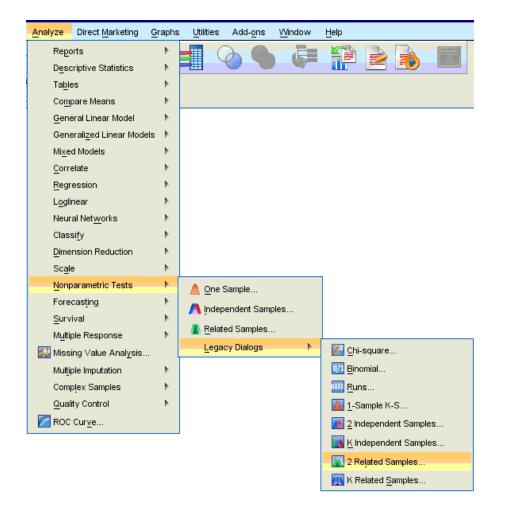
The results suggest that there is not a statistically significant difference (p = 0.366) between **read** and **write**.

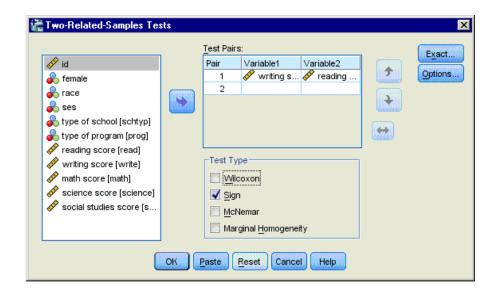
a. reading score < writing score

b. reading score > writing score

c. reading score = writing score

a. Based on positive ranks.


b. Wilcoxon Signed Ranks Test


Index End

If you believe the differences between **read** and **write** were not ordinal but could merely be classified as positive and negative, then you may want to consider a sign test in lieu of sign rank test. The Sign test answers the question "How Often?", whereas other tests answer the question "How Much?". Again, we will use the same variables in this example and assume that this difference is not ordinal.

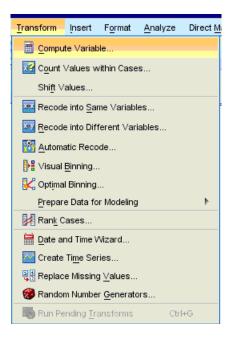
Menu selection:- Analyze > Nonparametric Tests > Legacy Dialogs > 2 Related Samples

Syntax:- npar test /sign = read with write (paired).

You would perform McNemar's test if you were interested in the marginal frequencies of two binary outcomes. These binary outcomes may be the same outcome variable on matched pairs (like a case-control study) or two outcome variables from a single group. Continuing with the A dataset used in several above examples, let us create two binary outcomes in our dataset: himath and hiread. These outcomes can be considered in a two-way contingency table.

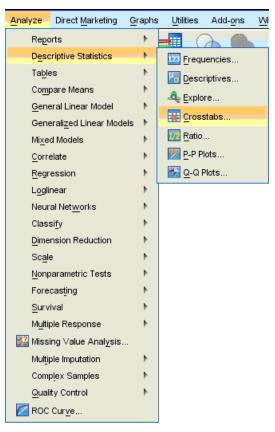
The null hypothesis is that the proportion of students in the **himath** group is the same as the proportion of students in **hiread** group (i.e., that the contingency table is symmetric).

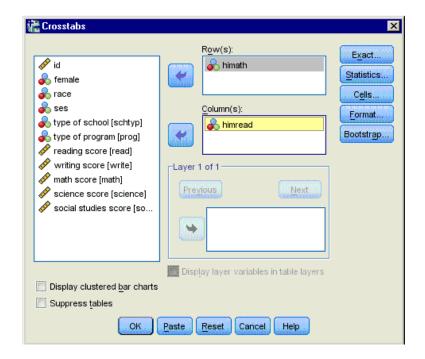
Menu selection:- Transform > Compute Variable


Analyze > Descriptive Statistics > Crosstabs

The syntax is on the next slide.

Syntax:-


COMPUTE himath=math>60. COMPUTE hiread=read>60. EXECUTE.


CROSSTABS /TABLES=himath BY hiread /STATISTICS=MCNEMAR /CELLS=COUNT.

[arget Variable: himath Type & Label	=	Num <u>e</u> ric Expression: math > 60	
 id female race ses type of school [schtyp] type of program [prog] reading score [read] writing score [write] math score [math] science score [science] social studies score [s 		+ < > 7 8 9 - <= >= 4 5 6 • = -= 1 2 3 / 8 1 0 . * ~ () Delete	Function group: All Arithmetic CDF & Noncentral CDF Conversion Current Date/Time Date Arithmetic Date Creation Functions and Special Variabl
(optional case selection	condition		

Which is utilised twice, for math and read

🖥 Crosstabs			×
🔊 id	Crosstabs: Statistics	×	Exact
 female race ses type of sch type of prog reading scc writing scoi math score science scc social studie 	Chi-square Nominal Contingency coefficient Phi and Cramer's V Lambda Uncertainty coefficient Nominal by Interval Eta	Correlations Codinal Gamma Gamma Kendall's tau-b Kendall's tau-c Kappa Risk McNemar	Statistics Cells Format Bootstrap
Display clust	Cochran's and Mantel-Haer Test common odds ratio ec Continue Cancel		

Case Processing Summary Cases Valid Missing Total

	vana		und missing		10tui	
	Ν	Percent	N	Percent	N	Percent
himath *	200	100.0%	0	.0%	200	100.0%
hiread						

himath * hiread Crosstabulation

Count

		hire	ead	
		.00	1.00	Total
himath	.00	135	21	156
	1.00	18	26	44
Total		153	47	200

Chi-	Square Te	sts	
	Value	Exact Sig. (2-sided)	
McNemar Test N of Valid Cases	200	.749 ^a	

a. Binomial distribution used.

Index End

McNemar's chi-square statistic suggests that there is not a statistically significant difference in the proportion of students in the **himath** group and the proportion of students in the **hiread** group.

About the B data file

We have an example data set called B, which is used in Roger E. Kirk's book Experimental Design: Procedures for Behavioral Sciences (Psychology) (ISBN 0534250920).

Syntax:-

display dictionary /VARIABLES s y1 y2 y3 y4.

Variable	Position	Measurement Level
S	1	Ordinal
y1	2	Scale
y2	3	Scale
y3	4	Scale
y4	5	Scale

About the B data file

🚛 13b[1].sav [DataSet1] - IBM SPSS Statistics Data Editor						
<u>F</u> ile <u>E</u> dit <u>V</u>	<u>/</u> iew <u>D</u> ata <u>T</u> r	ransform <u>A</u> naly	yze Direct <u>M</u> ar	keting <u>G</u> raphs	<u>U</u> tilities Ad	d- <u>o</u>
			¥ 🎬		tt 🐮	
	S	y1	y2	y3	y4	
1	1.00	3.00	4.00	4.00	3.00	
2	2.00	2.00	4.00	4.00	5.00	
3	3.00	2.00	3.00	3.00	6.00	
4	4.00	3.00	3.00	3.00	5.00	
5	5.00	1.00	2.00	4.00	7.00	
6	6.00	3.00	3.00	6.00	6.00	
7	7.00	4.00	4.00	5.00	10.00	
8	8.00	6.00	5.00	5.00	8.00	
0						-

Index End

You would perform a one-way repeated measures analysis of variance if you had one categorical independent variable and a normally distributed interval dependent variable that was repeated at least twice for each subject. This is the equivalent of the paired samples t-test, but allows for two or more levels of the categorical variable. This tests whether the mean of the dependent variable differs by the categorical variable. In data set B, y (y1 y2 y3 y4) is the dependent variable that indicates the subject number.

Menu selection:- Analyze > General Linear Model > Repeated Measures

Syntax:- glm y1 y2 y3 y4 /wsfactor a(4).

<u>A</u> nalyze	Direct <u>M</u> arketing	<u>G</u> raphs	Utilities	Add- <u>o</u> ns	Window
Repo	orts	- Þ.		2	
D <u>e</u> so	criptive Statistics	- > -			- Carlos
Ta <u>b</u> le	es	- Þ.			
Com	pare Means	- Þ.			
Gene	eral Linear Model	- >	🔛 Univa	riate	
Gene	erali <u>z</u> ed Linear Mode	ls 🕨	Multiv	ariate	
Mi <u>x</u> e	d Models	•		ated Measur	
<u>C</u> orr	elate	- Þ.			
<u>R</u> egr	ession	•	⊻aria	nce Compon	ents
L <u>o</u> gli	near	- Þ.			
Neur	al Net <u>w</u> orks	•			
Clas	si <u>f</u> y	- Þ.			
<u>D</u> ime	nsion Reduction	- Þ.			
Sc <u>a</u> l	e	- Þ.			
<u>N</u> on;	parametric Tests	- Þ.			
Fore	casting	- Þ.			
<u>S</u> urv	rival	•			
M <u>u</u> lti	ple Response	- Þ.			
🌠 Miss	ing ∀alue Anal <u>y</u> sis				
Multi	ple Imputation	•			
Com	plex Samples	•			
Qual	ity Control	- Þ.			
🖉 ROC	Cur <u>v</u> e				

Within-Subject Fr	actor Name:
Number of Level	a 5: 4
Add	
Reniove	
Measure Name:	
Add	
Remove	
Define Rese	t Cancel Help

You chose the factor name a which you then "Add".

🕌 Repeated Measures Define F 🗙
Within-Subject Factor Name:
Number of Levels:
Add a(4)
Change
Remove
Measure <u>N</u> ame:
Add
Change
Remove
Define Reset Cancel Help

You chose the factor name a which you then "Add".

Repeated Measures		<u>W</u> ithin-Subjects Variables (factor1):	Model
5	* •	y1(1) y2(2) y3(3) y4(4)	Contrasts Plots Post Hoc Save Options
	>	Between-Subjects Factor(s):	
ОК	Paste R	Covariates:	

Within-Subjects Factors

Measure:MEASURE

_1	
	Dependent
a	Variable
1	y1
2	y2
3	y3
4	y4

	Multivariate Tests ^b						
				Hypothesis			
Effec	et	Value	F	df	Error df	Sig.	
a	Pillai's Trace	.754	5.114 ^a	3.000	5.000	.055	
	Wilks' Lambda	.246	5.114 ^a	3.000	5.000	.055	
	Hotelling's Trace	3.068	5.114 ^a	3.000	5.000	.055	
	Roy's Largest	3.068	5.114 ^a	3.000	5.000	.055	
	Root						

a. Exact statistic

b. Design: Intercept

Within Subjects Design: a

Mauchly's Test of Sphericity^b

Measure:MEASURE_1						
Within Subjects	Mauchly's	Approx. Chi-				
Effect	W	Square	df	Sig.		
a	.339	6.187	5	.295		

Mauchly's Test of Sphericity^b

Measure:MEASURE_1

	Epsilon ^a				
Within Subjects Effect	Greenhouse- Geisser	Huynh- Feldt	Lower- bound		
А	.620	.834	.333		

Tests the null hypothesis that the error covariance matrix of the orthonormalized transformed dependent variables is proportional to an identity matrix.

a. May be used to adjust the degrees of freedom for the averaged tests of significance. Corrected tests are displayed in the Tests of Within-Subjects Effects table.

Tests of Within-Subjects Effects

Measure: MEASURE 1

Source		Type III Sum of Squares	df	Mean Square	F	Sig.
A	Sphericity	49.000	ui 3	16.333	11.627	.000
A	Assumed	49.000	3	10.555	11.027	<mark>.000</mark>
	Greenhouse-	49.000	1.859	26.365	11.627	.001
	Geisser					
	Huynh-Feldt	49.000	2.503	19.578	11.627	<mark>.000</mark>
	Lower-bound	49.000	1.000	49.000	11.627	.011
Error(a)	Sphericity	29.500	21	1.405		
	Assumed					
	Greenhouse-	29.500	13.010	2.268		
	Geisser					
	Huynh-Feldt	29.500	17.520	1.684		
	Lower-bound	29.500	7.000	4.214		

Tests of Within-Subjects Contrasts

Measure: MEASURE 1 Type III Sum Mean of Squares F Source df Square Sig. 19.294 .003 Α Linear 44.100 44.100 Quadrati 4.500 4.500 3.150 .119 с .800 Cubic .400 .400 .401 16.000 Error(a) Linear 2.286 10.000 1.429 Quadrati с Cubic 3.500 .500

Tests of Between-Subjects Effects

Measure:MEASURE_1

Transfor	med Variable:A	ed Variable: Average					
	Type III Sum		Mean				
Source	of Squares	df	Square	F	Sig.		
Intercep	578.000	1	578.000	128.444	.000		
t							
Error	31.500	7	4.500				

Tests of Within-Subjects Effects

Measure:MEASURE_1

		Type III Sum		Mean		
Source		of Squares	df	Square	F	Sig.
А	Sphericity	49.000	3	16.333	11.627	.000 -
	Assumed					
	Greenhouse-	49.000	1.859	26.365	11.627	<mark>.001</mark>
	Geisser					
	Huynh-Feldt	49.000	2.503	19.578	11.627	<mark>.000</mark>
	Lower-bound	49.000	1.000	49.000	11.627	<mark>.011</mark>
Error(a)	Sphericity	29.500	21	1.405		
	Assumed					
	Greenhouse-	29.500	13.010	2.268		
	Geisser					
	Huynh-Feldt	29.500	17.520	1.684		
	Lower-bound	29.500	7.000	4.214		

Index End

You will notice that this output gives four different p-values. The output labelled -"sphericity assumed" is the pvalue (<0.0005) that you would get if you assumed compound symmetry in the variancecovariance matrix. Because that assumption is often not valid, the three other p-values offer various corrections (the Huynh-Feldt, H-F, Greenhouse-Geisser, G-G and Lower-bound). No matter which p-value you use, our results indicate that we have a statistically significant effect of a at the .05 level.

Factor(s) and Factor Interaction	
(O) (ED A111)	
(OVERALL)	a
a	₩
	Compare main effects
	Confidence interval adjustment
	Bonferroni
	Sundrum
lisplay	
	Transformation matrix
	Transformation matrix
Descriptive statistics	
 Descriptive statistics Estimates of effect size 	Homogeneity tests
	Homogeneity tests Spread vs. level plot
Estimates of effect size	
Estimates of effect size	Spread vs. level plot

This is a minor extension of the previous analysis.

Menu selection:-

- Analyze
- > General Linear Model
- > Repeated Measures

Syntax:-

GLM y1 y2 y3 y4 /WSFACTOR=a 4 Polynomial /METHOD=SSTYPE(3)

Only the additional outputs are presented.

Descriptive Statistics				
Mean	Std. Deviation	N		
3.0000	1.51186	8		
3.5000	.92582	8		
4.2500	1.03510	8		
6.2500	2.12132	8		

This table simply provides important descriptive statistics for the analysis as shown below.

Estimated Marginal Means

а

Estimates

Measure:MEASURE_1

			95% Confidence Interval	
а	Mean	Std. Error	Lower Bound	Upper Bound
1	3.000	.535	1.736	4.264
2	3.500	.327	2.726	4.274
3	4.250	.366	3.385	5.115
4	6.250	.750	4.477	8.023

Using post hoc tests to examine whether estimated marginal means differ for levels of specific factors in the model.

Pairwise Comparisons

Measure:MEASURE_1									
		Mean Difference			95% Confidence Interval for Difference ^a				
(I) a	(J) a	(I-J)	Std. Error	Sig. ^a	Lower Bound	Upper Bound			
1	2	500	.327	1.000	-1.690	.690			
	3	-1.250	.491	.230	-3.035	.535			
	4	-3.250 [*]	.726	.017	-5.889	611			
2	1	.500	.327	1.000	690	1.690			
	3	750	.412	.668	-2.248	.748			
	4	-2.750	.773	.056	-5.562	.062			
3	1	1.250	.491	.230	535	3.035			
	2	.750	.412	.668	748	2.248			
	4	-2.000	.681	.131	-4.477	.477			
4	1	3.250	.726	.017	.611	5.889			
	2	2.750	.773	.056	062	5.562			
	3	2.000	.681	.131	477	4.477			

Based on estimated marginal means

a. Adjustment for multiple comparisons: Bonferroni.

*. The mean difference is significant at the .05 level.

The results presented in the **Tests** of Within-Subjects Effects table, the Huynh-Feldt (p < .0005) informed us that we have an overall significant difference in means, but we do not know where those differences occurred.

This table presents the results of the Bonferroni post-hoc test, which allows us to discover which specific means differed.

Remember, if your overall ANOVA result was not significant, you should not examine the Pairwise Comparisons table.

Pairwise Comparisons

Measure:	/IEASI	JRE 1

Measure.measure_i										
	-	Mean Difference			95% Confidence Interval for Difference ^a					
(I) a	(J) a	(I-J)	Std. Error	Sig. ^a	Lower Bound	Upper Bound				
1	2	500	.327	1.000	-1.690	.690				
	3	-1.250	.491	.230	-3.035	.535				
	4	-3.250*	.726	.017	-5.889	611				
2	1	.500	.327	1.000	690	1.690				
	3	750	.412	.668	-2.248	.748				
	4	-2.750	.773	.056	-5.562	.062				
3	1	1.250	.491	.230	535	3.035				
	2	.750	.412	.668	748	2.248				
	4	-2.000	.681	.131	-4.477	.477				
4	1	3.250 [*]	.726	.017	.611	5.889				
	2	2.750	.773	.056	062	5.562				
	3	2.000	.681	.131	477	4.477				

We can see that there was a significant difference between 1 and 4 (p = 0.017), while 2 and 4 merit further consideration.

Based on estimated marginal means

a. Adjustment for multiple comparisons: Bonferroni.

*. The mean difference is significant at the .05 level.

Multivariate Tests									
						Partial Eta			
	Value	F	Hypothesis df	Error df	Sig.	Squared			
Pillai's trace	.754	5.114 ^a	3.000	5.000	.055	.754			
Wilks' lambda	.246	5.114 ^a	3.000	5.000	.055	.754			
Hotelling's trace	3.068	5.114 ^a	3.000	5.000	.055	.754			
Roy's largest root	3.068	5.114 ^a	3.000	5.000	.055	.754			

Each F tests the multivariate effect of a. These tests are based on the linearly independent pairwise comparisons

among the estimated marginal means.

a. Exact statistic

The table provides four variants of the F test. Wilks' lambda is the most commonly reported. Usually the same substantive conclusion emerges from any variant. For these data, we conclude that none of effects are significant (p = 0.055).

Multivariate Tests									
						Partial Eta			
	Value	F	Hypothesis df	Error df	Sig.	Squared			
Pillai's trace	.754	5.114 ^a	3.000	5.000	.055	.754			
Wilks' lambda	.246	5.114 ^a	3.000	5.000	.055	.754			
Hotelling's trace	3.068	5.114 ^a	3.000	5.000	.055	.754			
Roy's largest root	3.068	5.114 ^a	3.000	5.000	.055	.754			

Each F tests the multivariate effect of a. These tests are based on the linearly independent pairwise comparisons

among the estimated marginal means.

a. Exact statistic

Wilks lambda is the easiest to understand and therefore the most frequently used. It has a good balance between power and assumptions. Wilks lambda can be interpreted as the multivariate counterpart of a univariate R-squared, that is, it indicates the proportion of generalized variance in the dependent variables that is accounted for by the predictors.

