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CHAPTER 4 
 

Exploratory Factor Analysis and Principal Components Analysis  
 
Exploratory factor analysis (EFA) and principal components analysis (PCA) both are methods that are 
used to help investigators represent a large number of relationships among normally distributed or scale 
variables in a simpler (more parsimonious) way. Both of these approaches determine which, of a fairly 
large set of items, “hang together” as groups or are answered most similarly by the participants. EFA also 
can help assess the level of construct (factorial) validity in a dataset regarding a measure purported to 
measure certain constructs. A related approach, confirmatory factor analysis, in which one tests very 
specific models of how variables are related to underlying constructs (conceptual variables), requires 
additional software and is beyond the scope of this book so it will not be discussed. 
 
The primary difference, conceptually, between exploratory factor analysis and principal components 
analysis is that in EFA one postulates that there is a smaller set of unobserved (latent) variables or 
constructs underlying the variables actually observed or measured (this is commonly done to assess 
validity), whereas in PCA one is simply trying to mathematically derive a relatively small number of 
variables to use to convey as much of the information in the observed/measured variables as possible. In 
other words, EFA is directed at understanding the relations among variables by understanding the 
constructs that underlie them, whereas PCA is simply directed toward enabling one to derive fewer 
variables to provide the same information that one would obtain from the larger set of variables.  
 
There are actually a number of different ways of computing factors for factor analysis; in this chapter, we 
will use only one of these methods, principal axis factor analysis (PA). We selected this approach 
because it is highly similar mathematically to PCA. The primary difference, computationally, between 
PCA and PA is that in the former the analysis typically is performed on an ordinary correlation matrix, 
complete with the correlations of each item or variable with itself. In contrast, in PA factor analysis, the 
correlation matrix is modified such that the correlations of each item with itself are replaced with a 
“communality”—a measure of that item’s relation to all other items (usually a squared multiple 
correlation). Thus, with PCA the researcher is trying to reproduce all information (variance and 
covariance) associated with the set of variables, whereas PA factor analysis is directed at understanding 
only the covariation among variables.  
 
Conditions for Exploratory Factor Analysis and Principal Components Analysis 
There are two main conditions necessary for factor analysis and principal components analysis. The first 
is that there need to be relationships among the variables. Further, the larger the sample size, especially in 
relation to the number of variables, the more reliable the resulting factors. Sample size is less crucial for 
factor analysis to the extent that the communalities of items with the other items are high, or at least 
relatively high and variable. Ordinary principal axis factor analysis should never be done if the number of 
items/variables is greater than the number of participants.  
 
Assumptions for Exploratory Factor Analysis and Principal Components Analysis 
The methods of extracting factors and components that are used in this book do not make strong 
distributional assumptions; normality is important only to the extent that skewness or outliers affect the 
observed correlations or if significance tests are performed (which is rare for EFA and PCA). The 
normality of the distribution can be checked by computing the skewness value of each variable. 
Maximum likelihood estimation, which we will not cover, does require multivariate normality; the 
variables need to be normally distributed and the joint distribution of all the variables should be normal. 
Because both principal axis factor analysis and principal components analysis are based on correlations, 
independent sampling is required and the variables should be related to each other (in pairs) in a linear 
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fashion. The assumption of linearity can be assessed with matrix scatterplots, as shown in Chapter 2. 
Finally, each of the variables should be correlated at a moderate level with some of the other variables. 
Factor analysis and principal components analysis seek to explain or reproduce the correlation matrix, 
which would not be a sensible thing to do if the correlations all hover around zero. Bartlett’s test of 
sphericity addresses this assumption. However, if correlations are too high, this may cause problems with 
obtaining a mathematical solution to the factor analysis. 
 
 
• Retrieve your data file: hsbdataNew.sav. 
 