Paper

Correct Use of Repeated Measures Analysis of Variance E. Park, M. Cho and C.-S. Ki. Korean J Lab Med 2009 **29** 1-9

Index End

About the C data file

The C data set contains 3 pulse measurements from each of 30 people assigned to 2 different diet regiments and 3 different exercise regiments.

Syntax:-

display dictionary

/VARIABLES id diet exertype pulse time highpulse.

Variable	Position
id	1
diet	2
exertype	3
pulse	4
time	5
highpulse	6

About the C data file

🚘 13c[1].sav [DataSet1] - IBM SPSS Statistics Data Editor									
<u>F</u> ile <u>E</u> dit	<u>V</u> iew <u>D</u> ata	Transform	<u>A</u> nalyze	Direct <u>M</u> ar	keting <u>G</u> raphs	<u>U</u> tilities Add	d- <u>o</u> ns <u>W</u> indow	l	
						h 👬			
	id	die	t e	exertype	pulse	time	highpulse		
1	1	.00	1.00	1.00	85.00	1.00	.00		
2	1	.00	1.00	1.00	85.00	2.00	.00		
3	1	.00	1.00	1.00	88.00	3.00	.00		
4	2	2.00	1.00	1.00	90.00	1.00	.00		
5	2	2.00	1.00	1.00	92.00	2.00	.00		
6	2	2.00	1.00	1.00	93.00	3.00	.00		
7	3	3.00	1.00	1.00	97.00	1.00	.00		
8	3	3.00	1.00	1.00	97.00	2.00	.00		
9	3	3.00	1.00	1.00	94.00	3.00	.00		
10	4	.00	1.00	1.00	80.00	1.00	.00		
11	4	.00	1.00	1.00	82.00	2.00	.00		
12	4	.00	1.00	1.00	83.00	3.00	.00		
13	5	.00	1.00	1.00	91.00	1.00	.00		
14	5	5.00	1.00	1.00	92.00	2.00	.00		
15	5	.00	1.00	1.00	91.00	3.00	.00		
16	6	6.00	2.00	1.00	83.00	1.00	.00		
17	6	6.00	2.00	1.00	83.00	2.00	.00		
18	6	6.00	2.00	1.00	84.00	3.00	.00		

Index End

Repeated measures logistic regression

If you have a binary outcome measured repeatedly for each subject and you wish to run a logistic regression that accounts for the effect of multiple measures from single subjects, you can perform a repeated measures logistic regression. In SPSS, this can be done using the **GENLIN** command and indicating binomial as the probability distribution and logit as the link function to be used in the model. In C, if we define a "high" pulse as being over 100, we can then predict the probability of a high pulse using diet regime.

Menu selection:- Analyze > Generalized Estimating Equations

However see the next slide.

Repeated measures logistic regression

While the drop down menu's can be employed to set the arguments it is simpler to employ the syntax window.

Syntax:-

GENLIN highpulse (REFERENCE=LAST) BY diet (order=DESCENDING) /MODEL diet DISTRIBUTION=BINOMIAL LINK=LOGIT /REPEATED SUBJECT=id CORRTYPE=EXCHANGEABLE.

Repeated measures logistic regression

<u>A</u> nalyze	Direct <u>M</u> arketing	<u>G</u> raphs	Utilities	Add- <u>o</u> ns	<u>W</u> indow	Help
Repo	orts	•				
D <u>e</u> so	riptive Statistics	- • E		0		
Table	es					
Com	oare Means	•				
<u>G</u> ene	eral Linear Model					
Gene	erali <u>z</u> ed Linear Mode	els 🕨	🙀 Gener	ralized Linea	r Models	
Mi <u>x</u> e	d Models	- F -			ating Equatio	ine
Corre	elate	- > L	Central	alized Estim		13
<u>R</u> egr	ession	•				
L <u>o</u> gli	near					
Neur	al Net <u>w</u> orks					
Class	si <u>f</u> y					
Dime	nsion Reduction					
Sc <u>a</u> l	e					
<u>N</u> onp	arametric Tests					
Fore	casting					
<u>S</u> urv	ival	•				
M <u>u</u> ltij	ole Response					
🎉 Missi	ing ∀alue Anal <u>y</u> sis.					
Mul <u>t</u> ij	ole Imputation					
Com	olex Samples					
<u>Q</u> ual	ity Control					
🖉 ROC	Cur <u>v</u> e					

epeated Type of Model Resp	oonse Predictors Model Estimation Statistics EM Means Save Export	
ariables:	Subject variables:	
🔗 diet	id 🖉	+
🔗 exertype		•
🖗 pulse	Cartheory	÷
🐓 time 🌮 highpulse		
 Ingripuise 	Within-subject variables:	
		+
		÷
	Sort cases by subject and within-subject variables	
	Covariance Matrix	
	Robust estimator O Model-based estimator	
	-Working Correlation Matrix-	
	Structure: Independent 💌 🖄	
	Adjust estimator by number of non-redundant parameters	
	Maximum iterations: 100	
	Update matrix Iterations between updates: 1	
	Convergence Criteria	
	At least one convergence criterion must be specified with a minimum greater than zero.	
	Minimum: Type:	
	Change in parameter estimates 1E-006 Absolute In Min	
	Hessian convergence Absolute	

epeated Type of Model Res	nse Predictors Model Estimation Statistics EM Means Save Export	
ariables:	<u>S</u> ubject variables:	
🖉 diet	🔊 id	+
🔗 exertype		^
🌮 pulse 🐓 time		¥
🖗 highpulse	Within-subject variables:	
		†
		J.
	Sort cases by subject and within-subject variables	
	Covariance Matrix	
	Robust estimator O Model-based estimator	
	-Working Correlation Matrix	
	Structure: Independent Internet Mt	
	Adjust es Independent	
	AR(1)	-
	Maximum iter Exchangeable M-dependent	
	Update MUnstructured	
	Convergence Criteria	_
	At least one convergence criterion must be specified with a minimum greater than zero.	
	Minimum: Type:	
	Change in parameter estimates 1E-006 Absolute	
	Hessian convergence Absolute	

eneralized Estimating Equations epeated Type of Model Response Predictors Mo	del Estimation Statistics EM Means Save Export
noose one of the model types listed below or specify a	custom combination of distribution and link function.
Scale Response	Ordinal Response
◯ Linear	Ordinal logistic
O <u>G</u> amma with log link	Ordinal probit
Counts	○● Binary Response or Events/Trials Data
◯ Poi <u>s</u> son loglinear	Binary logistic
Negative binomial with log link	◯ Bin <u>a</u> ry probit
 ○ <u>N</u>egative binomial with log link Mixture ✓ <u>T</u>weedie with log link 	◎ Bin <u>a</u> ry probit
Mixture	
 Mixture <u>T</u>weedie with log link T<u>weedie</u> with identity link 	
Mixture <u>T</u> weedie with log link Tweedie with identity link Custom <u>Custom</u>	

Generalized Estimating Equations	
Repeated Type of Model Response	Predictors Model Estimation Statistics EM Means Save Export
ariables:	Dependent Variable
id id iet iet iet iet iet iet iet iet	Dependent Variable: Pependent Variable: Category order (multinomial only): Ascending Type of Dependent Variable (Binomial Distribution Only) Dependent Variable (Binomial Distribu
	Scale Weight Scale Weight ∀ariable:
	OK Paste Reset Cancel Help

eneralized Estimatir	ng Equations
epeated Type of Mod	lel Response Predictors Model Estimation Statistics EM Means Save Export
ariables:	Dependent Variable
by id f diet f exertype f pulse f time	Dependent Variable:
	Continue Cancel Help
	Scale Weight Variable:

Repeated Type of Model Response Predictors	Model Estimation Statistics EM Means Save Export
/ariables:	11 Factors:
∲ id ∲ exertype ∲ pulse ∲ time	✓ diet
	Options
	Offset ● Variable ● Offset Variable:
	♥ Fixed value Value:

Repeated Type of Model F	sponse Predictors Model Estimation Statistics EM Means Save Export	
<u>∕</u> ariables:	Specify how to treat cases with user-missing values on factors, subject variables, or within-subject variables.	¢
	always excluded. Category Order for Factors Ascending Descending Use data order The last unique category may be associated with a redundant parameter in the estimation algorithm.	≁
	Continue Cancel Help]

Specify Model Effects Factors and Covariates: Image: Imag	Generalized Estimating Equat		Estimation Stat	istics EM Means	Save Export	2
Build Term(s) Type: Main effects Image: Second sec						
Build Term(s) Type: Main effects Image: Second state of the second state of	-	n 6				
Build Nested Term Ierm: Image: State of the state		Build Term(s)	alet			2000005
Build Nested Term Image: Ima		L				
Term: By * Add to Model	-Build Nested Term	1	lumber of Effects i	n Model: 1		
☑ Include intercept in model	Term:	in)		A	id to Model	Clear
OK Paste Reset Cancel Help	☑ Include intercept in model					

D

м

Model Information

Dependent Variable	highpulse ^a
Probability Distribution	Binomial
Link Function	Logit
Subject 1	id
Effect	
Westing Completion Matrix Company	Evologooble

Working Correlation Matrix Structure Exchangeable a. The procedure models .00 as the response, treating 1.00 as the

reference category.

Case Processing Summary

	N	Percent
Included	90	100.0%
Exclude	0	.0%
d		
Total	90	100.0%

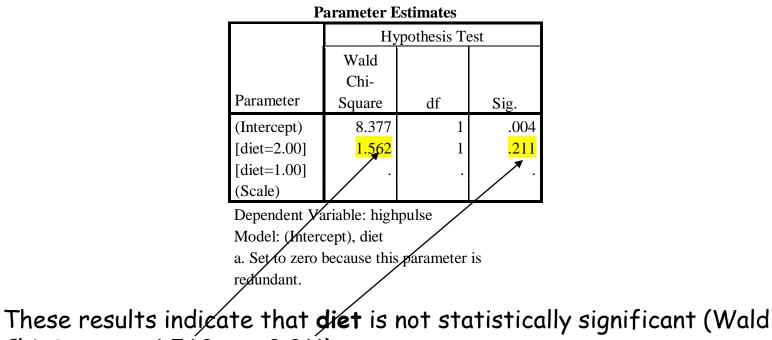
Correlated Data Summary				
Number of Levels	Subject Effect	id	30	
Number of Subjects	Enter		30	
Number of	Minimum		3	
Measurements per	Maximum		3	
Subject				
Correlation Matrix D	imension		3	

Categorical Variable Information

			Ν	Percent
Dependent	highpulse	.00	63	70.0%
Variable		1.00	27	30.0%
		Total	90	100.0%
Factor	diet	2.00	45	50.0%
		1.00	45	50.0%
		Total	90	100.0%

Goodness of Fit ^b			
	Value		
uasi Likelihood under	113.98		
ndependence Model			
riterion (QIC) ^a			
orrected Quasi Likelihood 1			
nder Independence Model			
riterion (QICC) ^a			
ependent Variable: highpul	se		
Iodel: (Intercept), diet			
Computed using the full lo	g quasi-		

a. Computed using the run log quasilikelihood function.
b. Information criteria are in small-isbetter form.


Tests of Model Effects

		Type III		
Source	Wald Chi- Square	df	Sig.	
(Intercept)	8.437	1	.004	
diet	1.562	1	.211	

Dependent Variable: highpulse Model: (Intercept), diet

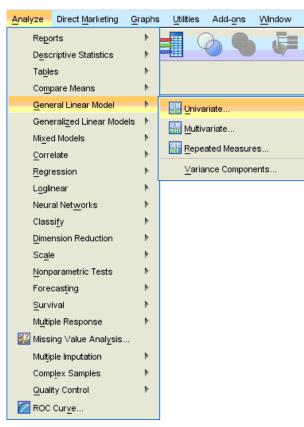
Parameter Estimates				
			95% Wald Confidence Interv	
Parameter	В	Std. Error	Lower	Upper
(Intercept)	1.253	.4328	.404	2.101
[diet=2.00]	754	.6031	-1.936	.428
[diet=1.00]	0^{a}			
(Scale)	1			

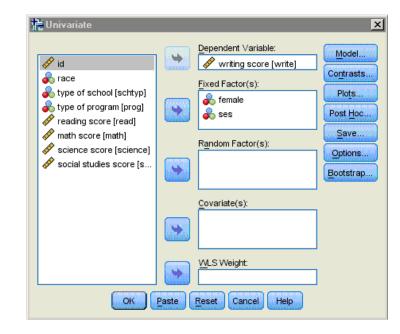
117

Chi-Square = 1.562, p = 0.211).

Index End

A factorial ANOVA has two or more categorical independent variables (either with or without the interactions) and a single normally distributed interval dependent variable. For example, using the A data file we will look at writing scores (**write**) as the dependent variable and gender (**female**) and socio-economic status (**ses**) as independent variables, and we will include an interaction of **female** by **ses**. Note that in SPSS, you do not need to have the interaction term(s) in your data set. Rather, you can have SPSS create it/them temporarily by placing an asterisk between the variables that will make up the interaction term(s). For the approach adopted here, this step is automatic. However see the syntax example below.


Menu selection:- Analyze > General Linear Model > Univariate


Syntax:- glm write by female ses.

Alternate Syntax:-

UNIANOVA write BY female ses /METHOD=SSTYPE(3) /INTERCEPT=INCLUDE /CRITERIA=ALPHA(0.05) /DESIGN=female ses female*ses.

Note the interaction term, female*ses.

Between-Subjects Factors				
		Value Label	Ν	
female	.00	male	91	
	1.00	female	109	
ses	1.00	low	47	
	2.00	middle	95	
	3.00	high	58	

Tests of Between-Subjects Effects

Dependent Variable:writing score

	Type III Sum of				
Source	Squares	df	Mean Square	F 🖌	Si
Corrected Model	2278.244 ^a	5	455.649	<mark>5.666</mark>	
Intercept	473967.467	1	473967.467	5893.972	V,
female	1334.493	1	1334.493	<mark>16.595</mark>	
ses	1063.253	2	531.626	<mark>6.611</mark>	
female * ses	21.431	2	10.715	<mark>.133</mark> -	
Error	15600.631	194	80.416		
Total	574919.000	200			
Corrected Total	17878.875	199			

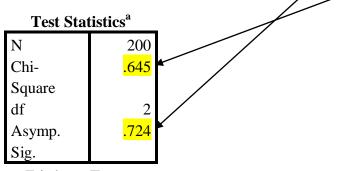
These results indicate that the overall model is statistically significant (F = 5.666, p ≤ 0.0005). The variables female and ses are also statistically significant (F = 16.595, p < 0.0005 and 6.611, p = 0.002, respectively). However, note that interaction between female and ses is not statistically significant <u>(F = 0.133, p = 0.875)</u>.

Index End

a. R Squared = 0127 (Adjusted R Squared = 0105)

You perform a Friedman test when you have one within-subjects independent variable with two or more levels and a dependent variable that is not interval and normally distributed (but at least ordinal). We will use this test to determine if there is a difference in the reading, writing and math scores. The null hypothesis in this test is that the distribution of the ranks of each type of score (i.e., reading, writing and math) are the same. To conduct a Friedman test, the data need to be in a long format (see the next topic).

Menu selection:- Analyze > Nonparametric Tests > Legacy Dialogs > K Related Samples


Syntax:- npar tests /friedman = read write math.

👬 Tests for Several Relate	d Sample	\$	x
 ✓ id ✓ female ✓ race ✓ ses ✓ type of school [schtyp] ✓ type of program [prog] ✓ science score [science] ✓ social studies score [s 		Test Variables:	Exact Statistics
Test Type ✓ Friedman Kendall's W		an's Q Reset Cancel Help	

Ranks		
	Mean	
	Rank	
reading	1.96	
score		
writing score	2.04	
math score	2.01	

Friedman's chi-square has a value of 0.645 and a p-value of 0.724 and is not statistically significant. Hence, there is no evidence that the distributions of the three types of scores are different.

a. Friedman Test

Reshaping data

This example illustrates a wide data file and reshapes it into long form.

Consider the data containing the kids and their heights at one year of age (ht1) and at two years of age (ht2).

FAMID	BIRTH	HT1	НТ2	
1.00 1.00 2.00 2.00 2.00 3.00	1.00 2.00 3.00 1.00 2.00 3.00 1.00	2.80 2.90 2.20 2.00 1.80 1.90 2.20	3.40 3.80 2.90 3.20 2.80 2.40 3.30	
3.00 3.00	2.00 3.00	2.30 2.10	3.40 2.90	
Number of	cases read:	9 Numl	ber of cases listed:	9

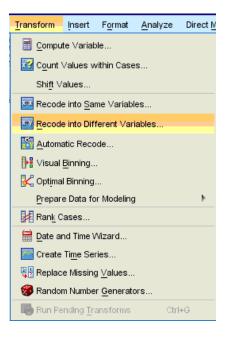
This is called a wide format since the heights are wide. We may want the data to be long, where each height is in a separate observation.

Reshaping data

BIRTH	AGE	HT	
BIRTH 1.00 1.00 2.00 3.00 3.00 1.00 1.00 2.00 3.00 3.00 3.00 3.00 3.00 1.00 1.00 1.00 2.00	AGE 1.00 2.00	HT 2.80 3.40 2.90 3.80 2.20 2.90 2.00 3.20 1.80 2.80 1.90 2.40 2.20 3.30 2.30	
2.00 2.00 3.00 3.00	2.00 1.00 2.00	3.40 2.10 2.90	
	1.00 1.00 2.00 2.00 3.00 3.00 1.00 1.00 2.00 3.00 3.00 1.00 1.00 2.00 2.00 2.00 3.00 3.00	1.001.001.002.002.001.002.002.003.001.003.002.001.001.002.002.002.001.002.002.003.001.003.002.001.001.003.002.001.001.002.001.002.001.003.002.003.001.003.001.00	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Number of cases read: 18 Number of cases listed: 18

We may want the data to be long, where each height is in a separate observation.


Data may be restructured using the point and click function in SPSS, or preprocessing with Excel.

Ordered logistic regression is used when the dependent variable is ordered, but not continuous. For example, using the A data file we will create an ordered variable called **write3**. This variable will have the values 1, 2 and 3, indicating a low, medium or high writing score. We do not generally recommend categorizing a continuous variable in this way; we are simply creating a variable to use for this example.

Menu selection:- Transform > Recode into Different Variables

Syntax:if write ge 30 and write le 48 write3 = 1. if write ge 49 and write le 57 write3 = 2. if write ge 58 and write le 70 write3 = 3. execute.

🕌 Recode into Different Va	Recode into Different Variables 🛛 🔀				
 ✓ id ✓ female ✓ race ✓ ses ✓ type of school [schtyp] ✓ type of program [prog] ✓ reading score [read] ✓ math score [math] ✓ science score [science] ✓ social studies score [s ✓ write3 		Numeric <u>V</u> ariable -> Output Variable: write> ? Old and New Values (optional case selection condition)	Output Variable Name: write3 Label: Change		
	(ok	Paste Reset Cancel Help			

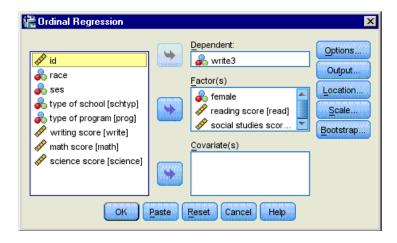
🕌 Recode into Different Variables: Old a	nd New Values 🛛 🗙
_Old ∀alue	New Value
© <u>∨</u> alue:	© ∨a <u>l</u> ue: 3
	O System-missing
○ System-missing	Copy old value(s)
◯ System- or <u>u</u> ser-missing	
Range:	Ol <u>d</u> > New:
58	30 thru 48> 1
through	49 thru 57> 2
70	
	Change
Q Range, LOWEST through value:	Remove
Range, value through HIGHEST:	
	Output variables are strings Width: 8
O All other values	Convert numeric strings to numbers ('5'->5)
Continue	Cancel Help

"Add" to create rules and finally "Change"

Recode into Different Variables: Old	d and New Values
Old Value	New Value
© <u>∨</u> alue:	© ∨aļue:
	© S⊻stem-missing
System-missing	Copy old value(s)
O System- or <u>u</u> ser-missing	
Range:	Ol <u>d</u> > New:
	30 thru 48> 1
	49 thru 57> 2
through	58 thru 70> 3
	Change
Range, LOWEST through value:	
	Remove
Range, value through HIGHEST:	
	Output variables are strings Width: 8
◯ All <u>o</u> ther values	Convert numeric strings to numbers ('5'->5)
Cont	inue Cancel Help

finally "continue"

hecode into Different Va 👬	riables		×
 id female race ses type of school [schtyp] type of program [prog] reading score [read] reading score [math] science score [science] social studies score [s write3 	~	Numeric <u>V</u> ariable -> Output Variable: write> write3 Old and New Values [f (optional case selection condition)	Output Variable <u>Name:</u> write3 <u>Label:</u> Change
	OK	Paste Reset Cancel Help	


use "change" to execute

We will use gender (**female**), reading score (**read**) and social studies score (**socst**) as predictor variables in this model. We will use a logit link and on the **print** subcommand we have requested the parameter estimates, the (model) summary statistics and the test of the parallel lines assumption.

Menu selection: - Analyze > Regression > Ordinal

Syntax:- plum write3 with female read socst /link = logit /print = parameter summary tparallel.

<u>A</u> nalyze	Direct <u>M</u> arketing	<u>G</u> raphs	Utilities	Add- <u>o</u> ns	Window	Help
Repo	orts	•				
Desc	criptive Statistics	•				
Ta <u>b</u> le	es	•				
Com	pare Means	•				
<u>G</u> ene	eral Linear Model	•				
Gene	erali <u>z</u> ed Linear Mode	ls 🕨				
Mi <u>×</u> e	d Models	•				
Corr	elate	•				
Regr	ession	- >	🗾 Autor	natic Linear I	Modeling	
L <u>o</u> gli	near	•	Linea	r		
Neur	al Net <u>w</u> orks	•		e Estimation		
Class	si <u>f</u> y	- Þ.	_			
Dime	nsion Reduction	- Þ	1 Partia	l Lea <u>s</u> t Squa	ires	
Sc <u>a</u> l	e	•	👪 Binar	y Lo <u>g</u> istic		
Nonp	arametric Tests	•	🕌 Multin	omial Logisti	c	
Fore	casting	- Þ.	Crdin	al		
<u>S</u> urv	ival	- Þ	Probit			
M <u>u</u> ltij	ple Response	- Þ -				
🚧 Miss	ing ∀alue Anal <u>y</u> sis		Monlir			
Multi	ple Imputation	•	Weigh	nt Estimation		
Com	plex Samples	•	🚹 <u>2</u> -Sta	ge Least Sq	uares	
Qual	ity Control	•	Optim	al Scaling (C	ATREG)	
🖉 ROC	Cur <u>v</u> e	ļ				

🕌 Ordinal Regression: Output	X
Display Print iteration history for every 1 step(s) Goodness of fit statistics Summary statistics	Saved Variables <u>E</u> stimated response probabilities Predicted category Predicted category probability
Guinnary statistics Parameter estimates Asymptotic correlation of parameter estimates Asymptotic covariance of parameter estimates	Print Log-Likelihood
Cell information	 Including multinomial constant Excluding multinomial constant
Continue	Help

Case Processing Summary				
			Marginal	
		N	Percentage	
write3	1.00	61	30.5%	
	2.00	61	30.5%	
	3.00	78	39.0%	
Valid		200	100.0%	
Missing		0		
Total		200		

Link function: Logit.

Pseudo R-Square			
Cox and Snell	.462		
Nagelkerke	.521		
McFadden	.284		
Link function: L	ogit		

		Parame	ter Estimate	s			_
		Estimate	Std. Error	Wald	df	Sig.	
Threshold	[write3 = 1.00]	9.704	1.203	65.109	1	<mark>.000</mark> .	
	[write3 = 2.00]	11.800	1.312	80.868	1	<mark>.000</mark>	V
Location	female	1.285	.322	15.887	1	<mark>.000</mark> .	_
	read	.118	.022	29.867	1	<mark>.000</mark>	
	socst	.080	.019	17.781	1	<mark>.000</mark>	

Parameter Estimates				
		95% Confidence Interval		
		Lower Bound	Upper Bound	
Threshold	[write3 = 1.00]	7.347	12.061	
	[write3 = 2.00]	9.228	14.372	
Location	female	.653	1.918	
	read	.076	.160	
	socst	.043	.117	

Link function: Logit.

	Test of Pa	rallel Lines ^a			_
Model	-2 Log Likelihood	Chi-Square	df	Sig.	
Null Hypothesis General	252.151 250.104	2.047	3	<mark>.563</mark>	K

The null hypothesis states that the location parameters (slope coefficients) are the same across response categories. a. Link function: Logit.

The results indicate that the overall model is statistically significant ($p \le .0005$), as are each of the predictor variables ($p \le .0005$). There are two thresholds for this model because there are three levels of the outcome variable. We also see that the test of the proportional odds assumption is non-significant (p = 0.563). One of the assumptions underlying ordinal logistic (and ordinal probit) regression is that the relationship between each pair of outcome groups is the same. In other words, ordinal logistic regression assumes that the coefficients that describe the relationship between, say, the lowest versus all higher categories of the response variable are the same as those that describe the relationship between the next lowest category and all higher categories, etc. This is called the proportional odds assumption or the parallel regression assymption. Because the relationship between all pairs of groups is the same, there is only one set of coefficients (only one model). If this was not the case, we would need different models (such as a generalized ordered logit model) to describe the relationship between each pair of outcome groups.

Index End

A factorial logistic regression is used when you have two or more categorical independent variables but a dichotomous dependent variable. For example, using the A data file we will use **female** as our dependent variable, because it is the only dichotomous variable in our data set; certainly not because it is common practice to use gender as an outcome variable. We will use type of program (**prog**) and school type (**schtyp**) as our predictor variables. Because **prog** is a categorical variable (it has three levels), we need to create dummy codes for it. SPSS will do this for you by making dummy codes for all variables listed after the keyword **with**. SPSS will also create the interaction term; simply list the two variables that will make up the interaction separated by the keyword **by**.

Menu selection:- Analyze > Regression > Binary Logistic

Simplest to realise via the syntax window.

Syntax:- logistic regression female with prog schtyp prog by schtyp /contrast(prog) = indicator(1).

Analyze Direct Marketing	<u>G</u> raphs	Utilities	Add- <u>o</u> ns	Window	Help
Reports	4				
Descriptive Statistics					
Ta <u>b</u> les	•				
Compare Means	•				
<u>G</u> eneral Linear Model	- Þ-				
Generali <u>z</u> ed Linear Model	s 🕨				
Mixed Models	- Þ.				
<u>C</u> orrelate	- Þ.				
Regression	•	📕 <u>A</u> utor	natic Linear	Modeling	
Loglinear		Linea	r		
Neural Net <u>w</u> orks		_	e Estimation.		
Classi <u>f</u> y	- Þ-				
Dimension Reduction	- Þ-		il Lea <u>s</u> t Squa	ares	
Sc <u>a</u> le	•	Binar	y Lo <u>g</u> istic		
<u>N</u> onparametric Tests	- Þ-	🔛 Multin	nomial Logist	ic	
Forecasting	•	🔛 Or <u>d</u> in	al		
Survival	•	🔛 Probit	t		
Multiple Response	•				
🏭 Missing Value Anal <u>y</u> sis			near		
Multiple Imputation		Weigl	ht Estimation		
Comp <u>l</u> ex Samples	•	2-Sta	ge Least Sq	uares	
<u>Q</u> uality Control		Optim	al Scaling (ATREG)	
🜠 ROC Cur <u>v</u> e	ļ				

Logistic Regression	Dependent: Finale Flock 1 of 1 Previous Covariates: prog(Cat) schtyp Prog(Cat) schtyp	Categorical Save Options Bootstrap
Он	Selection Variable: Rule Paste Reset Cancel Help	

Note that the identification of prog as the categorical variable is made below.

 id female race ses type of school [schtyp] type of program [prog] reading score [read] writing score [write] math score [math] science score [science] social studies score [s 	Dependent: Categorical Save Options Dependent: Save Options Bootstrap Bootstrap

Use Ctrl with left mouse key to select two variables then >a*b> for the product term.

Elogistic Regression: Define Categorical Variables					
<u>C</u> ovariates:		Categorical Covariates:			
type of school [schtyp]					
C i po or program (progr					
		Change Contrast Contrast: Indicator ♥ Change Reference Category: ◎ Last ◎ First			
Continue Cancel Help					

🕌 Logistic Regression: Define Categorical Variables 🛛 🔀					
Covariates: Categorical Covariates:					
of school [schtyp]]	prog(Indicator(first))			
		Change Contrast			
		Contrast:	Indicator Change		
		Reference Category:	© Last ⊘ Eirst		
l	Continue	Cancel Help			

Indicator(1) identifies value 1 as the (first) reference category

Case Processing Summary					
Unweighted Case	es ^a	N	Percent		
Selected Cases	Included in Analysis	200	100.0		
	Missing Cases	0	.0		
	Total	200	100.0		
Unselected Cases	;	0	.0		
Total		200	100.0		

a. If weight is in effect, see classification table for the total number of cases.

Dependent Variable Encoding

Original Value	Internal Value
male	0
female	1

Categorical Variables Codings

			Parameter coding	
		Frequency	(1)	(2)
type of program	general	45	.000	.000
	academic	105	1.000	.000
	vocation	50	.000	1.000

Block 0: Beginning Block

Classification Table^{a,b}

			Predicted			
			female			
	Observed	male	female	Correct		
Step 0	female Male	0	91	.0		
	Female	0	109	100.0		
	Overall Percentage			54.5		

a. Constant is included in the model.

b. The cut value is .500

				Variables in the Equation							
		В	S.E.	Wald	df	Sig.	Exp(B)				
Step 0 0	Constant	.180	.142	1.616	1	.204	1.198				

Variables not in the Equation						
			Score	df	Sig.	
Step 0	Variables	Prog	.053	2	.974	
		prog(1)	.049	1	.826	
		prog(2)	.007	1	.935	
		Schtyp	.047	1	.828	
		prog * schtyp	.031	2	.985	
		prog(1) by schtyp	.004	1	.950	
		prog(2) by schtyp	.011	1	.917	
	Overall Sta	tistics	2.923	5	.712	

Block 1: Method = Enter

Omnibus Tests of Model Coefficients						
Chi-square df Sig.						
Step 1	Step	3.147	5	.677		
	Block	3.147	5	.677		
	Model	<mark>3.147</mark>	5	.677		

Model Summary				
	-2 Log	Cox & Snell R	Nagelkerke R	
Step	likelihood	Square	Square	
1	272.490 ^a	.016	.02	

a. Estimation terminated at iteration number 4 because

parameter estimates changed by less than .001.

	Classification Table ^a					
	-	Predicted				
		fen	nale	Percentage		
	Observed	male	female	Correct		
Step 1	female Male	32	59	35.2		
	Female	31	78	71.6		
	Overall Percentage			55.0		

a. The cut value is .500

1. T. 4. C.M. 1.1.C.

Omnibus Tests of Model Coefficients							
	Chi-square	df	Sig.				
Step	3.147	5	.677				
Block	3.147	5	.677				
Model	<mark>3.147</mark>	5	<mark>.677</mark>				
	Ť		1				
	Block	Step 3.147 Block 3.147	Step 3.147 5 Block 3.147 5				

The results indicate that the overall model is not statistically significant (Likelihood ratio $Chi^2 = 3.147$, p = 0.677). Furthermore, none of the coefficients are statistically significant either. This shows that the overall effect of **prog** is not significant.

A correlation (Pearson correlation) is useful when you want to see the relationship between two (or more) normally distributed interval variables. For example, using the A data file we can run a correlation between two continuous variables, **read** and **write**.

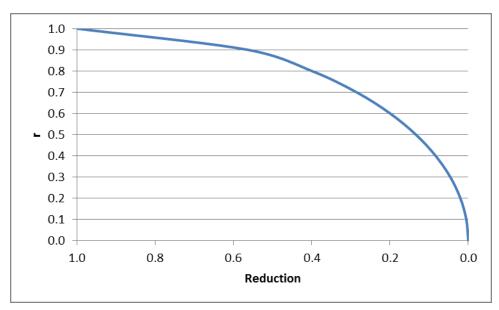
Menu selection:- Analyze > Correlate > Bivariate

Syntax:- correlations /variables = read write.

<u>A</u> nalyze	Direct <u>M</u> arketing	<u>G</u> raphs	Utilities	Add- <u>o</u> ns
Repo	rts	•		
D <u>e</u> sc	riptive Statistics	•		
Table	s	- Þ-		
Com	are Means	- Þ-		
Gene	eral Linear Model	•		
Gene	erali <u>z</u> ed Linear Model	ls 🕨		
Mi <u>x</u> eo	d Models	•		
<u>C</u> orre	elate	- >	🔢 <u>B</u> ivar	iate
Regr	ession	- Þ-	🔣 Partia	al
L <u>o</u> glir	near	•	🐻 Dista	
Neura	al Net <u>w</u> orks	- Þ-	Dista	1003
Class	si <u>f</u> y	- Þ-		
Dime	nsion Reduction	- Þ-		
Sc <u>a</u> le	•	•		
<u>N</u> onp	arametric Tests	- Þ-		
Fore	casting	- Þ-		
<u>S</u> urvi	val	- Þ-		
M <u>u</u> ltip	le Response	•		
🏭 Missi	ng ∀alue Anal <u>y</u> sis			
Multip	le Imputation	- Þ-		
Comp	olex Samples	•		
<u>Q</u> uali	ty Control	•		
🖉 ROC	Cur <u>v</u> e			

🕌 Bivariate Correlations			X
		<u>∨</u> ariables:	Options
🛷 id 📥]	🔗 reading score [read]	
💑 female		🔗 writing score [write]	Bootstrap
💑 race			
💑 ses	(IIIII)		
💫 type of school [scht	hindda		
💫 type of program [pr			
math score [math]			
science score [scie			
💉 encial etudies ecor 🔛	1		
Correlation Coefficients			7
💟 Pearson 🔝 Kendall's tai	u-b 🔝 Spe	arman	
┌ Test of Significance			7
◙ <u>T</u> wo-tailed ○ One-tailed	d		
Flag significant correlation	s		
ОК	Paste	Reset Cancel Help	

С	OPPE		on
		reading score	writing score
reading score	Pearson Correlation	1	597
	Sig. (2-tailed)		.000
	Ν	200	200
writing score	Pearson Correlation	<mark>.597</mark>	1
	Sig. (2-tailed)	.000	
	N	200	200
		-	


In the first example above, we see that the correlation between **read** and **write** is 0.597. By squaring the correlation and then multiplying by 100, you can determine what percentage of the variability is shared, 0.597 when squared is .356409, multiplied by 100 would be 36%. Hence **read** shares about 36% of its variability with **write**.

As a rule of thumb use the following guide for the absolute value of correlation (r):

.00-.19 "very weak" .20-.39 "weak" .40-.59 "moderate" .60-.79 "strong" .80-1.0 "very strong"

Which is based on the coefficient of determination (r²). Which indicates the proportion of variance in each of two correlated variables which is shared by both.

An index of the degree of lack of relationship is also available. It is the square root of the proportion of unexplained variance and is called the coefficient of alienation $(1-r^2)^{\frac{1}{2}}$. This in turn leads to an estimate of error reduction $1-(1-r^2)^{\frac{1}{2}}$.

A Graphic and Tabular Aid To Interpreting Correlation Coefficients 153 J.F. Voorhees Monthly Weather Review **54** 423 1926.

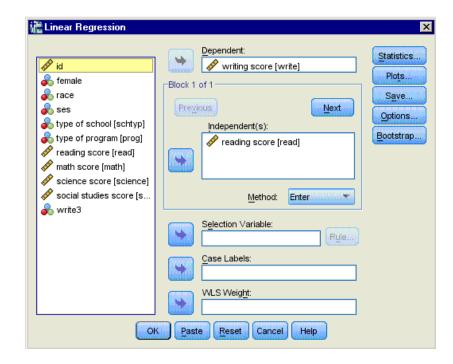
In the second example, we will run a correlation between a dichotomous variable, **female**, and a continuous variable, **write**. Although it is assumed that the variables are interval and normally distributed, we can include dummy variables when performing correlations.

Menu selection:- Analyze > Correlate > Bivariate

Syntax:- correlations /variables = female write.

	Correlation	S	
		female	writing score
female	Pearson Correlation	1	. <mark>256</mark>
	Sig. (2-tailed)		.000
	Ν	200	200
writing score	Pearson Correlation	.256	1
	Sig. (2-tailed)	.000	/
	Ν	200	200

In the output for the second example, we can see the correlation between **write** and **female** is 0.256. Squaring this number yields .065536, meaning that **female** shares approximately 6.5% of its variability with **write**.

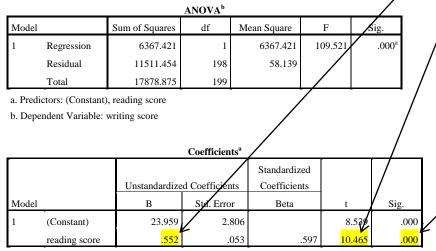

<u>Index</u> End

Simple linear regression allows us to look at the linear relationship between one normally distributed interval predictor and one normally distributed interval outcome variable. For example, using the A data file, say we wish to look at the relationship between writing scores (write) and reading scores (read); in other words, predicting write from read.

Menu selection:- Analyze > Regression > Linear Regression

Syntax:- regression variables = write read /dependent = write /method = enter.