Problem 4.1: Factor Analysis on Math Attitude Variables 
 

In Problem 4.1, we perform a principal axis factor analysis on the math attitude variables. Factor analysis 
is more appropriate than PCA when one has the belief that there are latent variables underlying the 
variables or items measured. In this example, we have beliefs about the constructs underlying the math 
attitude questions; we believe that there are three constructs: motivation, competence, and pleasure. Now, 
we want to see if the items that were written to index each of these constructs actually do “hang together”; 
that is, we wish to determine empirically whether participants’ responses to the motivation questions are 
more similar to each other than to their responses to the competence items, and so on. Conducting factor 
analysis can assist us in validating the data: if the data do fit into the three constructs that we believe exist, 
then this gives us support for the construct validity of the math attitude measure in this sample. The 
analysis is considered exploratory factor analysis even though we have some ideas about the structure of 
the data because our hypotheses regarding the model are not very specific; we do not have specific 
predictions about the size of the relation of each observed variable to each latent variable, etc. Moreover, 
we “allow” the factor analysis to find factors that best fit the data, even if this deviates from our original 
predictions. 
 
 
4.1 Are there three constructs (motivation, competence, and pleasure) underlying the math attitude 

questions? 
 
To answer this question, we will conduct a factor analysis using the principal axis factoring method and 
specify the number of factors to be three (because our conceptualization is that there are three math 
attitude scales or factors: motivation, competence, and pleasure). 
 
• Analyze →  Dimension Reduction →  Factor… to get Fig. 4.1.  
• Next, select the variables item01 through item14. Do not include item04r or any of the other reversed 

items because we are including the unreversed versions of those same items. 
 

 

Fig. 4.1. Factor analysis. 
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• Now click on Descriptives… to produce Fig. 4.2. 
• Then click on the following: Initial solution and Univariate Descriptives (under Statistics), 

Coefficients, Determinant, and KMO and Bartlett’s test of sphericity (under Correlation 
Matrix).  

• Click on Continue to return to Fig. 4.1. 
 

 
 
• Next, click on Extraction… This will give you Fig. 4.3. 
• Select Principal axis factoring from the Method pull-down menu.  
• Unclick Unrotated factor solution (under Display). We will examine this only in Problem 4.2. We 

also usually would check the Scree plot box. However, again, we will request and interpret the scree 
plot only in Problem 4.2. 

• Click on Fixed number of factors under Extract, and type 3 in the box. This setting instructs the 
computer to extract three math attitude factors.  

• Click on Continue to return to Fig. 4.1. 
 

 
 
• Now click on Rotation… in Fig. 4.1, which will give you Fig. 4.4.  

Fig. 4.2. Factor analysis: Descriptives. 
 

Fig. 4.3. Extraction method to 
produce principal axis factoring. 
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• Click on Varimax, then make sure Rotated solution is also checked. Varimax rotation creates a 
solution in which the factors are orthogonal (uncorrelated with one another), which can make results 
easier to interpret and to replicate with future samples. If you believe that the factors (latent concepts) 
are correlated, you could choose Direct Oblimin, which will provide an oblique solution allowing the 
factors to be correlated. 

• Click on Continue.  
 

 
 
• Next, click on Options…, which will give you Fig. 4.5.  
• Click on Sorted by size.  
• Click on Suppress small coefficients and type .3 (point 3) in the Absolute Value below box (see 

Fig. 4.5). Suppressing small factor loadings makes the output easier to read.  
• Click on Continue then OK. Compare Output 4.1 with your output and syntax. 
 

 
 
Output 4.1: Factor Analysis for Math Attitude Questions 
 
FACTOR 
  /VARIABLES item01 item02 item03 item04 item05 item06 item07 item08 item09 item10 item11 item12 
item13 item14 
  /MISSING LISTWISE 
  /ANALYSIS item01 item02 item03 item04 item05 item06 item07 item08 item09 item10 item11 item12 
item13 item14 

Fig. 4.4.  Factor analysis: Rotation. 

Fig. 4.5. Factor analysis: Options. 
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  /PRINT UNIVARIATE INITIAL CORRELATION DET KMO EXTRACTION ROTATION 
  /FORMAT SORT BLANK(.3) 
  /CRITERIA FACTORS(3) ITERATE(25) 
  /EXTRACTION PAF 
  /CRITERIA ITERATE(25) 
  /ROTATION VARIMAX 
  /METHOD=CORRELATION. 
   