<u>A</u> nalyze	Direct <u>M</u> arketing	<u>G</u> raphs	Utilities	Add- <u>o</u> ns	Window	Help
Repo	orts	•				
Desc	riptive Statistics	•				1
Table	es	- Þ.				
Com	oare Means	•				
<u>G</u> ene	eral Linear Model	•				
Gene	erali <u>z</u> ed Linear Mode	els 🕨				
Mi <u>x</u> e	d Models	•				
<u>C</u> orre	elate	•				
<u>R</u> egr	ession		🗾 <u>A</u> utor	natic Linear	Modeling	
Logli	near	•	Linea	r		
Neur	al Net <u>w</u> orks	•		e Estimation.		
Class	si <u>f</u> y	•				
Dime	nsion Reduction	. ▶.		il Lea <u>s</u> t Squ	ares	
Sc <u>a</u> le	e	•	👪 Binar	y Logistic		
<u>N</u> onp	arametric Tests	•	🔒 Multin	iomial Logist	ic	
Fore	casting	•	🔝 Or <u>d</u> in	al		
<u>S</u> urvi	ival	•	🔛 Probit	t		
M <u>u</u> ltip	ole Response	•		near		
🏭 Missi	ing Value Anal <u>y</u> sis.		_			
Multip	ole Imputation	•		ht Estimation		
Com	olex Samples	•	2-Sta	ge Least So	uares	
<u>Q</u> uali	ity Control	•	Optim	al Scaling (CATREG)	
🖉 ROC	Cur <u>v</u> e	ľ				


Variables Entered/Removed [®]					
	Variables	Variables			
Model	Entered	Removed	Method		
1	reading score		Enter		

a. All requested variables entered.

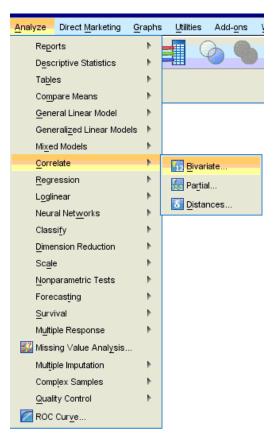
b. Dependent Variable: writing score

Model Summary				
			Adjusted R	Std. Error of the
Model	R	R Square	Square	Estimate
1	.597 ^a	.356	.353	7.62487

a. Predictors: (Constant), reading score

a. Dependent Variable: writing score

We see that the relationship between **write** and **read** is positive (.552) and based on the t-value (10.47) and p-value (<0.0005), we would conclude this relationship is statistically significant. Hence, we would say there is a statistically significant positive linear relationship between reading and writing.


Take care with in/dependent assumptions.

Index End

A Spearman correlation is used when one or both of the variables are not assumed to be normally distributed and interval (but are assumed to be ordinal). The values of the variables are converted to ranks and then correlated. In our example, we will look for a relationship between **read** and **write**. We will not assume that both of these variables are normal and interval.

Menu selection:- Analyze > Correlate > Bivariate

Syntax:- nonpar corr /variables = read write /print = spearman.

👬 Bivariate Correlations			×
		⊻ariables:	Options
🔗 id	A	🛷 reading score [read]	
💑 female		🛷 writing score [write]	Bootstrap
💑 race			
💑 ses			
💑 type of school [scht			
💑 type of program [pr			
🛷 math score [math]			
💉 science score [scie			
🔊 social studies scor	*		J
Correlation Coefficients-			1
Pearson 🕅 Kendall's	tau-b 📝 Spe	arman	
F Test of Significance			
<u> </u> <u> </u> <u> </u> <u> </u> <u> </u> <u> </u> wo-tailed ○ One-tai	led		
📝 Elag significant correlati	ons		
ОК	Paste f	Reset Cancel Help	

			Correlations			-
				reading score	writing score	
	Spearman's rho	reading score	Correlation Coefficient	1.000	<mark>∕.617</mark>	
			Sig. (2-tailed)		<mark>.000</mark>	
			N	200	200	
		writing score	Correlation Coefficient	817	1.000	
			Sig. (2-tailed)	.000		
			N	200	200	
			~			
The results $(\rho = 0.617, p$	suaaest	that the	e relationshi	b betwe	en read	and write
(a - 0.617 n		5) is sta	tictically cia	nificant		
(h - 0.01), h	~ 0.000	5) 15 510	insticutiv sig	mincum	•	

Spearman's correlation works by calculating Pearson's correlation on the ranked values of this data. Ranking (from low to high) is obtained by assigning a rank of 1 to the lowest value, 2 to the next lowest and so on. Thus the p value is only "correct" if there are no ties in the data. In the event that ties occur an exact calculation should be employed. SPSS does not do this. However the estimated value is usually reliable enough.

<u>Comparison Of Values Of Pearson's And Spearman's Correlation</u> <u>Coefficients On The Same Sets Of Data</u> Jan Hauke, Tomasz Kossowski Quaestiones Geographicae 30(2) 87-93 2011

Logistic regressior coded as 0 and 1). coded 0 and 1, and outcome variable (variable), but we c how the code for t output. The first v outcome (or depen are predictor (or i the outcome varial ordinary least sque either dichotomou

is binary (i.e., lata file that is female is a silly is a predictor ble to illustrate to interpret the mand is the the variables ble, female will be ariable. As with bles must be gorical.

Menu selection:- Analyze > Regression > Binary Logistic

Syntax:- logistic regression female with read.

<u>A</u> nalyze	Direct <u>M</u> arketing	<u>G</u> raphs	Utilities	Add- <u>o</u> ns	Window	Help
Repo	rts	•				
D <u>e</u> sc	riptive Statistics	- • •			a second	1
Table	s	•				
Com	oare Means	•				
Gene	ral Linear Model	•				
Gene	erali <u>z</u> ed Linear Mode	els 🕨				
Mi <u>x</u> eo	d Models	•				
<u>C</u> orre	elate	•				
<u>R</u> egr	ession	-	🗾 <u>A</u> utor	natic Linear	Modeling	
L <u>o</u> glir		•	📊 Linea	r		
Neur	al Net <u>w</u> orks	•		e Estimation.		
Class	si <u>f</u> y	•	_	l Least Squa		
Dime	nsion Reduction	•			ares	
Sc <u>a</u> le	•		Binar	y Logistic		
Nonp	arametric Tests	•	🔛 Multin	omial Logist	ic	
Fore	casting	•	🔣 Or <u>d</u> in	al		
<u>S</u> urvi	ival	•	🚻 Probit			
M <u>u</u> ltip	le Response			near		
援 Missi	ng Value Anal <u>y</u> sis		_			
Multip	ole Imputation	•		nt Estimation		
Comp	ex Samples	•	2-Sta	ge Least Sq	uares	
<u>Q</u> uali	ty Control	•	Optim	al Scaling (0	CATREG)	
🖉 ROC	Cur <u>v</u> e	ľ				

http://www.com/com/com/com/com/com/com/com/com/com/		X
 id female race ses type of school [schtyp] type of program [prog] reading score [read] writing score [write] math score [math] science score [science] social studies score [s write3 	Dependent: Covariates: Previous Covariates: read Method: Enter Selection Variable: Rule	Categorical Save Options Bootstrap
OK	Paste Reset Cancel Help	

Case Processing Summary					
Unweighted Case	es ^a	Ν	Percent		
Selected Cases	Included in Analysis	200	100.0		
	Missing Cases	0	.0		
	Total	200	100.0		
Unselected Cases	5	0	.0		
Total		200	100.0		

a. If weight is in effect, see classification table for the total number of cases.

Dependent Variable Encoding

Original Value	Internal Value
male	0
female	1

Block 0: Beginning Block

Classification Table ^{a,b}					
			Predicte	d	
		female Percentage		Percentage	
	Observed	male	female	Correct	
Step 0	female male	0	91	.0	
	female	0	109	100.0	
	Overall Percentage			54.5	

a. Constant is included in the model.

b. The cut value is .500

Variables in the Equation							
		В	S.E.	Wald	df	Sig.	Exp(B)
Step 0	Constant	.180	.142	1.616	1	.204	1.198

Variables not in the Equation					
	Score	df	Sig.		
Step 0 Variables read	.564	1	.453		
Overall Statistics	.564	1	.453		

Block 1: Method = Enter

Omnibus Tests of Model Coefficients

		Chi-square	df	Sig.
Step 1	Step	.564	1	.453
	Block	.564	1	.453
	Model	<mark>.564</mark>	1	.453

Model Summary						
	-2 Log	Cox & Snell R	Nagelkerke R			
Step	likelihood	Square	Square			
1	275.073 ^a	.003	.004			

a. Estimation terminated at iteration number 3 because

parameter estimates changed by less than .001.

Classification	Table ^a
----------------	--------------------

			Predicted			
		female		Percentage		
	Observed	male	female	Correct		
Step 1	female male	4	87	4.4		
	female	5	104	95.4		
	Overall Percentage			54.0		

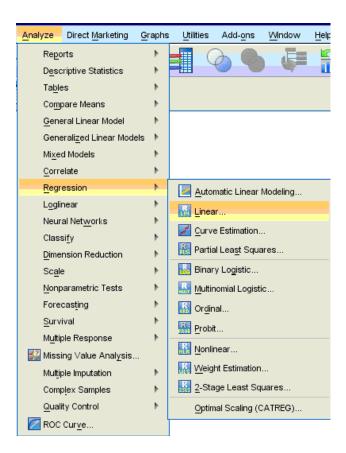

a. The cut value is .500

Variables in the Equation

variables in the Equation						
	В	S.E.	Wald	df	Sig.	Exp(B)
Step 1 ^a read	010	.014	<mark>.562</mark>	1	<mark>.453</mark>	.990
Constant	.726	.742	.958	1	.328	2.067

a. Variable(s) entered on step 1: read.

Block 1: Method = Enter


a. Variable(s) entered on step 1: read.

Index End

Multiple regression is very similar to simple regression, except that in multiple regression you have more than one predictor variable in the equation. For example, using the A data file we will predict writing score from gender (**female**), reading, math, science and social studies (**socst**) scores.

Menu selection:- Analyze > Regression > Linear Regression

Syntax:- regression variable = write female read math science socst /dependent = write /method = enter.

ent: iting score [write] Plots
Next endent(s): male ading score [read] th score [math] m Variable: Rule abels: eight:
r a a

Note additional independent variables within box

Variables Entered/Removed ^b							
Model	Variables Entered	Variables Removed	Method				
1	social studies score, female, science score, math score, reading score		Enter				

a. All requested variables entered.

b. Dependent Variable: writing score

Model	Summar
wouer	Summar

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate		
1	.776 ^a		.591	6.05897		

a. Predictors: (Constant), social studies score, female, science score, math score, reading score

ANOVA ^b							
Model		Sum of Squares	df	Mean Square	F	Sig.	
1	Regression	10756.924	5	2151.385	<mark>58.603</mark>	.000 ^a	
	Residual	7121.951	194	36.711			
	Total	17878.875	199				

a. Predictors: (Constant), social studies score, female, science score, math score, reading score
 b. Dependent Variable: writing score

		С	oefficients ^a				
Model		Unstandardized Coefficients		Standardized Coefficients			
		В	Std. Error	Beta	t	Sig.	
1	(Constant)	6.139	2.808		2.186	.030	
	female	5.493	.875	.289	6.274	.000	×
	reading score	.125	.065	.136	1.931	<mark>.055</mark>	
	math score	.238	.067	.235	3.547	.000	
	science score	.242	.061	.253	3.986	.000	
I	social studies score	.229	.053	.260	4.339	.000	

a. Dependent Variable: writing score

The results indicate that the overall model is statistically significant (F = 58.60, p < 0.0005). Furthermore, all of the predictor variables are statistically significant except for **read**.

There are problems with stepwise model selection procedures, these notes are a health warning.

Various algorithms have been developed for aiding in model selection. Many of them are "automatic", in the sense that they have a "stopping rule" (which it might be possible for the researcher to set or change from a default value) based on criteria such as value of a t-statistic or an Fstatistic. Others might be better termed "semi-automatic," in the sense that they automatically list various options and values of measures that might be used to help evaluate them.

Caution: Different regression software may use the same name (e.g., "Forward Selection" or "Backward Elimination") to designate different algorithms. Be sure to read the documentation to know find out just what the algorithm does in the software you are using - in particular, whether it has a stopping rule or is of the "semi-automatic" variety.

The reasons for not using a stepwise procedure are as follows. There is a great deal of arbitrariness in the procedures. Forwards and backwards stepwise methods will in general give different "best models". There are differing criteria for accepting or rejecting a variable at any stage and also for when to stop and declare the current model "best".

The process gives a false impression of statistical sophistication. Often a complex stepwise analysis is presented, when no proper thought has been given to the real issues involved.

Stepwise regressions are nevertheless important for three reasons. First, to emphasise that there is a considerable problem in choosing a model out of so many, so considerable that a variety of automated procedures have been devised to "help". Second to show that while purely statistical methods of choice can be constructed, they are unsatisfactory. And third, because they are fairly popular ways of avoiding constructive thinking about model selection, you may well come across them. You should know that they exist and roughly how they work.

Stepwise regressions probably do have a useful role to play, when there are large numbers of x-variables, when all prior information is taken carefully into account in inclusion/exclusion of variables, and when the results are used as a preliminary sifting of the many x-variables. It would be rare for a stepwise regression to produce convincing evidence for or against a scientific hypothesis.

"... perhaps the most serious source of error lies in letting statistical procedures make decisions for you."

Good P.I. and Hardin J.W., Common Errors in Statistics (and How to Avoid Them), 4th Edition, Wiley, 2012, p. 3.

"Don't be too quick to turn on the computer. By passing the brain to compute by reflex is a sure recipe for disaster."

Good P.I. and Hardin J.W., Common Errors in Statistics (and How to Avoid Them), 4th Edition, Wiley, 2012, p. 152.

"We do not recommend such stopping rules for routine use since they can reject perfectly reasonable sub-models from further consideration. Stepwise procedures are easy to explain, inexpensive to compute, and widely used. The comparative simplicity of the results from stepwise regression with model selection rules appeals to many analysts. But, such algorithmic model selection methods must be used with caution."

Cook R.D. and Weisberg S., Applied Regression Including Computing and Graphics, Wiley, 1999, p. 280.

In a large world where parameters need to be estimated from small or unreliable samples, the function between predictive accuracy and the flexibility of a model (e.g., number of free parameters) is typically inversely U shaped. Both too few and too many parameters can hurt performance (Pitt et al. 2002). Competing models of strategies should be tested for their predictive ability, not their ability to fit already known data.

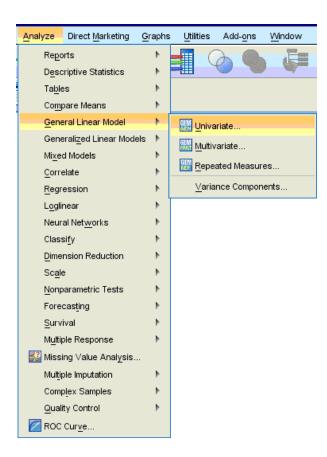
Pitt M.A., Myung I.J. and Zhang S. 2002. "Toward a method for selecting among computational models for cognition" Psychol. Rev. **109** 472-491.

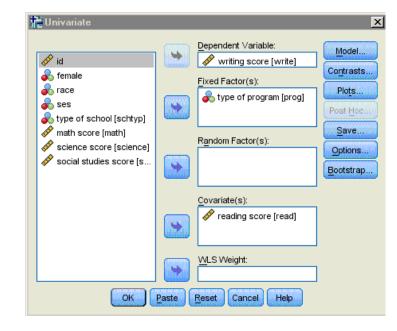
What strategies might we adopt?

Heuristics are a subset of strategies; strategies also include complex regression or Bayesian models. The part of the information that is ignored is covered by Shah and Oppenheimer's (2008) list of five aspects. The goal of making judgments more quickly and frugally is consistent with the goal of effort reduction, where "frugal" is often measured by the number of cues that a heuristic searches.

Multiple regression -Alternatives

Many definitions of heuristics exist Shah and Oppenheimer (2008) proposed that all heuristics rely on effort reduction by one or more of the following:


(a) examining fewer cues,
(b) reducing the effort of retrieving cue values,
(c) simplifying the weighting of cues,
(d) integrating less information,
(e) examining fewer alternatives.


Shah, A.K. and Oppenheimer, D.M. 2008 "Heuristics Made Easy: An Effort-Reduction Framework" Psychological Bulletin 134(2) 207-222 <u>PsycNET</u> <u>Index End</u>

Analysis of covariance is like ANOVA, except in addition to the categorical predictors you also have continuous predictors as well. For example, the one way ANOVA example used **write** as the dependent variable and **prog** as the independent variable. Let's add **read** as a continuous variable to this model, as shown below.

Menu selection:- Analyze > General Linear Model > Univariate

Syntax:- glm write with read by prog.

Between-Sub	jects Factors
-------------	---------------

		Value Label	Ν
type of program	1.00	general	45
	2.00	academic	105
	3.00	vocation	50

Tests of Between-Subjects Effects

Dependent Variable:writing score

	Type III Sum of			_	
Source	Squares	df	Mean Square	F	Sig.
Corrected Model	7017.681ª	3	2339.227	42.213	.000
Intercept	4867.964	1	4867.964	87.847	.000
read	3841.983	1	3841.983	69.332	.000
prog	650.260	2	325.130	<mark>5.867</mark>	.003
Error	10861.194	196	55.414		
Total	574919.000	200			
Corrected Total	17878.875	199			

The results indicate that even after adjusting for reading score (**read**), writing scores still significantly differ by program type (**prog**), F = 5.867, p = 0.003.

a. R Squared = 0393 (Adjusted R Squared = 0383)

Multiple logistic regression is like simple logistic regression, except that there are two or more predictors. The predictors can be interval variables or dummy variables, but cannot be categorical variables. If you have categorical predictors, they should be coded into one or more dummy variables. We have only one variable in our data set that is coded 0 and 1, and that is female. We understand that **female** is a silly outcome variable (it would make more sense to use it as a predictor variable), but we can use **female** as the outcome variable to illustrate how the code for this command is structured and how to interpret the output. The first variable listed after the logistic regression command is the outcome (or dependent) variable, and all of the rest of the variables are predictor (or independent) variables (listed after the keyword with). In our example, female will be the outcome variable, and read and write will be the predictor variables.

Menu selection: - Analyze > Regression > Binary Logistic

Syntax:-

logistic regression female with read write.