 

Factor Analysis 

 
 
Interpretation of Output 4.1 
The factor analysis program generates a variety of tables depending on which options you have chosen. 
The first table includes Descriptive Statistics for each variable and the Analyses N, which in this case is 
71 because several items have one or more participants missing. It is especially important to check the 
Analysis N when you have a small sample, scattered missing data, or one variable with lots of missing 
data. In the latter case, it may be wise to run the analysis without that variable. 
 

 
 
 
 
 
 
 
 

Should be greater than .0001.  If very close 
to zero, collinearity is too high. If zero, no 
solution is possible. 

Indicates how each question is 
associated (correlated) with each 
of the other questions. Only part of 
the matrix is included so font 
would not be too small to read. 
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Interpretation of Output 4.1 continued 
The second table is part of a correlation matrix showing how each of the 14 items is associated with 
each of the other 13. Note that some of the correlations are high (e.g., + or −.60 or greater) and some are 
low (i.e., near zero). Relatively high correlations indicate that two items are associated and will probably 
be grouped together by the factor analysis. Items with low correlations (e.g., ≤.20) usually will not have 
high loadings on the same factor.  
 
One assumption is that the determinant (located under the correlation matrix) should be more than .0001. 
Here, it is .001 so this assumption is met. If the determinant is zero, then a factor analytic solution cannot 
be obtained, because this would require dividing by zero, which would mean that at least one of the items 
can be understood as a linear combination of some set of the other items. 
 
 

 
 
 
 

 
 
 
Interpretation of Output 4.1 continued 
The Kaiser-Meyer-Olkin (KMO) measure should be greater than .70 and is inadequate if less than .50. 
The KMO test tells us whether or not enough items are predicted by each factor. Here it is .77 so that is 
good. The Bartlett test should be significant (i.e., a significance value of less than .05); this means that 
the variables are correlated highly enough to provide a reasonable basis for factor analysis as in this case.  
 
The Communalities table shows the Initial commonalities before rotation. See the call out box for more 
interpretation. Note that all the initial communalities are above .30, which is good.  

KMO and Bartlett's Test

.770

433.486
91

.000

Kaiser-Meyer-Olkin Measure of Sampling
Adequacy.

Approx. Chi-Square
df
Sig.

Bartlett's Test of
Sphericity

Communalities

.660

.542

.598

.562

.772

.382

.607

.533

.412

.372

.591

.499

.452

.479

item01 motivation
item02 pleasure
item03 competence
item04 low motiv
item05 low comp
item06 low pleas
item07 motivation
item08 low motiv
item09 competence
item10 low pleas
item11 low comp
item12 motivation
item13 motivation
item14 pleasure

Initial

Extraction Method: Principal Axis Factoring.

This is greater than .70 indicating 
sufficient items for each factor. 

This is significant (less than .05), 
indicating that the correlation matrix 
is significantly different from an 
identity matrix, in which correlations 
between variables are all zero. 

These initial communalities represent the relation 
between the variable and all other variables (i.e., 
the squared multiple correlation between the item 
and all other items) before rotation. If many or most 
communalities are low (< .30), a small sample size 
is more likely to distort results. 

Tests of assumptions. 
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Interpretation of Output 4.1 continued 
The Total Variance Explained table shows how the variance is divided among the 14 possible factors. 
Note that four factors have eigenvalues (a measure of explained variance) greater than 1.0, which is a 
common criterion for a factor to be useful. When the eigenvalue is less than 1.0 the factor explains less 
information than a single item would have explained. Most researchers would not consider the 
information gained from such a factor to be sufficient to justify keeping that factor. Thus, if you had not 
specified otherwise, the computer would have looked for the best four-factor solution by “rotating” four 
factors. Because we specified that we wanted only three factors rotated, only three will be rotated, as seen 
on the right side of the table under Rotation Sums of Squared Loadings.  
 
For this and other analyses in this chapter, we will use an orthogonal rotation (varimax). This means that 
the final factors will be at right angles with each other. As a result, we can assume that the information 
explained by one factor is independent of the information in the other factors. Note that if we create scales 
by summing or averaging items with high loadings from each factor, these scales will not necessarily be 
uncorrelated; it is the best-fit vectors (factors) that are orthogonal. 
 