<u>A</u> nalyze	Direct Marketing	<u>G</u> raphs	Utilities	Add- <u>o</u> ns	Window	Help
Repo	orts	•				
D <u>e</u> so	riptive Statistics	•				1
Table	s	•				
Com	oare Means	•				
<u>G</u> ene	eral Linear Model	•				
Gene	erali <u>z</u> ed Linear Mode	els 🕨				
Mi <u>x</u> e	d Models	•				
<u>C</u> orre	elate	•				
<u>R</u> egr	ession	- >	📕 <u>A</u> utor	natic Linear	Modeling	
L <u>o</u> gli	near	•	🔛 Linea	r		
Neur	al Net <u>w</u> orks	•	_	e Estimation.		
Class	si <u>f</u> y	•	_			
Dime	nsion Reduction	•	hartia 🔣	l Lea <u>s</u> t Squa	ares	
Sc <u>a</u> le	e	- F	- 🔛 Binar	y Lo <u>g</u> istic		
<u>N</u> onp	arametric Tests	•	🔛 Multin	iomial Logist	ic	
Fore	casting	•	🔛 Ordin	al		
<u>S</u> urv	ival	•		ł		
Multip	ole Response	- Þ -				
🐝 Missi	ing ∀alue Anal <u>y</u> sis.		Nonlir	near		
Multip	ole Imputation	•	Weigl	ht Estimation		
Com	olex Samples	•	🕌 <u>2</u> -Sta	ge Least Sq	uares	
<u>Q</u> uali	ty Control	•	Optim	al Scaling (ATREG)	
🖉 ROC	Cur <u>v</u> e	L L				

🎼 Logistic Regression		×
 id id female race ses type of school [schtyp] type of program [prog] reading score [read] writing score [read] writing score [write] math score [math] science score [science] social studies score [s 	Dependent: Pendent: Previous Covariates: read write Parba Method: Enter Selection Variable: Rule	Categorical Save Options Bootstrap
	<u>Paste</u> <u>R</u> esetCancelHelp	

Case Processing Summary

Unweighted Case	Ν	Percent	
Selected Cases	Included in Analysis	200	100.0
	Missing Cases	0	.0
	Total	200	100.0
Unselected Cases		0	.0
Total		200	100.0

a. If weight is in effect, see classification table for the total number of cases.

Dependent Variable Encoding

Original Value	Internal Value
male	0
female	1

Block 0: Beginning Block

Classification Table ^{a,b}				
	Predicted		d	
		female Percentage		Percentage
	Observed	male	female	Correct
Step 0	female male	0	91	.0
	female	0	109	100.0
	Overall Percentage			54.5

a. Constant is included in the model.

b. The cut value is .500

Variables in the Equation						
	В	S.E.	Wald	df	Sig.	Exp(B)
Step 0 Constant	.180	.142	1.616	1	.204	1.198

Variables not in the Equation

		Score	df	Sig.
Step 0	Variables read	.564	1	.453
	write	13.158	1	.000
	Overall Statistics	26.359	2	.000

Block 1: Method = Enter

	Omnibus Tests of Model Coefficients				
		Chi-square	df	Sig.	
Step 1	Step	27.819	2	.000	
	Block	27.819	2	.000	
	Model	27.819	2	.000	

Model Summary

1			
	-2 Log	Cox & Snell R	Nagelkerke R
Step	likelihood	Square	Square
1	247.818 ^a	.130	.174

a. Estimation terminated at iteration number 4 because

parameter estimates changed by less than .001.

Classification Table^a

		Predicted		
		female Percentage		Percentage
	Observed	male	female	Correct
Step 1	female male	54	37	59.3
	female	30	79	72.5
	Overall Percentage			66.5

a. The cut value is .500

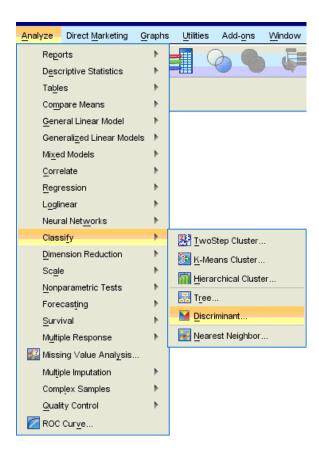
Variables in the Equation

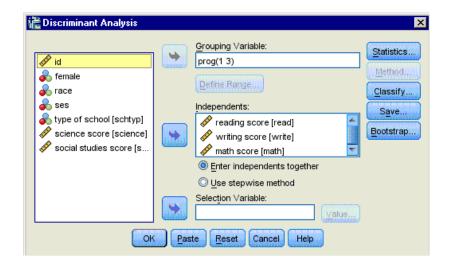
		В	S.E.	Wald	df	Sig.	Exp(B)
Step 1 ^a	read	071	.020	13.125	1	.000	.931
	write	.106	.022	23.075	1	.000	1.112
	Constant	-1.706	.923	3.414	1	.065	.182

a. Variable(s) entered on step 1: read, write.

	Variables in the Equation							
	B S.E. Wald df Sig. Exp(B)							
Step 1 ^a	read	071	.020	13.125	1	<mark>,000</mark>	.931	
	write	.106	.022	23.075	1	000 <mark>.</mark>	1.112	
	Constant	-1.706	.923	3.414	1	.065	.182	

a. Variable(s) entered on step 1: read, write.


These results show that both **read** and **write** are significant predictors of **female**.



Discriminant analysis is used when you have one or more normally distributed interval independent variable(s) and a categorical dependent variable. It is a multivariate technique that considers the latent dimensions in the independent variables for predicting group membership in the categorical dependent variable. For example, using the A data file, say we wish to use **read**, **write** and **math** scores to predict the type of program a student belongs to (**prog**).

Menu selection:- Analyze > Classify > Discriminant

Syntax:- Discriminant groups = prog(1, 3) /variables = read write math.

Do not forget to define the range for Prog.

Analysis Case Processing Summary			
Unweighte	d Cases	Ν	Percent
Valid		200	100.0
Excluded	Missing or out-of-range group codes	0	.0
	At least one missing discriminating variable	0	.0
	Both missing or out-of- range group codes and at	0	.0
	least one missing discriminating variable		
	Total	0	.0
Total		200	100.0

Group Statistics					
Valid N (listwise)					
type of prop	gram	Unweighted	Weighted		
general	reading score	45	45.000		
	writing score	45	45.000		
	math score	45	45.000		
academic	reading score	105	105.000		
	writing score	105	105.000		
	math score	105	105.000		
vocation	reading score	50	50.000		
	writing score	50	50.000		
	math score	50	50.000		
Total	reading score	200	200.000		
	writing score	200	200.000		
	math score	200	200.000		

Analysis 1

Summary of Canonical Discriminant Functions

Eigenvalues						
				Canonical		
Function	Eigenvalue	% of Variance	Cumulative %	Correlation		
1	.356 ^a	98.7	98.7	.513		
2	.005 ^a	1.3	100.0	.067		

a. First 2 canonical discriminant functions were used in the analysis.

Wilks' Lambda						
Test of Function(s)	Wilks' Lambda	Chi-square	df	Sig.		
1 through 2	.734	60.619	6	.000		
2	.995	.888	2	.641		

Standardized Canonical Discriminant

Function Coefficients					
	Function 1 2				
reading score	.273	410			
writing score	.331	1.183			
math score	.582	656			

Structure Matrix				
	Function			
	1 2			
math score	.913*	272		
reading score	$.778^{*}$	184		
writing score	.775*	.630		

Pooled within-groups correlations between discriminating variables and standardized canonical discriminant functions

Variables ordered by absolute size of correlation within function.

correlation within function.

*. Largest absolute correlation between each variable and any discriminant function

Functions at Group Centroids

	Function		
type of program	1	2	
general	312	.119	
academic	<mark>.536</mark>	020	
vocation	<mark>844</mark>	066	

Unstandardized canonical discriminant functions evaluated at group means

Functions at Group Centroids					
	Function				
type of program	1	2			
general	312	.119			
academic	<mark>, 536</mark> ,	020			
vocation	<mark>844</mark>	066			

Unstandardized canonical discriminant functions evaluated at group means

Clearly, the SPSS output for this procedure is quite lengthy, and it is beyond the scope of this page to explain all of it. However, the main point is that two canonical variables are identified by the analysis, the first of which seems to be more related to program type than the second.

Index End

MANOVA (multivariate analysis of variance) is like ANOVA, except that there are two or more dependent variables. In a one-way MANOVA, there is one categorical independent variable and two or more dependent variables. For example, using the A data file, say we wish to examine the differences in **read**, **write** and **math** broken down by program type (**prog**).

Menu selection:- Analyse > General Linear Model > Multivariate

Syntax:- glm read write math by prog.

<u>A</u> nalyze	Direct <u>M</u> arketing	<u>G</u> raphs	<u>U</u> tilities	Add- <u>o</u> ns	<u>W</u> indow
Reg	ports	•			
D <u>e</u> s	scriptive Statistics	•			
Tab	les	•			
Cor	mpare Means	•			
<u>G</u> er	neral Linear Model	•	🔛 <u>U</u> nivari	ate	
Ger	nerali <u>z</u> ed Linear Mod	lels 🕨	Multiva	riate	
Mi <u>x</u> e	ed Models	•	🔛 <u>R</u> epea	ted Measur	es
<u>C</u> or	relate	•	Varian	ce Compon	ents
_	gression	• • L	-		
Log	linear	•			
Neu	ural Net <u>w</u> orks	•			
Cla	ssify	•			
<u>D</u> in	nension Reduction	•			
Sc <u>a</u>	le	•			
<u>N</u> or	nparametric Tests	•			
For	ecas <u>t</u> ing	•			
<u>S</u> ur	vival	•			
M <u>u</u> l	tiple Response	•			
💕 Mis	sing Value Anal <u>y</u> sis.				
Mul	tiple Imputation	•			
Cor	mp <u>l</u> ex Samples	•			
<u>Q</u> ua	ality Control	•			
RO	C Cur <u>v</u> e				

ta Multivariate			23
 ✓ id ♣ female ♣ race ♣ ses ♣ type of school [schtyp] ✓ science score [scie ✓ social studies score 	•	Dependent Variables: reading score [re reading score [write] math score [math] Fixed Factor(s): type of program [prog]	Model Contrasts Plots Post Hoc Save Options
OK [Paste	<u>C</u> ovariate(s): <u>W</u> LS Weight: <u>R</u> eset Cancel Help	<u>B</u> ootstrap

Between-Subjects Factors							
		Value Label	N				
type of program	1.00	general	45				
	2.00	academic	105				
	3.00	vocation	50				

Multivariate Tests^c

		111010				
Effect		Value	F	Hypothesis df	Error df	Sig.
Intercept	Pillai's Trace	.978	2883.051 ^a	3.000	195.000	.000
	Wilks' Lambda	.022	2883.051 ^a	3.000	195.000	.000
	Hotelling's Trace	44.355	2883.051 ^a	3.000	195.000	.000
	Roy's Largest Root	44.355	2883.051 ^a	3.000	195.000	.000
prog	Pillai's Trace	.267	10.075	6.000	392.000	.000
	Wilks' Lambda	.734	10.870^{a}	6.000	390.000	.000
	Hotelling's Trace	.361	11.667	6.000	388.000	.000
	Roy's Largest Root	.356	23.277 ^b	3.000	196.000	.000

a. Exact statistic

b. The statistic is an upper bound on F that yields a lower bound on the significance level.

c. Design: Intercept + prog

Tests of Between-Subjects Effects

	rests of betwe	en-Subjects Effect	5	
		Type III Sum of		
Source	Dependent Variable	Squares	df	Mean Square
Corrected Model	reading score	3716.861 ^a	2	1858.431
	writing score	3175.698 ^b	2	1587.849
	math score	4002.104 ^c	2	2001.052
Intercept	reading score	447178.672	1	447178.672
	writing score	460403.797	1	460403.797
	math score	453421.258	1	453421.258
prog	reading score	3716.861	2	1858.431
	writing score	3175.698	2	1587.849
	math score	4002.104	2	2001.052
Error	reading score	17202.559	197	87.323
	writing score	14703.177	197	74.635
	math score	13463.691	197	68.344
Total	reading score	566514.000	200	
	writing score	574919.000	200	
	math score	571765.000	200	
Corrected Total	reading score	20919.420	199	
	writing score	17878.875	199	
	math score	17465.795	199	

Т	ests of Between-Subjects	s Effects	
Source	Dependent Variable	F	Sig.
Corrected Model	reading score	21.282	.000
	writing score	21.275	.000
	math score	29.279	.000
Intercept	reading score	5120.994	.000
	writing score	6168.704	.000
	math score	6634.435	.000
prog	reading score	21.282	<mark>.000</mark>
	writing score	21.275	<mark>.000</mark>
	math score	29.279	<mark>.000</mark>
Error	reading score		
	writing score		
	math score		
Total	reading score		
	writing score		
	math score		
Corrected Total	reading score		
	writing score		
	math score		

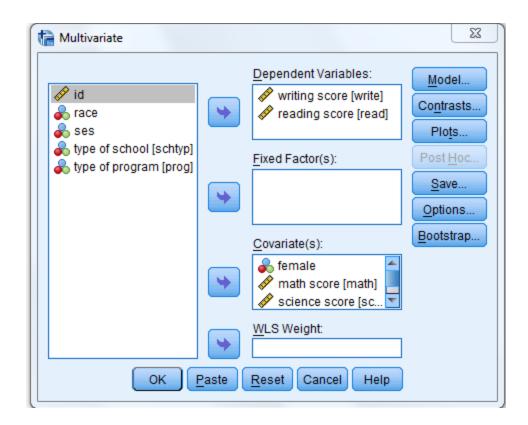
Concluding output table.

The students in the different programs differ in their joint distribution of read, write and math.

a. R Squared = 0178 (Adjusted R Squared = 0169)

b. R Squared = 0178 (Adjusted R Squared = 0169)

c. R Squared = 0229 (Adjusted R Squared = 0221)



Multivariate multiple regression is used when you have two or more dependent variables that are to be predicted from two or more independent variables. In our example, we will predict **write** and **read** from **female**, **math**, **science** and social studies (socst) scores.

Menu selection:- Analyse > General Linear Model > Multivariate

Syntax:- glm write read with female math science socst.

<u>A</u> nalyze	Direct <u>M</u> arketing	<u>G</u> raphs	s <u>U</u> tilities	Add- <u>o</u> ns	<u>W</u> indow
Re <u>p</u> D <u>e</u> s	orts criptive Statistics	*			
Ta <u>b</u> l	les	•			
Co <u>n</u>	npare Means	•			
<u>G</u> en	eral Linear Model	•	🚻 <u>U</u> nivari	ate	
Gen	erali <u>z</u> ed Linear Mod	els 🕨	Multiva	riate	
Mi <u>x</u> e	d Models	•	Repea	ted Measur	es
<u>C</u> orr	relate	•		ce Compon	
	ression	► L	-		
L <u>o</u> gi	linear	•			
Neu	ral Net <u>w</u> orks	•			
Clas	ssify	•			
<u>D</u> im	ension Reduction	•			
Sc <u>a</u>	le	•			
<u>N</u> on	parametric Tests	•			
Fore	ecasting	•			
Surv	rival	•			
M <u>u</u> lt	iple Response	•			
🐝 Mise	sing Value Analysis.				
Mul <u>t</u>	iple Imputation	•			
Con	np <u>l</u> ex Samples	•			
<u>Q</u> ua	lity Control	•			
ROC	Curve				

		Multiv	ariate Tests	5 ^b		
Effect		Value	F	Hypothesis df	Error df	Sig.
Intercept	Pillai's Trace	.030	3.019 ^a	2.000	194.000	.051
	Wilks' Lambda	.970	3.019 ^a	2.000	194.000	.051
	Hotelling's Trace	.031	3.019 ^a	2.000	194.000	.051
	Roy's Largest Root	.031	3.019 ^a	2.000	194.000	.051
female	Pillai's Trace	.170	19.851 ^a	2.000	194.000	.000
	Wilks' Lambda	.830	19.851 ^a	2.000	194.000	.000
	Hotelling's Trace	.205	19.851 ^a	2.000	194.000	.000
	Roy's Largest Root	.205	19.851 ^a	2.000	194.000	.000
math	Pillai's Trace	.160	18.467 ^a	2.000	194.000	.000
	Wilks' Lambda	.840	18.467 ^a	2.000	194.000	.000
	Hotelling's Trace	.190	18.467 ^a	2.000	194.000	.000
	Roy's Largest Root	.190	18.467 ^a	2.000	194.000	.000
science	Pillai's Trace	.166	19.366 ^a	2.000	194.000	.000
	Wilks' Lambda	.834	19.366 ^a	2.000	194.000	.000
	Hotelling's Trace	.200	19.366 ^a	2.000	194.000	.000
	Roy's Largest Root	.200	19.366 ^a	2.000	194.000	.000
socst	Pillai's Trace	.221	27.466 ^a	2.000	194.000	.000
	Wilks' Lambda	.779	27.466 ^a	2.000	194.000	.000
	Hotelling's Trace	.283	27.466 ^a	2.000	194.000	.000
	Roy's Largest Root	.283	27.466 ^a	2.000	194.000	.000

		Type III Sum of		
Source	Dependent Variable	Squares	df	Mean Square
Corrected Model	writing score	10620.092 ^a	4	2655.023
	reading score	12219.658 ^b	4	3054.915
Intercept	writing score	202.117	1	202.117
	reading score	55.107	1	55.107
female	writing score	1413.528	1	1413.528
	reading score	12.605	1	12.605
math	writing score	714.867	1	714.867
	reading score	1025.673	1	1025.673
science	writing score	857.882	1	857.882
	reading score	946.955	1	946.955
socst	writing score	1105.653	1	1105.653
	reading score	1475.810	1	1475.810
Error	writing score	7258.783	195	37.225
	reading score	8699.762	195	44.614
Total	writing score	574919.000	200	
	reading score	566514.000	200	
Corrected Total	writing score	17878.875	199	
	reading score	20919.420	199	

Tests of Between-Subjects Effects

Type III Sum of

a. Exact statistic

b. Design: Intercept + female + math + science + socst

T	ests of Between-Subject	s Effects	
Source	Dependent Variable	F	Sig.
Corrected Model	writing score	71.325	.000
	reading score	68.474	.000
Intercept	writing score	5.430	.021
	reading score	1.235	.268
female	writing score	37.973	.000
	reading score	.283	.596
math	writing score	19.204	<mark>.000</mark>
	reading score	22.990	<mark>.000</mark>
science	writing score	23.046	<mark>.000</mark>
	reading score	21.225	<mark>.000</mark>
socst	writing score	29.702	<mark>.000</mark>
	reading score	33.079	<mark>.000</mark>
Error	writing score		
	reading score		
Total	writing score		
	reading score		
Corrected Total	writing score		
	reading score		
a. R Squared $= 059$	94 (Adjusted R Squared =	= 0586)	

b. R Squared = 0584 (Adjusted R Squared = 0576)

Canonical correlation is a multivariate technique used to examine the relationship between two groups of variables. For each set of variables, it creates latent variables and looks at the relationships among the latent variables. It assumes that all variables in the model are interval and normally distributed. SPSS requires that each of the two groups of variables be separated by the keyword **with**. There need not be an equal number of variables in the two groups (before and after the **with**). In this case {read, write} with {math, science}.

Canonical correlation are the correlations of two canonical (latent) variables, one representing a set of independent variables, the other a set of dependent variables. There may be more than one such linear correlation relating the two sets of variables, with each correlation representing a different dimension by which the independent set of variables is related to the dependent set. The purpose of the method is to explain the relation of the two sets of variables, not to model the individual variables.