 
 

 

Total Variance Explained

4.888 34.916 34.916 3.017 21.549 21.549
2.000 14.284 49.200 2.327 16.621 38.171
1.613 11.519 60.719 1.784 12.746 50.917
1.134 8.097 68.816

.904 6.459 75.275

.716 5.113 80.388

.577 4.125 84.513

.461 3.293 87.806

.400 2.857 90.664

.379 2.710 93.374

.298 2.126 95.500

.258 1.846 97.346

.217 1.551 98.897

.154 1.103 100.000

Factor
1
2
3
4
5
6
7
8
9
10
11
12
13
14

Total % of Variance Cumulative % Total % of Variance Cumulative %
Initial Eigenvalues Rotation Sums of Squared Loadings

Extraction Method: Principal Axis  Factoring.

Factor Matrix a

3 factors extracted. 12 iterations required.a. 

Half of the variance is accounted for by 
the first three factors. 

Percent of covariation among 
items accounted for by each 
factor before and after rotation. 

Eigenvalues refer to the variance 
accounted for, in terms of the number 
of “items’ worth” of variance each 
explains. So, Factor  1 explains almost 
as much variance as in five items. 
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Interpretation of Output 4.1 continued 
Factors are rotated so that they are easier to interpret. Rotation makes it so that, as much as possible, 
different items are explained or predicted by different underlying factors, and each factor explains more 
than one item. This is a condition called simple structure. Although this is the goal of rotation, in reality, 
this is not always achieved. One thing to look for in the Rotated Matrix of factor loadings is the extent to 
which simple structure is achieved.  
 
The Rotated Factor Matrix table is key for understanding the results of the analysis. Factors are rotated 
so that they are easier to interpret. Rotation makes it so that, as much as possible, different items are 
explained or predicted by different underlying factors, and each factor explains more than one item. This 
is a condition called simple structure. Although this is the goal of rotation, in reality, this is not always 
achieved. One thing to look for in the Rotated Matrix of factor loadings is the extent to which simple 
structure is achieved.  
 
Note that the analysis has sorted the 14 math attitude questions (item01 to item14) into three somewhat 
overlapping groups of items, as shown by the circled items. The items are sorted so that the items that 
have the highest loading (not considering whether the correlation is positive or negative) from factor 1 
(four items in this analysis) are listed first, and they are sorted from the one with the highest factor weight 
or loading (i.e., item05, with a loading of −.897) to the one with the lowest loading from that first factor 
(item11). Actually, every item has some loading from every factor, but we requested for loadings less 
than |.30| to be excluded from the output, so there are blanks where low loadings exist. (|.30| means the 
absolute value, or value without considering the sign). 
 
Next, the six items that have their highest loading from factor 2 are listed from highest loading (item12) to 
lowest (item9). Finally, the four items on which factor 3 loads most highly are listed in order. Loadings 
resulting from an orthogonal rotation are correlation coefficients between each item and the factor, so 
they range from −1.0 through 0 to + 1.0. A negative loading just means that the question needs to be 

Rotated Factor Matrixa

-.897   
.780   
.777   

-.572  .355
 .721  
 .667  
 -.619  
 -.601  

.412 .585  
 .332  
  -.797
  .580

.487  -.535
  .515

item05 low comp
item03 competence
item01 motivation
item11 low comp
item12 motivation
item13 motivation
item08 low motiv
item04 low motiv
item07 motivation
item09 competence
item14 pleasure
item10 low pleas
item02 pleasure
item06 low pleas

1 2 3
Factor

Extraction Method: Principal Axis Factoring. 
Rotation Method: Varimax with Kaiser Normalization.

Rotation converged in 5 iterations.a. 

The items cluster into these 
three groups defined by the 
highest loading on each item. 
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interpreted in the opposite direction from the way it is written for that factor (e.g., item05 “I am a little 
slow catching on to new topics in math” has a negative loading from the competence factor, which 
indicates that the people scoring higher on this item are lower in competence). Usually, factor loadings 
lower than |.30| are considered low, which is why we suppressed loadings less than |.30|. On the other 
hand, loadings of |.40| or greater are typically considered high. This is just a guideline, however, and one 
could set the criterion for “high” loadings as low as .30 or as high as .50. Setting the criterion lower than 
.30 or higher than .50 would be very unusual.  
 