Canonical correlation analysis is the study of the linear relations between two sets of variables. It is the multivariate extension of correlation analysis.

Suppose you have given a group of students two tests of ten questions each and wish to determine the overall correlation between these two tests. Canonical correlation finds a weighted average of the questions from the first test and correlates this with a weighted average of the questions from the second test. The weights are constructed to maximize the correlation between these two averages. This correlation is called the first canonical correlation coefficient.

You can create another set of weighted averages unrelated to the first and calculate their correlation. This correlation is the second canonical correlation coefficient. This process continues until the number of canonical correlations equals the number of variables in the smallest group.

In statistics, canonical-correlation analysis is a way of making sense of crosscovariance matrices. If we have two vectors $X = (X_1, ..., X_n)$ and $Y = (Y_1, ..., Y_m)$ of random variables, and there are correlations among the variables, then canonical-correlation analysis will find linear combinations of the X_i and Y_j which have maximum correlation with each other (Härdle and Léopold 2007). T. R. Knapp notes "virtually all of the commonly encountered parametric tests of significance can be treated as special cases of canonical-correlation analysis, which is the general procedure for investigating the relationships between two sets of variables." The method was first introduced by Harold Hotelling in 1936.

Härdle, Wolfgang and Simar, Léopold (2007). "Canonical Correlation Analysis". Applied Multivariate Statistical Analysis. pp. 321–330. <u>Canonical Correlation</u> <u>Analysis - Springer</u> ISBN 978-3-540-72243-4.

Knapp, T. R. (1978). "Canonical correlation analysis: A general parametric significance-testing system". Psychological Bulletin 85(2): 410–416. <u>PsycNET -</u> <u>Display Record</u>.

Hotelling, H. (1936). "Relations Between Two Sets of Variates". Biometrika 28 (3-4): 321-377. <u>Relations Between Two Sets Of Variates</u>. 208

The manova command is one of the SPSS commands that can only be accessed via syntax; there is not a sequence of pull-down menus or point-and-clicks that could arrive at this analysis.

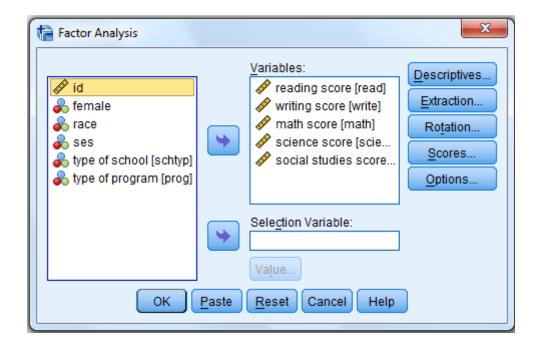
Syntax:-

manova read write with math science /discrim all alpha(1) /print=sig(eigen dim).

EFFECT WI	* * * * * * * * * * * THIN CELLS Regress Tests of Signific	sion			Design 1	* * * * * * *	The output shows the linear combinations
Test Name	Value	Approx. F	Hypoth.	DF Eri	ror DF	Sig. of F	· · ·
Pillais Hotellings Wilks Roys Note F sta	.59783 1.48369 .40249 .59728 tistic for WILKS'	41.996 72.329 56.470 Lambda is exact	54 50	4.00 4.00 4.00	394.00 390.00 392.00	.000 .000 .000	corresponding to the first canonical correlation. At the
Eigenvalues	and Canonical Corr						bottom of the
Root No.	Eigenvalue	Pct.	Cum. Pct.	Canon Cor.	Sq. Cor		output are the two
1 2	1.48313 .00055	99.96283 .03717	99.96283 100.00000	.77284 .02348 ▼	.59728		canonical
	duction Analysis						-correlations. These
Roots	Wilks L.	F	Hypoth.	DF Eri	ror DF	Sig. of F	results indicate
1 TO 2 2 TO 2	.40249 .99945	56.47060 .10865			392.00 197.00	.000 .742	that the first canonical
	THIN CELLS Regress -tests with (2,197						correlation is .7728.
Variable	Sq. Mul. R	Adj. R-sq.	Hypoth. MS	Error MS	F	Sig. of F	
read write	.51356 .43565	.50862 .42992	5371.66966 3894.42594	51.65523 51.21839	103.99081 76.03569	.000 .000	

	THIN CELLS Regress Tests of Signific				e Design	1 * * * * * * *	The F-test in this output tests the hypothesis that the
Test Name	Value	Approx. F	Hypoth.	DF E	rror DF	Sig. of F	<i>i</i> .
Pillais Hotellings Wilks Roys Note F sta	.59783 1.48369 .40249 .59728 atistic for WILKS'	41.9969 72.3296 56.4706 Lambda is exact	4 0	4.00 4.00 4.00	394.00 390.00 392.00	.000 .000 .000	first canonical correlation is not equal to zero.
							Clearly, F = 56.47(
Eigenvalues	and Canonical Corr	relations					
Root No.	Eigenvalue	Pct.	Cum. Pct.	Canon Cor.	Sq. Cor		is statistically
1 2	1.48313 .00055	99.96283 .03717	99.96283 100.00000	.77284 .02348	.59728		significant.
 Dimension Re	eduction Analysis						However, the
Roots	Wilks L.	F	Hypoth.	DF E:	rror DF	Sig. of F	second canonical
1 TO 2 2 TO 2	.40249 .99945	56.47060 .10865		00	392.00 197.00	.000 .742	correlation of .023 is not statistically
	THIN CELLS Regress T-tests with (2,197						significantly
Variable	Sq. Mul. R	Adj. R-sq.	Hypoth. MS	Error MS	F	Sig. of F	different from ze
read write	.51356 .43565		5371.66966 3894.42594	51.65523 51.21839	103.99081 76.03569		(F = 0.1087, p = 0.742).

Index End


Factor analysis is a form of exploratory multivariate analysis that is used to either reduce the number of variables in a model or to detect relationships among variables. All variables involved in the factor analysis need to be interval and are assumed to be normally distributed. The goal of the analysis is to try to identify factors which underlie the variables. There may be fewer factors than variables, but there may not be more factors than variables. For our example, let's suppose that we think that there are some common factors underlying the various test scores. We will include subcommands for varimax rotation and a plot of the eigenvalues. We will use a principal components extraction and will retain two factors.

Menu selection:- Analyze > Dimension Reduction > Factor

Syntax:-

factor /variables read write math science socst /criteria factors(2) /extraction pc /rotation varimax /plot eigen.

<u>A</u> nalyze	Direct <u>M</u> arketing	<u>G</u> raphs	<u>U</u> tiliti	ies A	dd- <u>o</u> ns	Window	Hel
Reg	orts	•	6				
D <u>e</u> s	criptive Statistics	- • - •	Ð				—
Ta <u>b</u>	les	•					
Cor	npare Means	•					
<u>G</u> er	ieral Linear Model	•					
Gen	ierali <u>z</u> ed Linear Moo	leis 🕨					
Mi <u>x</u> e	ed Models	•					
<u>C</u> or	relate	•					
<u>R</u> eg	ression	•					
L <u>o</u> g	linear	•					
Neu	ıral Net <u>w</u> orks	•					
Cla	ssi <u>f</u> y	•					
<u>D</u> im	ension Reduction	•	<u> </u>	ctor			
Sc <u>a</u>	le	- • I		rrespoi	ndence A	nalysis	
<u>N</u> or	parametric Tests	•	O D	timal S	caling		
Fore	ecasting	• • F					
<u>S</u> un	vival	•					
M <u>u</u> lt	tiple Response	•					
💕 Mis	sing Value Anal <u>y</u> sis						
Mult	tiple Imputation	•					
Cor	np <u>l</u> ex Samples	•					
<u>Q</u> ua	ality Control	•					
🖉 R00	C Cur <u>v</u> e						

Factor Analysis: Extraction		
Method: Principal components Analyze Display Correlation matrix Covariance matrix Display Covariance matrix Scree plot Extract Based on Eigenvalue Eigenvalues greater than: I Fixed number of factors Factors to extract: 2 		
Maximum Iterations for Convergence: 25 Continue Cancel Help		

Factor Analy 👘 Factor Analysis: Rotation			
id female face ses type of so type of pr	Method O None O Quartimax O Varimax O Equamax O Direct Oblimin Promax Delta: 0 Kappa 4	escriptives Extraction Ro <u>t</u> ation Scores Options	
	Display <u>R</u> otated solution <u>L</u> oading plot(s)		
	Maximum Iterations for Convergence: 25 Continue Cancel Help		

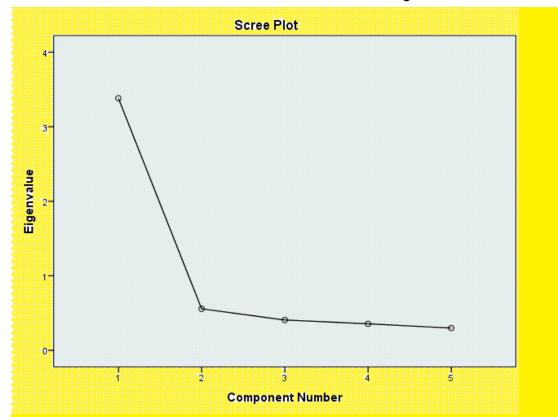
Factor analysis

Communalities						
Initial Extraction						
reading score	1.000	.736				
writing score	1.000	.704				
math score	1.000	.750				
science score	1.000	.849				
social studies score	1.000	.900				

Extraction Method: Principal Component

Analysis.

Total Variance Explained							
				Extraction			
				Squared			
		Loadings					
Component	Total	% of Variance	Cumulative %	Total			
1	3.381	67.616	67.616	3.381			
2	.557	11.148	78.764	.557			
3	.407	8.136	86.900				
4	.356	7.123	94.023				
5	.299	5.977	100.000				


Total Variance Explained

		ms of Squared lings	Rotatio	on Sums of Square	ed Loadings
Component	% of Variance Cumulative %		Total	% of Variance	Cumulative %
1	67.616	67.616	2.113	42.267	42.267
2	11.148	78.764	1.825	36.497	78.764
3					
4					
5					

Extraction Method: Principal Component Analysis.

Communality (which is the opposite of uniqueness) is the proportion of variance of the variable (i.e., **read**) that is accounted for by all of the factors taken together, and a very low communality can indicate that a variable may not belong with any of the factors.

Factor analysis

The scree plot may be useful in determining how many factors to retain.

Factor analysis

Component Matrix^a

	Comp	Component		
	1	2		
reading score	.858	020		
writing score	.824	.155		
math score	.844	195		
science score	.801	456		
social studies score	.783	.536		

Extraction Method: Principal Component

Analysis.

a. 2 components extracted.

Rotated Component Matrix ^a					
	Component				
	1 2				
reading score	.650	.559			
writing score	.508	.667			
math score	.757	.421			
science score	.900	.198			
social studies score	.222	.922			

Extraction Method: Principal Component Analysis.

Rotation Method: Varimax with Kaiser Normalization.

a. Rotation converged in 3 iterations.

Component Transformation Matrix

Component	1	2	
1	.742	.670	
2	670	.742	

Extraction Method: Principal Component Analysis. Rotation Method: Varimax with Kaiser Normalization. From the component matrix table, we can see that all five of the test scores load onto the first factor, while all five tend to load not so heavily on the second factor. The purpose of rotating the factors is to get the variables to load either very high or very low on each factor. In this example, because all of the variables loaded onto factor 1 and not on factor 2, the rotation did not aid in the interpretation. Instead, it made the results even more difficult to interpret.

Index End

Normal probability

Many statistical methods require that the numeric variables we are working with have an approximate normal distribution. For example, t-tests, F-tests, and regression analyses all require in some sense that the numeric variables are approximately normally distributed.

Tools for Assessing Normality include Histogram and Boxplot Normal Quantile Plot (also called Normal Probability Plot)

Goodness of Fit Tests such as Anderson-Darling Test Kolmogorov-Smirnov Test Lillefor's Test Shapiro-Wilk Test

Problem: they don't always agree!

You could produce conventional descriptive statistics, a histogram with a superimposed normal curve, and a normal scores plot also called a normal probability plot.

The pulse data from data set C is employed.

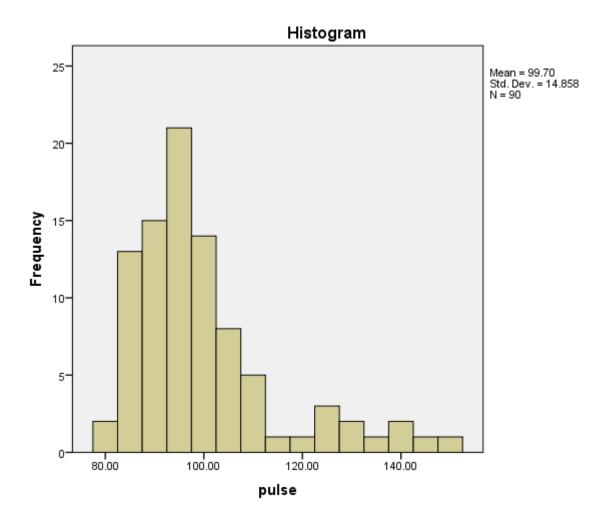
<u>A</u> nalyze	Direct <u>M</u> arketing	Graphs	s <u>U</u> tilities	Add- <u>o</u> ns
Reports		•		
Descriptive Statistics		•	123 Frequ	encies
Ta <u>b</u> le	es	•	besc	riptives
Co <u>m</u>	pare Means	•	A Explo	
Gene	eral Linear Model	•	Cross	
Gene	erali <u>z</u> ed Linear Mode	els 🕨		
Mi <u>x</u> e	d Models	•	172 Ratio.	
Corre	elate	•	2 <u>P</u> -P P	
<u>R</u> egr	ression	•	🛃 <u>Q</u> -Q F	Plots
L <u>o</u> gli	near	•		
Neur	al Net <u>w</u> orks	•		
Class	si <u>f</u> y	•		
<u>D</u> ime	nsion Reduction	•		
Sc <u>a</u> l	e	•		
<u>N</u> onp	parametric Tests	•		
Fore	casting	•		
<u>S</u> urv	ival	•		
Multiple Response		•		
🔣 Missing Value Analysis				
Multiple Imputation		•		
Complex Samples		•		
<u>Q</u> ual	ity Control	•		
🖉 ROC	Curve			

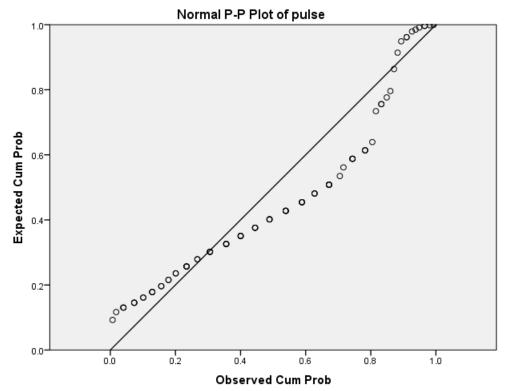
Analyze > Descriptive Statistics > Explore

Under plots select histogram, also normality plots with tests, descriptive statistics and boxplots are default options

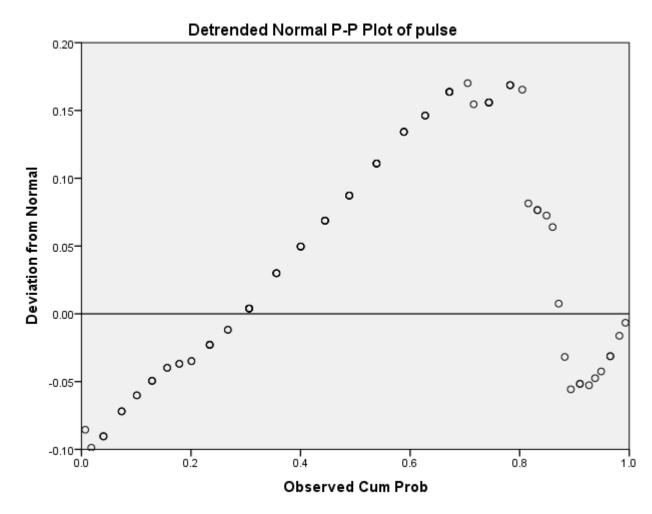
📻 Explore			x
 id diet exertype time highpulse 	• •	Dependent List:	Statistics Plots Options Bootstrap
Display Both O Statistics O P OK	lots Paste	Reset Cancel Help	

🕋 Explore: Plots	×				
Boxplots	Descriptive				
© Factor levels together	Stem-and-leaf				
Dependents together	✓ <u>H</u> istogram				
© <u>N</u> one					
▼ Normality plots with tests					
Spread vs Level with Leven	e Test				
Non <u>e</u>					
O Power estimation					
© Transformed Power: N	atural log 🔍 🔻				
© Untransformed					
Continue Cancel Help					

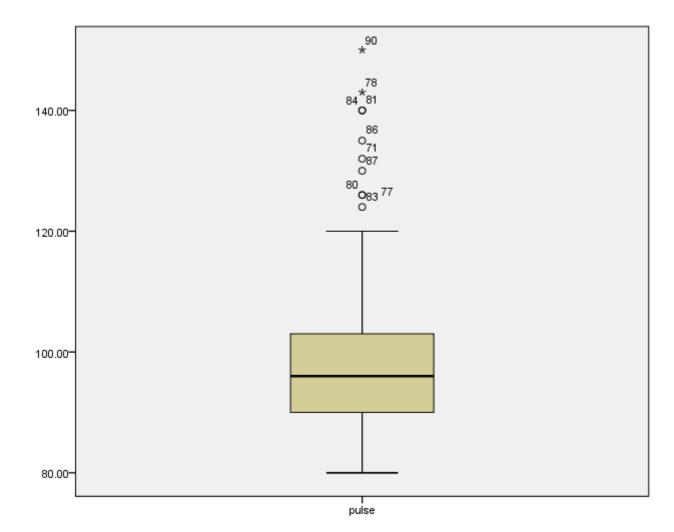

			Statistic	Std. Error
pulse	Mean		99.7000	1.56622
	95% Confidence Interval	Lower Bound	96.5880	
	for Mean	Upper Bound	102.8120	
	5% Trimmed Mean		98.3086	
	Median		96.0000	
	Variance		220.774	
	Std. Deviation		14.85847	
	Minimum		80.00	
	Maximum		150.00	
	Range		70.00	
	Interquartile Range		13.00	
	Skewness		1.550	.254
	Kurtosis		2.162	.503


Descriptives

Tests of Normality

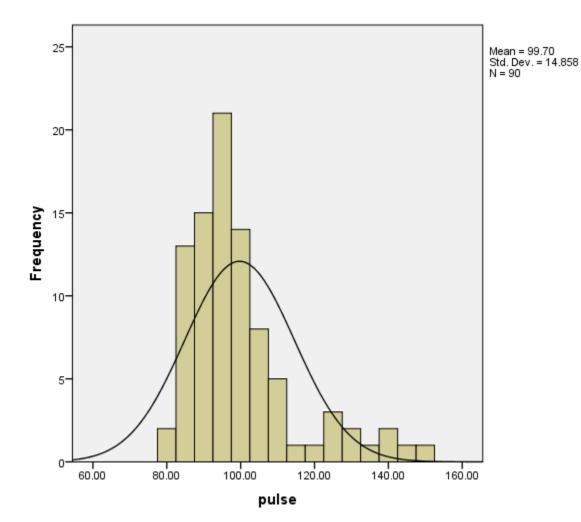

	Kolmogorov-Smirnov ^a			5	3hapiro-Wilk	:
	Statistic	df	Sig.	Statistic	df	Sig.
pulse	.192	90	.000	.843	90	.000

a. Lilliefors Significance Correction



If the data is "normal" the non-linear vertical axis in a probability plot should result in an approximately linear scatter plot representing the raw data.