The investigator should examine the content of the items that have high loadings from each factor to see if 
they fit together conceptually and can be named. Items 5, 3, and 11 were intended to reflect a perception 
of competence at math, so the fact that they all have strong loadings from the same factor provides some 
support for their being conceptualized as pertaining to the same construct. On the other hand, item01 was 
intended to measure motivation for doing math, but it is highly related to this same competence factor. In 
retrospect, one can see why this item could also be interpreted as competence. The item reads, “I practice 
math skills until I can do them well.” Unless one felt one could do math problems well, this would not be 
true. Likewise, item02, “I feel happy after solving a hard problem,” although intended to measure 
pleasure at doing math (and having its strongest loading there), might also reflect competence at doing 
math, in that, again, one could not endorse this item unless one had solved hard problems, which one 
could only do if one were good at math. Note that item02 loaded almost as highly (.49) on the 
competence factor (#1) as on the low pleasure factor (#3) so it loaded highly on two factors. On the other 
hand, item09, which was originally conceptualized as a competence item, had no really strong loadings.  
 
Every item has a weight or loading from every factor, but in a “clean” factor analysis almost all of the 
loadings that are not in the circles that we have drawn on the Rotated Factor Matrix will be low (blank 
or less than |.40|). The fact that both Factors 1 and 3 load highly on item02 and fairly highly on item11, 
and the fact that Factors 1 and 2 both load highly on item07 is common but undesirable, in that one wants 
only one factor to predict each item. 
 

 
 
Example of How to Write About Problem 4.1 
 

Results 
       Principal axis factor analysis with varimax rotation was conducted to assess the underlying structure 
for the 14 items of the Math Attitude Questionnaire. (The assumption of independent sampling was met. 
The assumptions of normality, linear relationships between pairs of variables, and the variables’ being 
correlated at a moderate level were checked.) Three factors were requested, based on the fact that the 
items were designed to index three constructs: motivation, competence, and pleasure. After rotation, the 
first factor accounted for 21.5% of the variance, the second factor accounted for 16.6%, and the third 
factor accounted for 12.7%. Table 4.1 displays the items and factor loadings for the rotated factors, with 
loadings less than .40 omitted to improve clarity. 
 
 

Factor Transformation Matrix

.747 .552 -.370
-.162 .692 .704
.645 -.466 .606

Factor
1
2
3

1 2 3

Extraction Method: Principal Axis Factoring.  
Rotation Method: Varimax with Kaiser Normalization.

We will ignore this; it was used to 
convert the initial factor matrix into 
the rotated factor matrix. 
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Table 4.1 
Factor Loadings from Principal Axis Factor Analysis with Varimax Rotation for a Three-Factor Solution 
for Math Attitude Questions (N =71)  
 
   Item                                                                                   Factor Loading 
                                                                               1                       2                           3            Communality 
Slow catching on to new topics                         −.90                                                                    .77 
Solve math problems quickly                              .78                                                                           .60 
Practice math until do well                                  .78                                                                           .66         
Have difficulties doing math                              −.57                                                                           .59 
Try to complete math even if takes long                                      .72                                                 .50 
Explore all possible solutions                                                        .67                                                  .45 
Do not keep at it long if problem challenging                              −.62                                                  .53 
Give up easily instead of persisting                                              −.60                                                  .56 
Prefer to figure out problems without help          .41                      .59                                                  .61                                                
Really enjoy working math problems                                                                      −.80                      .48 
Smile only a little when solving math problem                                                           .58                    .37 
Feel happy after solving hard problem                .49                                            −.54                     .54 
Do not get much pleasure out of math                                                                        .52                     .38 
Eigenvalues                                                        3.02                   2.33                     1.78 
% of variance                                                   21.55                 16.62                   12.75 
 
Note. Loadings < .40 are omitted. 
 
The first factor, which seems to index competence, had strong loadings on the first four items. Two of the 
items indexed low competence and had negative loadings. The second factor, which seemed to index 
motivation, had high loadings on the next five items in Table 4.1. “I prefer to figure out the problem 
without help” had its highest loading from the second factor but had a cross-loading over .4 on the 
competence factor. The third factor, which seemed to index low pleasure from math, loaded highly on the 
last four items in the table. “I feel happy after solving a hard problem” had its highest loading from the 
pleasure factor but also had a strong loading from the competence factor. 

 
Problem 4.2: Principal Components Analysis on Achievement Variables 

 
Principal components analysis is most useful if one simply wants to reduce a relatively large number of 
variables to a smaller number of variables that still capture the same information.  In this problem we will 
look at the initial (unrotated) solution as well as the rotated solution because we might want to use the 
first, unrotated, principal component to summarize all of the variables if it explains most of the variance 
rather using multiple, rotated components. This would especially be true if the scree plot suggests a large 
drop-off after the first component in variance explained (eigenvalues), so we will look at the scree plot 
too.  
 
4.2 Run a principal components analysis to see how the five “achievement” variables cluster. These 

variables are grades in h.s., math achievement, mosaic pattern test, visualization test, and scholastic 
aptitude test – math.  

 
• Click on Analyze →  Dimension Reduction →  Factor... 
• First press Reset.  
• Next select the variables grades in h.s., math achievement, mosaic pattern test, visualization test, and 

scholastic aptitude test – math, similar to what we did in Fig. 4.1. 
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• In the Descriptives window (Fig. 4.2), check Univariate descriptives, Initial solution, Coefficients, 
Determinant, and KMO and Bartlett’s test of sphericity. Click on Continue. 

• In the Extraction window (Fig. 4.3), use the default Method of Principal components. Be sure that 
unrotated factor solution and Eigenvalues over 1 checked. Also, request a Scree plot (to see if one 
component would do a good job in summarizing the data or if a different number of components 
would be preferable to the default based on the criterion of components with eigenvalues over 1). 

• Click on Continue.  
• In the Rotation window (Fig. 4.4), check Varimax. Under Display, check Rotated solution and 

Loading plot(s). 
• Click on Continue and then OK. 
 
We have requested a principal components analysis for the extraction and some different options for the 
output to contrast with the earlier one. Compare Output 4.2 with your syntax and output. 
 
 
Output 4.2: Principal Components Analysis for Achievement Scores 
 
FACTOR 
  /VARIABLES grades mathach mosaic visual satm   
  /MISSING LISTWISE  
  /ANALYSIS grades mathach mosaic visual satm 
  /PRINT UNIVARIATE INITIAL CORRELATION DET KMO EXTRACTION ROTATION 
  /PLOT EIGEN ROTATION 
  /CRITERIA MINEIGEN(1) ITERATE(25) 
  /EXTRACTION PC 
  /CRITERIA ITERATE(25) 
  /ROTATION VARIMAX 
  /METHOD=CORRELATION . 

 
Factor Analysis 
 
   

 
 

 

Descriptive Statistics

5.68 1.570 75
12.5645 6.67031 75

27.413 9.5738 75
5.2433 3.91203 75

490.53 94.553 75

grades in h.s.
math achievement test
mosaic, pattern test
visualization test
scholastic aptitude
test - math

Mean Std. Deviation Analysis N

Correlation Matrixa

1.000 .504 -.012 .127 .371
.504 1.000 .213 .423 .788

-.012 .213 1.000 .030 .110
.127 .423 .030 1.000 .356

.371 .788 .110 .356 1.000

grades in h.s.
math achievement test
mosaic , pattern tes t
visualization test
scholastic aptitude
test - math

Correlation
grades in h.s.

math
achievement

tes t
mosaic ,

pattern tes t
visualization

tes t

scholastic
aptitude

test - math

Determinant = .210a. 
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Interpretation of 4.2 
As in Problem 4.1, the Descriptive Statistics table provides the mean and SD for each item. The Analysis 
N is important because it tells you how many students have scores on all five of these variables; in this 
case there is no missing data so the N is 75. The Correlation Matrix shows how each of the five items is 
related to the other four; note that the mosaic scores are very weakly correlated with the other four 
variables (-.012 to .213).  
 
In terms of assumptions, the Determinant is much larger than zero so that is good. The KMO is .615 so 
mediocre and may be a problem. The Bartlett test is significant (p < .001), which is good and indicates 
that the correlation s are not near zero.  
 