Detrended normal P-P plots depict the actual deviations of data points from the straight horizontal line at zero. No specific pattern in a detrended plot indicates normality of the variable.

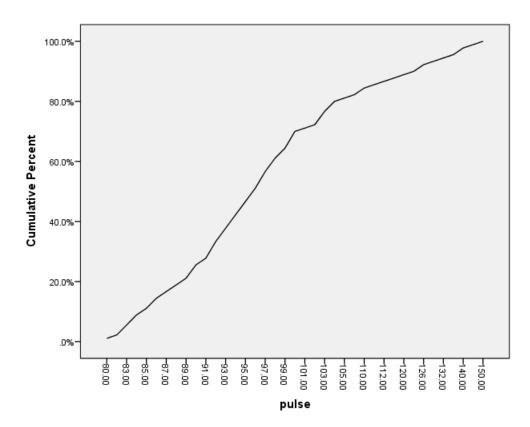


<u>G</u> raphs	<u>U</u> tilities	Add- <u>o</u> ns	<u>W</u> indow		Help
	rt Builder phboard T	emplate Cho	oser		🚰 🖻 膨 🔳
Leg	acy Dialog	s		Þ	
					11 <u>3</u> -D Bar
					🗾 <u>L</u> ine
					🗛 Area
					🔛 Pi <u>e</u>
					High-Low
					🗰 Bo <u>x</u> plot
					🚻 Err <u>o</u> r Bar
					Population Pyramid
					Scatter/Dot
					👔 Histogram

Graphs > Legacy Dialogs > Histogram

Tick – display normal curve

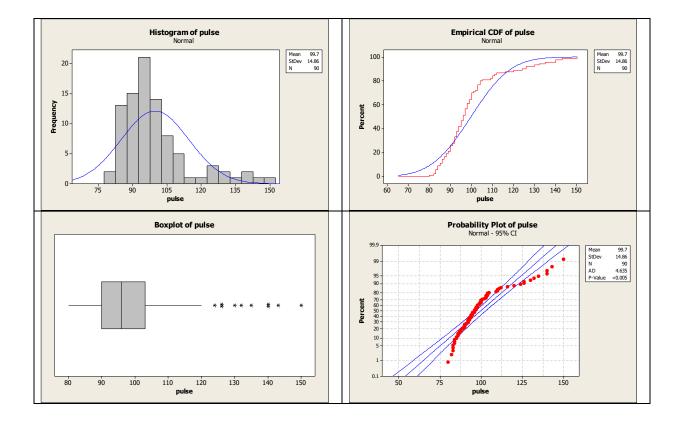
禱 Histogram		×
 ✓ id ✓ diet ✓ exertype ✓ time ✓ highpulse 	Yariable: Image: pulse Image: pisplay normal curve Panel by Rows: Image: pisplay Image: pisplay	Ţītles
Template	from:	
ОК	Paste Reset Cancel Help	


<u>Graphs</u> <u>U</u> tilities Add- <u>o</u> ns <u>W</u> indow	<u>H</u> elp
<mark>ili</mark> <u>C</u> hart Builder 🛄 <u>G</u> raphboard Template Chooser	
Legacy Dialogs	Bar
	11 3-D Bar
	<u>Line</u>
	Area
	🛃 Pi <u>e</u>
	High-Low
	🛄 Boxplot
	III Err <u>o</u> r Bar
	Population Pyramid
	Scatter/Dot
	🚹 Histogram

Graphs > Legacy Dialogs > Line

Select Simple and Groups of Cases the use Define to choose the variable and select "cum %"

🚰 Line Charts	×
Simple	
Multiple	
Data in Chart Are	
 Summaries for groups of cases Summaries of separate variable Values of individual cases 	
Define Cancel Help	


tts Trites s % of cases @ Cum. % tistic (e.g., mean) iable: Change Statistic egory Axis: ' pulse
vest variables (no empty rows) mns:
Nest variables (no empty columns)

If you wish to superimpose a normal curve, it is probably simpler in Excel!

You are seeking to assess the normality of the data. The pulse data from data set C is employed.

The P-P plot is a normal probability plot with the data on the horizontal axis and the expected zscores if our data was normal on the vertical axis. When our data is approximately normal the spacing of the two will agree resulting in a plot with observations lying on the reference line in the normal probability plot.

Does It Really Matter?

"Students t test and more generally the ANOVA F test are robust to non-normality" (Fayers 2011).

However

"Thus a clearer statement is that t tests and ANOVA are 'robust against type-I errors'. This of course accords with the enthusiasm that many researchers have in obtaining "significant" p values. The aim of this article (see next slide) is to show that type-II errors can be substantially increased if nonnormality is ignored." (Fayers 2011).

Does It Really Matter?

Alphas, betas and skewy distributions: two ways of getting the wrong answer Peter Fayers

Adv. Health Sci. Educ. Theory Pract. 2011 16(3) 291-296.

Introduction to Robust Estimation and Hypothesis Testing (2nd ed.). Wilcox, R. R., 2005, Burlington MA: Elsevier Academic Press. ISBN 978-0-12-751542-7.

Robustness to Non-Normality of Common Tests for the Many-Sample Location Problem <u>Paper</u> Khan A. and Rayner G.D. Journal Of Applied Mathematics And Decision Sciences, 2003, **7(4)**, 187:206

Tukey has designed a family of power transformations (close cousin to the Box-Cox transformations, but with a visual aspect useful to find the appropriate transformation to promote symmetry and linearity relationships.

These transformations preserve order, preserve proximities and are smooth functions (not producing jumps or peaks). y^1 is the untransformed (raw) variable, y^0 is replaced by the logarithm that provides the appropriate transformation between the square root and the reciprocal.

You can also use lower and higher powers as listed, as well intermediate ones, i.e. $y^{2.5}$ will be stronger than y^2 but less than y^3 .

<u>Cartoon</u>

 y^3

 V^2

 V^1

 \sqrt{y}

V⁻¹

y⁻²

V⁻³

ln(y)

3

2

1

1/2

0

-1

-2

-3

Tukey, J. W. (1977) Exploratory Data Analysis. Addison-Wesley, Reading, MA.

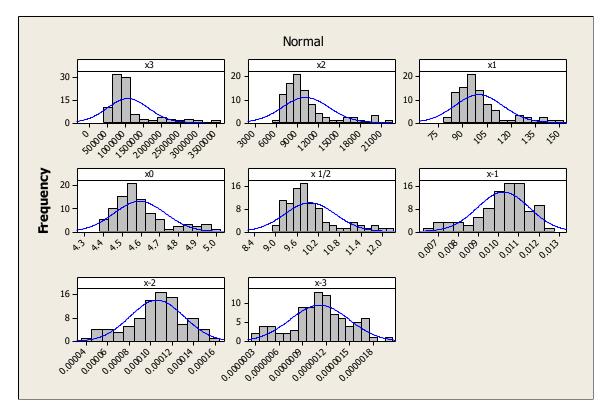
A transformation is simply a means of representing the data in a different coordinate system. In addition to restoring normality, the transformation often reduces heteroscedasticity. (Non-constancy of the variance of a measure over the levels of the factor under study.) This is important, because constant variance is often an assumption of parametric tests. Subsequent statistical analyses are performed on the transformed data; the results are interpreted with respect to the original scale of measurement.

Achieving an appropriate transformation is a trial-and-error process. A particular transformation is applied and the new data distribution tested for normality; if the data are still non-normal, the process is repeated.

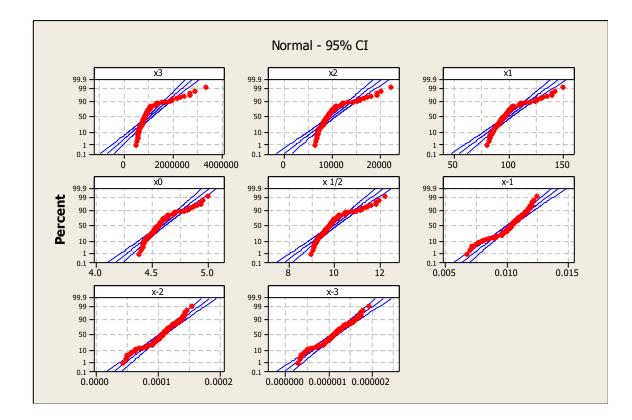
Nevertheless, there are certain generalities that can be used to direct your efforts, as certain types of data typically respond to particular transformations. For example Square-root transforms are often appropriate for count data, which tend to follow Poisson distributions. Arcsine (sin⁻¹) transforms are used for data that are percentages or proportions, and tend to fit binomial distributions. Log and square-root transforms are part of a larger class of transforms known as the ladder of powers.

Transform > Compute Variable

<u>T</u> ransform	Insert	F <u>o</u> rmat	<u>A</u> nalyze	Direct M					
Compu	te Variak	ole							
Count Values within Cases									
Shi <u>f</u> t Values									
🔤 Recode	e into <u>S</u> a	me Variab	es						
🔤 <u>R</u> ecode	e into Dif	ferent Var	iables						
🔯 <u>A</u> utoma	atic Reco	de							
📴 Visual	<u>B</u> inning								
🔀 Optima	l Binning								
Prepar	e Data fo	r Modeling	I	- Þ					
🛃 Ran <u>k</u> C	ases								
🛗 D॒ate ar	nd Time V	Wizard							
🚩 Create	Ti <u>m</u> e Sei	ries							
🍕 Replac	e Missing	g <u>V</u> alues							
🎲 Randor	n Numbe	r <u>G</u> enerat	ors						
Run Pe	nding <u>T</u> r	ansforms	Ctrl	+G					


See normal probability plot section for graphical options.

COMPUTE pulse1=1 + pulse/MAX(pulse). COMPUTE y3=pulse1 ** 3. FXFCUTE COMPUTE y2=pulse1 ** 2. EXECUTE. COMPUTE y=pulse1. EXECUTE. COMPUTE rt_y=SQRT(pulse1). EXECUTE. COMPUTE In_y=LN(pulse1). EXECUTE. COMPUTE y_1=pulse1 ** -1. EXECUTE. COMPUTE y_2=pulse1 ** -2. EXECUTE. COMPUTE y_3=pulse1 ** -3. FXFCUTF. EXAMINE VARIABLES=y3 y2 y rt_y ln_y y_1 y_2 y_3 /COMPARE VARIABLE /PLOT=BOXPLOT /STATISTICS=NONE /NOTOTAL /MISSING=LISTWISF.


The pulse data from data set C is employed.

It is scaled by the first compute statement to aid interpretation of the plots.

This step is non-essential, only aiding the graphical presentation.

Which appears most "normal"?

Which appears most "normal"?

	х3	x2	x1	хО	X	x-1	x-2	x-3
Mean	106124	10158	99.7	4.592	9.96	0.01022	0.00010	1.12E-06
	5						6	
StDev	567251	3310	14.86	0.137	0.711	0.001296	2.52E-05	3.75E-07
Ν	90	90	90	90	90	90	90	90
AD	8.615	6.523	4.635	3.048	3.799	1.824	0.988	0.529
P-Value	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	0.013	0.172

In general if the normal distribution fits the data, then the plotted points will roughly form a straight line. In addition the plotted points will fall close to the fitted line. Also the Anderson-Darling statistic will be small, and the associated p-value will be larger than the chosen a-level (usually 0.05). So the test rejects the hypothesis of normality when the p-value is less than or equal to a.

	<u>A</u> nalyze	Direct <u>M</u> arketing	<u>G</u> raphs	<u>U</u> tilities	Add-ons	<u>W</u> indow	<u>H</u> elp		
	Repo	orts	•			Æ.			
	D <u>e</u> so	criptive Statistics	•						
	Ta <u>b</u> l	es	•						
	Com	pare Means	•						
	Gen	eral Linear Model	•						
	Gen	erali <u>z</u> ed Linear Mod	els 🕨						
	Mixe	d Models	•						
	Corr	elate	•						
	Regr	ession	•						
	L <u>o</u> gli	inear	•						
	Neur	al Net <u>w</u> orks	•						
	Clas	si <u>f</u> y	•						
	Dime	nsion Reduction	•						
	Sc <u>a</u> l	e	•				_		
	<u>N</u> on;	parametric Tests	•	💧 <u>O</u> ne 9	Sample				
	Fore	casting	•	/ Indep	endent Samp	oles			
	Surv	ival	•		ed Samples				
	M <u>u</u> lti	ple Response	•						
	ジ Miss	ing Value Anal <u>y</u> sis.		Lega	cy Dialogs	•	<u> </u>	i-square	
	Mul <u>t</u> i	ple Imputation	•				0/1 <u>B</u> in	iomial	
	Com	plex Samples	•				AAAB <u>R</u> u	ns	
	Qual	ity Control	•				<u>1</u> -9	Sample K-S	
	🖉 ROC	Curve					<u>2</u> II	ndependent Samp	ples
1							<u>K</u> I	ndependent Sam	ples
							📉 2 F	Related Samples	
							Т К	Related <u>S</u> amples	

To test for normality is SPSS you can perform a Kolmogorov-Smirnov Test,

Analyze

- > Nonparametric tests
- > Legacy Dialogs
- > 1-Sample Kolmogorov-

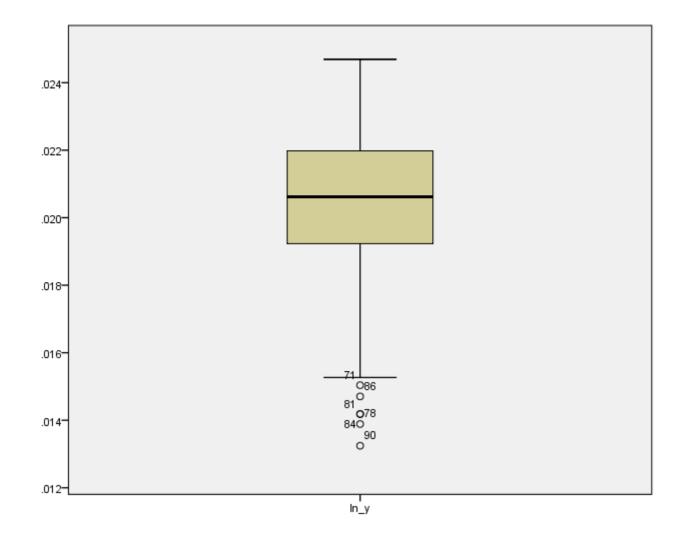
Smirnov Test

🕌 One-Sample Kolmogorov	/-Smirnov	/ Test	×
 ✓ id ✓ diet ✓ exertype ✓ time ✓ highpulse 	•	Test Variable List:	Exact Options
Test Distribution Image: Normal Uniform Image: Poisson Exponential OK Image: Normal	Paste R	eset Cancel Help	

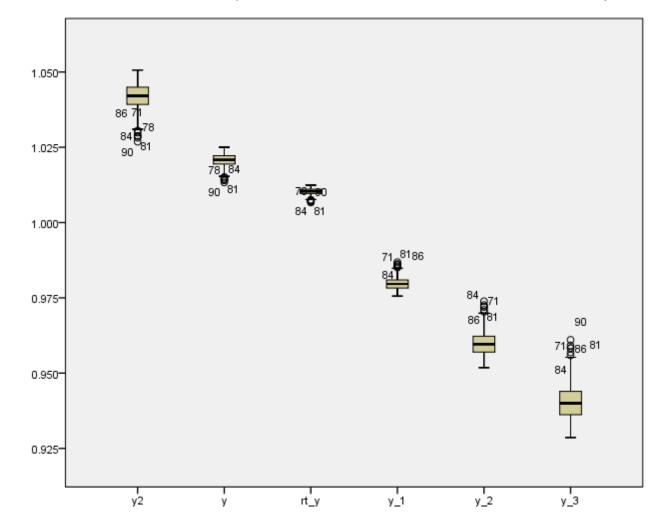
One-Sample Kolmogorov-Smirnov Test

		pulse
N		90
Normal Parameters ^{a,b}	Mean	99.7000
	Std. Deviation	14.85847
Most Extreme Differences	Absolute	.192
	Positive	.192
	Negative	108
Kolmogorov-Smirnov Z		1.821
Asymp. Sig. (2-tailed)		.003

a. Test distribution is Normal.


b. Calculated from data.

One-Sample Kolmogorov-Smirnov Test									
		у3	y2	у	rt_y	ln_y	y-1	y-2	y-3
Ν		90	90	90	90	90	90	90	90
Normal Parameters ^{a,b}	Mean	1061244.5667	10158.4111	99.7000	9.9599	4.5924	.0102	.0001	.0000
	Std. Deviation	567251.11996	3309.53301	14.85847	.71097	.13698	.00130	.00003	.00000
Most Extreme	Absolute	.255	.221	.192	.178	.163	.133	.105	.079
Differences	Positive	.255	.221	.192	.178	.163	.063	.060	.054
	Negative	173	139	108	094	080	133	105	079
Kolmogorov-Smirnov Z		2.422	2.099	1.821	1.684	1.544	1.263	.993	.745
Asymp. Sig. (2-tailed)		.000	.000	.003	.007	.017	.082	.278	.635


a. Test distribution is Normal.

b. Calculated from data.

The Asymp. Sig. (2 tailed) value is also known as the p-value. This tells you the probability of getting the results if the null hypothesis were actually true (i.e. it is the probability you would be in error if you rejected the null hypothesis).

Despite the scaling the log. transform spoils the final plot.

You are seeking the most normal data visually.

Probably the square root transform.

Many statistical methods require that the numeric variables you are working with have an approximately normal distribution. Reality is that this is often times not the case. One of the most common departures from normality is skewness, in particular, right skewness.

When the data is plotted vs. the expected z-scores the normal probability plot shows right skewness by a downward bending curve.

When the data is plotted vs. the expected z-scores the normal probability plot shows left skewness by an upward bending curve.

Tukey (1977) describes an orderly way of reexpressing variables using a power transformation. If a transformation for x of the type x^{λ} , results in an effectively linear probability plot, then we should consider changing our measurement scale for the rest of the statistical analysis. There is no constraint on values of λ that we may consider. Obviously choosing $\lambda = 1$ leaves the data unchanged. Negative values of λ are also reasonable. Tukey (1977) suggests that it is convenient to simply define the transformation when $\lambda = 0$ to be the logarithmic function rather than the constant 1.