 

 
 
 
 
 

 
 

KMO and Bartlett's Test

.615

111.440
10

.000

Kaiser-Meyer-Olkin Measure of Sampling
Adequacy.

Approx. Chi-Square
df
Sig.

Bartlet t's Test of
Sphericity

Communalities

1.000 .493
1.000 .869
1.000 .949
1.000 .330

1.000 .748

grades in h.s.
math achievement test
mosaic, pattern test
visualization tes t
scholastic aptitude
test - math

Initial Extraction

Extraction Method: Principal Component Analysis.

Total Variance Explained

2.379 47.579 47.579 2.379 47.579 47.579 2.340 46.805 46.805
1.010 20.198 67.777 1.010 20.198 67.777 1.049 20.972 67.777

.872 17.437 85.214

.560 11.197 96.411

.179 3.589 100.000

Component
1
2
3
4
5

Total % of Variance Cumulative % Total % of Variance Cumulative % Total % of Variance Cumulative %
Initial Eigenvalues Extraction Sums of Squared Loadings Rotation Sums of Squared Loadings

Extraction Method: Principal Component Analysis.

This is acceptable but 
mediocre. Because KMO is 
>.5, but it indicated there may 
not be enough items for one of 
the components.  

Note that 46% of the variance is explained 
by the first component. 
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Interpretation of 4.2 continued 
The Total Variance Explained table shows that there are two components with initial Eigenvalues more 
than 1.0, although the Eigenvalue for the second component is barely over 1 at 1.01. The first component 
explains 47.58% of the total variance, but because this is less than 50%, we probably want to rotate more 
than one component, as shown on the right hand side of this Total Variance Explained table. 
 
The Scree Plot shows the initial Eigenvalues. Note that both the scree plot and the eigenvalues support 
the conclusion that these five variables can be reduced to two components. Note that the scree plot 
flattens out after the second component. However, the second component is very poorly defined, relating 
only to one variable. Thus, one may decide to use only one summary variable, based on all variables 
except mosaic, or to redo the PCA after omitting mosaic.  It usually is best for components to be defined 
by at least four variables.  
 
The unrotated Component Matrix should not be interpreted. However, if you want to compute only one 
variable that provides the most information about this set of variables, a linear combination of the 
variables with high loadings from the first component of the unrotated matrix would be used.  
 

Component Matrixa

.624 -.322

.931 .044

.220 .949

.571 -.056

.865 -.020

grades in h.s.
math achievement test
mosaic, pattern test
visualization test
scholastic aptitude
test - math

1 2
Component

Extraction Method: Principal Component Analysis.
2 components extracted.a. 

The Scree plot 
shows that after the 
first two 
components, 
differences between 
the eigenvalues 
decline (the curve 
flattens), and they 
are less than 1.0. 
This again supports a 
two-component 
solution. 

This unrotated matrix should not be 
interpreted; it provides information about 
how the loadings change when the 
solution is rotated. However, the first 
unrotated component provides the simplest 
summary of the variables.  In this case, it 
appears that if one used the first 
component only as the basis for creating 
summary scores, such scores would not 
include mosaic pattern score, which does 
not have a high loading for the first 
component. 
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Interpretation of Output 4.2 continued 
The  Rotated Component Matrix, which contains all the loadings (even those < .3) for each component, 
is similar to the rotated factor matrix in Output 4.1. The Component Plot in rotated Space gives one a 
visual representation of the loadings plotted in a 2-dimensional space. The plot shows how closely related 

Rotated Component Matrixa

.669 -.213

.911 .200

.057 .972

.573 .041

.856 .126

grades in h.s.
math achievement test
mosaic, pattern test
visualization test
scholastic aptitude
test - math

1 2
Component

Extraction Method: Principal Component Analysis. 
Rotation Method: Varimax w ith Kaiser Normalization.

Rotation converged in 3 iterations.a. 

Component Transformation Matrix

.986 .168
-.168 .986

Component
1
2

1 2

Extraction Method: Principal Component Analysis.  
Rotation Method: Varimax w ith Kaiser Normalization.

Even after rotation, mosaic is 
predicted by its own component, 
which does not have strong loadings 
on any of the other variables. 
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the items are to each other and to the two components. This plot of the component loadings shows that 
math achievement, SATmath, grades in h.s., and visualization test all load highly and positively on the 
first component. Mosaic has a laoding near zero on the first component, but loads highly on the second.   
 
Also, note that the default setting we used does not sort the variables in the Rotated Component Matrix 
by magnitude of loadings and does not suppress low loadings. Thus, you have to organize the table 
yourself; that is, math achievement, scholastic aptitude test, grades in h.s., and visualization, in that order, 
have high Component 1 loadings, and mosaic is the only variable with a high loading for Component 2.  
 
Researchers usually give names to rotated components in a fashion similar to that used in EFA; however, 
there is no assumption that this indicates a variable that underlies the measured items. Often, a researcher 
will aggregate (add or average) the items that define (have high loadings for) each component and use this 
composite variable in further research. Actually, the same thing is often done with EFA factor loadings; 
however, the implication of the latter is that this composite variable is an index of the underlying 
construct. 
 
 
 
Example of How to Write About Problem 4.2 
 

Results 
       Principal components analysis with varimax rotation was conducted to assess how five 
“achievement” variables clustered. These variables were grades in h.s., math achievement, mosaic pattern 
test, visualization test, and scholastic aptitude test – math. (The assumption of independent sampling was 
met. The assumptions of normality, linear relationships between pairs of variables, and the variables 
being correlated at a moderate level were checked and mosaic pattern test did not meet the assumptions, 
in that it was correlated at a low level with each of the other variables.) Two components were rotated, 
based on the eigenvalues over 1 criterion and the scree plot. After rotation, the first component accounted 
for 47% of the variance, and the second component accounted for 21% of the variance. Table 4.2 displays 
the items and component loadings for the rotated components, with loadings less than .30 omitted to 
improve clarity. Results suggest, in keeping with zero-order correlations, that mosaic pattern test scores 
are not substantially related to the other measures and should not be aggregated with them but that the 
other measures form a coherent component.  
 
Table 4.2 
Component Loadings for the Rotated Components (N = 75) 
 
   Item                                                                      Component Loading 
                                                                                      1                 2                            Communality 
Grades in high school                              .67                                                       .49             
Math achievement                                   .91                                                       .87                  
Visualization test                                         .57                                                       .33                        
Scholastic aptitude test – math            .86                                                       .75                    
Mosaic pattern test                                                                         .97                              .95 
Eigenvalues                                                           2.38            1.01                     
% of variance                                                     46.81         20.97                 
 
Note. Loadings < .25 are omitted. 
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Interpretation Questions 
 
4.1 Using Output 4.1:  (a) Are the factors in Output 4.1 close to the conceptual composites 

(motivation, pleasure, competence) indicated in Chapter 1? (b) How might you name the 
three factors in Output 4.1? (c) Why did we use factor analysis rather than principal 
components analysis for this exercise? 

 
4.2 Using Output 4.2:  (a) Were any of the assumptions that were tested violated? Explain. 

(b) Describe the main aspects of the correlation matrix, the rotated component matrix, 
and the plot in Output 4.2.  

 
4.3 What does the plot in Output 4.2 tell us about the relation of mosaic to the other variables 

and to component 1? How does this plot relate to the rotated component matrix? 
 
 

Extra SPSS Problems 
 
4.1 Using the judges.sav data file, do exploratory factor analysis to see if the seven variables 

(the judges’ countries) can be grouped into two categories: former communistic block 
countries (Russia, China, and Romania) and non-communist countries (U.S., South 
Korea, Italy, and France). What, if any, assumptions were violated? 

 
4.2 Using the satisf.sav data file, see if the six satisfaction scales can be reduced to a smaller number 

of variables. 
 
4.3 Using the love.sav data file, see if the four love questions can be grouped into one 

category. What, if any, assumptions were violated? 
 
4.4 Using the 1991 U.S. General Social Survey.sav data file, do exploratory factor analysis to 

see if the health variables (hlth1 to hlth9) and the work variables (work1 to work9) fall 
into two categories: health and work. Were any assumptions violated? 
 

 