256

In general if the normal distribution fits the data, then the plotted points will roughly form a straight line. In addition the plotted points will fall close to the fitted line. Also the Anderson-Darling statistic will be small, and the associated p-value will be larger than the chosen a-level (usually 0.05). So the test rejects the hypothesis of normality when the p-value is less than or equal to a.

To test for normality is SPSS you can perform a Kolmogorov-Smirnov Test

Analyze > Nonparametric tests > 1-Sample Kolmogorov-Smirnov Test

The Asymp. Sig. (2 tailed) value is also known as the p-value. This tells you the probability of getting the results if the null hypothesis were actually true (i.e. it is the probability you would be in error if you rejected the null hypothesis).

The hypothesis are

- H_0 the distribution of x is normal
- H_1 the distribution of x is not normal

If the p-value is less than .05, you reject the normality assumption, and if the p-value is greater than .05, there is insufficient evidence to suggest the distribution is not normal (meaning that you can proceed with the assumption of normality.)

In summary if the test is significant (lower than or equal to 0.05) implies the data is not normally distributed.

Median Split

There is quite a literature to suggest that, even though it is nice and convenient to sort people into 2 groups and then use a t test to compare group means, you lose considerable power. Cohen (1983) has said that breaking subjects into two groups leads to the loss of 1/5 to 2/3 of the variance accounted for by the original variables. The loss in power is equivalent to tossing out 1/3 to 2/3 of the sample.

The Cost Of Dichotomization or

Cohen, J.

Applied Psychological Measurement Volume: 7 Issue: 3 Pages: 249-253 Published: 1983 Index End

These are not exhaustive notes, rather some thoughts on preparing a Likert Scale.

Statements are often rated on a five point Likert (Likert 1932) scale. There has been much research done to demonstrate that a five-point scale can lead to extremes, and therefore a seven-point scale is preferable (Payton et al. 2003).

Likert, R. (1932). A technique for the measurement of attitudes. Archives of Psychology, Vol. 22, No. 140, 55pp.

Payton, M.E., Greenstone, M.H. and Schenker, N. (2003). Overlapping confidence intervals or standard error intervals: What do they mean in terms of statistical significance?. Journal of Insect Science, 3(34), 6pp.

A 7-point Likert scale is recommended to maximise the sensitivity of the scale (Allen and Seaman 2007, Cummins and Gullone 2000).

Allen, I.E., and Seaman, C.A. (2007). Likert scales and data analyses. Quality Progress, 40(7), 64-65.

Cummins, R.A., and Gullone, E. (2000). Why we should not use 5-point Likert scales: The case for subjective quality of life measurement. In Proceedings, second international conference on quality of life in cities (p74-93). Singapore: National University of Singapore.

It is unclear why different scales may have been used in the same experiment, but it has been shown that data is still comparable when it has been re-scaled (Dawes 2008).

Dawes J. (2008) Do data characteristics change according to the number of scale points used? An experiment using 5 point, 7 point and 10 point scales. International Journal of Market Research. 51 (1) 61-77.

It may be better if the scale contained a neutral midpoint (Tsang 2012). This decision (an odd/even scale) depends whether respondents are being forced to exclude the neutral position with an even scale.

Tsang K.K 2012 "The use of midpoint on Likert Scale: The implications for educational research" Vol. 11 121-130.

An odd number of points allow people to select a middle option. An even number forces respondents to take sides. An even number is appropriate when you want to know what direction the people in the middle are leaning. However, forcing people to choose a side, without a middle point, may frustrate some respondents (Wong et al. 1993).

Wong, C.-S., Tam, K.-C., Fung, M.-Y., and Wan, K. (1993). Differences between odd and even number of response scale: Some empirical evidence. Chinese Journal of Psychology, 35, 75-86.

Since they have no neutral point, even-numbered Likert scales force the respondent to commit to a certain position (Brown, 2006) even if the respondent may not have a definite opinion.

There are some researchers who prefer scales with 7 items or with an even number of response items (Cohen, Manion, and Morrison, 2000).

Brown, J.D. (2000). What issues affect Likert-scale questionnaire formats? JALT Testing and Evaluation SIG, 4, 27-30. <u>here</u>

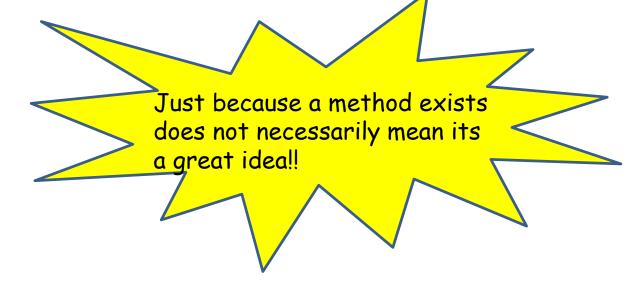
Cohen, L., Manion, L. and Morrison, K. (2000). Research methods in education (5th ed.). London: Routledge Falmer.

The change of response order in a Likert-type scale altered participant responses and scale characteristics. Response order is the order in which options of a Likert-type scale are offered (Weng 2000).

How many scale divisions or categories should be used (1 to 10; 1 to 7; -3 to +3)?

Should there be an odd or even number of divisions? (Odd gives neutral centre value; even forces respondents to take a non-neutral position.)

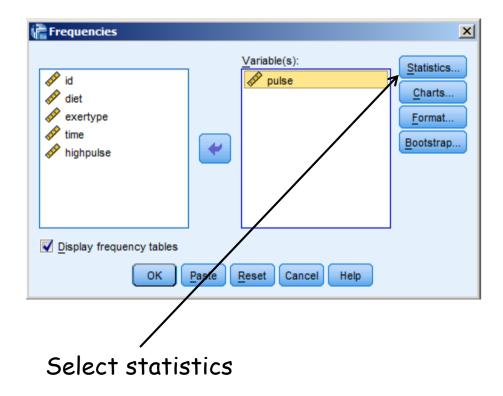
What should the nature and descriptiveness of the scale labels be? What should the physical form or layout of the scale be? (graphic, simple linear, vertical, horizontal) Should a response be forced or be left optional?

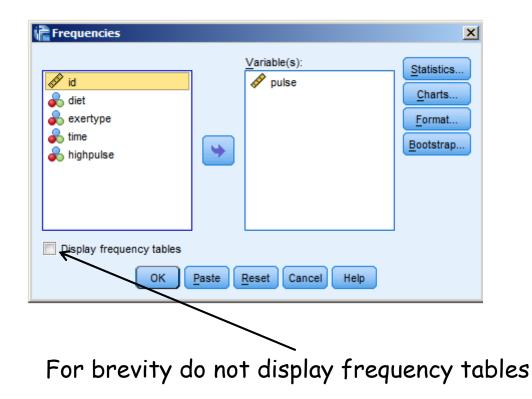

Li-Jen Weng 2000 Effects of Response Order on Likert-Type Scales, Educational and Psychological Measurement December vol. 60 no. 6 ₂₆₇ 908-924. <u>Index End</u>

Winsorising or Winsorization is the transformation of statistics by limiting extreme values in the statistical data to reduce the effect of possibly spurious outliers. It is named after the engineer-turnedbiostatistician Charles P. Winsor (1895-1951).

The computation of many statistics can be heavily influenced by extreme values. One approach to providing a more robust computation of the statistic is to Winsorize the data before computing the statistic.

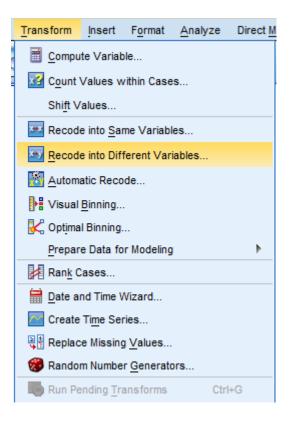
Apart from confusion about the correct spelling. There is the ambiguity about where the precise percentile sits.


To Winsorize the data, tail values are set equal to some specified percentile of the data. For example, for a 90% Winsorization, the bottom 5% of the values are set equal to the value corresponding to the 5th percentile while the upper 5% of the values are set equal to the value corresponding to the 95th percentile.


The pulse data from data set C is employed.

Analyze > Descriptive Statistics > Frequencies

<u>A</u> nalyze	Direct <u>M</u> arketing	Graphs	<u>U</u> tilities	Add- <u>o</u> ns	Wi
Rep	orts	•		2	
Des	criptive Statistics	•	123 Freq	uencies	
Tab	les	- •	E Desc	riptives	
Con	npare Means	•	🔩 Explo		
<u>G</u> er	ieral Linear Model	•	Cros		
Ger	nerali <u>z</u> ed Linear Mode	els 🕨			
Mi <u>x</u>	ed Models	•	172 <u>R</u> atio		
<u>C</u> or	relate	•	<u>р</u> -р р		
<u>R</u> eg	ression	•	🤧 <u>α</u> -α	Plots	
L <u>o</u> g	linear	•			
Neu	iral Net <u>w</u> orks	•			
Clas	ssi <u>f</u> y	•			
Dimension Reduction		•			
Sca	le	•			
Nor	parametric Tests	•			
For	ecasting	•			
Sur	vival	•			
Mul	tiple Response	•			
ジ Mis	sing Value Anal <u>y</u> sis				
Mut	tiple Imputation	•			
Con	nplex Samples	•			
Sim	ulation				
	ality Control	•			2
	C Curve				2
	-				


Frequencies: Statistics	×						
Percentile Values	Central Tendency						
🔲 <u>Q</u> uartiles	Mean						
Cut points for: 10 equal groups	Me <u>d</u> ian						
Percentile(s): 95	Mode						
Add 5.0 Chang Remove	<u>S</u> um						
	Values are group midpoints						
Dispersion	Distribution						
Std. deviation 🔲 Vinimum	Skewness						
🔲 Variance 🔲 Maximum	Kurtosis						
🔲 Range 📄 S.E. mean							
Continue Cancel Help							
dd desired percentiles, 5 then 95							

Statistics				
pulse				
N	Valid	90		
	Missing	0		
Percentiles	5	83.0000		
	95	137.2500		

Note the percentiles and enter them into the next slide.

Transform > Compute Variable

💼 Recode into Different V	'ariables		2	×
 id diet exertype time highpulse 	•	Iumeric Variable -> Output Variable: pulse> ? Old and New Values If (optional case selection condition)	Output Variable <u>Name:</u> winsor Label: <u>Change</u>	Choose a sensible new name
	OK	Paste Raset Cancel Help		
ç	5elect	Old and New Value	S	

Recode into Different Variables: Old a	and New Values
Recode into Different Variables: Old a Old Value	Add Add Crificate Output variables are strings Width: 8
◯ All <u>o</u> ther values	Convert numeric strings to numbers ('5'->5)
Contir	nue Cancel Help
	Then Add

Recode into Different Variables: Old a	and New Values
Old Value	New Value
_	
© <u>V</u> alue:	© Value: 137.25
	System-missing
System-missing	Copy old value(s)
System- or user-missing	Old> New:
© Ra <u>n</u> ge:	Lowest thru 83> 83
through	Add
	Change
Range, LOWEST through value:	Renove
Range, value through HIGHEST:	
137.25	Output variables are strings Width: 8
O All other values	Convert numeric strings to numbers ('5'->5)
Contin	nue Carcel Help
-	Then Add

	禱 Recode into Different Variables: Old an	d New Values	×
	⊢Old Value	_New Value	_
	© <u>V</u> alue:	O Value:	
		© System-missing	
	© <u>S</u> ystem-missing	Copy old value(s)	
	\bigcirc System- or <u>u</u> ser-missing		
	© Ra <u>n</u> ge:	Ol <u>d</u> > New: Lowest thru 83> 83	
		137.25 thru Highest> 137.25	
	through	Add	
		Chage	
	Range, LOWEST through value:	Renove	
Retain all	© Range, value through HIGHEST:		
other values		Output variables are strings Width: 8	
	All other values	Convert numeric strings to numbers ('5'->5)	
	Continue	e Cancel Help	
	Т	hen Add	

🐂 Recode into Different Variables: Old a	nd New Values
Old Value	New Value
© <u>V</u> alue:	© Value:
	© System-missing
◎ <u>S</u> ystem-missing	Opy old value(s)
System- or user-missing	Old> New:
© Ra <u>n</u> ge:	Lowest thru 83> 83
	137.25 thru Highest> 137.25
through	ELSE> Copy
O Range, LOWEST through value:	<u>Remove</u>
Range, value through HIGHEST:	
	Output variables are strings Width: 8
All other values	Convert numeric strings to numbers ('5'->5)
Contin	Cancel Help

Finally, continue then OK

To check your results

Analyze > Descriptive Statistics > Descriptives

<u>A</u> nalyze	Direct <u>M</u> arketing	<u>G</u> raphs	<u>U</u> tilii	ties	Add-or	ns <u>W</u>
Repo	orts	•		C	2	
Des	criptive Statistics	•	123 F	reque	encies	
Ta <u>b</u> l	es	•	P-7 C)escri	ptives	
Com	pare Means	•		- Explor		
Gen	eral Linear Model	•				
Gen	erali <u>z</u> ed Linear Mode	els 🕨		-	abs	
Mixe	d Models	•	172 F	Ratio		
Corr	elate	•	🧒 <u>F</u>	-P Plo	ts	
<u>R</u> egr	ression	•	🤧 <u>(</u>	<u>2</u> -Q PI	ots	
L <u>o</u> gli	inear	•				
Neur	ral Net <u>w</u> orks	•				
Clas	sify	•				
Dime	ension Reduction	•				
Scal	e	•				
Non	parametric Tests	•				
Fore	casting	•				
Surv	rival	•				
M <u>u</u> lti	ple Response	•				
ジ Miss	ing Value Anal <u>y</u> sis					
Mul <u>t</u> i	ple Imputation	•				
Com	plex Samples	•				
Simu	Ilation					
Qual	lity Control	•				
🖉 ROC	Cur <u>v</u> e					

🕌 Descriptives			×			
 ✓ id ✓ diet ✓ exertype ✓ time ✓ highpulse 	*	Variable(s): ∲ pulse ∲ winsor	Options Bootstrap			
Save standardized values as variables						
OK Paste Reset Cancel Help						

OK

Descriptive Statistics

	Ν	Minimum	Maximum	Mean	Std. Deviation
pulse	90	80.00	150.00	99.7000	14.85847
winsor	90	83.00	137.25	99.4778	14.01753
Valid N (listwise)	90				

As desired.

Syntax:-

freq var pulse /format = notable /percentiles = 5 95.

compute winsor = pulse. if pulse <= 83 winsor = 83. if pulse >= 137.25 winsor = 137.25.

descriptives variables=pulse winsor /statistics=mean stddev min max.

```
Trimming and Winsorization: A review
W. J. Dixon and K. K. Yuen
Statistische Hefte
June 1974, Volume 15, Issue 2-3, pp 157-170 <u>paper</u>
```

This paper provides a literature review for robust statistical procedures trimming and Winsorization that were first proposed for estimating location, but were later extended to other estimation and testing problems. Performance of these techniques under normal and long-tailed distributions are discussed.

Winsorisation for estimates of change Daniel Lewis Papers presented at the ICES-III, June 18-21, 2007, Montreal, Quebec, Canada <u>paper</u>

Outliers are a common problem in business surveys which, if left untreated, can have a large impact on survey estimates. For business surveys in the UK Office for National Statistics (ONS), outliers are often treated by modifying their values using a treatment known as Winsorisation. The method involves identifying a cut-off for outliers. Any values lying above the cut-offs are reduced towards the cut-off. The cut-offs are derived in a way that approximately minimises the Mean Square Error of level estimates. However, for many surveys estimates of change are more important. This paper looks at a variety of methods for Winsorising specifically for estimates of change. The measure of change investigated is the difference between two consecutive estimates of total. The first step is to derive potential methods for Winsorising this type of change. Some of these methods prove more practical than others. The methods are then evaluated, using change estimates derived by taking the difference between two regular Winsorised level estimates as a comparison. The evaluation uses data from the ONS Monthly Production Inquiry. Methods are compared both by estimating Mean Squared Errors from survey data and through use of a Monte-Carlo simulation.

Speaking Stata: Trimming to taste Cox, N.J.

Stata Journal 2013 13(3) 640-666 paper

Trimmed means are means calculated after setting aside zero or more values in each tail of a sample distribution. Here we focus on trimming equal numbers in each tail. Such trimmed means define a family or function with mean and median as extreme members and are attractive as simple and easily understood summaries of the general level (location, central tendency) of a variable. This article provides a tutorial review of trimmed means, emphasizing the scope for trimming to varying degrees in describing and exploring data. Detailed remarks are included on the idea's history, plotting of results, and confidence interval procedures. Examples are given using astronomical and medical data. The new Stata commands trimmean and trimplot are also included.

General Linear Models

Generally, the various statistical analyses are taught independently from each other. This makes it difficult to learn new statistical analyses, in contexts that differ. The paper gives a short technical introduction to the general linear model (GLM), in which it is shown that ANOVA (one-way, factorial, repeated measure and analysis of covariance) is simply a multiple correlation/regression analysis (MCRA). Generalizations to other cases, such as multivariate and nonlinear analysis, are also discussed. It can easily be shown that every popular linear analysis can be derived from understanding MCRA.

<u>General Linear Models: An Integrated Approach to Statistics</u> Sylvain Chartier and Andrew Faulkner Tutorials in Quantitative Methods for Psychology 2008 **4(2)** 65-78

Does It Always Matter?

Scientists think in terms of confidence intervals - they are inclined to accept a hypothesis if the probability that it is true exceeds 95 per cent. However within the law "beyond reasonable doubt" appears to be a claim that there is a high probability that the hypothesis - the defendant's guilt - is true.

A Story Can Be More Useful Than Maths John Kay Financial Times 26 February 2013

<u>Article</u>

Does It Always Matter?

...we slavishly lean on the crutch of significance testing because, if we didn't, much of psychology would simply fall apart. If he was right, then significance testing is tantamount to psychology's "dirty little secret."

Significance tests as sorcery: Science is empirical significance tests are not Charles Lambdin Theory and Psychology 22(1) 67-90 2012

<u>Article</u>

Does It Always Matter?

- The first rule of performing a project
- 1 The supervisor is always right
- The second rule of performing a project
- 2 If the supervisor is wrong, rule 1 applies

Does It Always Matter? Probably!

Estimation based on effect sizes, confidence intervals, and metaanalysis usually provides a more informative analysis of empirical results than does statistical significance testing, which has long been the conventional choice in psychology. The sixth edition of the American Psychological Association Publication Manual now recommends that psychologists should, wherever possible, use estimation and base their interpretation of research results on point and interval estimates.

The statistical recommendations of the American Psychological Association Publication Manual: Effect sizes, confidence intervals, and meta-analysis Geoff Cumming, Fiona Fidler, Pav Kalinowski and Jerry Lai Australian Journal of Psychology 2012; 64: 138-146 Article

Index End

SPSS Tips

Now you should go and try for yourself.

Each week our cluster (5.05) is booked for 2 hours after this session. This will enable you to come and go as you please.

Obviously other timetabled sessions for this module take precedence.

